1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <net/tcx.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <trace/events/qdisc.h> 136 #include <trace/events/xdp.h> 137 #include <linux/inetdevice.h> 138 #include <linux/cpu_rmap.h> 139 #include <linux/static_key.h> 140 #include <linux/hashtable.h> 141 #include <linux/vmalloc.h> 142 #include <linux/if_macvlan.h> 143 #include <linux/errqueue.h> 144 #include <linux/hrtimer.h> 145 #include <linux/netfilter_netdev.h> 146 #include <linux/crash_dump.h> 147 #include <linux/sctp.h> 148 #include <net/udp_tunnel.h> 149 #include <linux/net_namespace.h> 150 #include <linux/indirect_call_wrapper.h> 151 #include <net/devlink.h> 152 #include <linux/pm_runtime.h> 153 #include <linux/prandom.h> 154 #include <linux/once_lite.h> 155 #include <net/netdev_rx_queue.h> 156 157 #include "dev.h" 158 #include "net-sysfs.h" 159 160 static DEFINE_SPINLOCK(ptype_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static DECLARE_RWSEM(devnet_rename_sem); 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock_irqsave(struct softnet_data *sd, 221 unsigned long *flags) 222 { 223 if (IS_ENABLED(CONFIG_RPS)) 224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 226 local_irq_save(*flags); 227 } 228 229 static inline void rps_lock_irq_disable(struct softnet_data *sd) 230 { 231 if (IS_ENABLED(CONFIG_RPS)) 232 spin_lock_irq(&sd->input_pkt_queue.lock); 233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 234 local_irq_disable(); 235 } 236 237 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 238 unsigned long *flags) 239 { 240 if (IS_ENABLED(CONFIG_RPS)) 241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 243 local_irq_restore(*flags); 244 } 245 246 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 247 { 248 if (IS_ENABLED(CONFIG_RPS)) 249 spin_unlock_irq(&sd->input_pkt_queue.lock); 250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 251 local_irq_enable(); 252 } 253 254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 255 const char *name) 256 { 257 struct netdev_name_node *name_node; 258 259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 260 if (!name_node) 261 return NULL; 262 INIT_HLIST_NODE(&name_node->hlist); 263 name_node->dev = dev; 264 name_node->name = name; 265 return name_node; 266 } 267 268 static struct netdev_name_node * 269 netdev_name_node_head_alloc(struct net_device *dev) 270 { 271 struct netdev_name_node *name_node; 272 273 name_node = netdev_name_node_alloc(dev, dev->name); 274 if (!name_node) 275 return NULL; 276 INIT_LIST_HEAD(&name_node->list); 277 return name_node; 278 } 279 280 static void netdev_name_node_free(struct netdev_name_node *name_node) 281 { 282 kfree(name_node); 283 } 284 285 static void netdev_name_node_add(struct net *net, 286 struct netdev_name_node *name_node) 287 { 288 hlist_add_head_rcu(&name_node->hlist, 289 dev_name_hash(net, name_node->name)); 290 } 291 292 static void netdev_name_node_del(struct netdev_name_node *name_node) 293 { 294 hlist_del_rcu(&name_node->hlist); 295 } 296 297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 298 const char *name) 299 { 300 struct hlist_head *head = dev_name_hash(net, name); 301 struct netdev_name_node *name_node; 302 303 hlist_for_each_entry(name_node, head, hlist) 304 if (!strcmp(name_node->name, name)) 305 return name_node; 306 return NULL; 307 } 308 309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 310 const char *name) 311 { 312 struct hlist_head *head = dev_name_hash(net, name); 313 struct netdev_name_node *name_node; 314 315 hlist_for_each_entry_rcu(name_node, head, hlist) 316 if (!strcmp(name_node->name, name)) 317 return name_node; 318 return NULL; 319 } 320 321 bool netdev_name_in_use(struct net *net, const char *name) 322 { 323 return netdev_name_node_lookup(net, name); 324 } 325 EXPORT_SYMBOL(netdev_name_in_use); 326 327 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 328 { 329 struct netdev_name_node *name_node; 330 struct net *net = dev_net(dev); 331 332 name_node = netdev_name_node_lookup(net, name); 333 if (name_node) 334 return -EEXIST; 335 name_node = netdev_name_node_alloc(dev, name); 336 if (!name_node) 337 return -ENOMEM; 338 netdev_name_node_add(net, name_node); 339 /* The node that holds dev->name acts as a head of per-device list. */ 340 list_add_tail(&name_node->list, &dev->name_node->list); 341 342 return 0; 343 } 344 345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 346 { 347 list_del(&name_node->list); 348 netdev_name_node_del(name_node); 349 kfree(name_node->name); 350 netdev_name_node_free(name_node); 351 } 352 353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 354 { 355 struct netdev_name_node *name_node; 356 struct net *net = dev_net(dev); 357 358 name_node = netdev_name_node_lookup(net, name); 359 if (!name_node) 360 return -ENOENT; 361 /* lookup might have found our primary name or a name belonging 362 * to another device. 363 */ 364 if (name_node == dev->name_node || name_node->dev != dev) 365 return -EINVAL; 366 367 __netdev_name_node_alt_destroy(name_node); 368 369 return 0; 370 } 371 372 static void netdev_name_node_alt_flush(struct net_device *dev) 373 { 374 struct netdev_name_node *name_node, *tmp; 375 376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 377 __netdev_name_node_alt_destroy(name_node); 378 } 379 380 /* Device list insertion */ 381 static void list_netdevice(struct net_device *dev) 382 { 383 struct net *net = dev_net(dev); 384 385 ASSERT_RTNL(); 386 387 write_lock(&dev_base_lock); 388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 389 netdev_name_node_add(net, dev->name_node); 390 hlist_add_head_rcu(&dev->index_hlist, 391 dev_index_hash(net, dev->ifindex)); 392 write_unlock(&dev_base_lock); 393 /* We reserved the ifindex, this can't fail */ 394 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 395 396 dev_base_seq_inc(net); 397 } 398 399 /* Device list removal 400 * caller must respect a RCU grace period before freeing/reusing dev 401 */ 402 static void unlist_netdevice(struct net_device *dev, bool lock) 403 { 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 xa_erase(&net->dev_by_index, dev->ifindex); 409 410 /* Unlink dev from the device chain */ 411 if (lock) 412 write_lock(&dev_base_lock); 413 list_del_rcu(&dev->dev_list); 414 netdev_name_node_del(dev->name_node); 415 hlist_del_rcu(&dev->index_hlist); 416 if (lock) 417 write_unlock(&dev_base_lock); 418 419 dev_base_seq_inc(dev_net(dev)); 420 } 421 422 /* 423 * Our notifier list 424 */ 425 426 static RAW_NOTIFIER_HEAD(netdev_chain); 427 428 /* 429 * Device drivers call our routines to queue packets here. We empty the 430 * queue in the local softnet handler. 431 */ 432 433 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 434 EXPORT_PER_CPU_SYMBOL(softnet_data); 435 436 #ifdef CONFIG_LOCKDEP 437 /* 438 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 439 * according to dev->type 440 */ 441 static const unsigned short netdev_lock_type[] = { 442 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 443 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 444 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 445 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 446 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 447 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 448 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 449 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 450 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 451 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 452 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 453 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 454 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 455 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 456 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 457 458 static const char *const netdev_lock_name[] = { 459 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 460 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 461 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 462 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 463 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 464 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 465 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 466 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 467 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 468 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 469 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 470 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 471 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 472 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 473 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 474 475 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 476 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 477 478 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 479 { 480 int i; 481 482 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 483 if (netdev_lock_type[i] == dev_type) 484 return i; 485 /* the last key is used by default */ 486 return ARRAY_SIZE(netdev_lock_type) - 1; 487 } 488 489 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 490 unsigned short dev_type) 491 { 492 int i; 493 494 i = netdev_lock_pos(dev_type); 495 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 496 netdev_lock_name[i]); 497 } 498 499 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 500 { 501 int i; 502 503 i = netdev_lock_pos(dev->type); 504 lockdep_set_class_and_name(&dev->addr_list_lock, 505 &netdev_addr_lock_key[i], 506 netdev_lock_name[i]); 507 } 508 #else 509 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 510 unsigned short dev_type) 511 { 512 } 513 514 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 515 { 516 } 517 #endif 518 519 /******************************************************************************* 520 * 521 * Protocol management and registration routines 522 * 523 *******************************************************************************/ 524 525 526 /* 527 * Add a protocol ID to the list. Now that the input handler is 528 * smarter we can dispense with all the messy stuff that used to be 529 * here. 530 * 531 * BEWARE!!! Protocol handlers, mangling input packets, 532 * MUST BE last in hash buckets and checking protocol handlers 533 * MUST start from promiscuous ptype_all chain in net_bh. 534 * It is true now, do not change it. 535 * Explanation follows: if protocol handler, mangling packet, will 536 * be the first on list, it is not able to sense, that packet 537 * is cloned and should be copied-on-write, so that it will 538 * change it and subsequent readers will get broken packet. 539 * --ANK (980803) 540 */ 541 542 static inline struct list_head *ptype_head(const struct packet_type *pt) 543 { 544 if (pt->type == htons(ETH_P_ALL)) 545 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 546 else 547 return pt->dev ? &pt->dev->ptype_specific : 548 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 549 } 550 551 /** 552 * dev_add_pack - add packet handler 553 * @pt: packet type declaration 554 * 555 * Add a protocol handler to the networking stack. The passed &packet_type 556 * is linked into kernel lists and may not be freed until it has been 557 * removed from the kernel lists. 558 * 559 * This call does not sleep therefore it can not 560 * guarantee all CPU's that are in middle of receiving packets 561 * will see the new packet type (until the next received packet). 562 */ 563 564 void dev_add_pack(struct packet_type *pt) 565 { 566 struct list_head *head = ptype_head(pt); 567 568 spin_lock(&ptype_lock); 569 list_add_rcu(&pt->list, head); 570 spin_unlock(&ptype_lock); 571 } 572 EXPORT_SYMBOL(dev_add_pack); 573 574 /** 575 * __dev_remove_pack - remove packet handler 576 * @pt: packet type declaration 577 * 578 * Remove a protocol handler that was previously added to the kernel 579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 580 * from the kernel lists and can be freed or reused once this function 581 * returns. 582 * 583 * The packet type might still be in use by receivers 584 * and must not be freed until after all the CPU's have gone 585 * through a quiescent state. 586 */ 587 void __dev_remove_pack(struct packet_type *pt) 588 { 589 struct list_head *head = ptype_head(pt); 590 struct packet_type *pt1; 591 592 spin_lock(&ptype_lock); 593 594 list_for_each_entry(pt1, head, list) { 595 if (pt == pt1) { 596 list_del_rcu(&pt->list); 597 goto out; 598 } 599 } 600 601 pr_warn("dev_remove_pack: %p not found\n", pt); 602 out: 603 spin_unlock(&ptype_lock); 604 } 605 EXPORT_SYMBOL(__dev_remove_pack); 606 607 /** 608 * dev_remove_pack - remove packet handler 609 * @pt: packet type declaration 610 * 611 * Remove a protocol handler that was previously added to the kernel 612 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 613 * from the kernel lists and can be freed or reused once this function 614 * returns. 615 * 616 * This call sleeps to guarantee that no CPU is looking at the packet 617 * type after return. 618 */ 619 void dev_remove_pack(struct packet_type *pt) 620 { 621 __dev_remove_pack(pt); 622 623 synchronize_net(); 624 } 625 EXPORT_SYMBOL(dev_remove_pack); 626 627 628 /******************************************************************************* 629 * 630 * Device Interface Subroutines 631 * 632 *******************************************************************************/ 633 634 /** 635 * dev_get_iflink - get 'iflink' value of a interface 636 * @dev: targeted interface 637 * 638 * Indicates the ifindex the interface is linked to. 639 * Physical interfaces have the same 'ifindex' and 'iflink' values. 640 */ 641 642 int dev_get_iflink(const struct net_device *dev) 643 { 644 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 645 return dev->netdev_ops->ndo_get_iflink(dev); 646 647 return dev->ifindex; 648 } 649 EXPORT_SYMBOL(dev_get_iflink); 650 651 /** 652 * dev_fill_metadata_dst - Retrieve tunnel egress information. 653 * @dev: targeted interface 654 * @skb: The packet. 655 * 656 * For better visibility of tunnel traffic OVS needs to retrieve 657 * egress tunnel information for a packet. Following API allows 658 * user to get this info. 659 */ 660 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 661 { 662 struct ip_tunnel_info *info; 663 664 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 665 return -EINVAL; 666 667 info = skb_tunnel_info_unclone(skb); 668 if (!info) 669 return -ENOMEM; 670 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 671 return -EINVAL; 672 673 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 674 } 675 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 676 677 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 678 { 679 int k = stack->num_paths++; 680 681 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 682 return NULL; 683 684 return &stack->path[k]; 685 } 686 687 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 688 struct net_device_path_stack *stack) 689 { 690 const struct net_device *last_dev; 691 struct net_device_path_ctx ctx = { 692 .dev = dev, 693 }; 694 struct net_device_path *path; 695 int ret = 0; 696 697 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 698 stack->num_paths = 0; 699 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 700 last_dev = ctx.dev; 701 path = dev_fwd_path(stack); 702 if (!path) 703 return -1; 704 705 memset(path, 0, sizeof(struct net_device_path)); 706 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 707 if (ret < 0) 708 return -1; 709 710 if (WARN_ON_ONCE(last_dev == ctx.dev)) 711 return -1; 712 } 713 714 if (!ctx.dev) 715 return ret; 716 717 path = dev_fwd_path(stack); 718 if (!path) 719 return -1; 720 path->type = DEV_PATH_ETHERNET; 721 path->dev = ctx.dev; 722 723 return ret; 724 } 725 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 726 727 /** 728 * __dev_get_by_name - find a device by its name 729 * @net: the applicable net namespace 730 * @name: name to find 731 * 732 * Find an interface by name. Must be called under RTNL semaphore 733 * or @dev_base_lock. If the name is found a pointer to the device 734 * is returned. If the name is not found then %NULL is returned. The 735 * reference counters are not incremented so the caller must be 736 * careful with locks. 737 */ 738 739 struct net_device *__dev_get_by_name(struct net *net, const char *name) 740 { 741 struct netdev_name_node *node_name; 742 743 node_name = netdev_name_node_lookup(net, name); 744 return node_name ? node_name->dev : NULL; 745 } 746 EXPORT_SYMBOL(__dev_get_by_name); 747 748 /** 749 * dev_get_by_name_rcu - find a device by its name 750 * @net: the applicable net namespace 751 * @name: name to find 752 * 753 * Find an interface by name. 754 * If the name is found a pointer to the device is returned. 755 * If the name is not found then %NULL is returned. 756 * The reference counters are not incremented so the caller must be 757 * careful with locks. The caller must hold RCU lock. 758 */ 759 760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 761 { 762 struct netdev_name_node *node_name; 763 764 node_name = netdev_name_node_lookup_rcu(net, name); 765 return node_name ? node_name->dev : NULL; 766 } 767 EXPORT_SYMBOL(dev_get_by_name_rcu); 768 769 /* Deprecated for new users, call netdev_get_by_name() instead */ 770 struct net_device *dev_get_by_name(struct net *net, const char *name) 771 { 772 struct net_device *dev; 773 774 rcu_read_lock(); 775 dev = dev_get_by_name_rcu(net, name); 776 dev_hold(dev); 777 rcu_read_unlock(); 778 return dev; 779 } 780 EXPORT_SYMBOL(dev_get_by_name); 781 782 /** 783 * netdev_get_by_name() - find a device by its name 784 * @net: the applicable net namespace 785 * @name: name to find 786 * @tracker: tracking object for the acquired reference 787 * @gfp: allocation flags for the tracker 788 * 789 * Find an interface by name. This can be called from any 790 * context and does its own locking. The returned handle has 791 * the usage count incremented and the caller must use netdev_put() to 792 * release it when it is no longer needed. %NULL is returned if no 793 * matching device is found. 794 */ 795 struct net_device *netdev_get_by_name(struct net *net, const char *name, 796 netdevice_tracker *tracker, gfp_t gfp) 797 { 798 struct net_device *dev; 799 800 dev = dev_get_by_name(net, name); 801 if (dev) 802 netdev_tracker_alloc(dev, tracker, gfp); 803 return dev; 804 } 805 EXPORT_SYMBOL(netdev_get_by_name); 806 807 /** 808 * __dev_get_by_index - find a device by its ifindex 809 * @net: the applicable net namespace 810 * @ifindex: index of device 811 * 812 * Search for an interface by index. Returns %NULL if the device 813 * is not found or a pointer to the device. The device has not 814 * had its reference counter increased so the caller must be careful 815 * about locking. The caller must hold either the RTNL semaphore 816 * or @dev_base_lock. 817 */ 818 819 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 820 { 821 struct net_device *dev; 822 struct hlist_head *head = dev_index_hash(net, ifindex); 823 824 hlist_for_each_entry(dev, head, index_hlist) 825 if (dev->ifindex == ifindex) 826 return dev; 827 828 return NULL; 829 } 830 EXPORT_SYMBOL(__dev_get_by_index); 831 832 /** 833 * dev_get_by_index_rcu - find a device by its ifindex 834 * @net: the applicable net namespace 835 * @ifindex: index of device 836 * 837 * Search for an interface by index. Returns %NULL if the device 838 * is not found or a pointer to the device. The device has not 839 * had its reference counter increased so the caller must be careful 840 * about locking. The caller must hold RCU lock. 841 */ 842 843 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 844 { 845 struct net_device *dev; 846 struct hlist_head *head = dev_index_hash(net, ifindex); 847 848 hlist_for_each_entry_rcu(dev, head, index_hlist) 849 if (dev->ifindex == ifindex) 850 return dev; 851 852 return NULL; 853 } 854 EXPORT_SYMBOL(dev_get_by_index_rcu); 855 856 /* Deprecated for new users, call netdev_get_by_index() instead */ 857 struct net_device *dev_get_by_index(struct net *net, int ifindex) 858 { 859 struct net_device *dev; 860 861 rcu_read_lock(); 862 dev = dev_get_by_index_rcu(net, ifindex); 863 dev_hold(dev); 864 rcu_read_unlock(); 865 return dev; 866 } 867 EXPORT_SYMBOL(dev_get_by_index); 868 869 /** 870 * netdev_get_by_index() - find a device by its ifindex 871 * @net: the applicable net namespace 872 * @ifindex: index of device 873 * @tracker: tracking object for the acquired reference 874 * @gfp: allocation flags for the tracker 875 * 876 * Search for an interface by index. Returns NULL if the device 877 * is not found or a pointer to the device. The device returned has 878 * had a reference added and the pointer is safe until the user calls 879 * netdev_put() to indicate they have finished with it. 880 */ 881 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 882 netdevice_tracker *tracker, gfp_t gfp) 883 { 884 struct net_device *dev; 885 886 dev = dev_get_by_index(net, ifindex); 887 if (dev) 888 netdev_tracker_alloc(dev, tracker, gfp); 889 return dev; 890 } 891 EXPORT_SYMBOL(netdev_get_by_index); 892 893 /** 894 * dev_get_by_napi_id - find a device by napi_id 895 * @napi_id: ID of the NAPI struct 896 * 897 * Search for an interface by NAPI ID. Returns %NULL if the device 898 * is not found or a pointer to the device. The device has not had 899 * its reference counter increased so the caller must be careful 900 * about locking. The caller must hold RCU lock. 901 */ 902 903 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 904 { 905 struct napi_struct *napi; 906 907 WARN_ON_ONCE(!rcu_read_lock_held()); 908 909 if (napi_id < MIN_NAPI_ID) 910 return NULL; 911 912 napi = napi_by_id(napi_id); 913 914 return napi ? napi->dev : NULL; 915 } 916 EXPORT_SYMBOL(dev_get_by_napi_id); 917 918 /** 919 * netdev_get_name - get a netdevice name, knowing its ifindex. 920 * @net: network namespace 921 * @name: a pointer to the buffer where the name will be stored. 922 * @ifindex: the ifindex of the interface to get the name from. 923 */ 924 int netdev_get_name(struct net *net, char *name, int ifindex) 925 { 926 struct net_device *dev; 927 int ret; 928 929 down_read(&devnet_rename_sem); 930 rcu_read_lock(); 931 932 dev = dev_get_by_index_rcu(net, ifindex); 933 if (!dev) { 934 ret = -ENODEV; 935 goto out; 936 } 937 938 strcpy(name, dev->name); 939 940 ret = 0; 941 out: 942 rcu_read_unlock(); 943 up_read(&devnet_rename_sem); 944 return ret; 945 } 946 947 /** 948 * dev_getbyhwaddr_rcu - find a device by its hardware address 949 * @net: the applicable net namespace 950 * @type: media type of device 951 * @ha: hardware address 952 * 953 * Search for an interface by MAC address. Returns NULL if the device 954 * is not found or a pointer to the device. 955 * The caller must hold RCU or RTNL. 956 * The returned device has not had its ref count increased 957 * and the caller must therefore be careful about locking 958 * 959 */ 960 961 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 962 const char *ha) 963 { 964 struct net_device *dev; 965 966 for_each_netdev_rcu(net, dev) 967 if (dev->type == type && 968 !memcmp(dev->dev_addr, ha, dev->addr_len)) 969 return dev; 970 971 return NULL; 972 } 973 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 974 975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 976 { 977 struct net_device *dev, *ret = NULL; 978 979 rcu_read_lock(); 980 for_each_netdev_rcu(net, dev) 981 if (dev->type == type) { 982 dev_hold(dev); 983 ret = dev; 984 break; 985 } 986 rcu_read_unlock(); 987 return ret; 988 } 989 EXPORT_SYMBOL(dev_getfirstbyhwtype); 990 991 /** 992 * __dev_get_by_flags - find any device with given flags 993 * @net: the applicable net namespace 994 * @if_flags: IFF_* values 995 * @mask: bitmask of bits in if_flags to check 996 * 997 * Search for any interface with the given flags. Returns NULL if a device 998 * is not found or a pointer to the device. Must be called inside 999 * rtnl_lock(), and result refcount is unchanged. 1000 */ 1001 1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1003 unsigned short mask) 1004 { 1005 struct net_device *dev, *ret; 1006 1007 ASSERT_RTNL(); 1008 1009 ret = NULL; 1010 for_each_netdev(net, dev) { 1011 if (((dev->flags ^ if_flags) & mask) == 0) { 1012 ret = dev; 1013 break; 1014 } 1015 } 1016 return ret; 1017 } 1018 EXPORT_SYMBOL(__dev_get_by_flags); 1019 1020 /** 1021 * dev_valid_name - check if name is okay for network device 1022 * @name: name string 1023 * 1024 * Network device names need to be valid file names to 1025 * allow sysfs to work. We also disallow any kind of 1026 * whitespace. 1027 */ 1028 bool dev_valid_name(const char *name) 1029 { 1030 if (*name == '\0') 1031 return false; 1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1033 return false; 1034 if (!strcmp(name, ".") || !strcmp(name, "..")) 1035 return false; 1036 1037 while (*name) { 1038 if (*name == '/' || *name == ':' || isspace(*name)) 1039 return false; 1040 name++; 1041 } 1042 return true; 1043 } 1044 EXPORT_SYMBOL(dev_valid_name); 1045 1046 /** 1047 * __dev_alloc_name - allocate a name for a device 1048 * @net: network namespace to allocate the device name in 1049 * @name: name format string 1050 * @buf: scratch buffer and result name string 1051 * 1052 * Passed a format string - eg "lt%d" it will try and find a suitable 1053 * id. It scans list of devices to build up a free map, then chooses 1054 * the first empty slot. The caller must hold the dev_base or rtnl lock 1055 * while allocating the name and adding the device in order to avoid 1056 * duplicates. 1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1058 * Returns the number of the unit assigned or a negative errno code. 1059 */ 1060 1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1062 { 1063 int i = 0; 1064 const char *p; 1065 const int max_netdevices = 8*PAGE_SIZE; 1066 unsigned long *inuse; 1067 struct net_device *d; 1068 1069 if (!dev_valid_name(name)) 1070 return -EINVAL; 1071 1072 p = strchr(name, '%'); 1073 if (p) { 1074 /* 1075 * Verify the string as this thing may have come from 1076 * the user. There must be either one "%d" and no other "%" 1077 * characters. 1078 */ 1079 if (p[1] != 'd' || strchr(p + 2, '%')) 1080 return -EINVAL; 1081 1082 /* Use one page as a bit array of possible slots */ 1083 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1084 if (!inuse) 1085 return -ENOMEM; 1086 1087 for_each_netdev(net, d) { 1088 struct netdev_name_node *name_node; 1089 list_for_each_entry(name_node, &d->name_node->list, list) { 1090 if (!sscanf(name_node->name, name, &i)) 1091 continue; 1092 if (i < 0 || i >= max_netdevices) 1093 continue; 1094 1095 /* avoid cases where sscanf is not exact inverse of printf */ 1096 snprintf(buf, IFNAMSIZ, name, i); 1097 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1098 __set_bit(i, inuse); 1099 } 1100 if (!sscanf(d->name, name, &i)) 1101 continue; 1102 if (i < 0 || i >= max_netdevices) 1103 continue; 1104 1105 /* avoid cases where sscanf is not exact inverse of printf */ 1106 snprintf(buf, IFNAMSIZ, name, i); 1107 if (!strncmp(buf, d->name, IFNAMSIZ)) 1108 __set_bit(i, inuse); 1109 } 1110 1111 i = find_first_zero_bit(inuse, max_netdevices); 1112 bitmap_free(inuse); 1113 } 1114 1115 snprintf(buf, IFNAMSIZ, name, i); 1116 if (!netdev_name_in_use(net, buf)) 1117 return i; 1118 1119 /* It is possible to run out of possible slots 1120 * when the name is long and there isn't enough space left 1121 * for the digits, or if all bits are used. 1122 */ 1123 return -ENFILE; 1124 } 1125 1126 static int dev_alloc_name_ns(struct net *net, 1127 struct net_device *dev, 1128 const char *name) 1129 { 1130 char buf[IFNAMSIZ]; 1131 int ret; 1132 1133 BUG_ON(!net); 1134 ret = __dev_alloc_name(net, name, buf); 1135 if (ret >= 0) 1136 strscpy(dev->name, buf, IFNAMSIZ); 1137 return ret; 1138 } 1139 1140 /** 1141 * dev_alloc_name - allocate a name for a device 1142 * @dev: device 1143 * @name: name format string 1144 * 1145 * Passed a format string - eg "lt%d" it will try and find a suitable 1146 * id. It scans list of devices to build up a free map, then chooses 1147 * the first empty slot. The caller must hold the dev_base or rtnl lock 1148 * while allocating the name and adding the device in order to avoid 1149 * duplicates. 1150 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1151 * Returns the number of the unit assigned or a negative errno code. 1152 */ 1153 1154 int dev_alloc_name(struct net_device *dev, const char *name) 1155 { 1156 return dev_alloc_name_ns(dev_net(dev), dev, name); 1157 } 1158 EXPORT_SYMBOL(dev_alloc_name); 1159 1160 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1161 const char *name) 1162 { 1163 BUG_ON(!net); 1164 1165 if (!dev_valid_name(name)) 1166 return -EINVAL; 1167 1168 if (strchr(name, '%')) 1169 return dev_alloc_name_ns(net, dev, name); 1170 else if (netdev_name_in_use(net, name)) 1171 return -EEXIST; 1172 else if (dev->name != name) 1173 strscpy(dev->name, name, IFNAMSIZ); 1174 1175 return 0; 1176 } 1177 1178 /** 1179 * dev_change_name - change name of a device 1180 * @dev: device 1181 * @newname: name (or format string) must be at least IFNAMSIZ 1182 * 1183 * Change name of a device, can pass format strings "eth%d". 1184 * for wildcarding. 1185 */ 1186 int dev_change_name(struct net_device *dev, const char *newname) 1187 { 1188 unsigned char old_assign_type; 1189 char oldname[IFNAMSIZ]; 1190 int err = 0; 1191 int ret; 1192 struct net *net; 1193 1194 ASSERT_RTNL(); 1195 BUG_ON(!dev_net(dev)); 1196 1197 net = dev_net(dev); 1198 1199 down_write(&devnet_rename_sem); 1200 1201 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1202 up_write(&devnet_rename_sem); 1203 return 0; 1204 } 1205 1206 memcpy(oldname, dev->name, IFNAMSIZ); 1207 1208 err = dev_get_valid_name(net, dev, newname); 1209 if (err < 0) { 1210 up_write(&devnet_rename_sem); 1211 return err; 1212 } 1213 1214 if (oldname[0] && !strchr(oldname, '%')) 1215 netdev_info(dev, "renamed from %s%s\n", oldname, 1216 dev->flags & IFF_UP ? " (while UP)" : ""); 1217 1218 old_assign_type = dev->name_assign_type; 1219 dev->name_assign_type = NET_NAME_RENAMED; 1220 1221 rollback: 1222 ret = device_rename(&dev->dev, dev->name); 1223 if (ret) { 1224 memcpy(dev->name, oldname, IFNAMSIZ); 1225 dev->name_assign_type = old_assign_type; 1226 up_write(&devnet_rename_sem); 1227 return ret; 1228 } 1229 1230 up_write(&devnet_rename_sem); 1231 1232 netdev_adjacent_rename_links(dev, oldname); 1233 1234 write_lock(&dev_base_lock); 1235 netdev_name_node_del(dev->name_node); 1236 write_unlock(&dev_base_lock); 1237 1238 synchronize_rcu(); 1239 1240 write_lock(&dev_base_lock); 1241 netdev_name_node_add(net, dev->name_node); 1242 write_unlock(&dev_base_lock); 1243 1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1245 ret = notifier_to_errno(ret); 1246 1247 if (ret) { 1248 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1249 if (err >= 0) { 1250 err = ret; 1251 down_write(&devnet_rename_sem); 1252 memcpy(dev->name, oldname, IFNAMSIZ); 1253 memcpy(oldname, newname, IFNAMSIZ); 1254 dev->name_assign_type = old_assign_type; 1255 old_assign_type = NET_NAME_RENAMED; 1256 goto rollback; 1257 } else { 1258 netdev_err(dev, "name change rollback failed: %d\n", 1259 ret); 1260 } 1261 } 1262 1263 return err; 1264 } 1265 1266 /** 1267 * dev_set_alias - change ifalias of a device 1268 * @dev: device 1269 * @alias: name up to IFALIASZ 1270 * @len: limit of bytes to copy from info 1271 * 1272 * Set ifalias for a device, 1273 */ 1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1275 { 1276 struct dev_ifalias *new_alias = NULL; 1277 1278 if (len >= IFALIASZ) 1279 return -EINVAL; 1280 1281 if (len) { 1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1283 if (!new_alias) 1284 return -ENOMEM; 1285 1286 memcpy(new_alias->ifalias, alias, len); 1287 new_alias->ifalias[len] = 0; 1288 } 1289 1290 mutex_lock(&ifalias_mutex); 1291 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1292 mutex_is_locked(&ifalias_mutex)); 1293 mutex_unlock(&ifalias_mutex); 1294 1295 if (new_alias) 1296 kfree_rcu(new_alias, rcuhead); 1297 1298 return len; 1299 } 1300 EXPORT_SYMBOL(dev_set_alias); 1301 1302 /** 1303 * dev_get_alias - get ifalias of a device 1304 * @dev: device 1305 * @name: buffer to store name of ifalias 1306 * @len: size of buffer 1307 * 1308 * get ifalias for a device. Caller must make sure dev cannot go 1309 * away, e.g. rcu read lock or own a reference count to device. 1310 */ 1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1312 { 1313 const struct dev_ifalias *alias; 1314 int ret = 0; 1315 1316 rcu_read_lock(); 1317 alias = rcu_dereference(dev->ifalias); 1318 if (alias) 1319 ret = snprintf(name, len, "%s", alias->ifalias); 1320 rcu_read_unlock(); 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * netdev_features_change - device changes features 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed features. 1330 */ 1331 void netdev_features_change(struct net_device *dev) 1332 { 1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1334 } 1335 EXPORT_SYMBOL(netdev_features_change); 1336 1337 /** 1338 * netdev_state_change - device changes state 1339 * @dev: device to cause notification 1340 * 1341 * Called to indicate a device has changed state. This function calls 1342 * the notifier chains for netdev_chain and sends a NEWLINK message 1343 * to the routing socket. 1344 */ 1345 void netdev_state_change(struct net_device *dev) 1346 { 1347 if (dev->flags & IFF_UP) { 1348 struct netdev_notifier_change_info change_info = { 1349 .info.dev = dev, 1350 }; 1351 1352 call_netdevice_notifiers_info(NETDEV_CHANGE, 1353 &change_info.info); 1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1355 } 1356 } 1357 EXPORT_SYMBOL(netdev_state_change); 1358 1359 /** 1360 * __netdev_notify_peers - notify network peers about existence of @dev, 1361 * to be called when rtnl lock is already held. 1362 * @dev: network device 1363 * 1364 * Generate traffic such that interested network peers are aware of 1365 * @dev, such as by generating a gratuitous ARP. This may be used when 1366 * a device wants to inform the rest of the network about some sort of 1367 * reconfiguration such as a failover event or virtual machine 1368 * migration. 1369 */ 1370 void __netdev_notify_peers(struct net_device *dev) 1371 { 1372 ASSERT_RTNL(); 1373 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1374 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1375 } 1376 EXPORT_SYMBOL(__netdev_notify_peers); 1377 1378 /** 1379 * netdev_notify_peers - notify network peers about existence of @dev 1380 * @dev: network device 1381 * 1382 * Generate traffic such that interested network peers are aware of 1383 * @dev, such as by generating a gratuitous ARP. This may be used when 1384 * a device wants to inform the rest of the network about some sort of 1385 * reconfiguration such as a failover event or virtual machine 1386 * migration. 1387 */ 1388 void netdev_notify_peers(struct net_device *dev) 1389 { 1390 rtnl_lock(); 1391 __netdev_notify_peers(dev); 1392 rtnl_unlock(); 1393 } 1394 EXPORT_SYMBOL(netdev_notify_peers); 1395 1396 static int napi_threaded_poll(void *data); 1397 1398 static int napi_kthread_create(struct napi_struct *n) 1399 { 1400 int err = 0; 1401 1402 /* Create and wake up the kthread once to put it in 1403 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1404 * warning and work with loadavg. 1405 */ 1406 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1407 n->dev->name, n->napi_id); 1408 if (IS_ERR(n->thread)) { 1409 err = PTR_ERR(n->thread); 1410 pr_err("kthread_run failed with err %d\n", err); 1411 n->thread = NULL; 1412 } 1413 1414 return err; 1415 } 1416 1417 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1418 { 1419 const struct net_device_ops *ops = dev->netdev_ops; 1420 int ret; 1421 1422 ASSERT_RTNL(); 1423 dev_addr_check(dev); 1424 1425 if (!netif_device_present(dev)) { 1426 /* may be detached because parent is runtime-suspended */ 1427 if (dev->dev.parent) 1428 pm_runtime_resume(dev->dev.parent); 1429 if (!netif_device_present(dev)) 1430 return -ENODEV; 1431 } 1432 1433 /* Block netpoll from trying to do any rx path servicing. 1434 * If we don't do this there is a chance ndo_poll_controller 1435 * or ndo_poll may be running while we open the device 1436 */ 1437 netpoll_poll_disable(dev); 1438 1439 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1440 ret = notifier_to_errno(ret); 1441 if (ret) 1442 return ret; 1443 1444 set_bit(__LINK_STATE_START, &dev->state); 1445 1446 if (ops->ndo_validate_addr) 1447 ret = ops->ndo_validate_addr(dev); 1448 1449 if (!ret && ops->ndo_open) 1450 ret = ops->ndo_open(dev); 1451 1452 netpoll_poll_enable(dev); 1453 1454 if (ret) 1455 clear_bit(__LINK_STATE_START, &dev->state); 1456 else { 1457 dev->flags |= IFF_UP; 1458 dev_set_rx_mode(dev); 1459 dev_activate(dev); 1460 add_device_randomness(dev->dev_addr, dev->addr_len); 1461 } 1462 1463 return ret; 1464 } 1465 1466 /** 1467 * dev_open - prepare an interface for use. 1468 * @dev: device to open 1469 * @extack: netlink extended ack 1470 * 1471 * Takes a device from down to up state. The device's private open 1472 * function is invoked and then the multicast lists are loaded. Finally 1473 * the device is moved into the up state and a %NETDEV_UP message is 1474 * sent to the netdev notifier chain. 1475 * 1476 * Calling this function on an active interface is a nop. On a failure 1477 * a negative errno code is returned. 1478 */ 1479 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1480 { 1481 int ret; 1482 1483 if (dev->flags & IFF_UP) 1484 return 0; 1485 1486 ret = __dev_open(dev, extack); 1487 if (ret < 0) 1488 return ret; 1489 1490 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1491 call_netdevice_notifiers(NETDEV_UP, dev); 1492 1493 return ret; 1494 } 1495 EXPORT_SYMBOL(dev_open); 1496 1497 static void __dev_close_many(struct list_head *head) 1498 { 1499 struct net_device *dev; 1500 1501 ASSERT_RTNL(); 1502 might_sleep(); 1503 1504 list_for_each_entry(dev, head, close_list) { 1505 /* Temporarily disable netpoll until the interface is down */ 1506 netpoll_poll_disable(dev); 1507 1508 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1509 1510 clear_bit(__LINK_STATE_START, &dev->state); 1511 1512 /* Synchronize to scheduled poll. We cannot touch poll list, it 1513 * can be even on different cpu. So just clear netif_running(). 1514 * 1515 * dev->stop() will invoke napi_disable() on all of it's 1516 * napi_struct instances on this device. 1517 */ 1518 smp_mb__after_atomic(); /* Commit netif_running(). */ 1519 } 1520 1521 dev_deactivate_many(head); 1522 1523 list_for_each_entry(dev, head, close_list) { 1524 const struct net_device_ops *ops = dev->netdev_ops; 1525 1526 /* 1527 * Call the device specific close. This cannot fail. 1528 * Only if device is UP 1529 * 1530 * We allow it to be called even after a DETACH hot-plug 1531 * event. 1532 */ 1533 if (ops->ndo_stop) 1534 ops->ndo_stop(dev); 1535 1536 dev->flags &= ~IFF_UP; 1537 netpoll_poll_enable(dev); 1538 } 1539 } 1540 1541 static void __dev_close(struct net_device *dev) 1542 { 1543 LIST_HEAD(single); 1544 1545 list_add(&dev->close_list, &single); 1546 __dev_close_many(&single); 1547 list_del(&single); 1548 } 1549 1550 void dev_close_many(struct list_head *head, bool unlink) 1551 { 1552 struct net_device *dev, *tmp; 1553 1554 /* Remove the devices that don't need to be closed */ 1555 list_for_each_entry_safe(dev, tmp, head, close_list) 1556 if (!(dev->flags & IFF_UP)) 1557 list_del_init(&dev->close_list); 1558 1559 __dev_close_many(head); 1560 1561 list_for_each_entry_safe(dev, tmp, head, close_list) { 1562 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1563 call_netdevice_notifiers(NETDEV_DOWN, dev); 1564 if (unlink) 1565 list_del_init(&dev->close_list); 1566 } 1567 } 1568 EXPORT_SYMBOL(dev_close_many); 1569 1570 /** 1571 * dev_close - shutdown an interface. 1572 * @dev: device to shutdown 1573 * 1574 * This function moves an active device into down state. A 1575 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1576 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1577 * chain. 