xref: /openbmc/linux/net/core/dev.c (revision 089a49b6)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 
135 #include "net-sysfs.h"
136 
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139 
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly;	/* Taps */
147 static struct list_head offload_base __read_mostly;
148 
149 /*
150  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151  * semaphore.
152  *
153  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154  *
155  * Writers must hold the rtnl semaphore while they loop through the
156  * dev_base_head list, and hold dev_base_lock for writing when they do the
157  * actual updates.  This allows pure readers to access the list even
158  * while a writer is preparing to update it.
159  *
160  * To put it another way, dev_base_lock is held for writing only to
161  * protect against pure readers; the rtnl semaphore provides the
162  * protection against other writers.
163  *
164  * See, for example usages, register_netdevice() and
165  * unregister_netdevice(), which must be called with the rtnl
166  * semaphore held.
167  */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170 
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173 
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176 
177 static seqcount_t devnet_rename_seq;
178 
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 	while (++net->dev_base_seq == 0);
182 }
183 
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187 
188 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190 
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195 
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 	spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202 
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head_rcu(&dev->index_hlist,
221 			   dev_index_hash(net, dev->ifindex));
222 	write_unlock_bh(&dev_base_lock);
223 
224 	dev_base_seq_inc(net);
225 }
226 
227 /* Device list removal
228  * caller must respect a RCU grace period before freeing/reusing dev
229  */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 	ASSERT_RTNL();
233 
234 	/* Unlink dev from the device chain */
235 	write_lock_bh(&dev_base_lock);
236 	list_del_rcu(&dev->dev_list);
237 	hlist_del_rcu(&dev->name_hlist);
238 	hlist_del_rcu(&dev->index_hlist);
239 	write_unlock_bh(&dev_base_lock);
240 
241 	dev_base_seq_inc(dev_net(dev));
242 }
243 
244 /*
245  *	Our notifier list
246  */
247 
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249 
250 /*
251  *	Device drivers call our routines to queue packets here. We empty the
252  *	queue in the local softnet handler.
253  */
254 
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257 
258 #ifdef CONFIG_LOCKDEP
259 /*
260  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261  * according to dev->type
262  */
263 static const unsigned short netdev_lock_type[] =
264 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279 
280 static const char *const netdev_lock_name[] =
281 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296 
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 	int i;
303 
304 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 		if (netdev_lock_type[i] == dev_type)
306 			return i;
307 	/* the last key is used by default */
308 	return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310 
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 						 unsigned short dev_type)
313 {
314 	int i;
315 
316 	i = netdev_lock_pos(dev_type);
317 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 				   netdev_lock_name[i]);
319 }
320 
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev->type);
326 	lockdep_set_class_and_name(&dev->addr_list_lock,
327 				   &netdev_addr_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 						 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339 
340 /*******************************************************************************
341 
342 		Protocol management and registration routines
343 
344 *******************************************************************************/
345 
346 /*
347  *	Add a protocol ID to the list. Now that the input handler is
348  *	smarter we can dispense with all the messy stuff that used to be
349  *	here.
350  *
351  *	BEWARE!!! Protocol handlers, mangling input packets,
352  *	MUST BE last in hash buckets and checking protocol handlers
353  *	MUST start from promiscuous ptype_all chain in net_bh.
354  *	It is true now, do not change it.
355  *	Explanation follows: if protocol handler, mangling packet, will
356  *	be the first on list, it is not able to sense, that packet
357  *	is cloned and should be copied-on-write, so that it will
358  *	change it and subsequent readers will get broken packet.
359  *							--ANK (980803)
360  */
361 
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 	if (pt->type == htons(ETH_P_ALL))
365 		return &ptype_all;
366 	else
367 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369 
370 /**
371  *	dev_add_pack - add packet handler
372  *	@pt: packet type declaration
373  *
374  *	Add a protocol handler to the networking stack. The passed &packet_type
375  *	is linked into kernel lists and may not be freed until it has been
376  *	removed from the kernel lists.
377  *
378  *	This call does not sleep therefore it can not
379  *	guarantee all CPU's that are in middle of receiving packets
380  *	will see the new packet type (until the next received packet).
381  */
382 
383 void dev_add_pack(struct packet_type *pt)
384 {
385 	struct list_head *head = ptype_head(pt);
386 
387 	spin_lock(&ptype_lock);
388 	list_add_rcu(&pt->list, head);
389 	spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392 
393 /**
394  *	__dev_remove_pack	 - remove packet handler
395  *	@pt: packet type declaration
396  *
397  *	Remove a protocol handler that was previously added to the kernel
398  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
399  *	from the kernel lists and can be freed or reused once this function
400  *	returns.
401  *
402  *      The packet type might still be in use by receivers
403  *	and must not be freed until after all the CPU's have gone
404  *	through a quiescent state.
405  */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 	struct packet_type *pt1;
410 
411 	spin_lock(&ptype_lock);
412 
413 	list_for_each_entry(pt1, head, list) {
414 		if (pt == pt1) {
415 			list_del_rcu(&pt->list);
416 			goto out;
417 		}
418 	}
419 
420 	pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 	spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425 
426 /**
427  *	dev_remove_pack	 - remove packet handler
428  *	@pt: packet type declaration
429  *
430  *	Remove a protocol handler that was previously added to the kernel
431  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
432  *	from the kernel lists and can be freed or reused once this function
433  *	returns.
434  *
435  *	This call sleeps to guarantee that no CPU is looking at the packet
436  *	type after return.
437  */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 	__dev_remove_pack(pt);
441 
442 	synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445 
446 
447 /**
448  *	dev_add_offload - register offload handlers
449  *	@po: protocol offload declaration
450  *
451  *	Add protocol offload handlers to the networking stack. The passed
452  *	&proto_offload is linked into kernel lists and may not be freed until
453  *	it has been removed from the kernel lists.
454  *
455  *	This call does not sleep therefore it can not
456  *	guarantee all CPU's that are in middle of receiving packets
457  *	will see the new offload handlers (until the next received packet).
458  */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 	struct list_head *head = &offload_base;
462 
463 	spin_lock(&offload_lock);
464 	list_add_rcu(&po->list, head);
465 	spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468 
469 /**
470  *	__dev_remove_offload	 - remove offload handler
471  *	@po: packet offload declaration
472  *
473  *	Remove a protocol offload handler that was previously added to the
474  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
475  *	is removed from the kernel lists and can be freed or reused once this
476  *	function returns.
477  *
478  *      The packet type might still be in use by receivers
479  *	and must not be freed until after all the CPU's have gone
480  *	through a quiescent state.
481  */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 	struct list_head *head = &offload_base;
485 	struct packet_offload *po1;
486 
487 	spin_lock(&offload_lock);
488 
489 	list_for_each_entry(po1, head, list) {
490 		if (po == po1) {
491 			list_del_rcu(&po->list);
492 			goto out;
493 		}
494 	}
495 
496 	pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 	spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501 
502 /**
503  *	dev_remove_offload	 - remove packet offload handler
504  *	@po: packet offload declaration
505  *
506  *	Remove a packet offload handler that was previously added to the kernel
507  *	offload handlers by dev_add_offload(). The passed &offload_type is
508  *	removed from the kernel lists and can be freed or reused once this
509  *	function returns.
510  *
511  *	This call sleeps to guarantee that no CPU is looking at the packet
512  *	type after return.
513  */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 	__dev_remove_offload(po);
517 
518 	synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521 
522 /******************************************************************************
523 
524 		      Device Boot-time Settings Routines
525 
526 *******************************************************************************/
527 
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530 
531 /**
532  *	netdev_boot_setup_add	- add new setup entry
533  *	@name: name of the device
534  *	@map: configured settings for the device
535  *
536  *	Adds new setup entry to the dev_boot_setup list.  The function
537  *	returns 0 on error and 1 on success.  This is a generic routine to
538  *	all netdevices.
539  */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 	struct netdev_boot_setup *s;
543 	int i;
544 
545 	s = dev_boot_setup;
546 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 			memset(s[i].name, 0, sizeof(s[i].name));
549 			strlcpy(s[i].name, name, IFNAMSIZ);
550 			memcpy(&s[i].map, map, sizeof(s[i].map));
551 			break;
552 		}
553 	}
554 
555 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557 
558 /**
559  *	netdev_boot_setup_check	- check boot time settings
560  *	@dev: the netdevice
561  *
562  * 	Check boot time settings for the device.
563  *	The found settings are set for the device to be used
564  *	later in the device probing.
565  *	Returns 0 if no settings found, 1 if they are.
566  */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 	struct netdev_boot_setup *s = dev_boot_setup;
570 	int i;
571 
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 		    !strcmp(dev->name, s[i].name)) {
575 			dev->irq 	= s[i].map.irq;
576 			dev->base_addr 	= s[i].map.base_addr;
577 			dev->mem_start 	= s[i].map.mem_start;
578 			dev->mem_end 	= s[i].map.mem_end;
579 			return 1;
580 		}
581 	}
582 	return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585 
586 
587 /**
588  *	netdev_boot_base	- get address from boot time settings
589  *	@prefix: prefix for network device
590  *	@unit: id for network device
591  *
592  * 	Check boot time settings for the base address of device.
593  *	The found settings are set for the device to be used
594  *	later in the device probing.
595  *	Returns 0 if no settings found.
596  */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 	const struct netdev_boot_setup *s = dev_boot_setup;
600 	char name[IFNAMSIZ];
601 	int i;
602 
603 	sprintf(name, "%s%d", prefix, unit);
604 
605 	/*
606 	 * If device already registered then return base of 1
607 	 * to indicate not to probe for this interface
608 	 */
609 	if (__dev_get_by_name(&init_net, name))
610 		return 1;
611 
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 		if (!strcmp(name, s[i].name))
614 			return s[i].map.base_addr;
615 	return 0;
616 }
617 
618 /*
619  * Saves at boot time configured settings for any netdevice.
620  */
621 int __init netdev_boot_setup(char *str)
622 {
623 	int ints[5];
624 	struct ifmap map;
625 
626 	str = get_options(str, ARRAY_SIZE(ints), ints);
627 	if (!str || !*str)
628 		return 0;
629 
630 	/* Save settings */
631 	memset(&map, 0, sizeof(map));
632 	if (ints[0] > 0)
633 		map.irq = ints[1];
634 	if (ints[0] > 1)
635 		map.base_addr = ints[2];
636 	if (ints[0] > 2)
637 		map.mem_start = ints[3];
638 	if (ints[0] > 3)
639 		map.mem_end = ints[4];
640 
641 	/* Add new entry to the list */
642 	return netdev_boot_setup_add(str, &map);
643 }
644 
645 __setup("netdev=", netdev_boot_setup);
646 
647 /*******************************************************************************
648 
649 			    Device Interface Subroutines
650 
651 *******************************************************************************/
652 
653 /**
654  *	__dev_get_by_name	- find a device by its name
655  *	@net: the applicable net namespace
656  *	@name: name to find
657  *
658  *	Find an interface by name. Must be called under RTNL semaphore
659  *	or @dev_base_lock. If the name is found a pointer to the device
660  *	is returned. If the name is not found then %NULL is returned. The
661  *	reference counters are not incremented so the caller must be
662  *	careful with locks.
663  */
664 
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 	struct net_device *dev;
668 	struct hlist_head *head = dev_name_hash(net, name);
669 
670 	hlist_for_each_entry(dev, head, name_hlist)
671 		if (!strncmp(dev->name, name, IFNAMSIZ))
672 			return dev;
673 
674 	return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677 
678 /**
679  *	dev_get_by_name_rcu	- find a device by its name
680  *	@net: the applicable net namespace
681  *	@name: name to find
682  *
683  *	Find an interface by name.
684  *	If the name is found a pointer to the device is returned.
685  * 	If the name is not found then %NULL is returned.
686  *	The reference counters are not incremented so the caller must be
687  *	careful with locks. The caller must hold RCU lock.
688  */
689 
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 	struct net_device *dev;
693 	struct hlist_head *head = dev_name_hash(net, name);
694 
695 	hlist_for_each_entry_rcu(dev, head, name_hlist)
696 		if (!strncmp(dev->name, name, IFNAMSIZ))
697 			return dev;
698 
699 	return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702 
703 /**
704  *	dev_get_by_name		- find a device by its name
705  *	@net: the applicable net namespace
706  *	@name: name to find
707  *
708  *	Find an interface by name. This can be called from any
709  *	context and does its own locking. The returned handle has
710  *	the usage count incremented and the caller must use dev_put() to
711  *	release it when it is no longer needed. %NULL is returned if no
712  *	matching device is found.
713  */
714 
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 	struct net_device *dev;
718 
719 	rcu_read_lock();
720 	dev = dev_get_by_name_rcu(net, name);
721 	if (dev)
722 		dev_hold(dev);
723 	rcu_read_unlock();
724 	return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727 
728 /**
729  *	__dev_get_by_index - find a device by its ifindex
730  *	@net: the applicable net namespace
731  *	@ifindex: index of device
732  *
733  *	Search for an interface by index. Returns %NULL if the device
734  *	is not found or a pointer to the device. The device has not
735  *	had its reference counter increased so the caller must be careful
736  *	about locking. The caller must hold either the RTNL semaphore
737  *	or @dev_base_lock.
738  */
739 
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 	struct net_device *dev;
743 	struct hlist_head *head = dev_index_hash(net, ifindex);
744 
745 	hlist_for_each_entry(dev, head, index_hlist)
746 		if (dev->ifindex == ifindex)
747 			return dev;
748 
749 	return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752 
753 /**
754  *	dev_get_by_index_rcu - find a device by its ifindex
755  *	@net: the applicable net namespace
756  *	@ifindex: index of device
757  *
758  *	Search for an interface by index. Returns %NULL if the device
759  *	is not found or a pointer to the device. The device has not
760  *	had its reference counter increased so the caller must be careful
761  *	about locking. The caller must hold RCU lock.
