1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 135 #include "net-sysfs.h" 136 137 /* Instead of increasing this, you should create a hash table. */ 138 #define MAX_GRO_SKBS 8 139 140 /* This should be increased if a protocol with a bigger head is added. */ 141 #define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143 static DEFINE_SPINLOCK(ptype_lock); 144 static DEFINE_SPINLOCK(offload_lock); 145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 146 struct list_head ptype_all __read_mostly; /* Taps */ 147 static struct list_head offload_base __read_mostly; 148 149 /* 150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 151 * semaphore. 152 * 153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 154 * 155 * Writers must hold the rtnl semaphore while they loop through the 156 * dev_base_head list, and hold dev_base_lock for writing when they do the 157 * actual updates. This allows pure readers to access the list even 158 * while a writer is preparing to update it. 159 * 160 * To put it another way, dev_base_lock is held for writing only to 161 * protect against pure readers; the rtnl semaphore provides the 162 * protection against other writers. 163 * 164 * See, for example usages, register_netdevice() and 165 * unregister_netdevice(), which must be called with the rtnl 166 * semaphore held. 167 */ 168 DEFINE_RWLOCK(dev_base_lock); 169 EXPORT_SYMBOL(dev_base_lock); 170 171 /* protects napi_hash addition/deletion and napi_gen_id */ 172 static DEFINE_SPINLOCK(napi_hash_lock); 173 174 static unsigned int napi_gen_id; 175 static DEFINE_HASHTABLE(napi_hash, 8); 176 177 static seqcount_t devnet_rename_seq; 178 179 static inline void dev_base_seq_inc(struct net *net) 180 { 181 while (++net->dev_base_seq == 0); 182 } 183 184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 185 { 186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 187 188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 189 } 190 191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 192 { 193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 194 } 195 196 static inline void rps_lock(struct softnet_data *sd) 197 { 198 #ifdef CONFIG_RPS 199 spin_lock(&sd->input_pkt_queue.lock); 200 #endif 201 } 202 203 static inline void rps_unlock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_unlock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 /* Device list insertion */ 211 static void list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head_rcu(&dev->index_hlist, 221 dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 224 dev_base_seq_inc(net); 225 } 226 227 /* Device list removal 228 * caller must respect a RCU grace period before freeing/reusing dev 229 */ 230 static void unlist_netdevice(struct net_device *dev) 231 { 232 ASSERT_RTNL(); 233 234 /* Unlink dev from the device chain */ 235 write_lock_bh(&dev_base_lock); 236 list_del_rcu(&dev->dev_list); 237 hlist_del_rcu(&dev->name_hlist); 238 hlist_del_rcu(&dev->index_hlist); 239 write_unlock_bh(&dev_base_lock); 240 241 dev_base_seq_inc(dev_net(dev)); 242 } 243 244 /* 245 * Our notifier list 246 */ 247 248 static RAW_NOTIFIER_HEAD(netdev_chain); 249 250 /* 251 * Device drivers call our routines to queue packets here. We empty the 252 * queue in the local softnet handler. 253 */ 254 255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 256 EXPORT_PER_CPU_SYMBOL(softnet_data); 257 258 #ifdef CONFIG_LOCKDEP 259 /* 260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 261 * according to dev->type 262 */ 263 static const unsigned short netdev_lock_type[] = 264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 279 280 static const char *const netdev_lock_name[] = 281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 296 297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 300 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 301 { 302 int i; 303 304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 305 if (netdev_lock_type[i] == dev_type) 306 return i; 307 /* the last key is used by default */ 308 return ARRAY_SIZE(netdev_lock_type) - 1; 309 } 310 311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 312 unsigned short dev_type) 313 { 314 int i; 315 316 i = netdev_lock_pos(dev_type); 317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 318 netdev_lock_name[i]); 319 } 320 321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev->type); 326 lockdep_set_class_and_name(&dev->addr_list_lock, 327 &netdev_addr_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 #else 331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 332 unsigned short dev_type) 333 { 334 } 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 } 338 #endif 339 340 /******************************************************************************* 341 342 Protocol management and registration routines 343 344 *******************************************************************************/ 345 346 /* 347 * Add a protocol ID to the list. Now that the input handler is 348 * smarter we can dispense with all the messy stuff that used to be 349 * here. 350 * 351 * BEWARE!!! Protocol handlers, mangling input packets, 352 * MUST BE last in hash buckets and checking protocol handlers 353 * MUST start from promiscuous ptype_all chain in net_bh. 354 * It is true now, do not change it. 355 * Explanation follows: if protocol handler, mangling packet, will 356 * be the first on list, it is not able to sense, that packet 357 * is cloned and should be copied-on-write, so that it will 358 * change it and subsequent readers will get broken packet. 359 * --ANK (980803) 360 */ 361 362 static inline struct list_head *ptype_head(const struct packet_type *pt) 363 { 364 if (pt->type == htons(ETH_P_ALL)) 365 return &ptype_all; 366 else 367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 368 } 369 370 /** 371 * dev_add_pack - add packet handler 372 * @pt: packet type declaration 373 * 374 * Add a protocol handler to the networking stack. The passed &packet_type 375 * is linked into kernel lists and may not be freed until it has been 376 * removed from the kernel lists. 377 * 378 * This call does not sleep therefore it can not 379 * guarantee all CPU's that are in middle of receiving packets 380 * will see the new packet type (until the next received packet). 381 */ 382 383 void dev_add_pack(struct packet_type *pt) 384 { 385 struct list_head *head = ptype_head(pt); 386 387 spin_lock(&ptype_lock); 388 list_add_rcu(&pt->list, head); 389 spin_unlock(&ptype_lock); 390 } 391 EXPORT_SYMBOL(dev_add_pack); 392 393 /** 394 * __dev_remove_pack - remove packet handler 395 * @pt: packet type declaration 396 * 397 * Remove a protocol handler that was previously added to the kernel 398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 399 * from the kernel lists and can be freed or reused once this function 400 * returns. 401 * 402 * The packet type might still be in use by receivers 403 * and must not be freed until after all the CPU's have gone 404 * through a quiescent state. 405 */ 406 void __dev_remove_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 struct packet_type *pt1; 410 411 spin_lock(&ptype_lock); 412 413 list_for_each_entry(pt1, head, list) { 414 if (pt == pt1) { 415 list_del_rcu(&pt->list); 416 goto out; 417 } 418 } 419 420 pr_warn("dev_remove_pack: %p not found\n", pt); 421 out: 422 spin_unlock(&ptype_lock); 423 } 424 EXPORT_SYMBOL(__dev_remove_pack); 425 426 /** 427 * dev_remove_pack - remove packet handler 428 * @pt: packet type declaration 429 * 430 * Remove a protocol handler that was previously added to the kernel 431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 432 * from the kernel lists and can be freed or reused once this function 433 * returns. 434 * 435 * This call sleeps to guarantee that no CPU is looking at the packet 436 * type after return. 437 */ 438 void dev_remove_pack(struct packet_type *pt) 439 { 440 __dev_remove_pack(pt); 441 442 synchronize_net(); 443 } 444 EXPORT_SYMBOL(dev_remove_pack); 445 446 447 /** 448 * dev_add_offload - register offload handlers 449 * @po: protocol offload declaration 450 * 451 * Add protocol offload handlers to the networking stack. The passed 452 * &proto_offload is linked into kernel lists and may not be freed until 453 * it has been removed from the kernel lists. 454 * 455 * This call does not sleep therefore it can not 456 * guarantee all CPU's that are in middle of receiving packets 457 * will see the new offload handlers (until the next received packet). 458 */ 459 void dev_add_offload(struct packet_offload *po) 460 { 461 struct list_head *head = &offload_base; 462 463 spin_lock(&offload_lock); 464 list_add_rcu(&po->list, head); 465 spin_unlock(&offload_lock); 466 } 467 EXPORT_SYMBOL(dev_add_offload); 468 469 /** 470 * __dev_remove_offload - remove offload handler 471 * @po: packet offload declaration 472 * 473 * Remove a protocol offload handler that was previously added to the 474 * kernel offload handlers by dev_add_offload(). The passed &offload_type 475 * is removed from the kernel lists and can be freed or reused once this 476 * function returns. 477 * 478 * The packet type might still be in use by receivers 479 * and must not be freed until after all the CPU's have gone 480 * through a quiescent state. 481 */ 482 void __dev_remove_offload(struct packet_offload *po) 483 { 484 struct list_head *head = &offload_base; 485 struct packet_offload *po1; 486 487 spin_lock(&offload_lock); 488 489 list_for_each_entry(po1, head, list) { 490 if (po == po1) { 491 list_del_rcu(&po->list); 492 goto out; 493 } 494 } 495 496 pr_warn("dev_remove_offload: %p not found\n", po); 497 out: 498 spin_unlock(&offload_lock); 499 } 500 EXPORT_SYMBOL(__dev_remove_offload); 501 502 /** 503 * dev_remove_offload - remove packet offload handler 504 * @po: packet offload declaration 505 * 506 * Remove a packet offload handler that was previously added to the kernel 507 * offload handlers by dev_add_offload(). The passed &offload_type is 508 * removed from the kernel lists and can be freed or reused once this 509 * function returns. 510 * 511 * This call sleeps to guarantee that no CPU is looking at the packet 512 * type after return. 513 */ 514 void dev_remove_offload(struct packet_offload *po) 515 { 516 __dev_remove_offload(po); 517 518 synchronize_net(); 519 } 520 EXPORT_SYMBOL(dev_remove_offload); 521 522 /****************************************************************************** 523 524 Device Boot-time Settings Routines 525 526 *******************************************************************************/ 527 528 /* Boot time configuration table */ 529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 530 531 /** 532 * netdev_boot_setup_add - add new setup entry 533 * @name: name of the device 534 * @map: configured settings for the device 535 * 536 * Adds new setup entry to the dev_boot_setup list. The function 537 * returns 0 on error and 1 on success. This is a generic routine to 538 * all netdevices. 539 */ 540 static int netdev_boot_setup_add(char *name, struct ifmap *map) 541 { 542 struct netdev_boot_setup *s; 543 int i; 544 545 s = dev_boot_setup; 546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 548 memset(s[i].name, 0, sizeof(s[i].name)); 549 strlcpy(s[i].name, name, IFNAMSIZ); 550 memcpy(&s[i].map, map, sizeof(s[i].map)); 551 break; 552 } 553 } 554 555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 556 } 557 558 /** 559 * netdev_boot_setup_check - check boot time settings 560 * @dev: the netdevice 561 * 562 * Check boot time settings for the device. 563 * The found settings are set for the device to be used 564 * later in the device probing. 565 * Returns 0 if no settings found, 1 if they are. 566 */ 567 int netdev_boot_setup_check(struct net_device *dev) 568 { 569 struct netdev_boot_setup *s = dev_boot_setup; 570 int i; 571 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 574 !strcmp(dev->name, s[i].name)) { 575 dev->irq = s[i].map.irq; 576 dev->base_addr = s[i].map.base_addr; 577 dev->mem_start = s[i].map.mem_start; 578 dev->mem_end = s[i].map.mem_end; 579 return 1; 580 } 581 } 582 return 0; 583 } 584 EXPORT_SYMBOL(netdev_boot_setup_check); 585 586 587 /** 588 * netdev_boot_base - get address from boot time settings 589 * @prefix: prefix for network device 590 * @unit: id for network device 591 * 592 * Check boot time settings for the base address of device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found. 596 */ 597 unsigned long netdev_boot_base(const char *prefix, int unit) 598 { 599 const struct netdev_boot_setup *s = dev_boot_setup; 600 char name[IFNAMSIZ]; 601 int i; 602 603 sprintf(name, "%s%d", prefix, unit); 604 605 /* 606 * If device already registered then return base of 1 607 * to indicate not to probe for this interface 608 */ 609 if (__dev_get_by_name(&init_net, name)) 610 return 1; 611 612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 613 if (!strcmp(name, s[i].name)) 614 return s[i].map.base_addr; 615 return 0; 616 } 617 618 /* 619 * Saves at boot time configured settings for any netdevice. 620 */ 621 int __init netdev_boot_setup(char *str) 622 { 623 int ints[5]; 624 struct ifmap map; 625 626 str = get_options(str, ARRAY_SIZE(ints), ints); 627 if (!str || !*str) 628 return 0; 629 630 /* Save settings */ 631 memset(&map, 0, sizeof(map)); 632 if (ints[0] > 0) 633 map.irq = ints[1]; 634 if (ints[0] > 1) 635 map.base_addr = ints[2]; 636 if (ints[0] > 2) 637 map.mem_start = ints[3]; 638 if (ints[0] > 3) 639 map.mem_end = ints[4]; 640 641 /* Add new entry to the list */ 642 return netdev_boot_setup_add(str, &map); 643 } 644 645 __setup("netdev=", netdev_boot_setup); 646 647 /******************************************************************************* 648 649 Device Interface Subroutines 650 651 *******************************************************************************/ 652 653 /** 654 * __dev_get_by_name - find a device by its name 655 * @net: the applicable net namespace 656 * @name: name to find 657 * 658 * Find an interface by name. Must be called under RTNL semaphore 659 * or @dev_base_lock. If the name is found a pointer to the device 660 * is returned. If the name is not found then %NULL is returned. The 661 * reference counters are not incremented so the caller must be 662 * careful with locks. 663 */ 664 665 struct net_device *__dev_get_by_name(struct net *net, const char *name) 666 { 667 struct net_device *dev; 668 struct hlist_head *head = dev_name_hash(net, name); 669 670 hlist_for_each_entry(dev, head, name_hlist) 671 if (!strncmp(dev->name, name, IFNAMSIZ)) 672 return dev; 673 674 return NULL; 675 } 676 EXPORT_SYMBOL(__dev_get_by_name); 677 678 /** 679 * dev_get_by_name_rcu - find a device by its name 680 * @net: the applicable net namespace 681 * @name: name to find 682 * 683 * Find an interface by name. 684 * If the name is found a pointer to the device is returned. 685 * If the name is not found then %NULL is returned. 686 * The reference counters are not incremented so the caller must be 687 * careful with locks. The caller must hold RCU lock. 688 */ 689 690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 691 { 692 struct net_device *dev; 693 struct hlist_head *head = dev_name_hash(net, name); 694 695 hlist_for_each_entry_rcu(dev, head, name_hlist) 696 if (!strncmp(dev->name, name, IFNAMSIZ)) 697 return dev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL(dev_get_by_name_rcu); 702 703 /** 704 * dev_get_by_name - find a device by its name 705 * @net: the applicable net namespace 706 * @name: name to find 707 * 708 * Find an interface by name. This can be called from any 709 * context and does its own locking. The returned handle has 710 * the usage count incremented and the caller must use dev_put() to 711 * release it when it is no longer needed. %NULL is returned if no 712 * matching device is found. 713 */ 714 715 struct net_device *dev_get_by_name(struct net *net, const char *name) 716 { 717 struct net_device *dev; 718 719 rcu_read_lock(); 720 dev = dev_get_by_name_rcu(net, name); 721 if (dev) 722 dev_hold(dev); 723 rcu_read_unlock(); 724 return dev; 725 } 726 EXPORT_SYMBOL(dev_get_by_name); 727 728 /** 729 * __dev_get_by_index - find a device by its ifindex 730 * @net: the applicable net namespace 731 * @ifindex: index of device 732 * 733 * Search for an interface by index. Returns %NULL if the device 734 * is not found or a pointer to the device. The device has not 735 * had its reference counter increased so the caller must be careful 736 * about locking. The caller must hold either the RTNL semaphore 737 * or @dev_base_lock. 738 */ 739 740 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 741 { 742 struct net_device *dev; 743 struct hlist_head *head = dev_index_hash(net, ifindex); 744 745 hlist_for_each_entry(dev, head, index_hlist) 746 if (dev->ifindex == ifindex) 747 return dev; 748 749 return NULL; 750 } 751 EXPORT_SYMBOL(__dev_get_by_index); 752 753 /** 754 * dev_get_by_index_rcu - find a device by its ifindex 755 * @net: the applicable net namespace 756 * @ifindex: index of device 757 * 758 * Search for an interface by index. Returns %NULL if the device 759 * is not found or a pointer to the device. The device has not 760 * had its reference counter increased so the caller must be careful 761 * about locking. The caller must hold RCU lock. 762 */ 763 764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 765 { 766 struct net_device *dev; 767 struct hlist_head *head = dev_index_hash(net, ifindex); 768 769 hlist_for_each_entry_rcu(dev, head, index_hlist) 770 if (dev->ifindex == ifindex) 771 return dev; 772 773 return NULL; 774 } 775 EXPORT_SYMBOL(dev_get_by_index_rcu); 776 777 778 /** 779 * dev_get_by_index - find a device by its ifindex 780 * @net: the applicable net namespace 781 * @ifindex: index of device 782 * 783 * Search for an interface by index. Returns NULL if the device 784 * is not found or a pointer to the device. The device returned has 785 * had a reference added and the pointer is safe until the user calls 786 * dev_put to indicate they have finished with it. 787 */ 788 789 struct net_device *dev_get_by_index(struct net *net, int ifindex) 790 { 791 struct net_device *dev; 792 793 rcu_read_lock(); 794 dev = dev_get_by_index_rcu(net, ifindex); 795 if (dev) 796 dev_hold(dev); 797 rcu_read_unlock(); 798 return dev; 799 } 800 EXPORT_SYMBOL(dev_get_by_index); 801 802 /** 803 * netdev_get_name - get a netdevice name, knowing its ifindex. 804 * @net: network namespace 805 * @name: a pointer to the buffer where the name will be stored. 806 * @ifindex: the ifindex of the interface to get the name from. 807 * 808 * The use of raw_seqcount_begin() and cond_resched() before 809 * retrying is required as we want to give the writers a chance 810 * to complete when CONFIG_PREEMPT is not set. 811 */ 812 int netdev_get_name(struct net *net, char *name, int ifindex) 813 { 814 struct net_device *dev; 815 unsigned int seq; 816 817 retry: 818 seq = raw_seqcount_begin(&devnet_rename_seq); 819 rcu_read_lock(); 820 dev = dev_get_by_index_rcu(net, ifindex); 821 if (!dev) { 822 rcu_read_unlock(); 823 return -ENODEV; 824 } 825 826 strcpy(name, dev->name); 827 rcu_read_unlock(); 828 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 829 cond_resched(); 830 goto retry; 831 } 832 833 return 0; 834 } 835 836 /** 837 * dev_getbyhwaddr_rcu - find a device by its hardware address 838 * @net: the applicable net namespace 839 * @type: media type of device 840 * @ha: hardware address 841 * 842 * Search for an interface by MAC address. Returns NULL if the device 843 * is not found or a pointer to the device. 844 * The caller must hold RCU or RTNL. 845 * The returned device has not had its ref count increased 846 * and the caller must therefore be careful about locking 847 * 848 */ 849 850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 851 const char *ha) 852 { 853 struct net_device *dev; 854 855 for_each_netdev_rcu(net, dev) 856 if (dev->type == type && 857 !memcmp(dev->dev_addr, ha, dev->addr_len)) 858 return dev; 859 860 return NULL; 861 } 862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 863 864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 865 { 866 struct net_device *dev; 867 868 ASSERT_RTNL(); 869 for_each_netdev(net, dev) 870 if (dev->type == type) 871 return dev; 872 873 return NULL; 874 } 875 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 876 877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 878 { 879 struct net_device *dev, *ret = NULL; 880 881 rcu_read_lock(); 882 for_each_netdev_rcu(net, dev) 883 if (dev->type == type) { 884 dev_hold(dev); 885 ret = dev; 886 break; 887 } 888 rcu_read_unlock(); 889 return ret; 890 } 891 EXPORT_SYMBOL(dev_getfirstbyhwtype); 892 893 /** 894 * dev_get_by_flags_rcu - find any device with given flags 895 * @net: the applicable net namespace 896 * @if_flags: IFF_* values 897 * @mask: bitmask of bits in if_flags to check 898 * 899 * Search for any interface with the given flags. Returns NULL if a device 900 * is not found or a pointer to the device. Must be called inside 901 * rcu_read_lock(), and result refcount is unchanged. 902 */ 903 904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 905 unsigned short mask) 906 { 907 struct net_device *dev, *ret; 908 909 ret = NULL; 910 for_each_netdev_rcu(net, dev) { 911 if (((dev->flags ^ if_flags) & mask) == 0) { 912 ret = dev; 913 break; 914 } 915 } 916 return ret; 917 } 918 EXPORT_SYMBOL(dev_get_by_flags_rcu); 919 920 /** 921 * dev_valid_name - check if name is okay for network device 922 * @name: name string 923 * 924 * Network device names need to be valid file names to 925 * to allow sysfs to work. We also disallow any kind of 926 * whitespace. 927 */ 928 bool dev_valid_name(const char *name) 929 { 930 if (*name == '\0') 931 return false; 932 if (strlen(name) >= IFNAMSIZ) 933 return false; 934 if (!strcmp(name, ".") || !strcmp(name, "..")) 935 return false; 936 937 while (*name) { 938 if (*name == '/' || isspace(*name)) 939 return false; 940 name++; 941 } 942 return true; 943 } 944 EXPORT_SYMBOL(dev_valid_name); 945 946 /** 947 * __dev_alloc_name - allocate a name for a device 948 * @net: network namespace to allocate the device name in 949 * @name: name format string 950 * @buf: scratch buffer and result name string 951 * 952 * Passed a format string - eg "lt%d" it will try and find a suitable 953 * id. It scans list of devices to build up a free map, then chooses 954 * the first empty slot. The caller must hold the dev_base or rtnl lock 955 * while allocating the name and adding the device in order to avoid 956 * duplicates. 