1578 */ 1579 void dev_close(struct net_device *dev) 1580 { 1581 if (dev->flags & IFF_UP) { 1582 LIST_HEAD(single); 1583 1584 list_add(&dev->close_list, &single); 1585 dev_close_many(&single, true); 1586 list_del(&single); 1587 } 1588 } 1589 EXPORT_SYMBOL(dev_close); 1590 1591 1592 /** 1593 * dev_disable_lro - disable Large Receive Offload on a device 1594 * @dev: device 1595 * 1596 * Disable Large Receive Offload (LRO) on a net device. Must be 1597 * called under RTNL. This is needed if received packets may be 1598 * forwarded to another interface. 1599 */ 1600 void dev_disable_lro(struct net_device *dev) 1601 { 1602 struct net_device *lower_dev; 1603 struct list_head *iter; 1604 1605 dev->wanted_features &= ~NETIF_F_LRO; 1606 netdev_update_features(dev); 1607 1608 if (unlikely(dev->features & NETIF_F_LRO)) 1609 netdev_WARN(dev, "failed to disable LRO!\n"); 1610 1611 netdev_for_each_lower_dev(dev, lower_dev, iter) 1612 dev_disable_lro(lower_dev); 1613 } 1614 EXPORT_SYMBOL(dev_disable_lro); 1615 1616 /** 1617 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1618 * @dev: device 1619 * 1620 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1621 * called under RTNL. This is needed if Generic XDP is installed on 1622 * the device. 1623 */ 1624 static void dev_disable_gro_hw(struct net_device *dev) 1625 { 1626 dev->wanted_features &= ~NETIF_F_GRO_HW; 1627 netdev_update_features(dev); 1628 1629 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1630 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1631 } 1632 1633 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1634 { 1635 #define N(val) \ 1636 case NETDEV_##val: \ 1637 return "NETDEV_" __stringify(val); 1638 switch (cmd) { 1639 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1640 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1641 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1642 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1643 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1644 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1645 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1646 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1647 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1648 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1649 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1650 N(XDP_FEAT_CHANGE) 1651 } 1652 #undef N 1653 return "UNKNOWN_NETDEV_EVENT"; 1654 } 1655 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1656 1657 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1658 struct net_device *dev) 1659 { 1660 struct netdev_notifier_info info = { 1661 .dev = dev, 1662 }; 1663 1664 return nb->notifier_call(nb, val, &info); 1665 } 1666 1667 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1668 struct net_device *dev) 1669 { 1670 int err; 1671 1672 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1673 err = notifier_to_errno(err); 1674 if (err) 1675 return err; 1676 1677 if (!(dev->flags & IFF_UP)) 1678 return 0; 1679 1680 call_netdevice_notifier(nb, NETDEV_UP, dev); 1681 return 0; 1682 } 1683 1684 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1685 struct net_device *dev) 1686 { 1687 if (dev->flags & IFF_UP) { 1688 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1689 dev); 1690 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1691 } 1692 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1693 } 1694 1695 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1696 struct net *net) 1697 { 1698 struct net_device *dev; 1699 int err; 1700 1701 for_each_netdev(net, dev) { 1702 err = call_netdevice_register_notifiers(nb, dev); 1703 if (err) 1704 goto rollback; 1705 } 1706 return 0; 1707 1708 rollback: 1709 for_each_netdev_continue_reverse(net, dev) 1710 call_netdevice_unregister_notifiers(nb, dev); 1711 return err; 1712 } 1713 1714 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1715 struct net *net) 1716 { 1717 struct net_device *dev; 1718 1719 for_each_netdev(net, dev) 1720 call_netdevice_unregister_notifiers(nb, dev); 1721 } 1722 1723 static int dev_boot_phase = 1; 1724 1725 /** 1726 * register_netdevice_notifier - register a network notifier block 1727 * @nb: notifier 1728 * 1729 * Register a notifier to be called when network device events occur. 1730 * The notifier passed is linked into the kernel structures and must 1731 * not be reused until it has been unregistered. A negative errno code 1732 * is returned on a failure. 1733 * 1734 * When registered all registration and up events are replayed 1735 * to the new notifier to allow device to have a race free 1736 * view of the network device list. 1737 */ 1738 1739 int register_netdevice_notifier(struct notifier_block *nb) 1740 { 1741 struct net *net; 1742 int err; 1743 1744 /* Close race with setup_net() and cleanup_net() */ 1745 down_write(&pernet_ops_rwsem); 1746 rtnl_lock(); 1747 err = raw_notifier_chain_register(&netdev_chain, nb); 1748 if (err) 1749 goto unlock; 1750 if (dev_boot_phase) 1751 goto unlock; 1752 for_each_net(net) { 1753 err = call_netdevice_register_net_notifiers(nb, net); 1754 if (err) 1755 goto rollback; 1756 } 1757 1758 unlock: 1759 rtnl_unlock(); 1760 up_write(&pernet_ops_rwsem); 1761 return err; 1762 1763 rollback: 1764 for_each_net_continue_reverse(net) 1765 call_netdevice_unregister_net_notifiers(nb, net); 1766 1767 raw_notifier_chain_unregister(&netdev_chain, nb); 1768 goto unlock; 1769 } 1770 EXPORT_SYMBOL(register_netdevice_notifier); 1771 1772 /** 1773 * unregister_netdevice_notifier - unregister a network notifier block 1774 * @nb: notifier 1775 * 1776 * Unregister a notifier previously registered by 1777 * register_netdevice_notifier(). The notifier is unlinked into the 1778 * kernel structures and may then be reused. A negative errno code 1779 * is returned on a failure. 1780 * 1781 * After unregistering unregister and down device events are synthesized 1782 * for all devices on the device list to the removed notifier to remove 1783 * the need for special case cleanup code. 1784 */ 1785 1786 int unregister_netdevice_notifier(struct notifier_block *nb) 1787 { 1788 struct net *net; 1789 int err; 1790 1791 /* Close race with setup_net() and cleanup_net() */ 1792 down_write(&pernet_ops_rwsem); 1793 rtnl_lock(); 1794 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1795 if (err) 1796 goto unlock; 1797 1798 for_each_net(net) 1799 call_netdevice_unregister_net_notifiers(nb, net); 1800 1801 unlock: 1802 rtnl_unlock(); 1803 up_write(&pernet_ops_rwsem); 1804 return err; 1805 } 1806 EXPORT_SYMBOL(unregister_netdevice_notifier); 1807 1808 static int __register_netdevice_notifier_net(struct net *net, 1809 struct notifier_block *nb, 1810 bool ignore_call_fail) 1811 { 1812 int err; 1813 1814 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1815 if (err) 1816 return err; 1817 if (dev_boot_phase) 1818 return 0; 1819 1820 err = call_netdevice_register_net_notifiers(nb, net); 1821 if (err && !ignore_call_fail) 1822 goto chain_unregister; 1823 1824 return 0; 1825 1826 chain_unregister: 1827 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1828 return err; 1829 } 1830 1831 static int __unregister_netdevice_notifier_net(struct net *net, 1832 struct notifier_block *nb) 1833 { 1834 int err; 1835 1836 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1837 if (err) 1838 return err; 1839 1840 call_netdevice_unregister_net_notifiers(nb, net); 1841 return 0; 1842 } 1843 1844 /** 1845 * register_netdevice_notifier_net - register a per-netns network notifier block 1846 * @net: network namespace 1847 * @nb: notifier 1848 * 1849 * Register a notifier to be called when network device events occur. 1850 * The notifier passed is linked into the kernel structures and must 1851 * not be reused until it has been unregistered. A negative errno code 1852 * is returned on a failure. 1853 * 1854 * When registered all registration and up events are replayed 1855 * to the new notifier to allow device to have a race free 1856 * view of the network device list. 1857 */ 1858 1859 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1860 { 1861 int err; 1862 1863 rtnl_lock(); 1864 err = __register_netdevice_notifier_net(net, nb, false); 1865 rtnl_unlock(); 1866 return err; 1867 } 1868 EXPORT_SYMBOL(register_netdevice_notifier_net); 1869 1870 /** 1871 * unregister_netdevice_notifier_net - unregister a per-netns 1872 * network notifier block 1873 * @net: network namespace 1874 * @nb: notifier 1875 * 1876 * Unregister a notifier previously registered by 1877 * register_netdevice_notifier_net(). The notifier is unlinked from the 1878 * kernel structures and may then be reused. A negative errno code 1879 * is returned on a failure. 1880 * 1881 * After unregistering unregister and down device events are synthesized 1882 * for all devices on the device list to the removed notifier to remove 1883 * the need for special case cleanup code. 1884 */ 1885 1886 int unregister_netdevice_notifier_net(struct net *net, 1887 struct notifier_block *nb) 1888 { 1889 int err; 1890 1891 rtnl_lock(); 1892 err = __unregister_netdevice_notifier_net(net, nb); 1893 rtnl_unlock(); 1894 return err; 1895 } 1896 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1897 1898 static void __move_netdevice_notifier_net(struct net *src_net, 1899 struct net *dst_net, 1900 struct notifier_block *nb) 1901 { 1902 __unregister_netdevice_notifier_net(src_net, nb); 1903 __register_netdevice_notifier_net(dst_net, nb, true); 1904 } 1905 1906 int register_netdevice_notifier_dev_net(struct net_device *dev, 1907 struct notifier_block *nb, 1908 struct netdev_net_notifier *nn) 1909 { 1910 int err; 1911 1912 rtnl_lock(); 1913 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1914 if (!err) { 1915 nn->nb = nb; 1916 list_add(&nn->list, &dev->net_notifier_list); 1917 } 1918 rtnl_unlock(); 1919 return err; 1920 } 1921 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1922 1923 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1924 struct notifier_block *nb, 1925 struct netdev_net_notifier *nn) 1926 { 1927 int err; 1928 1929 rtnl_lock(); 1930 list_del(&nn->list); 1931 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1932 rtnl_unlock(); 1933 return err; 1934 } 1935 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1936 1937 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1938 struct net *net) 1939 { 1940 struct netdev_net_notifier *nn; 1941 1942 list_for_each_entry(nn, &dev->net_notifier_list, list) 1943 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1944 } 1945 1946 /** 1947 * call_netdevice_notifiers_info - call all network notifier blocks 1948 * @val: value passed unmodified to notifier function 1949 * @info: notifier information data 1950 * 1951 * Call all network notifier blocks. Parameters and return value 1952 * are as for raw_notifier_call_chain(). 1953 */ 1954 1955 int call_netdevice_notifiers_info(unsigned long val, 1956 struct netdev_notifier_info *info) 1957 { 1958 struct net *net = dev_net(info->dev); 1959 int ret; 1960 1961 ASSERT_RTNL(); 1962 1963 /* Run per-netns notifier block chain first, then run the global one. 1964 * Hopefully, one day, the global one is going to be removed after 1965 * all notifier block registrators get converted to be per-netns. 1966 */ 1967 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1968 if (ret & NOTIFY_STOP_MASK) 1969 return ret; 1970 return raw_notifier_call_chain(&netdev_chain, val, info); 1971 } 1972 1973 /** 1974 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1975 * for and rollback on error 1976 * @val_up: value passed unmodified to notifier function 1977 * @val_down: value passed unmodified to the notifier function when 1978 * recovering from an error on @val_up 1979 * @info: notifier information data 1980 * 1981 * Call all per-netns network notifier blocks, but not notifier blocks on 1982 * the global notifier chain. Parameters and return value are as for 1983 * raw_notifier_call_chain_robust(). 1984 */ 1985 1986 static int 1987 call_netdevice_notifiers_info_robust(unsigned long val_up, 1988 unsigned long val_down, 1989 struct netdev_notifier_info *info) 1990 { 1991 struct net *net = dev_net(info->dev); 1992 1993 ASSERT_RTNL(); 1994 1995 return raw_notifier_call_chain_robust(&net->netdev_chain, 1996 val_up, val_down, info); 1997 } 1998 1999 static int call_netdevice_notifiers_extack(unsigned long val, 2000 struct net_device *dev, 2001 struct netlink_ext_ack *extack) 2002 { 2003 struct netdev_notifier_info info = { 2004 .dev = dev, 2005 .extack = extack, 2006 }; 2007 2008 return call_netdevice_notifiers_info(val, &info); 2009 } 2010 2011 /** 2012 * call_netdevice_notifiers - call all network notifier blocks 2013 * @val: value passed unmodified to notifier function 2014 * @dev: net_device pointer passed unmodified to notifier function 2015 * 2016 * Call all network notifier blocks. Parameters and return value 2017 * are as for raw_notifier_call_chain(). 2018 */ 2019 2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2021 { 2022 return call_netdevice_notifiers_extack(val, dev, NULL); 2023 } 2024 EXPORT_SYMBOL(call_netdevice_notifiers); 2025 2026 /** 2027 * call_netdevice_notifiers_mtu - call all network notifier blocks 2028 * @val: value passed unmodified to notifier function 2029 * @dev: net_device pointer passed unmodified to notifier function 2030 * @arg: additional u32 argument passed to the notifier function 2031 * 2032 * Call all network notifier blocks. Parameters and return value 2033 * are as for raw_notifier_call_chain(). 2034 */ 2035 static int call_netdevice_notifiers_mtu(unsigned long val, 2036 struct net_device *dev, u32 arg) 2037 { 2038 struct netdev_notifier_info_ext info = { 2039 .info.dev = dev, 2040 .ext.mtu = arg, 2041 }; 2042 2043 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2044 2045 return call_netdevice_notifiers_info(val, &info.info); 2046 } 2047 2048 #ifdef CONFIG_NET_INGRESS 2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2050 2051 void net_inc_ingress_queue(void) 2052 { 2053 static_branch_inc(&ingress_needed_key); 2054 } 2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2056 2057 void net_dec_ingress_queue(void) 2058 { 2059 static_branch_dec(&ingress_needed_key); 2060 } 2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2062 #endif 2063 2064 #ifdef CONFIG_NET_EGRESS 2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2066 2067 void net_inc_egress_queue(void) 2068 { 2069 static_branch_inc(&egress_needed_key); 2070 } 2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2072 2073 void net_dec_egress_queue(void) 2074 { 2075 static_branch_dec(&egress_needed_key); 2076 } 2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2078 #endif 2079 2080 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2081 EXPORT_SYMBOL(netstamp_needed_key); 2082 #ifdef CONFIG_JUMP_LABEL 2083 static atomic_t netstamp_needed_deferred; 2084 static atomic_t netstamp_wanted; 2085 static void netstamp_clear(struct work_struct *work) 2086 { 2087 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2088 int wanted; 2089 2090 wanted = atomic_add_return(deferred, &netstamp_wanted); 2091 if (wanted > 0) 2092 static_branch_enable(&netstamp_needed_key); 2093 else 2094 static_branch_disable(&netstamp_needed_key); 2095 } 2096 static DECLARE_WORK(netstamp_work, netstamp_clear); 2097 #endif 2098 2099 void net_enable_timestamp(void) 2100 { 2101 #ifdef CONFIG_JUMP_LABEL 2102 int wanted = atomic_read(&netstamp_wanted); 2103 2104 while (wanted > 0) { 2105 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2106 return; 2107 } 2108 atomic_inc(&netstamp_needed_deferred); 2109 schedule_work(&netstamp_work); 2110 #else 2111 static_branch_inc(&netstamp_needed_key); 2112 #endif 2113 } 2114 EXPORT_SYMBOL(net_enable_timestamp); 2115 2116 void net_disable_timestamp(void) 2117 { 2118 #ifdef CONFIG_JUMP_LABEL 2119 int wanted = atomic_read(&netstamp_wanted); 2120 2121 while (wanted > 1) { 2122 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2123 return; 2124 } 2125 atomic_dec(&netstamp_needed_deferred); 2126 schedule_work(&netstamp_work); 2127 #else 2128 static_branch_dec(&netstamp_needed_key); 2129 #endif 2130 } 2131 EXPORT_SYMBOL(net_disable_timestamp); 2132 2133 static inline void net_timestamp_set(struct sk_buff *skb) 2134 { 2135 skb->tstamp = 0; 2136 skb->mono_delivery_time = 0; 2137 if (static_branch_unlikely(&netstamp_needed_key)) 2138 skb->tstamp = ktime_get_real(); 2139 } 2140 2141 #define net_timestamp_check(COND, SKB) \ 2142 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2143 if ((COND) && !(SKB)->tstamp) \ 2144 (SKB)->tstamp = ktime_get_real(); \ 2145 } \ 2146 2147 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2148 { 2149 return __is_skb_forwardable(dev, skb, true); 2150 } 2151 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2152 2153 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2154 bool check_mtu) 2155 { 2156 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2157 2158 if (likely(!ret)) { 2159 skb->protocol = eth_type_trans(skb, dev); 2160 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2161 } 2162 2163 return ret; 2164 } 2165 2166 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2167 { 2168 return __dev_forward_skb2(dev, skb, true); 2169 } 2170 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2171 2172 /** 2173 * dev_forward_skb - loopback an skb to another netif 2174 * 2175 * @dev: destination network device 2176 * @skb: buffer to forward 2177 * 2178 * return values: 2179 * NET_RX_SUCCESS (no congestion) 2180 * NET_RX_DROP (packet was dropped, but freed) 2181 * 2182 * dev_forward_skb can be used for injecting an skb from the 2183 * start_xmit function of one device into the receive queue 2184 * of another device. 2185 * 2186 * The receiving device may be in another namespace, so 2187 * we have to clear all information in the skb that could 2188 * impact namespace isolation. 2189 */ 2190 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2191 { 2192 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2193 } 2194 EXPORT_SYMBOL_GPL(dev_forward_skb); 2195 2196 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2197 { 2198 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2199 } 2200 2201 static inline int deliver_skb(struct sk_buff *skb, 2202 struct packet_type *pt_prev, 2203 struct net_device *orig_dev) 2204 { 2205 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2206 return -ENOMEM; 2207 refcount_inc(&skb->users); 2208 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2209 } 2210 2211 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2212 struct packet_type **pt, 2213 struct net_device *orig_dev, 2214 __be16 type, 2215 struct list_head *ptype_list) 2216 { 2217 struct packet_type *ptype, *pt_prev = *pt; 2218 2219 list_for_each_entry_rcu(ptype, ptype_list, list) { 2220 if (ptype->type != type) 2221 continue; 2222 if (pt_prev) 2223 deliver_skb(skb, pt_prev, orig_dev); 2224 pt_prev = ptype; 2225 } 2226 *pt = pt_prev; 2227 } 2228 2229 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2230 { 2231 if (!ptype->af_packet_priv || !skb->sk) 2232 return false; 2233 2234 if (ptype->id_match) 2235 return ptype->id_match(ptype, skb->sk); 2236 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2237 return true; 2238 2239 return false; 2240 } 2241 2242 /** 2243 * dev_nit_active - return true if any network interface taps are in use 2244 * 2245 * @dev: network device to check for the presence of taps 2246 */ 2247 bool dev_nit_active(struct net_device *dev) 2248 { 2249 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2250 } 2251 EXPORT_SYMBOL_GPL(dev_nit_active); 2252 2253 /* 2254 * Support routine. Sends outgoing frames to any network 2255 * taps currently in use. 2256 */ 2257 2258 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2259 { 2260 struct packet_type *ptype; 2261 struct sk_buff *skb2 = NULL; 2262 struct packet_type *pt_prev = NULL; 2263 struct list_head *ptype_list = &ptype_all; 2264 2265 rcu_read_lock(); 2266 again: 2267 list_for_each_entry_rcu(ptype, ptype_list, list) { 2268 if (ptype->ignore_outgoing) 2269 continue; 2270 2271 /* Never send packets back to the socket 2272 * they originated from - MvS (miquels@drinkel.ow.org) 2273 */ 2274 if (skb_loop_sk(ptype, skb)) 2275 continue; 2276 2277 if (pt_prev) { 2278 deliver_skb(skb2, pt_prev, skb->dev); 2279 pt_prev = ptype; 2280 continue; 2281 } 2282 2283 /* need to clone skb, done only once */ 2284 skb2 = skb_clone(skb, GFP_ATOMIC); 2285 if (!skb2) 2286 goto out_unlock; 2287 2288 net_timestamp_set(skb2); 2289 2290 /* skb->nh should be correctly 2291 * set by sender, so that the second statement is 2292 * just protection against buggy protocols. 2293 */ 2294 skb_reset_mac_header(skb2); 2295 2296 if (skb_network_header(skb2) < skb2->data || 2297 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2298 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2299 ntohs(skb2->protocol), 2300 dev->name); 2301 skb_reset_network_header(skb2); 2302 } 2303 2304 skb2->transport_header = skb2->network_header; 2305 skb2->pkt_type = PACKET_OUTGOING; 2306 pt_prev = ptype; 2307 } 2308 2309 if (ptype_list == &ptype_all) { 2310 ptype_list = &dev->ptype_all; 2311 goto again; 2312 } 2313 out_unlock: 2314 if (pt_prev) { 2315 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2316 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2317 else 2318 kfree_skb(skb2); 2319 } 2320 rcu_read_unlock(); 2321 } 2322 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2323 2324 /** 2325 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2326 * @dev: Network device 2327 * @txq: number of queues available 2328 * 2329 * If real_num_tx_queues is changed the tc mappings may no longer be 2330 * valid. To resolve this verify the tc mapping remains valid and if 2331 * not NULL the mapping. With no priorities mapping to this 2332 * offset/count pair it will no longer be used. In the worst case TC0 2333 * is invalid nothing can be done so disable priority mappings. If is 2334 * expected that drivers will fix this mapping if they can before 2335 * calling netif_set_real_num_tx_queues. 2336 */ 2337 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2338 { 2339 int i; 2340 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2341 2342 /* If TC0 is invalidated disable TC mapping */ 2343 if (tc->offset + tc->count > txq) { 2344 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2345 dev->num_tc = 0; 2346 return; 2347 } 2348 2349 /* Invalidated prio to tc mappings set to TC0 */ 2350 for (i = 1; i < TC_BITMASK + 1; i++) { 2351 int q = netdev_get_prio_tc_map(dev, i); 2352 2353 tc = &dev->tc_to_txq[q]; 2354 if (tc->offset + tc->count > txq) { 2355 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2356 i, q); 2357 netdev_set_prio_tc_map(dev, i, 0); 2358 } 2359 } 2360 } 2361 2362 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2363 { 2364 if (dev->num_tc) { 2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2366 int i; 2367 2368 /* walk through the TCs and see if it falls into any of them */ 2369 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2370 if ((txq - tc->offset) < tc->count) 2371 return i; 2372 } 2373 2374 /* didn't find it, just return -1 to indicate no match */ 2375 return -1; 2376 } 2377 2378 return 0; 2379 } 2380 EXPORT_SYMBOL(netdev_txq_to_tc); 2381 2382 #ifdef CONFIG_XPS 2383 static struct static_key xps_needed __read_mostly; 2384 static struct static_key xps_rxqs_needed __read_mostly; 2385 static DEFINE_MUTEX(xps_map_mutex); 2386 #define xmap_dereference(P) \ 2387 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2388 2389 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2390 struct xps_dev_maps *old_maps, int tci, u16 index) 2391 { 2392 struct xps_map *map = NULL; 2393 int pos; 2394 2395 map = xmap_dereference(dev_maps->attr_map[tci]); 2396 if (!map) 2397 return false; 2398 2399 for (pos = map->len; pos--;) { 2400 if (map->queues[pos] != index) 2401 continue; 2402 2403 if (map->len > 1) { 2404 map->queues[pos] = map->queues[--map->len]; 2405 break; 2406 } 2407 2408 if (old_maps) 2409 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2410 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2411 kfree_rcu(map, rcu); 2412 return false; 2413 } 2414 2415 return true; 2416 } 2417 2418 static bool remove_xps_queue_cpu(struct net_device *dev, 2419 struct xps_dev_maps *dev_maps, 2420 int cpu, u16 offset, u16 count) 2421 { 2422 int num_tc = dev_maps->num_tc; 2423 bool active = false; 2424 int tci; 2425 2426 for (tci = cpu * num_tc; num_tc--; tci++) { 2427 int i, j; 2428 2429 for (i = count, j = offset; i--; j++) { 2430 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2431 break; 2432 } 2433 2434 active |= i < 0; 2435 } 2436 2437 return active; 2438 } 2439 2440 static void reset_xps_maps(struct net_device *dev, 2441 struct xps_dev_maps *dev_maps, 2442 enum xps_map_type type) 2443 { 2444 static_key_slow_dec_cpuslocked(&xps_needed); 2445 if (type == XPS_RXQS) 2446 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2447 2448 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2449 2450 kfree_rcu(dev_maps, rcu); 2451 } 2452 2453 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2454 u16 offset, u16 count) 2455 { 2456 struct xps_dev_maps *dev_maps; 2457 bool active = false; 2458 int i, j; 2459 2460 dev_maps = xmap_dereference(dev->xps_maps[type]); 2461 if (!dev_maps) 2462 return; 2463 2464 for (j = 0; j < dev_maps->nr_ids; j++) 2465 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2466 if (!active) 2467 reset_xps_maps(dev, dev_maps, type); 2468 2469 if (type == XPS_CPUS) { 2470 for (i = offset + (count - 1); count--; i--) 2471 netdev_queue_numa_node_write( 2472 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2473 } 2474 } 2475 2476 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2477 u16 count) 2478 { 2479 if (!static_key_false(&xps_needed)) 2480 return; 2481 2482 cpus_read_lock(); 2483 mutex_lock(&xps_map_mutex); 2484 2485 if (static_key_false(&xps_rxqs_needed)) 2486 clean_xps_maps(dev, XPS_RXQS, offset, count); 2487 2488 clean_xps_maps(dev, XPS_CPUS, offset, count); 2489 2490 mutex_unlock(&xps_map_mutex); 2491 cpus_read_unlock(); 2492 } 2493 2494 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2495 { 2496 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2497 } 2498 2499 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2500 u16 index, bool is_rxqs_map) 2501 { 2502 struct xps_map *new_map; 2503 int alloc_len = XPS_MIN_MAP_ALLOC; 2504 int i, pos; 2505 2506 for (pos = 0; map && pos < map->len; pos++) { 2507 if (map->queues[pos] != index) 2508 continue; 2509 return map; 2510 } 2511 2512 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2513 if (map) { 2514 if (pos < map->alloc_len) 2515 return map; 2516 2517 alloc_len = map->alloc_len * 2; 2518 } 2519 2520 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2521 * map 2522 */ 2523 if (is_rxqs_map) 2524 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2525 else 2526 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2527 cpu_to_node(attr_index)); 2528 if (!new_map) 2529 return NULL; 2530 2531 for (i = 0; i < pos; i++) 2532 new_map->queues[i] = map->queues[i]; 2533 new_map->alloc_len = alloc_len; 2534 new_map->len = pos; 2535 2536 return new_map; 2537 } 2538 2539 /* Copy xps maps at a given index */ 2540 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2541 struct xps_dev_maps *new_dev_maps, int index, 2542 int tc, bool skip_tc) 2543 { 2544 int i, tci = index * dev_maps->num_tc; 2545 struct xps_map *map; 2546 2547 /* copy maps belonging to foreign traffic classes */ 2548 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2549 if (i == tc && skip_tc) 2550 continue; 2551 2552 /* fill in the new device map from the old device map */ 2553 map = xmap_dereference(dev_maps->attr_map[tci]); 2554 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2555 } 2556 } 2557 2558 /* Must be called under cpus_read_lock */ 2559 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2560 u16 index, enum xps_map_type type) 2561 { 2562 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2563 const unsigned long *online_mask = NULL; 2564 bool active = false, copy = false; 2565 int i, j, tci, numa_node_id = -2; 2566 int maps_sz, num_tc = 1, tc = 0; 2567 struct xps_map *map, *new_map; 2568 unsigned int nr_ids; 2569 2570 WARN_ON_ONCE(index >= dev->num_tx_queues); 2571 2572 if (dev->num_tc) { 2573 /* Do not allow XPS on subordinate device directly */ 2574 num_tc = dev->num_tc; 2575 if (num_tc < 0) 2576 return -EINVAL; 2577 2578 /* If queue belongs to subordinate dev use its map */ 2579 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2580 2581 tc = netdev_txq_to_tc(dev, index); 2582 if (tc < 0) 2583 return -EINVAL; 2584 } 2585 2586 mutex_lock(&xps_map_mutex); 2587 2588 dev_maps = xmap_dereference(dev->xps_maps[type]); 2589 if (type == XPS_RXQS) { 2590 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2591 nr_ids = dev->num_rx_queues; 2592 } else { 2593 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2594 if (num_possible_cpus() > 1) 2595 online_mask = cpumask_bits(cpu_online_mask); 2596 nr_ids = nr_cpu_ids; 2597 } 2598 2599 if (maps_sz < L1_CACHE_BYTES) 2600 maps_sz = L1_CACHE_BYTES; 2601 2602 /* The old dev_maps could be larger or smaller than the one we're 2603 * setting up now, as dev->num_tc or nr_ids could have been updated in 2604 * between. We could try to be smart, but let's be safe instead and only 2605 * copy foreign traffic classes if the two map sizes match. 2606 */ 2607 if (dev_maps && 2608 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2609 copy = true; 2610 2611 /* allocate memory for queue storage */ 2612 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2613 j < nr_ids;) { 2614 if (!new_dev_maps) { 2615 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2616 if (!new_dev_maps) { 2617 mutex_unlock(&xps_map_mutex); 2618 return -ENOMEM; 2619 } 2620 2621 new_dev_maps->nr_ids = nr_ids; 2622 new_dev_maps->num_tc = num_tc; 2623 } 2624 2625 tci = j * num_tc + tc; 2626 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2627 2628 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2629 if (!map) 2630 goto error; 2631 2632 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2633 } 2634 2635 if (!new_dev_maps) 2636 goto out_no_new_maps; 2637 2638 if (!dev_maps) { 2639 /* Increment static keys at most once per type */ 2640 static_key_slow_inc_cpuslocked(&xps_needed); 2641 if (type == XPS_RXQS) 2642 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2643 } 2644 2645 for (j = 0; j < nr_ids; j++) { 2646 bool skip_tc = false; 2647 2648 tci = j * num_tc + tc; 2649 if (netif_attr_test_mask(j, mask, nr_ids) && 2650 netif_attr_test_online(j, online_mask, nr_ids)) { 2651 /* add tx-queue to CPU/rx-queue maps */ 2652 int pos = 0; 2653 2654 skip_tc = true; 2655 2656 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2657 while ((pos < map->len) && (map->queues[pos] != index)) 2658 pos++; 2659 2660 if (pos == map->len) 2661 map->queues[map->len++] = index; 2662 #ifdef CONFIG_NUMA 2663 if (type == XPS_CPUS) { 2664 if (numa_node_id == -2) 2665 numa_node_id = cpu_to_node(j); 2666 else if (numa_node_id != cpu_to_node(j)) 2667 numa_node_id = -1; 2668 } 2669 #endif 2670 } 2671 2672 if (copy) 2673 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2674 skip_tc); 2675 } 2676 2677 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2678 2679 /* Cleanup old maps */ 2680 if (!dev_maps) 2681 goto out_no_old_maps; 2682 2683 for (j = 0; j < dev_maps->nr_ids; j++) { 2684 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2685 map = xmap_dereference(dev_maps->attr_map[tci]); 2686 if (!map) 2687 continue; 2688 2689 if (copy) { 2690 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2691 if (map == new_map) 2692 continue; 2693 } 2694 2695 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2696 kfree_rcu(map, rcu); 2697 } 2698 } 2699 2700 old_dev_maps = dev_maps; 2701 2702 out_no_old_maps: 2703 dev_maps = new_dev_maps; 2704 active = true; 2705 2706 out_no_new_maps: 2707 if (type == XPS_CPUS) 2708 /* update Tx queue numa node */ 2709 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2710 (numa_node_id >= 0) ? 2711 numa_node_id : NUMA_NO_NODE); 2712 2713 if (!dev_maps) 2714 goto out_no_maps; 2715 2716 /* removes tx-queue from unused CPUs/rx-queues */ 2717 for (j = 0; j < dev_maps->nr_ids; j++) { 2718 tci = j * dev_maps->num_tc; 2719 2720 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2721 if (i == tc && 2722 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2723 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2724 continue; 2725 2726 active |= remove_xps_queue(dev_maps, 2727 copy ? old_dev_maps : NULL, 2728 tci, index); 2729 } 2730 } 2731 2732 if (old_dev_maps) 2733 kfree_rcu(old_dev_maps, rcu); 2734 2735 /* free map if not active */ 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 out_no_maps: 2740 mutex_unlock(&xps_map_mutex); 2741 2742 return 0; 2743 error: 2744 /* remove any maps that we added */ 2745 for (j = 0; j < nr_ids; j++) { 2746 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2747 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2748 map = copy ? 2749 xmap_dereference(dev_maps->attr_map[tci]) : 2750 NULL; 2751 if (new_map && new_map != map) 2752 kfree(new_map); 2753 } 2754 } 2755 2756 mutex_unlock(&xps_map_mutex); 2757 2758 kfree(new_dev_maps); 2759 return -ENOMEM; 2760 } 2761 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2762 2763 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2764 u16 index) 2765 { 2766 int ret; 2767 2768 cpus_read_lock(); 2769 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2770 cpus_read_unlock(); 2771 2772 return ret; 2773 } 2774 EXPORT_SYMBOL(netif_set_xps_queue); 2775 2776 #endif 2777 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2778 { 2779 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2780 2781 /* Unbind any subordinate channels */ 2782 while (txq-- != &dev->_tx[0]) { 2783 if (txq->sb_dev) 2784 netdev_unbind_sb_channel(dev, txq->sb_dev); 2785 } 2786 } 2787 2788 void netdev_reset_tc(struct net_device *dev) 2789 { 2790 #ifdef CONFIG_XPS 2791 netif_reset_xps_queues_gt(dev, 0); 2792 #endif 2793 netdev_unbind_all_sb_channels(dev); 2794 2795 /* Reset TC configuration of device */ 2796 dev->num_tc = 0; 2797 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2798 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2799 } 2800 EXPORT_SYMBOL(netdev_reset_tc); 2801 2802 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2803 { 2804 if (tc >= dev->num_tc) 2805 return -EINVAL; 2806 2807 #ifdef CONFIG_XPS 2808 netif_reset_xps_queues(dev, offset, count); 2809 #endif 2810 dev->tc_to_txq[tc].count = count; 2811 dev->tc_to_txq[tc].offset = offset; 2812 return 0; 2813 } 2814 EXPORT_SYMBOL(netdev_set_tc_queue); 2815 2816 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2817 { 2818 if (num_tc > TC_MAX_QUEUE) 2819 return -EINVAL; 2820 2821 #ifdef CONFIG_XPS 2822 netif_reset_xps_queues_gt(dev, 0); 2823 #endif 2824 netdev_unbind_all_sb_channels(dev); 2825 2826 dev->num_tc = num_tc; 2827 return 0; 2828 } 2829 EXPORT_SYMBOL(netdev_set_num_tc); 2830 2831 void netdev_unbind_sb_channel(struct net_device *dev, 2832 struct net_device *sb_dev) 2833 { 2834 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2835 2836 #ifdef CONFIG_XPS 2837 netif_reset_xps_queues_gt(sb_dev, 0); 2838 #endif 2839 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2840 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2841 2842 while (txq-- != &dev->_tx[0]) { 2843 if (txq->sb_dev == sb_dev) 2844 txq->sb_dev = NULL; 2845 } 2846 } 2847 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2848 2849 int netdev_bind_sb_channel_queue(struct net_device *dev, 2850 struct net_device *sb_dev, 2851 u8 tc, u16 count, u16 offset) 2852 { 2853 /* Make certain the sb_dev and dev are already configured */ 2854 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2855 return -EINVAL; 2856 2857 /* We cannot hand out queues we don't have */ 2858 if ((offset + count) > dev->real_num_tx_queues) 2859 return -EINVAL; 2860 2861 /* Record the mapping */ 2862 sb_dev->tc_to_txq[tc].count = count; 2863 sb_dev->tc_to_txq[tc].offset = offset; 2864 2865 /* Provide a way for Tx queue to find the tc_to_txq map or 2866 * XPS map for itself. 2867 */ 2868 while (count--) 2869 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2870 2871 return 0; 2872 } 2873 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2874 2875 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2876 { 2877 /* Do not use a multiqueue device to represent a subordinate channel */ 2878 if (netif_is_multiqueue(dev)) 2879 return -ENODEV; 2880 2881 /* We allow channels 1 - 32767 to be used for subordinate channels. 2882 * Channel 0 is meant to be "native" mode and used only to represent 2883 * the main root device. We allow writing 0 to reset the device back 2884 * to normal mode after being used as a subordinate channel. 2885 */ 2886 if (channel > S16_MAX) 2887 return -EINVAL; 2888 2889 dev->num_tc = -channel; 2890 2891 return 0; 2892 } 2893 EXPORT_SYMBOL(netdev_set_sb_channel); 2894 2895 /* 2896 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2897 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2898 */ 2899 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2900 { 2901 bool disabling; 2902 int rc; 2903 2904 disabling = txq < dev->real_num_tx_queues; 2905 2906 if (txq < 1 || txq > dev->num_tx_queues) 2907 return -EINVAL; 2908 2909 if (dev->reg_state == NETREG_REGISTERED || 2910 dev->reg_state == NETREG_UNREGISTERING) { 2911 ASSERT_RTNL(); 2912 2913 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2914 txq); 2915 if (rc) 2916 return rc; 2917 2918 if (dev->num_tc) 2919 netif_setup_tc(dev, txq); 2920 2921 dev_qdisc_change_real_num_tx(dev, txq); 2922 2923 dev->real_num_tx_queues = txq; 2924 2925 if (disabling) { 2926 synchronize_net(); 2927 qdisc_reset_all_tx_gt(dev, txq); 2928 #ifdef CONFIG_XPS 2929 netif_reset_xps_queues_gt(dev, txq); 2930 #endif 2931 } 2932 } else { 2933 dev->real_num_tx_queues = txq; 2934 } 2935 2936 return 0; 2937 } 2938 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2939 2940 #ifdef CONFIG_SYSFS 2941 /** 2942 * netif_set_real_num_rx_queues - set actual number of RX queues used 2943 * @dev: Network device 2944 * @rxq: Actual number of RX queues 2945 * 2946 * This must be called either with the rtnl_lock held or before 2947 * registration of the net device. Returns 0 on success, or a 2948 * negative error code. If called before registration, it always 2949 * succeeds. 2950 */ 2951 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2952 { 2953 int rc; 2954 2955 if (rxq < 1 || rxq > dev->num_rx_queues) 2956 return -EINVAL; 2957 2958 if (dev->reg_state == NETREG_REGISTERED) { 2959 ASSERT_RTNL(); 2960 2961 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2962 rxq); 2963 if (rc) 2964 return rc; 2965 } 2966 2967 dev->real_num_rx_queues = rxq; 2968 return 0; 2969 } 2970 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2971 #endif 2972 2973 /** 2974 * netif_set_real_num_queues - set actual number of RX and TX queues used 2975 * @dev: Network device 2976 * @txq: Actual number of TX queues 2977 * @rxq: Actual number of RX queues 2978 * 2979 * Set the real number of both TX and RX queues. 2980 * Does nothing if the number of queues is already correct. 2981 */ 2982 int netif_set_real_num_queues(struct net_device *dev, 2983 unsigned int txq, unsigned int rxq) 2984 { 2985 unsigned int old_rxq = dev->real_num_rx_queues; 2986 int err; 2987 2988 if (txq < 1 || txq > dev->num_tx_queues || 2989 rxq < 1 || rxq > dev->num_rx_queues) 2990 return -EINVAL; 2991 2992 /* Start from increases, so the error path only does decreases - 2993 * decreases can't fail. 2994 */ 2995 if (rxq > dev->real_num_rx_queues) { 2996 err = netif_set_real_num_rx_queues(dev, rxq); 2997 if (err) 2998 return err; 2999 } 3000 if (txq > dev->real_num_tx_queues) { 3001 err = netif_set_real_num_tx_queues(dev, txq); 3002 if (err) 3003 goto undo_rx; 3004 } 3005 if (rxq < dev->real_num_rx_queues) 3006 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3007 if (txq < dev->real_num_tx_queues) 3008 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3009 3010 return 0; 3011 undo_rx: 3012 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3013 return err; 3014 } 3015 EXPORT_SYMBOL(netif_set_real_num_queues); 3016 3017 /** 3018 * netif_set_tso_max_size() - set the max size of TSO frames supported 3019 * @dev: netdev to update 3020 * @size: max skb->len of a TSO frame 3021 * 3022 * Set the limit on the size of TSO super-frames the device can handle. 