762  */
763 
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 	struct net_device *dev;
767 	struct hlist_head *head = dev_index_hash(net, ifindex);
768 
769 	hlist_for_each_entry_rcu(dev, head, index_hlist)
770 		if (dev->ifindex == ifindex)
771 			return dev;
772 
773 	return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776 
777 
778 /**
779  *	dev_get_by_index - find a device by its ifindex
780  *	@net: the applicable net namespace
781  *	@ifindex: index of device
782  *
783  *	Search for an interface by index. Returns NULL if the device
784  *	is not found or a pointer to the device. The device returned has
785  *	had a reference added and the pointer is safe until the user calls
786  *	dev_put to indicate they have finished with it.
787  */
788 
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 	struct net_device *dev;
792 
793 	rcu_read_lock();
794 	dev = dev_get_by_index_rcu(net, ifindex);
795 	if (dev)
796 		dev_hold(dev);
797 	rcu_read_unlock();
798 	return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801 
802 /**
803  *	netdev_get_name - get a netdevice name, knowing its ifindex.
804  *	@net: network namespace
805  *	@name: a pointer to the buffer where the name will be stored.
806  *	@ifindex: the ifindex of the interface to get the name from.
807  *
808  *	The use of raw_seqcount_begin() and cond_resched() before
809  *	retrying is required as we want to give the writers a chance
810  *	to complete when CONFIG_PREEMPT is not set.
811  */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 	struct net_device *dev;
815 	unsigned int seq;
816 
817 retry:
818 	seq = raw_seqcount_begin(&devnet_rename_seq);
819 	rcu_read_lock();
820 	dev = dev_get_by_index_rcu(net, ifindex);
821 	if (!dev) {
822 		rcu_read_unlock();
823 		return -ENODEV;
824 	}
825 
826 	strcpy(name, dev->name);
827 	rcu_read_unlock();
828 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 		cond_resched();
830 		goto retry;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  *	dev_getbyhwaddr_rcu - find a device by its hardware address
838  *	@net: the applicable net namespace
839  *	@type: media type of device
840  *	@ha: hardware address
841  *
842  *	Search for an interface by MAC address. Returns NULL if the device
843  *	is not found or a pointer to the device.
844  *	The caller must hold RCU or RTNL.
845  *	The returned device has not had its ref count increased
846  *	and the caller must therefore be careful about locking
847  *
848  */
849 
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 				       const char *ha)
852 {
853 	struct net_device *dev;
854 
855 	for_each_netdev_rcu(net, dev)
856 		if (dev->type == type &&
857 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
858 			return dev;
859 
860 	return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863 
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 	struct net_device *dev;
867 
868 	ASSERT_RTNL();
869 	for_each_netdev(net, dev)
870 		if (dev->type == type)
871 			return dev;
872 
873 	return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876 
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 	struct net_device *dev, *ret = NULL;
880 
881 	rcu_read_lock();
882 	for_each_netdev_rcu(net, dev)
883 		if (dev->type == type) {
884 			dev_hold(dev);
885 			ret = dev;
886 			break;
887 		}
888 	rcu_read_unlock();
889 	return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892 
893 /**
894  *	dev_get_by_flags_rcu - find any device with given flags
895  *	@net: the applicable net namespace
896  *	@if_flags: IFF_* values
897  *	@mask: bitmask of bits in if_flags to check
898  *
899  *	Search for any interface with the given flags. Returns NULL if a device
900  *	is not found or a pointer to the device. Must be called inside
901  *	rcu_read_lock(), and result refcount is unchanged.
902  */
903 
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 				    unsigned short mask)
906 {
907 	struct net_device *dev, *ret;
908 
909 	ret = NULL;
910 	for_each_netdev_rcu(net, dev) {
911 		if (((dev->flags ^ if_flags) & mask) == 0) {
912 			ret = dev;
913 			break;
914 		}
915 	}
916 	return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919 
920 /**
921  *	dev_valid_name - check if name is okay for network device
922  *	@name: name string
923  *
924  *	Network device names need to be valid file names to
925  *	to allow sysfs to work.  We also disallow any kind of
926  *	whitespace.
927  */
928 bool dev_valid_name(const char *name)
929 {
930 	if (*name == '\0')
931 		return false;
932 	if (strlen(name) >= IFNAMSIZ)
933 		return false;
934 	if (!strcmp(name, ".") || !strcmp(name, ".."))
935 		return false;
936 
937 	while (*name) {
938 		if (*name == '/' || isspace(*name))
939 			return false;
940 		name++;
941 	}
942 	return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945 
946 /**
947  *	__dev_alloc_name - allocate a name for a device
948  *	@net: network namespace to allocate the device name in
949  *	@name: name format string
950  *	@buf:  scratch buffer and result name string
951  *
952  *	Passed a format string - eg "lt%d" it will try and find a suitable
953  *	id. It scans list of devices to build up a free map, then chooses
954  *	the first empty slot. The caller must hold the dev_base or rtnl lock
955  *	while allocating the name and adding the device in order to avoid
956  *	duplicates.
957  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958  *	Returns the number of the unit assigned or a negative errno code.
959  */
960 
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 	int i = 0;
964 	const char *p;
965 	const int max_netdevices = 8*PAGE_SIZE;
966 	unsigned long *inuse;
967 	struct net_device *d;
968 
969 	p = strnchr(name, IFNAMSIZ-1, '%');
970 	if (p) {
971 		/*
972 		 * Verify the string as this thing may have come from
973 		 * the user.  There must be either one "%d" and no other "%"
974 		 * characters.
975 		 */
976 		if (p[1] != 'd' || strchr(p + 2, '%'))
977 			return -EINVAL;
978 
979 		/* Use one page as a bit array of possible slots */
980 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 		if (!inuse)
982 			return -ENOMEM;
983 
984 		for_each_netdev(net, d) {
985 			if (!sscanf(d->name, name, &i))
986 				continue;
987 			if (i < 0 || i >= max_netdevices)
988 				continue;
989 
990 			/*  avoid cases where sscanf is not exact inverse of printf */
991 			snprintf(buf, IFNAMSIZ, name, i);
992 			if (!strncmp(buf, d->name, IFNAMSIZ))
993 				set_bit(i, inuse);
994 		}
995 
996 		i = find_first_zero_bit(inuse, max_netdevices);
997 		free_page((unsigned long) inuse);
998 	}
999 
1000 	if (buf != name)
1001 		snprintf(buf, IFNAMSIZ, name, i);
1002 	if (!__dev_get_by_name(net, buf))
1003 		return i;
1004 
1005 	/* It is possible to run out of possible slots
1006 	 * when the name is long and there isn't enough space left
1007 	 * for the digits, or if all bits are used.
1008 	 */
1009 	return -ENFILE;
1010 }
1011 
1012 /**
1013  *	dev_alloc_name - allocate a name for a device
1014  *	@dev: device
1015  *	@name: name format string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 	char buf[IFNAMSIZ];
1029 	struct net *net;
1030 	int ret;
1031 
1032 	BUG_ON(!dev_net(dev));
1033 	net = dev_net(dev);
1034 	ret = __dev_alloc_name(net, name, buf);
1035 	if (ret >= 0)
1036 		strlcpy(dev->name, buf, IFNAMSIZ);
1037 	return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040 
1041 static int dev_alloc_name_ns(struct net *net,
1042 			     struct net_device *dev,
1043 			     const char *name)
1044 {
1045 	char buf[IFNAMSIZ];
1046 	int ret;
1047 
1048 	ret = __dev_alloc_name(net, name, buf);
1049 	if (ret >= 0)
1050 		strlcpy(dev->name, buf, IFNAMSIZ);
1051 	return ret;
1052 }
1053 
1054 static int dev_get_valid_name(struct net *net,
1055 			      struct net_device *dev,
1056 			      const char *name)
1057 {
1058 	BUG_ON(!net);
1059 
1060 	if (!dev_valid_name(name))
1061 		return -EINVAL;
1062 
1063 	if (strchr(name, '%'))
1064 		return dev_alloc_name_ns(net, dev, name);
1065 	else if (__dev_get_by_name(net, name))
1066 		return -EEXIST;
1067 	else if (dev->name != name)
1068 		strlcpy(dev->name, name, IFNAMSIZ);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  *	dev_change_name - change name of a device
1075  *	@dev: device
1076  *	@newname: name (or format string) must be at least IFNAMSIZ
1077  *
1078  *	Change name of a device, can pass format strings "eth%d".
1079  *	for wildcarding.
1080  */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 	char oldname[IFNAMSIZ];
1084 	int err = 0;
1085 	int ret;
1086 	struct net *net;
1087 
1088 	ASSERT_RTNL();
1089 	BUG_ON(!dev_net(dev));
1090 
1091 	net = dev_net(dev);
1092 	if (dev->flags & IFF_UP)
1093 		return -EBUSY;
1094 
1095 	write_seqcount_begin(&devnet_rename_seq);
1096 
1097 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 		write_seqcount_end(&devnet_rename_seq);
1099 		return 0;
1100 	}
1101 
1102 	memcpy(oldname, dev->name, IFNAMSIZ);
1103 
1104 	err = dev_get_valid_name(net, dev, newname);
1105 	if (err < 0) {
1106 		write_seqcount_end(&devnet_rename_seq);
1107 		return err;
1108 	}
1109 
1110 rollback:
1111 	ret = device_rename(&dev->dev, dev->name);
1112 	if (ret) {
1113 		memcpy(dev->name, oldname, IFNAMSIZ);
1114 		write_seqcount_end(&devnet_rename_seq);
1115 		return ret;
1116 	}
1117 
1118 	write_seqcount_end(&devnet_rename_seq);
1119 
1120 	write_lock_bh(&dev_base_lock);
1121 	hlist_del_rcu(&dev->name_hlist);
1122 	write_unlock_bh(&dev_base_lock);
1123 
1124 	synchronize_rcu();
1125 
1126 	write_lock_bh(&dev_base_lock);
1127 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 	write_unlock_bh(&dev_base_lock);
1129 
1130 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 	ret = notifier_to_errno(ret);
1132 
1133 	if (ret) {
1134 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1135 		if (err >= 0) {
1136 			err = ret;
1137 			write_seqcount_begin(&devnet_rename_seq);
1138 			memcpy(dev->name, oldname, IFNAMSIZ);
1139 			goto rollback;
1140 		} else {
1141 			pr_err("%s: name change rollback failed: %d\n",
1142 			       dev->name, ret);
1143 		}
1144 	}
1145 
1146 	return err;
1147 }
1148 
1149 /**
1150  *	dev_set_alias - change ifalias of a device
1151  *	@dev: device
1152  *	@alias: name up to IFALIASZ
1153  *	@len: limit of bytes to copy from info
1154  *
1155  *	Set ifalias for a device,
1156  */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 	char *new_ifalias;
1160 
1161 	ASSERT_RTNL();
1162 
1163 	if (len >= IFALIASZ)
1164 		return -EINVAL;
1165 
1166 	if (!len) {
1167 		kfree(dev->ifalias);
1168 		dev->ifalias = NULL;
1169 		return 0;
1170 	}
1171 
1172 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 	if (!new_ifalias)
1174 		return -ENOMEM;
1175 	dev->ifalias = new_ifalias;
1176 
1177 	strlcpy(dev->ifalias, alias, len+1);
1178 	return len;
1179 }
1180 
1181 
1182 /**
1183  *	netdev_features_change - device changes features
1184  *	@dev: device to cause notification
1185  *
1186  *	Called to indicate a device has changed features.
1187  */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193 
1194 /**
1195  *	netdev_state_change - device changes state
1196  *	@dev: device to cause notification
1197  *
1198  *	Called to indicate a device has changed state. This function calls
1199  *	the notifier chains for netdev_chain and sends a NEWLINK message
1200  *	to the routing socket.
1201  */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 	if (dev->flags & IFF_UP) {
1205 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1207 	}
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210 
1211 /**
1212  * 	netdev_notify_peers - notify network peers about existence of @dev
1213  * 	@dev: network device
1214  *
1215  * Generate traffic such that interested network peers are aware of
1216  * @dev, such as by generating a gratuitous ARP. This may be used when
1217  * a device wants to inform the rest of the network about some sort of
1218  * reconfiguration such as a failover event or virtual machine
1219  * migration.
1220  */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 	rtnl_lock();
1224 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 	rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228 
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 	const struct net_device_ops *ops = dev->netdev_ops;
1232 	int ret;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	if (!netif_device_present(dev))
1237 		return -ENODEV;
1238 
1239 	/* Block netpoll from trying to do any rx path servicing.
1240 	 * If we don't do this there is a chance ndo_poll_controller
1241 	 * or ndo_poll may be running while we open the device
1242 	 */
1243 	netpoll_rx_disable(dev);
1244 
1245 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 	ret = notifier_to_errno(ret);
1247 	if (ret)
1248 		return ret;
1249 
1250 	set_bit(__LINK_STATE_START, &dev->state);
1251 
1252 	if (ops->ndo_validate_addr)
1253 		ret = ops->ndo_validate_addr(dev);
1254 
1255 	if (!ret && ops->ndo_open)
1256 		ret = ops->ndo_open(dev);
1257 
1258 	netpoll_rx_enable(dev);
1259 
1260 	if (ret)
1261 		clear_bit(__LINK_STATE_START, &dev->state);
1262 	else {
1263 		dev->flags |= IFF_UP;
1264 		net_dmaengine_get();
1265 		dev_set_rx_mode(dev);
1266 		dev_activate(dev);
1267 		add_device_randomness(dev->dev_addr, dev->addr_len);
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 /**
1274  *	dev_open	- prepare an interface for use.
1275  *	@dev:	device to open
1276  *
1277  *	Takes a device from down to up state. The device's private open
1278  *	function is invoked and then the multicast lists are loaded. Finally
1279  *	the device is moved into the up state and a %NETDEV_UP message is
1280  *	sent to the netdev notifier chain.
1281  *
1282  *	Calling this function on an active interface is a nop. On a failure
1283  *	a negative errno code is returned.