957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 958 * Returns the number of the unit assigned or a negative errno code. 959 */ 960 961 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 962 { 963 int i = 0; 964 const char *p; 965 const int max_netdevices = 8*PAGE_SIZE; 966 unsigned long *inuse; 967 struct net_device *d; 968 969 p = strnchr(name, IFNAMSIZ-1, '%'); 970 if (p) { 971 /* 972 * Verify the string as this thing may have come from 973 * the user. There must be either one "%d" and no other "%" 974 * characters. 975 */ 976 if (p[1] != 'd' || strchr(p + 2, '%')) 977 return -EINVAL; 978 979 /* Use one page as a bit array of possible slots */ 980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 981 if (!inuse) 982 return -ENOMEM; 983 984 for_each_netdev(net, d) { 985 if (!sscanf(d->name, name, &i)) 986 continue; 987 if (i < 0 || i >= max_netdevices) 988 continue; 989 990 /* avoid cases where sscanf is not exact inverse of printf */ 991 snprintf(buf, IFNAMSIZ, name, i); 992 if (!strncmp(buf, d->name, IFNAMSIZ)) 993 set_bit(i, inuse); 994 } 995 996 i = find_first_zero_bit(inuse, max_netdevices); 997 free_page((unsigned long) inuse); 998 } 999 1000 if (buf != name) 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!__dev_get_by_name(net, buf)) 1003 return i; 1004 1005 /* It is possible to run out of possible slots 1006 * when the name is long and there isn't enough space left 1007 * for the digits, or if all bits are used. 1008 */ 1009 return -ENFILE; 1010 } 1011 1012 /** 1013 * dev_alloc_name - allocate a name for a device 1014 * @dev: device 1015 * @name: name format string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 int dev_alloc_name(struct net_device *dev, const char *name) 1027 { 1028 char buf[IFNAMSIZ]; 1029 struct net *net; 1030 int ret; 1031 1032 BUG_ON(!dev_net(dev)); 1033 net = dev_net(dev); 1034 ret = __dev_alloc_name(net, name, buf); 1035 if (ret >= 0) 1036 strlcpy(dev->name, buf, IFNAMSIZ); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL(dev_alloc_name); 1040 1041 static int dev_alloc_name_ns(struct net *net, 1042 struct net_device *dev, 1043 const char *name) 1044 { 1045 char buf[IFNAMSIZ]; 1046 int ret; 1047 1048 ret = __dev_alloc_name(net, name, buf); 1049 if (ret >= 0) 1050 strlcpy(dev->name, buf, IFNAMSIZ); 1051 return ret; 1052 } 1053 1054 static int dev_get_valid_name(struct net *net, 1055 struct net_device *dev, 1056 const char *name) 1057 { 1058 BUG_ON(!net); 1059 1060 if (!dev_valid_name(name)) 1061 return -EINVAL; 1062 1063 if (strchr(name, '%')) 1064 return dev_alloc_name_ns(net, dev, name); 1065 else if (__dev_get_by_name(net, name)) 1066 return -EEXIST; 1067 else if (dev->name != name) 1068 strlcpy(dev->name, name, IFNAMSIZ); 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * dev_change_name - change name of a device 1075 * @dev: device 1076 * @newname: name (or format string) must be at least IFNAMSIZ 1077 * 1078 * Change name of a device, can pass format strings "eth%d". 1079 * for wildcarding. 1080 */ 1081 int dev_change_name(struct net_device *dev, const char *newname) 1082 { 1083 char oldname[IFNAMSIZ]; 1084 int err = 0; 1085 int ret; 1086 struct net *net; 1087 1088 ASSERT_RTNL(); 1089 BUG_ON(!dev_net(dev)); 1090 1091 net = dev_net(dev); 1092 if (dev->flags & IFF_UP) 1093 return -EBUSY; 1094 1095 write_seqcount_begin(&devnet_rename_seq); 1096 1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1098 write_seqcount_end(&devnet_rename_seq); 1099 return 0; 1100 } 1101 1102 memcpy(oldname, dev->name, IFNAMSIZ); 1103 1104 err = dev_get_valid_name(net, dev, newname); 1105 if (err < 0) { 1106 write_seqcount_end(&devnet_rename_seq); 1107 return err; 1108 } 1109 1110 rollback: 1111 ret = device_rename(&dev->dev, dev->name); 1112 if (ret) { 1113 memcpy(dev->name, oldname, IFNAMSIZ); 1114 write_seqcount_end(&devnet_rename_seq); 1115 return ret; 1116 } 1117 1118 write_seqcount_end(&devnet_rename_seq); 1119 1120 write_lock_bh(&dev_base_lock); 1121 hlist_del_rcu(&dev->name_hlist); 1122 write_unlock_bh(&dev_base_lock); 1123 1124 synchronize_rcu(); 1125 1126 write_lock_bh(&dev_base_lock); 1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1128 write_unlock_bh(&dev_base_lock); 1129 1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1131 ret = notifier_to_errno(ret); 1132 1133 if (ret) { 1134 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1135 if (err >= 0) { 1136 err = ret; 1137 write_seqcount_begin(&devnet_rename_seq); 1138 memcpy(dev->name, oldname, IFNAMSIZ); 1139 goto rollback; 1140 } else { 1141 pr_err("%s: name change rollback failed: %d\n", 1142 dev->name, ret); 1143 } 1144 } 1145 1146 return err; 1147 } 1148 1149 /** 1150 * dev_set_alias - change ifalias of a device 1151 * @dev: device 1152 * @alias: name up to IFALIASZ 1153 * @len: limit of bytes to copy from info 1154 * 1155 * Set ifalias for a device, 1156 */ 1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1158 { 1159 char *new_ifalias; 1160 1161 ASSERT_RTNL(); 1162 1163 if (len >= IFALIASZ) 1164 return -EINVAL; 1165 1166 if (!len) { 1167 kfree(dev->ifalias); 1168 dev->ifalias = NULL; 1169 return 0; 1170 } 1171 1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1173 if (!new_ifalias) 1174 return -ENOMEM; 1175 dev->ifalias = new_ifalias; 1176 1177 strlcpy(dev->ifalias, alias, len+1); 1178 return len; 1179 } 1180 1181 1182 /** 1183 * netdev_features_change - device changes features 1184 * @dev: device to cause notification 1185 * 1186 * Called to indicate a device has changed features. 1187 */ 1188 void netdev_features_change(struct net_device *dev) 1189 { 1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1191 } 1192 EXPORT_SYMBOL(netdev_features_change); 1193 1194 /** 1195 * netdev_state_change - device changes state 1196 * @dev: device to cause notification 1197 * 1198 * Called to indicate a device has changed state. This function calls 1199 * the notifier chains for netdev_chain and sends a NEWLINK message 1200 * to the routing socket. 1201 */ 1202 void netdev_state_change(struct net_device *dev) 1203 { 1204 if (dev->flags & IFF_UP) { 1205 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1207 } 1208 } 1209 EXPORT_SYMBOL(netdev_state_change); 1210 1211 /** 1212 * netdev_notify_peers - notify network peers about existence of @dev 1213 * @dev: network device 1214 * 1215 * Generate traffic such that interested network peers are aware of 1216 * @dev, such as by generating a gratuitous ARP. This may be used when 1217 * a device wants to inform the rest of the network about some sort of 1218 * reconfiguration such as a failover event or virtual machine 1219 * migration. 1220 */ 1221 void netdev_notify_peers(struct net_device *dev) 1222 { 1223 rtnl_lock(); 1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1225 rtnl_unlock(); 1226 } 1227 EXPORT_SYMBOL(netdev_notify_peers); 1228 1229 static int __dev_open(struct net_device *dev) 1230 { 1231 const struct net_device_ops *ops = dev->netdev_ops; 1232 int ret; 1233 1234 ASSERT_RTNL(); 1235 1236 if (!netif_device_present(dev)) 1237 return -ENODEV; 1238 1239 /* Block netpoll from trying to do any rx path servicing. 1240 * If we don't do this there is a chance ndo_poll_controller 1241 * or ndo_poll may be running while we open the device 1242 */ 1243 netpoll_rx_disable(dev); 1244 1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1246 ret = notifier_to_errno(ret); 1247 if (ret) 1248 return ret; 1249 1250 set_bit(__LINK_STATE_START, &dev->state); 1251 1252 if (ops->ndo_validate_addr) 1253 ret = ops->ndo_validate_addr(dev); 1254 1255 if (!ret && ops->ndo_open) 1256 ret = ops->ndo_open(dev); 1257 1258 netpoll_rx_enable(dev); 1259 1260 if (ret) 1261 clear_bit(__LINK_STATE_START, &dev->state); 1262 else { 1263 dev->flags |= IFF_UP; 1264 net_dmaengine_get(); 1265 dev_set_rx_mode(dev); 1266 dev_activate(dev); 1267 add_device_randomness(dev->dev_addr, dev->addr_len); 1268 } 1269 1270 return ret; 1271 } 1272 1273 /** 1274 * dev_open - prepare an interface for use. 1275 * @dev: device to open 1276 * 1277 * Takes a device from down to up state. The device's private open 1278 * function is invoked and then the multicast lists are loaded. Finally 1279 * the device is moved into the up state and a %NETDEV_UP message is 1280 * sent to the netdev notifier chain. 1281 * 1282 * Calling this function on an active interface is a nop. On a failure 1283 * a negative errno code is returned. 1284 */ 1285 int dev_open(struct net_device *dev) 1286 { 1287 int ret; 1288 1289 if (dev->flags & IFF_UP) 1290 return 0; 1291 1292 ret = __dev_open(dev); 1293 if (ret < 0) 1294 return ret; 1295 1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1297 call_netdevice_notifiers(NETDEV_UP, dev); 1298 1299 return ret; 1300 } 1301 EXPORT_SYMBOL(dev_open); 1302 1303 static int __dev_close_many(struct list_head *head) 1304 { 1305 struct net_device *dev; 1306 1307 ASSERT_RTNL(); 1308 might_sleep(); 1309 1310 list_for_each_entry(dev, head, unreg_list) { 1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1312 1313 clear_bit(__LINK_STATE_START, &dev->state); 1314 1315 /* Synchronize to scheduled poll. We cannot touch poll list, it 1316 * can be even on different cpu. So just clear netif_running(). 1317 * 1318 * dev->stop() will invoke napi_disable() on all of it's 1319 * napi_struct instances on this device. 1320 */ 1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1322 } 1323 1324 dev_deactivate_many(head); 1325 1326 list_for_each_entry(dev, head, unreg_list) { 1327 const struct net_device_ops *ops = dev->netdev_ops; 1328 1329 /* 1330 * Call the device specific close. This cannot fail. 1331 * Only if device is UP 1332 * 1333 * We allow it to be called even after a DETACH hot-plug 1334 * event. 1335 */ 1336 if (ops->ndo_stop) 1337 ops->ndo_stop(dev); 1338 1339 dev->flags &= ~IFF_UP; 1340 net_dmaengine_put(); 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int __dev_close(struct net_device *dev) 1347 { 1348 int retval; 1349 LIST_HEAD(single); 1350 1351 /* Temporarily disable netpoll until the interface is down */ 1352 netpoll_rx_disable(dev); 1353 1354 list_add(&dev->unreg_list, &single); 1355 retval = __dev_close_many(&single); 1356 list_del(&single); 1357 1358 netpoll_rx_enable(dev); 1359 return retval; 1360 } 1361 1362 static int dev_close_many(struct list_head *head) 1363 { 1364 struct net_device *dev, *tmp; 1365 LIST_HEAD(tmp_list); 1366 1367 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1368 if (!(dev->flags & IFF_UP)) 1369 list_move(&dev->unreg_list, &tmp_list); 1370 1371 __dev_close_many(head); 1372 1373 list_for_each_entry(dev, head, unreg_list) { 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1375 call_netdevice_notifiers(NETDEV_DOWN, dev); 1376 } 1377 1378 /* rollback_registered_many needs the complete original list */ 1379 list_splice(&tmp_list, head); 1380 return 0; 1381 } 1382 1383 /** 1384 * dev_close - shutdown an interface. 1385 * @dev: device to shutdown 1386 * 1387 * This function moves an active device into down state. A 1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1390 * chain. 1391 */ 1392 int dev_close(struct net_device *dev) 1393 { 1394 if (dev->flags & IFF_UP) { 1395 LIST_HEAD(single); 1396 1397 /* Block netpoll rx while the interface is going down */ 1398 netpoll_rx_disable(dev); 1399 1400 list_add(&dev->unreg_list, &single); 1401 dev_close_many(&single); 1402 list_del(&single); 1403 1404 netpoll_rx_enable(dev); 1405 } 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(dev_close); 1409 1410 1411 /** 1412 * dev_disable_lro - disable Large Receive Offload on a device 1413 * @dev: device 1414 * 1415 * Disable Large Receive Offload (LRO) on a net device. Must be 1416 * called under RTNL. This is needed if received packets may be 1417 * forwarded to another interface. 1418 */ 1419 void dev_disable_lro(struct net_device *dev) 1420 { 1421 /* 1422 * If we're trying to disable lro on a vlan device 1423 * use the underlying physical device instead 1424 */ 1425 if (is_vlan_dev(dev)) 1426 dev = vlan_dev_real_dev(dev); 1427 1428 dev->wanted_features &= ~NETIF_F_LRO; 1429 netdev_update_features(dev); 1430 1431 if (unlikely(dev->features & NETIF_F_LRO)) 1432 netdev_WARN(dev, "failed to disable LRO!\n"); 1433 } 1434 EXPORT_SYMBOL(dev_disable_lro); 1435 1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1437 struct net_device *dev) 1438 { 1439 struct netdev_notifier_info info; 1440 1441 netdev_notifier_info_init(&info, dev); 1442 return nb->notifier_call(nb, val, &info); 1443 } 1444 1445 static int dev_boot_phase = 1; 1446 1447 /** 1448 * register_netdevice_notifier - register a network notifier block 1449 * @nb: notifier 1450 * 1451 * Register a notifier to be called when network device events occur. 1452 * The notifier passed is linked into the kernel structures and must 1453 * not be reused until it has been unregistered. A negative errno code 1454 * is returned on a failure. 1455 * 1456 * When registered all registration and up events are replayed 1457 * to the new notifier to allow device to have a race free 1458 * view of the network device list. 1459 */ 1460 1461 int register_netdevice_notifier(struct notifier_block *nb) 1462 { 1463 struct net_device *dev; 1464 struct net_device *last; 1465 struct net *net; 1466 int err; 1467 1468 rtnl_lock(); 1469 err = raw_notifier_chain_register(&netdev_chain, nb); 1470 if (err) 1471 goto unlock; 1472 if (dev_boot_phase) 1473 goto unlock; 1474 for_each_net(net) { 1475 for_each_netdev(net, dev) { 1476 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1477 err = notifier_to_errno(err); 1478 if (err) 1479 goto rollback; 1480 1481 if (!(dev->flags & IFF_UP)) 1482 continue; 1483 1484 call_netdevice_notifier(nb, NETDEV_UP, dev); 1485 } 1486 } 1487 1488 unlock: 1489 rtnl_unlock(); 1490 return err; 1491 1492 rollback: 1493 last = dev; 1494 for_each_net(net) { 1495 for_each_netdev(net, dev) { 1496 if (dev == last) 1497 goto outroll; 1498 1499 if (dev->flags & IFF_UP) { 1500 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1501 dev); 1502 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1503 } 1504 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1505 } 1506 } 1507 1508 outroll: 1509 raw_notifier_chain_unregister(&netdev_chain, nb); 1510 goto unlock; 1511 } 1512 EXPORT_SYMBOL(register_netdevice_notifier); 1513 1514 /** 1515 * unregister_netdevice_notifier - unregister a network notifier block 1516 * @nb: notifier 1517 * 1518 * Unregister a notifier previously registered by 1519 * register_netdevice_notifier(). The notifier is unlinked into the 1520 * kernel structures and may then be reused. A negative errno code 1521 * is returned on a failure. 1522 * 1523 * After unregistering unregister and down device events are synthesized 1524 * for all devices on the device list to the removed notifier to remove 1525 * the need for special case cleanup code. 1526 */ 1527 1528 int unregister_netdevice_notifier(struct notifier_block *nb) 1529 { 1530 struct net_device *dev; 1531 struct net *net; 1532 int err; 1533 1534 rtnl_lock(); 1535 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1536 if (err) 1537 goto unlock; 1538 1539 for_each_net(net) { 1540 for_each_netdev(net, dev) { 1541 if (dev->flags & IFF_UP) { 1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1543 dev); 1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1545 } 1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1547 } 1548 } 1549 unlock: 1550 rtnl_unlock(); 1551 return err; 1552 } 1553 EXPORT_SYMBOL(unregister_netdevice_notifier); 1554 1555 /** 1556 * call_netdevice_notifiers_info - call all network notifier blocks 1557 * @val: value passed unmodified to notifier function 1558 * @dev: net_device pointer passed unmodified to notifier function 1559 * @info: notifier information data 1560 * 1561 * Call all network notifier blocks. Parameters and return value 1562 * are as for raw_notifier_call_chain(). 1563 */ 1564 1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1566 struct netdev_notifier_info *info) 1567 { 1568 ASSERT_RTNL(); 1569 netdev_notifier_info_init(info, dev); 1570 return raw_notifier_call_chain(&netdev_chain, val, info); 1571 } 1572 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1573 1574 /** 1575 * call_netdevice_notifiers - call all network notifier blocks 1576 * @val: value passed unmodified to notifier function 1577 * @dev: net_device pointer passed unmodified to notifier function 1578 * 1579 * Call all network notifier blocks. Parameters and return value 1580 * are as for raw_notifier_call_chain(). 1581 */ 1582 1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1584 { 1585 struct netdev_notifier_info info; 1586 1587 return call_netdevice_notifiers_info(val, dev, &info); 1588 } 1589 EXPORT_SYMBOL(call_netdevice_notifiers); 1590 1591 static struct static_key netstamp_needed __read_mostly; 1592 #ifdef HAVE_JUMP_LABEL 1593 /* We are not allowed to call static_key_slow_dec() from irq context 1594 * If net_disable_timestamp() is called from irq context, defer the 1595 * static_key_slow_dec() calls. 1596 */ 1597 static atomic_t netstamp_needed_deferred; 1598 #endif 1599 1600 void net_enable_timestamp(void) 1601 { 1602 #ifdef HAVE_JUMP_LABEL 1603 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1604 1605 if (deferred) { 1606 while (--deferred) 1607 static_key_slow_dec(&netstamp_needed); 1608 return; 1609 } 1610 #endif 1611 static_key_slow_inc(&netstamp_needed); 1612 } 1613 EXPORT_SYMBOL(net_enable_timestamp); 1614 1615 void net_disable_timestamp(void) 1616 { 1617 #ifdef HAVE_JUMP_LABEL 1618 if (in_interrupt()) { 1619 atomic_inc(&netstamp_needed_deferred); 1620 return; 1621 } 1622 #endif 1623 static_key_slow_dec(&netstamp_needed); 1624 } 1625 EXPORT_SYMBOL(net_disable_timestamp); 1626 1627 static inline void net_timestamp_set(struct sk_buff *skb) 1628 { 1629 skb->tstamp.tv64 = 0; 1630 if (static_key_false(&netstamp_needed)) 1631 __net_timestamp(skb); 1632 } 1633 1634 #define net_timestamp_check(COND, SKB) \ 1635 if (static_key_false(&netstamp_needed)) { \ 1636 if ((COND) && !(SKB)->tstamp.tv64) \ 1637 __net_timestamp(SKB); \ 1638 } \ 1639 1640 static inline bool is_skb_forwardable(struct net_device *dev, 1641 struct sk_buff *skb) 1642 { 1643 unsigned int len; 1644 1645 if (!(dev->flags & IFF_UP)) 1646 return false; 1647 1648 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1649 if (skb->len <= len) 1650 return true; 1651 1652 /* if TSO is enabled, we don't care about the length as the packet 1653 * could be forwarded without being segmented before 1654 */ 1655 if (skb_is_gso(skb)) 1656 return true; 1657 1658 return false; 1659 } 1660 1661 /** 1662 * dev_forward_skb - loopback an skb to another netif 1663 * 1664 * @dev: destination network device 1665 * @skb: buffer to forward 1666 * 1667 * return values: 1668 * NET_RX_SUCCESS (no congestion) 1669 * NET_RX_DROP (packet was dropped, but freed) 1670 * 1671 * dev_forward_skb can be used for injecting an skb from the 1672 * start_xmit function of one device into the receive queue 1673 * of another device. 1674 * 1675 * The receiving device may be in another namespace, so 1676 * we have to clear all information in the skb that could 1677 * impact namespace isolation. 1678 */ 1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1680 { 1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1683 atomic_long_inc(&dev->rx_dropped); 1684 kfree_skb(skb); 1685 return NET_RX_DROP; 1686 } 1687 } 1688 1689 if (unlikely(!is_skb_forwardable(dev, skb))) { 1690 atomic_long_inc(&dev->rx_dropped); 1691 kfree_skb(skb); 1692 return NET_RX_DROP; 1693 } 1694 skb->protocol = eth_type_trans(skb, dev); 1695 1696 /* eth_type_trans() can set pkt_type. 1697 * call skb_scrub_packet() after it to clear pkt_type _after_ calling 1698 * eth_type_trans(). 1699 */ 1700 skb_scrub_packet(skb, true); 1701 1702 return netif_rx(skb); 1703 } 1704 EXPORT_SYMBOL_GPL(dev_forward_skb); 1705 1706 static inline int deliver_skb(struct sk_buff *skb, 1707 struct packet_type *pt_prev, 1708 struct net_device *orig_dev) 1709 { 1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1711 return -ENOMEM; 1712 atomic_inc(&skb->users); 1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1714 } 1715 1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1717 { 1718 if (!ptype->af_packet_priv || !skb->sk) 1719 return false; 1720 1721 if (ptype->id_match) 1722 return ptype->id_match(ptype, skb->sk); 1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1724 return true; 1725 1726 return false; 1727 } 1728 1729 /* 1730 * Support routine. Sends outgoing frames to any network 1731 * taps currently in use. 1732 */ 1733 1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1735 { 1736 struct packet_type *ptype; 1737 struct sk_buff *skb2 = NULL; 1738 struct packet_type *pt_prev = NULL; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1742 /* Never send packets back to the socket 1743 * they originated from - MvS (miquels@drinkel.ow.org) 1744 */ 1745 if ((ptype->dev == dev || !ptype->dev) && 1746 (!skb_loop_sk(ptype, skb))) { 1747 if (pt_prev) { 1748 deliver_skb(skb2, pt_prev, skb->dev); 1749 pt_prev = ptype; 1750 continue; 1751 } 1752 1753 skb2 = skb_clone(skb, GFP_ATOMIC); 1754 if (!skb2) 1755 break; 1756 1757 net_timestamp_set(skb2); 1758 1759 /* skb->nh should be correctly 1760 set by sender, so that the second statement is 1761 just protection against buggy protocols. 1762 */ 1763 skb_reset_mac_header(skb2); 1764 1765 if (skb_network_header(skb2) < skb2->data || 1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1768 ntohs(skb2->protocol), 1769 dev->name); 1770 skb_reset_network_header(skb2); 1771 } 1772 1773 skb2->transport_header = skb2->network_header; 1774 skb2->pkt_type = PACKET_OUTGOING; 1775 pt_prev = ptype; 1776 } 1777 } 1778 if (pt_prev) 1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1780 rcu_read_unlock(); 1781 } 1782 1783 /** 1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1785 * @dev: Network device 1786 * @txq: number of queues available 1787 * 1788 * If real_num_tx_queues is changed the tc mappings may no longer be 1789 * valid. To resolve this verify the tc mapping remains valid and if 1790 * not NULL the mapping. With no priorities mapping to this 1791 * offset/count pair it will no longer be used. In the worst case TC0 1792 * is invalid nothing can be done so disable priority mappings. If is 1793 * expected that drivers will fix this mapping if they can before 1794 * calling netif_set_real_num_tx_queues. 