3023 * Unless explicitly set the stack will assume the value of 3024 * %GSO_LEGACY_MAX_SIZE. 3025 */ 3026 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3027 { 3028 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3029 if (size < READ_ONCE(dev->gso_max_size)) 3030 netif_set_gso_max_size(dev, size); 3031 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3032 netif_set_gso_ipv4_max_size(dev, size); 3033 } 3034 EXPORT_SYMBOL(netif_set_tso_max_size); 3035 3036 /** 3037 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3038 * @dev: netdev to update 3039 * @segs: max number of TCP segments 3040 * 3041 * Set the limit on the number of TCP segments the device can generate from 3042 * a single TSO super-frame. 3043 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3044 */ 3045 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3046 { 3047 dev->tso_max_segs = segs; 3048 if (segs < READ_ONCE(dev->gso_max_segs)) 3049 netif_set_gso_max_segs(dev, segs); 3050 } 3051 EXPORT_SYMBOL(netif_set_tso_max_segs); 3052 3053 /** 3054 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3055 * @to: netdev to update 3056 * @from: netdev from which to copy the limits 3057 */ 3058 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3059 { 3060 netif_set_tso_max_size(to, from->tso_max_size); 3061 netif_set_tso_max_segs(to, from->tso_max_segs); 3062 } 3063 EXPORT_SYMBOL(netif_inherit_tso_max); 3064 3065 /** 3066 * netif_get_num_default_rss_queues - default number of RSS queues 3067 * 3068 * Default value is the number of physical cores if there are only 1 or 2, or 3069 * divided by 2 if there are more. 3070 */ 3071 int netif_get_num_default_rss_queues(void) 3072 { 3073 cpumask_var_t cpus; 3074 int cpu, count = 0; 3075 3076 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3077 return 1; 3078 3079 cpumask_copy(cpus, cpu_online_mask); 3080 for_each_cpu(cpu, cpus) { 3081 ++count; 3082 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3083 } 3084 free_cpumask_var(cpus); 3085 3086 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3087 } 3088 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3089 3090 static void __netif_reschedule(struct Qdisc *q) 3091 { 3092 struct softnet_data *sd; 3093 unsigned long flags; 3094 3095 local_irq_save(flags); 3096 sd = this_cpu_ptr(&softnet_data); 3097 q->next_sched = NULL; 3098 *sd->output_queue_tailp = q; 3099 sd->output_queue_tailp = &q->next_sched; 3100 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3101 local_irq_restore(flags); 3102 } 3103 3104 void __netif_schedule(struct Qdisc *q) 3105 { 3106 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3107 __netif_reschedule(q); 3108 } 3109 EXPORT_SYMBOL(__netif_schedule); 3110 3111 struct dev_kfree_skb_cb { 3112 enum skb_drop_reason reason; 3113 }; 3114 3115 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3116 { 3117 return (struct dev_kfree_skb_cb *)skb->cb; 3118 } 3119 3120 void netif_schedule_queue(struct netdev_queue *txq) 3121 { 3122 rcu_read_lock(); 3123 if (!netif_xmit_stopped(txq)) { 3124 struct Qdisc *q = rcu_dereference(txq->qdisc); 3125 3126 __netif_schedule(q); 3127 } 3128 rcu_read_unlock(); 3129 } 3130 EXPORT_SYMBOL(netif_schedule_queue); 3131 3132 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3133 { 3134 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3135 struct Qdisc *q; 3136 3137 rcu_read_lock(); 3138 q = rcu_dereference(dev_queue->qdisc); 3139 __netif_schedule(q); 3140 rcu_read_unlock(); 3141 } 3142 } 3143 EXPORT_SYMBOL(netif_tx_wake_queue); 3144 3145 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3146 { 3147 unsigned long flags; 3148 3149 if (unlikely(!skb)) 3150 return; 3151 3152 if (likely(refcount_read(&skb->users) == 1)) { 3153 smp_rmb(); 3154 refcount_set(&skb->users, 0); 3155 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3156 return; 3157 } 3158 get_kfree_skb_cb(skb)->reason = reason; 3159 local_irq_save(flags); 3160 skb->next = __this_cpu_read(softnet_data.completion_queue); 3161 __this_cpu_write(softnet_data.completion_queue, skb); 3162 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3163 local_irq_restore(flags); 3164 } 3165 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3166 3167 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3168 { 3169 if (in_hardirq() || irqs_disabled()) 3170 dev_kfree_skb_irq_reason(skb, reason); 3171 else 3172 kfree_skb_reason(skb, reason); 3173 } 3174 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3175 3176 3177 /** 3178 * netif_device_detach - mark device as removed 3179 * @dev: network device 3180 * 3181 * Mark device as removed from system and therefore no longer available. 3182 */ 3183 void netif_device_detach(struct net_device *dev) 3184 { 3185 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3186 netif_running(dev)) { 3187 netif_tx_stop_all_queues(dev); 3188 } 3189 } 3190 EXPORT_SYMBOL(netif_device_detach); 3191 3192 /** 3193 * netif_device_attach - mark device as attached 3194 * @dev: network device 3195 * 3196 * Mark device as attached from system and restart if needed. 3197 */ 3198 void netif_device_attach(struct net_device *dev) 3199 { 3200 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3201 netif_running(dev)) { 3202 netif_tx_wake_all_queues(dev); 3203 __netdev_watchdog_up(dev); 3204 } 3205 } 3206 EXPORT_SYMBOL(netif_device_attach); 3207 3208 /* 3209 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3210 * to be used as a distribution range. 3211 */ 3212 static u16 skb_tx_hash(const struct net_device *dev, 3213 const struct net_device *sb_dev, 3214 struct sk_buff *skb) 3215 { 3216 u32 hash; 3217 u16 qoffset = 0; 3218 u16 qcount = dev->real_num_tx_queues; 3219 3220 if (dev->num_tc) { 3221 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3222 3223 qoffset = sb_dev->tc_to_txq[tc].offset; 3224 qcount = sb_dev->tc_to_txq[tc].count; 3225 if (unlikely(!qcount)) { 3226 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3227 sb_dev->name, qoffset, tc); 3228 qoffset = 0; 3229 qcount = dev->real_num_tx_queues; 3230 } 3231 } 3232 3233 if (skb_rx_queue_recorded(skb)) { 3234 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3235 hash = skb_get_rx_queue(skb); 3236 if (hash >= qoffset) 3237 hash -= qoffset; 3238 while (unlikely(hash >= qcount)) 3239 hash -= qcount; 3240 return hash + qoffset; 3241 } 3242 3243 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3244 } 3245 3246 void skb_warn_bad_offload(const struct sk_buff *skb) 3247 { 3248 static const netdev_features_t null_features; 3249 struct net_device *dev = skb->dev; 3250 const char *name = ""; 3251 3252 if (!net_ratelimit()) 3253 return; 3254 3255 if (dev) { 3256 if (dev->dev.parent) 3257 name = dev_driver_string(dev->dev.parent); 3258 else 3259 name = netdev_name(dev); 3260 } 3261 skb_dump(KERN_WARNING, skb, false); 3262 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3263 name, dev ? &dev->features : &null_features, 3264 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3265 } 3266 3267 /* 3268 * Invalidate hardware checksum when packet is to be mangled, and 3269 * complete checksum manually on outgoing path. 3270 */ 3271 int skb_checksum_help(struct sk_buff *skb) 3272 { 3273 __wsum csum; 3274 int ret = 0, offset; 3275 3276 if (skb->ip_summed == CHECKSUM_COMPLETE) 3277 goto out_set_summed; 3278 3279 if (unlikely(skb_is_gso(skb))) { 3280 skb_warn_bad_offload(skb); 3281 return -EINVAL; 3282 } 3283 3284 /* Before computing a checksum, we should make sure no frag could 3285 * be modified by an external entity : checksum could be wrong. 3286 */ 3287 if (skb_has_shared_frag(skb)) { 3288 ret = __skb_linearize(skb); 3289 if (ret) 3290 goto out; 3291 } 3292 3293 offset = skb_checksum_start_offset(skb); 3294 ret = -EINVAL; 3295 if (unlikely(offset >= skb_headlen(skb))) { 3296 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3297 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3298 offset, skb_headlen(skb)); 3299 goto out; 3300 } 3301 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3302 3303 offset += skb->csum_offset; 3304 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3305 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3306 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3307 offset + sizeof(__sum16), skb_headlen(skb)); 3308 goto out; 3309 } 3310 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3311 if (ret) 3312 goto out; 3313 3314 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3315 out_set_summed: 3316 skb->ip_summed = CHECKSUM_NONE; 3317 out: 3318 return ret; 3319 } 3320 EXPORT_SYMBOL(skb_checksum_help); 3321 3322 int skb_crc32c_csum_help(struct sk_buff *skb) 3323 { 3324 __le32 crc32c_csum; 3325 int ret = 0, offset, start; 3326 3327 if (skb->ip_summed != CHECKSUM_PARTIAL) 3328 goto out; 3329 3330 if (unlikely(skb_is_gso(skb))) 3331 goto out; 3332 3333 /* Before computing a checksum, we should make sure no frag could 3334 * be modified by an external entity : checksum could be wrong. 3335 */ 3336 if (unlikely(skb_has_shared_frag(skb))) { 3337 ret = __skb_linearize(skb); 3338 if (ret) 3339 goto out; 3340 } 3341 start = skb_checksum_start_offset(skb); 3342 offset = start + offsetof(struct sctphdr, checksum); 3343 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3344 ret = -EINVAL; 3345 goto out; 3346 } 3347 3348 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3349 if (ret) 3350 goto out; 3351 3352 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3353 skb->len - start, ~(__u32)0, 3354 crc32c_csum_stub)); 3355 *(__le32 *)(skb->data + offset) = crc32c_csum; 3356 skb_reset_csum_not_inet(skb); 3357 out: 3358 return ret; 3359 } 3360 3361 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3362 { 3363 __be16 type = skb->protocol; 3364 3365 /* Tunnel gso handlers can set protocol to ethernet. */ 3366 if (type == htons(ETH_P_TEB)) { 3367 struct ethhdr *eth; 3368 3369 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3370 return 0; 3371 3372 eth = (struct ethhdr *)skb->data; 3373 type = eth->h_proto; 3374 } 3375 3376 return vlan_get_protocol_and_depth(skb, type, depth); 3377 } 3378 3379 3380 /* Take action when hardware reception checksum errors are detected. */ 3381 #ifdef CONFIG_BUG 3382 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3383 { 3384 netdev_err(dev, "hw csum failure\n"); 3385 skb_dump(KERN_ERR, skb, true); 3386 dump_stack(); 3387 } 3388 3389 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3390 { 3391 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3392 } 3393 EXPORT_SYMBOL(netdev_rx_csum_fault); 3394 #endif 3395 3396 /* XXX: check that highmem exists at all on the given machine. */ 3397 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3398 { 3399 #ifdef CONFIG_HIGHMEM 3400 int i; 3401 3402 if (!(dev->features & NETIF_F_HIGHDMA)) { 3403 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3404 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3405 3406 if (PageHighMem(skb_frag_page(frag))) 3407 return 1; 3408 } 3409 } 3410 #endif 3411 return 0; 3412 } 3413 3414 /* If MPLS offload request, verify we are testing hardware MPLS features 3415 * instead of standard features for the netdev. 3416 */ 3417 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3418 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3419 netdev_features_t features, 3420 __be16 type) 3421 { 3422 if (eth_p_mpls(type)) 3423 features &= skb->dev->mpls_features; 3424 3425 return features; 3426 } 3427 #else 3428 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3429 netdev_features_t features, 3430 __be16 type) 3431 { 3432 return features; 3433 } 3434 #endif 3435 3436 static netdev_features_t harmonize_features(struct sk_buff *skb, 3437 netdev_features_t features) 3438 { 3439 __be16 type; 3440 3441 type = skb_network_protocol(skb, NULL); 3442 features = net_mpls_features(skb, features, type); 3443 3444 if (skb->ip_summed != CHECKSUM_NONE && 3445 !can_checksum_protocol(features, type)) { 3446 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3447 } 3448 if (illegal_highdma(skb->dev, skb)) 3449 features &= ~NETIF_F_SG; 3450 3451 return features; 3452 } 3453 3454 netdev_features_t passthru_features_check(struct sk_buff *skb, 3455 struct net_device *dev, 3456 netdev_features_t features) 3457 { 3458 return features; 3459 } 3460 EXPORT_SYMBOL(passthru_features_check); 3461 3462 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3463 struct net_device *dev, 3464 netdev_features_t features) 3465 { 3466 return vlan_features_check(skb, features); 3467 } 3468 3469 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3470 struct net_device *dev, 3471 netdev_features_t features) 3472 { 3473 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3474 3475 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3476 return features & ~NETIF_F_GSO_MASK; 3477 3478 if (!skb_shinfo(skb)->gso_type) { 3479 skb_warn_bad_offload(skb); 3480 return features & ~NETIF_F_GSO_MASK; 3481 } 3482 3483 /* Support for GSO partial features requires software 3484 * intervention before we can actually process the packets 3485 * so we need to strip support for any partial features now 3486 * and we can pull them back in after we have partially 3487 * segmented the frame. 3488 */ 3489 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3490 features &= ~dev->gso_partial_features; 3491 3492 /* Make sure to clear the IPv4 ID mangling feature if the 3493 * IPv4 header has the potential to be fragmented. 3494 */ 3495 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3496 struct iphdr *iph = skb->encapsulation ? 3497 inner_ip_hdr(skb) : ip_hdr(skb); 3498 3499 if (!(iph->frag_off & htons(IP_DF))) 3500 features &= ~NETIF_F_TSO_MANGLEID; 3501 } 3502 3503 return features; 3504 } 3505 3506 netdev_features_t netif_skb_features(struct sk_buff *skb) 3507 { 3508 struct net_device *dev = skb->dev; 3509 netdev_features_t features = dev->features; 3510 3511 if (skb_is_gso(skb)) 3512 features = gso_features_check(skb, dev, features); 3513 3514 /* If encapsulation offload request, verify we are testing 3515 * hardware encapsulation features instead of standard 3516 * features for the netdev 3517 */ 3518 if (skb->encapsulation) 3519 features &= dev->hw_enc_features; 3520 3521 if (skb_vlan_tagged(skb)) 3522 features = netdev_intersect_features(features, 3523 dev->vlan_features | 3524 NETIF_F_HW_VLAN_CTAG_TX | 3525 NETIF_F_HW_VLAN_STAG_TX); 3526 3527 if (dev->netdev_ops->ndo_features_check) 3528 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3529 features); 3530 else 3531 features &= dflt_features_check(skb, dev, features); 3532 3533 return harmonize_features(skb, features); 3534 } 3535 EXPORT_SYMBOL(netif_skb_features); 3536 3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3538 struct netdev_queue *txq, bool more) 3539 { 3540 unsigned int len; 3541 int rc; 3542 3543 if (dev_nit_active(dev)) 3544 dev_queue_xmit_nit(skb, dev); 3545 3546 len = skb->len; 3547 trace_net_dev_start_xmit(skb, dev); 3548 rc = netdev_start_xmit(skb, dev, txq, more); 3549 trace_net_dev_xmit(skb, rc, dev, len); 3550 3551 return rc; 3552 } 3553 3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3555 struct netdev_queue *txq, int *ret) 3556 { 3557 struct sk_buff *skb = first; 3558 int rc = NETDEV_TX_OK; 3559 3560 while (skb) { 3561 struct sk_buff *next = skb->next; 3562 3563 skb_mark_not_on_list(skb); 3564 rc = xmit_one(skb, dev, txq, next != NULL); 3565 if (unlikely(!dev_xmit_complete(rc))) { 3566 skb->next = next; 3567 goto out; 3568 } 3569 3570 skb = next; 3571 if (netif_tx_queue_stopped(txq) && skb) { 3572 rc = NETDEV_TX_BUSY; 3573 break; 3574 } 3575 } 3576 3577 out: 3578 *ret = rc; 3579 return skb; 3580 } 3581 3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3583 netdev_features_t features) 3584 { 3585 if (skb_vlan_tag_present(skb) && 3586 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3587 skb = __vlan_hwaccel_push_inside(skb); 3588 return skb; 3589 } 3590 3591 int skb_csum_hwoffload_help(struct sk_buff *skb, 3592 const netdev_features_t features) 3593 { 3594 if (unlikely(skb_csum_is_sctp(skb))) 3595 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3596 skb_crc32c_csum_help(skb); 3597 3598 if (features & NETIF_F_HW_CSUM) 3599 return 0; 3600 3601 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3602 switch (skb->csum_offset) { 3603 case offsetof(struct tcphdr, check): 3604 case offsetof(struct udphdr, check): 3605 return 0; 3606 } 3607 } 3608 3609 return skb_checksum_help(skb); 3610 } 3611 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3612 3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3614 { 3615 netdev_features_t features; 3616 3617 features = netif_skb_features(skb); 3618 skb = validate_xmit_vlan(skb, features); 3619 if (unlikely(!skb)) 3620 goto out_null; 3621 3622 skb = sk_validate_xmit_skb(skb, dev); 3623 if (unlikely(!skb)) 3624 goto out_null; 3625 3626 if (netif_needs_gso(skb, features)) { 3627 struct sk_buff *segs; 3628 3629 segs = skb_gso_segment(skb, features); 3630 if (IS_ERR(segs)) { 3631 goto out_kfree_skb; 3632 } else if (segs) { 3633 consume_skb(skb); 3634 skb = segs; 3635 } 3636 } else { 3637 if (skb_needs_linearize(skb, features) && 3638 __skb_linearize(skb)) 3639 goto out_kfree_skb; 3640 3641 /* If packet is not checksummed and device does not 3642 * support checksumming for this protocol, complete 3643 * checksumming here. 3644 */ 3645 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3646 if (skb->encapsulation) 3647 skb_set_inner_transport_header(skb, 3648 skb_checksum_start_offset(skb)); 3649 else 3650 skb_set_transport_header(skb, 3651 skb_checksum_start_offset(skb)); 3652 if (skb_csum_hwoffload_help(skb, features)) 3653 goto out_kfree_skb; 3654 } 3655 } 3656 3657 skb = validate_xmit_xfrm(skb, features, again); 3658 3659 return skb; 3660 3661 out_kfree_skb: 3662 kfree_skb(skb); 3663 out_null: 3664 dev_core_stats_tx_dropped_inc(dev); 3665 return NULL; 3666 } 3667 3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3669 { 3670 struct sk_buff *next, *head = NULL, *tail; 3671 3672 for (; skb != NULL; skb = next) { 3673 next = skb->next; 3674 skb_mark_not_on_list(skb); 3675 3676 /* in case skb wont be segmented, point to itself */ 3677 skb->prev = skb; 3678 3679 skb = validate_xmit_skb(skb, dev, again); 3680 if (!skb) 3681 continue; 3682 3683 if (!head) 3684 head = skb; 3685 else 3686 tail->next = skb; 3687 /* If skb was segmented, skb->prev points to 3688 * the last segment. If not, it still contains skb. 3689 */ 3690 tail = skb->prev; 3691 } 3692 return head; 3693 } 3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3695 3696 static void qdisc_pkt_len_init(struct sk_buff *skb) 3697 { 3698 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3699 3700 qdisc_skb_cb(skb)->pkt_len = skb->len; 3701 3702 /* To get more precise estimation of bytes sent on wire, 3703 * we add to pkt_len the headers size of all segments 3704 */ 3705 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3706 u16 gso_segs = shinfo->gso_segs; 3707 unsigned int hdr_len; 3708 3709 /* mac layer + network layer */ 3710 hdr_len = skb_transport_offset(skb); 3711 3712 /* + transport layer */ 3713 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3714 const struct tcphdr *th; 3715 struct tcphdr _tcphdr; 3716 3717 th = skb_header_pointer(skb, hdr_len, 3718 sizeof(_tcphdr), &_tcphdr); 3719 if (likely(th)) 3720 hdr_len += __tcp_hdrlen(th); 3721 } else { 3722 struct udphdr _udphdr; 3723 3724 if (skb_header_pointer(skb, hdr_len, 3725 sizeof(_udphdr), &_udphdr)) 3726 hdr_len += sizeof(struct udphdr); 3727 } 3728 3729 if (shinfo->gso_type & SKB_GSO_DODGY) 3730 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3731 shinfo->gso_size); 3732 3733 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3734 } 3735 } 3736 3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3738 struct sk_buff **to_free, 3739 struct netdev_queue *txq) 3740 { 3741 int rc; 3742 3743 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3744 if (rc == NET_XMIT_SUCCESS) 3745 trace_qdisc_enqueue(q, txq, skb); 3746 return rc; 3747 } 3748 3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3750 struct net_device *dev, 3751 struct netdev_queue *txq) 3752 { 3753 spinlock_t *root_lock = qdisc_lock(q); 3754 struct sk_buff *to_free = NULL; 3755 bool contended; 3756 int rc; 3757 3758 qdisc_calculate_pkt_len(skb, q); 3759 3760 if (q->flags & TCQ_F_NOLOCK) { 3761 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3762 qdisc_run_begin(q)) { 3763 /* Retest nolock_qdisc_is_empty() within the protection 3764 * of q->seqlock to protect from racing with requeuing. 3765 */ 3766 if (unlikely(!nolock_qdisc_is_empty(q))) { 3767 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3768 __qdisc_run(q); 3769 qdisc_run_end(q); 3770 3771 goto no_lock_out; 3772 } 3773 3774 qdisc_bstats_cpu_update(q, skb); 3775 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3776 !nolock_qdisc_is_empty(q)) 3777 __qdisc_run(q); 3778 3779 qdisc_run_end(q); 3780 return NET_XMIT_SUCCESS; 3781 } 3782 3783 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3784 qdisc_run(q); 3785 3786 no_lock_out: 3787 if (unlikely(to_free)) 3788 kfree_skb_list_reason(to_free, 3789 SKB_DROP_REASON_QDISC_DROP); 3790 return rc; 3791 } 3792 3793 /* 3794 * Heuristic to force contended enqueues to serialize on a 3795 * separate lock before trying to get qdisc main lock. 3796 * This permits qdisc->running owner to get the lock more 3797 * often and dequeue packets faster. 3798 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3799 * and then other tasks will only enqueue packets. The packets will be 3800 * sent after the qdisc owner is scheduled again. To prevent this 3801 * scenario the task always serialize on the lock. 3802 */ 3803 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3804 if (unlikely(contended)) 3805 spin_lock(&q->busylock); 3806 3807 spin_lock(root_lock); 3808 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3809 __qdisc_drop(skb, &to_free); 3810 rc = NET_XMIT_DROP; 3811 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3812 qdisc_run_begin(q)) { 3813 /* 3814 * This is a work-conserving queue; there are no old skbs 3815 * waiting to be sent out; and the qdisc is not running - 3816 * xmit the skb directly. 3817 */ 3818 3819 qdisc_bstats_update(q, skb); 3820 3821 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3822 if (unlikely(contended)) { 3823 spin_unlock(&q->busylock); 3824 contended = false; 3825 } 3826 __qdisc_run(q); 3827 } 3828 3829 qdisc_run_end(q); 3830 rc = NET_XMIT_SUCCESS; 3831 } else { 3832 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3833 if (qdisc_run_begin(q)) { 3834 if (unlikely(contended)) { 3835 spin_unlock(&q->busylock); 3836 contended = false; 3837 } 3838 __qdisc_run(q); 3839 qdisc_run_end(q); 3840 } 3841 } 3842 spin_unlock(root_lock); 3843 if (unlikely(to_free)) 3844 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3845 if (unlikely(contended)) 3846 spin_unlock(&q->busylock); 3847 return rc; 3848 } 3849 3850 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3851 static void skb_update_prio(struct sk_buff *skb) 3852 { 3853 const struct netprio_map *map; 3854 const struct sock *sk; 3855 unsigned int prioidx; 3856 3857 if (skb->priority) 3858 return; 3859 map = rcu_dereference_bh(skb->dev->priomap); 3860 if (!map) 3861 return; 3862 sk = skb_to_full_sk(skb); 3863 if (!sk) 3864 return; 3865 3866 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3867 3868 if (prioidx < map->priomap_len) 3869 skb->priority = map->priomap[prioidx]; 3870 } 3871 #else 3872 #define skb_update_prio(skb) 3873 #endif 3874 3875 /** 3876 * dev_loopback_xmit - loop back @skb 3877 * @net: network namespace this loopback is happening in 3878 * @sk: sk needed to be a netfilter okfn 3879 * @skb: buffer to transmit 3880 */ 3881 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3882 { 3883 skb_reset_mac_header(skb); 3884 __skb_pull(skb, skb_network_offset(skb)); 3885 skb->pkt_type = PACKET_LOOPBACK; 3886 if (skb->ip_summed == CHECKSUM_NONE) 3887 skb->ip_summed = CHECKSUM_UNNECESSARY; 3888 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3889 skb_dst_force(skb); 3890 netif_rx(skb); 3891 return 0; 3892 } 3893 EXPORT_SYMBOL(dev_loopback_xmit); 3894 3895 #ifdef CONFIG_NET_EGRESS 3896 static struct netdev_queue * 3897 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3898 { 3899 int qm = skb_get_queue_mapping(skb); 3900 3901 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3902 } 3903 3904 static bool netdev_xmit_txqueue_skipped(void) 3905 { 3906 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3907 } 3908 3909 void netdev_xmit_skip_txqueue(bool skip) 3910 { 3911 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3912 } 3913 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3914 #endif /* CONFIG_NET_EGRESS */ 3915 3916 #ifdef CONFIG_NET_XGRESS 3917 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb) 3918 { 3919 int ret = TC_ACT_UNSPEC; 3920 #ifdef CONFIG_NET_CLS_ACT 3921 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3922 struct tcf_result res; 3923 3924 if (!miniq) 3925 return ret; 3926 3927 tc_skb_cb(skb)->mru = 0; 3928 tc_skb_cb(skb)->post_ct = false; 3929 3930 mini_qdisc_bstats_cpu_update(miniq, skb); 3931 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3932 /* Only tcf related quirks below. */ 3933 switch (ret) { 3934 case TC_ACT_SHOT: 3935 mini_qdisc_qstats_cpu_drop(miniq); 3936 break; 3937 case TC_ACT_OK: 3938 case TC_ACT_RECLASSIFY: 3939 skb->tc_index = TC_H_MIN(res.classid); 3940 break; 3941 } 3942 #endif /* CONFIG_NET_CLS_ACT */ 3943 return ret; 3944 } 3945 3946 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 3947 3948 void tcx_inc(void) 3949 { 3950 static_branch_inc(&tcx_needed_key); 3951 } 3952 3953 void tcx_dec(void) 3954 { 3955 static_branch_dec(&tcx_needed_key); 3956 } 3957 3958 static __always_inline enum tcx_action_base 3959 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 3960 const bool needs_mac) 3961 { 3962 const struct bpf_mprog_fp *fp; 3963 const struct bpf_prog *prog; 3964 int ret = TCX_NEXT; 3965 3966 if (needs_mac) 3967 __skb_push(skb, skb->mac_len); 3968 bpf_mprog_foreach_prog(entry, fp, prog) { 3969 bpf_compute_data_pointers(skb); 3970 ret = bpf_prog_run(prog, skb); 3971 if (ret != TCX_NEXT) 3972 break; 3973 } 3974 if (needs_mac) 3975 __skb_pull(skb, skb->mac_len); 3976 return tcx_action_code(skb, ret); 3977 } 3978 3979 static __always_inline struct sk_buff * 3980 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3981 struct net_device *orig_dev, bool *another) 3982 { 3983 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 3984 int sch_ret; 3985 3986 if (!entry) 3987 return skb; 3988 if (*pt_prev) { 3989 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3990 *pt_prev = NULL; 3991 } 3992 3993 qdisc_skb_cb(skb)->pkt_len = skb->len; 3994 tcx_set_ingress(skb, true); 3995 3996 if (static_branch_unlikely(&tcx_needed_key)) { 3997 sch_ret = tcx_run(entry, skb, true); 3998 if (sch_ret != TC_ACT_UNSPEC) 3999 goto ingress_verdict; 4000 } 4001 sch_ret = tc_run(tcx_entry(entry), skb); 4002 ingress_verdict: 4003 switch (sch_ret) { 4004 case TC_ACT_REDIRECT: 4005 /* skb_mac_header check was done by BPF, so we can safely 4006 * push the L2 header back before redirecting to another 4007 * netdev. 4008 */ 4009 __skb_push(skb, skb->mac_len); 4010 if (skb_do_redirect(skb) == -EAGAIN) { 4011 __skb_pull(skb, skb->mac_len); 4012 *another = true; 4013 break; 4014 } 4015 *ret = NET_RX_SUCCESS; 4016 return NULL; 4017 case TC_ACT_SHOT: 4018 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); 4019 *ret = NET_RX_DROP; 4020 return NULL; 4021 /* used by tc_run */ 4022 case TC_ACT_STOLEN: 4023 case TC_ACT_QUEUED: 4024 case TC_ACT_TRAP: 4025 consume_skb(skb); 4026 fallthrough; 4027 case TC_ACT_CONSUMED: 4028 *ret = NET_RX_SUCCESS; 4029 return NULL; 4030 } 4031 4032 return skb; 4033 } 4034 4035 static __always_inline struct sk_buff * 4036 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4037 { 4038 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4039 int sch_ret; 4040 4041 if (!entry) 4042 return skb; 4043 4044 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4045 * already set by the caller. 4046 */ 4047 if (static_branch_unlikely(&tcx_needed_key)) { 4048 sch_ret = tcx_run(entry, skb, false); 4049 if (sch_ret != TC_ACT_UNSPEC) 4050 goto egress_verdict; 4051 } 4052 sch_ret = tc_run(tcx_entry(entry), skb); 4053 egress_verdict: 4054 switch (sch_ret) { 4055 case TC_ACT_REDIRECT: 4056 /* No need to push/pop skb's mac_header here on egress! */ 4057 skb_do_redirect(skb); 4058 *ret = NET_XMIT_SUCCESS; 4059 return NULL; 4060 case TC_ACT_SHOT: 4061 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); 4062 *ret = NET_XMIT_DROP; 4063 return NULL; 4064 /* used by tc_run */ 4065 case TC_ACT_STOLEN: 4066 case TC_ACT_QUEUED: 4067 case TC_ACT_TRAP: 4068 consume_skb(skb); 4069 fallthrough; 4070 case TC_ACT_CONSUMED: 4071 *ret = NET_XMIT_SUCCESS; 4072 return NULL; 4073 } 4074 4075 return skb; 4076 } 4077 #else 4078 static __always_inline struct sk_buff * 4079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4080 struct net_device *orig_dev, bool *another) 4081 { 4082 return skb; 4083 } 4084 4085 static __always_inline struct sk_buff * 4086 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4087 { 4088 return skb; 4089 } 4090 #endif /* CONFIG_NET_XGRESS */ 4091 4092 #ifdef CONFIG_XPS 4093 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4094 struct xps_dev_maps *dev_maps, unsigned int tci) 4095 { 4096 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4097 struct xps_map *map; 4098 int queue_index = -1; 4099 4100 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4101 return queue_index; 4102 4103 tci *= dev_maps->num_tc; 4104 tci += tc; 4105 4106 map = rcu_dereference(dev_maps->attr_map[tci]); 4107 if (map) { 4108 if (map->len == 1) 4109 queue_index = map->queues[0]; 4110 else 4111 queue_index = map->queues[reciprocal_scale( 4112 skb_get_hash(skb), map->len)]; 4113 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4114 queue_index = -1; 4115 } 4116 return queue_index; 4117 } 4118 #endif 4119 4120 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4121 struct sk_buff *skb) 4122 { 4123 #ifdef CONFIG_XPS 4124 struct xps_dev_maps *dev_maps; 4125 struct sock *sk = skb->sk; 4126 int queue_index = -1; 4127 4128 if (!static_key_false(&xps_needed)) 4129 return -1; 4130 4131 rcu_read_lock(); 4132 if (!static_key_false(&xps_rxqs_needed)) 4133 goto get_cpus_map; 4134 4135 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4136 if (dev_maps) { 4137 int tci = sk_rx_queue_get(sk); 4138 4139 if (tci >= 0) 4140 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4141 tci); 4142 } 4143 4144 get_cpus_map: 4145 if (queue_index < 0) { 4146 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4147 if (dev_maps) { 4148 unsigned int tci = skb->sender_cpu - 1; 4149 4150 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4151 tci); 4152 } 4153 } 4154 rcu_read_unlock(); 4155 4156 return queue_index; 4157 #else 4158 return -1; 4159 #endif 4160 } 4161 4162 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4163 struct net_device *sb_dev) 4164 { 4165 return 0; 4166 } 4167 EXPORT_SYMBOL(dev_pick_tx_zero); 4168 4169 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4170 struct net_device *sb_dev) 4171 { 4172 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4173 } 4174 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4175 4176 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4177 struct net_device *sb_dev) 4178 { 4179 struct sock *sk = skb->sk; 4180 int queue_index = sk_tx_queue_get(sk); 4181 4182 sb_dev = sb_dev ? : dev; 4183 4184 if (queue_index < 0 || skb->ooo_okay || 4185 queue_index >= dev->real_num_tx_queues) { 4186 int new_index = get_xps_queue(dev, sb_dev, skb); 4187 4188 if (new_index < 0) 4189 new_index = skb_tx_hash(dev, sb_dev, skb); 4190 4191 if (queue_index != new_index && sk && 4192 sk_fullsock(sk) && 4193 rcu_access_pointer(sk->sk_dst_cache)) 4194 sk_tx_queue_set(sk, new_index); 4195 4196 queue_index = new_index; 4197 } 4198 4199 return queue_index; 4200 } 4201 EXPORT_SYMBOL(netdev_pick_tx); 4202 4203 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4204 struct sk_buff *skb, 4205 struct net_device *sb_dev) 4206 { 4207 int queue_index = 0; 4208 4209 #ifdef CONFIG_XPS 4210 u32 sender_cpu = skb->sender_cpu - 1; 4211 4212 if (sender_cpu >= (u32)NR_CPUS) 4213 skb->sender_cpu = raw_smp_processor_id() + 1; 4214 #endif 4215 4216 if (dev->real_num_tx_queues != 1) { 4217 const struct net_device_ops *ops = dev->netdev_ops; 4218 4219 if (ops->ndo_select_queue) 4220 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4221 else 4222 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4223 4224 queue_index = netdev_cap_txqueue(dev, queue_index); 4225 } 4226 4227 skb_set_queue_mapping(skb, queue_index); 4228 return netdev_get_tx_queue(dev, queue_index); 4229 } 4230 4231 /** 4232 * __dev_queue_xmit() - transmit a buffer 4233 * @skb: buffer to transmit 4234 * @sb_dev: suboordinate device used for L2 forwarding offload 4235 * 4236 * Queue a buffer for transmission to a network device. The caller must 4237 * have set the device and priority and built the buffer before calling 4238 * this function. The function can be called from an interrupt. 4239 * 4240 * When calling this method, interrupts MUST be enabled. This is because 4241 * the BH enable code must have IRQs enabled so that it will not deadlock. 4242 * 4243 * Regardless of the return value, the skb is consumed, so it is currently 4244 * difficult to retry a send to this method. (You can bump the ref count 4245 * before sending to hold a reference for retry if you are careful.) 4246 * 4247 * Return: 4248 * * 0 - buffer successfully transmitted 4249 * * positive qdisc return code - NET_XMIT_DROP etc. 4250 * * negative errno - other errors 4251 */ 4252 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4253 { 4254 struct net_device *dev = skb->dev; 4255 struct netdev_queue *txq = NULL; 4256 struct Qdisc *q; 4257 int rc = -ENOMEM; 4258 bool again = false; 4259 4260 skb_reset_mac_header(skb); 4261 skb_assert_len(skb); 4262 4263 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4264 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4265 4266 /* Disable soft irqs for various locks below. Also 4267 * stops preemption for RCU. 4268 */ 4269 rcu_read_lock_bh(); 4270 4271 skb_update_prio(skb); 4272 4273 qdisc_pkt_len_init(skb); 4274 tcx_set_ingress(skb, false); 4275 #ifdef CONFIG_NET_EGRESS 4276 if (static_branch_unlikely(&egress_needed_key)) { 4277 if (nf_hook_egress_active()) { 4278 skb = nf_hook_egress(skb, &rc, dev); 4279 if (!skb) 4280 goto out; 4281 } 4282 4283 netdev_xmit_skip_txqueue(false); 4284 4285 nf_skip_egress(skb, true); 4286 skb = sch_handle_egress(skb, &rc, dev); 4287 if (!skb) 4288 goto out; 4289 nf_skip_egress(skb, false); 4290 4291 if (netdev_xmit_txqueue_skipped()) 4292 txq = netdev_tx_queue_mapping(dev, skb); 4293 } 4294 #endif 4295 /* If device/qdisc don't need skb->dst, release it right now while 4296 * its hot in this cpu cache. 4297 */ 4298 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4299 skb_dst_drop(skb); 4300 else 4301 skb_dst_force(skb); 4302 4303 if (!txq) 4304 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4305 4306 q = rcu_dereference_bh(txq->qdisc); 4307 4308 trace_net_dev_queue(skb); 4309 if (q->enqueue) { 4310 rc = __dev_xmit_skb(skb, q, dev, txq); 4311 goto out; 4312 } 4313 4314 /* The device has no queue. Common case for software devices: 4315 * loopback, all the sorts of tunnels... 4316 4317 * Really, it is unlikely that netif_tx_lock protection is necessary 4318 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4319 * counters.) 4320 * However, it is possible, that they rely on protection 4321 * made by us here. 4322 4323 * Check this and shot the lock. It is not prone from deadlocks. 4324 *Either shot noqueue qdisc, it is even simpler 8) 4325 */ 4326 if (dev->flags & IFF_UP) { 4327 int cpu = smp_processor_id(); /* ok because BHs are off */ 4328 4329 /* Other cpus might concurrently change txq->xmit_lock_owner 4330 * to -1 or to their cpu id, but not to our id. 4331 */ 4332 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4333 if (dev_xmit_recursion()) 4334 goto recursion_alert; 4335 4336 skb = validate_xmit_skb(skb, dev, &again); 4337 if (!skb) 4338 goto out; 4339 4340 HARD_TX_LOCK(dev, txq, cpu); 4341 4342 if (!netif_xmit_stopped(txq)) { 4343 dev_xmit_recursion_inc(); 4344 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4345 dev_xmit_recursion_dec(); 4346 if (dev_xmit_complete(rc)) { 4347 HARD_TX_UNLOCK(dev, txq); 4348 goto out; 4349 } 4350 } 4351 HARD_TX_UNLOCK(dev, txq); 4352 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4353 dev->name); 4354 } else { 4355 /* Recursion is detected! It is possible, 4356 * unfortunately 4357 */ 4358 recursion_alert: 4359 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4360 dev->name); 4361 } 4362 } 4363 4364 rc = -ENETDOWN; 4365 rcu_read_unlock_bh(); 4366 4367 dev_core_stats_tx_dropped_inc(dev); 4368 kfree_skb_list(skb); 4369 return rc; 4370 out: 4371 rcu_read_unlock_bh(); 4372 return rc; 4373 } 4374 EXPORT_SYMBOL(__dev_queue_xmit); 4375 4376 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4377 { 4378 struct net_device *dev = skb->dev; 4379 struct sk_buff *orig_skb = skb; 4380 struct netdev_queue *txq; 4381 int ret = NETDEV_TX_BUSY; 4382 bool again = false; 4383 4384 if (unlikely(!netif_running(dev) || 4385 !netif_carrier_ok(dev))) 4386 goto drop; 4387 4388 skb = validate_xmit_skb_list(skb, dev, &again); 4389 if (skb != orig_skb) 4390 goto drop; 4391 4392 skb_set_queue_mapping(skb, queue_id); 4393 txq = skb_get_tx_queue(dev, skb); 4394 4395 local_bh_disable(); 4396 4397 dev_xmit_recursion_inc(); 4398 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4399 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4400 ret = netdev_start_xmit(skb, dev, txq, false); 4401 HARD_TX_UNLOCK(dev, txq); 4402 dev_xmit_recursion_dec(); 4403 4404 local_bh_enable(); 4405 return ret; 4406 drop: 4407 dev_core_stats_tx_dropped_inc(dev); 4408 kfree_skb_list(skb); 4409 return NET_XMIT_DROP; 4410 } 4411 EXPORT_SYMBOL(__dev_direct_xmit); 4412 4413 /************************************************************************* 4414 * Receiver routines 4415 *************************************************************************/ 4416 4417 int netdev_max_backlog __read_mostly = 1000; 4418 EXPORT_SYMBOL(netdev_max_backlog); 4419 4420 int netdev_tstamp_prequeue __read_mostly = 1; 4421 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4422 int netdev_budget __read_mostly = 300; 4423 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4424 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4425 int weight_p __read_mostly = 64; /* old backlog weight */ 4426 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4427 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4428 int dev_rx_weight __read_mostly = 64; 4429 int dev_tx_weight __read_mostly = 64; 4430 4431 /* Called with irq disabled */ 4432 static inline void ____napi_schedule(struct softnet_data *sd, 4433 struct napi_struct *napi) 4434 { 4435 struct task_struct *thread; 4436 4437 lockdep_assert_irqs_disabled(); 4438 4439 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4440 /* Paired with smp_mb__before_atomic() in 4441 * napi_enable()/dev_set_threaded(). 4442 * Use READ_ONCE() to guarantee a complete 4443 * read on napi->thread. Only call 4444 * wake_up_process() when it's not NULL. 4445 */ 4446 thread = READ_ONCE(napi->thread); 4447 if (thread) { 4448 /* Avoid doing set_bit() if the thread is in 4449 * INTERRUPTIBLE state, cause napi_thread_wait() 4450 * makes sure to proceed with napi polling 4451 * if the thread is explicitly woken from here. 4452 */ 4453 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4454 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4455 wake_up_process(thread); 4456 return; 4457 } 4458 } 4459 4460 list_add_tail(&napi->poll_list, &sd->poll_list); 4461 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4462 /* If not called from net_rx_action() 4463 * we have to raise NET_RX_SOFTIRQ. 