1284  */
1285 int dev_open(struct net_device *dev)
1286 {
1287 	int ret;
1288 
1289 	if (dev->flags & IFF_UP)
1290 		return 0;
1291 
1292 	ret = __dev_open(dev);
1293 	if (ret < 0)
1294 		return ret;
1295 
1296 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 	call_netdevice_notifiers(NETDEV_UP, dev);
1298 
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302 
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 	struct net_device *dev;
1306 
1307 	ASSERT_RTNL();
1308 	might_sleep();
1309 
1310 	list_for_each_entry(dev, head, unreg_list) {
1311 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312 
1313 		clear_bit(__LINK_STATE_START, &dev->state);
1314 
1315 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1316 		 * can be even on different cpu. So just clear netif_running().
1317 		 *
1318 		 * dev->stop() will invoke napi_disable() on all of it's
1319 		 * napi_struct instances on this device.
1320 		 */
1321 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 	}
1323 
1324 	dev_deactivate_many(head);
1325 
1326 	list_for_each_entry(dev, head, unreg_list) {
1327 		const struct net_device_ops *ops = dev->netdev_ops;
1328 
1329 		/*
1330 		 *	Call the device specific close. This cannot fail.
1331 		 *	Only if device is UP
1332 		 *
1333 		 *	We allow it to be called even after a DETACH hot-plug
1334 		 *	event.
1335 		 */
1336 		if (ops->ndo_stop)
1337 			ops->ndo_stop(dev);
1338 
1339 		dev->flags &= ~IFF_UP;
1340 		net_dmaengine_put();
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 	int retval;
1349 	LIST_HEAD(single);
1350 
1351 	/* Temporarily disable netpoll until the interface is down */
1352 	netpoll_rx_disable(dev);
1353 
1354 	list_add(&dev->unreg_list, &single);
1355 	retval = __dev_close_many(&single);
1356 	list_del(&single);
1357 
1358 	netpoll_rx_enable(dev);
1359 	return retval;
1360 }
1361 
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 	struct net_device *dev, *tmp;
1365 	LIST_HEAD(tmp_list);
1366 
1367 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1368 		if (!(dev->flags & IFF_UP))
1369 			list_move(&dev->unreg_list, &tmp_list);
1370 
1371 	__dev_close_many(head);
1372 
1373 	list_for_each_entry(dev, head, unreg_list) {
1374 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1375 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 	}
1377 
1378 	/* rollback_registered_many needs the complete original list */
1379 	list_splice(&tmp_list, head);
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	dev_close - shutdown an interface.
1385  *	@dev: device to shutdown
1386  *
1387  *	This function moves an active device into down state. A
1388  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390  *	chain.
1391  */
1392 int dev_close(struct net_device *dev)
1393 {
1394 	if (dev->flags & IFF_UP) {
1395 		LIST_HEAD(single);
1396 
1397 		/* Block netpoll rx while the interface is going down */
1398 		netpoll_rx_disable(dev);
1399 
1400 		list_add(&dev->unreg_list, &single);
1401 		dev_close_many(&single);
1402 		list_del(&single);
1403 
1404 		netpoll_rx_enable(dev);
1405 	}
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409 
1410 
1411 /**
1412  *	dev_disable_lro - disable Large Receive Offload on a device
1413  *	@dev: device
1414  *
1415  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1416  *	called under RTNL.  This is needed if received packets may be
1417  *	forwarded to another interface.
1418  */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 	/*
1422 	 * If we're trying to disable lro on a vlan device
1423 	 * use the underlying physical device instead
1424 	 */
1425 	if (is_vlan_dev(dev))
1426 		dev = vlan_dev_real_dev(dev);
1427 
1428 	dev->wanted_features &= ~NETIF_F_LRO;
1429 	netdev_update_features(dev);
1430 
1431 	if (unlikely(dev->features & NETIF_F_LRO))
1432 		netdev_WARN(dev, "failed to disable LRO!\n");
1433 }
1434 EXPORT_SYMBOL(dev_disable_lro);
1435 
1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1437 				   struct net_device *dev)
1438 {
1439 	struct netdev_notifier_info info;
1440 
1441 	netdev_notifier_info_init(&info, dev);
1442 	return nb->notifier_call(nb, val, &info);
1443 }
1444 
1445 static int dev_boot_phase = 1;
1446 
1447 /**
1448  *	register_netdevice_notifier - register a network notifier block
1449  *	@nb: notifier
1450  *
1451  *	Register a notifier to be called when network device events occur.
1452  *	The notifier passed is linked into the kernel structures and must
1453  *	not be reused until it has been unregistered. A negative errno code
1454  *	is returned on a failure.
1455  *
1456  * 	When registered all registration and up events are replayed
1457  *	to the new notifier to allow device to have a race free
1458  *	view of the network device list.
1459  */
1460 
1461 int register_netdevice_notifier(struct notifier_block *nb)
1462 {
1463 	struct net_device *dev;
1464 	struct net_device *last;
1465 	struct net *net;
1466 	int err;
1467 
1468 	rtnl_lock();
1469 	err = raw_notifier_chain_register(&netdev_chain, nb);
1470 	if (err)
1471 		goto unlock;
1472 	if (dev_boot_phase)
1473 		goto unlock;
1474 	for_each_net(net) {
1475 		for_each_netdev(net, dev) {
1476 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1477 			err = notifier_to_errno(err);
1478 			if (err)
1479 				goto rollback;
1480 
1481 			if (!(dev->flags & IFF_UP))
1482 				continue;
1483 
1484 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1485 		}
1486 	}
1487 
1488 unlock:
1489 	rtnl_unlock();
1490 	return err;
1491 
1492 rollback:
1493 	last = dev;
1494 	for_each_net(net) {
1495 		for_each_netdev(net, dev) {
1496 			if (dev == last)
1497 				goto outroll;
1498 
1499 			if (dev->flags & IFF_UP) {
1500 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1501 							dev);
1502 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1503 			}
1504 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1505 		}
1506 	}
1507 
1508 outroll:
1509 	raw_notifier_chain_unregister(&netdev_chain, nb);
1510 	goto unlock;
1511 }
1512 EXPORT_SYMBOL(register_netdevice_notifier);
1513 
1514 /**
1515  *	unregister_netdevice_notifier - unregister a network notifier block
1516  *	@nb: notifier
1517  *
1518  *	Unregister a notifier previously registered by
1519  *	register_netdevice_notifier(). The notifier is unlinked into the
1520  *	kernel structures and may then be reused. A negative errno code
1521  *	is returned on a failure.
1522  *
1523  * 	After unregistering unregister and down device events are synthesized
1524  *	for all devices on the device list to the removed notifier to remove
1525  *	the need for special case cleanup code.
1526  */
1527 
1528 int unregister_netdevice_notifier(struct notifier_block *nb)
1529 {
1530 	struct net_device *dev;
1531 	struct net *net;
1532 	int err;
1533 
1534 	rtnl_lock();
1535 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1536 	if (err)
1537 		goto unlock;
1538 
1539 	for_each_net(net) {
1540 		for_each_netdev(net, dev) {
1541 			if (dev->flags & IFF_UP) {
1542 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 							dev);
1544 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 			}
1546 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 		}
1548 	}
1549 unlock:
1550 	rtnl_unlock();
1551 	return err;
1552 }
1553 EXPORT_SYMBOL(unregister_netdevice_notifier);
1554 
1555 /**
1556  *	call_netdevice_notifiers_info - call all network notifier blocks
1557  *	@val: value passed unmodified to notifier function
1558  *	@dev: net_device pointer passed unmodified to notifier function
1559  *	@info: notifier information data
1560  *
1561  *	Call all network notifier blocks.  Parameters and return value
1562  *	are as for raw_notifier_call_chain().
1563  */
1564 
1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1566 				  struct netdev_notifier_info *info)
1567 {
1568 	ASSERT_RTNL();
1569 	netdev_notifier_info_init(info, dev);
1570 	return raw_notifier_call_chain(&netdev_chain, val, info);
1571 }
1572 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1573 
1574 /**
1575  *	call_netdevice_notifiers - call all network notifier blocks
1576  *      @val: value passed unmodified to notifier function
1577  *      @dev: net_device pointer passed unmodified to notifier function
1578  *
1579  *	Call all network notifier blocks.  Parameters and return value
1580  *	are as for raw_notifier_call_chain().
1581  */
1582 
1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1584 {
1585 	struct netdev_notifier_info info;
1586 
1587 	return call_netdevice_notifiers_info(val, dev, &info);
1588 }
1589 EXPORT_SYMBOL(call_netdevice_notifiers);
1590 
1591 static struct static_key netstamp_needed __read_mostly;
1592 #ifdef HAVE_JUMP_LABEL
1593 /* We are not allowed to call static_key_slow_dec() from irq context
1594  * If net_disable_timestamp() is called from irq context, defer the
1595  * static_key_slow_dec() calls.
1596  */
1597 static atomic_t netstamp_needed_deferred;
1598 #endif
1599 
1600 void net_enable_timestamp(void)
1601 {
1602 #ifdef HAVE_JUMP_LABEL
1603 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1604 
1605 	if (deferred) {
1606 		while (--deferred)
1607 			static_key_slow_dec(&netstamp_needed);
1608 		return;
1609 	}
1610 #endif
1611 	static_key_slow_inc(&netstamp_needed);
1612 }
1613 EXPORT_SYMBOL(net_enable_timestamp);
1614 
1615 void net_disable_timestamp(void)
1616 {
1617 #ifdef HAVE_JUMP_LABEL
1618 	if (in_interrupt()) {
1619 		atomic_inc(&netstamp_needed_deferred);
1620 		return;
1621 	}
1622 #endif
1623 	static_key_slow_dec(&netstamp_needed);
1624 }
1625 EXPORT_SYMBOL(net_disable_timestamp);
1626 
1627 static inline void net_timestamp_set(struct sk_buff *skb)
1628 {
1629 	skb->tstamp.tv64 = 0;
1630 	if (static_key_false(&netstamp_needed))
1631 		__net_timestamp(skb);
1632 }
1633 
1634 #define net_timestamp_check(COND, SKB)			\
1635 	if (static_key_false(&netstamp_needed)) {		\
1636 		if ((COND) && !(SKB)->tstamp.tv64)	\
1637 			__net_timestamp(SKB);		\
1638 	}						\
1639 
1640 static inline bool is_skb_forwardable(struct net_device *dev,
1641 				      struct sk_buff *skb)
1642 {
1643 	unsigned int len;
1644 
1645 	if (!(dev->flags & IFF_UP))
1646 		return false;
1647 
1648 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1649 	if (skb->len <= len)
1650 		return true;
1651 
1652 	/* if TSO is enabled, we don't care about the length as the packet
1653 	 * could be forwarded without being segmented before
1654 	 */
1655 	if (skb_is_gso(skb))
1656 		return true;
1657 
1658 	return false;
1659 }
1660 
1661 /**
1662  * dev_forward_skb - loopback an skb to another netif
1663  *
1664  * @dev: destination network device
1665  * @skb: buffer to forward
1666  *
1667  * return values:
1668  *	NET_RX_SUCCESS	(no congestion)
1669  *	NET_RX_DROP     (packet was dropped, but freed)
1670  *
1671  * dev_forward_skb can be used for injecting an skb from the
1672  * start_xmit function of one device into the receive queue
1673  * of another device.
1674  *
1675  * The receiving device may be in another namespace, so
1676  * we have to clear all information in the skb that could
1677  * impact namespace isolation.
1678  */
1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 			atomic_long_inc(&dev->rx_dropped);
1684 			kfree_skb(skb);
1685 			return NET_RX_DROP;
1686 		}
1687 	}
1688 
1689 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 		atomic_long_inc(&dev->rx_dropped);
1691 		kfree_skb(skb);
1692 		return NET_RX_DROP;
1693 	}
1694 	skb->protocol = eth_type_trans(skb, dev);
1695 
1696 	/* eth_type_trans() can set pkt_type.
1697 	 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1698 	 * eth_type_trans().
1699 	 */
1700 	skb_scrub_packet(skb, true);
1701 
1702 	return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705 
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 			      struct packet_type *pt_prev,
1708 			      struct net_device *orig_dev)
1709 {
1710 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 		return -ENOMEM;
1712 	atomic_inc(&skb->users);
1713 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715 
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 	if (!ptype->af_packet_priv || !skb->sk)
1719 		return false;
1720 
1721 	if (ptype->id_match)
1722 		return ptype->id_match(ptype, skb->sk);
1723 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 		return true;
1725 
1726 	return false;
1727 }
1728 
1729 /*
1730  *	Support routine. Sends outgoing frames to any network
1731  *	taps currently in use.
1732  */
1733 
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 	struct packet_type *ptype;
1737 	struct sk_buff *skb2 = NULL;
1738 	struct packet_type *pt_prev = NULL;
1739 
1740 	rcu_read_lock();
1741 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 		/* Never send packets back to the socket
1743 		 * they originated from - MvS (miquels@drinkel.ow.org)
1744 		 */
1745 		if ((ptype->dev == dev || !ptype->dev) &&
1746 		    (!skb_loop_sk(ptype, skb))) {
1747 			if (pt_prev) {
1748 				deliver_skb(skb2, pt_prev, skb->dev);
1749 				pt_prev = ptype;
1750 				continue;
1751 			}
1752 
1753 			skb2 = skb_clone(skb, GFP_ATOMIC);
1754 			if (!skb2)
1755 				break;
1756 
1757 			net_timestamp_set(skb2);
1758 
1759 			/* skb->nh should be correctly
1760 			   set by sender, so that the second statement is
1761 			   just protection against buggy protocols.
1762 			 */
1763 			skb_reset_mac_header(skb2);
1764 
1765 			if (skb_network_header(skb2) < skb2->data ||
1766 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 						     ntohs(skb2->protocol),
1769 						     dev->name);
1770 				skb_reset_network_header(skb2);
1771 			}
1772 
1773 			skb2->transport_header = skb2->network_header;
1774 			skb2->pkt_type = PACKET_OUTGOING;
1775 			pt_prev = ptype;
1776 		}
1777 	}
1778 	if (pt_prev)
1779 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 	rcu_read_unlock();
1781 }
1782 
1783 /**
1784  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785  * @dev: Network device
1786  * @txq: number of queues available
1787  *
1788  * If real_num_tx_queues is changed the tc mappings may no longer be
1789  * valid. To resolve this verify the tc mapping remains valid and if
1790  * not NULL the mapping. With no priorities mapping to this
1791  * offset/count pair it will no longer be used. In the worst case TC0
1792  * is invalid nothing can be done so disable priority mappings. If is
1793  * expected that drivers will fix this mapping if they can before
1794  * calling netif_set_real_num_tx_queues.