1795 */ 1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1797 { 1798 int i; 1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1800 1801 /* If TC0 is invalidated disable TC mapping */ 1802 if (tc->offset + tc->count > txq) { 1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1804 dev->num_tc = 0; 1805 return; 1806 } 1807 1808 /* Invalidated prio to tc mappings set to TC0 */ 1809 for (i = 1; i < TC_BITMASK + 1; i++) { 1810 int q = netdev_get_prio_tc_map(dev, i); 1811 1812 tc = &dev->tc_to_txq[q]; 1813 if (tc->offset + tc->count > txq) { 1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1815 i, q); 1816 netdev_set_prio_tc_map(dev, i, 0); 1817 } 1818 } 1819 } 1820 1821 #ifdef CONFIG_XPS 1822 static DEFINE_MUTEX(xps_map_mutex); 1823 #define xmap_dereference(P) \ 1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1825 1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1827 int cpu, u16 index) 1828 { 1829 struct xps_map *map = NULL; 1830 int pos; 1831 1832 if (dev_maps) 1833 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1834 1835 for (pos = 0; map && pos < map->len; pos++) { 1836 if (map->queues[pos] == index) { 1837 if (map->len > 1) { 1838 map->queues[pos] = map->queues[--map->len]; 1839 } else { 1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1841 kfree_rcu(map, rcu); 1842 map = NULL; 1843 } 1844 break; 1845 } 1846 } 1847 1848 return map; 1849 } 1850 1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1852 { 1853 struct xps_dev_maps *dev_maps; 1854 int cpu, i; 1855 bool active = false; 1856 1857 mutex_lock(&xps_map_mutex); 1858 dev_maps = xmap_dereference(dev->xps_maps); 1859 1860 if (!dev_maps) 1861 goto out_no_maps; 1862 1863 for_each_possible_cpu(cpu) { 1864 for (i = index; i < dev->num_tx_queues; i++) { 1865 if (!remove_xps_queue(dev_maps, cpu, i)) 1866 break; 1867 } 1868 if (i == dev->num_tx_queues) 1869 active = true; 1870 } 1871 1872 if (!active) { 1873 RCU_INIT_POINTER(dev->xps_maps, NULL); 1874 kfree_rcu(dev_maps, rcu); 1875 } 1876 1877 for (i = index; i < dev->num_tx_queues; i++) 1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1879 NUMA_NO_NODE); 1880 1881 out_no_maps: 1882 mutex_unlock(&xps_map_mutex); 1883 } 1884 1885 static struct xps_map *expand_xps_map(struct xps_map *map, 1886 int cpu, u16 index) 1887 { 1888 struct xps_map *new_map; 1889 int alloc_len = XPS_MIN_MAP_ALLOC; 1890 int i, pos; 1891 1892 for (pos = 0; map && pos < map->len; pos++) { 1893 if (map->queues[pos] != index) 1894 continue; 1895 return map; 1896 } 1897 1898 /* Need to add queue to this CPU's existing map */ 1899 if (map) { 1900 if (pos < map->alloc_len) 1901 return map; 1902 1903 alloc_len = map->alloc_len * 2; 1904 } 1905 1906 /* Need to allocate new map to store queue on this CPU's map */ 1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1908 cpu_to_node(cpu)); 1909 if (!new_map) 1910 return NULL; 1911 1912 for (i = 0; i < pos; i++) 1913 new_map->queues[i] = map->queues[i]; 1914 new_map->alloc_len = alloc_len; 1915 new_map->len = pos; 1916 1917 return new_map; 1918 } 1919 1920 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1921 { 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1923 struct xps_map *map, *new_map; 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1925 int cpu, numa_node_id = -2; 1926 bool active = false; 1927 1928 mutex_lock(&xps_map_mutex); 1929 1930 dev_maps = xmap_dereference(dev->xps_maps); 1931 1932 /* allocate memory for queue storage */ 1933 for_each_online_cpu(cpu) { 1934 if (!cpumask_test_cpu(cpu, mask)) 1935 continue; 1936 1937 if (!new_dev_maps) 1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1939 if (!new_dev_maps) { 1940 mutex_unlock(&xps_map_mutex); 1941 return -ENOMEM; 1942 } 1943 1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1945 NULL; 1946 1947 map = expand_xps_map(map, cpu, index); 1948 if (!map) 1949 goto error; 1950 1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1952 } 1953 1954 if (!new_dev_maps) 1955 goto out_no_new_maps; 1956 1957 for_each_possible_cpu(cpu) { 1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1959 /* add queue to CPU maps */ 1960 int pos = 0; 1961 1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1963 while ((pos < map->len) && (map->queues[pos] != index)) 1964 pos++; 1965 1966 if (pos == map->len) 1967 map->queues[map->len++] = index; 1968 #ifdef CONFIG_NUMA 1969 if (numa_node_id == -2) 1970 numa_node_id = cpu_to_node(cpu); 1971 else if (numa_node_id != cpu_to_node(cpu)) 1972 numa_node_id = -1; 1973 #endif 1974 } else if (dev_maps) { 1975 /* fill in the new device map from the old device map */ 1976 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1978 } 1979 1980 } 1981 1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1983 1984 /* Cleanup old maps */ 1985 if (dev_maps) { 1986 for_each_possible_cpu(cpu) { 1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1988 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1989 if (map && map != new_map) 1990 kfree_rcu(map, rcu); 1991 } 1992 1993 kfree_rcu(dev_maps, rcu); 1994 } 1995 1996 dev_maps = new_dev_maps; 1997 active = true; 1998 1999 out_no_new_maps: 2000 /* update Tx queue numa node */ 2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2002 (numa_node_id >= 0) ? numa_node_id : 2003 NUMA_NO_NODE); 2004 2005 if (!dev_maps) 2006 goto out_no_maps; 2007 2008 /* removes queue from unused CPUs */ 2009 for_each_possible_cpu(cpu) { 2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2011 continue; 2012 2013 if (remove_xps_queue(dev_maps, cpu, index)) 2014 active = true; 2015 } 2016 2017 /* free map if not active */ 2018 if (!active) { 2019 RCU_INIT_POINTER(dev->xps_maps, NULL); 2020 kfree_rcu(dev_maps, rcu); 2021 } 2022 2023 out_no_maps: 2024 mutex_unlock(&xps_map_mutex); 2025 2026 return 0; 2027 error: 2028 /* remove any maps that we added */ 2029 for_each_possible_cpu(cpu) { 2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2032 NULL; 2033 if (new_map && new_map != map) 2034 kfree(new_map); 2035 } 2036 2037 mutex_unlock(&xps_map_mutex); 2038 2039 kfree(new_dev_maps); 2040 return -ENOMEM; 2041 } 2042 EXPORT_SYMBOL(netif_set_xps_queue); 2043 2044 #endif 2045 /* 2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2048 */ 2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2050 { 2051 int rc; 2052 2053 if (txq < 1 || txq > dev->num_tx_queues) 2054 return -EINVAL; 2055 2056 if (dev->reg_state == NETREG_REGISTERED || 2057 dev->reg_state == NETREG_UNREGISTERING) { 2058 ASSERT_RTNL(); 2059 2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2061 txq); 2062 if (rc) 2063 return rc; 2064 2065 if (dev->num_tc) 2066 netif_setup_tc(dev, txq); 2067 2068 if (txq < dev->real_num_tx_queues) { 2069 qdisc_reset_all_tx_gt(dev, txq); 2070 #ifdef CONFIG_XPS 2071 netif_reset_xps_queues_gt(dev, txq); 2072 #endif 2073 } 2074 } 2075 2076 dev->real_num_tx_queues = txq; 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2080 2081 #ifdef CONFIG_RPS 2082 /** 2083 * netif_set_real_num_rx_queues - set actual number of RX queues used 2084 * @dev: Network device 2085 * @rxq: Actual number of RX queues 2086 * 2087 * This must be called either with the rtnl_lock held or before 2088 * registration of the net device. Returns 0 on success, or a 2089 * negative error code. If called before registration, it always 2090 * succeeds. 2091 */ 2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2093 { 2094 int rc; 2095 2096 if (rxq < 1 || rxq > dev->num_rx_queues) 2097 return -EINVAL; 2098 2099 if (dev->reg_state == NETREG_REGISTERED) { 2100 ASSERT_RTNL(); 2101 2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2103 rxq); 2104 if (rc) 2105 return rc; 2106 } 2107 2108 dev->real_num_rx_queues = rxq; 2109 return 0; 2110 } 2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2112 #endif 2113 2114 /** 2115 * netif_get_num_default_rss_queues - default number of RSS queues 2116 * 2117 * This routine should set an upper limit on the number of RSS queues 2118 * used by default by multiqueue devices. 2119 */ 2120 int netif_get_num_default_rss_queues(void) 2121 { 2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2123 } 2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2125 2126 static inline void __netif_reschedule(struct Qdisc *q) 2127 { 2128 struct softnet_data *sd; 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 sd = &__get_cpu_var(softnet_data); 2133 q->next_sched = NULL; 2134 *sd->output_queue_tailp = q; 2135 sd->output_queue_tailp = &q->next_sched; 2136 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2137 local_irq_restore(flags); 2138 } 2139 2140 void __netif_schedule(struct Qdisc *q) 2141 { 2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2143 __netif_reschedule(q); 2144 } 2145 EXPORT_SYMBOL(__netif_schedule); 2146 2147 void dev_kfree_skb_irq(struct sk_buff *skb) 2148 { 2149 if (atomic_dec_and_test(&skb->users)) { 2150 struct softnet_data *sd; 2151 unsigned long flags; 2152 2153 local_irq_save(flags); 2154 sd = &__get_cpu_var(softnet_data); 2155 skb->next = sd->completion_queue; 2156 sd->completion_queue = skb; 2157 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2158 local_irq_restore(flags); 2159 } 2160 } 2161 EXPORT_SYMBOL(dev_kfree_skb_irq); 2162 2163 void dev_kfree_skb_any(struct sk_buff *skb) 2164 { 2165 if (in_irq() || irqs_disabled()) 2166 dev_kfree_skb_irq(skb); 2167 else 2168 dev_kfree_skb(skb); 2169 } 2170 EXPORT_SYMBOL(dev_kfree_skb_any); 2171 2172 2173 /** 2174 * netif_device_detach - mark device as removed 2175 * @dev: network device 2176 * 2177 * Mark device as removed from system and therefore no longer available. 2178 */ 2179 void netif_device_detach(struct net_device *dev) 2180 { 2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2182 netif_running(dev)) { 2183 netif_tx_stop_all_queues(dev); 2184 } 2185 } 2186 EXPORT_SYMBOL(netif_device_detach); 2187 2188 /** 2189 * netif_device_attach - mark device as attached 2190 * @dev: network device 2191 * 2192 * Mark device as attached from system and restart if needed. 2193 */ 2194 void netif_device_attach(struct net_device *dev) 2195 { 2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2197 netif_running(dev)) { 2198 netif_tx_wake_all_queues(dev); 2199 __netdev_watchdog_up(dev); 2200 } 2201 } 2202 EXPORT_SYMBOL(netif_device_attach); 2203 2204 static void skb_warn_bad_offload(const struct sk_buff *skb) 2205 { 2206 static const netdev_features_t null_features = 0; 2207 struct net_device *dev = skb->dev; 2208 const char *driver = ""; 2209 2210 if (!net_ratelimit()) 2211 return; 2212 2213 if (dev && dev->dev.parent) 2214 driver = dev_driver_string(dev->dev.parent); 2215 2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2217 "gso_type=%d ip_summed=%d\n", 2218 driver, dev ? &dev->features : &null_features, 2219 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2221 skb_shinfo(skb)->gso_type, skb->ip_summed); 2222 } 2223 2224 /* 2225 * Invalidate hardware checksum when packet is to be mangled, and 2226 * complete checksum manually on outgoing path. 2227 */ 2228 int skb_checksum_help(struct sk_buff *skb) 2229 { 2230 __wsum csum; 2231 int ret = 0, offset; 2232 2233 if (skb->ip_summed == CHECKSUM_COMPLETE) 2234 goto out_set_summed; 2235 2236 if (unlikely(skb_shinfo(skb)->gso_size)) { 2237 skb_warn_bad_offload(skb); 2238 return -EINVAL; 2239 } 2240 2241 /* Before computing a checksum, we should make sure no frag could 2242 * be modified by an external entity : checksum could be wrong. 2243 */ 2244 if (skb_has_shared_frag(skb)) { 2245 ret = __skb_linearize(skb); 2246 if (ret) 2247 goto out; 2248 } 2249 2250 offset = skb_checksum_start_offset(skb); 2251 BUG_ON(offset >= skb_headlen(skb)); 2252 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2253 2254 offset += skb->csum_offset; 2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2256 2257 if (skb_cloned(skb) && 2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2260 if (ret) 2261 goto out; 2262 } 2263 2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2265 out_set_summed: 2266 skb->ip_summed = CHECKSUM_NONE; 2267 out: 2268 return ret; 2269 } 2270 EXPORT_SYMBOL(skb_checksum_help); 2271 2272 __be16 skb_network_protocol(struct sk_buff *skb) 2273 { 2274 __be16 type = skb->protocol; 2275 int vlan_depth = ETH_HLEN; 2276 2277 /* Tunnel gso handlers can set protocol to ethernet. */ 2278 if (type == htons(ETH_P_TEB)) { 2279 struct ethhdr *eth; 2280 2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2282 return 0; 2283 2284 eth = (struct ethhdr *)skb_mac_header(skb); 2285 type = eth->h_proto; 2286 } 2287 2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2289 struct vlan_hdr *vh; 2290 2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2292 return 0; 2293 2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2295 type = vh->h_vlan_encapsulated_proto; 2296 vlan_depth += VLAN_HLEN; 2297 } 2298 2299 return type; 2300 } 2301 2302 /** 2303 * skb_mac_gso_segment - mac layer segmentation handler. 2304 * @skb: buffer to segment 2305 * @features: features for the output path (see dev->features) 2306 */ 2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2308 netdev_features_t features) 2309 { 2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2311 struct packet_offload *ptype; 2312 __be16 type = skb_network_protocol(skb); 2313 2314 if (unlikely(!type)) 2315 return ERR_PTR(-EINVAL); 2316 2317 __skb_pull(skb, skb->mac_len); 2318 2319 rcu_read_lock(); 2320 list_for_each_entry_rcu(ptype, &offload_base, list) { 2321 if (ptype->type == type && ptype->callbacks.gso_segment) { 2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2323 int err; 2324 2325 err = ptype->callbacks.gso_send_check(skb); 2326 segs = ERR_PTR(err); 2327 if (err || skb_gso_ok(skb, features)) 2328 break; 2329 __skb_push(skb, (skb->data - 2330 skb_network_header(skb))); 2331 } 2332 segs = ptype->callbacks.gso_segment(skb, features); 2333 break; 2334 } 2335 } 2336 rcu_read_unlock(); 2337 2338 __skb_push(skb, skb->data - skb_mac_header(skb)); 2339 2340 return segs; 2341 } 2342 EXPORT_SYMBOL(skb_mac_gso_segment); 2343 2344 2345 /* openvswitch calls this on rx path, so we need a different check. 2346 */ 2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2348 { 2349 if (tx_path) 2350 return skb->ip_summed != CHECKSUM_PARTIAL; 2351 else 2352 return skb->ip_summed == CHECKSUM_NONE; 2353 } 2354 2355 /** 2356 * __skb_gso_segment - Perform segmentation on skb. 2357 * @skb: buffer to segment 2358 * @features: features for the output path (see dev->features) 2359 * @tx_path: whether it is called in TX path 2360 * 2361 * This function segments the given skb and returns a list of segments. 2362 * 2363 * It may return NULL if the skb requires no segmentation. This is 2364 * only possible when GSO is used for verifying header integrity. 2365 */ 2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2367 netdev_features_t features, bool tx_path) 2368 { 2369 if (unlikely(skb_needs_check(skb, tx_path))) { 2370 int err; 2371 2372 skb_warn_bad_offload(skb); 2373 2374 if (skb_header_cloned(skb) && 2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2376 return ERR_PTR(err); 2377 } 2378 2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2380 skb_reset_mac_header(skb); 2381 skb_reset_mac_len(skb); 2382 2383 return skb_mac_gso_segment(skb, features); 2384 } 2385 EXPORT_SYMBOL(__skb_gso_segment); 2386 2387 /* Take action when hardware reception checksum errors are detected. */ 2388 #ifdef CONFIG_BUG 2389 void netdev_rx_csum_fault(struct net_device *dev) 2390 { 2391 if (net_ratelimit()) { 2392 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2393 dump_stack(); 2394 } 2395 } 2396 EXPORT_SYMBOL(netdev_rx_csum_fault); 2397 #endif 2398 2399 /* Actually, we should eliminate this check as soon as we know, that: 2400 * 1. IOMMU is present and allows to map all the memory. 2401 * 2. No high memory really exists on this machine. 2402 */ 2403 2404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2405 { 2406 #ifdef CONFIG_HIGHMEM 2407 int i; 2408 if (!(dev->features & NETIF_F_HIGHDMA)) { 2409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2410 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2411 if (PageHighMem(skb_frag_page(frag))) 2412 return 1; 2413 } 2414 } 2415 2416 if (PCI_DMA_BUS_IS_PHYS) { 2417 struct device *pdev = dev->dev.parent; 2418 2419 if (!pdev) 2420 return 0; 2421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2423 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2424 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2425 return 1; 2426 } 2427 } 2428 #endif 2429 return 0; 2430 } 2431 2432 struct dev_gso_cb { 2433 void (*destructor)(struct sk_buff *skb); 2434 }; 2435 2436 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2437 2438 static void dev_gso_skb_destructor(struct sk_buff *skb) 2439 { 2440 struct dev_gso_cb *cb; 2441 2442 do { 2443 struct sk_buff *nskb = skb->next; 2444 2445 skb->next = nskb->next; 2446 nskb->next = NULL; 2447 kfree_skb(nskb); 2448 } while (skb->next); 2449 2450 cb = DEV_GSO_CB(skb); 2451 if (cb->destructor) 2452 cb->destructor(skb); 2453 } 2454 2455 /** 2456 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2457 * @skb: buffer to segment 2458 * @features: device features as applicable to this skb 2459 * 2460 * This function segments the given skb and stores the list of segments 2461 * in skb->next. 2462 */ 2463 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2464 { 2465 struct sk_buff *segs; 2466 2467 segs = skb_gso_segment(skb, features); 2468 2469 /* Verifying header integrity only. */ 2470 if (!segs) 2471 return 0; 2472 2473 if (IS_ERR(segs)) 2474 return PTR_ERR(segs); 2475 2476 skb->next = segs; 2477 DEV_GSO_CB(skb)->destructor = skb->destructor; 2478 skb->destructor = dev_gso_skb_destructor; 2479 2480 return 0; 2481 } 2482 2483 static netdev_features_t harmonize_features(struct sk_buff *skb, 2484 netdev_features_t features) 2485 { 2486 if (skb->ip_summed != CHECKSUM_NONE && 2487 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2488 features &= ~NETIF_F_ALL_CSUM; 2489 } else if (illegal_highdma(skb->dev, skb)) { 2490 features &= ~NETIF_F_SG; 2491 } 2492 2493 return features; 2494 } 2495 2496 netdev_features_t netif_skb_features(struct sk_buff *skb) 2497 { 2498 __be16 protocol = skb->protocol; 2499 netdev_features_t features = skb->dev->features; 2500 2501 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2502 features &= ~NETIF_F_GSO_MASK; 2503 2504 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2505 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2506 protocol = veh->h_vlan_encapsulated_proto; 2507 } else if (!vlan_tx_tag_present(skb)) { 2508 return harmonize_features(skb, features); 2509 } 2510 2511 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2512 NETIF_F_HW_VLAN_STAG_TX); 2513 2514 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2515 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2516 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2517 NETIF_F_HW_VLAN_STAG_TX; 2518 2519 return harmonize_features(skb, features); 2520 } 2521 EXPORT_SYMBOL(netif_skb_features); 2522 2523 /* 2524 * Returns true if either: 2525 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2526 * 2. skb is fragmented and the device does not support SG. 2527 */ 2528 static inline int skb_needs_linearize(struct sk_buff *skb, 2529 netdev_features_t features) 2530 { 2531 return skb_is_nonlinear(skb) && 2532 ((skb_has_frag_list(skb) && 2533 !(features & NETIF_F_FRAGLIST)) || 2534 (skb_shinfo(skb)->nr_frags && 2535 !(features & NETIF_F_SG))); 2536 } 2537 2538 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2539 struct netdev_queue *txq) 2540 { 2541 const struct net_device_ops *ops = dev->netdev_ops; 2542 int rc = NETDEV_TX_OK; 2543 unsigned int skb_len; 2544 2545 if (likely(!skb->next)) { 2546 netdev_features_t features; 2547 2548 /* 2549 * If device doesn't need skb->dst, release it right now while 2550 * its hot in this cpu cache 2551 */ 2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2553 skb_dst_drop(skb); 2554 2555 features = netif_skb_features(skb); 2556 2557 if (vlan_tx_tag_present(skb) && 2558 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2559 skb = __vlan_put_tag(skb, skb->vlan_proto, 2560 vlan_tx_tag_get(skb)); 2561 if (unlikely(!skb)) 2562 goto out; 2563 2564 skb->vlan_tci = 0; 2565 } 2566 2567 /* If encapsulation offload request, verify we are testing 2568 * hardware encapsulation features instead of standard 2569 * features for the netdev 2570 */ 2571 if (skb->encapsulation) 2572 features &= dev->hw_enc_features; 2573 2574 if (netif_needs_gso(skb, features)) { 2575 if (unlikely(dev_gso_segment(skb, features))) 2576 goto out_kfree_skb; 2577 if (skb->next) 2578 goto gso; 2579 } else { 2580 if (skb_needs_linearize(skb, features) && 2581 __skb_linearize(skb)) 2582 goto out_kfree_skb; 2583 2584 /* If packet is not checksummed and device does not 2585 * support checksumming for this protocol, complete 2586 * checksumming here. 2587 */ 2588 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2589 if (skb->encapsulation) 2590 skb_set_inner_transport_header(skb, 2591 skb_checksum_start_offset(skb)); 2592 else 2593 skb_set_transport_header(skb, 2594 skb_checksum_start_offset(skb)); 2595 if (!(features & NETIF_F_ALL_CSUM) && 2596 skb_checksum_help(skb)) 2597 goto out_kfree_skb; 2598 } 2599 } 2600 2601 if (!list_empty(&ptype_all)) 2602 dev_queue_xmit_nit(skb, dev); 2603 2604 skb_len = skb->len; 2605 rc = ops->ndo_start_xmit(skb, dev); 2606 trace_net_dev_xmit(skb, rc, dev, skb_len); 2607 if (rc == NETDEV_TX_OK) 2608 txq_trans_update(txq); 2609 return rc; 2610 } 2611 2612 gso: 2613 do { 2614 struct sk_buff *nskb = skb->next; 2615 2616 skb->next = nskb->next; 2617 nskb->next = NULL; 2618 2619 if (!list_empty(&ptype_all)) 2620 dev_queue_xmit_nit(nskb, dev); 2621 2622 skb_len = nskb->len; 2623 rc = ops->ndo_start_xmit(nskb, dev); 2624 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2625 if (unlikely(rc != NETDEV_TX_OK)) { 2626 if (rc & ~NETDEV_TX_MASK) 2627 goto out_kfree_gso_skb; 2628 nskb->next = skb->next; 2629 skb->next = nskb; 2630 return rc; 2631 } 2632 txq_trans_update(txq); 2633 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2634 return NETDEV_TX_BUSY; 2635 } while (skb->next); 2636 2637 out_kfree_gso_skb: 2638 if (likely(skb->next == NULL)) { 2639 skb->destructor = DEV_GSO_CB(skb)->destructor; 2640 consume_skb(skb); 2641 return rc; 2642 } 2643 out_kfree_skb: 2644 kfree_skb(skb); 2645 out: 2646 return rc; 2647 } 2648 2649 static void qdisc_pkt_len_init(struct sk_buff *skb) 2650 { 2651 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2652 2653 qdisc_skb_cb(skb)->pkt_len = skb->len; 2654 2655 /* To get more precise estimation of bytes sent on wire, 2656 * we add to pkt_len the headers size of all segments 2657 */ 2658 if (shinfo->gso_size) { 2659 unsigned int hdr_len; 2660 u16 gso_segs = shinfo->gso_segs; 2661 2662 /* mac layer + network layer */ 2663 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2664 2665 /* + transport layer */ 2666 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2667 hdr_len += tcp_hdrlen(skb); 2668 else 2669 hdr_len += sizeof(struct udphdr); 2670 2671 if (shinfo->gso_type & SKB_GSO_DODGY) 2672 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2673 shinfo->gso_size); 2674 2675 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2676 } 2677 } 2678 2679 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2680 struct net_device *dev, 2681 struct netdev_queue *txq) 2682 { 2683 spinlock_t *root_lock = qdisc_lock(q); 2684 bool contended; 2685 int rc; 2686 2687 qdisc_pkt_len_init(skb); 2688 qdisc_calculate_pkt_len(skb, q); 2689 /* 2690 * Heuristic to force contended enqueues to serialize on a 2691 * separate lock before trying to get qdisc main lock. 2692 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2693 * and dequeue packets faster. 