4464 */ 4465 if (!sd->in_net_rx_action) 4466 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4467 } 4468 4469 #ifdef CONFIG_RPS 4470 4471 /* One global table that all flow-based protocols share. */ 4472 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4473 EXPORT_SYMBOL(rps_sock_flow_table); 4474 u32 rps_cpu_mask __read_mostly; 4475 EXPORT_SYMBOL(rps_cpu_mask); 4476 4477 struct static_key_false rps_needed __read_mostly; 4478 EXPORT_SYMBOL(rps_needed); 4479 struct static_key_false rfs_needed __read_mostly; 4480 EXPORT_SYMBOL(rfs_needed); 4481 4482 static struct rps_dev_flow * 4483 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4484 struct rps_dev_flow *rflow, u16 next_cpu) 4485 { 4486 if (next_cpu < nr_cpu_ids) { 4487 #ifdef CONFIG_RFS_ACCEL 4488 struct netdev_rx_queue *rxqueue; 4489 struct rps_dev_flow_table *flow_table; 4490 struct rps_dev_flow *old_rflow; 4491 u32 flow_id; 4492 u16 rxq_index; 4493 int rc; 4494 4495 /* Should we steer this flow to a different hardware queue? */ 4496 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4497 !(dev->features & NETIF_F_NTUPLE)) 4498 goto out; 4499 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4500 if (rxq_index == skb_get_rx_queue(skb)) 4501 goto out; 4502 4503 rxqueue = dev->_rx + rxq_index; 4504 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4505 if (!flow_table) 4506 goto out; 4507 flow_id = skb_get_hash(skb) & flow_table->mask; 4508 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4509 rxq_index, flow_id); 4510 if (rc < 0) 4511 goto out; 4512 old_rflow = rflow; 4513 rflow = &flow_table->flows[flow_id]; 4514 rflow->filter = rc; 4515 if (old_rflow->filter == rflow->filter) 4516 old_rflow->filter = RPS_NO_FILTER; 4517 out: 4518 #endif 4519 rflow->last_qtail = 4520 per_cpu(softnet_data, next_cpu).input_queue_head; 4521 } 4522 4523 rflow->cpu = next_cpu; 4524 return rflow; 4525 } 4526 4527 /* 4528 * get_rps_cpu is called from netif_receive_skb and returns the target 4529 * CPU from the RPS map of the receiving queue for a given skb. 4530 * rcu_read_lock must be held on entry. 4531 */ 4532 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4533 struct rps_dev_flow **rflowp) 4534 { 4535 const struct rps_sock_flow_table *sock_flow_table; 4536 struct netdev_rx_queue *rxqueue = dev->_rx; 4537 struct rps_dev_flow_table *flow_table; 4538 struct rps_map *map; 4539 int cpu = -1; 4540 u32 tcpu; 4541 u32 hash; 4542 4543 if (skb_rx_queue_recorded(skb)) { 4544 u16 index = skb_get_rx_queue(skb); 4545 4546 if (unlikely(index >= dev->real_num_rx_queues)) { 4547 WARN_ONCE(dev->real_num_rx_queues > 1, 4548 "%s received packet on queue %u, but number " 4549 "of RX queues is %u\n", 4550 dev->name, index, dev->real_num_rx_queues); 4551 goto done; 4552 } 4553 rxqueue += index; 4554 } 4555 4556 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4557 4558 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4559 map = rcu_dereference(rxqueue->rps_map); 4560 if (!flow_table && !map) 4561 goto done; 4562 4563 skb_reset_network_header(skb); 4564 hash = skb_get_hash(skb); 4565 if (!hash) 4566 goto done; 4567 4568 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4569 if (flow_table && sock_flow_table) { 4570 struct rps_dev_flow *rflow; 4571 u32 next_cpu; 4572 u32 ident; 4573 4574 /* First check into global flow table if there is a match. 4575 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4576 */ 4577 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4578 if ((ident ^ hash) & ~rps_cpu_mask) 4579 goto try_rps; 4580 4581 next_cpu = ident & rps_cpu_mask; 4582 4583 /* OK, now we know there is a match, 4584 * we can look at the local (per receive queue) flow table 4585 */ 4586 rflow = &flow_table->flows[hash & flow_table->mask]; 4587 tcpu = rflow->cpu; 4588 4589 /* 4590 * If the desired CPU (where last recvmsg was done) is 4591 * different from current CPU (one in the rx-queue flow 4592 * table entry), switch if one of the following holds: 4593 * - Current CPU is unset (>= nr_cpu_ids). 4594 * - Current CPU is offline. 4595 * - The current CPU's queue tail has advanced beyond the 4596 * last packet that was enqueued using this table entry. 4597 * This guarantees that all previous packets for the flow 4598 * have been dequeued, thus preserving in order delivery. 4599 */ 4600 if (unlikely(tcpu != next_cpu) && 4601 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4602 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4603 rflow->last_qtail)) >= 0)) { 4604 tcpu = next_cpu; 4605 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4606 } 4607 4608 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4609 *rflowp = rflow; 4610 cpu = tcpu; 4611 goto done; 4612 } 4613 } 4614 4615 try_rps: 4616 4617 if (map) { 4618 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4619 if (cpu_online(tcpu)) { 4620 cpu = tcpu; 4621 goto done; 4622 } 4623 } 4624 4625 done: 4626 return cpu; 4627 } 4628 4629 #ifdef CONFIG_RFS_ACCEL 4630 4631 /** 4632 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4633 * @dev: Device on which the filter was set 4634 * @rxq_index: RX queue index 4635 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4636 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4637 * 4638 * Drivers that implement ndo_rx_flow_steer() should periodically call 4639 * this function for each installed filter and remove the filters for 4640 * which it returns %true. 4641 */ 4642 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4643 u32 flow_id, u16 filter_id) 4644 { 4645 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4646 struct rps_dev_flow_table *flow_table; 4647 struct rps_dev_flow *rflow; 4648 bool expire = true; 4649 unsigned int cpu; 4650 4651 rcu_read_lock(); 4652 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4653 if (flow_table && flow_id <= flow_table->mask) { 4654 rflow = &flow_table->flows[flow_id]; 4655 cpu = READ_ONCE(rflow->cpu); 4656 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4657 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4658 rflow->last_qtail) < 4659 (int)(10 * flow_table->mask))) 4660 expire = false; 4661 } 4662 rcu_read_unlock(); 4663 return expire; 4664 } 4665 EXPORT_SYMBOL(rps_may_expire_flow); 4666 4667 #endif /* CONFIG_RFS_ACCEL */ 4668 4669 /* Called from hardirq (IPI) context */ 4670 static void rps_trigger_softirq(void *data) 4671 { 4672 struct softnet_data *sd = data; 4673 4674 ____napi_schedule(sd, &sd->backlog); 4675 sd->received_rps++; 4676 } 4677 4678 #endif /* CONFIG_RPS */ 4679 4680 /* Called from hardirq (IPI) context */ 4681 static void trigger_rx_softirq(void *data) 4682 { 4683 struct softnet_data *sd = data; 4684 4685 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4686 smp_store_release(&sd->defer_ipi_scheduled, 0); 4687 } 4688 4689 /* 4690 * After we queued a packet into sd->input_pkt_queue, 4691 * we need to make sure this queue is serviced soon. 4692 * 4693 * - If this is another cpu queue, link it to our rps_ipi_list, 4694 * and make sure we will process rps_ipi_list from net_rx_action(). 4695 * 4696 * - If this is our own queue, NAPI schedule our backlog. 4697 * Note that this also raises NET_RX_SOFTIRQ. 4698 */ 4699 static void napi_schedule_rps(struct softnet_data *sd) 4700 { 4701 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4702 4703 #ifdef CONFIG_RPS 4704 if (sd != mysd) { 4705 sd->rps_ipi_next = mysd->rps_ipi_list; 4706 mysd->rps_ipi_list = sd; 4707 4708 /* If not called from net_rx_action() or napi_threaded_poll() 4709 * we have to raise NET_RX_SOFTIRQ. 4710 */ 4711 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4712 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4713 return; 4714 } 4715 #endif /* CONFIG_RPS */ 4716 __napi_schedule_irqoff(&mysd->backlog); 4717 } 4718 4719 #ifdef CONFIG_NET_FLOW_LIMIT 4720 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4721 #endif 4722 4723 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4724 { 4725 #ifdef CONFIG_NET_FLOW_LIMIT 4726 struct sd_flow_limit *fl; 4727 struct softnet_data *sd; 4728 unsigned int old_flow, new_flow; 4729 4730 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4731 return false; 4732 4733 sd = this_cpu_ptr(&softnet_data); 4734 4735 rcu_read_lock(); 4736 fl = rcu_dereference(sd->flow_limit); 4737 if (fl) { 4738 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4739 old_flow = fl->history[fl->history_head]; 4740 fl->history[fl->history_head] = new_flow; 4741 4742 fl->history_head++; 4743 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4744 4745 if (likely(fl->buckets[old_flow])) 4746 fl->buckets[old_flow]--; 4747 4748 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4749 fl->count++; 4750 rcu_read_unlock(); 4751 return true; 4752 } 4753 } 4754 rcu_read_unlock(); 4755 #endif 4756 return false; 4757 } 4758 4759 /* 4760 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4761 * queue (may be a remote CPU queue). 4762 */ 4763 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4764 unsigned int *qtail) 4765 { 4766 enum skb_drop_reason reason; 4767 struct softnet_data *sd; 4768 unsigned long flags; 4769 unsigned int qlen; 4770 4771 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4772 sd = &per_cpu(softnet_data, cpu); 4773 4774 rps_lock_irqsave(sd, &flags); 4775 if (!netif_running(skb->dev)) 4776 goto drop; 4777 qlen = skb_queue_len(&sd->input_pkt_queue); 4778 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4779 if (qlen) { 4780 enqueue: 4781 __skb_queue_tail(&sd->input_pkt_queue, skb); 4782 input_queue_tail_incr_save(sd, qtail); 4783 rps_unlock_irq_restore(sd, &flags); 4784 return NET_RX_SUCCESS; 4785 } 4786 4787 /* Schedule NAPI for backlog device 4788 * We can use non atomic operation since we own the queue lock 4789 */ 4790 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4791 napi_schedule_rps(sd); 4792 goto enqueue; 4793 } 4794 reason = SKB_DROP_REASON_CPU_BACKLOG; 4795 4796 drop: 4797 sd->dropped++; 4798 rps_unlock_irq_restore(sd, &flags); 4799 4800 dev_core_stats_rx_dropped_inc(skb->dev); 4801 kfree_skb_reason(skb, reason); 4802 return NET_RX_DROP; 4803 } 4804 4805 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4806 { 4807 struct net_device *dev = skb->dev; 4808 struct netdev_rx_queue *rxqueue; 4809 4810 rxqueue = dev->_rx; 4811 4812 if (skb_rx_queue_recorded(skb)) { 4813 u16 index = skb_get_rx_queue(skb); 4814 4815 if (unlikely(index >= dev->real_num_rx_queues)) { 4816 WARN_ONCE(dev->real_num_rx_queues > 1, 4817 "%s received packet on queue %u, but number " 4818 "of RX queues is %u\n", 4819 dev->name, index, dev->real_num_rx_queues); 4820 4821 return rxqueue; /* Return first rxqueue */ 4822 } 4823 rxqueue += index; 4824 } 4825 return rxqueue; 4826 } 4827 4828 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4829 struct bpf_prog *xdp_prog) 4830 { 4831 void *orig_data, *orig_data_end, *hard_start; 4832 struct netdev_rx_queue *rxqueue; 4833 bool orig_bcast, orig_host; 4834 u32 mac_len, frame_sz; 4835 __be16 orig_eth_type; 4836 struct ethhdr *eth; 4837 u32 metalen, act; 4838 int off; 4839 4840 /* The XDP program wants to see the packet starting at the MAC 4841 * header. 4842 */ 4843 mac_len = skb->data - skb_mac_header(skb); 4844 hard_start = skb->data - skb_headroom(skb); 4845 4846 /* SKB "head" area always have tailroom for skb_shared_info */ 4847 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4848 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4849 4850 rxqueue = netif_get_rxqueue(skb); 4851 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4852 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4853 skb_headlen(skb) + mac_len, true); 4854 4855 orig_data_end = xdp->data_end; 4856 orig_data = xdp->data; 4857 eth = (struct ethhdr *)xdp->data; 4858 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4859 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4860 orig_eth_type = eth->h_proto; 4861 4862 act = bpf_prog_run_xdp(xdp_prog, xdp); 4863 4864 /* check if bpf_xdp_adjust_head was used */ 4865 off = xdp->data - orig_data; 4866 if (off) { 4867 if (off > 0) 4868 __skb_pull(skb, off); 4869 else if (off < 0) 4870 __skb_push(skb, -off); 4871 4872 skb->mac_header += off; 4873 skb_reset_network_header(skb); 4874 } 4875 4876 /* check if bpf_xdp_adjust_tail was used */ 4877 off = xdp->data_end - orig_data_end; 4878 if (off != 0) { 4879 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4880 skb->len += off; /* positive on grow, negative on shrink */ 4881 } 4882 4883 /* check if XDP changed eth hdr such SKB needs update */ 4884 eth = (struct ethhdr *)xdp->data; 4885 if ((orig_eth_type != eth->h_proto) || 4886 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4887 skb->dev->dev_addr)) || 4888 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4889 __skb_push(skb, ETH_HLEN); 4890 skb->pkt_type = PACKET_HOST; 4891 skb->protocol = eth_type_trans(skb, skb->dev); 4892 } 4893 4894 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4895 * before calling us again on redirect path. We do not call do_redirect 4896 * as we leave that up to the caller. 4897 * 4898 * Caller is responsible for managing lifetime of skb (i.e. calling 4899 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4900 */ 4901 switch (act) { 4902 case XDP_REDIRECT: 4903 case XDP_TX: 4904 __skb_push(skb, mac_len); 4905 break; 4906 case XDP_PASS: 4907 metalen = xdp->data - xdp->data_meta; 4908 if (metalen) 4909 skb_metadata_set(skb, metalen); 4910 break; 4911 } 4912 4913 return act; 4914 } 4915 4916 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4917 struct xdp_buff *xdp, 4918 struct bpf_prog *xdp_prog) 4919 { 4920 u32 act = XDP_DROP; 4921 4922 /* Reinjected packets coming from act_mirred or similar should 4923 * not get XDP generic processing. 4924 */ 4925 if (skb_is_redirected(skb)) 4926 return XDP_PASS; 4927 4928 /* XDP packets must be linear and must have sufficient headroom 4929 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4930 * native XDP provides, thus we need to do it here as well. 4931 */ 4932 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4933 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4934 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4935 int troom = skb->tail + skb->data_len - skb->end; 4936 4937 /* In case we have to go down the path and also linearize, 4938 * then lets do the pskb_expand_head() work just once here. 4939 */ 4940 if (pskb_expand_head(skb, 4941 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4942 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4943 goto do_drop; 4944 if (skb_linearize(skb)) 4945 goto do_drop; 4946 } 4947 4948 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4949 switch (act) { 4950 case XDP_REDIRECT: 4951 case XDP_TX: 4952 case XDP_PASS: 4953 break; 4954 default: 4955 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4956 fallthrough; 4957 case XDP_ABORTED: 4958 trace_xdp_exception(skb->dev, xdp_prog, act); 4959 fallthrough; 4960 case XDP_DROP: 4961 do_drop: 4962 kfree_skb(skb); 4963 break; 4964 } 4965 4966 return act; 4967 } 4968 4969 /* When doing generic XDP we have to bypass the qdisc layer and the 4970 * network taps in order to match in-driver-XDP behavior. This also means 4971 * that XDP packets are able to starve other packets going through a qdisc, 4972 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 4973 * queues, so they do not have this starvation issue. 4974 */ 4975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4976 { 4977 struct net_device *dev = skb->dev; 4978 struct netdev_queue *txq; 4979 bool free_skb = true; 4980 int cpu, rc; 4981 4982 txq = netdev_core_pick_tx(dev, skb, NULL); 4983 cpu = smp_processor_id(); 4984 HARD_TX_LOCK(dev, txq, cpu); 4985 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 4986 rc = netdev_start_xmit(skb, dev, txq, 0); 4987 if (dev_xmit_complete(rc)) 4988 free_skb = false; 4989 } 4990 HARD_TX_UNLOCK(dev, txq); 4991 if (free_skb) { 4992 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4993 dev_core_stats_tx_dropped_inc(dev); 4994 kfree_skb(skb); 4995 } 4996 } 4997 4998 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4999 5000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 5001 { 5002 if (xdp_prog) { 5003 struct xdp_buff xdp; 5004 u32 act; 5005 int err; 5006 5007 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 5008 if (act != XDP_PASS) { 5009 switch (act) { 5010 case XDP_REDIRECT: 5011 err = xdp_do_generic_redirect(skb->dev, skb, 5012 &xdp, xdp_prog); 5013 if (err) 5014 goto out_redir; 5015 break; 5016 case XDP_TX: 5017 generic_xdp_tx(skb, xdp_prog); 5018 break; 5019 } 5020 return XDP_DROP; 5021 } 5022 } 5023 return XDP_PASS; 5024 out_redir: 5025 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 5026 return XDP_DROP; 5027 } 5028 EXPORT_SYMBOL_GPL(do_xdp_generic); 5029 5030 static int netif_rx_internal(struct sk_buff *skb) 5031 { 5032 int ret; 5033 5034 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5035 5036 trace_netif_rx(skb); 5037 5038 #ifdef CONFIG_RPS 5039 if (static_branch_unlikely(&rps_needed)) { 5040 struct rps_dev_flow voidflow, *rflow = &voidflow; 5041 int cpu; 5042 5043 rcu_read_lock(); 5044 5045 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5046 if (cpu < 0) 5047 cpu = smp_processor_id(); 5048 5049 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5050 5051 rcu_read_unlock(); 5052 } else 5053 #endif 5054 { 5055 unsigned int qtail; 5056 5057 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5058 } 5059 return ret; 5060 } 5061 5062 /** 5063 * __netif_rx - Slightly optimized version of netif_rx 5064 * @skb: buffer to post 5065 * 5066 * This behaves as netif_rx except that it does not disable bottom halves. 5067 * As a result this function may only be invoked from the interrupt context 5068 * (either hard or soft interrupt). 5069 */ 5070 int __netif_rx(struct sk_buff *skb) 5071 { 5072 int ret; 5073 5074 lockdep_assert_once(hardirq_count() | softirq_count()); 5075 5076 trace_netif_rx_entry(skb); 5077 ret = netif_rx_internal(skb); 5078 trace_netif_rx_exit(ret); 5079 return ret; 5080 } 5081 EXPORT_SYMBOL(__netif_rx); 5082 5083 /** 5084 * netif_rx - post buffer to the network code 5085 * @skb: buffer to post 5086 * 5087 * This function receives a packet from a device driver and queues it for 5088 * the upper (protocol) levels to process via the backlog NAPI device. It 5089 * always succeeds. The buffer may be dropped during processing for 5090 * congestion control or by the protocol layers. 5091 * The network buffer is passed via the backlog NAPI device. Modern NIC 5092 * driver should use NAPI and GRO. 5093 * This function can used from interrupt and from process context. The 5094 * caller from process context must not disable interrupts before invoking 5095 * this function. 5096 * 5097 * return values: 5098 * NET_RX_SUCCESS (no congestion) 5099 * NET_RX_DROP (packet was dropped) 5100 * 5101 */ 5102 int netif_rx(struct sk_buff *skb) 5103 { 5104 bool need_bh_off = !(hardirq_count() | softirq_count()); 5105 int ret; 5106 5107 if (need_bh_off) 5108 local_bh_disable(); 5109 trace_netif_rx_entry(skb); 5110 ret = netif_rx_internal(skb); 5111 trace_netif_rx_exit(ret); 5112 if (need_bh_off) 5113 local_bh_enable(); 5114 return ret; 5115 } 5116 EXPORT_SYMBOL(netif_rx); 5117 5118 static __latent_entropy void net_tx_action(struct softirq_action *h) 5119 { 5120 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5121 5122 if (sd->completion_queue) { 5123 struct sk_buff *clist; 5124 5125 local_irq_disable(); 5126 clist = sd->completion_queue; 5127 sd->completion_queue = NULL; 5128 local_irq_enable(); 5129 5130 while (clist) { 5131 struct sk_buff *skb = clist; 5132 5133 clist = clist->next; 5134 5135 WARN_ON(refcount_read(&skb->users)); 5136 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5137 trace_consume_skb(skb, net_tx_action); 5138 else 5139 trace_kfree_skb(skb, net_tx_action, 5140 get_kfree_skb_cb(skb)->reason); 5141 5142 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5143 __kfree_skb(skb); 5144 else 5145 __napi_kfree_skb(skb, 5146 get_kfree_skb_cb(skb)->reason); 5147 } 5148 } 5149 5150 if (sd->output_queue) { 5151 struct Qdisc *head; 5152 5153 local_irq_disable(); 5154 head = sd->output_queue; 5155 sd->output_queue = NULL; 5156 sd->output_queue_tailp = &sd->output_queue; 5157 local_irq_enable(); 5158 5159 rcu_read_lock(); 5160 5161 while (head) { 5162 struct Qdisc *q = head; 5163 spinlock_t *root_lock = NULL; 5164 5165 head = head->next_sched; 5166 5167 /* We need to make sure head->next_sched is read 5168 * before clearing __QDISC_STATE_SCHED 5169 */ 5170 smp_mb__before_atomic(); 5171 5172 if (!(q->flags & TCQ_F_NOLOCK)) { 5173 root_lock = qdisc_lock(q); 5174 spin_lock(root_lock); 5175 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5176 &q->state))) { 5177 /* There is a synchronize_net() between 5178 * STATE_DEACTIVATED flag being set and 5179 * qdisc_reset()/some_qdisc_is_busy() in 5180 * dev_deactivate(), so we can safely bail out 5181 * early here to avoid data race between 5182 * qdisc_deactivate() and some_qdisc_is_busy() 5183 * for lockless qdisc. 5184 */ 5185 clear_bit(__QDISC_STATE_SCHED, &q->state); 5186 continue; 5187 } 5188 5189 clear_bit(__QDISC_STATE_SCHED, &q->state); 5190 qdisc_run(q); 5191 if (root_lock) 5192 spin_unlock(root_lock); 5193 } 5194 5195 rcu_read_unlock(); 5196 } 5197 5198 xfrm_dev_backlog(sd); 5199 } 5200 5201 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5202 /* This hook is defined here for ATM LANE */ 5203 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5204 unsigned char *addr) __read_mostly; 5205 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5206 #endif 5207 5208 /** 5209 * netdev_is_rx_handler_busy - check if receive handler is registered 5210 * @dev: device to check 5211 * 5212 * Check if a receive handler is already registered for a given device. 5213 * Return true if there one. 5214 * 5215 * The caller must hold the rtnl_mutex. 5216 */ 5217 bool netdev_is_rx_handler_busy(struct net_device *dev) 5218 { 5219 ASSERT_RTNL(); 5220 return dev && rtnl_dereference(dev->rx_handler); 5221 } 5222 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5223 5224 /** 5225 * netdev_rx_handler_register - register receive handler 5226 * @dev: device to register a handler for 5227 * @rx_handler: receive handler to register 5228 * @rx_handler_data: data pointer that is used by rx handler 5229 * 5230 * Register a receive handler for a device. This handler will then be 5231 * called from __netif_receive_skb. A negative errno code is returned 5232 * on a failure. 5233 * 5234 * The caller must hold the rtnl_mutex. 5235 * 5236 * For a general description of rx_handler, see enum rx_handler_result. 5237 */ 5238 int netdev_rx_handler_register(struct net_device *dev, 5239 rx_handler_func_t *rx_handler, 5240 void *rx_handler_data) 5241 { 5242 if (netdev_is_rx_handler_busy(dev)) 5243 return -EBUSY; 5244 5245 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5246 return -EINVAL; 5247 5248 /* Note: rx_handler_data must be set before rx_handler */ 5249 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5250 rcu_assign_pointer(dev->rx_handler, rx_handler); 5251 5252 return 0; 5253 } 5254 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5255 5256 /** 5257 * netdev_rx_handler_unregister - unregister receive handler 5258 * @dev: device to unregister a handler from 5259 * 5260 * Unregister a receive handler from a device. 5261 * 5262 * The caller must hold the rtnl_mutex. 5263 */ 5264 void netdev_rx_handler_unregister(struct net_device *dev) 5265 { 5266 5267 ASSERT_RTNL(); 5268 RCU_INIT_POINTER(dev->rx_handler, NULL); 5269 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5270 * section has a guarantee to see a non NULL rx_handler_data 5271 * as well. 5272 */ 5273 synchronize_net(); 5274 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5275 } 5276 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5277 5278 /* 5279 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5280 * the special handling of PFMEMALLOC skbs. 5281 */ 5282 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5283 { 5284 switch (skb->protocol) { 5285 case htons(ETH_P_ARP): 5286 case htons(ETH_P_IP): 5287 case htons(ETH_P_IPV6): 5288 case htons(ETH_P_8021Q): 5289 case htons(ETH_P_8021AD): 5290 return true; 5291 default: 5292 return false; 5293 } 5294 } 5295 5296 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5297 int *ret, struct net_device *orig_dev) 5298 { 5299 if (nf_hook_ingress_active(skb)) { 5300 int ingress_retval; 5301 5302 if (*pt_prev) { 5303 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5304 *pt_prev = NULL; 5305 } 5306 5307 rcu_read_lock(); 5308 ingress_retval = nf_hook_ingress(skb); 5309 rcu_read_unlock(); 5310 return ingress_retval; 5311 } 5312 return 0; 5313 } 5314 5315 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5316 struct packet_type **ppt_prev) 5317 { 5318 struct packet_type *ptype, *pt_prev; 5319 rx_handler_func_t *rx_handler; 5320 struct sk_buff *skb = *pskb; 5321 struct net_device *orig_dev; 5322 bool deliver_exact = false; 5323 int ret = NET_RX_DROP; 5324 __be16 type; 5325 5326 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5327 5328 trace_netif_receive_skb(skb); 5329 5330 orig_dev = skb->dev; 5331 5332 skb_reset_network_header(skb); 5333 if (!skb_transport_header_was_set(skb)) 5334 skb_reset_transport_header(skb); 5335 skb_reset_mac_len(skb); 5336 5337 pt_prev = NULL; 5338 5339 another_round: 5340 skb->skb_iif = skb->dev->ifindex; 5341 5342 __this_cpu_inc(softnet_data.processed); 5343 5344 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5345 int ret2; 5346 5347 migrate_disable(); 5348 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5349 migrate_enable(); 5350 5351 if (ret2 != XDP_PASS) { 5352 ret = NET_RX_DROP; 5353 goto out; 5354 } 5355 } 5356 5357 if (eth_type_vlan(skb->protocol)) { 5358 skb = skb_vlan_untag(skb); 5359 if (unlikely(!skb)) 5360 goto out; 5361 } 5362 5363 if (skb_skip_tc_classify(skb)) 5364 goto skip_classify; 5365 5366 if (pfmemalloc) 5367 goto skip_taps; 5368 5369 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5370 if (pt_prev) 5371 ret = deliver_skb(skb, pt_prev, orig_dev); 5372 pt_prev = ptype; 5373 } 5374 5375 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5376 if (pt_prev) 5377 ret = deliver_skb(skb, pt_prev, orig_dev); 5378 pt_prev = ptype; 5379 } 5380 5381 skip_taps: 5382 #ifdef CONFIG_NET_INGRESS 5383 if (static_branch_unlikely(&ingress_needed_key)) { 5384 bool another = false; 5385 5386 nf_skip_egress(skb, true); 5387 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5388 &another); 5389 if (another) 5390 goto another_round; 5391 if (!skb) 5392 goto out; 5393 5394 nf_skip_egress(skb, false); 5395 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5396 goto out; 5397 } 5398 #endif 5399 skb_reset_redirect(skb); 5400 skip_classify: 5401 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5402 goto drop; 5403 5404 if (skb_vlan_tag_present(skb)) { 5405 if (pt_prev) { 5406 ret = deliver_skb(skb, pt_prev, orig_dev); 5407 pt_prev = NULL; 5408 } 5409 if (vlan_do_receive(&skb)) 5410 goto another_round; 5411 else if (unlikely(!skb)) 5412 goto out; 5413 } 5414 5415 rx_handler = rcu_dereference(skb->dev->rx_handler); 5416 if (rx_handler) { 5417 if (pt_prev) { 5418 ret = deliver_skb(skb, pt_prev, orig_dev); 5419 pt_prev = NULL; 5420 } 5421 switch (rx_handler(&skb)) { 5422 case RX_HANDLER_CONSUMED: 5423 ret = NET_RX_SUCCESS; 5424 goto out; 5425 case RX_HANDLER_ANOTHER: 5426 goto another_round; 5427 case RX_HANDLER_EXACT: 5428 deliver_exact = true; 5429 break; 5430 case RX_HANDLER_PASS: 5431 break; 5432 default: 5433 BUG(); 5434 } 5435 } 5436 5437 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5438 check_vlan_id: 5439 if (skb_vlan_tag_get_id(skb)) { 5440 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5441 * find vlan device. 5442 */ 5443 skb->pkt_type = PACKET_OTHERHOST; 5444 } else if (eth_type_vlan(skb->protocol)) { 5445 /* Outer header is 802.1P with vlan 0, inner header is 5446 * 802.1Q or 802.1AD and vlan_do_receive() above could 5447 * not find vlan dev for vlan id 0. 5448 */ 5449 __vlan_hwaccel_clear_tag(skb); 5450 skb = skb_vlan_untag(skb); 5451 if (unlikely(!skb)) 5452 goto out; 5453 if (vlan_do_receive(&skb)) 5454 /* After stripping off 802.1P header with vlan 0 5455 * vlan dev is found for inner header. 5456 */ 5457 goto another_round; 5458 else if (unlikely(!skb)) 5459 goto out; 5460 else 5461 /* We have stripped outer 802.1P vlan 0 header. 5462 * But could not find vlan dev. 5463 * check again for vlan id to set OTHERHOST. 5464 */ 5465 goto check_vlan_id; 5466 } 5467 /* Note: we might in the future use prio bits 5468 * and set skb->priority like in vlan_do_receive() 5469 * For the time being, just ignore Priority Code Point 5470 */ 5471 __vlan_hwaccel_clear_tag(skb); 5472 } 5473 5474 type = skb->protocol; 5475 5476 /* deliver only exact match when indicated */ 5477 if (likely(!deliver_exact)) { 5478 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5479 &ptype_base[ntohs(type) & 5480 PTYPE_HASH_MASK]); 5481 } 5482 5483 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5484 &orig_dev->ptype_specific); 5485 5486 if (unlikely(skb->dev != orig_dev)) { 5487 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5488 &skb->dev->ptype_specific); 5489 } 5490 5491 if (pt_prev) { 5492 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5493 goto drop; 5494 *ppt_prev = pt_prev; 5495 } else { 5496 drop: 5497 if (!deliver_exact) 5498 dev_core_stats_rx_dropped_inc(skb->dev); 5499 else 5500 dev_core_stats_rx_nohandler_inc(skb->dev); 5501 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5502 /* Jamal, now you will not able to escape explaining 5503 * me how you were going to use this. :-) 5504 */ 5505 ret = NET_RX_DROP; 5506 } 5507 5508 out: 5509 /* The invariant here is that if *ppt_prev is not NULL 5510 * then skb should also be non-NULL. 5511 * 5512 * Apparently *ppt_prev assignment above holds this invariant due to 5513 * skb dereferencing near it. 5514 */ 5515 *pskb = skb; 5516 return ret; 5517 } 5518 5519 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5520 { 5521 struct net_device *orig_dev = skb->dev; 5522 struct packet_type *pt_prev = NULL; 5523 int ret; 5524 5525 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5526 if (pt_prev) 5527 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5528 skb->dev, pt_prev, orig_dev); 5529 return ret; 5530 } 5531 5532 /** 5533 * netif_receive_skb_core - special purpose version of netif_receive_skb 5534 * @skb: buffer to process 5535 * 5536 * More direct receive version of netif_receive_skb(). It should 5537 * only be used by callers that have a need to skip RPS and Generic XDP. 5538 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5539 * 5540 * This function may only be called from softirq context and interrupts 5541 * should be enabled. 5542 * 5543 * Return values (usually ignored): 5544 * NET_RX_SUCCESS: no congestion 5545 * NET_RX_DROP: packet was dropped 5546 */ 5547 int netif_receive_skb_core(struct sk_buff *skb) 5548 { 5549 int ret; 5550 5551 rcu_read_lock(); 5552 ret = __netif_receive_skb_one_core(skb, false); 5553 rcu_read_unlock(); 5554 5555 return ret; 5556 } 5557 EXPORT_SYMBOL(netif_receive_skb_core); 5558 5559 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5560 struct packet_type *pt_prev, 5561 struct net_device *orig_dev) 5562 { 5563 struct sk_buff *skb, *next; 5564 5565 if (!pt_prev) 5566 return; 5567 if (list_empty(head)) 5568 return; 5569 if (pt_prev->list_func != NULL) 5570 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5571 ip_list_rcv, head, pt_prev, orig_dev); 5572 else 5573 list_for_each_entry_safe(skb, next, head, list) { 5574 skb_list_del_init(skb); 5575 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5576 } 5577 } 5578 5579 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5580 { 5581 /* Fast-path assumptions: 5582 * - There is no RX handler. 5583 * - Only one packet_type matches. 5584 * If either of these fails, we will end up doing some per-packet 5585 * processing in-line, then handling the 'last ptype' for the whole 5586 * sublist. This can't cause out-of-order delivery to any single ptype, 5587 * because the 'last ptype' must be constant across the sublist, and all 5588 * other ptypes are handled per-packet. 5589 */ 5590 /* Current (common) ptype of sublist */ 5591 struct packet_type *pt_curr = NULL; 5592 /* Current (common) orig_dev of sublist */ 5593 struct net_device *od_curr = NULL; 5594 struct list_head sublist; 5595 struct sk_buff *skb, *next; 5596 5597 INIT_LIST_HEAD(&sublist); 5598 list_for_each_entry_safe(skb, next, head, list) { 5599 struct net_device *orig_dev = skb->dev; 5600 struct packet_type *pt_prev = NULL; 5601 5602 skb_list_del_init(skb); 5603 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5604 if (!pt_prev) 5605 continue; 5606 if (pt_curr != pt_prev || od_curr != orig_dev) { 5607 /* dispatch old sublist */ 5608 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5609 /* start new sublist */ 5610 INIT_LIST_HEAD(&sublist); 5611 pt_curr = pt_prev; 5612 od_curr = orig_dev; 5613 } 5614 list_add_tail(&skb->list, &sublist); 5615 } 5616 5617 /* dispatch final sublist */ 5618 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5619 } 5620 5621 static int __netif_receive_skb(struct sk_buff *skb) 5622 { 5623 int ret; 5624 5625 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5626 unsigned int noreclaim_flag; 5627 5628 /* 5629 * PFMEMALLOC skbs are special, they should 5630 * - be delivered to SOCK_MEMALLOC sockets only 5631 * - stay away from userspace 5632 * - have bounded memory usage 5633 * 5634 * Use PF_MEMALLOC as this saves us from propagating the allocation 5635 * context down to all allocation sites. 5636 */ 5637 noreclaim_flag = memalloc_noreclaim_save(); 5638 ret = __netif_receive_skb_one_core(skb, true); 5639 memalloc_noreclaim_restore(noreclaim_flag); 5640 } else 5641 ret = __netif_receive_skb_one_core(skb, false); 5642 5643 return ret; 5644 } 5645 5646 static void __netif_receive_skb_list(struct list_head *head) 5647 { 5648 unsigned long noreclaim_flag = 0; 5649 struct sk_buff *skb, *next; 5650 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5651 5652 list_for_each_entry_safe(skb, next, head, list) { 5653 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5654 struct list_head sublist; 5655 5656 /* Handle the previous sublist */ 5657 list_cut_before(&sublist, head, &skb->list); 5658 if (!list_empty(&sublist)) 5659 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5660 pfmemalloc = !pfmemalloc; 5661 /* See comments in __netif_receive_skb */ 5662 if (pfmemalloc) 5663 noreclaim_flag = memalloc_noreclaim_save(); 5664 else 5665 memalloc_noreclaim_restore(noreclaim_flag); 5666 } 5667 } 5668 /* Handle the remaining sublist */ 5669 if (!list_empty(head)) 5670 __netif_receive_skb_list_core(head, pfmemalloc); 5671 /* Restore pflags */ 5672 if (pfmemalloc) 5673 memalloc_noreclaim_restore(noreclaim_flag); 5674 } 5675 5676 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5677 { 5678 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5679 struct bpf_prog *new = xdp->prog; 5680 int ret = 0; 5681 5682 switch (xdp->command) { 5683 case XDP_SETUP_PROG: 5684 rcu_assign_pointer(dev->xdp_prog, new); 5685 if (old) 5686 bpf_prog_put(old); 5687 5688 if (old && !new) { 5689 static_branch_dec(&generic_xdp_needed_key); 5690 } else if (new && !old) { 5691 static_branch_inc(&generic_xdp_needed_key); 5692 dev_disable_lro(dev); 5693 dev_disable_gro_hw(dev); 5694 } 5695 break; 5696 5697 default: 5698 ret = -EINVAL; 5699 break; 5700 } 5701 5702 return ret; 5703 } 5704 5705 static int netif_receive_skb_internal(struct sk_buff *skb) 5706 { 5707 int ret; 5708 5709 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5710 5711 if (skb_defer_rx_timestamp(skb)) 5712 return NET_RX_SUCCESS; 5713 5714 rcu_read_lock(); 5715 #ifdef CONFIG_RPS 5716 if (static_branch_unlikely(&rps_needed)) { 5717 struct rps_dev_flow voidflow, *rflow = &voidflow; 5718 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5719 5720 if (cpu >= 0) { 5721 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5722 rcu_read_unlock(); 5723 return ret; 5724 } 5725 } 5726 #endif 5727 ret = __netif_receive_skb(skb); 5728 rcu_read_unlock(); 5729 return ret; 5730 } 5731 5732 void netif_receive_skb_list_internal(struct list_head *head) 5733 { 5734 struct sk_buff *skb, *next; 5735 struct list_head sublist; 5736 5737 INIT_LIST_HEAD(&sublist); 5738 list_for_each_entry_safe(skb, next, head, list) { 5739 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5740 skb_list_del_init(skb); 5741 if (!skb_defer_rx_timestamp(skb)) 5742 list_add_tail(&skb->list, &sublist); 5743 } 5744 list_splice_init(&sublist, head); 5745 5746 rcu_read_lock(); 5747 #ifdef CONFIG_RPS 5748 if (static_branch_unlikely(&rps_needed)) { 5749 list_for_each_entry_safe(skb, next, head, list) { 5750 struct rps_dev_flow voidflow, *rflow = &voidflow; 5751 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5752 5753 if (cpu >= 0) { 5754 /* Will be handled, remove from list */ 5755 skb_list_del_init(skb); 5756 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5757 } 5758 } 5759 } 5760 #endif 5761 __netif_receive_skb_list(head); 5762 rcu_read_unlock(); 5763 } 5764 5765 /** 5766 * netif_receive_skb - process receive buffer from network 5767 * @skb: buffer to process 5768 * 5769 * netif_receive_skb() is the main receive data processing function. 5770 * It always succeeds. The buffer may be dropped during processing 5771 * for congestion control or by the protocol layers. 5772 * 5773 * This function may only be called from softirq context and interrupts 5774 * should be enabled. 5775 * 5776 * Return values (usually ignored): 5777 * NET_RX_SUCCESS: no congestion 5778 * NET_RX_DROP: packet was dropped 5779 */ 5780 int netif_receive_skb(struct sk_buff *skb) 5781 { 5782 int ret; 5783 5784 trace_netif_receive_skb_entry(skb); 5785 5786 ret = netif_receive_skb_internal(skb); 5787 trace_netif_receive_skb_exit(ret); 5788 5789 return ret; 5790 } 5791 EXPORT_SYMBOL(netif_receive_skb); 5792 5793 /** 5794 * netif_receive_skb_list - process many receive buffers from network 5795 * @head: list of skbs to process. 5796 * 5797 * Since return value of netif_receive_skb() is normally ignored, and 5798 * wouldn't be meaningful for a list, this function returns void. 5799 * 5800 * This function may only be called from softirq context and interrupts 5801 * should be enabled. 5802 */ 5803 void netif_receive_skb_list(struct list_head *head) 5804 { 5805 struct sk_buff *skb; 5806 5807 if (list_empty(head)) 5808 return; 5809 if (trace_netif_receive_skb_list_entry_enabled()) { 5810 list_for_each_entry(skb, head, list) 5811 trace_netif_receive_skb_list_entry(skb); 5812 } 5813 netif_receive_skb_list_internal(head); 5814 trace_netif_receive_skb_list_exit(0); 5815 } 5816 EXPORT_SYMBOL(netif_receive_skb_list); 5817 5818 static DEFINE_PER_CPU(struct work_struct, flush_works); 5819 5820 /* Network device is going away, flush any packets still pending */ 5821 static void flush_backlog(struct work_struct *work) 5822 { 5823 struct sk_buff *skb, *tmp; 5824 struct softnet_data *sd; 5825 5826 local_bh_disable(); 5827 sd = this_cpu_ptr(&softnet_data); 5828 5829 rps_lock_irq_disable(sd); 5830 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5831 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5832 __skb_unlink(skb, &sd->input_pkt_queue); 5833 dev_kfree_skb_irq(skb); 5834 input_queue_head_incr(sd); 5835 } 5836 } 5837 rps_unlock_irq_enable(sd); 5838 5839 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5840 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5841 __skb_unlink(skb, &sd->process_queue); 5842 kfree_skb(skb); 5843 input_queue_head_incr(sd); 5844 } 5845 } 5846 local_bh_enable(); 5847 } 5848 5849 static bool flush_required(int cpu) 5850 { 5851 #if IS_ENABLED(CONFIG_RPS) 5852 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5853 bool do_flush; 5854 5855 rps_lock_irq_disable(sd); 5856 5857 /* as insertion into process_queue happens with the rps lock held, 5858 * process_queue access may race only with dequeue 5859 */ 5860 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5861 !skb_queue_empty_lockless(&sd->process_queue); 5862 rps_unlock_irq_enable(sd); 5863 5864 return do_flush; 5865 #endif 5866 /* without RPS we can't safely check input_pkt_queue: during a 5867 * concurrent remote skb_queue_splice() we can detect as empty both 5868 * input_pkt_queue and process_queue even if the latter could end-up 5869 * containing a lot of packets. 