1795  */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 	int i;
1799 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800 
1801 	/* If TC0 is invalidated disable TC mapping */
1802 	if (tc->offset + tc->count > txq) {
1803 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 		dev->num_tc = 0;
1805 		return;
1806 	}
1807 
1808 	/* Invalidated prio to tc mappings set to TC0 */
1809 	for (i = 1; i < TC_BITMASK + 1; i++) {
1810 		int q = netdev_get_prio_tc_map(dev, i);
1811 
1812 		tc = &dev->tc_to_txq[q];
1813 		if (tc->offset + tc->count > txq) {
1814 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 				i, q);
1816 			netdev_set_prio_tc_map(dev, i, 0);
1817 		}
1818 	}
1819 }
1820 
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P)		\
1824 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825 
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 					int cpu, u16 index)
1828 {
1829 	struct xps_map *map = NULL;
1830 	int pos;
1831 
1832 	if (dev_maps)
1833 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834 
1835 	for (pos = 0; map && pos < map->len; pos++) {
1836 		if (map->queues[pos] == index) {
1837 			if (map->len > 1) {
1838 				map->queues[pos] = map->queues[--map->len];
1839 			} else {
1840 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 				kfree_rcu(map, rcu);
1842 				map = NULL;
1843 			}
1844 			break;
1845 		}
1846 	}
1847 
1848 	return map;
1849 }
1850 
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 	struct xps_dev_maps *dev_maps;
1854 	int cpu, i;
1855 	bool active = false;
1856 
1857 	mutex_lock(&xps_map_mutex);
1858 	dev_maps = xmap_dereference(dev->xps_maps);
1859 
1860 	if (!dev_maps)
1861 		goto out_no_maps;
1862 
1863 	for_each_possible_cpu(cpu) {
1864 		for (i = index; i < dev->num_tx_queues; i++) {
1865 			if (!remove_xps_queue(dev_maps, cpu, i))
1866 				break;
1867 		}
1868 		if (i == dev->num_tx_queues)
1869 			active = true;
1870 	}
1871 
1872 	if (!active) {
1873 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 		kfree_rcu(dev_maps, rcu);
1875 	}
1876 
1877 	for (i = index; i < dev->num_tx_queues; i++)
1878 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 					     NUMA_NO_NODE);
1880 
1881 out_no_maps:
1882 	mutex_unlock(&xps_map_mutex);
1883 }
1884 
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 				      int cpu, u16 index)
1887 {
1888 	struct xps_map *new_map;
1889 	int alloc_len = XPS_MIN_MAP_ALLOC;
1890 	int i, pos;
1891 
1892 	for (pos = 0; map && pos < map->len; pos++) {
1893 		if (map->queues[pos] != index)
1894 			continue;
1895 		return map;
1896 	}
1897 
1898 	/* Need to add queue to this CPU's existing map */
1899 	if (map) {
1900 		if (pos < map->alloc_len)
1901 			return map;
1902 
1903 		alloc_len = map->alloc_len * 2;
1904 	}
1905 
1906 	/* Need to allocate new map to store queue on this CPU's map */
1907 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 			       cpu_to_node(cpu));
1909 	if (!new_map)
1910 		return NULL;
1911 
1912 	for (i = 0; i < pos; i++)
1913 		new_map->queues[i] = map->queues[i];
1914 	new_map->alloc_len = alloc_len;
1915 	new_map->len = pos;
1916 
1917 	return new_map;
1918 }
1919 
1920 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1921 {
1922 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 	struct xps_map *map, *new_map;
1924 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 	int cpu, numa_node_id = -2;
1926 	bool active = false;
1927 
1928 	mutex_lock(&xps_map_mutex);
1929 
1930 	dev_maps = xmap_dereference(dev->xps_maps);
1931 
1932 	/* allocate memory for queue storage */
1933 	for_each_online_cpu(cpu) {
1934 		if (!cpumask_test_cpu(cpu, mask))
1935 			continue;
1936 
1937 		if (!new_dev_maps)
1938 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 		if (!new_dev_maps) {
1940 			mutex_unlock(&xps_map_mutex);
1941 			return -ENOMEM;
1942 		}
1943 
1944 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 				 NULL;
1946 
1947 		map = expand_xps_map(map, cpu, index);
1948 		if (!map)
1949 			goto error;
1950 
1951 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 	}
1953 
1954 	if (!new_dev_maps)
1955 		goto out_no_new_maps;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 			/* add queue to CPU maps */
1960 			int pos = 0;
1961 
1962 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 			while ((pos < map->len) && (map->queues[pos] != index))
1964 				pos++;
1965 
1966 			if (pos == map->len)
1967 				map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 			if (numa_node_id == -2)
1970 				numa_node_id = cpu_to_node(cpu);
1971 			else if (numa_node_id != cpu_to_node(cpu))
1972 				numa_node_id = -1;
1973 #endif
1974 		} else if (dev_maps) {
1975 			/* fill in the new device map from the old device map */
1976 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 		}
1979 
1980 	}
1981 
1982 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983 
1984 	/* Cleanup old maps */
1985 	if (dev_maps) {
1986 		for_each_possible_cpu(cpu) {
1987 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 			if (map && map != new_map)
1990 				kfree_rcu(map, rcu);
1991 		}
1992 
1993 		kfree_rcu(dev_maps, rcu);
1994 	}
1995 
1996 	dev_maps = new_dev_maps;
1997 	active = true;
1998 
1999 out_no_new_maps:
2000 	/* update Tx queue numa node */
2001 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 				     (numa_node_id >= 0) ? numa_node_id :
2003 				     NUMA_NO_NODE);
2004 
2005 	if (!dev_maps)
2006 		goto out_no_maps;
2007 
2008 	/* removes queue from unused CPUs */
2009 	for_each_possible_cpu(cpu) {
2010 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 			continue;
2012 
2013 		if (remove_xps_queue(dev_maps, cpu, index))
2014 			active = true;
2015 	}
2016 
2017 	/* free map if not active */
2018 	if (!active) {
2019 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 		kfree_rcu(dev_maps, rcu);
2021 	}
2022 
2023 out_no_maps:
2024 	mutex_unlock(&xps_map_mutex);
2025 
2026 	return 0;
2027 error:
2028 	/* remove any maps that we added */
2029 	for_each_possible_cpu(cpu) {
2030 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 				 NULL;
2033 		if (new_map && new_map != map)
2034 			kfree(new_map);
2035 	}
2036 
2037 	mutex_unlock(&xps_map_mutex);
2038 
2039 	kfree(new_dev_maps);
2040 	return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043 
2044 #endif
2045 /*
2046  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048  */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 	int rc;
2052 
2053 	if (txq < 1 || txq > dev->num_tx_queues)
2054 		return -EINVAL;
2055 
2056 	if (dev->reg_state == NETREG_REGISTERED ||
2057 	    dev->reg_state == NETREG_UNREGISTERING) {
2058 		ASSERT_RTNL();
2059 
2060 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 						  txq);
2062 		if (rc)
2063 			return rc;
2064 
2065 		if (dev->num_tc)
2066 			netif_setup_tc(dev, txq);
2067 
2068 		if (txq < dev->real_num_tx_queues) {
2069 			qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 			netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 		}
2074 	}
2075 
2076 	dev->real_num_tx_queues = txq;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080 
2081 #ifdef CONFIG_RPS
2082 /**
2083  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2084  *	@dev: Network device
2085  *	@rxq: Actual number of RX queues
2086  *
2087  *	This must be called either with the rtnl_lock held or before
2088  *	registration of the net device.  Returns 0 on success, or a
2089  *	negative error code.  If called before registration, it always
2090  *	succeeds.
2091  */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 	int rc;
2095 
2096 	if (rxq < 1 || rxq > dev->num_rx_queues)
2097 		return -EINVAL;
2098 
2099 	if (dev->reg_state == NETREG_REGISTERED) {
2100 		ASSERT_RTNL();
2101 
2102 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 						  rxq);
2104 		if (rc)
2105 			return rc;
2106 	}
2107 
2108 	dev->real_num_rx_queues = rxq;
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113 
2114 /**
2115  * netif_get_num_default_rss_queues - default number of RSS queues
2116  *
2117  * This routine should set an upper limit on the number of RSS queues
2118  * used by default by multiqueue devices.
2119  */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125 
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 	struct softnet_data *sd;
2129 	unsigned long flags;
2130 
2131 	local_irq_save(flags);
2132 	sd = &__get_cpu_var(softnet_data);
2133 	q->next_sched = NULL;
2134 	*sd->output_queue_tailp = q;
2135 	sd->output_queue_tailp = &q->next_sched;
2136 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 	local_irq_restore(flags);
2138 }
2139 
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 		__netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146 
2147 void dev_kfree_skb_irq(struct sk_buff *skb)
2148 {
2149 	if (atomic_dec_and_test(&skb->users)) {
2150 		struct softnet_data *sd;
2151 		unsigned long flags;
2152 
2153 		local_irq_save(flags);
2154 		sd = &__get_cpu_var(softnet_data);
2155 		skb->next = sd->completion_queue;
2156 		sd->completion_queue = skb;
2157 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 		local_irq_restore(flags);
2159 	}
2160 }
2161 EXPORT_SYMBOL(dev_kfree_skb_irq);
2162 
2163 void dev_kfree_skb_any(struct sk_buff *skb)
2164 {
2165 	if (in_irq() || irqs_disabled())
2166 		dev_kfree_skb_irq(skb);
2167 	else
2168 		dev_kfree_skb(skb);
2169 }
2170 EXPORT_SYMBOL(dev_kfree_skb_any);
2171 
2172 
2173 /**
2174  * netif_device_detach - mark device as removed
2175  * @dev: network device
2176  *
2177  * Mark device as removed from system and therefore no longer available.
2178  */
2179 void netif_device_detach(struct net_device *dev)
2180 {
2181 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 	    netif_running(dev)) {
2183 		netif_tx_stop_all_queues(dev);
2184 	}
2185 }
2186 EXPORT_SYMBOL(netif_device_detach);
2187 
2188 /**
2189  * netif_device_attach - mark device as attached
2190  * @dev: network device
2191  *
2192  * Mark device as attached from system and restart if needed.
2193  */
2194 void netif_device_attach(struct net_device *dev)
2195 {
2196 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 	    netif_running(dev)) {
2198 		netif_tx_wake_all_queues(dev);
2199 		__netdev_watchdog_up(dev);
2200 	}
2201 }
2202 EXPORT_SYMBOL(netif_device_attach);
2203 
2204 static void skb_warn_bad_offload(const struct sk_buff *skb)
2205 {
2206 	static const netdev_features_t null_features = 0;
2207 	struct net_device *dev = skb->dev;
2208 	const char *driver = "";
2209 
2210 	if (!net_ratelimit())
2211 		return;
2212 
2213 	if (dev && dev->dev.parent)
2214 		driver = dev_driver_string(dev->dev.parent);
2215 
2216 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 	     "gso_type=%d ip_summed=%d\n",
2218 	     driver, dev ? &dev->features : &null_features,
2219 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2220 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2222 }
2223 
2224 /*
2225  * Invalidate hardware checksum when packet is to be mangled, and
2226  * complete checksum manually on outgoing path.
2227  */
2228 int skb_checksum_help(struct sk_buff *skb)
2229 {
2230 	__wsum csum;
2231 	int ret = 0, offset;
2232 
2233 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2234 		goto out_set_summed;
2235 
2236 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2237 		skb_warn_bad_offload(skb);
2238 		return -EINVAL;
2239 	}
2240 
2241 	/* Before computing a checksum, we should make sure no frag could
2242 	 * be modified by an external entity : checksum could be wrong.
2243 	 */
2244 	if (skb_has_shared_frag(skb)) {
2245 		ret = __skb_linearize(skb);
2246 		if (ret)
2247 			goto out;
2248 	}
2249 
2250 	offset = skb_checksum_start_offset(skb);
2251 	BUG_ON(offset >= skb_headlen(skb));
2252 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2253 
2254 	offset += skb->csum_offset;
2255 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2256 
2257 	if (skb_cloned(skb) &&
2258 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2259 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2260 		if (ret)
2261 			goto out;
2262 	}
2263 
2264 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2265 out_set_summed:
2266 	skb->ip_summed = CHECKSUM_NONE;
2267 out:
2268 	return ret;
2269 }
2270 EXPORT_SYMBOL(skb_checksum_help);
2271 
2272 __be16 skb_network_protocol(struct sk_buff *skb)
2273 {
2274 	__be16 type = skb->protocol;
2275 	int vlan_depth = ETH_HLEN;
2276 
2277 	/* Tunnel gso handlers can set protocol to ethernet. */
2278 	if (type == htons(ETH_P_TEB)) {
2279 		struct ethhdr *eth;
2280 
2281 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2282 			return 0;
2283 
2284 		eth = (struct ethhdr *)skb_mac_header(skb);
2285 		type = eth->h_proto;
2286 	}
2287 
2288 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2289 		struct vlan_hdr *vh;
2290 
2291 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2292 			return 0;
2293 
2294 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 		type = vh->h_vlan_encapsulated_proto;
2296 		vlan_depth += VLAN_HLEN;
2297 	}
2298 
2299 	return type;
2300 }
2301 
2302 /**
2303  *	skb_mac_gso_segment - mac layer segmentation handler.