2694 */ 2695 contended = qdisc_is_running(q); 2696 if (unlikely(contended)) 2697 spin_lock(&q->busylock); 2698 2699 spin_lock(root_lock); 2700 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2701 kfree_skb(skb); 2702 rc = NET_XMIT_DROP; 2703 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2704 qdisc_run_begin(q)) { 2705 /* 2706 * This is a work-conserving queue; there are no old skbs 2707 * waiting to be sent out; and the qdisc is not running - 2708 * xmit the skb directly. 2709 */ 2710 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2711 skb_dst_force(skb); 2712 2713 qdisc_bstats_update(q, skb); 2714 2715 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2716 if (unlikely(contended)) { 2717 spin_unlock(&q->busylock); 2718 contended = false; 2719 } 2720 __qdisc_run(q); 2721 } else 2722 qdisc_run_end(q); 2723 2724 rc = NET_XMIT_SUCCESS; 2725 } else { 2726 skb_dst_force(skb); 2727 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2728 if (qdisc_run_begin(q)) { 2729 if (unlikely(contended)) { 2730 spin_unlock(&q->busylock); 2731 contended = false; 2732 } 2733 __qdisc_run(q); 2734 } 2735 } 2736 spin_unlock(root_lock); 2737 if (unlikely(contended)) 2738 spin_unlock(&q->busylock); 2739 return rc; 2740 } 2741 2742 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2743 static void skb_update_prio(struct sk_buff *skb) 2744 { 2745 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2746 2747 if (!skb->priority && skb->sk && map) { 2748 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2749 2750 if (prioidx < map->priomap_len) 2751 skb->priority = map->priomap[prioidx]; 2752 } 2753 } 2754 #else 2755 #define skb_update_prio(skb) 2756 #endif 2757 2758 static DEFINE_PER_CPU(int, xmit_recursion); 2759 #define RECURSION_LIMIT 10 2760 2761 /** 2762 * dev_loopback_xmit - loop back @skb 2763 * @skb: buffer to transmit 2764 */ 2765 int dev_loopback_xmit(struct sk_buff *skb) 2766 { 2767 skb_reset_mac_header(skb); 2768 __skb_pull(skb, skb_network_offset(skb)); 2769 skb->pkt_type = PACKET_LOOPBACK; 2770 skb->ip_summed = CHECKSUM_UNNECESSARY; 2771 WARN_ON(!skb_dst(skb)); 2772 skb_dst_force(skb); 2773 netif_rx_ni(skb); 2774 return 0; 2775 } 2776 EXPORT_SYMBOL(dev_loopback_xmit); 2777 2778 /** 2779 * dev_queue_xmit - transmit a buffer 2780 * @skb: buffer to transmit 2781 * 2782 * Queue a buffer for transmission to a network device. The caller must 2783 * have set the device and priority and built the buffer before calling 2784 * this function. The function can be called from an interrupt. 2785 * 2786 * A negative errno code is returned on a failure. A success does not 2787 * guarantee the frame will be transmitted as it may be dropped due 2788 * to congestion or traffic shaping. 2789 * 2790 * ----------------------------------------------------------------------------------- 2791 * I notice this method can also return errors from the queue disciplines, 2792 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2793 * be positive. 2794 * 2795 * Regardless of the return value, the skb is consumed, so it is currently 2796 * difficult to retry a send to this method. (You can bump the ref count 2797 * before sending to hold a reference for retry if you are careful.) 2798 * 2799 * When calling this method, interrupts MUST be enabled. This is because 2800 * the BH enable code must have IRQs enabled so that it will not deadlock. 2801 * --BLG 2802 */ 2803 int dev_queue_xmit(struct sk_buff *skb) 2804 { 2805 struct net_device *dev = skb->dev; 2806 struct netdev_queue *txq; 2807 struct Qdisc *q; 2808 int rc = -ENOMEM; 2809 2810 skb_reset_mac_header(skb); 2811 2812 /* Disable soft irqs for various locks below. Also 2813 * stops preemption for RCU. 2814 */ 2815 rcu_read_lock_bh(); 2816 2817 skb_update_prio(skb); 2818 2819 txq = netdev_pick_tx(dev, skb); 2820 q = rcu_dereference_bh(txq->qdisc); 2821 2822 #ifdef CONFIG_NET_CLS_ACT 2823 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2824 #endif 2825 trace_net_dev_queue(skb); 2826 if (q->enqueue) { 2827 rc = __dev_xmit_skb(skb, q, dev, txq); 2828 goto out; 2829 } 2830 2831 /* The device has no queue. Common case for software devices: 2832 loopback, all the sorts of tunnels... 2833 2834 Really, it is unlikely that netif_tx_lock protection is necessary 2835 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2836 counters.) 2837 However, it is possible, that they rely on protection 2838 made by us here. 2839 2840 Check this and shot the lock. It is not prone from deadlocks. 2841 Either shot noqueue qdisc, it is even simpler 8) 2842 */ 2843 if (dev->flags & IFF_UP) { 2844 int cpu = smp_processor_id(); /* ok because BHs are off */ 2845 2846 if (txq->xmit_lock_owner != cpu) { 2847 2848 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2849 goto recursion_alert; 2850 2851 HARD_TX_LOCK(dev, txq, cpu); 2852 2853 if (!netif_xmit_stopped(txq)) { 2854 __this_cpu_inc(xmit_recursion); 2855 rc = dev_hard_start_xmit(skb, dev, txq); 2856 __this_cpu_dec(xmit_recursion); 2857 if (dev_xmit_complete(rc)) { 2858 HARD_TX_UNLOCK(dev, txq); 2859 goto out; 2860 } 2861 } 2862 HARD_TX_UNLOCK(dev, txq); 2863 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2864 dev->name); 2865 } else { 2866 /* Recursion is detected! It is possible, 2867 * unfortunately 2868 */ 2869 recursion_alert: 2870 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2871 dev->name); 2872 } 2873 } 2874 2875 rc = -ENETDOWN; 2876 rcu_read_unlock_bh(); 2877 2878 kfree_skb(skb); 2879 return rc; 2880 out: 2881 rcu_read_unlock_bh(); 2882 return rc; 2883 } 2884 EXPORT_SYMBOL(dev_queue_xmit); 2885 2886 2887 /*======================================================================= 2888 Receiver routines 2889 =======================================================================*/ 2890 2891 int netdev_max_backlog __read_mostly = 1000; 2892 EXPORT_SYMBOL(netdev_max_backlog); 2893 2894 int netdev_tstamp_prequeue __read_mostly = 1; 2895 int netdev_budget __read_mostly = 300; 2896 int weight_p __read_mostly = 64; /* old backlog weight */ 2897 2898 /* Called with irq disabled */ 2899 static inline void ____napi_schedule(struct softnet_data *sd, 2900 struct napi_struct *napi) 2901 { 2902 list_add_tail(&napi->poll_list, &sd->poll_list); 2903 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2904 } 2905 2906 #ifdef CONFIG_RPS 2907 2908 /* One global table that all flow-based protocols share. */ 2909 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2910 EXPORT_SYMBOL(rps_sock_flow_table); 2911 2912 struct static_key rps_needed __read_mostly; 2913 2914 static struct rps_dev_flow * 2915 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2916 struct rps_dev_flow *rflow, u16 next_cpu) 2917 { 2918 if (next_cpu != RPS_NO_CPU) { 2919 #ifdef CONFIG_RFS_ACCEL 2920 struct netdev_rx_queue *rxqueue; 2921 struct rps_dev_flow_table *flow_table; 2922 struct rps_dev_flow *old_rflow; 2923 u32 flow_id; 2924 u16 rxq_index; 2925 int rc; 2926 2927 /* Should we steer this flow to a different hardware queue? */ 2928 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2929 !(dev->features & NETIF_F_NTUPLE)) 2930 goto out; 2931 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2932 if (rxq_index == skb_get_rx_queue(skb)) 2933 goto out; 2934 2935 rxqueue = dev->_rx + rxq_index; 2936 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2937 if (!flow_table) 2938 goto out; 2939 flow_id = skb->rxhash & flow_table->mask; 2940 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2941 rxq_index, flow_id); 2942 if (rc < 0) 2943 goto out; 2944 old_rflow = rflow; 2945 rflow = &flow_table->flows[flow_id]; 2946 rflow->filter = rc; 2947 if (old_rflow->filter == rflow->filter) 2948 old_rflow->filter = RPS_NO_FILTER; 2949 out: 2950 #endif 2951 rflow->last_qtail = 2952 per_cpu(softnet_data, next_cpu).input_queue_head; 2953 } 2954 2955 rflow->cpu = next_cpu; 2956 return rflow; 2957 } 2958 2959 /* 2960 * get_rps_cpu is called from netif_receive_skb and returns the target 2961 * CPU from the RPS map of the receiving queue for a given skb. 2962 * rcu_read_lock must be held on entry. 2963 */ 2964 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2965 struct rps_dev_flow **rflowp) 2966 { 2967 struct netdev_rx_queue *rxqueue; 2968 struct rps_map *map; 2969 struct rps_dev_flow_table *flow_table; 2970 struct rps_sock_flow_table *sock_flow_table; 2971 int cpu = -1; 2972 u16 tcpu; 2973 2974 if (skb_rx_queue_recorded(skb)) { 2975 u16 index = skb_get_rx_queue(skb); 2976 if (unlikely(index >= dev->real_num_rx_queues)) { 2977 WARN_ONCE(dev->real_num_rx_queues > 1, 2978 "%s received packet on queue %u, but number " 2979 "of RX queues is %u\n", 2980 dev->name, index, dev->real_num_rx_queues); 2981 goto done; 2982 } 2983 rxqueue = dev->_rx + index; 2984 } else 2985 rxqueue = dev->_rx; 2986 2987 map = rcu_dereference(rxqueue->rps_map); 2988 if (map) { 2989 if (map->len == 1 && 2990 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2991 tcpu = map->cpus[0]; 2992 if (cpu_online(tcpu)) 2993 cpu = tcpu; 2994 goto done; 2995 } 2996 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2997 goto done; 2998 } 2999 3000 skb_reset_network_header(skb); 3001 if (!skb_get_rxhash(skb)) 3002 goto done; 3003 3004 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3005 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3006 if (flow_table && sock_flow_table) { 3007 u16 next_cpu; 3008 struct rps_dev_flow *rflow; 3009 3010 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3011 tcpu = rflow->cpu; 3012 3013 next_cpu = sock_flow_table->ents[skb->rxhash & 3014 sock_flow_table->mask]; 3015 3016 /* 3017 * If the desired CPU (where last recvmsg was done) is 3018 * different from current CPU (one in the rx-queue flow 3019 * table entry), switch if one of the following holds: 3020 * - Current CPU is unset (equal to RPS_NO_CPU). 3021 * - Current CPU is offline. 3022 * - The current CPU's queue tail has advanced beyond the 3023 * last packet that was enqueued using this table entry. 3024 * This guarantees that all previous packets for the flow 3025 * have been dequeued, thus preserving in order delivery. 3026 */ 3027 if (unlikely(tcpu != next_cpu) && 3028 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3029 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3030 rflow->last_qtail)) >= 0)) { 3031 tcpu = next_cpu; 3032 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3033 } 3034 3035 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3036 *rflowp = rflow; 3037 cpu = tcpu; 3038 goto done; 3039 } 3040 } 3041 3042 if (map) { 3043 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3044 3045 if (cpu_online(tcpu)) { 3046 cpu = tcpu; 3047 goto done; 3048 } 3049 } 3050 3051 done: 3052 return cpu; 3053 } 3054 3055 #ifdef CONFIG_RFS_ACCEL 3056 3057 /** 3058 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3059 * @dev: Device on which the filter was set 3060 * @rxq_index: RX queue index 3061 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3062 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3063 * 3064 * Drivers that implement ndo_rx_flow_steer() should periodically call 3065 * this function for each installed filter and remove the filters for 3066 * which it returns %true. 3067 */ 3068 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3069 u32 flow_id, u16 filter_id) 3070 { 3071 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3072 struct rps_dev_flow_table *flow_table; 3073 struct rps_dev_flow *rflow; 3074 bool expire = true; 3075 int cpu; 3076 3077 rcu_read_lock(); 3078 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3079 if (flow_table && flow_id <= flow_table->mask) { 3080 rflow = &flow_table->flows[flow_id]; 3081 cpu = ACCESS_ONCE(rflow->cpu); 3082 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3083 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3084 rflow->last_qtail) < 3085 (int)(10 * flow_table->mask))) 3086 expire = false; 3087 } 3088 rcu_read_unlock(); 3089 return expire; 3090 } 3091 EXPORT_SYMBOL(rps_may_expire_flow); 3092 3093 #endif /* CONFIG_RFS_ACCEL */ 3094 3095 /* Called from hardirq (IPI) context */ 3096 static void rps_trigger_softirq(void *data) 3097 { 3098 struct softnet_data *sd = data; 3099 3100 ____napi_schedule(sd, &sd->backlog); 3101 sd->received_rps++; 3102 } 3103 3104 #endif /* CONFIG_RPS */ 3105 3106 /* 3107 * Check if this softnet_data structure is another cpu one 3108 * If yes, queue it to our IPI list and return 1 3109 * If no, return 0 3110 */ 3111 static int rps_ipi_queued(struct softnet_data *sd) 3112 { 3113 #ifdef CONFIG_RPS 3114 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3115 3116 if (sd != mysd) { 3117 sd->rps_ipi_next = mysd->rps_ipi_list; 3118 mysd->rps_ipi_list = sd; 3119 3120 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3121 return 1; 3122 } 3123 #endif /* CONFIG_RPS */ 3124 return 0; 3125 } 3126 3127 #ifdef CONFIG_NET_FLOW_LIMIT 3128 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3129 #endif 3130 3131 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3132 { 3133 #ifdef CONFIG_NET_FLOW_LIMIT 3134 struct sd_flow_limit *fl; 3135 struct softnet_data *sd; 3136 unsigned int old_flow, new_flow; 3137 3138 if (qlen < (netdev_max_backlog >> 1)) 3139 return false; 3140 3141 sd = &__get_cpu_var(softnet_data); 3142 3143 rcu_read_lock(); 3144 fl = rcu_dereference(sd->flow_limit); 3145 if (fl) { 3146 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3147 old_flow = fl->history[fl->history_head]; 3148 fl->history[fl->history_head] = new_flow; 3149 3150 fl->history_head++; 3151 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3152 3153 if (likely(fl->buckets[old_flow])) 3154 fl->buckets[old_flow]--; 3155 3156 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3157 fl->count++; 3158 rcu_read_unlock(); 3159 return true; 3160 } 3161 } 3162 rcu_read_unlock(); 3163 #endif 3164 return false; 3165 } 3166 3167 /* 3168 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3169 * queue (may be a remote CPU queue). 3170 */ 3171 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3172 unsigned int *qtail) 3173 { 3174 struct softnet_data *sd; 3175 unsigned long flags; 3176 unsigned int qlen; 3177 3178 sd = &per_cpu(softnet_data, cpu); 3179 3180 local_irq_save(flags); 3181 3182 rps_lock(sd); 3183 qlen = skb_queue_len(&sd->input_pkt_queue); 3184 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3185 if (skb_queue_len(&sd->input_pkt_queue)) { 3186 enqueue: 3187 __skb_queue_tail(&sd->input_pkt_queue, skb); 3188 input_queue_tail_incr_save(sd, qtail); 3189 rps_unlock(sd); 3190 local_irq_restore(flags); 3191 return NET_RX_SUCCESS; 3192 } 3193 3194 /* Schedule NAPI for backlog device 3195 * We can use non atomic operation since we own the queue lock 3196 */ 3197 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3198 if (!rps_ipi_queued(sd)) 3199 ____napi_schedule(sd, &sd->backlog); 3200 } 3201 goto enqueue; 3202 } 3203 3204 sd->dropped++; 3205 rps_unlock(sd); 3206 3207 local_irq_restore(flags); 3208 3209 atomic_long_inc(&skb->dev->rx_dropped); 3210 kfree_skb(skb); 3211 return NET_RX_DROP; 3212 } 3213 3214 /** 3215 * netif_rx - post buffer to the network code 3216 * @skb: buffer to post 3217 * 3218 * This function receives a packet from a device driver and queues it for 3219 * the upper (protocol) levels to process. It always succeeds. The buffer 3220 * may be dropped during processing for congestion control or by the 3221 * protocol layers. 3222 * 3223 * return values: 3224 * NET_RX_SUCCESS (no congestion) 3225 * NET_RX_DROP (packet was dropped) 3226 * 3227 */ 3228 3229 int netif_rx(struct sk_buff *skb) 3230 { 3231 int ret; 3232 3233 /* if netpoll wants it, pretend we never saw it */ 3234 if (netpoll_rx(skb)) 3235 return NET_RX_DROP; 3236 3237 net_timestamp_check(netdev_tstamp_prequeue, skb); 3238 3239 trace_netif_rx(skb); 3240 #ifdef CONFIG_RPS 3241 if (static_key_false(&rps_needed)) { 3242 struct rps_dev_flow voidflow, *rflow = &voidflow; 3243 int cpu; 3244 3245 preempt_disable(); 3246 rcu_read_lock(); 3247 3248 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3249 if (cpu < 0) 3250 cpu = smp_processor_id(); 3251 3252 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3253 3254 rcu_read_unlock(); 3255 preempt_enable(); 3256 } else 3257 #endif 3258 { 3259 unsigned int qtail; 3260 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3261 put_cpu(); 3262 } 3263 return ret; 3264 } 3265 EXPORT_SYMBOL(netif_rx); 3266 3267 int netif_rx_ni(struct sk_buff *skb) 3268 { 3269 int err; 3270 3271 preempt_disable(); 3272 err = netif_rx(skb); 3273 if (local_softirq_pending()) 3274 do_softirq(); 3275 preempt_enable(); 3276 3277 return err; 3278 } 3279 EXPORT_SYMBOL(netif_rx_ni); 3280 3281 static void net_tx_action(struct softirq_action *h) 3282 { 3283 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3284 3285 if (sd->completion_queue) { 3286 struct sk_buff *clist; 3287 3288 local_irq_disable(); 3289 clist = sd->completion_queue; 3290 sd->completion_queue = NULL; 3291 local_irq_enable(); 3292 3293 while (clist) { 3294 struct sk_buff *skb = clist; 3295 clist = clist->next; 3296 3297 WARN_ON(atomic_read(&skb->users)); 3298 trace_kfree_skb(skb, net_tx_action); 3299 __kfree_skb(skb); 3300 } 3301 } 3302 3303 if (sd->output_queue) { 3304 struct Qdisc *head; 3305 3306 local_irq_disable(); 3307 head = sd->output_queue; 3308 sd->output_queue = NULL; 3309 sd->output_queue_tailp = &sd->output_queue; 3310 local_irq_enable(); 3311 3312 while (head) { 3313 struct Qdisc *q = head; 3314 spinlock_t *root_lock; 3315 3316 head = head->next_sched; 3317 3318 root_lock = qdisc_lock(q); 3319 if (spin_trylock(root_lock)) { 3320 smp_mb__before_clear_bit(); 3321 clear_bit(__QDISC_STATE_SCHED, 3322 &q->state); 3323 qdisc_run(q); 3324 spin_unlock(root_lock); 3325 } else { 3326 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3327 &q->state)) { 3328 __netif_reschedule(q); 3329 } else { 3330 smp_mb__before_clear_bit(); 3331 clear_bit(__QDISC_STATE_SCHED, 3332 &q->state); 3333 } 3334 } 3335 } 3336 } 3337 } 3338 3339 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3340 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3341 /* This hook is defined here for ATM LANE */ 3342 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3343 unsigned char *addr) __read_mostly; 3344 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3345 #endif 3346 3347 #ifdef CONFIG_NET_CLS_ACT 3348 /* TODO: Maybe we should just force sch_ingress to be compiled in 3349 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3350 * a compare and 2 stores extra right now if we dont have it on 3351 * but have CONFIG_NET_CLS_ACT 3352 * NOTE: This doesn't stop any functionality; if you dont have 3353 * the ingress scheduler, you just can't add policies on ingress. 3354 * 3355 */ 3356 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3357 { 3358 struct net_device *dev = skb->dev; 3359 u32 ttl = G_TC_RTTL(skb->tc_verd); 3360 int result = TC_ACT_OK; 3361 struct Qdisc *q; 3362 3363 if (unlikely(MAX_RED_LOOP < ttl++)) { 3364 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3365 skb->skb_iif, dev->ifindex); 3366 return TC_ACT_SHOT; 3367 } 3368 3369 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3370 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3371 3372 q = rxq->qdisc; 3373 if (q != &noop_qdisc) { 3374 spin_lock(qdisc_lock(q)); 3375 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3376 result = qdisc_enqueue_root(skb, q); 3377 spin_unlock(qdisc_lock(q)); 3378 } 3379 3380 return result; 3381 } 3382 3383 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3384 struct packet_type **pt_prev, 3385 int *ret, struct net_device *orig_dev) 3386 { 3387 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3388 3389 if (!rxq || rxq->qdisc == &noop_qdisc) 3390 goto out; 3391 3392 if (*pt_prev) { 3393 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3394 *pt_prev = NULL; 3395 } 3396 3397 switch (ing_filter(skb, rxq)) { 3398 case TC_ACT_SHOT: 3399 case TC_ACT_STOLEN: 3400 kfree_skb(skb); 3401 return NULL; 3402 } 3403 3404 out: 3405 skb->tc_verd = 0; 3406 return skb; 3407 } 3408 #endif 3409 3410 /** 3411 * netdev_rx_handler_register - register receive handler 3412 * @dev: device to register a handler for 3413 * @rx_handler: receive handler to register 3414 * @rx_handler_data: data pointer that is used by rx handler 3415 * 3416 * Register a receive hander for a device. This handler will then be 3417 * called from __netif_receive_skb. A negative errno code is returned 3418 * on a failure. 3419 * 3420 * The caller must hold the rtnl_mutex. 3421 * 3422 * For a general description of rx_handler, see enum rx_handler_result. 3423 */ 3424 int netdev_rx_handler_register(struct net_device *dev, 3425 rx_handler_func_t *rx_handler, 3426 void *rx_handler_data) 3427 { 3428 ASSERT_RTNL(); 3429 3430 if (dev->rx_handler) 3431 return -EBUSY; 3432 3433 /* Note: rx_handler_data must be set before rx_handler */ 3434 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3435 rcu_assign_pointer(dev->rx_handler, rx_handler); 3436 3437 return 0; 3438 } 3439 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3440 3441 /** 3442 * netdev_rx_handler_unregister - unregister receive handler 3443 * @dev: device to unregister a handler from 3444 * 3445 * Unregister a receive handler from a device. 3446 * 3447 * The caller must hold the rtnl_mutex. 