5870 */ 5871 return true; 5872 } 5873 5874 static void flush_all_backlogs(void) 5875 { 5876 static cpumask_t flush_cpus; 5877 unsigned int cpu; 5878 5879 /* since we are under rtnl lock protection we can use static data 5880 * for the cpumask and avoid allocating on stack the possibly 5881 * large mask 5882 */ 5883 ASSERT_RTNL(); 5884 5885 cpus_read_lock(); 5886 5887 cpumask_clear(&flush_cpus); 5888 for_each_online_cpu(cpu) { 5889 if (flush_required(cpu)) { 5890 queue_work_on(cpu, system_highpri_wq, 5891 per_cpu_ptr(&flush_works, cpu)); 5892 cpumask_set_cpu(cpu, &flush_cpus); 5893 } 5894 } 5895 5896 /* we can have in flight packet[s] on the cpus we are not flushing, 5897 * synchronize_net() in unregister_netdevice_many() will take care of 5898 * them 5899 */ 5900 for_each_cpu(cpu, &flush_cpus) 5901 flush_work(per_cpu_ptr(&flush_works, cpu)); 5902 5903 cpus_read_unlock(); 5904 } 5905 5906 static void net_rps_send_ipi(struct softnet_data *remsd) 5907 { 5908 #ifdef CONFIG_RPS 5909 while (remsd) { 5910 struct softnet_data *next = remsd->rps_ipi_next; 5911 5912 if (cpu_online(remsd->cpu)) 5913 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5914 remsd = next; 5915 } 5916 #endif 5917 } 5918 5919 /* 5920 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5921 * Note: called with local irq disabled, but exits with local irq enabled. 5922 */ 5923 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5924 { 5925 #ifdef CONFIG_RPS 5926 struct softnet_data *remsd = sd->rps_ipi_list; 5927 5928 if (remsd) { 5929 sd->rps_ipi_list = NULL; 5930 5931 local_irq_enable(); 5932 5933 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5934 net_rps_send_ipi(remsd); 5935 } else 5936 #endif 5937 local_irq_enable(); 5938 } 5939 5940 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5941 { 5942 #ifdef CONFIG_RPS 5943 return sd->rps_ipi_list != NULL; 5944 #else 5945 return false; 5946 #endif 5947 } 5948 5949 static int process_backlog(struct napi_struct *napi, int quota) 5950 { 5951 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5952 bool again = true; 5953 int work = 0; 5954 5955 /* Check if we have pending ipi, its better to send them now, 5956 * not waiting net_rx_action() end. 5957 */ 5958 if (sd_has_rps_ipi_waiting(sd)) { 5959 local_irq_disable(); 5960 net_rps_action_and_irq_enable(sd); 5961 } 5962 5963 napi->weight = READ_ONCE(dev_rx_weight); 5964 while (again) { 5965 struct sk_buff *skb; 5966 5967 while ((skb = __skb_dequeue(&sd->process_queue))) { 5968 rcu_read_lock(); 5969 __netif_receive_skb(skb); 5970 rcu_read_unlock(); 5971 input_queue_head_incr(sd); 5972 if (++work >= quota) 5973 return work; 5974 5975 } 5976 5977 rps_lock_irq_disable(sd); 5978 if (skb_queue_empty(&sd->input_pkt_queue)) { 5979 /* 5980 * Inline a custom version of __napi_complete(). 5981 * only current cpu owns and manipulates this napi, 5982 * and NAPI_STATE_SCHED is the only possible flag set 5983 * on backlog. 5984 * We can use a plain write instead of clear_bit(), 5985 * and we dont need an smp_mb() memory barrier. 5986 */ 5987 napi->state = 0; 5988 again = false; 5989 } else { 5990 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5991 &sd->process_queue); 5992 } 5993 rps_unlock_irq_enable(sd); 5994 } 5995 5996 return work; 5997 } 5998 5999 /** 6000 * __napi_schedule - schedule for receive 6001 * @n: entry to schedule 6002 * 6003 * The entry's receive function will be scheduled to run. 6004 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6005 */ 6006 void __napi_schedule(struct napi_struct *n) 6007 { 6008 unsigned long flags; 6009 6010 local_irq_save(flags); 6011 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6012 local_irq_restore(flags); 6013 } 6014 EXPORT_SYMBOL(__napi_schedule); 6015 6016 /** 6017 * napi_schedule_prep - check if napi can be scheduled 6018 * @n: napi context 6019 * 6020 * Test if NAPI routine is already running, and if not mark 6021 * it as running. This is used as a condition variable to 6022 * insure only one NAPI poll instance runs. We also make 6023 * sure there is no pending NAPI disable. 6024 */ 6025 bool napi_schedule_prep(struct napi_struct *n) 6026 { 6027 unsigned long new, val = READ_ONCE(n->state); 6028 6029 do { 6030 if (unlikely(val & NAPIF_STATE_DISABLE)) 6031 return false; 6032 new = val | NAPIF_STATE_SCHED; 6033 6034 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6035 * This was suggested by Alexander Duyck, as compiler 6036 * emits better code than : 6037 * if (val & NAPIF_STATE_SCHED) 6038 * new |= NAPIF_STATE_MISSED; 6039 */ 6040 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6041 NAPIF_STATE_MISSED; 6042 } while (!try_cmpxchg(&n->state, &val, new)); 6043 6044 return !(val & NAPIF_STATE_SCHED); 6045 } 6046 EXPORT_SYMBOL(napi_schedule_prep); 6047 6048 /** 6049 * __napi_schedule_irqoff - schedule for receive 6050 * @n: entry to schedule 6051 * 6052 * Variant of __napi_schedule() assuming hard irqs are masked. 6053 * 6054 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6055 * because the interrupt disabled assumption might not be true 6056 * due to force-threaded interrupts and spinlock substitution. 6057 */ 6058 void __napi_schedule_irqoff(struct napi_struct *n) 6059 { 6060 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6061 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6062 else 6063 __napi_schedule(n); 6064 } 6065 EXPORT_SYMBOL(__napi_schedule_irqoff); 6066 6067 bool napi_complete_done(struct napi_struct *n, int work_done) 6068 { 6069 unsigned long flags, val, new, timeout = 0; 6070 bool ret = true; 6071 6072 /* 6073 * 1) Don't let napi dequeue from the cpu poll list 6074 * just in case its running on a different cpu. 6075 * 2) If we are busy polling, do nothing here, we have 6076 * the guarantee we will be called later. 6077 */ 6078 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6079 NAPIF_STATE_IN_BUSY_POLL))) 6080 return false; 6081 6082 if (work_done) { 6083 if (n->gro_bitmask) 6084 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6085 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6086 } 6087 if (n->defer_hard_irqs_count > 0) { 6088 n->defer_hard_irqs_count--; 6089 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6090 if (timeout) 6091 ret = false; 6092 } 6093 if (n->gro_bitmask) { 6094 /* When the NAPI instance uses a timeout and keeps postponing 6095 * it, we need to bound somehow the time packets are kept in 6096 * the GRO layer 6097 */ 6098 napi_gro_flush(n, !!timeout); 6099 } 6100 6101 gro_normal_list(n); 6102 6103 if (unlikely(!list_empty(&n->poll_list))) { 6104 /* If n->poll_list is not empty, we need to mask irqs */ 6105 local_irq_save(flags); 6106 list_del_init(&n->poll_list); 6107 local_irq_restore(flags); 6108 } 6109 WRITE_ONCE(n->list_owner, -1); 6110 6111 val = READ_ONCE(n->state); 6112 do { 6113 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6114 6115 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6116 NAPIF_STATE_SCHED_THREADED | 6117 NAPIF_STATE_PREFER_BUSY_POLL); 6118 6119 /* If STATE_MISSED was set, leave STATE_SCHED set, 6120 * because we will call napi->poll() one more time. 6121 * This C code was suggested by Alexander Duyck to help gcc. 6122 */ 6123 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6124 NAPIF_STATE_SCHED; 6125 } while (!try_cmpxchg(&n->state, &val, new)); 6126 6127 if (unlikely(val & NAPIF_STATE_MISSED)) { 6128 __napi_schedule(n); 6129 return false; 6130 } 6131 6132 if (timeout) 6133 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6134 HRTIMER_MODE_REL_PINNED); 6135 return ret; 6136 } 6137 EXPORT_SYMBOL(napi_complete_done); 6138 6139 /* must be called under rcu_read_lock(), as we dont take a reference */ 6140 static struct napi_struct *napi_by_id(unsigned int napi_id) 6141 { 6142 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6143 struct napi_struct *napi; 6144 6145 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6146 if (napi->napi_id == napi_id) 6147 return napi; 6148 6149 return NULL; 6150 } 6151 6152 #if defined(CONFIG_NET_RX_BUSY_POLL) 6153 6154 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6155 { 6156 if (!skip_schedule) { 6157 gro_normal_list(napi); 6158 __napi_schedule(napi); 6159 return; 6160 } 6161 6162 if (napi->gro_bitmask) { 6163 /* flush too old packets 6164 * If HZ < 1000, flush all packets. 6165 */ 6166 napi_gro_flush(napi, HZ >= 1000); 6167 } 6168 6169 gro_normal_list(napi); 6170 clear_bit(NAPI_STATE_SCHED, &napi->state); 6171 } 6172 6173 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6174 u16 budget) 6175 { 6176 bool skip_schedule = false; 6177 unsigned long timeout; 6178 int rc; 6179 6180 /* Busy polling means there is a high chance device driver hard irq 6181 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6182 * set in napi_schedule_prep(). 6183 * Since we are about to call napi->poll() once more, we can safely 6184 * clear NAPI_STATE_MISSED. 6185 * 6186 * Note: x86 could use a single "lock and ..." instruction 6187 * to perform these two clear_bit() 6188 */ 6189 clear_bit(NAPI_STATE_MISSED, &napi->state); 6190 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6191 6192 local_bh_disable(); 6193 6194 if (prefer_busy_poll) { 6195 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6196 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6197 if (napi->defer_hard_irqs_count && timeout) { 6198 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6199 skip_schedule = true; 6200 } 6201 } 6202 6203 /* All we really want here is to re-enable device interrupts. 6204 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6205 */ 6206 rc = napi->poll(napi, budget); 6207 /* We can't gro_normal_list() here, because napi->poll() might have 6208 * rearmed the napi (napi_complete_done()) in which case it could 6209 * already be running on another CPU. 6210 */ 6211 trace_napi_poll(napi, rc, budget); 6212 netpoll_poll_unlock(have_poll_lock); 6213 if (rc == budget) 6214 __busy_poll_stop(napi, skip_schedule); 6215 local_bh_enable(); 6216 } 6217 6218 void napi_busy_loop(unsigned int napi_id, 6219 bool (*loop_end)(void *, unsigned long), 6220 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6221 { 6222 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6223 int (*napi_poll)(struct napi_struct *napi, int budget); 6224 void *have_poll_lock = NULL; 6225 struct napi_struct *napi; 6226 6227 restart: 6228 napi_poll = NULL; 6229 6230 rcu_read_lock(); 6231 6232 napi = napi_by_id(napi_id); 6233 if (!napi) 6234 goto out; 6235 6236 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6237 preempt_disable(); 6238 for (;;) { 6239 int work = 0; 6240 6241 local_bh_disable(); 6242 if (!napi_poll) { 6243 unsigned long val = READ_ONCE(napi->state); 6244 6245 /* If multiple threads are competing for this napi, 6246 * we avoid dirtying napi->state as much as we can. 6247 */ 6248 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6249 NAPIF_STATE_IN_BUSY_POLL)) { 6250 if (prefer_busy_poll) 6251 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6252 goto count; 6253 } 6254 if (cmpxchg(&napi->state, val, 6255 val | NAPIF_STATE_IN_BUSY_POLL | 6256 NAPIF_STATE_SCHED) != val) { 6257 if (prefer_busy_poll) 6258 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6259 goto count; 6260 } 6261 have_poll_lock = netpoll_poll_lock(napi); 6262 napi_poll = napi->poll; 6263 } 6264 work = napi_poll(napi, budget); 6265 trace_napi_poll(napi, work, budget); 6266 gro_normal_list(napi); 6267 count: 6268 if (work > 0) 6269 __NET_ADD_STATS(dev_net(napi->dev), 6270 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6271 local_bh_enable(); 6272 6273 if (!loop_end || loop_end(loop_end_arg, start_time)) 6274 break; 6275 6276 if (unlikely(need_resched())) { 6277 if (napi_poll) 6278 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6279 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6280 preempt_enable(); 6281 rcu_read_unlock(); 6282 cond_resched(); 6283 if (loop_end(loop_end_arg, start_time)) 6284 return; 6285 goto restart; 6286 } 6287 cpu_relax(); 6288 } 6289 if (napi_poll) 6290 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6291 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6292 preempt_enable(); 6293 out: 6294 rcu_read_unlock(); 6295 } 6296 EXPORT_SYMBOL(napi_busy_loop); 6297 6298 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6299 6300 static void napi_hash_add(struct napi_struct *napi) 6301 { 6302 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6303 return; 6304 6305 spin_lock(&napi_hash_lock); 6306 6307 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6308 do { 6309 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6310 napi_gen_id = MIN_NAPI_ID; 6311 } while (napi_by_id(napi_gen_id)); 6312 napi->napi_id = napi_gen_id; 6313 6314 hlist_add_head_rcu(&napi->napi_hash_node, 6315 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6316 6317 spin_unlock(&napi_hash_lock); 6318 } 6319 6320 /* Warning : caller is responsible to make sure rcu grace period 6321 * is respected before freeing memory containing @napi 6322 */ 6323 static void napi_hash_del(struct napi_struct *napi) 6324 { 6325 spin_lock(&napi_hash_lock); 6326 6327 hlist_del_init_rcu(&napi->napi_hash_node); 6328 6329 spin_unlock(&napi_hash_lock); 6330 } 6331 6332 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6333 { 6334 struct napi_struct *napi; 6335 6336 napi = container_of(timer, struct napi_struct, timer); 6337 6338 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6339 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6340 */ 6341 if (!napi_disable_pending(napi) && 6342 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6343 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6344 __napi_schedule_irqoff(napi); 6345 } 6346 6347 return HRTIMER_NORESTART; 6348 } 6349 6350 static void init_gro_hash(struct napi_struct *napi) 6351 { 6352 int i; 6353 6354 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6355 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6356 napi->gro_hash[i].count = 0; 6357 } 6358 napi->gro_bitmask = 0; 6359 } 6360 6361 int dev_set_threaded(struct net_device *dev, bool threaded) 6362 { 6363 struct napi_struct *napi; 6364 int err = 0; 6365 6366 if (dev->threaded == threaded) 6367 return 0; 6368 6369 if (threaded) { 6370 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6371 if (!napi->thread) { 6372 err = napi_kthread_create(napi); 6373 if (err) { 6374 threaded = false; 6375 break; 6376 } 6377 } 6378 } 6379 } 6380 6381 dev->threaded = threaded; 6382 6383 /* Make sure kthread is created before THREADED bit 6384 * is set. 6385 */ 6386 smp_mb__before_atomic(); 6387 6388 /* Setting/unsetting threaded mode on a napi might not immediately 6389 * take effect, if the current napi instance is actively being 6390 * polled. In this case, the switch between threaded mode and 6391 * softirq mode will happen in the next round of napi_schedule(). 6392 * This should not cause hiccups/stalls to the live traffic. 6393 */ 6394 list_for_each_entry(napi, &dev->napi_list, dev_list) 6395 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6396 6397 return err; 6398 } 6399 EXPORT_SYMBOL(dev_set_threaded); 6400 6401 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6402 int (*poll)(struct napi_struct *, int), int weight) 6403 { 6404 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6405 return; 6406 6407 INIT_LIST_HEAD(&napi->poll_list); 6408 INIT_HLIST_NODE(&napi->napi_hash_node); 6409 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6410 napi->timer.function = napi_watchdog; 6411 init_gro_hash(napi); 6412 napi->skb = NULL; 6413 INIT_LIST_HEAD(&napi->rx_list); 6414 napi->rx_count = 0; 6415 napi->poll = poll; 6416 if (weight > NAPI_POLL_WEIGHT) 6417 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6418 weight); 6419 napi->weight = weight; 6420 napi->dev = dev; 6421 #ifdef CONFIG_NETPOLL 6422 napi->poll_owner = -1; 6423 #endif 6424 napi->list_owner = -1; 6425 set_bit(NAPI_STATE_SCHED, &napi->state); 6426 set_bit(NAPI_STATE_NPSVC, &napi->state); 6427 list_add_rcu(&napi->dev_list, &dev->napi_list); 6428 napi_hash_add(napi); 6429 napi_get_frags_check(napi); 6430 /* Create kthread for this napi if dev->threaded is set. 6431 * Clear dev->threaded if kthread creation failed so that 6432 * threaded mode will not be enabled in napi_enable(). 6433 */ 6434 if (dev->threaded && napi_kthread_create(napi)) 6435 dev->threaded = 0; 6436 } 6437 EXPORT_SYMBOL(netif_napi_add_weight); 6438 6439 void napi_disable(struct napi_struct *n) 6440 { 6441 unsigned long val, new; 6442 6443 might_sleep(); 6444 set_bit(NAPI_STATE_DISABLE, &n->state); 6445 6446 val = READ_ONCE(n->state); 6447 do { 6448 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6449 usleep_range(20, 200); 6450 val = READ_ONCE(n->state); 6451 } 6452 6453 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6454 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6455 } while (!try_cmpxchg(&n->state, &val, new)); 6456 6457 hrtimer_cancel(&n->timer); 6458 6459 clear_bit(NAPI_STATE_DISABLE, &n->state); 6460 } 6461 EXPORT_SYMBOL(napi_disable); 6462 6463 /** 6464 * napi_enable - enable NAPI scheduling 6465 * @n: NAPI context 6466 * 6467 * Resume NAPI from being scheduled on this context. 6468 * Must be paired with napi_disable. 6469 */ 6470 void napi_enable(struct napi_struct *n) 6471 { 6472 unsigned long new, val = READ_ONCE(n->state); 6473 6474 do { 6475 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6476 6477 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6478 if (n->dev->threaded && n->thread) 6479 new |= NAPIF_STATE_THREADED; 6480 } while (!try_cmpxchg(&n->state, &val, new)); 6481 } 6482 EXPORT_SYMBOL(napi_enable); 6483 6484 static void flush_gro_hash(struct napi_struct *napi) 6485 { 6486 int i; 6487 6488 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6489 struct sk_buff *skb, *n; 6490 6491 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6492 kfree_skb(skb); 6493 napi->gro_hash[i].count = 0; 6494 } 6495 } 6496 6497 /* Must be called in process context */ 6498 void __netif_napi_del(struct napi_struct *napi) 6499 { 6500 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6501 return; 6502 6503 napi_hash_del(napi); 6504 list_del_rcu(&napi->dev_list); 6505 napi_free_frags(napi); 6506 6507 flush_gro_hash(napi); 6508 napi->gro_bitmask = 0; 6509 6510 if (napi->thread) { 6511 kthread_stop(napi->thread); 6512 napi->thread = NULL; 6513 } 6514 } 6515 EXPORT_SYMBOL(__netif_napi_del); 6516 6517 static int __napi_poll(struct napi_struct *n, bool *repoll) 6518 { 6519 int work, weight; 6520 6521 weight = n->weight; 6522 6523 /* This NAPI_STATE_SCHED test is for avoiding a race 6524 * with netpoll's poll_napi(). Only the entity which 6525 * obtains the lock and sees NAPI_STATE_SCHED set will 6526 * actually make the ->poll() call. Therefore we avoid 6527 * accidentally calling ->poll() when NAPI is not scheduled. 6528 */ 6529 work = 0; 6530 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6531 work = n->poll(n, weight); 6532 trace_napi_poll(n, work, weight); 6533 } 6534 6535 if (unlikely(work > weight)) 6536 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6537 n->poll, work, weight); 6538 6539 if (likely(work < weight)) 6540 return work; 6541 6542 /* Drivers must not modify the NAPI state if they 6543 * consume the entire weight. In such cases this code 6544 * still "owns" the NAPI instance and therefore can 6545 * move the instance around on the list at-will. 6546 */ 6547 if (unlikely(napi_disable_pending(n))) { 6548 napi_complete(n); 6549 return work; 6550 } 6551 6552 /* The NAPI context has more processing work, but busy-polling 6553 * is preferred. Exit early. 6554 */ 6555 if (napi_prefer_busy_poll(n)) { 6556 if (napi_complete_done(n, work)) { 6557 /* If timeout is not set, we need to make sure 6558 * that the NAPI is re-scheduled. 6559 */ 6560 napi_schedule(n); 6561 } 6562 return work; 6563 } 6564 6565 if (n->gro_bitmask) { 6566 /* flush too old packets 6567 * If HZ < 1000, flush all packets. 6568 */ 6569 napi_gro_flush(n, HZ >= 1000); 6570 } 6571 6572 gro_normal_list(n); 6573 6574 /* Some drivers may have called napi_schedule 6575 * prior to exhausting their budget. 6576 */ 6577 if (unlikely(!list_empty(&n->poll_list))) { 6578 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6579 n->dev ? n->dev->name : "backlog"); 6580 return work; 6581 } 6582 6583 *repoll = true; 6584 6585 return work; 6586 } 6587 6588 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6589 { 6590 bool do_repoll = false; 6591 void *have; 6592 int work; 6593 6594 list_del_init(&n->poll_list); 6595 6596 have = netpoll_poll_lock(n); 6597 6598 work = __napi_poll(n, &do_repoll); 6599 6600 if (do_repoll) 6601 list_add_tail(&n->poll_list, repoll); 6602 6603 netpoll_poll_unlock(have); 6604 6605 return work; 6606 } 6607 6608 static int napi_thread_wait(struct napi_struct *napi) 6609 { 6610 bool woken = false; 6611 6612 set_current_state(TASK_INTERRUPTIBLE); 6613 6614 while (!kthread_should_stop()) { 6615 /* Testing SCHED_THREADED bit here to make sure the current 6616 * kthread owns this napi and could poll on this napi. 6617 * Testing SCHED bit is not enough because SCHED bit might be 6618 * set by some other busy poll thread or by napi_disable(). 6619 */ 6620 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6621 WARN_ON(!list_empty(&napi->poll_list)); 6622 __set_current_state(TASK_RUNNING); 6623 return 0; 6624 } 6625 6626 schedule(); 6627 /* woken being true indicates this thread owns this napi. */ 6628 woken = true; 6629 set_current_state(TASK_INTERRUPTIBLE); 6630 } 6631 __set_current_state(TASK_RUNNING); 6632 6633 return -1; 6634 } 6635 6636 static void skb_defer_free_flush(struct softnet_data *sd) 6637 { 6638 struct sk_buff *skb, *next; 6639 6640 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6641 if (!READ_ONCE(sd->defer_list)) 6642 return; 6643 6644 spin_lock(&sd->defer_lock); 6645 skb = sd->defer_list; 6646 sd->defer_list = NULL; 6647 sd->defer_count = 0; 6648 spin_unlock(&sd->defer_lock); 6649 6650 while (skb != NULL) { 6651 next = skb->next; 6652 napi_consume_skb(skb, 1); 6653 skb = next; 6654 } 6655 } 6656 6657 static int napi_threaded_poll(void *data) 6658 { 6659 struct napi_struct *napi = data; 6660 struct softnet_data *sd; 6661 void *have; 6662 6663 while (!napi_thread_wait(napi)) { 6664 for (;;) { 6665 bool repoll = false; 6666 6667 local_bh_disable(); 6668 sd = this_cpu_ptr(&softnet_data); 6669 sd->in_napi_threaded_poll = true; 6670 6671 have = netpoll_poll_lock(napi); 6672 __napi_poll(napi, &repoll); 6673 netpoll_poll_unlock(have); 6674 6675 sd->in_napi_threaded_poll = false; 6676 barrier(); 6677 6678 if (sd_has_rps_ipi_waiting(sd)) { 6679 local_irq_disable(); 6680 net_rps_action_and_irq_enable(sd); 6681 } 6682 skb_defer_free_flush(sd); 6683 local_bh_enable(); 6684 6685 if (!repoll) 6686 break; 6687 6688 cond_resched(); 6689 } 6690 } 6691 return 0; 6692 } 6693 6694 static __latent_entropy void net_rx_action(struct softirq_action *h) 6695 { 6696 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6697 unsigned long time_limit = jiffies + 6698 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6699 int budget = READ_ONCE(netdev_budget); 6700 LIST_HEAD(list); 6701 LIST_HEAD(repoll); 6702 6703 start: 6704 sd->in_net_rx_action = true; 6705 local_irq_disable(); 6706 list_splice_init(&sd->poll_list, &list); 6707 local_irq_enable(); 6708 6709 for (;;) { 6710 struct napi_struct *n; 6711 6712 skb_defer_free_flush(sd); 6713 6714 if (list_empty(&list)) { 6715 if (list_empty(&repoll)) { 6716 sd->in_net_rx_action = false; 6717 barrier(); 6718 /* We need to check if ____napi_schedule() 6719 * had refilled poll_list while 6720 * sd->in_net_rx_action was true. 6721 */ 6722 if (!list_empty(&sd->poll_list)) 6723 goto start; 6724 if (!sd_has_rps_ipi_waiting(sd)) 6725 goto end; 6726 } 6727 break; 6728 } 6729 6730 n = list_first_entry(&list, struct napi_struct, poll_list); 6731 budget -= napi_poll(n, &repoll); 6732 6733 /* If softirq window is exhausted then punt. 6734 * Allow this to run for 2 jiffies since which will allow 6735 * an average latency of 1.5/HZ. 6736 */ 6737 if (unlikely(budget <= 0 || 6738 time_after_eq(jiffies, time_limit))) { 6739 sd->time_squeeze++; 6740 break; 6741 } 6742 } 6743 6744 local_irq_disable(); 6745 6746 list_splice_tail_init(&sd->poll_list, &list); 6747 list_splice_tail(&repoll, &list); 6748 list_splice(&list, &sd->poll_list); 6749 if (!list_empty(&sd->poll_list)) 6750 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6751 else 6752 sd->in_net_rx_action = false; 6753 6754 net_rps_action_and_irq_enable(sd); 6755 end:; 6756 } 6757 6758 struct netdev_adjacent { 6759 struct net_device *dev; 6760 netdevice_tracker dev_tracker; 6761 6762 /* upper master flag, there can only be one master device per list */ 6763 bool master; 6764 6765 /* lookup ignore flag */ 6766 bool ignore; 6767 6768 /* counter for the number of times this device was added to us */ 6769 u16 ref_nr; 6770 6771 /* private field for the users */ 6772 void *private; 6773 6774 struct list_head list; 6775 struct rcu_head rcu; 6776 }; 6777 6778 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6779 struct list_head *adj_list) 6780 { 6781 struct netdev_adjacent *adj; 6782 6783 list_for_each_entry(adj, adj_list, list) { 6784 if (adj->dev == adj_dev) 6785 return adj; 6786 } 6787 return NULL; 6788 } 6789 6790 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6791 struct netdev_nested_priv *priv) 6792 { 6793 struct net_device *dev = (struct net_device *)priv->data; 6794 6795 return upper_dev == dev; 6796 } 6797 6798 /** 6799 * netdev_has_upper_dev - Check if device is linked to an upper device 6800 * @dev: device 6801 * @upper_dev: upper device to check 6802 * 6803 * Find out if a device is linked to specified upper device and return true 6804 * in case it is. Note that this checks only immediate upper device, 6805 * not through a complete stack of devices. The caller must hold the RTNL lock. 6806 */ 6807 bool netdev_has_upper_dev(struct net_device *dev, 6808 struct net_device *upper_dev) 6809 { 6810 struct netdev_nested_priv priv = { 6811 .data = (void *)upper_dev, 6812 }; 6813 6814 ASSERT_RTNL(); 6815 6816 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6817 &priv); 6818 } 6819 EXPORT_SYMBOL(netdev_has_upper_dev); 6820 6821 /** 6822 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6823 * @dev: device 6824 * @upper_dev: upper device to check 6825 * 6826 * Find out if a device is linked to specified upper device and return true 6827 * in case it is. Note that this checks the entire upper device chain. 6828 * The caller must hold rcu lock. 6829 */ 6830 6831 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6832 struct net_device *upper_dev) 6833 { 6834 struct netdev_nested_priv priv = { 6835 .data = (void *)upper_dev, 6836 }; 6837 6838 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6839 &priv); 6840 } 6841 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6842 6843 /** 6844 * netdev_has_any_upper_dev - Check if device is linked to some device 6845 * @dev: device 6846 * 6847 * Find out if a device is linked to an upper device and return true in case 6848 * it is. The caller must hold the RTNL lock. 6849 */ 6850 bool netdev_has_any_upper_dev(struct net_device *dev) 6851 { 6852 ASSERT_RTNL(); 6853 6854 return !list_empty(&dev->adj_list.upper); 6855 } 6856 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6857 6858 /** 6859 * netdev_master_upper_dev_get - Get master upper device 6860 * @dev: device 6861 * 6862 * Find a master upper device and return pointer to it or NULL in case 6863 * it's not there. The caller must hold the RTNL lock. 6864 */ 6865 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6866 { 6867 struct netdev_adjacent *upper; 6868 6869 ASSERT_RTNL(); 6870 6871 if (list_empty(&dev->adj_list.upper)) 6872 return NULL; 6873 6874 upper = list_first_entry(&dev->adj_list.upper, 6875 struct netdev_adjacent, list); 6876 if (likely(upper->master)) 6877 return upper->dev; 6878 return NULL; 6879 } 6880 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6881 6882 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6883 { 6884 struct netdev_adjacent *upper; 6885 6886 ASSERT_RTNL(); 6887 6888 if (list_empty(&dev->adj_list.upper)) 6889 return NULL; 6890 6891 upper = list_first_entry(&dev->adj_list.upper, 6892 struct netdev_adjacent, list); 6893 if (likely(upper->master) && !upper->ignore) 6894 return upper->dev; 6895 return NULL; 6896 } 6897 6898 /** 6899 * netdev_has_any_lower_dev - Check if device is linked to some device 6900 * @dev: device 6901 * 6902 * Find out if a device is linked to a lower device and return true in case 6903 * it is. The caller must hold the RTNL lock. 6904 */ 6905 static bool netdev_has_any_lower_dev(struct net_device *dev) 6906 { 6907 ASSERT_RTNL(); 6908 6909 return !list_empty(&dev->adj_list.lower); 6910 } 6911 6912 void *netdev_adjacent_get_private(struct list_head *adj_list) 6913 { 6914 struct netdev_adjacent *adj; 6915 6916 adj = list_entry(adj_list, struct netdev_adjacent, list); 6917 6918 return adj->private; 6919 } 6920 EXPORT_SYMBOL(netdev_adjacent_get_private); 6921 6922 /** 6923 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6924 * @dev: device 6925 * @iter: list_head ** of the current position 6926 * 6927 * Gets the next device from the dev's upper list, starting from iter 6928 * position. The caller must hold RCU read lock. 6929 */ 6930 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6931 struct list_head **iter) 6932 { 6933 struct netdev_adjacent *upper; 6934 6935 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6936 6937 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6938 6939 if (&upper->list == &dev->adj_list.upper) 6940 return NULL; 6941 6942 *iter = &upper->list; 6943 6944 return upper->dev; 6945 } 6946 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6947 6948 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6949 struct list_head **iter, 6950 bool *ignore) 6951 { 6952 struct netdev_adjacent *upper; 6953 6954 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6955 6956 if (&upper->list == &dev->adj_list.upper) 6957 return NULL; 6958 6959 *iter = &upper->list; 6960 *ignore = upper->ignore; 6961 6962 return upper->dev; 6963 } 6964 6965 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6966 struct list_head **iter) 6967 { 6968 struct netdev_adjacent *upper; 6969 6970 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6971 6972 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6973 6974 if (&upper->list == &dev->adj_list.upper) 6975 return NULL; 6976 6977 *iter = &upper->list; 6978 6979 return upper->dev; 6980 } 6981 6982 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6983 int (*fn)(struct net_device *dev, 6984 struct netdev_nested_priv *priv), 6985 struct netdev_nested_priv *priv) 6986 { 6987 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6988 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6989 int ret, cur = 0; 6990 bool ignore; 6991 6992 now = dev; 6993 iter = &dev->adj_list.upper; 6994 6995 while (1) { 6996 if (now != dev) { 6997 ret = fn(now, priv); 6998 if (ret) 6999 return ret; 7000 } 7001 7002 next = NULL; 7003 while (1) { 7004 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7005 if (!udev) 7006 break; 7007 if (ignore) 7008 continue; 7009 7010 next = udev; 7011 niter = &udev->adj_list.upper; 7012 dev_stack[cur] = now; 7013 iter_stack[cur++] = iter; 7014 break; 7015 } 7016 7017 if (!next) { 7018 if (!cur) 7019 return 0; 7020 next = dev_stack[--cur]; 7021 niter = iter_stack[cur]; 7022 } 7023 7024 now = next; 7025 iter = niter; 7026 } 7027 7028 return 0; 7029 } 7030 7031 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7032 int (*fn)(struct net_device *dev, 7033 struct netdev_nested_priv *priv), 7034 struct netdev_nested_priv *priv) 7035 { 7036 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7037 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7038 int ret, cur = 0; 7039 7040 now = dev; 7041 iter = &dev->adj_list.upper; 7042 7043 while (1) { 7044 if (now != dev) { 7045 ret = fn(now, priv); 7046 if (ret) 7047 return ret; 7048 } 7049 7050 next = NULL; 7051 while (1) { 7052 udev = netdev_next_upper_dev_rcu(now, &iter); 7053 if (!udev) 7054 break; 7055 7056 next = udev; 7057 niter = &udev->adj_list.upper; 7058 dev_stack[cur] = now; 7059 iter_stack[cur++] = iter; 7060 break; 7061 } 7062 7063 if (!next) { 7064 if (!cur) 7065 return 0; 7066 next = dev_stack[--cur]; 7067 niter = iter_stack[cur]; 7068 } 7069 7070 now = next; 7071 iter = niter; 7072 } 7073 7074 return 0; 7075 } 7076 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7077 7078 static bool __netdev_has_upper_dev(struct net_device *dev, 7079 struct net_device *upper_dev) 7080 { 7081 struct netdev_nested_priv priv = { 7082 .flags = 0, 7083 .data = (void *)upper_dev, 7084 }; 7085 7086 ASSERT_RTNL(); 7087 7088 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7089 &priv); 7090 } 7091 7092 /** 7093 * netdev_lower_get_next_private - Get the next ->private from the 7094 * lower neighbour list 7095 * @dev: device 7096 * @iter: list_head ** of the current position 7097 * 7098 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7099 * list, starting from iter position. The caller must hold either hold the 7100 * RTNL lock or its own locking that guarantees that the neighbour lower 7101 * list will remain unchanged. 7102 */ 7103 void *netdev_lower_get_next_private(struct net_device *dev, 7104 struct list_head **iter) 7105 { 7106 struct netdev_adjacent *lower; 7107 7108 lower = list_entry(*iter, struct netdev_adjacent, list); 7109 7110 if (&lower->list == &dev->adj_list.lower) 7111 return NULL; 7112 7113 *iter = lower->list.next; 7114 7115 return lower->private; 7116 } 7117 EXPORT_SYMBOL(netdev_lower_get_next_private); 7118 7119 /** 7120 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7121 * lower neighbour list, RCU 7122 * variant 7123 * @dev: device 7124 * @iter: list_head ** of the current position 7125 * 7126 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7127 * list, starting from iter position. The caller must hold RCU read lock. 7128 */ 7129 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7130 struct list_head **iter) 7131 { 7132 struct netdev_adjacent *lower; 7133 7134 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7135 7136 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7137 7138 if (&lower->list == &dev->adj_list.lower) 7139 return NULL; 7140 7141 *iter = &lower->list; 7142 7143 return lower->private; 7144 } 7145 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7146 7147 /** 7148 * netdev_lower_get_next - Get the next device from the lower neighbour 7149 * list 7150 * @dev: device 7151 * @iter: list_head ** of the current position 7152 * 7153 * Gets the next netdev_adjacent from the dev's lower neighbour 7154 * list, starting from iter position. The caller must hold RTNL lock or 7155 * its own locking that guarantees that the neighbour lower 7156 * list will remain unchanged. 