2304  *	@skb: buffer to segment
2305  *	@features: features for the output path (see dev->features)
2306  */
2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 				    netdev_features_t features)
2309 {
2310 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 	struct packet_offload *ptype;
2312 	__be16 type = skb_network_protocol(skb);
2313 
2314 	if (unlikely(!type))
2315 		return ERR_PTR(-EINVAL);
2316 
2317 	__skb_pull(skb, skb->mac_len);
2318 
2319 	rcu_read_lock();
2320 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2321 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2322 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2323 				int err;
2324 
2325 				err = ptype->callbacks.gso_send_check(skb);
2326 				segs = ERR_PTR(err);
2327 				if (err || skb_gso_ok(skb, features))
2328 					break;
2329 				__skb_push(skb, (skb->data -
2330 						 skb_network_header(skb)));
2331 			}
2332 			segs = ptype->callbacks.gso_segment(skb, features);
2333 			break;
2334 		}
2335 	}
2336 	rcu_read_unlock();
2337 
2338 	__skb_push(skb, skb->data - skb_mac_header(skb));
2339 
2340 	return segs;
2341 }
2342 EXPORT_SYMBOL(skb_mac_gso_segment);
2343 
2344 
2345 /* openvswitch calls this on rx path, so we need a different check.
2346  */
2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2348 {
2349 	if (tx_path)
2350 		return skb->ip_summed != CHECKSUM_PARTIAL;
2351 	else
2352 		return skb->ip_summed == CHECKSUM_NONE;
2353 }
2354 
2355 /**
2356  *	__skb_gso_segment - Perform segmentation on skb.
2357  *	@skb: buffer to segment
2358  *	@features: features for the output path (see dev->features)
2359  *	@tx_path: whether it is called in TX path
2360  *
2361  *	This function segments the given skb and returns a list of segments.
2362  *
2363  *	It may return NULL if the skb requires no segmentation.  This is
2364  *	only possible when GSO is used for verifying header integrity.
2365  */
2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 				  netdev_features_t features, bool tx_path)
2368 {
2369 	if (unlikely(skb_needs_check(skb, tx_path))) {
2370 		int err;
2371 
2372 		skb_warn_bad_offload(skb);
2373 
2374 		if (skb_header_cloned(skb) &&
2375 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 			return ERR_PTR(err);
2377 	}
2378 
2379 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2380 	skb_reset_mac_header(skb);
2381 	skb_reset_mac_len(skb);
2382 
2383 	return skb_mac_gso_segment(skb, features);
2384 }
2385 EXPORT_SYMBOL(__skb_gso_segment);
2386 
2387 /* Take action when hardware reception checksum errors are detected. */
2388 #ifdef CONFIG_BUG
2389 void netdev_rx_csum_fault(struct net_device *dev)
2390 {
2391 	if (net_ratelimit()) {
2392 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2393 		dump_stack();
2394 	}
2395 }
2396 EXPORT_SYMBOL(netdev_rx_csum_fault);
2397 #endif
2398 
2399 /* Actually, we should eliminate this check as soon as we know, that:
2400  * 1. IOMMU is present and allows to map all the memory.
2401  * 2. No high memory really exists on this machine.
2402  */
2403 
2404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2405 {
2406 #ifdef CONFIG_HIGHMEM
2407 	int i;
2408 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2409 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2410 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2411 			if (PageHighMem(skb_frag_page(frag)))
2412 				return 1;
2413 		}
2414 	}
2415 
2416 	if (PCI_DMA_BUS_IS_PHYS) {
2417 		struct device *pdev = dev->dev.parent;
2418 
2419 		if (!pdev)
2420 			return 0;
2421 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2422 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2423 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2424 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2425 				return 1;
2426 		}
2427 	}
2428 #endif
2429 	return 0;
2430 }
2431 
2432 struct dev_gso_cb {
2433 	void (*destructor)(struct sk_buff *skb);
2434 };
2435 
2436 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2437 
2438 static void dev_gso_skb_destructor(struct sk_buff *skb)
2439 {
2440 	struct dev_gso_cb *cb;
2441 
2442 	do {
2443 		struct sk_buff *nskb = skb->next;
2444 
2445 		skb->next = nskb->next;
2446 		nskb->next = NULL;
2447 		kfree_skb(nskb);
2448 	} while (skb->next);
2449 
2450 	cb = DEV_GSO_CB(skb);
2451 	if (cb->destructor)
2452 		cb->destructor(skb);
2453 }
2454 
2455 /**
2456  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2457  *	@skb: buffer to segment
2458  *	@features: device features as applicable to this skb
2459  *
2460  *	This function segments the given skb and stores the list of segments
2461  *	in skb->next.
2462  */
2463 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2464 {
2465 	struct sk_buff *segs;
2466 
2467 	segs = skb_gso_segment(skb, features);
2468 
2469 	/* Verifying header integrity only. */
2470 	if (!segs)
2471 		return 0;
2472 
2473 	if (IS_ERR(segs))
2474 		return PTR_ERR(segs);
2475 
2476 	skb->next = segs;
2477 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2478 	skb->destructor = dev_gso_skb_destructor;
2479 
2480 	return 0;
2481 }
2482 
2483 static netdev_features_t harmonize_features(struct sk_buff *skb,
2484 	netdev_features_t features)
2485 {
2486 	if (skb->ip_summed != CHECKSUM_NONE &&
2487 	    !can_checksum_protocol(features, skb_network_protocol(skb))) {
2488 		features &= ~NETIF_F_ALL_CSUM;
2489 	} else if (illegal_highdma(skb->dev, skb)) {
2490 		features &= ~NETIF_F_SG;
2491 	}
2492 
2493 	return features;
2494 }
2495 
2496 netdev_features_t netif_skb_features(struct sk_buff *skb)
2497 {
2498 	__be16 protocol = skb->protocol;
2499 	netdev_features_t features = skb->dev->features;
2500 
2501 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2502 		features &= ~NETIF_F_GSO_MASK;
2503 
2504 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2505 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2506 		protocol = veh->h_vlan_encapsulated_proto;
2507 	} else if (!vlan_tx_tag_present(skb)) {
2508 		return harmonize_features(skb, features);
2509 	}
2510 
2511 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2512 					       NETIF_F_HW_VLAN_STAG_TX);
2513 
2514 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2515 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2516 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2517 				NETIF_F_HW_VLAN_STAG_TX;
2518 
2519 	return harmonize_features(skb, features);
2520 }
2521 EXPORT_SYMBOL(netif_skb_features);
2522 
2523 /*
2524  * Returns true if either:
2525  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2526  *	2. skb is fragmented and the device does not support SG.
2527  */
2528 static inline int skb_needs_linearize(struct sk_buff *skb,
2529 				      netdev_features_t features)
2530 {
2531 	return skb_is_nonlinear(skb) &&
2532 			((skb_has_frag_list(skb) &&
2533 				!(features & NETIF_F_FRAGLIST)) ||
2534 			(skb_shinfo(skb)->nr_frags &&
2535 				!(features & NETIF_F_SG)));
2536 }
2537 
2538 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2539 			struct netdev_queue *txq)
2540 {
2541 	const struct net_device_ops *ops = dev->netdev_ops;
2542 	int rc = NETDEV_TX_OK;
2543 	unsigned int skb_len;
2544 
2545 	if (likely(!skb->next)) {
2546 		netdev_features_t features;
2547 
2548 		/*
2549 		 * If device doesn't need skb->dst, release it right now while
2550 		 * its hot in this cpu cache
2551 		 */
2552 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 			skb_dst_drop(skb);
2554 
2555 		features = netif_skb_features(skb);
2556 
2557 		if (vlan_tx_tag_present(skb) &&
2558 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2559 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2560 					     vlan_tx_tag_get(skb));
2561 			if (unlikely(!skb))
2562 				goto out;
2563 
2564 			skb->vlan_tci = 0;
2565 		}
2566 
2567 		/* If encapsulation offload request, verify we are testing
2568 		 * hardware encapsulation features instead of standard
2569 		 * features for the netdev
2570 		 */
2571 		if (skb->encapsulation)
2572 			features &= dev->hw_enc_features;
2573 
2574 		if (netif_needs_gso(skb, features)) {
2575 			if (unlikely(dev_gso_segment(skb, features)))
2576 				goto out_kfree_skb;
2577 			if (skb->next)
2578 				goto gso;
2579 		} else {
2580 			if (skb_needs_linearize(skb, features) &&
2581 			    __skb_linearize(skb))
2582 				goto out_kfree_skb;
2583 
2584 			/* If packet is not checksummed and device does not
2585 			 * support checksumming for this protocol, complete
2586 			 * checksumming here.
2587 			 */
2588 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2589 				if (skb->encapsulation)
2590 					skb_set_inner_transport_header(skb,
2591 						skb_checksum_start_offset(skb));
2592 				else
2593 					skb_set_transport_header(skb,
2594 						skb_checksum_start_offset(skb));
2595 				if (!(features & NETIF_F_ALL_CSUM) &&
2596 				     skb_checksum_help(skb))
2597 					goto out_kfree_skb;
2598 			}
2599 		}
2600 
2601 		if (!list_empty(&ptype_all))
2602 			dev_queue_xmit_nit(skb, dev);
2603 
2604 		skb_len = skb->len;
2605 		rc = ops->ndo_start_xmit(skb, dev);
2606 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 		if (rc == NETDEV_TX_OK)
2608 			txq_trans_update(txq);
2609 		return rc;
2610 	}
2611 
2612 gso:
2613 	do {
2614 		struct sk_buff *nskb = skb->next;
2615 
2616 		skb->next = nskb->next;
2617 		nskb->next = NULL;
2618 
2619 		if (!list_empty(&ptype_all))
2620 			dev_queue_xmit_nit(nskb, dev);
2621 
2622 		skb_len = nskb->len;
2623 		rc = ops->ndo_start_xmit(nskb, dev);
2624 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2625 		if (unlikely(rc != NETDEV_TX_OK)) {
2626 			if (rc & ~NETDEV_TX_MASK)
2627 				goto out_kfree_gso_skb;
2628 			nskb->next = skb->next;
2629 			skb->next = nskb;
2630 			return rc;
2631 		}
2632 		txq_trans_update(txq);
2633 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2634 			return NETDEV_TX_BUSY;
2635 	} while (skb->next);
2636 
2637 out_kfree_gso_skb:
2638 	if (likely(skb->next == NULL)) {
2639 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2640 		consume_skb(skb);
2641 		return rc;
2642 	}
2643 out_kfree_skb:
2644 	kfree_skb(skb);
2645 out:
2646 	return rc;
2647 }
2648 
2649 static void qdisc_pkt_len_init(struct sk_buff *skb)
2650 {
2651 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2652 
2653 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2654 
2655 	/* To get more precise estimation of bytes sent on wire,
2656 	 * we add to pkt_len the headers size of all segments
2657 	 */
2658 	if (shinfo->gso_size)  {
2659 		unsigned int hdr_len;
2660 		u16 gso_segs = shinfo->gso_segs;
2661 
2662 		/* mac layer + network layer */
2663 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2664 
2665 		/* + transport layer */
2666 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2667 			hdr_len += tcp_hdrlen(skb);
2668 		else
2669 			hdr_len += sizeof(struct udphdr);
2670 
2671 		if (shinfo->gso_type & SKB_GSO_DODGY)
2672 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2673 						shinfo->gso_size);
2674 
2675 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2676 	}
2677 }
2678 
2679 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2680 				 struct net_device *dev,
2681 				 struct netdev_queue *txq)
2682 {
2683 	spinlock_t *root_lock = qdisc_lock(q);
2684 	bool contended;
2685 	int rc;
2686 
2687 	qdisc_pkt_len_init(skb);
2688 	qdisc_calculate_pkt_len(skb, q);
2689 	/*
2690 	 * Heuristic to force contended enqueues to serialize on a
2691 	 * separate lock before trying to get qdisc main lock.
2692 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2693 	 * and dequeue packets faster.
2694 	 */
2695 	contended = qdisc_is_running(q);
2696 	if (unlikely(contended))
2697 		spin_lock(&q->busylock);
2698 
2699 	spin_lock(root_lock);
2700 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2701 		kfree_skb(skb);
2702 		rc = NET_XMIT_DROP;
2703 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2704 		   qdisc_run_begin(q)) {
2705 		/*
2706 		 * This is a work-conserving queue; there are no old skbs
2707 		 * waiting to be sent out; and the qdisc is not running -
2708 		 * xmit the skb directly.
2709 		 */
2710 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2711 			skb_dst_force(skb);
2712 
2713 		qdisc_bstats_update(q, skb);
2714 
2715 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2716 			if (unlikely(contended)) {
2717 				spin_unlock(&q->busylock);
2718 				contended = false;
2719 			}
2720 			__qdisc_run(q);
2721 		} else
2722 			qdisc_run_end(q);
2723 
2724 		rc = NET_XMIT_SUCCESS;
2725 	} else {
2726 		skb_dst_force(skb);
2727 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2728 		if (qdisc_run_begin(q)) {
2729 			if (unlikely(contended)) {
2730 				spin_unlock(&q->busylock);
2731 				contended = false;
2732 			}
2733 			__qdisc_run(q);
2734 		}
2735 	}
2736 	spin_unlock(root_lock);
2737 	if (unlikely(contended))
2738 		spin_unlock(&q->busylock);
2739 	return rc;
2740 }
2741 
2742 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2743 static void skb_update_prio(struct sk_buff *skb)
2744 {
2745 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2746 
2747 	if (!skb->priority && skb->sk && map) {
2748 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2749 
2750 		if (prioidx < map->priomap_len)
2751 			skb->priority = map->priomap[prioidx];
2752 	}
2753 }
2754 #else
2755 #define skb_update_prio(skb)
2756 #endif
2757 
2758 static DEFINE_PER_CPU(int, xmit_recursion);
2759 #define RECURSION_LIMIT 10
2760 
2761 /**
2762  *	dev_loopback_xmit - loop back @skb
2763  *	@skb: buffer to transmit
2764  */
2765 int dev_loopback_xmit(struct sk_buff *skb)
2766 {
2767 	skb_reset_mac_header(skb);
2768 	__skb_pull(skb, skb_network_offset(skb));
2769 	skb->pkt_type = PACKET_LOOPBACK;
2770 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2771 	WARN_ON(!skb_dst(skb));
2772 	skb_dst_force(skb);
2773 	netif_rx_ni(skb);
2774 	return 0;
2775 }
2776 EXPORT_SYMBOL(dev_loopback_xmit);
2777 
2778 /**
2779  *	dev_queue_xmit - transmit a buffer
2780  *	@skb: buffer to transmit
2781  *
2782  *	Queue a buffer for transmission to a network device. The caller must
2783  *	have set the device and priority and built the buffer before calling
2784  *	this function. The function can be called from an interrupt.