3448 */ 3449 void netdev_rx_handler_unregister(struct net_device *dev) 3450 { 3451 3452 ASSERT_RTNL(); 3453 RCU_INIT_POINTER(dev->rx_handler, NULL); 3454 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3455 * section has a guarantee to see a non NULL rx_handler_data 3456 * as well. 3457 */ 3458 synchronize_net(); 3459 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3460 } 3461 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3462 3463 /* 3464 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3465 * the special handling of PFMEMALLOC skbs. 3466 */ 3467 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3468 { 3469 switch (skb->protocol) { 3470 case __constant_htons(ETH_P_ARP): 3471 case __constant_htons(ETH_P_IP): 3472 case __constant_htons(ETH_P_IPV6): 3473 case __constant_htons(ETH_P_8021Q): 3474 case __constant_htons(ETH_P_8021AD): 3475 return true; 3476 default: 3477 return false; 3478 } 3479 } 3480 3481 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3482 { 3483 struct packet_type *ptype, *pt_prev; 3484 rx_handler_func_t *rx_handler; 3485 struct net_device *orig_dev; 3486 struct net_device *null_or_dev; 3487 bool deliver_exact = false; 3488 int ret = NET_RX_DROP; 3489 __be16 type; 3490 3491 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3492 3493 trace_netif_receive_skb(skb); 3494 3495 /* if we've gotten here through NAPI, check netpoll */ 3496 if (netpoll_receive_skb(skb)) 3497 goto out; 3498 3499 orig_dev = skb->dev; 3500 3501 skb_reset_network_header(skb); 3502 if (!skb_transport_header_was_set(skb)) 3503 skb_reset_transport_header(skb); 3504 skb_reset_mac_len(skb); 3505 3506 pt_prev = NULL; 3507 3508 rcu_read_lock(); 3509 3510 another_round: 3511 skb->skb_iif = skb->dev->ifindex; 3512 3513 __this_cpu_inc(softnet_data.processed); 3514 3515 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3516 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3517 skb = vlan_untag(skb); 3518 if (unlikely(!skb)) 3519 goto unlock; 3520 } 3521 3522 #ifdef CONFIG_NET_CLS_ACT 3523 if (skb->tc_verd & TC_NCLS) { 3524 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3525 goto ncls; 3526 } 3527 #endif 3528 3529 if (pfmemalloc) 3530 goto skip_taps; 3531 3532 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3533 if (!ptype->dev || ptype->dev == skb->dev) { 3534 if (pt_prev) 3535 ret = deliver_skb(skb, pt_prev, orig_dev); 3536 pt_prev = ptype; 3537 } 3538 } 3539 3540 skip_taps: 3541 #ifdef CONFIG_NET_CLS_ACT 3542 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3543 if (!skb) 3544 goto unlock; 3545 ncls: 3546 #endif 3547 3548 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3549 goto drop; 3550 3551 if (vlan_tx_tag_present(skb)) { 3552 if (pt_prev) { 3553 ret = deliver_skb(skb, pt_prev, orig_dev); 3554 pt_prev = NULL; 3555 } 3556 if (vlan_do_receive(&skb)) 3557 goto another_round; 3558 else if (unlikely(!skb)) 3559 goto unlock; 3560 } 3561 3562 rx_handler = rcu_dereference(skb->dev->rx_handler); 3563 if (rx_handler) { 3564 if (pt_prev) { 3565 ret = deliver_skb(skb, pt_prev, orig_dev); 3566 pt_prev = NULL; 3567 } 3568 switch (rx_handler(&skb)) { 3569 case RX_HANDLER_CONSUMED: 3570 ret = NET_RX_SUCCESS; 3571 goto unlock; 3572 case RX_HANDLER_ANOTHER: 3573 goto another_round; 3574 case RX_HANDLER_EXACT: 3575 deliver_exact = true; 3576 case RX_HANDLER_PASS: 3577 break; 3578 default: 3579 BUG(); 3580 } 3581 } 3582 3583 if (unlikely(vlan_tx_tag_present(skb))) { 3584 if (vlan_tx_tag_get_id(skb)) 3585 skb->pkt_type = PACKET_OTHERHOST; 3586 /* Note: we might in the future use prio bits 3587 * and set skb->priority like in vlan_do_receive() 3588 * For the time being, just ignore Priority Code Point 3589 */ 3590 skb->vlan_tci = 0; 3591 } 3592 3593 /* deliver only exact match when indicated */ 3594 null_or_dev = deliver_exact ? skb->dev : NULL; 3595 3596 type = skb->protocol; 3597 list_for_each_entry_rcu(ptype, 3598 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3599 if (ptype->type == type && 3600 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3601 ptype->dev == orig_dev)) { 3602 if (pt_prev) 3603 ret = deliver_skb(skb, pt_prev, orig_dev); 3604 pt_prev = ptype; 3605 } 3606 } 3607 3608 if (pt_prev) { 3609 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3610 goto drop; 3611 else 3612 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3613 } else { 3614 drop: 3615 atomic_long_inc(&skb->dev->rx_dropped); 3616 kfree_skb(skb); 3617 /* Jamal, now you will not able to escape explaining 3618 * me how you were going to use this. :-) 3619 */ 3620 ret = NET_RX_DROP; 3621 } 3622 3623 unlock: 3624 rcu_read_unlock(); 3625 out: 3626 return ret; 3627 } 3628 3629 static int __netif_receive_skb(struct sk_buff *skb) 3630 { 3631 int ret; 3632 3633 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3634 unsigned long pflags = current->flags; 3635 3636 /* 3637 * PFMEMALLOC skbs are special, they should 3638 * - be delivered to SOCK_MEMALLOC sockets only 3639 * - stay away from userspace 3640 * - have bounded memory usage 3641 * 3642 * Use PF_MEMALLOC as this saves us from propagating the allocation 3643 * context down to all allocation sites. 3644 */ 3645 current->flags |= PF_MEMALLOC; 3646 ret = __netif_receive_skb_core(skb, true); 3647 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3648 } else 3649 ret = __netif_receive_skb_core(skb, false); 3650 3651 return ret; 3652 } 3653 3654 /** 3655 * netif_receive_skb - process receive buffer from network 3656 * @skb: buffer to process 3657 * 3658 * netif_receive_skb() is the main receive data processing function. 3659 * It always succeeds. The buffer may be dropped during processing 3660 * for congestion control or by the protocol layers. 3661 * 3662 * This function may only be called from softirq context and interrupts 3663 * should be enabled. 3664 * 3665 * Return values (usually ignored): 3666 * NET_RX_SUCCESS: no congestion 3667 * NET_RX_DROP: packet was dropped 3668 */ 3669 int netif_receive_skb(struct sk_buff *skb) 3670 { 3671 net_timestamp_check(netdev_tstamp_prequeue, skb); 3672 3673 if (skb_defer_rx_timestamp(skb)) 3674 return NET_RX_SUCCESS; 3675 3676 #ifdef CONFIG_RPS 3677 if (static_key_false(&rps_needed)) { 3678 struct rps_dev_flow voidflow, *rflow = &voidflow; 3679 int cpu, ret; 3680 3681 rcu_read_lock(); 3682 3683 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3684 3685 if (cpu >= 0) { 3686 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3687 rcu_read_unlock(); 3688 return ret; 3689 } 3690 rcu_read_unlock(); 3691 } 3692 #endif 3693 return __netif_receive_skb(skb); 3694 } 3695 EXPORT_SYMBOL(netif_receive_skb); 3696 3697 /* Network device is going away, flush any packets still pending 3698 * Called with irqs disabled. 3699 */ 3700 static void flush_backlog(void *arg) 3701 { 3702 struct net_device *dev = arg; 3703 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3704 struct sk_buff *skb, *tmp; 3705 3706 rps_lock(sd); 3707 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3708 if (skb->dev == dev) { 3709 __skb_unlink(skb, &sd->input_pkt_queue); 3710 kfree_skb(skb); 3711 input_queue_head_incr(sd); 3712 } 3713 } 3714 rps_unlock(sd); 3715 3716 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3717 if (skb->dev == dev) { 3718 __skb_unlink(skb, &sd->process_queue); 3719 kfree_skb(skb); 3720 input_queue_head_incr(sd); 3721 } 3722 } 3723 } 3724 3725 static int napi_gro_complete(struct sk_buff *skb) 3726 { 3727 struct packet_offload *ptype; 3728 __be16 type = skb->protocol; 3729 struct list_head *head = &offload_base; 3730 int err = -ENOENT; 3731 3732 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3733 3734 if (NAPI_GRO_CB(skb)->count == 1) { 3735 skb_shinfo(skb)->gso_size = 0; 3736 goto out; 3737 } 3738 3739 rcu_read_lock(); 3740 list_for_each_entry_rcu(ptype, head, list) { 3741 if (ptype->type != type || !ptype->callbacks.gro_complete) 3742 continue; 3743 3744 err = ptype->callbacks.gro_complete(skb); 3745 break; 3746 } 3747 rcu_read_unlock(); 3748 3749 if (err) { 3750 WARN_ON(&ptype->list == head); 3751 kfree_skb(skb); 3752 return NET_RX_SUCCESS; 3753 } 3754 3755 out: 3756 return netif_receive_skb(skb); 3757 } 3758 3759 /* napi->gro_list contains packets ordered by age. 3760 * youngest packets at the head of it. 3761 * Complete skbs in reverse order to reduce latencies. 3762 */ 3763 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3764 { 3765 struct sk_buff *skb, *prev = NULL; 3766 3767 /* scan list and build reverse chain */ 3768 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3769 skb->prev = prev; 3770 prev = skb; 3771 } 3772 3773 for (skb = prev; skb; skb = prev) { 3774 skb->next = NULL; 3775 3776 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3777 return; 3778 3779 prev = skb->prev; 3780 napi_gro_complete(skb); 3781 napi->gro_count--; 3782 } 3783 3784 napi->gro_list = NULL; 3785 } 3786 EXPORT_SYMBOL(napi_gro_flush); 3787 3788 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3789 { 3790 struct sk_buff *p; 3791 unsigned int maclen = skb->dev->hard_header_len; 3792 3793 for (p = napi->gro_list; p; p = p->next) { 3794 unsigned long diffs; 3795 3796 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3797 diffs |= p->vlan_tci ^ skb->vlan_tci; 3798 if (maclen == ETH_HLEN) 3799 diffs |= compare_ether_header(skb_mac_header(p), 3800 skb_gro_mac_header(skb)); 3801 else if (!diffs) 3802 diffs = memcmp(skb_mac_header(p), 3803 skb_gro_mac_header(skb), 3804 maclen); 3805 NAPI_GRO_CB(p)->same_flow = !diffs; 3806 NAPI_GRO_CB(p)->flush = 0; 3807 } 3808 } 3809 3810 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3811 { 3812 struct sk_buff **pp = NULL; 3813 struct packet_offload *ptype; 3814 __be16 type = skb->protocol; 3815 struct list_head *head = &offload_base; 3816 int same_flow; 3817 enum gro_result ret; 3818 3819 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3820 goto normal; 3821 3822 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3823 goto normal; 3824 3825 gro_list_prepare(napi, skb); 3826 3827 rcu_read_lock(); 3828 list_for_each_entry_rcu(ptype, head, list) { 3829 if (ptype->type != type || !ptype->callbacks.gro_receive) 3830 continue; 3831 3832 skb_set_network_header(skb, skb_gro_offset(skb)); 3833 skb_reset_mac_len(skb); 3834 NAPI_GRO_CB(skb)->same_flow = 0; 3835 NAPI_GRO_CB(skb)->flush = 0; 3836 NAPI_GRO_CB(skb)->free = 0; 3837 3838 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3839 break; 3840 } 3841 rcu_read_unlock(); 3842 3843 if (&ptype->list == head) 3844 goto normal; 3845 3846 same_flow = NAPI_GRO_CB(skb)->same_flow; 3847 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3848 3849 if (pp) { 3850 struct sk_buff *nskb = *pp; 3851 3852 *pp = nskb->next; 3853 nskb->next = NULL; 3854 napi_gro_complete(nskb); 3855 napi->gro_count--; 3856 } 3857 3858 if (same_flow) 3859 goto ok; 3860 3861 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3862 goto normal; 3863 3864 napi->gro_count++; 3865 NAPI_GRO_CB(skb)->count = 1; 3866 NAPI_GRO_CB(skb)->age = jiffies; 3867 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3868 skb->next = napi->gro_list; 3869 napi->gro_list = skb; 3870 ret = GRO_HELD; 3871 3872 pull: 3873 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3874 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3875 3876 BUG_ON(skb->end - skb->tail < grow); 3877 3878 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3879 3880 skb->tail += grow; 3881 skb->data_len -= grow; 3882 3883 skb_shinfo(skb)->frags[0].page_offset += grow; 3884 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3885 3886 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3887 skb_frag_unref(skb, 0); 3888 memmove(skb_shinfo(skb)->frags, 3889 skb_shinfo(skb)->frags + 1, 3890 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3891 } 3892 } 3893 3894 ok: 3895 return ret; 3896 3897 normal: 3898 ret = GRO_NORMAL; 3899 goto pull; 3900 } 3901 3902 3903 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3904 { 3905 switch (ret) { 3906 case GRO_NORMAL: 3907 if (netif_receive_skb(skb)) 3908 ret = GRO_DROP; 3909 break; 3910 3911 case GRO_DROP: 3912 kfree_skb(skb); 3913 break; 3914 3915 case GRO_MERGED_FREE: 3916 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3917 kmem_cache_free(skbuff_head_cache, skb); 3918 else 3919 __kfree_skb(skb); 3920 break; 3921 3922 case GRO_HELD: 3923 case GRO_MERGED: 3924 break; 3925 } 3926 3927 return ret; 3928 } 3929 3930 static void skb_gro_reset_offset(struct sk_buff *skb) 3931 { 3932 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3933 const skb_frag_t *frag0 = &pinfo->frags[0]; 3934 3935 NAPI_GRO_CB(skb)->data_offset = 0; 3936 NAPI_GRO_CB(skb)->frag0 = NULL; 3937 NAPI_GRO_CB(skb)->frag0_len = 0; 3938 3939 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3940 pinfo->nr_frags && 3941 !PageHighMem(skb_frag_page(frag0))) { 3942 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3943 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3944 } 3945 } 3946 3947 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3948 { 3949 skb_gro_reset_offset(skb); 3950 3951 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3952 } 3953 EXPORT_SYMBOL(napi_gro_receive); 3954 3955 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3956 { 3957 __skb_pull(skb, skb_headlen(skb)); 3958 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3959 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3960 skb->vlan_tci = 0; 3961 skb->dev = napi->dev; 3962 skb->skb_iif = 0; 3963 3964 napi->skb = skb; 3965 } 3966 3967 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3968 { 3969 struct sk_buff *skb = napi->skb; 3970 3971 if (!skb) { 3972 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3973 if (skb) 3974 napi->skb = skb; 3975 } 3976 return skb; 3977 } 3978 EXPORT_SYMBOL(napi_get_frags); 3979 3980 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3981 gro_result_t ret) 3982 { 3983 switch (ret) { 3984 case GRO_NORMAL: 3985 case GRO_HELD: 3986 skb->protocol = eth_type_trans(skb, skb->dev); 3987 3988 if (ret == GRO_HELD) 3989 skb_gro_pull(skb, -ETH_HLEN); 3990 else if (netif_receive_skb(skb)) 3991 ret = GRO_DROP; 3992 break; 3993 3994 case GRO_DROP: 3995 case GRO_MERGED_FREE: 3996 napi_reuse_skb(napi, skb); 3997 break; 3998 3999 case GRO_MERGED: 4000 break; 4001 } 4002 4003 return ret; 4004 } 4005 4006 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4007 { 4008 struct sk_buff *skb = napi->skb; 4009 struct ethhdr *eth; 4010 unsigned int hlen; 4011 unsigned int off; 4012 4013 napi->skb = NULL; 4014 4015 skb_reset_mac_header(skb); 4016 skb_gro_reset_offset(skb); 4017 4018 off = skb_gro_offset(skb); 4019 hlen = off + sizeof(*eth); 4020 eth = skb_gro_header_fast(skb, off); 4021 if (skb_gro_header_hard(skb, hlen)) { 4022 eth = skb_gro_header_slow(skb, hlen, off); 4023 if (unlikely(!eth)) { 4024 napi_reuse_skb(napi, skb); 4025 skb = NULL; 4026 goto out; 4027 } 4028 } 4029 4030 skb_gro_pull(skb, sizeof(*eth)); 4031 4032 /* 4033 * This works because the only protocols we care about don't require 4034 * special handling. We'll fix it up properly at the end. 4035 */ 4036 skb->protocol = eth->h_proto; 4037 4038 out: 4039 return skb; 4040 } 4041 4042 gro_result_t napi_gro_frags(struct napi_struct *napi) 4043 { 4044 struct sk_buff *skb = napi_frags_skb(napi); 4045 4046 if (!skb) 4047 return GRO_DROP; 4048 4049 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4050 } 4051 EXPORT_SYMBOL(napi_gro_frags); 4052 4053 /* 4054 * net_rps_action sends any pending IPI's for rps. 4055 * Note: called with local irq disabled, but exits with local irq enabled. 4056 */ 4057 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4058 { 4059 #ifdef CONFIG_RPS 4060 struct softnet_data *remsd = sd->rps_ipi_list; 4061 4062 if (remsd) { 4063 sd->rps_ipi_list = NULL; 4064 4065 local_irq_enable(); 4066 4067 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4068 while (remsd) { 4069 struct softnet_data *next = remsd->rps_ipi_next; 4070 4071 if (cpu_online(remsd->cpu)) 4072 __smp_call_function_single(remsd->cpu, 4073 &remsd->csd, 0); 4074 remsd = next; 4075 } 4076 } else 4077 #endif 4078 local_irq_enable(); 4079 } 4080 4081 static int process_backlog(struct napi_struct *napi, int quota) 4082 { 4083 int work = 0; 4084 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4085 4086 #ifdef CONFIG_RPS 4087 /* Check if we have pending ipi, its better to send them now, 4088 * not waiting net_rx_action() end. 4089 */ 4090 if (sd->rps_ipi_list) { 4091 local_irq_disable(); 4092 net_rps_action_and_irq_enable(sd); 4093 } 4094 #endif 4095 napi->weight = weight_p; 4096 local_irq_disable(); 4097 while (work < quota) { 4098 struct sk_buff *skb; 4099 unsigned int qlen; 4100 4101 while ((skb = __skb_dequeue(&sd->process_queue))) { 4102 local_irq_enable(); 4103 __netif_receive_skb(skb); 4104 local_irq_disable(); 4105 input_queue_head_incr(sd); 4106 if (++work >= quota) { 4107 local_irq_enable(); 4108 return work; 4109 } 4110 } 4111 4112 rps_lock(sd); 4113 qlen = skb_queue_len(&sd->input_pkt_queue); 4114 if (qlen) 4115 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4116 &sd->process_queue); 4117 4118 if (qlen < quota - work) { 4119 /* 4120 * Inline a custom version of __napi_complete(). 4121 * only current cpu owns and manipulates this napi, 4122 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4123 * we can use a plain write instead of clear_bit(), 4124 * and we dont need an smp_mb() memory barrier. 4125 */ 4126 list_del(&napi->poll_list); 4127 napi->state = 0; 4128 4129 quota = work + qlen; 4130 } 4131 rps_unlock(sd); 4132 } 4133 local_irq_enable(); 4134 4135 return work; 4136 } 4137 4138 /** 4139 * __napi_schedule - schedule for receive 4140 * @n: entry to schedule 4141 * 4142 * The entry's receive function will be scheduled to run 4143 */ 4144 void __napi_schedule(struct napi_struct *n) 4145 { 4146 unsigned long flags; 4147 4148 local_irq_save(flags); 4149 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4150 local_irq_restore(flags); 4151 } 4152 EXPORT_SYMBOL(__napi_schedule); 4153 4154 void __napi_complete(struct napi_struct *n) 4155 { 4156 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4157 BUG_ON(n->gro_list); 4158 4159 list_del(&n->poll_list); 4160 smp_mb__before_clear_bit(); 4161 clear_bit(NAPI_STATE_SCHED, &n->state); 4162 } 4163 EXPORT_SYMBOL(__napi_complete); 4164 4165 void napi_complete(struct napi_struct *n) 4166 { 4167 unsigned long flags; 4168 4169 /* 4170 * don't let napi dequeue from the cpu poll list 4171 * just in case its running on a different cpu 4172 */ 4173 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4174 return; 4175 4176 napi_gro_flush(n, false); 4177 local_irq_save(flags); 4178 __napi_complete(n); 4179 local_irq_restore(flags); 4180 } 4181 EXPORT_SYMBOL(napi_complete); 4182 4183 /* must be called under rcu_read_lock(), as we dont take a reference */ 4184 struct napi_struct *napi_by_id(unsigned int napi_id) 4185 { 4186 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4187 struct napi_struct *napi; 4188 4189 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4190 if (napi->napi_id == napi_id) 4191 return napi; 4192 4193 return NULL; 4194 } 4195 EXPORT_SYMBOL_GPL(napi_by_id); 4196 4197 void napi_hash_add(struct napi_struct *napi) 4198 { 4199 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4200 4201 spin_lock(&napi_hash_lock); 4202 4203 /* 0 is not a valid id, we also skip an id that is taken 4204 * we expect both events to be extremely rare 4205 */ 4206 napi->napi_id = 0; 4207 while (!napi->napi_id) { 4208 napi->napi_id = ++napi_gen_id; 4209 if (napi_by_id(napi->napi_id)) 4210 napi->napi_id = 0; 4211 } 4212 4213 hlist_add_head_rcu(&napi->napi_hash_node, 4214 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4215 4216 spin_unlock(&napi_hash_lock); 4217 } 4218 } 4219 EXPORT_SYMBOL_GPL(napi_hash_add); 4220 4221 /* Warning : caller is responsible to make sure rcu grace period 4222 * is respected before freeing memory containing @napi 4223 */ 4224 void napi_hash_del(struct napi_struct *napi) 4225 { 4226 spin_lock(&napi_hash_lock); 4227 4228 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4229 hlist_del_rcu(&napi->napi_hash_node); 4230 4231 spin_unlock(&napi_hash_lock); 4232 } 4233 EXPORT_SYMBOL_GPL(napi_hash_del); 4234 4235 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4236 int (*poll)(struct napi_struct *, int), int weight) 4237 { 4238 INIT_LIST_HEAD(&napi->poll_list); 4239 napi->gro_count = 0; 4240 napi->gro_list = NULL; 4241 napi->skb = NULL; 4242 napi->poll = poll; 4243 if (weight > NAPI_POLL_WEIGHT) 4244 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4245 weight, dev->name); 4246 napi->weight = weight; 4247 list_add(&napi->dev_list, &dev->napi_list); 4248 napi->dev = dev; 4249 #ifdef CONFIG_NETPOLL 4250 spin_lock_init(&napi->poll_lock); 4251 napi->poll_owner = -1; 4252 #endif 4253 set_bit(NAPI_STATE_SCHED, &napi->state); 4254 } 4255 EXPORT_SYMBOL(netif_napi_add); 4256 4257 void netif_napi_del(struct napi_struct *napi) 4258 { 4259 struct sk_buff *skb, *next; 4260 4261 list_del_init(&napi->dev_list); 4262 napi_free_frags(napi); 4263 4264 for (skb = napi->gro_list; skb; skb = next) { 4265 next = skb->next; 4266 skb->next = NULL; 4267 kfree_skb(skb); 4268 } 4269 4270 napi->gro_list = NULL; 4271 napi->gro_count = 0; 4272 } 4273 EXPORT_SYMBOL(netif_napi_del); 4274 4275 static void net_rx_action(struct softirq_action *h) 4276 { 4277 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4278 unsigned long time_limit = jiffies + 2; 4279 int budget = netdev_budget; 4280 void *have; 4281 4282 local_irq_disable(); 4283 4284 while (!list_empty(&sd->poll_list)) { 4285 struct napi_struct *n; 4286 int work, weight; 4287 4288 /* If softirq window is exhuasted then punt. 4289 * Allow this to run for 2 jiffies since which will allow 4290 * an average latency of 1.5/HZ. 4291 */ 4292 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4293 goto softnet_break; 4294 4295 local_irq_enable(); 4296 4297 /* Even though interrupts have been re-enabled, this 4298 * access is safe because interrupts can only add new 4299 * entries to the tail of this list, and only ->poll() 4300 * calls can remove this head entry from the list. 4301 */ 4302 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4303 4304 have = netpoll_poll_lock(n); 4305 4306 weight = n->weight; 4307 4308 /* This NAPI_STATE_SCHED test is for avoiding a race 4309 * with netpoll's poll_napi(). Only the entity which 4310 * obtains the lock and sees NAPI_STATE_SCHED set will 4311 * actually make the ->poll() call. Therefore we avoid 4312 * accidentally calling ->poll() when NAPI is not scheduled. 4313 */ 4314 work = 0; 4315 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4316 work = n->poll(n, weight); 4317 trace_napi_poll(n); 4318 } 4319 4320 WARN_ON_ONCE(work > weight); 4321 4322 budget -= work; 4323 4324 local_irq_disable(); 4325 4326 /* Drivers must not modify the NAPI state if they 4327 * consume the entire weight. In such cases this code 4328 * still "owns" the NAPI instance and therefore can 4329 * move the instance around on the list at-will. 4330 */ 4331 if (unlikely(work == weight)) { 4332 if (unlikely(napi_disable_pending(n))) { 4333 local_irq_enable(); 4334 napi_complete(n); 4335 local_irq_disable(); 4336 } else { 4337 if (n->gro_list) { 4338 /* flush too old packets 4339 * If HZ < 1000, flush all packets. 