7157 */ 7158 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7159 { 7160 struct netdev_adjacent *lower; 7161 7162 lower = list_entry(*iter, struct netdev_adjacent, list); 7163 7164 if (&lower->list == &dev->adj_list.lower) 7165 return NULL; 7166 7167 *iter = lower->list.next; 7168 7169 return lower->dev; 7170 } 7171 EXPORT_SYMBOL(netdev_lower_get_next); 7172 7173 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7174 struct list_head **iter) 7175 { 7176 struct netdev_adjacent *lower; 7177 7178 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7179 7180 if (&lower->list == &dev->adj_list.lower) 7181 return NULL; 7182 7183 *iter = &lower->list; 7184 7185 return lower->dev; 7186 } 7187 7188 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7189 struct list_head **iter, 7190 bool *ignore) 7191 { 7192 struct netdev_adjacent *lower; 7193 7194 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7195 7196 if (&lower->list == &dev->adj_list.lower) 7197 return NULL; 7198 7199 *iter = &lower->list; 7200 *ignore = lower->ignore; 7201 7202 return lower->dev; 7203 } 7204 7205 int netdev_walk_all_lower_dev(struct net_device *dev, 7206 int (*fn)(struct net_device *dev, 7207 struct netdev_nested_priv *priv), 7208 struct netdev_nested_priv *priv) 7209 { 7210 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7211 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7212 int ret, cur = 0; 7213 7214 now = dev; 7215 iter = &dev->adj_list.lower; 7216 7217 while (1) { 7218 if (now != dev) { 7219 ret = fn(now, priv); 7220 if (ret) 7221 return ret; 7222 } 7223 7224 next = NULL; 7225 while (1) { 7226 ldev = netdev_next_lower_dev(now, &iter); 7227 if (!ldev) 7228 break; 7229 7230 next = ldev; 7231 niter = &ldev->adj_list.lower; 7232 dev_stack[cur] = now; 7233 iter_stack[cur++] = iter; 7234 break; 7235 } 7236 7237 if (!next) { 7238 if (!cur) 7239 return 0; 7240 next = dev_stack[--cur]; 7241 niter = iter_stack[cur]; 7242 } 7243 7244 now = next; 7245 iter = niter; 7246 } 7247 7248 return 0; 7249 } 7250 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7251 7252 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7253 int (*fn)(struct net_device *dev, 7254 struct netdev_nested_priv *priv), 7255 struct netdev_nested_priv *priv) 7256 { 7257 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7258 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7259 int ret, cur = 0; 7260 bool ignore; 7261 7262 now = dev; 7263 iter = &dev->adj_list.lower; 7264 7265 while (1) { 7266 if (now != dev) { 7267 ret = fn(now, priv); 7268 if (ret) 7269 return ret; 7270 } 7271 7272 next = NULL; 7273 while (1) { 7274 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7275 if (!ldev) 7276 break; 7277 if (ignore) 7278 continue; 7279 7280 next = ldev; 7281 niter = &ldev->adj_list.lower; 7282 dev_stack[cur] = now; 7283 iter_stack[cur++] = iter; 7284 break; 7285 } 7286 7287 if (!next) { 7288 if (!cur) 7289 return 0; 7290 next = dev_stack[--cur]; 7291 niter = iter_stack[cur]; 7292 } 7293 7294 now = next; 7295 iter = niter; 7296 } 7297 7298 return 0; 7299 } 7300 7301 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7302 struct list_head **iter) 7303 { 7304 struct netdev_adjacent *lower; 7305 7306 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7307 if (&lower->list == &dev->adj_list.lower) 7308 return NULL; 7309 7310 *iter = &lower->list; 7311 7312 return lower->dev; 7313 } 7314 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7315 7316 static u8 __netdev_upper_depth(struct net_device *dev) 7317 { 7318 struct net_device *udev; 7319 struct list_head *iter; 7320 u8 max_depth = 0; 7321 bool ignore; 7322 7323 for (iter = &dev->adj_list.upper, 7324 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7325 udev; 7326 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7327 if (ignore) 7328 continue; 7329 if (max_depth < udev->upper_level) 7330 max_depth = udev->upper_level; 7331 } 7332 7333 return max_depth; 7334 } 7335 7336 static u8 __netdev_lower_depth(struct net_device *dev) 7337 { 7338 struct net_device *ldev; 7339 struct list_head *iter; 7340 u8 max_depth = 0; 7341 bool ignore; 7342 7343 for (iter = &dev->adj_list.lower, 7344 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7345 ldev; 7346 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7347 if (ignore) 7348 continue; 7349 if (max_depth < ldev->lower_level) 7350 max_depth = ldev->lower_level; 7351 } 7352 7353 return max_depth; 7354 } 7355 7356 static int __netdev_update_upper_level(struct net_device *dev, 7357 struct netdev_nested_priv *__unused) 7358 { 7359 dev->upper_level = __netdev_upper_depth(dev) + 1; 7360 return 0; 7361 } 7362 7363 #ifdef CONFIG_LOCKDEP 7364 static LIST_HEAD(net_unlink_list); 7365 7366 static void net_unlink_todo(struct net_device *dev) 7367 { 7368 if (list_empty(&dev->unlink_list)) 7369 list_add_tail(&dev->unlink_list, &net_unlink_list); 7370 } 7371 #endif 7372 7373 static int __netdev_update_lower_level(struct net_device *dev, 7374 struct netdev_nested_priv *priv) 7375 { 7376 dev->lower_level = __netdev_lower_depth(dev) + 1; 7377 7378 #ifdef CONFIG_LOCKDEP 7379 if (!priv) 7380 return 0; 7381 7382 if (priv->flags & NESTED_SYNC_IMM) 7383 dev->nested_level = dev->lower_level - 1; 7384 if (priv->flags & NESTED_SYNC_TODO) 7385 net_unlink_todo(dev); 7386 #endif 7387 return 0; 7388 } 7389 7390 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7391 int (*fn)(struct net_device *dev, 7392 struct netdev_nested_priv *priv), 7393 struct netdev_nested_priv *priv) 7394 { 7395 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7396 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7397 int ret, cur = 0; 7398 7399 now = dev; 7400 iter = &dev->adj_list.lower; 7401 7402 while (1) { 7403 if (now != dev) { 7404 ret = fn(now, priv); 7405 if (ret) 7406 return ret; 7407 } 7408 7409 next = NULL; 7410 while (1) { 7411 ldev = netdev_next_lower_dev_rcu(now, &iter); 7412 if (!ldev) 7413 break; 7414 7415 next = ldev; 7416 niter = &ldev->adj_list.lower; 7417 dev_stack[cur] = now; 7418 iter_stack[cur++] = iter; 7419 break; 7420 } 7421 7422 if (!next) { 7423 if (!cur) 7424 return 0; 7425 next = dev_stack[--cur]; 7426 niter = iter_stack[cur]; 7427 } 7428 7429 now = next; 7430 iter = niter; 7431 } 7432 7433 return 0; 7434 } 7435 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7436 7437 /** 7438 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7439 * lower neighbour list, RCU 7440 * variant 7441 * @dev: device 7442 * 7443 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7444 * list. The caller must hold RCU read lock. 7445 */ 7446 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7447 { 7448 struct netdev_adjacent *lower; 7449 7450 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7451 struct netdev_adjacent, list); 7452 if (lower) 7453 return lower->private; 7454 return NULL; 7455 } 7456 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7457 7458 /** 7459 * netdev_master_upper_dev_get_rcu - Get master upper device 7460 * @dev: device 7461 * 7462 * Find a master upper device and return pointer to it or NULL in case 7463 * it's not there. The caller must hold the RCU read lock. 7464 */ 7465 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7466 { 7467 struct netdev_adjacent *upper; 7468 7469 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7470 struct netdev_adjacent, list); 7471 if (upper && likely(upper->master)) 7472 return upper->dev; 7473 return NULL; 7474 } 7475 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7476 7477 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7478 struct net_device *adj_dev, 7479 struct list_head *dev_list) 7480 { 7481 char linkname[IFNAMSIZ+7]; 7482 7483 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7484 "upper_%s" : "lower_%s", adj_dev->name); 7485 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7486 linkname); 7487 } 7488 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7489 char *name, 7490 struct list_head *dev_list) 7491 { 7492 char linkname[IFNAMSIZ+7]; 7493 7494 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7495 "upper_%s" : "lower_%s", name); 7496 sysfs_remove_link(&(dev->dev.kobj), linkname); 7497 } 7498 7499 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7500 struct net_device *adj_dev, 7501 struct list_head *dev_list) 7502 { 7503 return (dev_list == &dev->adj_list.upper || 7504 dev_list == &dev->adj_list.lower) && 7505 net_eq(dev_net(dev), dev_net(adj_dev)); 7506 } 7507 7508 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7509 struct net_device *adj_dev, 7510 struct list_head *dev_list, 7511 void *private, bool master) 7512 { 7513 struct netdev_adjacent *adj; 7514 int ret; 7515 7516 adj = __netdev_find_adj(adj_dev, dev_list); 7517 7518 if (adj) { 7519 adj->ref_nr += 1; 7520 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7521 dev->name, adj_dev->name, adj->ref_nr); 7522 7523 return 0; 7524 } 7525 7526 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7527 if (!adj) 7528 return -ENOMEM; 7529 7530 adj->dev = adj_dev; 7531 adj->master = master; 7532 adj->ref_nr = 1; 7533 adj->private = private; 7534 adj->ignore = false; 7535 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7536 7537 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7538 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7539 7540 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7541 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7542 if (ret) 7543 goto free_adj; 7544 } 7545 7546 /* Ensure that master link is always the first item in list. */ 7547 if (master) { 7548 ret = sysfs_create_link(&(dev->dev.kobj), 7549 &(adj_dev->dev.kobj), "master"); 7550 if (ret) 7551 goto remove_symlinks; 7552 7553 list_add_rcu(&adj->list, dev_list); 7554 } else { 7555 list_add_tail_rcu(&adj->list, dev_list); 7556 } 7557 7558 return 0; 7559 7560 remove_symlinks: 7561 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7562 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7563 free_adj: 7564 netdev_put(adj_dev, &adj->dev_tracker); 7565 kfree(adj); 7566 7567 return ret; 7568 } 7569 7570 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7571 struct net_device *adj_dev, 7572 u16 ref_nr, 7573 struct list_head *dev_list) 7574 { 7575 struct netdev_adjacent *adj; 7576 7577 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7578 dev->name, adj_dev->name, ref_nr); 7579 7580 adj = __netdev_find_adj(adj_dev, dev_list); 7581 7582 if (!adj) { 7583 pr_err("Adjacency does not exist for device %s from %s\n", 7584 dev->name, adj_dev->name); 7585 WARN_ON(1); 7586 return; 7587 } 7588 7589 if (adj->ref_nr > ref_nr) { 7590 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7591 dev->name, adj_dev->name, ref_nr, 7592 adj->ref_nr - ref_nr); 7593 adj->ref_nr -= ref_nr; 7594 return; 7595 } 7596 7597 if (adj->master) 7598 sysfs_remove_link(&(dev->dev.kobj), "master"); 7599 7600 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7601 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7602 7603 list_del_rcu(&adj->list); 7604 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7605 adj_dev->name, dev->name, adj_dev->name); 7606 netdev_put(adj_dev, &adj->dev_tracker); 7607 kfree_rcu(adj, rcu); 7608 } 7609 7610 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7611 struct net_device *upper_dev, 7612 struct list_head *up_list, 7613 struct list_head *down_list, 7614 void *private, bool master) 7615 { 7616 int ret; 7617 7618 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7619 private, master); 7620 if (ret) 7621 return ret; 7622 7623 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7624 private, false); 7625 if (ret) { 7626 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7627 return ret; 7628 } 7629 7630 return 0; 7631 } 7632 7633 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7634 struct net_device *upper_dev, 7635 u16 ref_nr, 7636 struct list_head *up_list, 7637 struct list_head *down_list) 7638 { 7639 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7640 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7641 } 7642 7643 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7644 struct net_device *upper_dev, 7645 void *private, bool master) 7646 { 7647 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7648 &dev->adj_list.upper, 7649 &upper_dev->adj_list.lower, 7650 private, master); 7651 } 7652 7653 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7654 struct net_device *upper_dev) 7655 { 7656 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7657 &dev->adj_list.upper, 7658 &upper_dev->adj_list.lower); 7659 } 7660 7661 static int __netdev_upper_dev_link(struct net_device *dev, 7662 struct net_device *upper_dev, bool master, 7663 void *upper_priv, void *upper_info, 7664 struct netdev_nested_priv *priv, 7665 struct netlink_ext_ack *extack) 7666 { 7667 struct netdev_notifier_changeupper_info changeupper_info = { 7668 .info = { 7669 .dev = dev, 7670 .extack = extack, 7671 }, 7672 .upper_dev = upper_dev, 7673 .master = master, 7674 .linking = true, 7675 .upper_info = upper_info, 7676 }; 7677 struct net_device *master_dev; 7678 int ret = 0; 7679 7680 ASSERT_RTNL(); 7681 7682 if (dev == upper_dev) 7683 return -EBUSY; 7684 7685 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7686 if (__netdev_has_upper_dev(upper_dev, dev)) 7687 return -EBUSY; 7688 7689 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7690 return -EMLINK; 7691 7692 if (!master) { 7693 if (__netdev_has_upper_dev(dev, upper_dev)) 7694 return -EEXIST; 7695 } else { 7696 master_dev = __netdev_master_upper_dev_get(dev); 7697 if (master_dev) 7698 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7699 } 7700 7701 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7702 &changeupper_info.info); 7703 ret = notifier_to_errno(ret); 7704 if (ret) 7705 return ret; 7706 7707 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7708 master); 7709 if (ret) 7710 return ret; 7711 7712 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7713 &changeupper_info.info); 7714 ret = notifier_to_errno(ret); 7715 if (ret) 7716 goto rollback; 7717 7718 __netdev_update_upper_level(dev, NULL); 7719 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7720 7721 __netdev_update_lower_level(upper_dev, priv); 7722 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7723 priv); 7724 7725 return 0; 7726 7727 rollback: 7728 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7729 7730 return ret; 7731 } 7732 7733 /** 7734 * netdev_upper_dev_link - Add a link to the upper device 7735 * @dev: device 7736 * @upper_dev: new upper device 7737 * @extack: netlink extended ack 7738 * 7739 * Adds a link to device which is upper to this one. The caller must hold 7740 * the RTNL lock. On a failure a negative errno code is returned. 7741 * On success the reference counts are adjusted and the function 7742 * returns zero. 7743 */ 7744 int netdev_upper_dev_link(struct net_device *dev, 7745 struct net_device *upper_dev, 7746 struct netlink_ext_ack *extack) 7747 { 7748 struct netdev_nested_priv priv = { 7749 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7750 .data = NULL, 7751 }; 7752 7753 return __netdev_upper_dev_link(dev, upper_dev, false, 7754 NULL, NULL, &priv, extack); 7755 } 7756 EXPORT_SYMBOL(netdev_upper_dev_link); 7757 7758 /** 7759 * netdev_master_upper_dev_link - Add a master link to the upper device 7760 * @dev: device 7761 * @upper_dev: new upper device 7762 * @upper_priv: upper device private 7763 * @upper_info: upper info to be passed down via notifier 7764 * @extack: netlink extended ack 7765 * 7766 * Adds a link to device which is upper to this one. In this case, only 7767 * one master upper device can be linked, although other non-master devices 7768 * might be linked as well. The caller must hold the RTNL lock. 7769 * On a failure a negative errno code is returned. On success the reference 7770 * counts are adjusted and the function returns zero. 7771 */ 7772 int netdev_master_upper_dev_link(struct net_device *dev, 7773 struct net_device *upper_dev, 7774 void *upper_priv, void *upper_info, 7775 struct netlink_ext_ack *extack) 7776 { 7777 struct netdev_nested_priv priv = { 7778 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7779 .data = NULL, 7780 }; 7781 7782 return __netdev_upper_dev_link(dev, upper_dev, true, 7783 upper_priv, upper_info, &priv, extack); 7784 } 7785 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7786 7787 static void __netdev_upper_dev_unlink(struct net_device *dev, 7788 struct net_device *upper_dev, 7789 struct netdev_nested_priv *priv) 7790 { 7791 struct netdev_notifier_changeupper_info changeupper_info = { 7792 .info = { 7793 .dev = dev, 7794 }, 7795 .upper_dev = upper_dev, 7796 .linking = false, 7797 }; 7798 7799 ASSERT_RTNL(); 7800 7801 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7802 7803 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7804 &changeupper_info.info); 7805 7806 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7807 7808 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7809 &changeupper_info.info); 7810 7811 __netdev_update_upper_level(dev, NULL); 7812 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7813 7814 __netdev_update_lower_level(upper_dev, priv); 7815 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7816 priv); 7817 } 7818 7819 /** 7820 * netdev_upper_dev_unlink - Removes a link to upper device 7821 * @dev: device 7822 * @upper_dev: new upper device 7823 * 7824 * Removes a link to device which is upper to this one. The caller must hold 7825 * the RTNL lock. 7826 */ 7827 void netdev_upper_dev_unlink(struct net_device *dev, 7828 struct net_device *upper_dev) 7829 { 7830 struct netdev_nested_priv priv = { 7831 .flags = NESTED_SYNC_TODO, 7832 .data = NULL, 7833 }; 7834 7835 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7836 } 7837 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7838 7839 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7840 struct net_device *lower_dev, 7841 bool val) 7842 { 7843 struct netdev_adjacent *adj; 7844 7845 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7846 if (adj) 7847 adj->ignore = val; 7848 7849 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7850 if (adj) 7851 adj->ignore = val; 7852 } 7853 7854 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7855 struct net_device *lower_dev) 7856 { 7857 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7858 } 7859 7860 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7861 struct net_device *lower_dev) 7862 { 7863 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7864 } 7865 7866 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7867 struct net_device *new_dev, 7868 struct net_device *dev, 7869 struct netlink_ext_ack *extack) 7870 { 7871 struct netdev_nested_priv priv = { 7872 .flags = 0, 7873 .data = NULL, 7874 }; 7875 int err; 7876 7877 if (!new_dev) 7878 return 0; 7879 7880 if (old_dev && new_dev != old_dev) 7881 netdev_adjacent_dev_disable(dev, old_dev); 7882 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7883 extack); 7884 if (err) { 7885 if (old_dev && new_dev != old_dev) 7886 netdev_adjacent_dev_enable(dev, old_dev); 7887 return err; 7888 } 7889 7890 return 0; 7891 } 7892 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7893 7894 void netdev_adjacent_change_commit(struct net_device *old_dev, 7895 struct net_device *new_dev, 7896 struct net_device *dev) 7897 { 7898 struct netdev_nested_priv priv = { 7899 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7900 .data = NULL, 7901 }; 7902 7903 if (!new_dev || !old_dev) 7904 return; 7905 7906 if (new_dev == old_dev) 7907 return; 7908 7909 netdev_adjacent_dev_enable(dev, old_dev); 7910 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7911 } 7912 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7913 7914 void netdev_adjacent_change_abort(struct net_device *old_dev, 7915 struct net_device *new_dev, 7916 struct net_device *dev) 7917 { 7918 struct netdev_nested_priv priv = { 7919 .flags = 0, 7920 .data = NULL, 7921 }; 7922 7923 if (!new_dev) 7924 return; 7925 7926 if (old_dev && new_dev != old_dev) 7927 netdev_adjacent_dev_enable(dev, old_dev); 7928 7929 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7930 } 7931 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7932 7933 /** 7934 * netdev_bonding_info_change - Dispatch event about slave change 7935 * @dev: device 7936 * @bonding_info: info to dispatch 7937 * 7938 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7939 * The caller must hold the RTNL lock. 7940 */ 7941 void netdev_bonding_info_change(struct net_device *dev, 7942 struct netdev_bonding_info *bonding_info) 7943 { 7944 struct netdev_notifier_bonding_info info = { 7945 .info.dev = dev, 7946 }; 7947 7948 memcpy(&info.bonding_info, bonding_info, 7949 sizeof(struct netdev_bonding_info)); 7950 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7951 &info.info); 7952 } 7953 EXPORT_SYMBOL(netdev_bonding_info_change); 7954 7955 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7956 struct netlink_ext_ack *extack) 7957 { 7958 struct netdev_notifier_offload_xstats_info info = { 7959 .info.dev = dev, 7960 .info.extack = extack, 7961 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7962 }; 7963 int err; 7964 int rc; 7965 7966 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7967 GFP_KERNEL); 7968 if (!dev->offload_xstats_l3) 7969 return -ENOMEM; 7970 7971 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 7972 NETDEV_OFFLOAD_XSTATS_DISABLE, 7973 &info.info); 7974 err = notifier_to_errno(rc); 7975 if (err) 7976 goto free_stats; 7977 7978 return 0; 7979 7980 free_stats: 7981 kfree(dev->offload_xstats_l3); 7982 dev->offload_xstats_l3 = NULL; 7983 return err; 7984 } 7985 7986 int netdev_offload_xstats_enable(struct net_device *dev, 7987 enum netdev_offload_xstats_type type, 7988 struct netlink_ext_ack *extack) 7989 { 7990 ASSERT_RTNL(); 7991 7992 if (netdev_offload_xstats_enabled(dev, type)) 7993 return -EALREADY; 7994 7995 switch (type) { 7996 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7997 return netdev_offload_xstats_enable_l3(dev, extack); 7998 } 7999 8000 WARN_ON(1); 8001 return -EINVAL; 8002 } 8003 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8004 8005 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8006 { 8007 struct netdev_notifier_offload_xstats_info info = { 8008 .info.dev = dev, 8009 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8010 }; 8011 8012 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8013 &info.info); 8014 kfree(dev->offload_xstats_l3); 8015 dev->offload_xstats_l3 = NULL; 8016 } 8017 8018 int netdev_offload_xstats_disable(struct net_device *dev, 8019 enum netdev_offload_xstats_type type) 8020 { 8021 ASSERT_RTNL(); 8022 8023 if (!netdev_offload_xstats_enabled(dev, type)) 8024 return -EALREADY; 8025 8026 switch (type) { 8027 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8028 netdev_offload_xstats_disable_l3(dev); 8029 return 0; 8030 } 8031 8032 WARN_ON(1); 8033 return -EINVAL; 8034 } 8035 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8036 8037 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8038 { 8039 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8040 } 8041 8042 static struct rtnl_hw_stats64 * 8043 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8044 enum netdev_offload_xstats_type type) 8045 { 8046 switch (type) { 8047 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8048 return dev->offload_xstats_l3; 8049 } 8050 8051 WARN_ON(1); 8052 return NULL; 8053 } 8054 8055 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8056 enum netdev_offload_xstats_type type) 8057 { 8058 ASSERT_RTNL(); 8059 8060 return netdev_offload_xstats_get_ptr(dev, type); 8061 } 8062 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8063 8064 struct netdev_notifier_offload_xstats_ru { 8065 bool used; 8066 }; 8067 8068 struct netdev_notifier_offload_xstats_rd { 8069 struct rtnl_hw_stats64 stats; 8070 bool used; 8071 }; 8072 8073 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8074 const struct rtnl_hw_stats64 *src) 8075 { 8076 dest->rx_packets += src->rx_packets; 8077 dest->tx_packets += src->tx_packets; 8078 dest->rx_bytes += src->rx_bytes; 8079 dest->tx_bytes += src->tx_bytes; 8080 dest->rx_errors += src->rx_errors; 8081 dest->tx_errors += src->tx_errors; 8082 dest->rx_dropped += src->rx_dropped; 8083 dest->tx_dropped += src->tx_dropped; 8084 dest->multicast += src->multicast; 8085 } 8086 8087 static int netdev_offload_xstats_get_used(struct net_device *dev, 8088 enum netdev_offload_xstats_type type, 8089 bool *p_used, 8090 struct netlink_ext_ack *extack) 8091 { 8092 struct netdev_notifier_offload_xstats_ru report_used = {}; 8093 struct netdev_notifier_offload_xstats_info info = { 8094 .info.dev = dev, 8095 .info.extack = extack, 8096 .type = type, 8097 .report_used = &report_used, 8098 }; 8099 int rc; 8100 8101 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8102 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8103 &info.info); 8104 *p_used = report_used.used; 8105 return notifier_to_errno(rc); 8106 } 8107 8108 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8109 enum netdev_offload_xstats_type type, 8110 struct rtnl_hw_stats64 *p_stats, 8111 bool *p_used, 8112 struct netlink_ext_ack *extack) 8113 { 8114 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8115 struct netdev_notifier_offload_xstats_info info = { 8116 .info.dev = dev, 8117 .info.extack = extack, 8118 .type = type, 8119 .report_delta = &report_delta, 8120 }; 8121 struct rtnl_hw_stats64 *stats; 8122 int rc; 8123 8124 stats = netdev_offload_xstats_get_ptr(dev, type); 8125 if (WARN_ON(!stats)) 8126 return -EINVAL; 8127 8128 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8129 &info.info); 8130 8131 /* Cache whatever we got, even if there was an error, otherwise the 8132 * successful stats retrievals would get lost. 8133 */ 8134 netdev_hw_stats64_add(stats, &report_delta.stats); 8135 8136 if (p_stats) 8137 *p_stats = *stats; 8138 *p_used = report_delta.used; 8139 8140 return notifier_to_errno(rc); 8141 } 8142 8143 int netdev_offload_xstats_get(struct net_device *dev, 8144 enum netdev_offload_xstats_type type, 8145 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8146 struct netlink_ext_ack *extack) 8147 { 8148 ASSERT_RTNL(); 8149 8150 if (p_stats) 8151 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8152 p_used, extack); 8153 else 8154 return netdev_offload_xstats_get_used(dev, type, p_used, 8155 extack); 8156 } 8157 EXPORT_SYMBOL(netdev_offload_xstats_get); 8158 8159 void 8160 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8161 const struct rtnl_hw_stats64 *stats) 8162 { 8163 report_delta->used = true; 8164 netdev_hw_stats64_add(&report_delta->stats, stats); 8165 } 8166 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8167 8168 void 8169 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8170 { 8171 report_used->used = true; 8172 } 8173 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8174 8175 void netdev_offload_xstats_push_delta(struct net_device *dev, 8176 enum netdev_offload_xstats_type type, 8177 const struct rtnl_hw_stats64 *p_stats) 8178 { 8179 struct rtnl_hw_stats64 *stats; 8180 8181 ASSERT_RTNL(); 8182 8183 stats = netdev_offload_xstats_get_ptr(dev, type); 8184 if (WARN_ON(!stats)) 8185 return; 8186 8187 netdev_hw_stats64_add(stats, p_stats); 8188 } 8189 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8190 8191 /** 8192 * netdev_get_xmit_slave - Get the xmit slave of master device 8193 * @dev: device 8194 * @skb: The packet 8195 * @all_slaves: assume all the slaves are active 8196 * 8197 * The reference counters are not incremented so the caller must be 8198 * careful with locks. The caller must hold RCU lock. 8199 * %NULL is returned if no slave is found. 8200 */ 8201 8202 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8203 struct sk_buff *skb, 8204 bool all_slaves) 8205 { 8206 const struct net_device_ops *ops = dev->netdev_ops; 8207 8208 if (!ops->ndo_get_xmit_slave) 8209 return NULL; 8210 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8211 } 8212 EXPORT_SYMBOL(netdev_get_xmit_slave); 8213 8214 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8215 struct sock *sk) 8216 { 8217 const struct net_device_ops *ops = dev->netdev_ops; 8218 8219 if (!ops->ndo_sk_get_lower_dev) 8220 return NULL; 8221 return ops->ndo_sk_get_lower_dev(dev, sk); 8222 } 8223 8224 /** 8225 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8226 * @dev: device 8227 * @sk: the socket 8228 * 8229 * %NULL is returned if no lower device is found. 8230 */ 8231 8232 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8233 struct sock *sk) 8234 { 8235 struct net_device *lower; 8236 8237 lower = netdev_sk_get_lower_dev(dev, sk); 8238 while (lower) { 8239 dev = lower; 8240 lower = netdev_sk_get_lower_dev(dev, sk); 8241 } 8242 8243 return dev; 8244 } 8245 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8246 8247 static void netdev_adjacent_add_links(struct net_device *dev) 8248 { 8249 struct netdev_adjacent *iter; 8250 8251 struct net *net = dev_net(dev); 8252 8253 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8254 if (!net_eq(net, dev_net(iter->dev))) 8255 continue; 8256 netdev_adjacent_sysfs_add(iter->dev, dev, 8257 &iter->dev->adj_list.lower); 8258 netdev_adjacent_sysfs_add(dev, iter->dev, 8259 &dev->adj_list.upper); 8260 } 8261 8262 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8263 if (!net_eq(net, dev_net(iter->dev))) 8264 continue; 8265 netdev_adjacent_sysfs_add(iter->dev, dev, 8266 &iter->dev->adj_list.upper); 8267 netdev_adjacent_sysfs_add(dev, iter->dev, 8268 &dev->adj_list.lower); 8269 } 8270 } 8271 8272 static void netdev_adjacent_del_links(struct net_device *dev) 8273 { 8274 struct netdev_adjacent *iter; 8275 8276 struct net *net = dev_net(dev); 8277 8278 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8279 if (!net_eq(net, dev_net(iter->dev))) 8280 continue; 8281 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8282 &iter->dev->adj_list.lower); 8283 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8284 &dev->adj_list.upper); 8285 } 8286 8287 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8288 if (!net_eq(net, dev_net(iter->dev))) 8289 continue; 8290 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8291 &iter->dev->adj_list.upper); 8292 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8293 &dev->adj_list.lower); 8294 } 8295 } 8296 8297 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8298 { 8299 struct netdev_adjacent *iter; 8300 8301 struct net *net = dev_net(dev); 8302 8303 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8304 if (!net_eq(net, dev_net(iter->dev))) 8305 continue; 8306 netdev_adjacent_sysfs_del(iter->dev, oldname, 8307 &iter->dev->adj_list.lower); 8308 netdev_adjacent_sysfs_add(iter->dev, dev, 8309 &iter->dev->adj_list.lower); 8310 } 8311 8312 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8313 if (!net_eq(net, dev_net(iter->dev))) 8314 continue; 8315 netdev_adjacent_sysfs_del(iter->dev, oldname, 8316 &iter->dev->adj_list.upper); 8317 netdev_adjacent_sysfs_add(iter->dev, dev, 8318 &iter->dev->adj_list.upper); 8319 } 8320 } 8321 8322 void *netdev_lower_dev_get_private(struct net_device *dev, 8323 struct net_device *lower_dev) 8324 { 8325 struct netdev_adjacent *lower; 8326 8327 if (!lower_dev) 8328 return NULL; 8329 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8330 if (!lower) 8331 return NULL; 8332 8333 return lower->private; 8334 } 8335 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8336 8337 8338 /** 8339 * netdev_lower_state_changed - Dispatch event about lower device state change 8340 * @lower_dev: device 8341 * @lower_state_info: state to dispatch 8342 * 8343 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8344 * The caller must hold the RTNL lock. 8345 */ 8346 void netdev_lower_state_changed(struct net_device *lower_dev, 8347 void *lower_state_info) 8348 { 8349 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8350 .info.dev = lower_dev, 8351 }; 8352 8353 ASSERT_RTNL(); 8354 changelowerstate_info.lower_state_info = lower_state_info; 8355 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8356 &changelowerstate_info.info); 8357 } 8358 EXPORT_SYMBOL(netdev_lower_state_changed); 8359 8360 static void dev_change_rx_flags(struct net_device *dev, int flags) 8361 { 8362 const struct net_device_ops *ops = dev->netdev_ops; 8363 8364 if (ops->ndo_change_rx_flags) 8365 ops->ndo_change_rx_flags(dev, flags); 8366 } 8367 8368 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8369 { 8370 unsigned int old_flags = dev->flags; 8371 kuid_t uid; 8372 kgid_t gid; 8373 8374 ASSERT_RTNL(); 8375 8376 dev->flags |= IFF_PROMISC; 8377 dev->promiscuity += inc; 8378 if (dev->promiscuity == 0) { 8379 /* 8380 * Avoid overflow. 8381 * If inc causes overflow, untouch promisc and return error. 8382 */ 8383 if (inc < 0) 8384 dev->flags &= ~IFF_PROMISC; 8385 else { 8386 dev->promiscuity -= inc; 8387 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8388 return -EOVERFLOW; 8389 } 8390 } 8391 if (dev->flags != old_flags) { 8392 netdev_info(dev, "%s promiscuous mode\n", 8393 dev->flags & IFF_PROMISC ? "entered" : "left"); 8394 if (audit_enabled) { 8395 current_uid_gid(&uid, &gid); 8396 audit_log(audit_context(), GFP_ATOMIC, 8397 AUDIT_ANOM_PROMISCUOUS, 8398 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8399 dev->name, (dev->flags & IFF_PROMISC), 8400 (old_flags & IFF_PROMISC), 8401 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8402 from_kuid(&init_user_ns, uid), 8403 from_kgid(&init_user_ns, gid), 8404 audit_get_sessionid(current)); 8405 } 8406 8407 dev_change_rx_flags(dev, IFF_PROMISC); 8408 } 8409 if (notify) 8410 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8411 return 0; 8412 } 8413 8414 /** 8415 * dev_set_promiscuity - update promiscuity count on a device 8416 * @dev: device 8417 * @inc: modifier 8418 * 8419 * Add or remove promiscuity from a device. While the count in the device 8420 * remains above zero the interface remains promiscuous. Once it hits zero 8421 * the device reverts back to normal filtering operation. A negative inc 8422 * value is used to drop promiscuity on the device. 8423 * Return 0 if successful or a negative errno code on error. 8424 */ 8425 int dev_set_promiscuity(struct net_device *dev, int inc) 8426 { 8427 unsigned int old_flags = dev->flags; 8428 int err; 8429 8430 err = __dev_set_promiscuity(dev, inc, true); 8431 if (err < 0) 8432 return err; 8433 if (dev->flags != old_flags) 8434 dev_set_rx_mode(dev); 8435 return err; 8436 } 8437 EXPORT_SYMBOL(dev_set_promiscuity); 8438 8439 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8440 { 8441 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8442 8443 ASSERT_RTNL(); 8444 8445 dev->flags |= IFF_ALLMULTI; 8446 dev->allmulti += inc; 8447 if (dev->allmulti == 0) { 8448 /* 8449 * Avoid overflow. 8450 * If inc causes overflow, untouch allmulti and return error. 8451 */ 8452 if (inc < 0) 8453 dev->flags &= ~IFF_ALLMULTI; 8454 else { 8455 dev->allmulti -= inc; 8456 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8457 return -EOVERFLOW; 8458 } 8459 } 8460 if (dev->flags ^ old_flags) { 8461 netdev_info(dev, "%s allmulticast mode\n", 8462 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8463 dev_change_rx_flags(dev, IFF_ALLMULTI); 8464 dev_set_rx_mode(dev); 8465 if (notify) 8466 __dev_notify_flags(dev, old_flags, 8467 dev->gflags ^ old_gflags, 0, NULL); 8468 } 8469 return 0; 8470 } 8471 8472 /** 8473 * dev_set_allmulti - update allmulti count on a device 8474 * @dev: device 8475 * @inc: modifier 8476 * 8477 * Add or remove reception of all multicast frames to a device. While the 8478 * count in the device remains above zero the interface remains listening 8479 * to all interfaces. Once it hits zero the device reverts back to normal 8480 * filtering operation. A negative @inc value is used to drop the counter 8481 * when releasing a resource needing all multicasts. 8482 * Return 0 if successful or a negative errno code on error. 8483 */ 8484 8485 int dev_set_allmulti(struct net_device *dev, int inc) 8486 { 8487 return __dev_set_allmulti(dev, inc, true); 8488 } 8489 EXPORT_SYMBOL(dev_set_allmulti); 8490 8491 /* 8492 * Upload unicast and multicast address lists to device and 8493 * configure RX filtering. When the device doesn't support unicast 8494 * filtering it is put in promiscuous mode while unicast addresses 8495 * are present. 8496 */ 8497 void __dev_set_rx_mode(struct net_device *dev) 8498 { 8499 const struct net_device_ops *ops = dev->netdev_ops; 8500 8501 /* dev_open will call this function so the list will stay sane. */ 8502 if (!(dev->flags&IFF_UP)) 8503 return; 8504 8505 if (!netif_device_present(dev)) 8506 return; 8507 8508 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8509 /* Unicast addresses changes may only happen under the rtnl, 8510 * therefore calling __dev_set_promiscuity here is safe. 8511 */ 8512 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8513 __dev_set_promiscuity(dev, 1, false); 8514 dev->uc_promisc = true; 8515 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8516 __dev_set_promiscuity(dev, -1, false); 8517 dev->uc_promisc = false; 8518 } 8519 } 8520 8521 if (ops->ndo_set_rx_mode) 8522 ops->ndo_set_rx_mode(dev); 8523 } 8524 8525 void dev_set_rx_mode(struct net_device *dev) 8526 { 8527 netif_addr_lock_bh(dev); 8528 __dev_set_rx_mode(dev); 8529 netif_addr_unlock_bh(dev); 8530 } 8531 8532 /** 8533 * dev_get_flags - get flags reported to userspace 8534 * @dev: device 8535 * 8536 * Get the combination of flag bits exported through APIs to userspace. 8537 */ 8538 unsigned int dev_get_flags(const struct net_device *dev) 8539 { 8540 unsigned int flags; 8541 8542 flags = (dev->flags & ~(IFF_PROMISC | 8543 IFF_ALLMULTI | 8544 IFF_RUNNING | 8545 IFF_LOWER_UP | 8546 IFF_DORMANT)) | 8547 (dev->gflags & (IFF_PROMISC | 8548 IFF_ALLMULTI)); 8549 8550 if (netif_running(dev)) { 8551 if (netif_oper_up(dev)) 8552 flags |= IFF_RUNNING; 8553 if (netif_carrier_ok(dev)) 8554 flags |= IFF_LOWER_UP; 8555 if (netif_dormant(dev)) 8556 flags |= IFF_DORMANT; 8557 } 8558 8559 return flags; 8560 } 8561 EXPORT_SYMBOL(dev_get_flags); 8562 8563 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8564 struct netlink_ext_ack *extack) 8565 { 8566 unsigned int old_flags = dev->flags; 8567 int ret; 8568 8569 ASSERT_RTNL(); 8570 8571 /* 8572 * Set the flags on our device. 8573 */ 8574 8575 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8576 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8577 IFF_AUTOMEDIA)) | 8578 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8579 IFF_ALLMULTI)); 8580 8581 /* 8582 * Load in the correct multicast list now the flags have changed. 8583 */ 8584 8585 if ((old_flags ^ flags) & IFF_MULTICAST) 8586 dev_change_rx_flags(dev, IFF_MULTICAST); 8587 8588 dev_set_rx_mode(dev); 8589 8590 /* 8591 * Have we downed the interface. We handle IFF_UP ourselves 8592 * according to user attempts to set it, rather than blindly 8593 * setting it. 8594 */ 8595 8596 ret = 0; 8597 if ((old_flags ^ flags) & IFF_UP) { 8598 if (old_flags & IFF_UP) 8599 __dev_close(dev); 8600 else 8601 ret = __dev_open(dev, extack); 8602 } 8603 8604 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8605 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8606 unsigned int old_flags = dev->flags; 8607 8608 dev->gflags ^= IFF_PROMISC; 8609 8610 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8611 if (dev->flags != old_flags) 8612 dev_set_rx_mode(dev); 8613 } 8614 8615 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8616 * is important. Some (broken) drivers set IFF_PROMISC, when 8617 * IFF_ALLMULTI is requested not asking us and not reporting. 8618 */ 8619 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8620 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8621 8622 dev->gflags ^= IFF_ALLMULTI; 8623 __dev_set_allmulti(dev, inc, false); 8624 } 8625 8626 return ret; 8627 } 8628 8629 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8630 unsigned int gchanges, u32 portid, 8631 const struct nlmsghdr *nlh) 8632 { 8633 unsigned int changes = dev->flags ^ old_flags; 8634 8635 if (gchanges) 8636 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8637 8638 if (changes & IFF_UP) { 8639 if (dev->flags & IFF_UP) 8640 call_netdevice_notifiers(NETDEV_UP, dev); 8641 else 8642 call_netdevice_notifiers(NETDEV_DOWN, dev); 8643 } 8644 8645 if (dev->flags & IFF_UP && 8646 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8647 struct netdev_notifier_change_info change_info = { 8648 .info = { 8649 .dev = dev, 8650 }, 8651 .flags_changed = changes, 8652 }; 8653 8654 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8655 } 8656 } 8657 8658 /** 8659 * dev_change_flags - change device settings 8660 * @dev: device 8661 * @flags: device state flags 8662 * @extack: netlink extended ack 8663 * 8664 * Change settings on device based state flags. The flags are 8665 * in the userspace exported format. 8666 */ 8667 int dev_change_flags(struct net_device *dev, unsigned int flags, 8668 struct netlink_ext_ack *extack) 8669 { 8670 int ret; 8671 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8672 8673 ret = __dev_change_flags(dev, flags, extack); 8674 if (ret < 0) 8675 return ret; 8676 8677 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8678 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8679 return ret; 8680 } 8681 EXPORT_SYMBOL(dev_change_flags); 8682 8683 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8684 { 8685 const struct net_device_ops *ops = dev->netdev_ops; 8686 8687 if (ops->ndo_change_mtu) 8688 return ops->ndo_change_mtu(dev, new_mtu); 8689 8690 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8691 WRITE_ONCE(dev->mtu, new_mtu); 8692 return 0; 8693 } 8694 EXPORT_SYMBOL(__dev_set_mtu); 8695 8696 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8697 struct netlink_ext_ack *extack) 8698 { 8699 /* MTU must be positive, and in range */ 8700 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8701 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8702 return -EINVAL; 8703 } 8704 8705 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8706 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8707 return -EINVAL; 8708 } 8709 return 0; 8710 } 8711 8712 /** 8713 * dev_set_mtu_ext - Change maximum transfer unit 8714 * @dev: device 8715 * @new_mtu: new transfer unit 8716 * @extack: netlink extended ack 8717 * 8718 * Change the maximum transfer size of the network device. 8719 */ 8720 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8721 struct netlink_ext_ack *extack) 8722 { 8723 int err, orig_mtu; 8724 8725 if (new_mtu == dev->mtu) 8726 return 0; 8727 8728 err = dev_validate_mtu(dev, new_mtu, extack); 8729 if (err) 8730 return err; 8731 8732 if (!netif_device_present(dev)) 8733 return -ENODEV; 8734 8735 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8736 err = notifier_to_errno(err); 8737 if (err) 8738 return err; 8739 8740 orig_mtu = dev->mtu; 8741 err = __dev_set_mtu(dev, new_mtu); 8742 8743 if (!err) { 8744 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8745 orig_mtu); 8746 err = notifier_to_errno(err); 8747 if (err) { 8748 /* setting mtu back and notifying everyone again, 8749 * so that they have a chance to revert changes. 