2785  *
2786  *	A negative errno code is returned on a failure. A success does not
2787  *	guarantee the frame will be transmitted as it may be dropped due
2788  *	to congestion or traffic shaping.
2789  *
2790  * -----------------------------------------------------------------------------------
2791  *      I notice this method can also return errors from the queue disciplines,
2792  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2793  *      be positive.
2794  *
2795  *      Regardless of the return value, the skb is consumed, so it is currently
2796  *      difficult to retry a send to this method.  (You can bump the ref count
2797  *      before sending to hold a reference for retry if you are careful.)
2798  *
2799  *      When calling this method, interrupts MUST be enabled.  This is because
2800  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2801  *          --BLG
2802  */
2803 int dev_queue_xmit(struct sk_buff *skb)
2804 {
2805 	struct net_device *dev = skb->dev;
2806 	struct netdev_queue *txq;
2807 	struct Qdisc *q;
2808 	int rc = -ENOMEM;
2809 
2810 	skb_reset_mac_header(skb);
2811 
2812 	/* Disable soft irqs for various locks below. Also
2813 	 * stops preemption for RCU.
2814 	 */
2815 	rcu_read_lock_bh();
2816 
2817 	skb_update_prio(skb);
2818 
2819 	txq = netdev_pick_tx(dev, skb);
2820 	q = rcu_dereference_bh(txq->qdisc);
2821 
2822 #ifdef CONFIG_NET_CLS_ACT
2823 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2824 #endif
2825 	trace_net_dev_queue(skb);
2826 	if (q->enqueue) {
2827 		rc = __dev_xmit_skb(skb, q, dev, txq);
2828 		goto out;
2829 	}
2830 
2831 	/* The device has no queue. Common case for software devices:
2832 	   loopback, all the sorts of tunnels...
2833 
2834 	   Really, it is unlikely that netif_tx_lock protection is necessary
2835 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2836 	   counters.)
2837 	   However, it is possible, that they rely on protection
2838 	   made by us here.
2839 
2840 	   Check this and shot the lock. It is not prone from deadlocks.
2841 	   Either shot noqueue qdisc, it is even simpler 8)
2842 	 */
2843 	if (dev->flags & IFF_UP) {
2844 		int cpu = smp_processor_id(); /* ok because BHs are off */
2845 
2846 		if (txq->xmit_lock_owner != cpu) {
2847 
2848 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2849 				goto recursion_alert;
2850 
2851 			HARD_TX_LOCK(dev, txq, cpu);
2852 
2853 			if (!netif_xmit_stopped(txq)) {
2854 				__this_cpu_inc(xmit_recursion);
2855 				rc = dev_hard_start_xmit(skb, dev, txq);
2856 				__this_cpu_dec(xmit_recursion);
2857 				if (dev_xmit_complete(rc)) {
2858 					HARD_TX_UNLOCK(dev, txq);
2859 					goto out;
2860 				}
2861 			}
2862 			HARD_TX_UNLOCK(dev, txq);
2863 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2864 					     dev->name);
2865 		} else {
2866 			/* Recursion is detected! It is possible,
2867 			 * unfortunately
2868 			 */
2869 recursion_alert:
2870 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2871 					     dev->name);
2872 		}
2873 	}
2874 
2875 	rc = -ENETDOWN;
2876 	rcu_read_unlock_bh();
2877 
2878 	kfree_skb(skb);
2879 	return rc;
2880 out:
2881 	rcu_read_unlock_bh();
2882 	return rc;
2883 }
2884 EXPORT_SYMBOL(dev_queue_xmit);
2885 
2886 
2887 /*=======================================================================
2888 			Receiver routines
2889   =======================================================================*/
2890 
2891 int netdev_max_backlog __read_mostly = 1000;
2892 EXPORT_SYMBOL(netdev_max_backlog);
2893 
2894 int netdev_tstamp_prequeue __read_mostly = 1;
2895 int netdev_budget __read_mostly = 300;
2896 int weight_p __read_mostly = 64;            /* old backlog weight */
2897 
2898 /* Called with irq disabled */
2899 static inline void ____napi_schedule(struct softnet_data *sd,
2900 				     struct napi_struct *napi)
2901 {
2902 	list_add_tail(&napi->poll_list, &sd->poll_list);
2903 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2904 }
2905 
2906 #ifdef CONFIG_RPS
2907 
2908 /* One global table that all flow-based protocols share. */
2909 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2910 EXPORT_SYMBOL(rps_sock_flow_table);
2911 
2912 struct static_key rps_needed __read_mostly;
2913 
2914 static struct rps_dev_flow *
2915 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2916 	    struct rps_dev_flow *rflow, u16 next_cpu)
2917 {
2918 	if (next_cpu != RPS_NO_CPU) {
2919 #ifdef CONFIG_RFS_ACCEL
2920 		struct netdev_rx_queue *rxqueue;
2921 		struct rps_dev_flow_table *flow_table;
2922 		struct rps_dev_flow *old_rflow;
2923 		u32 flow_id;
2924 		u16 rxq_index;
2925 		int rc;
2926 
2927 		/* Should we steer this flow to a different hardware queue? */
2928 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2929 		    !(dev->features & NETIF_F_NTUPLE))
2930 			goto out;
2931 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2932 		if (rxq_index == skb_get_rx_queue(skb))
2933 			goto out;
2934 
2935 		rxqueue = dev->_rx + rxq_index;
2936 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2937 		if (!flow_table)
2938 			goto out;
2939 		flow_id = skb->rxhash & flow_table->mask;
2940 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2941 							rxq_index, flow_id);
2942 		if (rc < 0)
2943 			goto out;
2944 		old_rflow = rflow;
2945 		rflow = &flow_table->flows[flow_id];
2946 		rflow->filter = rc;
2947 		if (old_rflow->filter == rflow->filter)
2948 			old_rflow->filter = RPS_NO_FILTER;
2949 	out:
2950 #endif
2951 		rflow->last_qtail =
2952 			per_cpu(softnet_data, next_cpu).input_queue_head;
2953 	}
2954 
2955 	rflow->cpu = next_cpu;
2956 	return rflow;
2957 }
2958 
2959 /*
2960  * get_rps_cpu is called from netif_receive_skb and returns the target
2961  * CPU from the RPS map of the receiving queue for a given skb.
2962  * rcu_read_lock must be held on entry.
2963  */
2964 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2965 		       struct rps_dev_flow **rflowp)
2966 {
2967 	struct netdev_rx_queue *rxqueue;
2968 	struct rps_map *map;
2969 	struct rps_dev_flow_table *flow_table;
2970 	struct rps_sock_flow_table *sock_flow_table;
2971 	int cpu = -1;
2972 	u16 tcpu;
2973 
2974 	if (skb_rx_queue_recorded(skb)) {
2975 		u16 index = skb_get_rx_queue(skb);
2976 		if (unlikely(index >= dev->real_num_rx_queues)) {
2977 			WARN_ONCE(dev->real_num_rx_queues > 1,
2978 				  "%s received packet on queue %u, but number "
2979 				  "of RX queues is %u\n",
2980 				  dev->name, index, dev->real_num_rx_queues);
2981 			goto done;
2982 		}
2983 		rxqueue = dev->_rx + index;
2984 	} else
2985 		rxqueue = dev->_rx;
2986 
2987 	map = rcu_dereference(rxqueue->rps_map);
2988 	if (map) {
2989 		if (map->len == 1 &&
2990 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2991 			tcpu = map->cpus[0];
2992 			if (cpu_online(tcpu))
2993 				cpu = tcpu;
2994 			goto done;
2995 		}
2996 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2997 		goto done;
2998 	}
2999 
3000 	skb_reset_network_header(skb);
3001 	if (!skb_get_rxhash(skb))
3002 		goto done;
3003 
3004 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3005 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3006 	if (flow_table && sock_flow_table) {
3007 		u16 next_cpu;
3008 		struct rps_dev_flow *rflow;
3009 
3010 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3011 		tcpu = rflow->cpu;
3012 
3013 		next_cpu = sock_flow_table->ents[skb->rxhash &
3014 		    sock_flow_table->mask];
3015 
3016 		/*
3017 		 * If the desired CPU (where last recvmsg was done) is
3018 		 * different from current CPU (one in the rx-queue flow
3019 		 * table entry), switch if one of the following holds:
3020 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3021 		 *   - Current CPU is offline.
3022 		 *   - The current CPU's queue tail has advanced beyond the
3023 		 *     last packet that was enqueued using this table entry.
3024 		 *     This guarantees that all previous packets for the flow
3025 		 *     have been dequeued, thus preserving in order delivery.
3026 		 */
3027 		if (unlikely(tcpu != next_cpu) &&
3028 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3029 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3030 		      rflow->last_qtail)) >= 0)) {
3031 			tcpu = next_cpu;
3032 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3033 		}
3034 
3035 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3036 			*rflowp = rflow;
3037 			cpu = tcpu;
3038 			goto done;
3039 		}
3040 	}
3041 
3042 	if (map) {
3043 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3044 
3045 		if (cpu_online(tcpu)) {
3046 			cpu = tcpu;
3047 			goto done;
3048 		}
3049 	}
3050 
3051 done:
3052 	return cpu;
3053 }
3054 
3055 #ifdef CONFIG_RFS_ACCEL
3056 
3057 /**
3058  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3059  * @dev: Device on which the filter was set
3060  * @rxq_index: RX queue index
3061  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3062  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3063  *
3064  * Drivers that implement ndo_rx_flow_steer() should periodically call
3065  * this function for each installed filter and remove the filters for
3066  * which it returns %true.
3067  */
3068 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3069 			 u32 flow_id, u16 filter_id)
3070 {
3071 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3072 	struct rps_dev_flow_table *flow_table;
3073 	struct rps_dev_flow *rflow;
3074 	bool expire = true;
3075 	int cpu;
3076 
3077 	rcu_read_lock();
3078 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3079 	if (flow_table && flow_id <= flow_table->mask) {
3080 		rflow = &flow_table->flows[flow_id];
3081 		cpu = ACCESS_ONCE(rflow->cpu);
3082 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3083 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3084 			   rflow->last_qtail) <
3085 		     (int)(10 * flow_table->mask)))
3086 			expire = false;
3087 	}
3088 	rcu_read_unlock();
3089 	return expire;
3090 }
3091 EXPORT_SYMBOL(rps_may_expire_flow);
3092 
3093 #endif /* CONFIG_RFS_ACCEL */
3094 
3095 /* Called from hardirq (IPI) context */
3096 static void rps_trigger_softirq(void *data)
3097 {
3098 	struct softnet_data *sd = data;
3099 
3100 	____napi_schedule(sd, &sd->backlog);
3101 	sd->received_rps++;
3102 }
3103 
3104 #endif /* CONFIG_RPS */
3105 
3106 /*
3107  * Check if this softnet_data structure is another cpu one
3108  * If yes, queue it to our IPI list and return 1
3109  * If no, return 0
3110  */
3111 static int rps_ipi_queued(struct softnet_data *sd)
3112 {
3113 #ifdef CONFIG_RPS
3114 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3115 
3116 	if (sd != mysd) {
3117 		sd->rps_ipi_next = mysd->rps_ipi_list;
3118 		mysd->rps_ipi_list = sd;
3119 
3120 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3121 		return 1;
3122 	}
3123 #endif /* CONFIG_RPS */
3124 	return 0;
3125 }
3126 
3127 #ifdef CONFIG_NET_FLOW_LIMIT
3128 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3129 #endif
3130 
3131 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3132 {
3133 #ifdef CONFIG_NET_FLOW_LIMIT
3134 	struct sd_flow_limit *fl;
3135 	struct softnet_data *sd;
3136 	unsigned int old_flow, new_flow;
3137 
3138 	if (qlen < (netdev_max_backlog >> 1))
3139 		return false;
3140 
3141 	sd = &__get_cpu_var(softnet_data);
3142 
3143 	rcu_read_lock();
3144 	fl = rcu_dereference(sd->flow_limit);
3145 	if (fl) {
3146 		new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3147 		old_flow = fl->history[fl->history_head];
3148 		fl->history[fl->history_head] = new_flow;
3149 
3150 		fl->history_head++;
3151 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3152 
3153 		if (likely(fl->buckets[old_flow]))
3154 			fl->buckets[old_flow]--;
3155 
3156 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3157 			fl->count++;
3158 			rcu_read_unlock();
3159 			return true;
3160 		}
3161 	}
3162 	rcu_read_unlock();
3163 #endif
3164 	return false;
3165 }
3166 
3167 /*
3168  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3169  * queue (may be a remote CPU queue).
3170  */
3171 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3172 			      unsigned int *qtail)
3173 {
3174 	struct softnet_data *sd;
3175 	unsigned long flags;
3176 	unsigned int qlen;
3177 
3178 	sd = &per_cpu(softnet_data, cpu);
3179 
3180 	local_irq_save(flags);
3181 
3182 	rps_lock(sd);
3183 	qlen = skb_queue_len(&sd->input_pkt_queue);
3184 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3185 		if (skb_queue_len(&sd->input_pkt_queue)) {
3186 enqueue:
3187 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3188 			input_queue_tail_incr_save(sd, qtail);
3189 			rps_unlock(sd);
3190 			local_irq_restore(flags);
3191 			return NET_RX_SUCCESS;
3192 		}
3193 
3194 		/* Schedule NAPI for backlog device
3195 		 * We can use non atomic operation since we own the queue lock
3196 		 */
3197 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3198 			if (!rps_ipi_queued(sd))
3199 				____napi_schedule(sd, &sd->backlog);
3200 		}
3201 		goto enqueue;
3202 	}
3203 
3204 	sd->dropped++;
3205 	rps_unlock(sd);
3206 
3207 	local_irq_restore(flags);
3208 
3209 	atomic_long_inc(&skb->dev->rx_dropped);
3210 	kfree_skb(skb);
3211 	return NET_RX_DROP;
3212 }
3213 
3214 /**
3215  *	netif_rx	-	post buffer to the network code
3216  *	@skb: buffer to post
3217  *
3218  *	This function receives a packet from a device driver and queues it for
3219  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3220  *	may be dropped during processing for congestion control or by the
3221  *	protocol layers.