4340 */ 4341 local_irq_enable(); 4342 napi_gro_flush(n, HZ >= 1000); 4343 local_irq_disable(); 4344 } 4345 list_move_tail(&n->poll_list, &sd->poll_list); 4346 } 4347 } 4348 4349 netpoll_poll_unlock(have); 4350 } 4351 out: 4352 net_rps_action_and_irq_enable(sd); 4353 4354 #ifdef CONFIG_NET_DMA 4355 /* 4356 * There may not be any more sk_buffs coming right now, so push 4357 * any pending DMA copies to hardware 4358 */ 4359 dma_issue_pending_all(); 4360 #endif 4361 4362 return; 4363 4364 softnet_break: 4365 sd->time_squeeze++; 4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4367 goto out; 4368 } 4369 4370 struct netdev_adjacent { 4371 struct net_device *dev; 4372 4373 /* upper master flag, there can only be one master device per list */ 4374 bool master; 4375 4376 /* indicates that this dev is our first-level lower/upper device */ 4377 bool neighbour; 4378 4379 /* counter for the number of times this device was added to us */ 4380 u16 ref_nr; 4381 4382 struct list_head list; 4383 struct rcu_head rcu; 4384 }; 4385 4386 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4387 struct net_device *adj_dev, 4388 bool upper) 4389 { 4390 struct netdev_adjacent *adj; 4391 struct list_head *dev_list; 4392 4393 dev_list = upper ? &dev->upper_dev_list : &dev->lower_dev_list; 4394 4395 list_for_each_entry(adj, dev_list, list) { 4396 if (adj->dev == adj_dev) 4397 return adj; 4398 } 4399 return NULL; 4400 } 4401 4402 static inline struct netdev_adjacent *__netdev_find_upper(struct net_device *dev, 4403 struct net_device *udev) 4404 { 4405 return __netdev_find_adj(dev, udev, true); 4406 } 4407 4408 static inline struct netdev_adjacent *__netdev_find_lower(struct net_device *dev, 4409 struct net_device *ldev) 4410 { 4411 return __netdev_find_adj(dev, ldev, false); 4412 } 4413 4414 /** 4415 * netdev_has_upper_dev - Check if device is linked to an upper device 4416 * @dev: device 4417 * @upper_dev: upper device to check 4418 * 4419 * Find out if a device is linked to specified upper device and return true 4420 * in case it is. Note that this checks only immediate upper device, 4421 * not through a complete stack of devices. The caller must hold the RTNL lock. 4422 */ 4423 bool netdev_has_upper_dev(struct net_device *dev, 4424 struct net_device *upper_dev) 4425 { 4426 ASSERT_RTNL(); 4427 4428 return __netdev_find_upper(dev, upper_dev); 4429 } 4430 EXPORT_SYMBOL(netdev_has_upper_dev); 4431 4432 /** 4433 * netdev_has_any_upper_dev - Check if device is linked to some device 4434 * @dev: device 4435 * 4436 * Find out if a device is linked to an upper device and return true in case 4437 * it is. The caller must hold the RTNL lock. 4438 */ 4439 bool netdev_has_any_upper_dev(struct net_device *dev) 4440 { 4441 ASSERT_RTNL(); 4442 4443 return !list_empty(&dev->upper_dev_list); 4444 } 4445 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4446 4447 /** 4448 * netdev_master_upper_dev_get - Get master upper device 4449 * @dev: device 4450 * 4451 * Find a master upper device and return pointer to it or NULL in case 4452 * it's not there. The caller must hold the RTNL lock. 4453 */ 4454 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4455 { 4456 struct netdev_adjacent *upper; 4457 4458 ASSERT_RTNL(); 4459 4460 if (list_empty(&dev->upper_dev_list)) 4461 return NULL; 4462 4463 upper = list_first_entry(&dev->upper_dev_list, 4464 struct netdev_adjacent, list); 4465 if (likely(upper->master)) 4466 return upper->dev; 4467 return NULL; 4468 } 4469 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4470 4471 /* netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4472 * @dev: device 4473 * @iter: list_head ** of the current position 4474 * 4475 * Gets the next device from the dev's upper list, starting from iter 4476 * position. The caller must hold RCU read lock. 4477 */ 4478 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4479 struct list_head **iter) 4480 { 4481 struct netdev_adjacent *upper; 4482 4483 WARN_ON_ONCE(!rcu_read_lock_held()); 4484 4485 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4486 4487 if (&upper->list == &dev->upper_dev_list) 4488 return NULL; 4489 4490 *iter = &upper->list; 4491 4492 return upper->dev; 4493 } 4494 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4495 4496 /** 4497 * netdev_master_upper_dev_get_rcu - Get master upper device 4498 * @dev: device 4499 * 4500 * Find a master upper device and return pointer to it or NULL in case 4501 * it's not there. The caller must hold the RCU read lock. 4502 */ 4503 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4504 { 4505 struct netdev_adjacent *upper; 4506 4507 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4508 struct netdev_adjacent, list); 4509 if (upper && likely(upper->master)) 4510 return upper->dev; 4511 return NULL; 4512 } 4513 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4514 4515 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4516 struct net_device *adj_dev, 4517 bool neighbour, bool master, 4518 bool upper) 4519 { 4520 struct netdev_adjacent *adj; 4521 4522 adj = __netdev_find_adj(dev, adj_dev, upper); 4523 4524 if (adj) { 4525 BUG_ON(neighbour); 4526 adj->ref_nr++; 4527 return 0; 4528 } 4529 4530 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4531 if (!adj) 4532 return -ENOMEM; 4533 4534 adj->dev = adj_dev; 4535 adj->master = master; 4536 adj->neighbour = neighbour; 4537 adj->ref_nr = 1; 4538 4539 dev_hold(adj_dev); 4540 pr_debug("dev_hold for %s, because of %s link added from %s to %s\n", 4541 adj_dev->name, upper ? "upper" : "lower", dev->name, 4542 adj_dev->name); 4543 4544 if (!upper) { 4545 list_add_tail_rcu(&adj->list, &dev->lower_dev_list); 4546 return 0; 4547 } 4548 4549 /* Ensure that master upper link is always the first item in list. */ 4550 if (master) 4551 list_add_rcu(&adj->list, &dev->upper_dev_list); 4552 else 4553 list_add_tail_rcu(&adj->list, &dev->upper_dev_list); 4554 4555 return 0; 4556 } 4557 4558 static inline int __netdev_upper_dev_insert(struct net_device *dev, 4559 struct net_device *udev, 4560 bool master, bool neighbour) 4561 { 4562 return __netdev_adjacent_dev_insert(dev, udev, neighbour, master, 4563 true); 4564 } 4565 4566 static inline int __netdev_lower_dev_insert(struct net_device *dev, 4567 struct net_device *ldev, 4568 bool neighbour) 4569 { 4570 return __netdev_adjacent_dev_insert(dev, ldev, neighbour, false, 4571 false); 4572 } 4573 4574 void __netdev_adjacent_dev_remove(struct net_device *dev, 4575 struct net_device *adj_dev, bool upper) 4576 { 4577 struct netdev_adjacent *adj; 4578 4579 if (upper) 4580 adj = __netdev_find_upper(dev, adj_dev); 4581 else 4582 adj = __netdev_find_lower(dev, adj_dev); 4583 4584 if (!adj) 4585 BUG(); 4586 4587 if (adj->ref_nr > 1) { 4588 adj->ref_nr--; 4589 return; 4590 } 4591 4592 list_del_rcu(&adj->list); 4593 pr_debug("dev_put for %s, because of %s link removed from %s to %s\n", 4594 adj_dev->name, upper ? "upper" : "lower", dev->name, 4595 adj_dev->name); 4596 dev_put(adj_dev); 4597 kfree_rcu(adj, rcu); 4598 } 4599 4600 static inline void __netdev_upper_dev_remove(struct net_device *dev, 4601 struct net_device *udev) 4602 { 4603 return __netdev_adjacent_dev_remove(dev, udev, true); 4604 } 4605 4606 static inline void __netdev_lower_dev_remove(struct net_device *dev, 4607 struct net_device *ldev) 4608 { 4609 return __netdev_adjacent_dev_remove(dev, ldev, false); 4610 } 4611 4612 int __netdev_adjacent_dev_insert_link(struct net_device *dev, 4613 struct net_device *upper_dev, 4614 bool master, bool neighbour) 4615 { 4616 int ret; 4617 4618 ret = __netdev_upper_dev_insert(dev, upper_dev, master, neighbour); 4619 if (ret) 4620 return ret; 4621 4622 ret = __netdev_lower_dev_insert(upper_dev, dev, neighbour); 4623 if (ret) { 4624 __netdev_upper_dev_remove(dev, upper_dev); 4625 return ret; 4626 } 4627 4628 return 0; 4629 } 4630 4631 static inline int __netdev_adjacent_dev_link(struct net_device *dev, 4632 struct net_device *udev) 4633 { 4634 return __netdev_adjacent_dev_insert_link(dev, udev, false, false); 4635 } 4636 4637 static inline int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4638 struct net_device *udev, 4639 bool master) 4640 { 4641 return __netdev_adjacent_dev_insert_link(dev, udev, master, true); 4642 } 4643 4644 void __netdev_adjacent_dev_unlink(struct net_device *dev, 4645 struct net_device *upper_dev) 4646 { 4647 __netdev_upper_dev_remove(dev, upper_dev); 4648 __netdev_lower_dev_remove(upper_dev, dev); 4649 } 4650 4651 4652 static int __netdev_upper_dev_link(struct net_device *dev, 4653 struct net_device *upper_dev, bool master) 4654 { 4655 struct netdev_adjacent *i, *j, *to_i, *to_j; 4656 int ret = 0; 4657 4658 ASSERT_RTNL(); 4659 4660 if (dev == upper_dev) 4661 return -EBUSY; 4662 4663 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4664 if (__netdev_find_upper(upper_dev, dev)) 4665 return -EBUSY; 4666 4667 if (__netdev_find_upper(dev, upper_dev)) 4668 return -EEXIST; 4669 4670 if (master && netdev_master_upper_dev_get(dev)) 4671 return -EBUSY; 4672 4673 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, master); 4674 if (ret) 4675 return ret; 4676 4677 /* Now that we linked these devs, make all the upper_dev's 4678 * upper_dev_list visible to every dev's lower_dev_list and vice 4679 * versa, and don't forget the devices itself. All of these 4680 * links are non-neighbours. 4681 */ 4682 list_for_each_entry(i, &dev->lower_dev_list, list) { 4683 list_for_each_entry(j, &upper_dev->upper_dev_list, list) { 4684 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4685 if (ret) 4686 goto rollback_mesh; 4687 } 4688 } 4689 4690 /* add dev to every upper_dev's upper device */ 4691 list_for_each_entry(i, &upper_dev->upper_dev_list, list) { 4692 ret = __netdev_adjacent_dev_link(dev, i->dev); 4693 if (ret) 4694 goto rollback_upper_mesh; 4695 } 4696 4697 /* add upper_dev to every dev's lower device */ 4698 list_for_each_entry(i, &dev->lower_dev_list, list) { 4699 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4700 if (ret) 4701 goto rollback_lower_mesh; 4702 } 4703 4704 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4705 return 0; 4706 4707 rollback_lower_mesh: 4708 to_i = i; 4709 list_for_each_entry(i, &dev->lower_dev_list, list) { 4710 if (i == to_i) 4711 break; 4712 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4713 } 4714 4715 i = NULL; 4716 4717 rollback_upper_mesh: 4718 to_i = i; 4719 list_for_each_entry(i, &upper_dev->upper_dev_list, list) { 4720 if (i == to_i) 4721 break; 4722 __netdev_adjacent_dev_unlink(dev, i->dev); 4723 } 4724 4725 i = j = NULL; 4726 4727 rollback_mesh: 4728 to_i = i; 4729 to_j = j; 4730 list_for_each_entry(i, &dev->lower_dev_list, list) { 4731 list_for_each_entry(j, &upper_dev->upper_dev_list, list) { 4732 if (i == to_i && j == to_j) 4733 break; 4734 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4735 } 4736 if (i == to_i) 4737 break; 4738 } 4739 4740 __netdev_adjacent_dev_unlink(dev, upper_dev); 4741 4742 return ret; 4743 } 4744 4745 /** 4746 * netdev_upper_dev_link - Add a link to the upper device 4747 * @dev: device 4748 * @upper_dev: new upper device 4749 * 4750 * Adds a link to device which is upper to this one. The caller must hold 4751 * the RTNL lock. On a failure a negative errno code is returned. 4752 * On success the reference counts are adjusted and the function 4753 * returns zero. 4754 */ 4755 int netdev_upper_dev_link(struct net_device *dev, 4756 struct net_device *upper_dev) 4757 { 4758 return __netdev_upper_dev_link(dev, upper_dev, false); 4759 } 4760 EXPORT_SYMBOL(netdev_upper_dev_link); 4761 4762 /** 4763 * netdev_master_upper_dev_link - Add a master link to the upper device 4764 * @dev: device 4765 * @upper_dev: new upper device 4766 * 4767 * Adds a link to device which is upper to this one. In this case, only 4768 * one master upper device can be linked, although other non-master devices 4769 * might be linked as well. The caller must hold the RTNL lock. 4770 * On a failure a negative errno code is returned. On success the reference 4771 * counts are adjusted and the function returns zero. 4772 */ 4773 int netdev_master_upper_dev_link(struct net_device *dev, 4774 struct net_device *upper_dev) 4775 { 4776 return __netdev_upper_dev_link(dev, upper_dev, true); 4777 } 4778 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4779 4780 /** 4781 * netdev_upper_dev_unlink - Removes a link to upper device 4782 * @dev: device 4783 * @upper_dev: new upper device 4784 * 4785 * Removes a link to device which is upper to this one. The caller must hold 4786 * the RTNL lock. 4787 */ 4788 void netdev_upper_dev_unlink(struct net_device *dev, 4789 struct net_device *upper_dev) 4790 { 4791 struct netdev_adjacent *i, *j; 4792 ASSERT_RTNL(); 4793 4794 __netdev_adjacent_dev_unlink(dev, upper_dev); 4795 4796 /* Here is the tricky part. We must remove all dev's lower 4797 * devices from all upper_dev's upper devices and vice 4798 * versa, to maintain the graph relationship. 4799 */ 4800 list_for_each_entry(i, &dev->lower_dev_list, list) 4801 list_for_each_entry(j, &upper_dev->upper_dev_list, list) 4802 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4803 4804 /* remove also the devices itself from lower/upper device 4805 * list 4806 */ 4807 list_for_each_entry(i, &dev->lower_dev_list, list) 4808 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4809 4810 list_for_each_entry(i, &upper_dev->upper_dev_list, list) 4811 __netdev_adjacent_dev_unlink(dev, i->dev); 4812 4813 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4814 } 4815 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4816 4817 static void dev_change_rx_flags(struct net_device *dev, int flags) 4818 { 4819 const struct net_device_ops *ops = dev->netdev_ops; 4820 4821 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4822 ops->ndo_change_rx_flags(dev, flags); 4823 } 4824 4825 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4826 { 4827 unsigned int old_flags = dev->flags; 4828 kuid_t uid; 4829 kgid_t gid; 4830 4831 ASSERT_RTNL(); 4832 4833 dev->flags |= IFF_PROMISC; 4834 dev->promiscuity += inc; 4835 if (dev->promiscuity == 0) { 4836 /* 4837 * Avoid overflow. 4838 * If inc causes overflow, untouch promisc and return error. 4839 */ 4840 if (inc < 0) 4841 dev->flags &= ~IFF_PROMISC; 4842 else { 4843 dev->promiscuity -= inc; 4844 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4845 dev->name); 4846 return -EOVERFLOW; 4847 } 4848 } 4849 if (dev->flags != old_flags) { 4850 pr_info("device %s %s promiscuous mode\n", 4851 dev->name, 4852 dev->flags & IFF_PROMISC ? "entered" : "left"); 4853 if (audit_enabled) { 4854 current_uid_gid(&uid, &gid); 4855 audit_log(current->audit_context, GFP_ATOMIC, 4856 AUDIT_ANOM_PROMISCUOUS, 4857 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4858 dev->name, (dev->flags & IFF_PROMISC), 4859 (old_flags & IFF_PROMISC), 4860 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4861 from_kuid(&init_user_ns, uid), 4862 from_kgid(&init_user_ns, gid), 4863 audit_get_sessionid(current)); 4864 } 4865 4866 dev_change_rx_flags(dev, IFF_PROMISC); 4867 } 4868 return 0; 4869 } 4870 4871 /** 4872 * dev_set_promiscuity - update promiscuity count on a device 4873 * @dev: device 4874 * @inc: modifier 4875 * 4876 * Add or remove promiscuity from a device. While the count in the device 4877 * remains above zero the interface remains promiscuous. Once it hits zero 4878 * the device reverts back to normal filtering operation. A negative inc 4879 * value is used to drop promiscuity on the device. 4880 * Return 0 if successful or a negative errno code on error. 4881 */ 4882 int dev_set_promiscuity(struct net_device *dev, int inc) 4883 { 4884 unsigned int old_flags = dev->flags; 4885 int err; 4886 4887 err = __dev_set_promiscuity(dev, inc); 4888 if (err < 0) 4889 return err; 4890 if (dev->flags != old_flags) 4891 dev_set_rx_mode(dev); 4892 return err; 4893 } 4894 EXPORT_SYMBOL(dev_set_promiscuity); 4895 4896 /** 4897 * dev_set_allmulti - update allmulti count on a device 4898 * @dev: device 4899 * @inc: modifier 4900 * 4901 * Add or remove reception of all multicast frames to a device. While the 4902 * count in the device remains above zero the interface remains listening 4903 * to all interfaces. Once it hits zero the device reverts back to normal 4904 * filtering operation. A negative @inc value is used to drop the counter 4905 * when releasing a resource needing all multicasts. 4906 * Return 0 if successful or a negative errno code on error. 4907 */ 4908 4909 int dev_set_allmulti(struct net_device *dev, int inc) 4910 { 4911 unsigned int old_flags = dev->flags; 4912 4913 ASSERT_RTNL(); 4914 4915 dev->flags |= IFF_ALLMULTI; 4916 dev->allmulti += inc; 4917 if (dev->allmulti == 0) { 4918 /* 4919 * Avoid overflow. 4920 * If inc causes overflow, untouch allmulti and return error. 4921 */ 4922 if (inc < 0) 4923 dev->flags &= ~IFF_ALLMULTI; 4924 else { 4925 dev->allmulti -= inc; 4926 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4927 dev->name); 4928 return -EOVERFLOW; 4929 } 4930 } 4931 if (dev->flags ^ old_flags) { 4932 dev_change_rx_flags(dev, IFF_ALLMULTI); 4933 dev_set_rx_mode(dev); 4934 } 4935 return 0; 4936 } 4937 EXPORT_SYMBOL(dev_set_allmulti); 4938 4939 /* 4940 * Upload unicast and multicast address lists to device and 4941 * configure RX filtering. When the device doesn't support unicast 4942 * filtering it is put in promiscuous mode while unicast addresses 4943 * are present. 4944 */ 4945 void __dev_set_rx_mode(struct net_device *dev) 4946 { 4947 const struct net_device_ops *ops = dev->netdev_ops; 4948 4949 /* dev_open will call this function so the list will stay sane. */ 4950 if (!(dev->flags&IFF_UP)) 4951 return; 4952 4953 if (!netif_device_present(dev)) 4954 return; 4955 4956 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4957 /* Unicast addresses changes may only happen under the rtnl, 4958 * therefore calling __dev_set_promiscuity here is safe. 4959 */ 4960 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4961 __dev_set_promiscuity(dev, 1); 4962 dev->uc_promisc = true; 4963 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4964 __dev_set_promiscuity(dev, -1); 4965 dev->uc_promisc = false; 4966 } 4967 } 4968 4969 if (ops->ndo_set_rx_mode) 4970 ops->ndo_set_rx_mode(dev); 4971 } 4972 4973 void dev_set_rx_mode(struct net_device *dev) 4974 { 4975 netif_addr_lock_bh(dev); 4976 __dev_set_rx_mode(dev); 4977 netif_addr_unlock_bh(dev); 4978 } 4979 4980 /** 4981 * dev_get_flags - get flags reported to userspace 4982 * @dev: device 4983 * 4984 * Get the combination of flag bits exported through APIs to userspace. 4985 */ 4986 unsigned int dev_get_flags(const struct net_device *dev) 4987 { 4988 unsigned int flags; 4989 4990 flags = (dev->flags & ~(IFF_PROMISC | 4991 IFF_ALLMULTI | 4992 IFF_RUNNING | 4993 IFF_LOWER_UP | 4994 IFF_DORMANT)) | 4995 (dev->gflags & (IFF_PROMISC | 4996 IFF_ALLMULTI)); 4997 4998 if (netif_running(dev)) { 4999 if (netif_oper_up(dev)) 5000 flags |= IFF_RUNNING; 5001 if (netif_carrier_ok(dev)) 5002 flags |= IFF_LOWER_UP; 5003 if (netif_dormant(dev)) 5004 flags |= IFF_DORMANT; 5005 } 5006 5007 return flags; 5008 } 5009 EXPORT_SYMBOL(dev_get_flags); 5010 5011 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5012 { 5013 unsigned int old_flags = dev->flags; 5014 int ret; 5015 5016 ASSERT_RTNL(); 5017 5018 /* 5019 * Set the flags on our device. 5020 */ 5021 5022 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5023 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5024 IFF_AUTOMEDIA)) | 5025 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5026 IFF_ALLMULTI)); 5027 5028 /* 5029 * Load in the correct multicast list now the flags have changed. 5030 */ 5031 5032 if ((old_flags ^ flags) & IFF_MULTICAST) 5033 dev_change_rx_flags(dev, IFF_MULTICAST); 5034 5035 dev_set_rx_mode(dev); 5036 5037 /* 5038 * Have we downed the interface. We handle IFF_UP ourselves 5039 * according to user attempts to set it, rather than blindly 5040 * setting it. 5041 */ 5042 5043 ret = 0; 5044 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5045 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5046 5047 if (!ret) 5048 dev_set_rx_mode(dev); 5049 } 5050 5051 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5052 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5053 5054 dev->gflags ^= IFF_PROMISC; 5055 dev_set_promiscuity(dev, inc); 5056 } 5057 5058 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5059 is important. Some (broken) drivers set IFF_PROMISC, when 5060 IFF_ALLMULTI is requested not asking us and not reporting. 5061 */ 5062 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5063 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5064 5065 dev->gflags ^= IFF_ALLMULTI; 5066 dev_set_allmulti(dev, inc); 5067 } 5068 5069 return ret; 5070 } 5071 5072 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 5073 { 5074 unsigned int changes = dev->flags ^ old_flags; 5075 5076 if (changes & IFF_UP) { 5077 if (dev->flags & IFF_UP) 5078 call_netdevice_notifiers(NETDEV_UP, dev); 5079 else 5080 call_netdevice_notifiers(NETDEV_DOWN, dev); 5081 } 5082 5083 if (dev->flags & IFF_UP && 5084 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5085 struct netdev_notifier_change_info change_info; 5086 5087 change_info.flags_changed = changes; 5088 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5089 &change_info.info); 5090 } 5091 } 5092 5093 /** 5094 * dev_change_flags - change device settings 5095 * @dev: device 5096 * @flags: device state flags 5097 * 5098 * Change settings on device based state flags. The flags are 5099 * in the userspace exported format. 5100 */ 5101 int dev_change_flags(struct net_device *dev, unsigned int flags) 5102 { 5103 int ret; 5104 unsigned int changes, old_flags = dev->flags; 5105 5106 ret = __dev_change_flags(dev, flags); 5107 if (ret < 0) 5108 return ret; 5109 5110 changes = old_flags ^ dev->flags; 5111 if (changes) 5112 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 5113 5114 __dev_notify_flags(dev, old_flags); 5115 return ret; 5116 } 5117 EXPORT_SYMBOL(dev_change_flags); 5118 5119 /** 5120 * dev_set_mtu - Change maximum transfer unit 5121 * @dev: device 5122 * @new_mtu: new transfer unit 5123 * 5124 * Change the maximum transfer size of the network device. 