8750 */ 8751 __dev_set_mtu(dev, orig_mtu); 8752 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8753 new_mtu); 8754 } 8755 } 8756 return err; 8757 } 8758 8759 int dev_set_mtu(struct net_device *dev, int new_mtu) 8760 { 8761 struct netlink_ext_ack extack; 8762 int err; 8763 8764 memset(&extack, 0, sizeof(extack)); 8765 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8766 if (err && extack._msg) 8767 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8768 return err; 8769 } 8770 EXPORT_SYMBOL(dev_set_mtu); 8771 8772 /** 8773 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8774 * @dev: device 8775 * @new_len: new tx queue length 8776 */ 8777 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8778 { 8779 unsigned int orig_len = dev->tx_queue_len; 8780 int res; 8781 8782 if (new_len != (unsigned int)new_len) 8783 return -ERANGE; 8784 8785 if (new_len != orig_len) { 8786 dev->tx_queue_len = new_len; 8787 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8788 res = notifier_to_errno(res); 8789 if (res) 8790 goto err_rollback; 8791 res = dev_qdisc_change_tx_queue_len(dev); 8792 if (res) 8793 goto err_rollback; 8794 } 8795 8796 return 0; 8797 8798 err_rollback: 8799 netdev_err(dev, "refused to change device tx_queue_len\n"); 8800 dev->tx_queue_len = orig_len; 8801 return res; 8802 } 8803 8804 /** 8805 * dev_set_group - Change group this device belongs to 8806 * @dev: device 8807 * @new_group: group this device should belong to 8808 */ 8809 void dev_set_group(struct net_device *dev, int new_group) 8810 { 8811 dev->group = new_group; 8812 } 8813 8814 /** 8815 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8816 * @dev: device 8817 * @addr: new address 8818 * @extack: netlink extended ack 8819 */ 8820 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8821 struct netlink_ext_ack *extack) 8822 { 8823 struct netdev_notifier_pre_changeaddr_info info = { 8824 .info.dev = dev, 8825 .info.extack = extack, 8826 .dev_addr = addr, 8827 }; 8828 int rc; 8829 8830 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8831 return notifier_to_errno(rc); 8832 } 8833 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8834 8835 /** 8836 * dev_set_mac_address - Change Media Access Control Address 8837 * @dev: device 8838 * @sa: new address 8839 * @extack: netlink extended ack 8840 * 8841 * Change the hardware (MAC) address of the device 8842 */ 8843 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8844 struct netlink_ext_ack *extack) 8845 { 8846 const struct net_device_ops *ops = dev->netdev_ops; 8847 int err; 8848 8849 if (!ops->ndo_set_mac_address) 8850 return -EOPNOTSUPP; 8851 if (sa->sa_family != dev->type) 8852 return -EINVAL; 8853 if (!netif_device_present(dev)) 8854 return -ENODEV; 8855 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8856 if (err) 8857 return err; 8858 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 8859 err = ops->ndo_set_mac_address(dev, sa); 8860 if (err) 8861 return err; 8862 } 8863 dev->addr_assign_type = NET_ADDR_SET; 8864 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8865 add_device_randomness(dev->dev_addr, dev->addr_len); 8866 return 0; 8867 } 8868 EXPORT_SYMBOL(dev_set_mac_address); 8869 8870 static DECLARE_RWSEM(dev_addr_sem); 8871 8872 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8873 struct netlink_ext_ack *extack) 8874 { 8875 int ret; 8876 8877 down_write(&dev_addr_sem); 8878 ret = dev_set_mac_address(dev, sa, extack); 8879 up_write(&dev_addr_sem); 8880 return ret; 8881 } 8882 EXPORT_SYMBOL(dev_set_mac_address_user); 8883 8884 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8885 { 8886 size_t size = sizeof(sa->sa_data_min); 8887 struct net_device *dev; 8888 int ret = 0; 8889 8890 down_read(&dev_addr_sem); 8891 rcu_read_lock(); 8892 8893 dev = dev_get_by_name_rcu(net, dev_name); 8894 if (!dev) { 8895 ret = -ENODEV; 8896 goto unlock; 8897 } 8898 if (!dev->addr_len) 8899 memset(sa->sa_data, 0, size); 8900 else 8901 memcpy(sa->sa_data, dev->dev_addr, 8902 min_t(size_t, size, dev->addr_len)); 8903 sa->sa_family = dev->type; 8904 8905 unlock: 8906 rcu_read_unlock(); 8907 up_read(&dev_addr_sem); 8908 return ret; 8909 } 8910 EXPORT_SYMBOL(dev_get_mac_address); 8911 8912 /** 8913 * dev_change_carrier - Change device carrier 8914 * @dev: device 8915 * @new_carrier: new value 8916 * 8917 * Change device carrier 8918 */ 8919 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8920 { 8921 const struct net_device_ops *ops = dev->netdev_ops; 8922 8923 if (!ops->ndo_change_carrier) 8924 return -EOPNOTSUPP; 8925 if (!netif_device_present(dev)) 8926 return -ENODEV; 8927 return ops->ndo_change_carrier(dev, new_carrier); 8928 } 8929 8930 /** 8931 * dev_get_phys_port_id - Get device physical port ID 8932 * @dev: device 8933 * @ppid: port ID 8934 * 8935 * Get device physical port ID 8936 */ 8937 int dev_get_phys_port_id(struct net_device *dev, 8938 struct netdev_phys_item_id *ppid) 8939 { 8940 const struct net_device_ops *ops = dev->netdev_ops; 8941 8942 if (!ops->ndo_get_phys_port_id) 8943 return -EOPNOTSUPP; 8944 return ops->ndo_get_phys_port_id(dev, ppid); 8945 } 8946 8947 /** 8948 * dev_get_phys_port_name - Get device physical port name 8949 * @dev: device 8950 * @name: port name 8951 * @len: limit of bytes to copy to name 8952 * 8953 * Get device physical port name 8954 */ 8955 int dev_get_phys_port_name(struct net_device *dev, 8956 char *name, size_t len) 8957 { 8958 const struct net_device_ops *ops = dev->netdev_ops; 8959 int err; 8960 8961 if (ops->ndo_get_phys_port_name) { 8962 err = ops->ndo_get_phys_port_name(dev, name, len); 8963 if (err != -EOPNOTSUPP) 8964 return err; 8965 } 8966 return devlink_compat_phys_port_name_get(dev, name, len); 8967 } 8968 8969 /** 8970 * dev_get_port_parent_id - Get the device's port parent identifier 8971 * @dev: network device 8972 * @ppid: pointer to a storage for the port's parent identifier 8973 * @recurse: allow/disallow recursion to lower devices 8974 * 8975 * Get the devices's port parent identifier 8976 */ 8977 int dev_get_port_parent_id(struct net_device *dev, 8978 struct netdev_phys_item_id *ppid, 8979 bool recurse) 8980 { 8981 const struct net_device_ops *ops = dev->netdev_ops; 8982 struct netdev_phys_item_id first = { }; 8983 struct net_device *lower_dev; 8984 struct list_head *iter; 8985 int err; 8986 8987 if (ops->ndo_get_port_parent_id) { 8988 err = ops->ndo_get_port_parent_id(dev, ppid); 8989 if (err != -EOPNOTSUPP) 8990 return err; 8991 } 8992 8993 err = devlink_compat_switch_id_get(dev, ppid); 8994 if (!recurse || err != -EOPNOTSUPP) 8995 return err; 8996 8997 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8998 err = dev_get_port_parent_id(lower_dev, ppid, true); 8999 if (err) 9000 break; 9001 if (!first.id_len) 9002 first = *ppid; 9003 else if (memcmp(&first, ppid, sizeof(*ppid))) 9004 return -EOPNOTSUPP; 9005 } 9006 9007 return err; 9008 } 9009 EXPORT_SYMBOL(dev_get_port_parent_id); 9010 9011 /** 9012 * netdev_port_same_parent_id - Indicate if two network devices have 9013 * the same port parent identifier 9014 * @a: first network device 9015 * @b: second network device 9016 */ 9017 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9018 { 9019 struct netdev_phys_item_id a_id = { }; 9020 struct netdev_phys_item_id b_id = { }; 9021 9022 if (dev_get_port_parent_id(a, &a_id, true) || 9023 dev_get_port_parent_id(b, &b_id, true)) 9024 return false; 9025 9026 return netdev_phys_item_id_same(&a_id, &b_id); 9027 } 9028 EXPORT_SYMBOL(netdev_port_same_parent_id); 9029 9030 /** 9031 * dev_change_proto_down - set carrier according to proto_down. 9032 * 9033 * @dev: device 9034 * @proto_down: new value 9035 */ 9036 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9037 { 9038 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9039 return -EOPNOTSUPP; 9040 if (!netif_device_present(dev)) 9041 return -ENODEV; 9042 if (proto_down) 9043 netif_carrier_off(dev); 9044 else 9045 netif_carrier_on(dev); 9046 dev->proto_down = proto_down; 9047 return 0; 9048 } 9049 9050 /** 9051 * dev_change_proto_down_reason - proto down reason 9052 * 9053 * @dev: device 9054 * @mask: proto down mask 9055 * @value: proto down value 9056 */ 9057 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9058 u32 value) 9059 { 9060 int b; 9061 9062 if (!mask) { 9063 dev->proto_down_reason = value; 9064 } else { 9065 for_each_set_bit(b, &mask, 32) { 9066 if (value & (1 << b)) 9067 dev->proto_down_reason |= BIT(b); 9068 else 9069 dev->proto_down_reason &= ~BIT(b); 9070 } 9071 } 9072 } 9073 9074 struct bpf_xdp_link { 9075 struct bpf_link link; 9076 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9077 int flags; 9078 }; 9079 9080 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9081 { 9082 if (flags & XDP_FLAGS_HW_MODE) 9083 return XDP_MODE_HW; 9084 if (flags & XDP_FLAGS_DRV_MODE) 9085 return XDP_MODE_DRV; 9086 if (flags & XDP_FLAGS_SKB_MODE) 9087 return XDP_MODE_SKB; 9088 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9089 } 9090 9091 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9092 { 9093 switch (mode) { 9094 case XDP_MODE_SKB: 9095 return generic_xdp_install; 9096 case XDP_MODE_DRV: 9097 case XDP_MODE_HW: 9098 return dev->netdev_ops->ndo_bpf; 9099 default: 9100 return NULL; 9101 } 9102 } 9103 9104 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9105 enum bpf_xdp_mode mode) 9106 { 9107 return dev->xdp_state[mode].link; 9108 } 9109 9110 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9111 enum bpf_xdp_mode mode) 9112 { 9113 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9114 9115 if (link) 9116 return link->link.prog; 9117 return dev->xdp_state[mode].prog; 9118 } 9119 9120 u8 dev_xdp_prog_count(struct net_device *dev) 9121 { 9122 u8 count = 0; 9123 int i; 9124 9125 for (i = 0; i < __MAX_XDP_MODE; i++) 9126 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9127 count++; 9128 return count; 9129 } 9130 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9131 9132 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9133 { 9134 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9135 9136 return prog ? prog->aux->id : 0; 9137 } 9138 9139 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9140 struct bpf_xdp_link *link) 9141 { 9142 dev->xdp_state[mode].link = link; 9143 dev->xdp_state[mode].prog = NULL; 9144 } 9145 9146 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9147 struct bpf_prog *prog) 9148 { 9149 dev->xdp_state[mode].link = NULL; 9150 dev->xdp_state[mode].prog = prog; 9151 } 9152 9153 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9154 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9155 u32 flags, struct bpf_prog *prog) 9156 { 9157 struct netdev_bpf xdp; 9158 int err; 9159 9160 memset(&xdp, 0, sizeof(xdp)); 9161 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9162 xdp.extack = extack; 9163 xdp.flags = flags; 9164 xdp.prog = prog; 9165 9166 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9167 * "moved" into driver), so they don't increment it on their own, but 9168 * they do decrement refcnt when program is detached or replaced. 9169 * Given net_device also owns link/prog, we need to bump refcnt here 9170 * to prevent drivers from underflowing it. 9171 */ 9172 if (prog) 9173 bpf_prog_inc(prog); 9174 err = bpf_op(dev, &xdp); 9175 if (err) { 9176 if (prog) 9177 bpf_prog_put(prog); 9178 return err; 9179 } 9180 9181 if (mode != XDP_MODE_HW) 9182 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9183 9184 return 0; 9185 } 9186 9187 static void dev_xdp_uninstall(struct net_device *dev) 9188 { 9189 struct bpf_xdp_link *link; 9190 struct bpf_prog *prog; 9191 enum bpf_xdp_mode mode; 9192 bpf_op_t bpf_op; 9193 9194 ASSERT_RTNL(); 9195 9196 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9197 prog = dev_xdp_prog(dev, mode); 9198 if (!prog) 9199 continue; 9200 9201 bpf_op = dev_xdp_bpf_op(dev, mode); 9202 if (!bpf_op) 9203 continue; 9204 9205 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9206 9207 /* auto-detach link from net device */ 9208 link = dev_xdp_link(dev, mode); 9209 if (link) 9210 link->dev = NULL; 9211 else 9212 bpf_prog_put(prog); 9213 9214 dev_xdp_set_link(dev, mode, NULL); 9215 } 9216 } 9217 9218 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9219 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9220 struct bpf_prog *old_prog, u32 flags) 9221 { 9222 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9223 struct bpf_prog *cur_prog; 9224 struct net_device *upper; 9225 struct list_head *iter; 9226 enum bpf_xdp_mode mode; 9227 bpf_op_t bpf_op; 9228 int err; 9229 9230 ASSERT_RTNL(); 9231 9232 /* either link or prog attachment, never both */ 9233 if (link && (new_prog || old_prog)) 9234 return -EINVAL; 9235 /* link supports only XDP mode flags */ 9236 if (link && (flags & ~XDP_FLAGS_MODES)) { 9237 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9238 return -EINVAL; 9239 } 9240 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9241 if (num_modes > 1) { 9242 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9243 return -EINVAL; 9244 } 9245 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9246 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9247 NL_SET_ERR_MSG(extack, 9248 "More than one program loaded, unset mode is ambiguous"); 9249 return -EINVAL; 9250 } 9251 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9252 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9253 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9254 return -EINVAL; 9255 } 9256 9257 mode = dev_xdp_mode(dev, flags); 9258 /* can't replace attached link */ 9259 if (dev_xdp_link(dev, mode)) { 9260 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9261 return -EBUSY; 9262 } 9263 9264 /* don't allow if an upper device already has a program */ 9265 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9266 if (dev_xdp_prog_count(upper) > 0) { 9267 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9268 return -EEXIST; 9269 } 9270 } 9271 9272 cur_prog = dev_xdp_prog(dev, mode); 9273 /* can't replace attached prog with link */ 9274 if (link && cur_prog) { 9275 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9276 return -EBUSY; 9277 } 9278 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9279 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9280 return -EEXIST; 9281 } 9282 9283 /* put effective new program into new_prog */ 9284 if (link) 9285 new_prog = link->link.prog; 9286 9287 if (new_prog) { 9288 bool offload = mode == XDP_MODE_HW; 9289 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9290 ? XDP_MODE_DRV : XDP_MODE_SKB; 9291 9292 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9293 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9294 return -EBUSY; 9295 } 9296 if (!offload && dev_xdp_prog(dev, other_mode)) { 9297 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9298 return -EEXIST; 9299 } 9300 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9301 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9302 return -EINVAL; 9303 } 9304 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9305 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9306 return -EINVAL; 9307 } 9308 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9309 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9310 return -EINVAL; 9311 } 9312 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9313 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9314 return -EINVAL; 9315 } 9316 } 9317 9318 /* don't call drivers if the effective program didn't change */ 9319 if (new_prog != cur_prog) { 9320 bpf_op = dev_xdp_bpf_op(dev, mode); 9321 if (!bpf_op) { 9322 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9323 return -EOPNOTSUPP; 9324 } 9325 9326 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9327 if (err) 9328 return err; 9329 } 9330 9331 if (link) 9332 dev_xdp_set_link(dev, mode, link); 9333 else 9334 dev_xdp_set_prog(dev, mode, new_prog); 9335 if (cur_prog) 9336 bpf_prog_put(cur_prog); 9337 9338 return 0; 9339 } 9340 9341 static int dev_xdp_attach_link(struct net_device *dev, 9342 struct netlink_ext_ack *extack, 9343 struct bpf_xdp_link *link) 9344 { 9345 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9346 } 9347 9348 static int dev_xdp_detach_link(struct net_device *dev, 9349 struct netlink_ext_ack *extack, 9350 struct bpf_xdp_link *link) 9351 { 9352 enum bpf_xdp_mode mode; 9353 bpf_op_t bpf_op; 9354 9355 ASSERT_RTNL(); 9356 9357 mode = dev_xdp_mode(dev, link->flags); 9358 if (dev_xdp_link(dev, mode) != link) 9359 return -EINVAL; 9360 9361 bpf_op = dev_xdp_bpf_op(dev, mode); 9362 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9363 dev_xdp_set_link(dev, mode, NULL); 9364 return 0; 9365 } 9366 9367 static void bpf_xdp_link_release(struct bpf_link *link) 9368 { 9369 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9370 9371 rtnl_lock(); 9372 9373 /* if racing with net_device's tear down, xdp_link->dev might be 9374 * already NULL, in which case link was already auto-detached 9375 */ 9376 if (xdp_link->dev) { 9377 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9378 xdp_link->dev = NULL; 9379 } 9380 9381 rtnl_unlock(); 9382 } 9383 9384 static int bpf_xdp_link_detach(struct bpf_link *link) 9385 { 9386 bpf_xdp_link_release(link); 9387 return 0; 9388 } 9389 9390 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9391 { 9392 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9393 9394 kfree(xdp_link); 9395 } 9396 9397 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9398 struct seq_file *seq) 9399 { 9400 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9401 u32 ifindex = 0; 9402 9403 rtnl_lock(); 9404 if (xdp_link->dev) 9405 ifindex = xdp_link->dev->ifindex; 9406 rtnl_unlock(); 9407 9408 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9409 } 9410 9411 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9412 struct bpf_link_info *info) 9413 { 9414 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9415 u32 ifindex = 0; 9416 9417 rtnl_lock(); 9418 if (xdp_link->dev) 9419 ifindex = xdp_link->dev->ifindex; 9420 rtnl_unlock(); 9421 9422 info->xdp.ifindex = ifindex; 9423 return 0; 9424 } 9425 9426 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9427 struct bpf_prog *old_prog) 9428 { 9429 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9430 enum bpf_xdp_mode mode; 9431 bpf_op_t bpf_op; 9432 int err = 0; 9433 9434 rtnl_lock(); 9435 9436 /* link might have been auto-released already, so fail */ 9437 if (!xdp_link->dev) { 9438 err = -ENOLINK; 9439 goto out_unlock; 9440 } 9441 9442 if (old_prog && link->prog != old_prog) { 9443 err = -EPERM; 9444 goto out_unlock; 9445 } 9446 old_prog = link->prog; 9447 if (old_prog->type != new_prog->type || 9448 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9449 err = -EINVAL; 9450 goto out_unlock; 9451 } 9452 9453 if (old_prog == new_prog) { 9454 /* no-op, don't disturb drivers */ 9455 bpf_prog_put(new_prog); 9456 goto out_unlock; 9457 } 9458 9459 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9460 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9461 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9462 xdp_link->flags, new_prog); 9463 if (err) 9464 goto out_unlock; 9465 9466 old_prog = xchg(&link->prog, new_prog); 9467 bpf_prog_put(old_prog); 9468 9469 out_unlock: 9470 rtnl_unlock(); 9471 return err; 9472 } 9473 9474 static const struct bpf_link_ops bpf_xdp_link_lops = { 9475 .release = bpf_xdp_link_release, 9476 .dealloc = bpf_xdp_link_dealloc, 9477 .detach = bpf_xdp_link_detach, 9478 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9479 .fill_link_info = bpf_xdp_link_fill_link_info, 9480 .update_prog = bpf_xdp_link_update, 9481 }; 9482 9483 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9484 { 9485 struct net *net = current->nsproxy->net_ns; 9486 struct bpf_link_primer link_primer; 9487 struct netlink_ext_ack extack = {}; 9488 struct bpf_xdp_link *link; 9489 struct net_device *dev; 9490 int err, fd; 9491 9492 rtnl_lock(); 9493 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9494 if (!dev) { 9495 rtnl_unlock(); 9496 return -EINVAL; 9497 } 9498 9499 link = kzalloc(sizeof(*link), GFP_USER); 9500 if (!link) { 9501 err = -ENOMEM; 9502 goto unlock; 9503 } 9504 9505 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9506 link->dev = dev; 9507 link->flags = attr->link_create.flags; 9508 9509 err = bpf_link_prime(&link->link, &link_primer); 9510 if (err) { 9511 kfree(link); 9512 goto unlock; 9513 } 9514 9515 err = dev_xdp_attach_link(dev, &extack, link); 9516 rtnl_unlock(); 9517 9518 if (err) { 9519 link->dev = NULL; 9520 bpf_link_cleanup(&link_primer); 9521 trace_bpf_xdp_link_attach_failed(extack._msg); 9522 goto out_put_dev; 9523 } 9524 9525 fd = bpf_link_settle(&link_primer); 9526 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9527 dev_put(dev); 9528 return fd; 9529 9530 unlock: 9531 rtnl_unlock(); 9532 9533 out_put_dev: 9534 dev_put(dev); 9535 return err; 9536 } 9537 9538 /** 9539 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9540 * @dev: device 9541 * @extack: netlink extended ack 9542 * @fd: new program fd or negative value to clear 9543 * @expected_fd: old program fd that userspace expects to replace or clear 9544 * @flags: xdp-related flags 9545 * 9546 * Set or clear a bpf program for a device 9547 */ 9548 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9549 int fd, int expected_fd, u32 flags) 9550 { 9551 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9552 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9553 int err; 9554 9555 ASSERT_RTNL(); 9556 9557 if (fd >= 0) { 9558 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9559 mode != XDP_MODE_SKB); 9560 if (IS_ERR(new_prog)) 9561 return PTR_ERR(new_prog); 9562 } 9563 9564 if (expected_fd >= 0) { 9565 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9566 mode != XDP_MODE_SKB); 9567 if (IS_ERR(old_prog)) { 9568 err = PTR_ERR(old_prog); 9569 old_prog = NULL; 9570 goto err_out; 9571 } 9572 } 9573 9574 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9575 9576 err_out: 9577 if (err && new_prog) 9578 bpf_prog_put(new_prog); 9579 if (old_prog) 9580 bpf_prog_put(old_prog); 9581 return err; 9582 } 9583 9584 /** 9585 * dev_index_reserve() - allocate an ifindex in a namespace 9586 * @net: the applicable net namespace 9587 * @ifindex: requested ifindex, pass %0 to get one allocated 9588 * 9589 * Allocate a ifindex for a new device. Caller must either use the ifindex 9590 * to store the device (via list_netdevice()) or call dev_index_release() 9591 * to give the index up. 9592 * 9593 * Return: a suitable unique value for a new device interface number or -errno. 9594 */ 9595 static int dev_index_reserve(struct net *net, u32 ifindex) 9596 { 9597 int err; 9598 9599 if (ifindex > INT_MAX) { 9600 DEBUG_NET_WARN_ON_ONCE(1); 9601 return -EINVAL; 9602 } 9603 9604 if (!ifindex) 9605 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9606 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9607 else 9608 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9609 if (err < 0) 9610 return err; 9611 9612 return ifindex; 9613 } 9614 9615 static void dev_index_release(struct net *net, int ifindex) 9616 { 9617 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9618 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9619 } 9620 9621 /* Delayed registration/unregisteration */ 9622 LIST_HEAD(net_todo_list); 9623 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9624 9625 static void net_set_todo(struct net_device *dev) 9626 { 9627 list_add_tail(&dev->todo_list, &net_todo_list); 9628 atomic_inc(&dev_net(dev)->dev_unreg_count); 9629 } 9630 9631 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9632 struct net_device *upper, netdev_features_t features) 9633 { 9634 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9635 netdev_features_t feature; 9636 int feature_bit; 9637 9638 for_each_netdev_feature(upper_disables, feature_bit) { 9639 feature = __NETIF_F_BIT(feature_bit); 9640 if (!(upper->wanted_features & feature) 9641 && (features & feature)) { 9642 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9643 &feature, upper->name); 9644 features &= ~feature; 9645 } 9646 } 9647 9648 return features; 9649 } 9650 9651 static void netdev_sync_lower_features(struct net_device *upper, 9652 struct net_device *lower, netdev_features_t features) 9653 { 9654 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9655 netdev_features_t feature; 9656 int feature_bit; 9657 9658 for_each_netdev_feature(upper_disables, feature_bit) { 9659 feature = __NETIF_F_BIT(feature_bit); 9660 if (!(features & feature) && (lower->features & feature)) { 9661 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9662 &feature, lower->name); 9663 lower->wanted_features &= ~feature; 9664 __netdev_update_features(lower); 9665 9666 if (unlikely(lower->features & feature)) 9667 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9668 &feature, lower->name); 9669 else 9670 netdev_features_change(lower); 9671 } 9672 } 9673 } 9674 9675 static netdev_features_t netdev_fix_features(struct net_device *dev, 9676 netdev_features_t features) 9677 { 9678 /* Fix illegal checksum combinations */ 9679 if ((features & NETIF_F_HW_CSUM) && 9680 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9681 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9682 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9683 } 9684 9685 /* TSO requires that SG is present as well. */ 9686 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9687 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9688 features &= ~NETIF_F_ALL_TSO; 9689 } 9690 9691 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9692 !(features & NETIF_F_IP_CSUM)) { 9693 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9694 features &= ~NETIF_F_TSO; 9695 features &= ~NETIF_F_TSO_ECN; 9696 } 9697 9698 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9699 !(features & NETIF_F_IPV6_CSUM)) { 9700 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9701 features &= ~NETIF_F_TSO6; 9702 } 9703 9704 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9705 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9706 features &= ~NETIF_F_TSO_MANGLEID; 9707 9708 /* TSO ECN requires that TSO is present as well. */ 9709 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9710 features &= ~NETIF_F_TSO_ECN; 9711 9712 /* Software GSO depends on SG. */ 9713 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9714 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9715 features &= ~NETIF_F_GSO; 9716 } 9717 9718 /* GSO partial features require GSO partial be set */ 9719 if ((features & dev->gso_partial_features) && 9720 !(features & NETIF_F_GSO_PARTIAL)) { 9721 netdev_dbg(dev, 9722 "Dropping partially supported GSO features since no GSO partial.\n"); 9723 features &= ~dev->gso_partial_features; 9724 } 9725 9726 if (!(features & NETIF_F_RXCSUM)) { 9727 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9728 * successfully merged by hardware must also have the 9729 * checksum verified by hardware. If the user does not 9730 * want to enable RXCSUM, logically, we should disable GRO_HW. 9731 */ 9732 if (features & NETIF_F_GRO_HW) { 9733 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9734 features &= ~NETIF_F_GRO_HW; 9735 } 9736 } 9737 9738 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9739 if (features & NETIF_F_RXFCS) { 9740 if (features & NETIF_F_LRO) { 9741 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9742 features &= ~NETIF_F_LRO; 9743 } 9744 9745 if (features & NETIF_F_GRO_HW) { 9746 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9747 features &= ~NETIF_F_GRO_HW; 9748 } 9749 } 9750 9751 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9752 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9753 features &= ~NETIF_F_LRO; 9754 } 9755 9756 if (features & NETIF_F_HW_TLS_TX) { 9757 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9758 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9759 bool hw_csum = features & NETIF_F_HW_CSUM; 9760 9761 if (!ip_csum && !hw_csum) { 9762 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9763 features &= ~NETIF_F_HW_TLS_TX; 9764 } 9765 } 9766 9767 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9768 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9769 features &= ~NETIF_F_HW_TLS_RX; 9770 } 9771 9772 return features; 9773 } 9774 9775 int __netdev_update_features(struct net_device *dev) 9776 { 9777 struct net_device *upper, *lower; 9778 netdev_features_t features; 9779 struct list_head *iter; 9780 int err = -1; 9781 9782 ASSERT_RTNL(); 9783 9784 features = netdev_get_wanted_features(dev); 9785 9786 if (dev->netdev_ops->ndo_fix_features) 9787 features = dev->netdev_ops->ndo_fix_features(dev, features); 9788 9789 /* driver might be less strict about feature dependencies */ 9790 features = netdev_fix_features(dev, features); 9791 9792 /* some features can't be enabled if they're off on an upper device */ 9793 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9794 features = netdev_sync_upper_features(dev, upper, features); 9795 9796 if (dev->features == features) 9797 goto sync_lower; 9798 9799 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9800 &dev->features, &features); 9801 9802 if (dev->netdev_ops->ndo_set_features) 9803 err = dev->netdev_ops->ndo_set_features(dev, features); 9804 else 9805 err = 0; 9806 9807 if (unlikely(err < 0)) { 9808 netdev_err(dev, 9809 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9810 err, &features, &dev->features); 9811 /* return non-0 since some features might have changed and 9812 * it's better to fire a spurious notification than miss it 9813 */ 9814 return -1; 9815 } 9816 9817 sync_lower: 9818 /* some features must be disabled on lower devices when disabled 9819 * on an upper device (think: bonding master or bridge) 9820 */ 9821 netdev_for_each_lower_dev(dev, lower, iter) 9822 netdev_sync_lower_features(dev, lower, features); 9823 9824 if (!err) { 9825 netdev_features_t diff = features ^ dev->features; 9826 9827 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9828 /* udp_tunnel_{get,drop}_rx_info both need 9829 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9830 * device, or they won't do anything. 9831 * Thus we need to update dev->features 9832 * *before* calling udp_tunnel_get_rx_info, 9833 * but *after* calling udp_tunnel_drop_rx_info. 9834 */ 9835 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9836 dev->features = features; 9837 udp_tunnel_get_rx_info(dev); 9838 } else { 9839 udp_tunnel_drop_rx_info(dev); 9840 } 9841 } 9842 9843 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9844 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9845 dev->features = features; 9846 err |= vlan_get_rx_ctag_filter_info(dev); 9847 } else { 9848 vlan_drop_rx_ctag_filter_info(dev); 9849 } 9850 } 9851 9852 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9853 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9854 dev->features = features; 9855 err |= vlan_get_rx_stag_filter_info(dev); 9856 } else { 9857 vlan_drop_rx_stag_filter_info(dev); 9858 } 9859 } 9860 9861 dev->features = features; 9862 } 9863 9864 return err < 0 ? 0 : 1; 9865 } 9866 9867 /** 9868 * netdev_update_features - recalculate device features 9869 * @dev: the device to check 9870 * 9871 * Recalculate dev->features set and send notifications if it 9872 * has changed. Should be called after driver or hardware dependent 9873 * conditions might have changed that influence the features. 9874 */ 9875 void netdev_update_features(struct net_device *dev) 9876 { 9877 if (__netdev_update_features(dev)) 9878 netdev_features_change(dev); 9879 } 9880 EXPORT_SYMBOL(netdev_update_features); 9881 9882 /** 9883 * netdev_change_features - recalculate device features 9884 * @dev: the device to check 9885 * 9886 * Recalculate dev->features set and send notifications even 9887 * if they have not changed. Should be called instead of 9888 * netdev_update_features() if also dev->vlan_features might 9889 * have changed to allow the changes to be propagated to stacked 9890 * VLAN devices. 9891 */ 9892 void netdev_change_features(struct net_device *dev) 9893 { 9894 __netdev_update_features(dev); 9895 netdev_features_change(dev); 9896 } 9897 EXPORT_SYMBOL(netdev_change_features); 9898 9899 /** 9900 * netif_stacked_transfer_operstate - transfer operstate 9901 * @rootdev: the root or lower level device to transfer state from 9902 * @dev: the device to transfer operstate to 9903 * 9904 * Transfer operational state from root to device. This is normally 9905 * called when a stacking relationship exists between the root 9906 * device and the device(a leaf device). 9907 */ 9908 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9909 struct net_device *dev) 9910 { 9911 if (rootdev->operstate == IF_OPER_DORMANT) 9912 netif_dormant_on(dev); 9913 else 9914 netif_dormant_off(dev); 9915 9916 if (rootdev->operstate == IF_OPER_TESTING) 9917 netif_testing_on(dev); 9918 else 9919 netif_testing_off(dev); 9920 9921 if (netif_carrier_ok(rootdev)) 9922 netif_carrier_on(dev); 9923 else 9924 netif_carrier_off(dev); 9925 } 9926 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9927 9928 static int netif_alloc_rx_queues(struct net_device *dev) 9929 { 9930 unsigned int i, count = dev->num_rx_queues; 9931 struct netdev_rx_queue *rx; 9932 size_t sz = count * sizeof(*rx); 9933 int err = 0; 9934 9935 BUG_ON(count < 1); 9936 9937 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9938 if (!rx) 9939 return -ENOMEM; 9940 9941 dev->_rx = rx; 9942 9943 for (i = 0; i < count; i++) { 9944 rx[i].dev = dev; 9945 9946 /* XDP RX-queue setup */ 9947 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9948 if (err < 0) 9949 goto err_rxq_info; 9950 } 9951 return 0; 9952 9953 err_rxq_info: 9954 /* Rollback successful reg's and free other resources */ 9955 while (i--) 9956 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9957 kvfree(dev->_rx); 9958 dev->_rx = NULL; 9959 return err; 9960 } 9961 9962 static void netif_free_rx_queues(struct net_device *dev) 9963 { 9964 unsigned int i, count = dev->num_rx_queues; 9965 9966 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9967 if (!dev->_rx) 9968 return; 9969 9970 for (i = 0; i < count; i++) 9971 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9972 9973 kvfree(dev->_rx); 9974 } 9975 9976 static void netdev_init_one_queue(struct net_device *dev, 9977 struct netdev_queue *queue, void *_unused) 9978 { 9979 /* Initialize queue lock */ 9980 spin_lock_init(&queue->_xmit_lock); 9981 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9982 queue->xmit_lock_owner = -1; 9983 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9984 queue->dev = dev; 9985 #ifdef CONFIG_BQL 9986 dql_init(&queue->dql, HZ); 9987 #endif 9988 } 9989 9990 static void netif_free_tx_queues(struct net_device *dev) 9991 { 9992 kvfree(dev->_tx); 9993 } 9994 9995 static int netif_alloc_netdev_queues(struct net_device *dev) 9996 { 9997 unsigned int count = dev->num_tx_queues; 9998 struct netdev_queue *tx; 9999 size_t sz = count * sizeof(*tx); 10000 10001 if (count < 1 || count > 0xffff) 10002 return -EINVAL; 10003 10004 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10005 if (!tx) 10006 return -ENOMEM; 10007 10008 dev->_tx = tx; 10009 10010 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10011 spin_lock_init(&dev->tx_global_lock); 10012 10013 return 0; 10014 } 10015 10016 void netif_tx_stop_all_queues(struct net_device *dev) 10017 { 10018 unsigned int i; 10019 10020 for (i = 0; i < dev->num_tx_queues; i++) { 10021 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10022 10023 netif_tx_stop_queue(txq); 10024 } 10025 } 10026 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10027 10028 /** 10029 * register_netdevice() - register a network device 10030 * @dev: device to register 10031 * 10032 * Take a prepared network device structure and make it externally accessible. 10033 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10034 * Callers must hold the rtnl lock - you may want register_netdev() 10035 * instead of this. 10036 */ 10037 int register_netdevice(struct net_device *dev) 10038 { 10039 int ret; 10040 struct net *net = dev_net(dev); 10041 10042 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10043 NETDEV_FEATURE_COUNT); 10044 BUG_ON(dev_boot_phase); 10045 ASSERT_RTNL(); 10046 10047 might_sleep(); 10048 10049 /* When net_device's are persistent, this will be fatal. */ 10050 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10051 BUG_ON(!net); 10052 10053 ret = ethtool_check_ops(dev->ethtool_ops); 10054 if (ret) 10055 return ret; 10056 10057 spin_lock_init(&dev->addr_list_lock); 10058 netdev_set_addr_lockdep_class(dev); 10059 10060 ret = dev_get_valid_name(net, dev, dev->name); 10061 if (ret < 0) 10062 goto out; 10063 10064 ret = -ENOMEM; 10065 dev->name_node = netdev_name_node_head_alloc(dev); 10066 if (!dev->name_node) 10067 goto out; 10068 10069 /* Init, if this function is available */ 10070 if (dev->netdev_ops->ndo_init) { 10071 ret = dev->netdev_ops->ndo_init(dev); 10072 if (ret) { 10073 if (ret > 0) 10074 ret = -EIO; 10075 goto err_free_name; 10076 } 10077 } 10078 10079 if (((dev->hw_features | dev->features) & 10080 NETIF_F_HW_VLAN_CTAG_FILTER) && 10081 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10082 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10083 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10084 ret = -EINVAL; 10085 goto err_uninit; 10086 } 10087 10088 ret = dev_index_reserve(net, dev->ifindex); 10089 if (ret < 0) 10090 goto err_uninit; 10091 dev->ifindex = ret; 10092 10093 /* Transfer changeable features to wanted_features and enable 10094 * software offloads (GSO and GRO). 10095 */ 10096 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10097 dev->features |= NETIF_F_SOFT_FEATURES; 10098 10099 if (dev->udp_tunnel_nic_info) { 10100 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10101 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10102 } 10103 10104 dev->wanted_features = dev->features & dev->hw_features; 10105 10106 if (!(dev->flags & IFF_LOOPBACK)) 10107 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10108 10109 /* If IPv4 TCP segmentation offload is supported we should also 10110 * allow the device to enable segmenting the frame with the option 10111 * of ignoring a static IP ID value. This doesn't enable the 10112 * feature itself but allows the user to enable it later. 10113 */ 10114 if (dev->hw_features & NETIF_F_TSO) 10115 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10116 if (dev->vlan_features & NETIF_F_TSO) 10117 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10118 if (dev->mpls_features & NETIF_F_TSO) 10119 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10120 if (dev->hw_enc_features & NETIF_F_TSO) 10121 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10122 10123 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10124 */ 10125 dev->vlan_features |= NETIF_F_HIGHDMA; 10126 10127 /* Make NETIF_F_SG inheritable to tunnel devices. 10128 */ 10129 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10130 10131 /* Make NETIF_F_SG inheritable to MPLS. 10132 */ 10133 dev->mpls_features |= NETIF_F_SG; 10134 10135 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10136 ret = notifier_to_errno(ret); 10137 if (ret) 10138 goto err_ifindex_release; 10139 10140 ret = netdev_register_kobject(dev); 10141 write_lock(&dev_base_lock); 10142 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; 10143 write_unlock(&dev_base_lock); 10144 if (ret) 10145 goto err_uninit_notify; 10146 10147 __netdev_update_features(dev); 10148 10149 /* 10150 * Default initial state at registry is that the 10151 * device is present. 10152 */ 10153 10154 set_bit(__LINK_STATE_PRESENT, &dev->state); 10155 10156 linkwatch_init_dev(dev); 10157 10158 dev_init_scheduler(dev); 10159 10160 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10161 list_netdevice(dev); 10162 10163 add_device_randomness(dev->dev_addr, dev->addr_len); 10164 10165 /* If the device has permanent device address, driver should 10166 * set dev_addr and also addr_assign_type should be set to 10167 * NET_ADDR_PERM (default value). 10168 */ 10169 if (dev->addr_assign_type == NET_ADDR_PERM) 10170 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10171 10172 /* Notify protocols, that a new device appeared. */ 10173 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10174 ret = notifier_to_errno(ret); 10175 if (ret) { 10176 /* Expect explicit free_netdev() on failure */ 10177 dev->needs_free_netdev = false; 10178 unregister_netdevice_queue(dev, NULL); 10179 goto out; 10180 } 10181 /* 10182 * Prevent userspace races by waiting until the network 10183 * device is fully setup before sending notifications. 10184 */ 10185 if (!dev->rtnl_link_ops || 10186 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10187 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10188 10189 out: 10190 return ret; 10191 10192 err_uninit_notify: 10193 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10194 err_ifindex_release: 10195 dev_index_release(net, dev->ifindex); 10196 err_uninit: 10197 if (dev->netdev_ops->ndo_uninit) 10198 dev->netdev_ops->ndo_uninit(dev); 10199 if (dev->priv_destructor) 10200 dev->priv_destructor(dev); 10201 err_free_name: 10202 netdev_name_node_free(dev->name_node); 10203 goto out; 10204 } 10205 EXPORT_SYMBOL(register_netdevice); 10206 10207 /** 10208 * init_dummy_netdev - init a dummy network device for NAPI 10209 * @dev: device to init 10210 * 10211 * This takes a network device structure and initialize the minimum 10212 * amount of fields so it can be used to schedule NAPI polls without 10213 * registering a full blown interface. This is to be used by drivers 10214 * that need to tie several hardware interfaces to a single NAPI 10215 * poll scheduler due to HW limitations. 10216 */ 10217 int init_dummy_netdev(struct net_device *dev) 10218 { 10219 /* Clear everything. Note we don't initialize spinlocks 10220 * are they aren't supposed to be taken by any of the 10221 * NAPI code and this dummy netdev is supposed to be 10222 * only ever used for NAPI polls 10223 */ 10224 memset(dev, 0, sizeof(struct net_device)); 10225 10226 /* make sure we BUG if trying to hit standard 10227 * register/unregister code path 10228 */ 10229 dev->reg_state = NETREG_DUMMY; 10230 10231 /* NAPI wants this */ 10232 INIT_LIST_HEAD(&dev->napi_list); 10233 10234 /* a dummy interface is started by default */ 10235 set_bit(__LINK_STATE_PRESENT, &dev->state); 10236 set_bit(__LINK_STATE_START, &dev->state); 10237 10238 /* napi_busy_loop stats accounting wants this */ 10239 dev_net_set(dev, &init_net); 10240 10241 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10242 * because users of this 'device' dont need to change 10243 * its refcount. 