3222  *
3223  *	return values:
3224  *	NET_RX_SUCCESS	(no congestion)
3225  *	NET_RX_DROP     (packet was dropped)
3226  *
3227  */
3228 
3229 int netif_rx(struct sk_buff *skb)
3230 {
3231 	int ret;
3232 
3233 	/* if netpoll wants it, pretend we never saw it */
3234 	if (netpoll_rx(skb))
3235 		return NET_RX_DROP;
3236 
3237 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3238 
3239 	trace_netif_rx(skb);
3240 #ifdef CONFIG_RPS
3241 	if (static_key_false(&rps_needed)) {
3242 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3243 		int cpu;
3244 
3245 		preempt_disable();
3246 		rcu_read_lock();
3247 
3248 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3249 		if (cpu < 0)
3250 			cpu = smp_processor_id();
3251 
3252 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3253 
3254 		rcu_read_unlock();
3255 		preempt_enable();
3256 	} else
3257 #endif
3258 	{
3259 		unsigned int qtail;
3260 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3261 		put_cpu();
3262 	}
3263 	return ret;
3264 }
3265 EXPORT_SYMBOL(netif_rx);
3266 
3267 int netif_rx_ni(struct sk_buff *skb)
3268 {
3269 	int err;
3270 
3271 	preempt_disable();
3272 	err = netif_rx(skb);
3273 	if (local_softirq_pending())
3274 		do_softirq();
3275 	preempt_enable();
3276 
3277 	return err;
3278 }
3279 EXPORT_SYMBOL(netif_rx_ni);
3280 
3281 static void net_tx_action(struct softirq_action *h)
3282 {
3283 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3284 
3285 	if (sd->completion_queue) {
3286 		struct sk_buff *clist;
3287 
3288 		local_irq_disable();
3289 		clist = sd->completion_queue;
3290 		sd->completion_queue = NULL;
3291 		local_irq_enable();
3292 
3293 		while (clist) {
3294 			struct sk_buff *skb = clist;
3295 			clist = clist->next;
3296 
3297 			WARN_ON(atomic_read(&skb->users));
3298 			trace_kfree_skb(skb, net_tx_action);
3299 			__kfree_skb(skb);
3300 		}
3301 	}
3302 
3303 	if (sd->output_queue) {
3304 		struct Qdisc *head;
3305 
3306 		local_irq_disable();
3307 		head = sd->output_queue;
3308 		sd->output_queue = NULL;
3309 		sd->output_queue_tailp = &sd->output_queue;
3310 		local_irq_enable();
3311 
3312 		while (head) {
3313 			struct Qdisc *q = head;
3314 			spinlock_t *root_lock;
3315 
3316 			head = head->next_sched;
3317 
3318 			root_lock = qdisc_lock(q);
3319 			if (spin_trylock(root_lock)) {
3320 				smp_mb__before_clear_bit();
3321 				clear_bit(__QDISC_STATE_SCHED,
3322 					  &q->state);
3323 				qdisc_run(q);
3324 				spin_unlock(root_lock);
3325 			} else {
3326 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3327 					      &q->state)) {
3328 					__netif_reschedule(q);
3329 				} else {
3330 					smp_mb__before_clear_bit();
3331 					clear_bit(__QDISC_STATE_SCHED,
3332 						  &q->state);
3333 				}
3334 			}
3335 		}
3336 	}
3337 }
3338 
3339 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3340     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3341 /* This hook is defined here for ATM LANE */
3342 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3343 			     unsigned char *addr) __read_mostly;
3344 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3345 #endif
3346 
3347 #ifdef CONFIG_NET_CLS_ACT
3348 /* TODO: Maybe we should just force sch_ingress to be compiled in
3349  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3350  * a compare and 2 stores extra right now if we dont have it on
3351  * but have CONFIG_NET_CLS_ACT
3352  * NOTE: This doesn't stop any functionality; if you dont have
3353  * the ingress scheduler, you just can't add policies on ingress.
3354  *
3355  */
3356 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3357 {
3358 	struct net_device *dev = skb->dev;
3359 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3360 	int result = TC_ACT_OK;
3361 	struct Qdisc *q;
3362 
3363 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3364 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3365 				     skb->skb_iif, dev->ifindex);
3366 		return TC_ACT_SHOT;
3367 	}
3368 
3369 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3370 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3371 
3372 	q = rxq->qdisc;
3373 	if (q != &noop_qdisc) {
3374 		spin_lock(qdisc_lock(q));
3375 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3376 			result = qdisc_enqueue_root(skb, q);
3377 		spin_unlock(qdisc_lock(q));
3378 	}
3379 
3380 	return result;
3381 }
3382 
3383 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3384 					 struct packet_type **pt_prev,
3385 					 int *ret, struct net_device *orig_dev)
3386 {
3387 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3388 
3389 	if (!rxq || rxq->qdisc == &noop_qdisc)
3390 		goto out;
3391 
3392 	if (*pt_prev) {
3393 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3394 		*pt_prev = NULL;
3395 	}
3396 
3397 	switch (ing_filter(skb, rxq)) {
3398 	case TC_ACT_SHOT:
3399 	case TC_ACT_STOLEN:
3400 		kfree_skb(skb);
3401 		return NULL;
3402 	}
3403 
3404 out:
3405 	skb->tc_verd = 0;
3406 	return skb;
3407 }
3408 #endif
3409 
3410 /**
3411  *	netdev_rx_handler_register - register receive handler
3412  *	@dev: device to register a handler for
3413  *	@rx_handler: receive handler to register
3414  *	@rx_handler_data: data pointer that is used by rx handler
3415  *
3416  *	Register a receive hander for a device. This handler will then be
3417  *	called from __netif_receive_skb. A negative errno code is returned
3418  *	on a failure.
3419  *
3420  *	The caller must hold the rtnl_mutex.
3421  *
3422  *	For a general description of rx_handler, see enum rx_handler_result.
3423  */
3424 int netdev_rx_handler_register(struct net_device *dev,
3425 			       rx_handler_func_t *rx_handler,
3426 			       void *rx_handler_data)
3427 {
3428 	ASSERT_RTNL();
3429 
3430 	if (dev->rx_handler)
3431 		return -EBUSY;
3432 
3433 	/* Note: rx_handler_data must be set before rx_handler */
3434 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3435 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3436 
3437 	return 0;
3438 }
3439 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3440 
3441 /**
3442  *	netdev_rx_handler_unregister - unregister receive handler
3443  *	@dev: device to unregister a handler from
3444  *
3445  *	Unregister a receive handler from a device.
3446  *
3447  *	The caller must hold the rtnl_mutex.
3448  */
3449 void netdev_rx_handler_unregister(struct net_device *dev)
3450 {
3451 
3452 	ASSERT_RTNL();
3453 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3454 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3455 	 * section has a guarantee to see a non NULL rx_handler_data
3456 	 * as well.
3457 	 */
3458 	synchronize_net();
3459 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3460 }
3461 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3462 
3463 /*
3464  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3465  * the special handling of PFMEMALLOC skbs.
3466  */
3467 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3468 {
3469 	switch (skb->protocol) {
3470 	case __constant_htons(ETH_P_ARP):
3471 	case __constant_htons(ETH_P_IP):
3472 	case __constant_htons(ETH_P_IPV6):
3473 	case __constant_htons(ETH_P_8021Q):
3474 	case __constant_htons(ETH_P_8021AD):
3475 		return true;
3476 	default:
3477 		return false;
3478 	}
3479 }
3480 
3481 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3482 {
3483 	struct packet_type *ptype, *pt_prev;
3484 	rx_handler_func_t *rx_handler;
3485 	struct net_device *orig_dev;
3486 	struct net_device *null_or_dev;
3487 	bool deliver_exact = false;
3488 	int ret = NET_RX_DROP;
3489 	__be16 type;
3490 
3491 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3492 
3493 	trace_netif_receive_skb(skb);
3494 
3495 	/* if we've gotten here through NAPI, check netpoll */
3496 	if (netpoll_receive_skb(skb))
3497 		goto out;
3498 
3499 	orig_dev = skb->dev;
3500 
3501 	skb_reset_network_header(skb);
3502 	if (!skb_transport_header_was_set(skb))
3503 		skb_reset_transport_header(skb);
3504 	skb_reset_mac_len(skb);
3505 
3506 	pt_prev = NULL;
3507 
3508 	rcu_read_lock();
3509 
3510 another_round:
3511 	skb->skb_iif = skb->dev->ifindex;
3512 
3513 	__this_cpu_inc(softnet_data.processed);
3514 
3515 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3516 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3517 		skb = vlan_untag(skb);
3518 		if (unlikely(!skb))
3519 			goto unlock;
3520 	}
3521 
3522 #ifdef CONFIG_NET_CLS_ACT
3523 	if (skb->tc_verd & TC_NCLS) {
3524 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3525 		goto ncls;
3526 	}
3527 #endif
3528 
3529 	if (pfmemalloc)
3530 		goto skip_taps;
3531 
3532 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3533 		if (!ptype->dev || ptype->dev == skb->dev) {
3534 			if (pt_prev)
3535 				ret = deliver_skb(skb, pt_prev, orig_dev);
3536 			pt_prev = ptype;
3537 		}
3538 	}
3539 
3540 skip_taps:
3541 #ifdef CONFIG_NET_CLS_ACT
3542 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3543 	if (!skb)
3544 		goto unlock;
3545 ncls:
3546 #endif
3547 
3548 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3549 		goto drop;
3550 
3551 	if (vlan_tx_tag_present(skb)) {
3552 		if (pt_prev) {
3553 			ret = deliver_skb(skb, pt_prev, orig_dev);
3554 			pt_prev = NULL;
3555 		}
3556 		if (vlan_do_receive(&skb))
3557 			goto another_round;
3558 		else if (unlikely(!skb))
3559 			goto unlock;
3560 	}
3561 
3562 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3563 	if (rx_handler) {
3564 		if (pt_prev) {
3565 			ret = deliver_skb(skb, pt_prev, orig_dev);
3566 			pt_prev = NULL;
3567 		}
3568 		switch (rx_handler(&skb)) {
3569 		case RX_HANDLER_CONSUMED:
3570 			ret = NET_RX_SUCCESS;
3571 			goto unlock;
3572 		case RX_HANDLER_ANOTHER:
3573 			goto another_round;
3574 		case RX_HANDLER_EXACT:
3575 			deliver_exact = true;
3576 		case RX_HANDLER_PASS:
3577 			break;
3578 		default:
3579 			BUG();
3580 		}
3581 	}
3582 
3583 	if (unlikely(vlan_tx_tag_present(skb))) {
3584 		if (vlan_tx_tag_get_id(skb))
3585 			skb->pkt_type = PACKET_OTHERHOST;
3586 		/* Note: we might in the future use prio bits
3587 		 * and set skb->priority like in vlan_do_receive()
3588 		 * For the time being, just ignore Priority Code Point
3589 		 */
3590 		skb->vlan_tci = 0;
3591 	}
3592 
3593 	/* deliver only exact match when indicated */
3594 	null_or_dev = deliver_exact ? skb->dev : NULL;
3595 
3596 	type = skb->protocol;
3597 	list_for_each_entry_rcu(ptype,
3598 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3599 		if (ptype->type == type &&
3600 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3601 		     ptype->dev == orig_dev)) {
3602 			if (pt_prev)
3603 				ret = deliver_skb(skb, pt_prev, orig_dev);
3604 			pt_prev = ptype;
3605 		}
3606 	}
3607 
3608 	if (pt_prev) {
3609 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3610 			goto drop;
3611 		else
3612 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3613 	} else {
3614 drop:
3615 		atomic_long_inc(&skb->dev->rx_dropped);
3616 		kfree_skb(skb);
3617 		/* Jamal, now you will not able to escape explaining
3618 		 * me how you were going to use this. :-)
3619 		 */
3620 		ret = NET_RX_DROP;
3621 	}
3622 
3623 unlock:
3624 	rcu_read_unlock();
3625 out:
3626 	return ret;
3627 }
3628 
3629 static int __netif_receive_skb(struct sk_buff *skb)
3630 {
3631 	int ret;
3632 
3633 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3634 		unsigned long pflags = current->flags;
3635 
3636 		/*
3637 		 * PFMEMALLOC skbs are special, they should
3638 		 * - be delivered to SOCK_MEMALLOC sockets only
3639 		 * - stay away from userspace
3640 		 * - have bounded memory usage
3641 		 *
3642 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3643 		 * context down to all allocation sites.
3644 		 */
3645 		current->flags |= PF_MEMALLOC;
3646 		ret = __netif_receive_skb_core(skb, true);
3647 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3648 	} else
3649 		ret = __netif_receive_skb_core(skb, false);
3650 
3651 	return ret;
3652 }
3653 
3654 /**
3655  *	netif_receive_skb - process receive buffer from network
3656  *	@skb: buffer to process
3657  *
3658  *	netif_receive_skb() is the main receive data processing function.
3659  *	It always succeeds. The buffer may be dropped during processing
3660  *	for congestion control or by the protocol layers.
3661  *
3662  *	This function may only be called from softirq context and interrupts
3663  *	should be enabled.
3664  *
3665  *	Return values (usually ignored):
3666  *	NET_RX_SUCCESS: no congestion
3667  *	NET_RX_DROP: packet was dropped
3668  */
3669 int netif_receive_skb(struct sk_buff *skb)
3670 {
3671 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3672 
3673 	if (skb_defer_rx_timestamp(skb))
3674 		return NET_RX_SUCCESS;
3675 
3676 #ifdef CONFIG_RPS
3677 	if (static_key_false(&rps_needed)) {
3678 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3679 		int cpu, ret;
3680 
3681 		rcu_read_lock();
3682 
3683 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3684 
3685 		if (cpu >= 0) {
3686 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3687 			rcu_read_unlock();
3688 			return ret;
3689 		}
3690 		rcu_read_unlock();
3691 	}
3692 #endif
3693 	return __netif_receive_skb(skb);
3694 }
3695 EXPORT_SYMBOL(netif_receive_skb);
3696 
3697 /* Network device is going away, flush any packets still pending
3698  * Called with irqs disabled.