5125 */ 5126 int dev_set_mtu(struct net_device *dev, int new_mtu) 5127 { 5128 const struct net_device_ops *ops = dev->netdev_ops; 5129 int err; 5130 5131 if (new_mtu == dev->mtu) 5132 return 0; 5133 5134 /* MTU must be positive. */ 5135 if (new_mtu < 0) 5136 return -EINVAL; 5137 5138 if (!netif_device_present(dev)) 5139 return -ENODEV; 5140 5141 err = 0; 5142 if (ops->ndo_change_mtu) 5143 err = ops->ndo_change_mtu(dev, new_mtu); 5144 else 5145 dev->mtu = new_mtu; 5146 5147 if (!err) 5148 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5149 return err; 5150 } 5151 EXPORT_SYMBOL(dev_set_mtu); 5152 5153 /** 5154 * dev_set_group - Change group this device belongs to 5155 * @dev: device 5156 * @new_group: group this device should belong to 5157 */ 5158 void dev_set_group(struct net_device *dev, int new_group) 5159 { 5160 dev->group = new_group; 5161 } 5162 EXPORT_SYMBOL(dev_set_group); 5163 5164 /** 5165 * dev_set_mac_address - Change Media Access Control Address 5166 * @dev: device 5167 * @sa: new address 5168 * 5169 * Change the hardware (MAC) address of the device 5170 */ 5171 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5172 { 5173 const struct net_device_ops *ops = dev->netdev_ops; 5174 int err; 5175 5176 if (!ops->ndo_set_mac_address) 5177 return -EOPNOTSUPP; 5178 if (sa->sa_family != dev->type) 5179 return -EINVAL; 5180 if (!netif_device_present(dev)) 5181 return -ENODEV; 5182 err = ops->ndo_set_mac_address(dev, sa); 5183 if (err) 5184 return err; 5185 dev->addr_assign_type = NET_ADDR_SET; 5186 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5187 add_device_randomness(dev->dev_addr, dev->addr_len); 5188 return 0; 5189 } 5190 EXPORT_SYMBOL(dev_set_mac_address); 5191 5192 /** 5193 * dev_change_carrier - Change device carrier 5194 * @dev: device 5195 * @new_carrier: new value 5196 * 5197 * Change device carrier 5198 */ 5199 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5200 { 5201 const struct net_device_ops *ops = dev->netdev_ops; 5202 5203 if (!ops->ndo_change_carrier) 5204 return -EOPNOTSUPP; 5205 if (!netif_device_present(dev)) 5206 return -ENODEV; 5207 return ops->ndo_change_carrier(dev, new_carrier); 5208 } 5209 EXPORT_SYMBOL(dev_change_carrier); 5210 5211 /** 5212 * dev_get_phys_port_id - Get device physical port ID 5213 * @dev: device 5214 * @ppid: port ID 5215 * 5216 * Get device physical port ID 5217 */ 5218 int dev_get_phys_port_id(struct net_device *dev, 5219 struct netdev_phys_port_id *ppid) 5220 { 5221 const struct net_device_ops *ops = dev->netdev_ops; 5222 5223 if (!ops->ndo_get_phys_port_id) 5224 return -EOPNOTSUPP; 5225 return ops->ndo_get_phys_port_id(dev, ppid); 5226 } 5227 EXPORT_SYMBOL(dev_get_phys_port_id); 5228 5229 /** 5230 * dev_new_index - allocate an ifindex 5231 * @net: the applicable net namespace 5232 * 5233 * Returns a suitable unique value for a new device interface 5234 * number. The caller must hold the rtnl semaphore or the 5235 * dev_base_lock to be sure it remains unique. 5236 */ 5237 static int dev_new_index(struct net *net) 5238 { 5239 int ifindex = net->ifindex; 5240 for (;;) { 5241 if (++ifindex <= 0) 5242 ifindex = 1; 5243 if (!__dev_get_by_index(net, ifindex)) 5244 return net->ifindex = ifindex; 5245 } 5246 } 5247 5248 /* Delayed registration/unregisteration */ 5249 static LIST_HEAD(net_todo_list); 5250 5251 static void net_set_todo(struct net_device *dev) 5252 { 5253 list_add_tail(&dev->todo_list, &net_todo_list); 5254 } 5255 5256 static void rollback_registered_many(struct list_head *head) 5257 { 5258 struct net_device *dev, *tmp; 5259 5260 BUG_ON(dev_boot_phase); 5261 ASSERT_RTNL(); 5262 5263 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5264 /* Some devices call without registering 5265 * for initialization unwind. Remove those 5266 * devices and proceed with the remaining. 5267 */ 5268 if (dev->reg_state == NETREG_UNINITIALIZED) { 5269 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5270 dev->name, dev); 5271 5272 WARN_ON(1); 5273 list_del(&dev->unreg_list); 5274 continue; 5275 } 5276 dev->dismantle = true; 5277 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5278 } 5279 5280 /* If device is running, close it first. */ 5281 dev_close_many(head); 5282 5283 list_for_each_entry(dev, head, unreg_list) { 5284 /* And unlink it from device chain. */ 5285 unlist_netdevice(dev); 5286 5287 dev->reg_state = NETREG_UNREGISTERING; 5288 } 5289 5290 synchronize_net(); 5291 5292 list_for_each_entry(dev, head, unreg_list) { 5293 /* Shutdown queueing discipline. */ 5294 dev_shutdown(dev); 5295 5296 5297 /* Notify protocols, that we are about to destroy 5298 this device. They should clean all the things. 5299 */ 5300 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5301 5302 if (!dev->rtnl_link_ops || 5303 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5304 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5305 5306 /* 5307 * Flush the unicast and multicast chains 5308 */ 5309 dev_uc_flush(dev); 5310 dev_mc_flush(dev); 5311 5312 if (dev->netdev_ops->ndo_uninit) 5313 dev->netdev_ops->ndo_uninit(dev); 5314 5315 /* Notifier chain MUST detach us all upper devices. */ 5316 WARN_ON(netdev_has_any_upper_dev(dev)); 5317 5318 /* Remove entries from kobject tree */ 5319 netdev_unregister_kobject(dev); 5320 #ifdef CONFIG_XPS 5321 /* Remove XPS queueing entries */ 5322 netif_reset_xps_queues_gt(dev, 0); 5323 #endif 5324 } 5325 5326 synchronize_net(); 5327 5328 list_for_each_entry(dev, head, unreg_list) 5329 dev_put(dev); 5330 } 5331 5332 static void rollback_registered(struct net_device *dev) 5333 { 5334 LIST_HEAD(single); 5335 5336 list_add(&dev->unreg_list, &single); 5337 rollback_registered_many(&single); 5338 list_del(&single); 5339 } 5340 5341 static netdev_features_t netdev_fix_features(struct net_device *dev, 5342 netdev_features_t features) 5343 { 5344 /* Fix illegal checksum combinations */ 5345 if ((features & NETIF_F_HW_CSUM) && 5346 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5347 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5348 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5349 } 5350 5351 /* TSO requires that SG is present as well. */ 5352 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5353 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5354 features &= ~NETIF_F_ALL_TSO; 5355 } 5356 5357 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5358 !(features & NETIF_F_IP_CSUM)) { 5359 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5360 features &= ~NETIF_F_TSO; 5361 features &= ~NETIF_F_TSO_ECN; 5362 } 5363 5364 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5365 !(features & NETIF_F_IPV6_CSUM)) { 5366 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5367 features &= ~NETIF_F_TSO6; 5368 } 5369 5370 /* TSO ECN requires that TSO is present as well. */ 5371 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5372 features &= ~NETIF_F_TSO_ECN; 5373 5374 /* Software GSO depends on SG. */ 5375 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5376 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5377 features &= ~NETIF_F_GSO; 5378 } 5379 5380 /* UFO needs SG and checksumming */ 5381 if (features & NETIF_F_UFO) { 5382 /* maybe split UFO into V4 and V6? */ 5383 if (!((features & NETIF_F_GEN_CSUM) || 5384 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5385 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5386 netdev_dbg(dev, 5387 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5388 features &= ~NETIF_F_UFO; 5389 } 5390 5391 if (!(features & NETIF_F_SG)) { 5392 netdev_dbg(dev, 5393 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5394 features &= ~NETIF_F_UFO; 5395 } 5396 } 5397 5398 return features; 5399 } 5400 5401 int __netdev_update_features(struct net_device *dev) 5402 { 5403 netdev_features_t features; 5404 int err = 0; 5405 5406 ASSERT_RTNL(); 5407 5408 features = netdev_get_wanted_features(dev); 5409 5410 if (dev->netdev_ops->ndo_fix_features) 5411 features = dev->netdev_ops->ndo_fix_features(dev, features); 5412 5413 /* driver might be less strict about feature dependencies */ 5414 features = netdev_fix_features(dev, features); 5415 5416 if (dev->features == features) 5417 return 0; 5418 5419 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5420 &dev->features, &features); 5421 5422 if (dev->netdev_ops->ndo_set_features) 5423 err = dev->netdev_ops->ndo_set_features(dev, features); 5424 5425 if (unlikely(err < 0)) { 5426 netdev_err(dev, 5427 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5428 err, &features, &dev->features); 5429 return -1; 5430 } 5431 5432 if (!err) 5433 dev->features = features; 5434 5435 return 1; 5436 } 5437 5438 /** 5439 * netdev_update_features - recalculate device features 5440 * @dev: the device to check 5441 * 5442 * Recalculate dev->features set and send notifications if it 5443 * has changed. Should be called after driver or hardware dependent 5444 * conditions might have changed that influence the features. 5445 */ 5446 void netdev_update_features(struct net_device *dev) 5447 { 5448 if (__netdev_update_features(dev)) 5449 netdev_features_change(dev); 5450 } 5451 EXPORT_SYMBOL(netdev_update_features); 5452 5453 /** 5454 * netdev_change_features - recalculate device features 5455 * @dev: the device to check 5456 * 5457 * Recalculate dev->features set and send notifications even 5458 * if they have not changed. Should be called instead of 5459 * netdev_update_features() if also dev->vlan_features might 5460 * have changed to allow the changes to be propagated to stacked 5461 * VLAN devices. 5462 */ 5463 void netdev_change_features(struct net_device *dev) 5464 { 5465 __netdev_update_features(dev); 5466 netdev_features_change(dev); 5467 } 5468 EXPORT_SYMBOL(netdev_change_features); 5469 5470 /** 5471 * netif_stacked_transfer_operstate - transfer operstate 5472 * @rootdev: the root or lower level device to transfer state from 5473 * @dev: the device to transfer operstate to 5474 * 5475 * Transfer operational state from root to device. This is normally 5476 * called when a stacking relationship exists between the root 5477 * device and the device(a leaf device). 5478 */ 5479 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5480 struct net_device *dev) 5481 { 5482 if (rootdev->operstate == IF_OPER_DORMANT) 5483 netif_dormant_on(dev); 5484 else 5485 netif_dormant_off(dev); 5486 5487 if (netif_carrier_ok(rootdev)) { 5488 if (!netif_carrier_ok(dev)) 5489 netif_carrier_on(dev); 5490 } else { 5491 if (netif_carrier_ok(dev)) 5492 netif_carrier_off(dev); 5493 } 5494 } 5495 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5496 5497 #ifdef CONFIG_RPS 5498 static int netif_alloc_rx_queues(struct net_device *dev) 5499 { 5500 unsigned int i, count = dev->num_rx_queues; 5501 struct netdev_rx_queue *rx; 5502 5503 BUG_ON(count < 1); 5504 5505 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5506 if (!rx) 5507 return -ENOMEM; 5508 5509 dev->_rx = rx; 5510 5511 for (i = 0; i < count; i++) 5512 rx[i].dev = dev; 5513 return 0; 5514 } 5515 #endif 5516 5517 static void netdev_init_one_queue(struct net_device *dev, 5518 struct netdev_queue *queue, void *_unused) 5519 { 5520 /* Initialize queue lock */ 5521 spin_lock_init(&queue->_xmit_lock); 5522 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5523 queue->xmit_lock_owner = -1; 5524 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5525 queue->dev = dev; 5526 #ifdef CONFIG_BQL 5527 dql_init(&queue->dql, HZ); 5528 #endif 5529 } 5530 5531 static void netif_free_tx_queues(struct net_device *dev) 5532 { 5533 if (is_vmalloc_addr(dev->_tx)) 5534 vfree(dev->_tx); 5535 else 5536 kfree(dev->_tx); 5537 } 5538 5539 static int netif_alloc_netdev_queues(struct net_device *dev) 5540 { 5541 unsigned int count = dev->num_tx_queues; 5542 struct netdev_queue *tx; 5543 size_t sz = count * sizeof(*tx); 5544 5545 BUG_ON(count < 1 || count > 0xffff); 5546 5547 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5548 if (!tx) { 5549 tx = vzalloc(sz); 5550 if (!tx) 5551 return -ENOMEM; 5552 } 5553 dev->_tx = tx; 5554 5555 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5556 spin_lock_init(&dev->tx_global_lock); 5557 5558 return 0; 5559 } 5560 5561 /** 5562 * register_netdevice - register a network device 5563 * @dev: device to register 5564 * 5565 * Take a completed network device structure and add it to the kernel 5566 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5567 * chain. 0 is returned on success. A negative errno code is returned 5568 * on a failure to set up the device, or if the name is a duplicate. 5569 * 5570 * Callers must hold the rtnl semaphore. You may want 5571 * register_netdev() instead of this. 5572 * 5573 * BUGS: 5574 * The locking appears insufficient to guarantee two parallel registers 5575 * will not get the same name. 5576 */ 5577 5578 int register_netdevice(struct net_device *dev) 5579 { 5580 int ret; 5581 struct net *net = dev_net(dev); 5582 5583 BUG_ON(dev_boot_phase); 5584 ASSERT_RTNL(); 5585 5586 might_sleep(); 5587 5588 /* When net_device's are persistent, this will be fatal. */ 5589 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5590 BUG_ON(!net); 5591 5592 spin_lock_init(&dev->addr_list_lock); 5593 netdev_set_addr_lockdep_class(dev); 5594 5595 dev->iflink = -1; 5596 5597 ret = dev_get_valid_name(net, dev, dev->name); 5598 if (ret < 0) 5599 goto out; 5600 5601 /* Init, if this function is available */ 5602 if (dev->netdev_ops->ndo_init) { 5603 ret = dev->netdev_ops->ndo_init(dev); 5604 if (ret) { 5605 if (ret > 0) 5606 ret = -EIO; 5607 goto out; 5608 } 5609 } 5610 5611 if (((dev->hw_features | dev->features) & 5612 NETIF_F_HW_VLAN_CTAG_FILTER) && 5613 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5614 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5615 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5616 ret = -EINVAL; 5617 goto err_uninit; 5618 } 5619 5620 ret = -EBUSY; 5621 if (!dev->ifindex) 5622 dev->ifindex = dev_new_index(net); 5623 else if (__dev_get_by_index(net, dev->ifindex)) 5624 goto err_uninit; 5625 5626 if (dev->iflink == -1) 5627 dev->iflink = dev->ifindex; 5628 5629 /* Transfer changeable features to wanted_features and enable 5630 * software offloads (GSO and GRO). 5631 */ 5632 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5633 dev->features |= NETIF_F_SOFT_FEATURES; 5634 dev->wanted_features = dev->features & dev->hw_features; 5635 5636 /* Turn on no cache copy if HW is doing checksum */ 5637 if (!(dev->flags & IFF_LOOPBACK)) { 5638 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5639 if (dev->features & NETIF_F_ALL_CSUM) { 5640 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5641 dev->features |= NETIF_F_NOCACHE_COPY; 5642 } 5643 } 5644 5645 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5646 */ 5647 dev->vlan_features |= NETIF_F_HIGHDMA; 5648 5649 /* Make NETIF_F_SG inheritable to tunnel devices. 5650 */ 5651 dev->hw_enc_features |= NETIF_F_SG; 5652 5653 /* Make NETIF_F_SG inheritable to MPLS. 5654 */ 5655 dev->mpls_features |= NETIF_F_SG; 5656 5657 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5658 ret = notifier_to_errno(ret); 5659 if (ret) 5660 goto err_uninit; 5661 5662 ret = netdev_register_kobject(dev); 5663 if (ret) 5664 goto err_uninit; 5665 dev->reg_state = NETREG_REGISTERED; 5666 5667 __netdev_update_features(dev); 5668 5669 /* 5670 * Default initial state at registry is that the 5671 * device is present. 5672 */ 5673 5674 set_bit(__LINK_STATE_PRESENT, &dev->state); 5675 5676 linkwatch_init_dev(dev); 5677 5678 dev_init_scheduler(dev); 5679 dev_hold(dev); 5680 list_netdevice(dev); 5681 add_device_randomness(dev->dev_addr, dev->addr_len); 5682 5683 /* If the device has permanent device address, driver should 5684 * set dev_addr and also addr_assign_type should be set to 5685 * NET_ADDR_PERM (default value). 5686 */ 5687 if (dev->addr_assign_type == NET_ADDR_PERM) 5688 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5689 5690 /* Notify protocols, that a new device appeared. */ 5691 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5692 ret = notifier_to_errno(ret); 5693 if (ret) { 5694 rollback_registered(dev); 5695 dev->reg_state = NETREG_UNREGISTERED; 5696 } 5697 /* 5698 * Prevent userspace races by waiting until the network 5699 * device is fully setup before sending notifications. 5700 */ 5701 if (!dev->rtnl_link_ops || 5702 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5703 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5704 5705 out: 5706 return ret; 5707 5708 err_uninit: 5709 if (dev->netdev_ops->ndo_uninit) 5710 dev->netdev_ops->ndo_uninit(dev); 5711 goto out; 5712 } 5713 EXPORT_SYMBOL(register_netdevice); 5714 5715 /** 5716 * init_dummy_netdev - init a dummy network device for NAPI 5717 * @dev: device to init 5718 * 5719 * This takes a network device structure and initialize the minimum 5720 * amount of fields so it can be used to schedule NAPI polls without 5721 * registering a full blown interface. This is to be used by drivers 5722 * that need to tie several hardware interfaces to a single NAPI 5723 * poll scheduler due to HW limitations. 5724 */ 5725 int init_dummy_netdev(struct net_device *dev) 5726 { 5727 /* Clear everything. Note we don't initialize spinlocks 5728 * are they aren't supposed to be taken by any of the 5729 * NAPI code and this dummy netdev is supposed to be 5730 * only ever used for NAPI polls 5731 */ 5732 memset(dev, 0, sizeof(struct net_device)); 5733 5734 /* make sure we BUG if trying to hit standard 5735 * register/unregister code path 5736 */ 5737 dev->reg_state = NETREG_DUMMY; 5738 5739 /* NAPI wants this */ 5740 INIT_LIST_HEAD(&dev->napi_list); 5741 5742 /* a dummy interface is started by default */ 5743 set_bit(__LINK_STATE_PRESENT, &dev->state); 5744 set_bit(__LINK_STATE_START, &dev->state); 5745 5746 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5747 * because users of this 'device' dont need to change 5748 * its refcount. 5749 */ 5750 5751 return 0; 5752 } 5753 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5754 5755 5756 /** 5757 * register_netdev - register a network device 5758 * @dev: device to register 5759 * 5760 * Take a completed network device structure and add it to the kernel 5761 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5762 * chain. 0 is returned on success. A negative errno code is returned 5763 * on a failure to set up the device, or if the name is a duplicate. 5764 * 5765 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5766 * and expands the device name if you passed a format string to 5767 * alloc_netdev. 5768 */ 5769 int register_netdev(struct net_device *dev) 5770 { 5771 int err; 5772 5773 rtnl_lock(); 5774 err = register_netdevice(dev); 5775 rtnl_unlock(); 5776 return err; 5777 } 5778 EXPORT_SYMBOL(register_netdev); 5779 5780 int netdev_refcnt_read(const struct net_device *dev) 5781 { 5782 int i, refcnt = 0; 5783 5784 for_each_possible_cpu(i) 5785 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5786 return refcnt; 5787 } 5788 EXPORT_SYMBOL(netdev_refcnt_read); 5789 5790 /** 5791 * netdev_wait_allrefs - wait until all references are gone. 5792 * @dev: target net_device 5793 * 5794 * This is called when unregistering network devices. 5795 * 5796 * Any protocol or device that holds a reference should register 5797 * for netdevice notification, and cleanup and put back the 5798 * reference if they receive an UNREGISTER event. 5799 * We can get stuck here if buggy protocols don't correctly 5800 * call dev_put. 5801 */ 5802 static void netdev_wait_allrefs(struct net_device *dev) 5803 { 5804 unsigned long rebroadcast_time, warning_time; 5805 int refcnt; 5806 5807 linkwatch_forget_dev(dev); 5808 5809 rebroadcast_time = warning_time = jiffies; 5810 refcnt = netdev_refcnt_read(dev); 5811 5812 while (refcnt != 0) { 5813 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5814 rtnl_lock(); 5815 5816 /* Rebroadcast unregister notification */ 5817 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5818 5819 __rtnl_unlock(); 5820 rcu_barrier(); 5821 rtnl_lock(); 5822 5823 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5824 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5825 &dev->state)) { 5826 /* We must not have linkwatch events 5827 * pending on unregister. If this 5828 * happens, we simply run the queue 5829 * unscheduled, resulting in a noop 5830 * for this device. 5831 */ 5832 linkwatch_run_queue(); 5833 } 5834 5835 __rtnl_unlock(); 5836 5837 rebroadcast_time = jiffies; 5838 } 5839 5840 msleep(250); 5841 5842 refcnt = netdev_refcnt_read(dev); 5843 5844 if (time_after(jiffies, warning_time + 10 * HZ)) { 5845 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5846 dev->name, refcnt); 5847 warning_time = jiffies; 5848 } 5849 } 5850 } 5851 5852 /* The sequence is: 5853 * 5854 * rtnl_lock(); 5855 * ... 5856 * register_netdevice(x1); 5857 * register_netdevice(x2); 5858 * ... 5859 * unregister_netdevice(y1); 5860 * unregister_netdevice(y2); 5861 * ... 5862 * rtnl_unlock(); 5863 * free_netdev(y1); 5864 * free_netdev(y2); 5865 * 5866 * We are invoked by rtnl_unlock(). 5867 * This allows us to deal with problems: 5868 * 1) We can delete sysfs objects which invoke hotplug 5869 * without deadlocking with linkwatch via keventd. 5870 * 2) Since we run with the RTNL semaphore not held, we can sleep 5871 * safely in order to wait for the netdev refcnt to drop to zero. 5872 * 5873 * We must not return until all unregister events added during 5874 * the interval the lock was held have been completed. 5875 */ 5876 void netdev_run_todo(void) 5877 { 5878 struct list_head list; 5879 5880 /* Snapshot list, allow later requests */ 5881 list_replace_init(&net_todo_list, &list); 5882 5883 __rtnl_unlock(); 5884 5885 5886 /* Wait for rcu callbacks to finish before next phase */ 5887 if (!list_empty(&list)) 5888 rcu_barrier(); 5889 5890 while (!list_empty(&list)) { 5891 struct net_device *dev 5892 = list_first_entry(&list, struct net_device, todo_list); 5893 list_del(&dev->todo_list); 5894 5895 rtnl_lock(); 5896 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5897 __rtnl_unlock(); 5898 5899 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5900 pr_err("network todo '%s' but state %d\n", 5901 dev->name, dev->reg_state); 5902 dump_stack(); 5903 continue; 5904 } 5905 5906 dev->reg_state = NETREG_UNREGISTERED; 5907 5908 on_each_cpu(flush_backlog, dev, 1); 5909 5910 netdev_wait_allrefs(dev); 5911 5912 /* paranoia */ 5913 BUG_ON(netdev_refcnt_read(dev)); 5914 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5915 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5916 WARN_ON(dev->dn_ptr); 5917 5918 if (dev->destructor) 5919 dev->destructor(dev); 5920 5921 /* Free network device */ 5922 kobject_put(&dev->dev.kobj); 5923 } 5924 } 5925 5926 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5927 * fields in the same order, with only the type differing. 