10244 */ 10245 10246 return 0; 10247 } 10248 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10249 10250 10251 /** 10252 * register_netdev - register a network device 10253 * @dev: device to register 10254 * 10255 * Take a completed network device structure and add it to the kernel 10256 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10257 * chain. 0 is returned on success. A negative errno code is returned 10258 * on a failure to set up the device, or if the name is a duplicate. 10259 * 10260 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10261 * and expands the device name if you passed a format string to 10262 * alloc_netdev. 10263 */ 10264 int register_netdev(struct net_device *dev) 10265 { 10266 int err; 10267 10268 if (rtnl_lock_killable()) 10269 return -EINTR; 10270 err = register_netdevice(dev); 10271 rtnl_unlock(); 10272 return err; 10273 } 10274 EXPORT_SYMBOL(register_netdev); 10275 10276 int netdev_refcnt_read(const struct net_device *dev) 10277 { 10278 #ifdef CONFIG_PCPU_DEV_REFCNT 10279 int i, refcnt = 0; 10280 10281 for_each_possible_cpu(i) 10282 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10283 return refcnt; 10284 #else 10285 return refcount_read(&dev->dev_refcnt); 10286 #endif 10287 } 10288 EXPORT_SYMBOL(netdev_refcnt_read); 10289 10290 int netdev_unregister_timeout_secs __read_mostly = 10; 10291 10292 #define WAIT_REFS_MIN_MSECS 1 10293 #define WAIT_REFS_MAX_MSECS 250 10294 /** 10295 * netdev_wait_allrefs_any - wait until all references are gone. 10296 * @list: list of net_devices to wait on 10297 * 10298 * This is called when unregistering network devices. 10299 * 10300 * Any protocol or device that holds a reference should register 10301 * for netdevice notification, and cleanup and put back the 10302 * reference if they receive an UNREGISTER event. 10303 * We can get stuck here if buggy protocols don't correctly 10304 * call dev_put. 10305 */ 10306 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10307 { 10308 unsigned long rebroadcast_time, warning_time; 10309 struct net_device *dev; 10310 int wait = 0; 10311 10312 rebroadcast_time = warning_time = jiffies; 10313 10314 list_for_each_entry(dev, list, todo_list) 10315 if (netdev_refcnt_read(dev) == 1) 10316 return dev; 10317 10318 while (true) { 10319 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10320 rtnl_lock(); 10321 10322 /* Rebroadcast unregister notification */ 10323 list_for_each_entry(dev, list, todo_list) 10324 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10325 10326 __rtnl_unlock(); 10327 rcu_barrier(); 10328 rtnl_lock(); 10329 10330 list_for_each_entry(dev, list, todo_list) 10331 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10332 &dev->state)) { 10333 /* We must not have linkwatch events 10334 * pending on unregister. If this 10335 * happens, we simply run the queue 10336 * unscheduled, resulting in a noop 10337 * for this device. 10338 */ 10339 linkwatch_run_queue(); 10340 break; 10341 } 10342 10343 __rtnl_unlock(); 10344 10345 rebroadcast_time = jiffies; 10346 } 10347 10348 if (!wait) { 10349 rcu_barrier(); 10350 wait = WAIT_REFS_MIN_MSECS; 10351 } else { 10352 msleep(wait); 10353 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10354 } 10355 10356 list_for_each_entry(dev, list, todo_list) 10357 if (netdev_refcnt_read(dev) == 1) 10358 return dev; 10359 10360 if (time_after(jiffies, warning_time + 10361 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10362 list_for_each_entry(dev, list, todo_list) { 10363 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10364 dev->name, netdev_refcnt_read(dev)); 10365 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10366 } 10367 10368 warning_time = jiffies; 10369 } 10370 } 10371 } 10372 10373 /* The sequence is: 10374 * 10375 * rtnl_lock(); 10376 * ... 10377 * register_netdevice(x1); 10378 * register_netdevice(x2); 10379 * ... 10380 * unregister_netdevice(y1); 10381 * unregister_netdevice(y2); 10382 * ... 10383 * rtnl_unlock(); 10384 * free_netdev(y1); 10385 * free_netdev(y2); 10386 * 10387 * We are invoked by rtnl_unlock(). 10388 * This allows us to deal with problems: 10389 * 1) We can delete sysfs objects which invoke hotplug 10390 * without deadlocking with linkwatch via keventd. 10391 * 2) Since we run with the RTNL semaphore not held, we can sleep 10392 * safely in order to wait for the netdev refcnt to drop to zero. 10393 * 10394 * We must not return until all unregister events added during 10395 * the interval the lock was held have been completed. 10396 */ 10397 void netdev_run_todo(void) 10398 { 10399 struct net_device *dev, *tmp; 10400 struct list_head list; 10401 #ifdef CONFIG_LOCKDEP 10402 struct list_head unlink_list; 10403 10404 list_replace_init(&net_unlink_list, &unlink_list); 10405 10406 while (!list_empty(&unlink_list)) { 10407 struct net_device *dev = list_first_entry(&unlink_list, 10408 struct net_device, 10409 unlink_list); 10410 list_del_init(&dev->unlink_list); 10411 dev->nested_level = dev->lower_level - 1; 10412 } 10413 #endif 10414 10415 /* Snapshot list, allow later requests */ 10416 list_replace_init(&net_todo_list, &list); 10417 10418 __rtnl_unlock(); 10419 10420 /* Wait for rcu callbacks to finish before next phase */ 10421 if (!list_empty(&list)) 10422 rcu_barrier(); 10423 10424 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10425 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10426 netdev_WARN(dev, "run_todo but not unregistering\n"); 10427 list_del(&dev->todo_list); 10428 continue; 10429 } 10430 10431 write_lock(&dev_base_lock); 10432 dev->reg_state = NETREG_UNREGISTERED; 10433 write_unlock(&dev_base_lock); 10434 linkwatch_forget_dev(dev); 10435 } 10436 10437 while (!list_empty(&list)) { 10438 dev = netdev_wait_allrefs_any(&list); 10439 list_del(&dev->todo_list); 10440 10441 /* paranoia */ 10442 BUG_ON(netdev_refcnt_read(dev) != 1); 10443 BUG_ON(!list_empty(&dev->ptype_all)); 10444 BUG_ON(!list_empty(&dev->ptype_specific)); 10445 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10446 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10447 10448 if (dev->priv_destructor) 10449 dev->priv_destructor(dev); 10450 if (dev->needs_free_netdev) 10451 free_netdev(dev); 10452 10453 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10454 wake_up(&netdev_unregistering_wq); 10455 10456 /* Free network device */ 10457 kobject_put(&dev->dev.kobj); 10458 } 10459 } 10460 10461 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10462 * all the same fields in the same order as net_device_stats, with only 10463 * the type differing, but rtnl_link_stats64 may have additional fields 10464 * at the end for newer counters. 10465 */ 10466 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10467 const struct net_device_stats *netdev_stats) 10468 { 10469 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10470 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10471 u64 *dst = (u64 *)stats64; 10472 10473 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10474 for (i = 0; i < n; i++) 10475 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10476 /* zero out counters that only exist in rtnl_link_stats64 */ 10477 memset((char *)stats64 + n * sizeof(u64), 0, 10478 sizeof(*stats64) - n * sizeof(u64)); 10479 } 10480 EXPORT_SYMBOL(netdev_stats_to_stats64); 10481 10482 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev) 10483 { 10484 struct net_device_core_stats __percpu *p; 10485 10486 p = alloc_percpu_gfp(struct net_device_core_stats, 10487 GFP_ATOMIC | __GFP_NOWARN); 10488 10489 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10490 free_percpu(p); 10491 10492 /* This READ_ONCE() pairs with the cmpxchg() above */ 10493 return READ_ONCE(dev->core_stats); 10494 } 10495 EXPORT_SYMBOL(netdev_core_stats_alloc); 10496 10497 /** 10498 * dev_get_stats - get network device statistics 10499 * @dev: device to get statistics from 10500 * @storage: place to store stats 10501 * 10502 * Get network statistics from device. Return @storage. 10503 * The device driver may provide its own method by setting 10504 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10505 * otherwise the internal statistics structure is used. 10506 */ 10507 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10508 struct rtnl_link_stats64 *storage) 10509 { 10510 const struct net_device_ops *ops = dev->netdev_ops; 10511 const struct net_device_core_stats __percpu *p; 10512 10513 if (ops->ndo_get_stats64) { 10514 memset(storage, 0, sizeof(*storage)); 10515 ops->ndo_get_stats64(dev, storage); 10516 } else if (ops->ndo_get_stats) { 10517 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10518 } else { 10519 netdev_stats_to_stats64(storage, &dev->stats); 10520 } 10521 10522 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10523 p = READ_ONCE(dev->core_stats); 10524 if (p) { 10525 const struct net_device_core_stats *core_stats; 10526 int i; 10527 10528 for_each_possible_cpu(i) { 10529 core_stats = per_cpu_ptr(p, i); 10530 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10531 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10532 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10533 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10534 } 10535 } 10536 return storage; 10537 } 10538 EXPORT_SYMBOL(dev_get_stats); 10539 10540 /** 10541 * dev_fetch_sw_netstats - get per-cpu network device statistics 10542 * @s: place to store stats 10543 * @netstats: per-cpu network stats to read from 10544 * 10545 * Read per-cpu network statistics and populate the related fields in @s. 10546 */ 10547 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10548 const struct pcpu_sw_netstats __percpu *netstats) 10549 { 10550 int cpu; 10551 10552 for_each_possible_cpu(cpu) { 10553 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10554 const struct pcpu_sw_netstats *stats; 10555 unsigned int start; 10556 10557 stats = per_cpu_ptr(netstats, cpu); 10558 do { 10559 start = u64_stats_fetch_begin(&stats->syncp); 10560 rx_packets = u64_stats_read(&stats->rx_packets); 10561 rx_bytes = u64_stats_read(&stats->rx_bytes); 10562 tx_packets = u64_stats_read(&stats->tx_packets); 10563 tx_bytes = u64_stats_read(&stats->tx_bytes); 10564 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10565 10566 s->rx_packets += rx_packets; 10567 s->rx_bytes += rx_bytes; 10568 s->tx_packets += tx_packets; 10569 s->tx_bytes += tx_bytes; 10570 } 10571 } 10572 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10573 10574 /** 10575 * dev_get_tstats64 - ndo_get_stats64 implementation 10576 * @dev: device to get statistics from 10577 * @s: place to store stats 10578 * 10579 * Populate @s from dev->stats and dev->tstats. Can be used as 10580 * ndo_get_stats64() callback. 10581 */ 10582 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10583 { 10584 netdev_stats_to_stats64(s, &dev->stats); 10585 dev_fetch_sw_netstats(s, dev->tstats); 10586 } 10587 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10588 10589 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10590 { 10591 struct netdev_queue *queue = dev_ingress_queue(dev); 10592 10593 #ifdef CONFIG_NET_CLS_ACT 10594 if (queue) 10595 return queue; 10596 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10597 if (!queue) 10598 return NULL; 10599 netdev_init_one_queue(dev, queue, NULL); 10600 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10601 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10602 rcu_assign_pointer(dev->ingress_queue, queue); 10603 #endif 10604 return queue; 10605 } 10606 10607 static const struct ethtool_ops default_ethtool_ops; 10608 10609 void netdev_set_default_ethtool_ops(struct net_device *dev, 10610 const struct ethtool_ops *ops) 10611 { 10612 if (dev->ethtool_ops == &default_ethtool_ops) 10613 dev->ethtool_ops = ops; 10614 } 10615 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10616 10617 /** 10618 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10619 * @dev: netdev to enable the IRQ coalescing on 10620 * 10621 * Sets a conservative default for SW IRQ coalescing. Users can use 10622 * sysfs attributes to override the default values. 10623 */ 10624 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10625 { 10626 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10627 10628 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10629 dev->gro_flush_timeout = 20000; 10630 dev->napi_defer_hard_irqs = 1; 10631 } 10632 } 10633 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10634 10635 void netdev_freemem(struct net_device *dev) 10636 { 10637 char *addr = (char *)dev - dev->padded; 10638 10639 kvfree(addr); 10640 } 10641 10642 /** 10643 * alloc_netdev_mqs - allocate network device 10644 * @sizeof_priv: size of private data to allocate space for 10645 * @name: device name format string 10646 * @name_assign_type: origin of device name 10647 * @setup: callback to initialize device 10648 * @txqs: the number of TX subqueues to allocate 10649 * @rxqs: the number of RX subqueues to allocate 10650 * 10651 * Allocates a struct net_device with private data area for driver use 10652 * and performs basic initialization. Also allocates subqueue structs 10653 * for each queue on the device. 10654 */ 10655 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10656 unsigned char name_assign_type, 10657 void (*setup)(struct net_device *), 10658 unsigned int txqs, unsigned int rxqs) 10659 { 10660 struct net_device *dev; 10661 unsigned int alloc_size; 10662 struct net_device *p; 10663 10664 BUG_ON(strlen(name) >= sizeof(dev->name)); 10665 10666 if (txqs < 1) { 10667 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10668 return NULL; 10669 } 10670 10671 if (rxqs < 1) { 10672 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10673 return NULL; 10674 } 10675 10676 alloc_size = sizeof(struct net_device); 10677 if (sizeof_priv) { 10678 /* ensure 32-byte alignment of private area */ 10679 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10680 alloc_size += sizeof_priv; 10681 } 10682 /* ensure 32-byte alignment of whole construct */ 10683 alloc_size += NETDEV_ALIGN - 1; 10684 10685 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10686 if (!p) 10687 return NULL; 10688 10689 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10690 dev->padded = (char *)dev - (char *)p; 10691 10692 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10693 #ifdef CONFIG_PCPU_DEV_REFCNT 10694 dev->pcpu_refcnt = alloc_percpu(int); 10695 if (!dev->pcpu_refcnt) 10696 goto free_dev; 10697 __dev_hold(dev); 10698 #else 10699 refcount_set(&dev->dev_refcnt, 1); 10700 #endif 10701 10702 if (dev_addr_init(dev)) 10703 goto free_pcpu; 10704 10705 dev_mc_init(dev); 10706 dev_uc_init(dev); 10707 10708 dev_net_set(dev, &init_net); 10709 10710 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10711 dev->xdp_zc_max_segs = 1; 10712 dev->gso_max_segs = GSO_MAX_SEGS; 10713 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10714 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10715 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10716 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10717 dev->tso_max_segs = TSO_MAX_SEGS; 10718 dev->upper_level = 1; 10719 dev->lower_level = 1; 10720 #ifdef CONFIG_LOCKDEP 10721 dev->nested_level = 0; 10722 INIT_LIST_HEAD(&dev->unlink_list); 10723 #endif 10724 10725 INIT_LIST_HEAD(&dev->napi_list); 10726 INIT_LIST_HEAD(&dev->unreg_list); 10727 INIT_LIST_HEAD(&dev->close_list); 10728 INIT_LIST_HEAD(&dev->link_watch_list); 10729 INIT_LIST_HEAD(&dev->adj_list.upper); 10730 INIT_LIST_HEAD(&dev->adj_list.lower); 10731 INIT_LIST_HEAD(&dev->ptype_all); 10732 INIT_LIST_HEAD(&dev->ptype_specific); 10733 INIT_LIST_HEAD(&dev->net_notifier_list); 10734 #ifdef CONFIG_NET_SCHED 10735 hash_init(dev->qdisc_hash); 10736 #endif 10737 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10738 setup(dev); 10739 10740 if (!dev->tx_queue_len) { 10741 dev->priv_flags |= IFF_NO_QUEUE; 10742 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10743 } 10744 10745 dev->num_tx_queues = txqs; 10746 dev->real_num_tx_queues = txqs; 10747 if (netif_alloc_netdev_queues(dev)) 10748 goto free_all; 10749 10750 dev->num_rx_queues = rxqs; 10751 dev->real_num_rx_queues = rxqs; 10752 if (netif_alloc_rx_queues(dev)) 10753 goto free_all; 10754 10755 strcpy(dev->name, name); 10756 dev->name_assign_type = name_assign_type; 10757 dev->group = INIT_NETDEV_GROUP; 10758 if (!dev->ethtool_ops) 10759 dev->ethtool_ops = &default_ethtool_ops; 10760 10761 nf_hook_netdev_init(dev); 10762 10763 return dev; 10764 10765 free_all: 10766 free_netdev(dev); 10767 return NULL; 10768 10769 free_pcpu: 10770 #ifdef CONFIG_PCPU_DEV_REFCNT 10771 free_percpu(dev->pcpu_refcnt); 10772 free_dev: 10773 #endif 10774 netdev_freemem(dev); 10775 return NULL; 10776 } 10777 EXPORT_SYMBOL(alloc_netdev_mqs); 10778 10779 /** 10780 * free_netdev - free network device 10781 * @dev: device 10782 * 10783 * This function does the last stage of destroying an allocated device 10784 * interface. The reference to the device object is released. If this 10785 * is the last reference then it will be freed.Must be called in process 10786 * context. 10787 */ 10788 void free_netdev(struct net_device *dev) 10789 { 10790 struct napi_struct *p, *n; 10791 10792 might_sleep(); 10793 10794 /* When called immediately after register_netdevice() failed the unwind 10795 * handling may still be dismantling the device. Handle that case by 10796 * deferring the free. 10797 */ 10798 if (dev->reg_state == NETREG_UNREGISTERING) { 10799 ASSERT_RTNL(); 10800 dev->needs_free_netdev = true; 10801 return; 10802 } 10803 10804 netif_free_tx_queues(dev); 10805 netif_free_rx_queues(dev); 10806 10807 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10808 10809 /* Flush device addresses */ 10810 dev_addr_flush(dev); 10811 10812 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10813 netif_napi_del(p); 10814 10815 ref_tracker_dir_exit(&dev->refcnt_tracker); 10816 #ifdef CONFIG_PCPU_DEV_REFCNT 10817 free_percpu(dev->pcpu_refcnt); 10818 dev->pcpu_refcnt = NULL; 10819 #endif 10820 free_percpu(dev->core_stats); 10821 dev->core_stats = NULL; 10822 free_percpu(dev->xdp_bulkq); 10823 dev->xdp_bulkq = NULL; 10824 10825 /* Compatibility with error handling in drivers */ 10826 if (dev->reg_state == NETREG_UNINITIALIZED) { 10827 netdev_freemem(dev); 10828 return; 10829 } 10830 10831 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10832 dev->reg_state = NETREG_RELEASED; 10833 10834 /* will free via device release */ 10835 put_device(&dev->dev); 10836 } 10837 EXPORT_SYMBOL(free_netdev); 10838 10839 /** 10840 * synchronize_net - Synchronize with packet receive processing 10841 * 10842 * Wait for packets currently being received to be done. 10843 * Does not block later packets from starting. 10844 */ 10845 void synchronize_net(void) 10846 { 10847 might_sleep(); 10848 if (rtnl_is_locked()) 10849 synchronize_rcu_expedited(); 10850 else 10851 synchronize_rcu(); 10852 } 10853 EXPORT_SYMBOL(synchronize_net); 10854 10855 /** 10856 * unregister_netdevice_queue - remove device from the kernel 10857 * @dev: device 10858 * @head: list 10859 * 10860 * This function shuts down a device interface and removes it 10861 * from the kernel tables. 10862 * If head not NULL, device is queued to be unregistered later. 10863 * 10864 * Callers must hold the rtnl semaphore. You may want 10865 * unregister_netdev() instead of this. 10866 */ 10867 10868 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10869 { 10870 ASSERT_RTNL(); 10871 10872 if (head) { 10873 list_move_tail(&dev->unreg_list, head); 10874 } else { 10875 LIST_HEAD(single); 10876 10877 list_add(&dev->unreg_list, &single); 10878 unregister_netdevice_many(&single); 10879 } 10880 } 10881 EXPORT_SYMBOL(unregister_netdevice_queue); 10882 10883 void unregister_netdevice_many_notify(struct list_head *head, 10884 u32 portid, const struct nlmsghdr *nlh) 10885 { 10886 struct net_device *dev, *tmp; 10887 LIST_HEAD(close_head); 10888 10889 BUG_ON(dev_boot_phase); 10890 ASSERT_RTNL(); 10891 10892 if (list_empty(head)) 10893 return; 10894 10895 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10896 /* Some devices call without registering 10897 * for initialization unwind. Remove those 10898 * devices and proceed with the remaining. 10899 */ 10900 if (dev->reg_state == NETREG_UNINITIALIZED) { 10901 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10902 dev->name, dev); 10903 10904 WARN_ON(1); 10905 list_del(&dev->unreg_list); 10906 continue; 10907 } 10908 dev->dismantle = true; 10909 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10910 } 10911 10912 /* If device is running, close it first. */ 10913 list_for_each_entry(dev, head, unreg_list) 10914 list_add_tail(&dev->close_list, &close_head); 10915 dev_close_many(&close_head, true); 10916 10917 list_for_each_entry(dev, head, unreg_list) { 10918 /* And unlink it from device chain. */ 10919 write_lock(&dev_base_lock); 10920 unlist_netdevice(dev, false); 10921 dev->reg_state = NETREG_UNREGISTERING; 10922 write_unlock(&dev_base_lock); 10923 } 10924 flush_all_backlogs(); 10925 10926 synchronize_net(); 10927 10928 list_for_each_entry(dev, head, unreg_list) { 10929 struct sk_buff *skb = NULL; 10930 10931 /* Shutdown queueing discipline. */ 10932 dev_shutdown(dev); 10933 dev_tcx_uninstall(dev); 10934 dev_xdp_uninstall(dev); 10935 bpf_dev_bound_netdev_unregister(dev); 10936 10937 netdev_offload_xstats_disable_all(dev); 10938 10939 /* Notify protocols, that we are about to destroy 10940 * this device. They should clean all the things. 10941 */ 10942 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10943 10944 if (!dev->rtnl_link_ops || 10945 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10946 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10947 GFP_KERNEL, NULL, 0, 10948 portid, nlh); 10949 10950 /* 10951 * Flush the unicast and multicast chains 10952 */ 10953 dev_uc_flush(dev); 10954 dev_mc_flush(dev); 10955 10956 netdev_name_node_alt_flush(dev); 10957 netdev_name_node_free(dev->name_node); 10958 10959 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10960 10961 if (dev->netdev_ops->ndo_uninit) 10962 dev->netdev_ops->ndo_uninit(dev); 10963 10964 if (skb) 10965 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 10966 10967 /* Notifier chain MUST detach us all upper devices. */ 10968 WARN_ON(netdev_has_any_upper_dev(dev)); 10969 WARN_ON(netdev_has_any_lower_dev(dev)); 10970 10971 /* Remove entries from kobject tree */ 10972 netdev_unregister_kobject(dev); 10973 #ifdef CONFIG_XPS 10974 /* Remove XPS queueing entries */ 10975 netif_reset_xps_queues_gt(dev, 0); 10976 #endif 10977 } 10978 10979 synchronize_net(); 10980 10981 list_for_each_entry(dev, head, unreg_list) { 10982 netdev_put(dev, &dev->dev_registered_tracker); 10983 net_set_todo(dev); 10984 } 10985 10986 list_del(head); 10987 } 10988 10989 /** 10990 * unregister_netdevice_many - unregister many devices 10991 * @head: list of devices 10992 * 10993 * Note: As most callers use a stack allocated list_head, 10994 * we force a list_del() to make sure stack wont be corrupted later. 10995 */ 10996 void unregister_netdevice_many(struct list_head *head) 10997 { 10998 unregister_netdevice_many_notify(head, 0, NULL); 10999 } 11000 EXPORT_SYMBOL(unregister_netdevice_many); 11001 11002 /** 11003 * unregister_netdev - remove device from the kernel 11004 * @dev: device 11005 * 11006 * This function shuts down a device interface and removes it 11007 * from the kernel tables. 11008 * 11009 * This is just a wrapper for unregister_netdevice that takes 11010 * the rtnl semaphore. In general you want to use this and not 11011 * unregister_netdevice. 11012 */ 11013 void unregister_netdev(struct net_device *dev) 11014 { 11015 rtnl_lock(); 11016 unregister_netdevice(dev); 11017 rtnl_unlock(); 11018 } 11019 EXPORT_SYMBOL(unregister_netdev); 11020 11021 /** 11022 * __dev_change_net_namespace - move device to different nethost namespace 11023 * @dev: device 11024 * @net: network namespace 11025 * @pat: If not NULL name pattern to try if the current device name 11026 * is already taken in the destination network namespace. 11027 * @new_ifindex: If not zero, specifies device index in the target 11028 * namespace. 11029 * 11030 * This function shuts down a device interface and moves it 11031 * to a new network namespace. On success 0 is returned, on 11032 * a failure a netagive errno code is returned. 11033 * 11034 * Callers must hold the rtnl semaphore. 11035 */ 11036 11037 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11038 const char *pat, int new_ifindex) 11039 { 11040 struct net *net_old = dev_net(dev); 11041 int err, new_nsid; 11042 11043 ASSERT_RTNL(); 11044 11045 /* Don't allow namespace local devices to be moved. */ 11046 err = -EINVAL; 11047 if (dev->features & NETIF_F_NETNS_LOCAL) 11048 goto out; 11049 11050 /* Ensure the device has been registrered */ 11051 if (dev->reg_state != NETREG_REGISTERED) 11052 goto out; 11053 11054 /* Get out if there is nothing todo */ 11055 err = 0; 11056 if (net_eq(net_old, net)) 11057 goto out; 11058 11059 /* Pick the destination device name, and ensure 11060 * we can use it in the destination network namespace. 11061 */ 11062 err = -EEXIST; 11063 if (netdev_name_in_use(net, dev->name)) { 11064 /* We get here if we can't use the current device name */ 11065 if (!pat) 11066 goto out; 11067 err = dev_get_valid_name(net, dev, pat); 11068 if (err < 0) 11069 goto out; 11070 } 11071 11072 /* Check that new_ifindex isn't used yet. */ 11073 if (new_ifindex) { 11074 err = dev_index_reserve(net, new_ifindex); 11075 if (err < 0) 11076 goto out; 11077 } else { 11078 /* If there is an ifindex conflict assign a new one */ 11079 err = dev_index_reserve(net, dev->ifindex); 11080 if (err == -EBUSY) 11081 err = dev_index_reserve(net, 0); 11082 if (err < 0) 11083 goto out; 11084 new_ifindex = err; 11085 } 11086 11087 /* 11088 * And now a mini version of register_netdevice unregister_netdevice. 11089 */ 11090 11091 /* If device is running close it first. */ 11092 dev_close(dev); 11093 11094 /* And unlink it from device chain */ 11095 unlist_netdevice(dev, true); 11096 11097 synchronize_net(); 11098 11099 /* Shutdown queueing discipline. */ 11100 dev_shutdown(dev); 11101 11102 /* Notify protocols, that we are about to destroy 11103 * this device. They should clean all the things. 11104 * 11105 * Note that dev->reg_state stays at NETREG_REGISTERED. 11106 * This is wanted because this way 8021q and macvlan know 11107 * the device is just moving and can keep their slaves up. 11108 */ 11109 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11110 rcu_barrier(); 11111 11112 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11113 11114 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11115 new_ifindex); 11116 11117 /* 11118 * Flush the unicast and multicast chains 11119 */ 11120 dev_uc_flush(dev); 11121 dev_mc_flush(dev); 11122 11123 /* Send a netdev-removed uevent to the old namespace */ 11124 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11125 netdev_adjacent_del_links(dev); 11126 11127 /* Move per-net netdevice notifiers that are following the netdevice */ 11128 move_netdevice_notifiers_dev_net(dev, net); 11129 11130 /* Actually switch the network namespace */ 11131 dev_net_set(dev, net); 11132 dev->ifindex = new_ifindex; 11133 11134 /* Send a netdev-add uevent to the new namespace */ 11135 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11136 netdev_adjacent_add_links(dev); 11137 11138 /* Fixup kobjects */ 11139 err = device_rename(&dev->dev, dev->name); 11140 WARN_ON(err); 11141 11142 /* Adapt owner in case owning user namespace of target network 11143 * namespace is different from the original one. 11144 */ 11145 err = netdev_change_owner(dev, net_old, net); 11146 WARN_ON(err); 11147 11148 /* Add the device back in the hashes */ 11149 list_netdevice(dev); 11150 11151 /* Notify protocols, that a new device appeared. */ 11152 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11153 11154 /* 11155 * Prevent userspace races by waiting until the network 11156 * device is fully setup before sending notifications. 11157 */ 11158 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11159 11160 synchronize_net(); 11161 err = 0; 11162 out: 11163 return err; 11164 } 11165 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11166 11167 static int dev_cpu_dead(unsigned int oldcpu) 11168 { 11169 struct sk_buff **list_skb; 11170 struct sk_buff *skb; 11171 unsigned int cpu; 11172 struct softnet_data *sd, *oldsd, *remsd = NULL; 11173 11174 local_irq_disable(); 11175 cpu = smp_processor_id(); 11176 sd = &per_cpu(softnet_data, cpu); 11177 oldsd = &per_cpu(softnet_data, oldcpu); 11178 11179 /* Find end of our completion_queue. */ 11180 list_skb = &sd->completion_queue; 11181 while (*list_skb) 11182 list_skb = &(*list_skb)->next; 11183 /* Append completion queue from offline CPU. */ 11184 *list_skb = oldsd->completion_queue; 11185 oldsd->completion_queue = NULL; 11186 11187 /* Append output queue from offline CPU. */ 11188 if (oldsd->output_queue) { 11189 *sd->output_queue_tailp = oldsd->output_queue; 11190 sd->output_queue_tailp = oldsd->output_queue_tailp; 11191 oldsd->output_queue = NULL; 11192 oldsd->output_queue_tailp = &oldsd->output_queue; 11193 } 11194 /* Append NAPI poll list from offline CPU, with one exception : 11195 * process_backlog() must be called by cpu owning percpu backlog. 11196 * We properly handle process_queue & input_pkt_queue later. 11197 */ 11198 while (!list_empty(&oldsd->poll_list)) { 11199 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11200 struct napi_struct, 11201 poll_list); 11202 11203 list_del_init(&napi->poll_list); 11204 if (napi->poll == process_backlog) 11205 napi->state = 0; 11206 else 11207 ____napi_schedule(sd, napi); 11208 } 11209 11210 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11211 local_irq_enable(); 11212 11213 #ifdef CONFIG_RPS 11214 remsd = oldsd->rps_ipi_list; 11215 oldsd->rps_ipi_list = NULL; 11216 #endif 11217 /* send out pending IPI's on offline CPU */ 11218 net_rps_send_ipi(remsd); 11219 11220 /* Process offline CPU's input_pkt_queue */ 11221 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11222 netif_rx(skb); 11223 input_queue_head_incr(oldsd); 11224 } 11225 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11226 netif_rx(skb); 11227 input_queue_head_incr(oldsd); 11228 } 11229 11230 return 0; 11231 } 11232 11233 /** 11234 * netdev_increment_features - increment feature set by one 11235 * @all: current feature set 11236 * @one: new feature set 11237 * @mask: mask feature set 11238 * 11239 * Computes a new feature set after adding a device with feature set 11240 * @one to the master device with current feature set @all. Will not 11241 * enable anything that is off in @mask. Returns the new feature set. 11242 */ 11243 netdev_features_t netdev_increment_features(netdev_features_t all, 11244 netdev_features_t one, netdev_features_t mask) 11245 { 11246 if (mask & NETIF_F_HW_CSUM) 11247 mask |= NETIF_F_CSUM_MASK; 11248 mask |= NETIF_F_VLAN_CHALLENGED; 11249 11250 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11251 all &= one | ~NETIF_F_ALL_FOR_ALL; 11252 11253 /* If one device supports hw checksumming, set for all. */ 11254 if (all & NETIF_F_HW_CSUM) 11255 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11256 11257 return all; 11258 } 11259 EXPORT_SYMBOL(netdev_increment_features); 11260 11261 static struct hlist_head * __net_init netdev_create_hash(void) 11262 { 11263 int i; 11264 struct hlist_head *hash; 11265 11266 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11267 if (hash != NULL) 11268 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11269 INIT_HLIST_HEAD(&hash[i]); 11270 11271 return hash; 11272 } 11273 11274 /* Initialize per network namespace state */ 11275 static int __net_init netdev_init(struct net *net) 11276 { 11277 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11278 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11279 11280 INIT_LIST_HEAD(&net->dev_base_head); 11281 11282 net->dev_name_head = netdev_create_hash(); 11283 if (net->dev_name_head == NULL) 11284 goto err_name; 11285 11286 net->dev_index_head = netdev_create_hash(); 11287 if (net->dev_index_head == NULL) 11288 goto err_idx; 11289 11290 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11291 11292 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11293 11294 return 0; 11295 11296 err_idx: 11297 kfree(net->dev_name_head); 11298 err_name: 11299 return -ENOMEM; 11300 } 11301 11302 /** 11303 * netdev_drivername - network driver for the device 11304 * @dev: network device 11305 * 11306 * Determine network driver for device. 11307 */ 11308 const char *netdev_drivername(const struct net_device *dev) 11309 { 11310 const struct device_driver *driver; 11311 const struct device *parent; 11312 const char *empty = ""; 11313 11314 parent = dev->dev.parent; 11315 if (!parent) 11316 return empty; 11317 11318 driver = parent->driver; 11319 if (driver && driver->name) 11320 return driver->name; 11321 return empty; 11322 } 11323 11324 static void __netdev_printk(const char *level, const struct net_device *dev, 11325 struct va_format *vaf) 11326 { 11327 if (dev && dev->dev.parent) { 11328 dev_printk_emit(level[1] - '0', 11329 dev->dev.parent, 11330 "%s %s %s%s: %pV", 11331 dev_driver_string(dev->dev.parent), 11332 dev_name(dev->dev.parent), 11333 netdev_name(dev), netdev_reg_state(dev), 11334 vaf); 11335 } else if (dev) { 11336 printk("%s%s%s: %pV", 11337 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11338 } else { 11339 printk("%s(NULL net_device): %pV", level, vaf); 11340 } 11341 } 11342 11343 void netdev_printk(const char *level, const struct net_device *dev, 11344 const char *format, ...) 11345 { 11346 struct va_format vaf; 11347 va_list args; 11348 11349 va_start(args, format); 11350 11351 vaf.fmt = format; 11352 vaf.va = &args; 11353 11354 __netdev_printk(level, dev, &vaf); 11355 11356 va_end(args); 11357 } 11358 EXPORT_SYMBOL(netdev_printk); 11359 11360 #define define_netdev_printk_level(func, level) \ 11361 void func(const struct net_device *dev, const char *fmt, ...) \ 11362 { \ 11363 struct va_format vaf; \ 11364 va_list args; \ 11365 \ 11366 va_start(args, fmt); \ 11367 \ 11368 vaf.fmt = fmt; \ 11369 vaf.va = &args; \ 11370 \ 11371 __netdev_printk(level, dev, &vaf); \ 11372 \ 11373 va_end(args); \ 11374 } \ 11375 EXPORT_SYMBOL(func); 11376 11377 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11378 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11379 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11380 define_netdev_printk_level(netdev_err, KERN_ERR); 11381 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11382 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11383 define_netdev_printk_level(netdev_info, KERN_INFO); 11384 11385 static void __net_exit netdev_exit(struct net *net) 11386 { 11387 kfree(net->dev_name_head); 11388 kfree(net->dev_index_head); 11389 xa_destroy(&net->dev_by_index); 11390 if (net != &init_net) 11391 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11392 } 11393 11394 static struct pernet_operations __net_initdata netdev_net_ops = { 11395 .init = netdev_init, 11396 .exit = netdev_exit, 11397 }; 11398 11399 static void __net_exit default_device_exit_net(struct net *net) 11400 { 11401 struct net_device *dev, *aux; 11402 /* 11403 * Push all migratable network devices back to the 11404 * initial network namespace 11405 */ 11406 ASSERT_RTNL(); 11407 for_each_netdev_safe(net, dev, aux) { 11408 int err; 11409 char fb_name[IFNAMSIZ]; 11410 11411 /* Ignore unmoveable devices (i.e. loopback) */ 11412 if (dev->features & NETIF_F_NETNS_LOCAL) 11413 continue; 11414 11415 /* Leave virtual devices for the generic cleanup */ 11416 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11417 continue; 11418 11419 /* Push remaining network devices to init_net */ 11420 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11421 if (netdev_name_in_use(&init_net, fb_name)) 11422 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11423 err = dev_change_net_namespace(dev, &init_net, fb_name); 11424 if (err) { 11425 pr_emerg("%s: failed to move %s to init_net: %d\n", 11426 __func__, dev->name, err); 11427 BUG(); 11428 } 11429 } 11430 } 11431 11432 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11433 { 11434 /* At exit all network devices most be removed from a network 11435 * namespace. Do this in the reverse order of registration. 11436 * Do this across as many network namespaces as possible to 11437 * improve batching efficiency. 11438 */ 11439 struct net_device *dev; 11440 struct net *net; 11441 LIST_HEAD(dev_kill_list); 11442 11443 rtnl_lock(); 11444 list_for_each_entry(net, net_list, exit_list) { 11445 default_device_exit_net(net); 11446 cond_resched(); 11447 } 11448 11449 list_for_each_entry(net, net_list, exit_list) { 11450 for_each_netdev_reverse(net, dev) { 11451 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11452 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11453 else 11454 unregister_netdevice_queue(dev, &dev_kill_list); 11455 } 11456 } 11457 unregister_netdevice_many(&dev_kill_list); 11458 rtnl_unlock(); 11459 } 11460 11461 static struct pernet_operations __net_initdata default_device_ops = { 11462 .exit_batch = default_device_exit_batch, 11463 }; 11464 11465 /* 11466 * Initialize the DEV module. At boot time this walks the device list and 11467 * unhooks any devices that fail to initialise (normally hardware not 11468 * present) and leaves us with a valid list of present and active devices. 11469 * 11470 */ 11471 11472 /* 11473 * This is called single threaded during boot, so no need 11474 * to take the rtnl semaphore. 11475 */ 11476 static int __init net_dev_init(void) 11477 { 11478 int i, rc = -ENOMEM; 11479 11480 BUG_ON(!dev_boot_phase); 11481 11482 if (dev_proc_init()) 11483 goto out; 11484 11485 if (netdev_kobject_init()) 11486 goto out; 11487 11488 INIT_LIST_HEAD(&ptype_all); 11489 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11490 INIT_LIST_HEAD(&ptype_base[i]); 11491 11492 if (register_pernet_subsys(&netdev_net_ops)) 11493 goto out; 11494 11495 /* 11496 * Initialise the packet receive queues. 11497 */ 11498 11499 for_each_possible_cpu(i) { 11500 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11501 struct softnet_data *sd = &per_cpu(softnet_data, i); 11502 11503 INIT_WORK(flush, flush_backlog); 11504 11505 skb_queue_head_init(&sd->input_pkt_queue); 11506 skb_queue_head_init(&sd->process_queue); 11507 #ifdef CONFIG_XFRM_OFFLOAD 11508 skb_queue_head_init(&sd->xfrm_backlog); 11509 #endif 11510 INIT_LIST_HEAD(&sd->poll_list); 11511 sd->output_queue_tailp = &sd->output_queue; 11512 #ifdef CONFIG_RPS 11513 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11514 sd->cpu = i; 11515 #endif 11516 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11517 spin_lock_init(&sd->defer_lock); 11518 11519 init_gro_hash(&sd->backlog); 11520 sd->backlog.poll = process_backlog; 11521 sd->backlog.weight = weight_p; 11522 } 11523 11524 dev_boot_phase = 0; 11525 11526 /* The loopback device is special if any other network devices 11527 * is present in a network namespace the loopback device must 11528 * be present. Since we now dynamically allocate and free the 11529 * loopback device ensure this invariant is maintained by 11530 * keeping the loopback device as the first device on the 11531 * list of network devices. Ensuring the loopback devices 11532 * is the first device that appears and the last network device 11533 * that disappears. 11534 */ 11535 if (register_pernet_device(&loopback_net_ops)) 11536 goto out; 11537 11538 if (register_pernet_device(&default_device_ops)) 11539 goto out; 11540 11541 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11542 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11543 11544 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11545 NULL, dev_cpu_dead); 11546 WARN_ON(rc < 0); 11547 rc = 0; 11548 out: 11549 return rc; 11550 } 11551 11552 subsys_initcall(net_dev_init); 11553