5928 */ 5929 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5930 const struct net_device_stats *netdev_stats) 5931 { 5932 #if BITS_PER_LONG == 64 5933 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5934 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5935 #else 5936 size_t i, n = sizeof(*stats64) / sizeof(u64); 5937 const unsigned long *src = (const unsigned long *)netdev_stats; 5938 u64 *dst = (u64 *)stats64; 5939 5940 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5941 sizeof(*stats64) / sizeof(u64)); 5942 for (i = 0; i < n; i++) 5943 dst[i] = src[i]; 5944 #endif 5945 } 5946 EXPORT_SYMBOL(netdev_stats_to_stats64); 5947 5948 /** 5949 * dev_get_stats - get network device statistics 5950 * @dev: device to get statistics from 5951 * @storage: place to store stats 5952 * 5953 * Get network statistics from device. Return @storage. 5954 * The device driver may provide its own method by setting 5955 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5956 * otherwise the internal statistics structure is used. 5957 */ 5958 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5959 struct rtnl_link_stats64 *storage) 5960 { 5961 const struct net_device_ops *ops = dev->netdev_ops; 5962 5963 if (ops->ndo_get_stats64) { 5964 memset(storage, 0, sizeof(*storage)); 5965 ops->ndo_get_stats64(dev, storage); 5966 } else if (ops->ndo_get_stats) { 5967 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5968 } else { 5969 netdev_stats_to_stats64(storage, &dev->stats); 5970 } 5971 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5972 return storage; 5973 } 5974 EXPORT_SYMBOL(dev_get_stats); 5975 5976 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5977 { 5978 struct netdev_queue *queue = dev_ingress_queue(dev); 5979 5980 #ifdef CONFIG_NET_CLS_ACT 5981 if (queue) 5982 return queue; 5983 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5984 if (!queue) 5985 return NULL; 5986 netdev_init_one_queue(dev, queue, NULL); 5987 queue->qdisc = &noop_qdisc; 5988 queue->qdisc_sleeping = &noop_qdisc; 5989 rcu_assign_pointer(dev->ingress_queue, queue); 5990 #endif 5991 return queue; 5992 } 5993 5994 static const struct ethtool_ops default_ethtool_ops; 5995 5996 void netdev_set_default_ethtool_ops(struct net_device *dev, 5997 const struct ethtool_ops *ops) 5998 { 5999 if (dev->ethtool_ops == &default_ethtool_ops) 6000 dev->ethtool_ops = ops; 6001 } 6002 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6003 6004 /** 6005 * alloc_netdev_mqs - allocate network device 6006 * @sizeof_priv: size of private data to allocate space for 6007 * @name: device name format string 6008 * @setup: callback to initialize device 6009 * @txqs: the number of TX subqueues to allocate 6010 * @rxqs: the number of RX subqueues to allocate 6011 * 6012 * Allocates a struct net_device with private data area for driver use 6013 * and performs basic initialization. Also allocates subquue structs 6014 * for each queue on the device. 6015 */ 6016 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6017 void (*setup)(struct net_device *), 6018 unsigned int txqs, unsigned int rxqs) 6019 { 6020 struct net_device *dev; 6021 size_t alloc_size; 6022 struct net_device *p; 6023 6024 BUG_ON(strlen(name) >= sizeof(dev->name)); 6025 6026 if (txqs < 1) { 6027 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6028 return NULL; 6029 } 6030 6031 #ifdef CONFIG_RPS 6032 if (rxqs < 1) { 6033 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6034 return NULL; 6035 } 6036 #endif 6037 6038 alloc_size = sizeof(struct net_device); 6039 if (sizeof_priv) { 6040 /* ensure 32-byte alignment of private area */ 6041 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6042 alloc_size += sizeof_priv; 6043 } 6044 /* ensure 32-byte alignment of whole construct */ 6045 alloc_size += NETDEV_ALIGN - 1; 6046 6047 p = kzalloc(alloc_size, GFP_KERNEL); 6048 if (!p) 6049 return NULL; 6050 6051 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6052 dev->padded = (char *)dev - (char *)p; 6053 6054 dev->pcpu_refcnt = alloc_percpu(int); 6055 if (!dev->pcpu_refcnt) 6056 goto free_p; 6057 6058 if (dev_addr_init(dev)) 6059 goto free_pcpu; 6060 6061 dev_mc_init(dev); 6062 dev_uc_init(dev); 6063 6064 dev_net_set(dev, &init_net); 6065 6066 dev->gso_max_size = GSO_MAX_SIZE; 6067 dev->gso_max_segs = GSO_MAX_SEGS; 6068 6069 INIT_LIST_HEAD(&dev->napi_list); 6070 INIT_LIST_HEAD(&dev->unreg_list); 6071 INIT_LIST_HEAD(&dev->link_watch_list); 6072 INIT_LIST_HEAD(&dev->upper_dev_list); 6073 INIT_LIST_HEAD(&dev->lower_dev_list); 6074 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6075 setup(dev); 6076 6077 dev->num_tx_queues = txqs; 6078 dev->real_num_tx_queues = txqs; 6079 if (netif_alloc_netdev_queues(dev)) 6080 goto free_all; 6081 6082 #ifdef CONFIG_RPS 6083 dev->num_rx_queues = rxqs; 6084 dev->real_num_rx_queues = rxqs; 6085 if (netif_alloc_rx_queues(dev)) 6086 goto free_all; 6087 #endif 6088 6089 strcpy(dev->name, name); 6090 dev->group = INIT_NETDEV_GROUP; 6091 if (!dev->ethtool_ops) 6092 dev->ethtool_ops = &default_ethtool_ops; 6093 return dev; 6094 6095 free_all: 6096 free_netdev(dev); 6097 return NULL; 6098 6099 free_pcpu: 6100 free_percpu(dev->pcpu_refcnt); 6101 netif_free_tx_queues(dev); 6102 #ifdef CONFIG_RPS 6103 kfree(dev->_rx); 6104 #endif 6105 6106 free_p: 6107 kfree(p); 6108 return NULL; 6109 } 6110 EXPORT_SYMBOL(alloc_netdev_mqs); 6111 6112 /** 6113 * free_netdev - free network device 6114 * @dev: device 6115 * 6116 * This function does the last stage of destroying an allocated device 6117 * interface. The reference to the device object is released. 6118 * If this is the last reference then it will be freed. 6119 */ 6120 void free_netdev(struct net_device *dev) 6121 { 6122 struct napi_struct *p, *n; 6123 6124 release_net(dev_net(dev)); 6125 6126 netif_free_tx_queues(dev); 6127 #ifdef CONFIG_RPS 6128 kfree(dev->_rx); 6129 #endif 6130 6131 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6132 6133 /* Flush device addresses */ 6134 dev_addr_flush(dev); 6135 6136 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6137 netif_napi_del(p); 6138 6139 free_percpu(dev->pcpu_refcnt); 6140 dev->pcpu_refcnt = NULL; 6141 6142 /* Compatibility with error handling in drivers */ 6143 if (dev->reg_state == NETREG_UNINITIALIZED) { 6144 kfree((char *)dev - dev->padded); 6145 return; 6146 } 6147 6148 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6149 dev->reg_state = NETREG_RELEASED; 6150 6151 /* will free via device release */ 6152 put_device(&dev->dev); 6153 } 6154 EXPORT_SYMBOL(free_netdev); 6155 6156 /** 6157 * synchronize_net - Synchronize with packet receive processing 6158 * 6159 * Wait for packets currently being received to be done. 6160 * Does not block later packets from starting. 6161 */ 6162 void synchronize_net(void) 6163 { 6164 might_sleep(); 6165 if (rtnl_is_locked()) 6166 synchronize_rcu_expedited(); 6167 else 6168 synchronize_rcu(); 6169 } 6170 EXPORT_SYMBOL(synchronize_net); 6171 6172 /** 6173 * unregister_netdevice_queue - remove device from the kernel 6174 * @dev: device 6175 * @head: list 6176 * 6177 * This function shuts down a device interface and removes it 6178 * from the kernel tables. 6179 * If head not NULL, device is queued to be unregistered later. 6180 * 6181 * Callers must hold the rtnl semaphore. You may want 6182 * unregister_netdev() instead of this. 6183 */ 6184 6185 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6186 { 6187 ASSERT_RTNL(); 6188 6189 if (head) { 6190 list_move_tail(&dev->unreg_list, head); 6191 } else { 6192 rollback_registered(dev); 6193 /* Finish processing unregister after unlock */ 6194 net_set_todo(dev); 6195 } 6196 } 6197 EXPORT_SYMBOL(unregister_netdevice_queue); 6198 6199 /** 6200 * unregister_netdevice_many - unregister many devices 6201 * @head: list of devices 6202 */ 6203 void unregister_netdevice_many(struct list_head *head) 6204 { 6205 struct net_device *dev; 6206 6207 if (!list_empty(head)) { 6208 rollback_registered_many(head); 6209 list_for_each_entry(dev, head, unreg_list) 6210 net_set_todo(dev); 6211 } 6212 } 6213 EXPORT_SYMBOL(unregister_netdevice_many); 6214 6215 /** 6216 * unregister_netdev - remove device from the kernel 6217 * @dev: device 6218 * 6219 * This function shuts down a device interface and removes it 6220 * from the kernel tables. 6221 * 6222 * This is just a wrapper for unregister_netdevice that takes 6223 * the rtnl semaphore. In general you want to use this and not 6224 * unregister_netdevice. 6225 */ 6226 void unregister_netdev(struct net_device *dev) 6227 { 6228 rtnl_lock(); 6229 unregister_netdevice(dev); 6230 rtnl_unlock(); 6231 } 6232 EXPORT_SYMBOL(unregister_netdev); 6233 6234 /** 6235 * dev_change_net_namespace - move device to different nethost namespace 6236 * @dev: device 6237 * @net: network namespace 6238 * @pat: If not NULL name pattern to try if the current device name 6239 * is already taken in the destination network namespace. 6240 * 6241 * This function shuts down a device interface and moves it 6242 * to a new network namespace. On success 0 is returned, on 6243 * a failure a netagive errno code is returned. 6244 * 6245 * Callers must hold the rtnl semaphore. 6246 */ 6247 6248 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6249 { 6250 int err; 6251 6252 ASSERT_RTNL(); 6253 6254 /* Don't allow namespace local devices to be moved. */ 6255 err = -EINVAL; 6256 if (dev->features & NETIF_F_NETNS_LOCAL) 6257 goto out; 6258 6259 /* Ensure the device has been registrered */ 6260 if (dev->reg_state != NETREG_REGISTERED) 6261 goto out; 6262 6263 /* Get out if there is nothing todo */ 6264 err = 0; 6265 if (net_eq(dev_net(dev), net)) 6266 goto out; 6267 6268 /* Pick the destination device name, and ensure 6269 * we can use it in the destination network namespace. 6270 */ 6271 err = -EEXIST; 6272 if (__dev_get_by_name(net, dev->name)) { 6273 /* We get here if we can't use the current device name */ 6274 if (!pat) 6275 goto out; 6276 if (dev_get_valid_name(net, dev, pat) < 0) 6277 goto out; 6278 } 6279 6280 /* 6281 * And now a mini version of register_netdevice unregister_netdevice. 6282 */ 6283 6284 /* If device is running close it first. */ 6285 dev_close(dev); 6286 6287 /* And unlink it from device chain */ 6288 err = -ENODEV; 6289 unlist_netdevice(dev); 6290 6291 synchronize_net(); 6292 6293 /* Shutdown queueing discipline. */ 6294 dev_shutdown(dev); 6295 6296 /* Notify protocols, that we are about to destroy 6297 this device. They should clean all the things. 6298 6299 Note that dev->reg_state stays at NETREG_REGISTERED. 6300 This is wanted because this way 8021q and macvlan know 6301 the device is just moving and can keep their slaves up. 6302 */ 6303 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6304 rcu_barrier(); 6305 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6306 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6307 6308 /* 6309 * Flush the unicast and multicast chains 6310 */ 6311 dev_uc_flush(dev); 6312 dev_mc_flush(dev); 6313 6314 /* Send a netdev-removed uevent to the old namespace */ 6315 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6316 6317 /* Actually switch the network namespace */ 6318 dev_net_set(dev, net); 6319 6320 /* If there is an ifindex conflict assign a new one */ 6321 if (__dev_get_by_index(net, dev->ifindex)) { 6322 int iflink = (dev->iflink == dev->ifindex); 6323 dev->ifindex = dev_new_index(net); 6324 if (iflink) 6325 dev->iflink = dev->ifindex; 6326 } 6327 6328 /* Send a netdev-add uevent to the new namespace */ 6329 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6330 6331 /* Fixup kobjects */ 6332 err = device_rename(&dev->dev, dev->name); 6333 WARN_ON(err); 6334 6335 /* Add the device back in the hashes */ 6336 list_netdevice(dev); 6337 6338 /* Notify protocols, that a new device appeared. */ 6339 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6340 6341 /* 6342 * Prevent userspace races by waiting until the network 6343 * device is fully setup before sending notifications. 6344 */ 6345 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6346 6347 synchronize_net(); 6348 err = 0; 6349 out: 6350 return err; 6351 } 6352 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6353 6354 static int dev_cpu_callback(struct notifier_block *nfb, 6355 unsigned long action, 6356 void *ocpu) 6357 { 6358 struct sk_buff **list_skb; 6359 struct sk_buff *skb; 6360 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6361 struct softnet_data *sd, *oldsd; 6362 6363 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6364 return NOTIFY_OK; 6365 6366 local_irq_disable(); 6367 cpu = smp_processor_id(); 6368 sd = &per_cpu(softnet_data, cpu); 6369 oldsd = &per_cpu(softnet_data, oldcpu); 6370 6371 /* Find end of our completion_queue. */ 6372 list_skb = &sd->completion_queue; 6373 while (*list_skb) 6374 list_skb = &(*list_skb)->next; 6375 /* Append completion queue from offline CPU. */ 6376 *list_skb = oldsd->completion_queue; 6377 oldsd->completion_queue = NULL; 6378 6379 /* Append output queue from offline CPU. */ 6380 if (oldsd->output_queue) { 6381 *sd->output_queue_tailp = oldsd->output_queue; 6382 sd->output_queue_tailp = oldsd->output_queue_tailp; 6383 oldsd->output_queue = NULL; 6384 oldsd->output_queue_tailp = &oldsd->output_queue; 6385 } 6386 /* Append NAPI poll list from offline CPU. */ 6387 if (!list_empty(&oldsd->poll_list)) { 6388 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6389 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6390 } 6391 6392 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6393 local_irq_enable(); 6394 6395 /* Process offline CPU's input_pkt_queue */ 6396 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6397 netif_rx(skb); 6398 input_queue_head_incr(oldsd); 6399 } 6400 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6401 netif_rx(skb); 6402 input_queue_head_incr(oldsd); 6403 } 6404 6405 return NOTIFY_OK; 6406 } 6407 6408 6409 /** 6410 * netdev_increment_features - increment feature set by one 6411 * @all: current feature set 6412 * @one: new feature set 6413 * @mask: mask feature set 6414 * 6415 * Computes a new feature set after adding a device with feature set 6416 * @one to the master device with current feature set @all. Will not 6417 * enable anything that is off in @mask. Returns the new feature set. 6418 */ 6419 netdev_features_t netdev_increment_features(netdev_features_t all, 6420 netdev_features_t one, netdev_features_t mask) 6421 { 6422 if (mask & NETIF_F_GEN_CSUM) 6423 mask |= NETIF_F_ALL_CSUM; 6424 mask |= NETIF_F_VLAN_CHALLENGED; 6425 6426 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6427 all &= one | ~NETIF_F_ALL_FOR_ALL; 6428 6429 /* If one device supports hw checksumming, set for all. */ 6430 if (all & NETIF_F_GEN_CSUM) 6431 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6432 6433 return all; 6434 } 6435 EXPORT_SYMBOL(netdev_increment_features); 6436 6437 static struct hlist_head * __net_init netdev_create_hash(void) 6438 { 6439 int i; 6440 struct hlist_head *hash; 6441 6442 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6443 if (hash != NULL) 6444 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6445 INIT_HLIST_HEAD(&hash[i]); 6446 6447 return hash; 6448 } 6449 6450 /* Initialize per network namespace state */ 6451 static int __net_init netdev_init(struct net *net) 6452 { 6453 if (net != &init_net) 6454 INIT_LIST_HEAD(&net->dev_base_head); 6455 6456 net->dev_name_head = netdev_create_hash(); 6457 if (net->dev_name_head == NULL) 6458 goto err_name; 6459 6460 net->dev_index_head = netdev_create_hash(); 6461 if (net->dev_index_head == NULL) 6462 goto err_idx; 6463 6464 return 0; 6465 6466 err_idx: 6467 kfree(net->dev_name_head); 6468 err_name: 6469 return -ENOMEM; 6470 } 6471 6472 /** 6473 * netdev_drivername - network driver for the device 6474 * @dev: network device 6475 * 6476 * Determine network driver for device. 6477 */ 6478 const char *netdev_drivername(const struct net_device *dev) 6479 { 6480 const struct device_driver *driver; 6481 const struct device *parent; 6482 const char *empty = ""; 6483 6484 parent = dev->dev.parent; 6485 if (!parent) 6486 return empty; 6487 6488 driver = parent->driver; 6489 if (driver && driver->name) 6490 return driver->name; 6491 return empty; 6492 } 6493 6494 static int __netdev_printk(const char *level, const struct net_device *dev, 6495 struct va_format *vaf) 6496 { 6497 int r; 6498 6499 if (dev && dev->dev.parent) { 6500 r = dev_printk_emit(level[1] - '0', 6501 dev->dev.parent, 6502 "%s %s %s: %pV", 6503 dev_driver_string(dev->dev.parent), 6504 dev_name(dev->dev.parent), 6505 netdev_name(dev), vaf); 6506 } else if (dev) { 6507 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6508 } else { 6509 r = printk("%s(NULL net_device): %pV", level, vaf); 6510 } 6511 6512 return r; 6513 } 6514 6515 int netdev_printk(const char *level, const struct net_device *dev, 6516 const char *format, ...) 6517 { 6518 struct va_format vaf; 6519 va_list args; 6520 int r; 6521 6522 va_start(args, format); 6523 6524 vaf.fmt = format; 6525 vaf.va = &args; 6526 6527 r = __netdev_printk(level, dev, &vaf); 6528 6529 va_end(args); 6530 6531 return r; 6532 } 6533 EXPORT_SYMBOL(netdev_printk); 6534 6535 #define define_netdev_printk_level(func, level) \ 6536 int func(const struct net_device *dev, const char *fmt, ...) \ 6537 { \ 6538 int r; \ 6539 struct va_format vaf; \ 6540 va_list args; \ 6541 \ 6542 va_start(args, fmt); \ 6543 \ 6544 vaf.fmt = fmt; \ 6545 vaf.va = &args; \ 6546 \ 6547 r = __netdev_printk(level, dev, &vaf); \ 6548 \ 6549 va_end(args); \ 6550 \ 6551 return r; \ 6552 } \ 6553 EXPORT_SYMBOL(func); 6554 6555 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6556 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6557 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6558 define_netdev_printk_level(netdev_err, KERN_ERR); 6559 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6560 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6561 define_netdev_printk_level(netdev_info, KERN_INFO); 6562 6563 static void __net_exit netdev_exit(struct net *net) 6564 { 6565 kfree(net->dev_name_head); 6566 kfree(net->dev_index_head); 6567 } 6568 6569 static struct pernet_operations __net_initdata netdev_net_ops = { 6570 .init = netdev_init, 6571 .exit = netdev_exit, 6572 }; 6573 6574 static void __net_exit default_device_exit(struct net *net) 6575 { 6576 struct net_device *dev, *aux; 6577 /* 6578 * Push all migratable network devices back to the 6579 * initial network namespace 6580 */ 6581 rtnl_lock(); 6582 for_each_netdev_safe(net, dev, aux) { 6583 int err; 6584 char fb_name[IFNAMSIZ]; 6585 6586 /* Ignore unmoveable devices (i.e. loopback) */ 6587 if (dev->features & NETIF_F_NETNS_LOCAL) 6588 continue; 6589 6590 /* Leave virtual devices for the generic cleanup */ 6591 if (dev->rtnl_link_ops) 6592 continue; 6593 6594 /* Push remaining network devices to init_net */ 6595 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6596 err = dev_change_net_namespace(dev, &init_net, fb_name); 6597 if (err) { 6598 pr_emerg("%s: failed to move %s to init_net: %d\n", 6599 __func__, dev->name, err); 6600 BUG(); 6601 } 6602 } 6603 rtnl_unlock(); 6604 } 6605 6606 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6607 { 6608 /* At exit all network devices most be removed from a network 6609 * namespace. Do this in the reverse order of registration. 6610 * Do this across as many network namespaces as possible to 6611 * improve batching efficiency. 6612 */ 6613 struct net_device *dev; 6614 struct net *net; 6615 LIST_HEAD(dev_kill_list); 6616 6617 rtnl_lock(); 6618 list_for_each_entry(net, net_list, exit_list) { 6619 for_each_netdev_reverse(net, dev) { 6620 if (dev->rtnl_link_ops) 6621 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6622 else 6623 unregister_netdevice_queue(dev, &dev_kill_list); 6624 } 6625 } 6626 unregister_netdevice_many(&dev_kill_list); 6627 list_del(&dev_kill_list); 6628 rtnl_unlock(); 6629 } 6630 6631 static struct pernet_operations __net_initdata default_device_ops = { 6632 .exit = default_device_exit, 6633 .exit_batch = default_device_exit_batch, 6634 }; 6635 6636 /* 6637 * Initialize the DEV module. At boot time this walks the device list and 6638 * unhooks any devices that fail to initialise (normally hardware not 6639 * present) and leaves us with a valid list of present and active devices. 6640 * 6641 */ 6642 6643 /* 6644 * This is called single threaded during boot, so no need 6645 * to take the rtnl semaphore. 6646 */ 6647 static int __init net_dev_init(void) 6648 { 6649 int i, rc = -ENOMEM; 6650 6651 BUG_ON(!dev_boot_phase); 6652 6653 if (dev_proc_init()) 6654 goto out; 6655 6656 if (netdev_kobject_init()) 6657 goto out; 6658 6659 INIT_LIST_HEAD(&ptype_all); 6660 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6661 INIT_LIST_HEAD(&ptype_base[i]); 6662 6663 INIT_LIST_HEAD(&offload_base); 6664 6665 if (register_pernet_subsys(&netdev_net_ops)) 6666 goto out; 6667 6668 /* 6669 * Initialise the packet receive queues. 6670 */ 6671 6672 for_each_possible_cpu(i) { 6673 struct softnet_data *sd = &per_cpu(softnet_data, i); 6674 6675 memset(sd, 0, sizeof(*sd)); 6676 skb_queue_head_init(&sd->input_pkt_queue); 6677 skb_queue_head_init(&sd->process_queue); 6678 sd->completion_queue = NULL; 6679 INIT_LIST_HEAD(&sd->poll_list); 6680 sd->output_queue = NULL; 6681 sd->output_queue_tailp = &sd->output_queue; 6682 #ifdef CONFIG_RPS 6683 sd->csd.func = rps_trigger_softirq; 6684 sd->csd.info = sd; 6685 sd->csd.flags = 0; 6686 sd->cpu = i; 6687 #endif 6688 6689 sd->backlog.poll = process_backlog; 6690 sd->backlog.weight = weight_p; 6691 sd->backlog.gro_list = NULL; 6692 sd->backlog.gro_count = 0; 6693 6694 #ifdef CONFIG_NET_FLOW_LIMIT 6695 sd->flow_limit = NULL; 6696 #endif 6697 } 6698 6699 dev_boot_phase = 0; 6700 6701 /* The loopback device is special if any other network devices 6702 * is present in a network namespace the loopback device must 6703 * be present. Since we now dynamically allocate and free the 6704 * loopback device ensure this invariant is maintained by 6705 * keeping the loopback device as the first device on the 6706 * list of network devices. Ensuring the loopback devices 6707 * is the first device that appears and the last network device 6708 * that disappears. 6709 */ 6710 if (register_pernet_device(&loopback_net_ops)) 6711 goto out; 6712 6713 if (register_pernet_device(&default_device_ops)) 6714 goto out; 6715 6716 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6717 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6718 6719 hotcpu_notifier(dev_cpu_callback, 0); 6720 dst_init(); 6721 rc = 0; 6722 out: 6723 return rc; 6724 } 6725 6726 subsys_initcall(net_dev_init); 6727