3699  */
3700 static void flush_backlog(void *arg)
3701 {
3702 	struct net_device *dev = arg;
3703 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3704 	struct sk_buff *skb, *tmp;
3705 
3706 	rps_lock(sd);
3707 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3708 		if (skb->dev == dev) {
3709 			__skb_unlink(skb, &sd->input_pkt_queue);
3710 			kfree_skb(skb);
3711 			input_queue_head_incr(sd);
3712 		}
3713 	}
3714 	rps_unlock(sd);
3715 
3716 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3717 		if (skb->dev == dev) {
3718 			__skb_unlink(skb, &sd->process_queue);
3719 			kfree_skb(skb);
3720 			input_queue_head_incr(sd);
3721 		}
3722 	}
3723 }
3724 
3725 static int napi_gro_complete(struct sk_buff *skb)
3726 {
3727 	struct packet_offload *ptype;
3728 	__be16 type = skb->protocol;
3729 	struct list_head *head = &offload_base;
3730 	int err = -ENOENT;
3731 
3732 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3733 
3734 	if (NAPI_GRO_CB(skb)->count == 1) {
3735 		skb_shinfo(skb)->gso_size = 0;
3736 		goto out;
3737 	}
3738 
3739 	rcu_read_lock();
3740 	list_for_each_entry_rcu(ptype, head, list) {
3741 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3742 			continue;
3743 
3744 		err = ptype->callbacks.gro_complete(skb);
3745 		break;
3746 	}
3747 	rcu_read_unlock();
3748 
3749 	if (err) {
3750 		WARN_ON(&ptype->list == head);
3751 		kfree_skb(skb);
3752 		return NET_RX_SUCCESS;
3753 	}
3754 
3755 out:
3756 	return netif_receive_skb(skb);
3757 }
3758 
3759 /* napi->gro_list contains packets ordered by age.
3760  * youngest packets at the head of it.
3761  * Complete skbs in reverse order to reduce latencies.
3762  */
3763 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3764 {
3765 	struct sk_buff *skb, *prev = NULL;
3766 
3767 	/* scan list and build reverse chain */
3768 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3769 		skb->prev = prev;
3770 		prev = skb;
3771 	}
3772 
3773 	for (skb = prev; skb; skb = prev) {
3774 		skb->next = NULL;
3775 
3776 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3777 			return;
3778 
3779 		prev = skb->prev;
3780 		napi_gro_complete(skb);
3781 		napi->gro_count--;
3782 	}
3783 
3784 	napi->gro_list = NULL;
3785 }
3786 EXPORT_SYMBOL(napi_gro_flush);
3787 
3788 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3789 {
3790 	struct sk_buff *p;
3791 	unsigned int maclen = skb->dev->hard_header_len;
3792 
3793 	for (p = napi->gro_list; p; p = p->next) {
3794 		unsigned long diffs;
3795 
3796 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3797 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3798 		if (maclen == ETH_HLEN)
3799 			diffs |= compare_ether_header(skb_mac_header(p),
3800 						      skb_gro_mac_header(skb));
3801 		else if (!diffs)
3802 			diffs = memcmp(skb_mac_header(p),
3803 				       skb_gro_mac_header(skb),
3804 				       maclen);
3805 		NAPI_GRO_CB(p)->same_flow = !diffs;
3806 		NAPI_GRO_CB(p)->flush = 0;
3807 	}
3808 }
3809 
3810 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3811 {
3812 	struct sk_buff **pp = NULL;
3813 	struct packet_offload *ptype;
3814 	__be16 type = skb->protocol;
3815 	struct list_head *head = &offload_base;
3816 	int same_flow;
3817 	enum gro_result ret;
3818 
3819 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3820 		goto normal;
3821 
3822 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3823 		goto normal;
3824 
3825 	gro_list_prepare(napi, skb);
3826 
3827 	rcu_read_lock();
3828 	list_for_each_entry_rcu(ptype, head, list) {
3829 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3830 			continue;
3831 
3832 		skb_set_network_header(skb, skb_gro_offset(skb));
3833 		skb_reset_mac_len(skb);
3834 		NAPI_GRO_CB(skb)->same_flow = 0;
3835 		NAPI_GRO_CB(skb)->flush = 0;
3836 		NAPI_GRO_CB(skb)->free = 0;
3837 
3838 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3839 		break;
3840 	}
3841 	rcu_read_unlock();
3842 
3843 	if (&ptype->list == head)
3844 		goto normal;
3845 
3846 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3847 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3848 
3849 	if (pp) {
3850 		struct sk_buff *nskb = *pp;
3851 
3852 		*pp = nskb->next;
3853 		nskb->next = NULL;
3854 		napi_gro_complete(nskb);
3855 		napi->gro_count--;
3856 	}
3857 
3858 	if (same_flow)
3859 		goto ok;
3860 
3861 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3862 		goto normal;
3863 
3864 	napi->gro_count++;
3865 	NAPI_GRO_CB(skb)->count = 1;
3866 	NAPI_GRO_CB(skb)->age = jiffies;
3867 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3868 	skb->next = napi->gro_list;
3869 	napi->gro_list = skb;
3870 	ret = GRO_HELD;
3871 
3872 pull:
3873 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3874 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3875 
3876 		BUG_ON(skb->end - skb->tail < grow);
3877 
3878 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3879 
3880 		skb->tail += grow;
3881 		skb->data_len -= grow;
3882 
3883 		skb_shinfo(skb)->frags[0].page_offset += grow;
3884 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3885 
3886 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3887 			skb_frag_unref(skb, 0);
3888 			memmove(skb_shinfo(skb)->frags,
3889 				skb_shinfo(skb)->frags + 1,
3890 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3891 		}
3892 	}
3893 
3894 ok:
3895 	return ret;
3896 
3897 normal:
3898 	ret = GRO_NORMAL;
3899 	goto pull;
3900 }
3901 
3902 
3903 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3904 {
3905 	switch (ret) {
3906 	case GRO_NORMAL:
3907 		if (netif_receive_skb(skb))
3908 			ret = GRO_DROP;
3909 		break;
3910 
3911 	case GRO_DROP:
3912 		kfree_skb(skb);
3913 		break;
3914 
3915 	case GRO_MERGED_FREE:
3916 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3917 			kmem_cache_free(skbuff_head_cache, skb);
3918 		else
3919 			__kfree_skb(skb);
3920 		break;
3921 
3922 	case GRO_HELD:
3923 	case GRO_MERGED:
3924 		break;
3925 	}
3926 
3927 	return ret;
3928 }
3929 
3930 static void skb_gro_reset_offset(struct sk_buff *skb)
3931 {
3932 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3933 	const skb_frag_t *frag0 = &pinfo->frags[0];
3934 
3935 	NAPI_GRO_CB(skb)->data_offset = 0;
3936 	NAPI_GRO_CB(skb)->frag0 = NULL;
3937 	NAPI_GRO_CB(skb)->frag0_len = 0;
3938 
3939 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3940 	    pinfo->nr_frags &&
3941 	    !PageHighMem(skb_frag_page(frag0))) {
3942 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3943 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3944 	}
3945 }
3946 
3947 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3948 {
3949 	skb_gro_reset_offset(skb);
3950 
3951 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3952 }
3953 EXPORT_SYMBOL(napi_gro_receive);
3954 
3955 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3956 {
3957 	__skb_pull(skb, skb_headlen(skb));
3958 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3959 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3960 	skb->vlan_tci = 0;
3961 	skb->dev = napi->dev;
3962 	skb->skb_iif = 0;
3963 
3964 	napi->skb = skb;
3965 }
3966 
3967 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3968 {
3969 	struct sk_buff *skb = napi->skb;
3970 
3971 	if (!skb) {
3972 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3973 		if (skb)
3974 			napi->skb = skb;
3975 	}
3976 	return skb;
3977 }
3978 EXPORT_SYMBOL(napi_get_frags);
3979 
3980 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3981 			       gro_result_t ret)
3982 {
3983 	switch (ret) {
3984 	case GRO_NORMAL:
3985 	case GRO_HELD:
3986 		skb->protocol = eth_type_trans(skb, skb->dev);
3987 
3988 		if (ret == GRO_HELD)
3989 			skb_gro_pull(skb, -ETH_HLEN);
3990 		else if (netif_receive_skb(skb))
3991 			ret = GRO_DROP;
3992 		break;
3993 
3994 	case GRO_DROP:
3995 	case GRO_MERGED_FREE:
3996 		napi_reuse_skb(napi, skb);
3997 		break;
3998 
3999 	case GRO_MERGED:
4000 		break;
4001 	}
4002 
4003 	return ret;
4004 }
4005 
4006 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4007 {
4008 	struct sk_buff *skb = napi->skb;
4009 	struct ethhdr *eth;
4010 	unsigned int hlen;
4011 	unsigned int off;
4012 
4013 	napi->skb = NULL;
4014 
4015 	skb_reset_mac_header(skb);
4016 	skb_gro_reset_offset(skb);
4017 
4018 	off = skb_gro_offset(skb);
4019 	hlen = off + sizeof(*eth);
4020 	eth = skb_gro_header_fast(skb, off);
4021 	if (skb_gro_header_hard(skb, hlen)) {
4022 		eth = skb_gro_header_slow(skb, hlen, off);
4023 		if (unlikely(!eth)) {
4024 			napi_reuse_skb(napi, skb);
4025 			skb = NULL;
4026 			goto out;
4027 		}
4028 	}
4029 
4030 	skb_gro_pull(skb, sizeof(*eth));
4031 
4032 	/*
4033 	 * This works because the only protocols we care about don't require
4034 	 * special handling.  We'll fix it up properly at the end.
4035 	 */
4036 	skb->protocol = eth->h_proto;
4037 
4038 out:
4039 	return skb;
4040 }
4041 
4042 gro_result_t napi_gro_frags(struct napi_struct *napi)
4043 {
4044 	struct sk_buff *skb = napi_frags_skb(napi);
4045 
4046 	if (!skb)
4047 		return GRO_DROP;
4048 
4049 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4050 }
4051 EXPORT_SYMBOL(napi_gro_frags);
4052 
4053 /*
4054  * net_rps_action sends any pending IPI's for rps.
4055  * Note: called with local irq disabled, but exits with local irq enabled.
4056  */
4057 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4058 {
4059 #ifdef CONFIG_RPS
4060 	struct softnet_data *remsd = sd->rps_ipi_list;
4061 
4062 	if (remsd) {
4063 		sd->rps_ipi_list = NULL;
4064 
4065 		local_irq_enable();
4066 
4067 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4068 		while (remsd) {
4069 			struct softnet_data *next = remsd->rps_ipi_next;
4070 
4071 			if (cpu_online(remsd->cpu))
4072 				__smp_call_function_single(remsd->cpu,
4073 							   &remsd->csd, 0);
4074 			remsd = next;
4075 		}
4076 	} else
4077 #endif
4078 		local_irq_enable();
4079 }
4080 
4081 static int process_backlog(struct napi_struct *napi, int quota)
4082 {
4083 	int work = 0;
4084 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4085 
4086 #ifdef CONFIG_RPS
4087 	/* Check if we have pending ipi, its better to send them now,
4088 	 * not waiting net_rx_action() end.
4089 	 */
4090 	if (sd->rps_ipi_list) {
4091 		local_irq_disable();
4092 		net_rps_action_and_irq_enable(sd);
4093 	}
4094 #endif
4095 	napi->weight = weight_p;
4096 	local_irq_disable();
4097 	while (work < quota) {
4098 		struct sk_buff *skb;
4099 		unsigned int qlen;
4100 
4101 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4102 			local_irq_enable();
4103 			__netif_receive_skb(skb);
4104 			local_irq_disable();
4105 			input_queue_head_incr(sd);
4106 			if (++work >= quota) {
4107 				local_irq_enable();
4108 				return work;
4109 			}
4110 		}
4111 
4112 		rps_lock(sd);
4113 		qlen = skb_queue_len(&sd->input_pkt_queue);
4114 		if (qlen)
4115 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4116 						   &sd->process_queue);
4117 
4118 		if (qlen < quota - work) {
4119 			/*
4120 			 * Inline a custom version of __napi_complete().
4121 			 * only current cpu owns and manipulates this napi,
4122 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4123 			 * we can use a plain write instead of clear_bit(),
4124 			 * and we dont need an smp_mb() memory barrier.
4125 			 */
4126 			list_del(&napi->poll_list);
4127 			napi->state = 0;
4128 
4129 			quota = work + qlen;
4130 		}
4131 		rps_unlock(sd);
4132 	}
4133 	local_irq_enable();
4134 
4135 	return work;
4136 }
4137 
4138 /**
4139  * __napi_schedule - schedule for receive
4140  * @n: entry to schedule
4141  *
4142  * The entry's receive function will be scheduled to run
4143  */
4144 void __napi_schedule(struct napi_struct *n)
4145 {
4146 	unsigned long flags;
4147 
4148 	local_irq_save(flags);
4149 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4150 	local_irq_restore(flags);
4151 }
4152 EXPORT_SYMBOL(__napi_schedule);
4153 
4154 void __napi_complete(struct napi_struct *n)
4155 {
4156 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4157 	BUG_ON(n->gro_list);
4158 
4159 	list_del(&n->poll_list);
4160 	smp_mb__before_clear_bit();
4161 	clear_bit(NAPI_STATE_SCHED, &n->state);
4162 }
4163 EXPORT_SYMBOL(__napi_complete);
4164 
4165 void napi_complete(struct napi_struct *n)
4166 {
4167 	unsigned long flags;
4168 
4169 	/*
4170 	 * don't let napi dequeue from the cpu poll list
4171 	 * just in case its running on a different cpu
4172 	 */
4173 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4174 		return;
4175 
4176 	napi_gro_flush(n, false);
4177 	local_irq_save(flags);
4178 	__napi_complete(n);
4179 	local_irq_restore(flags);
4180 }
4181 EXPORT_SYMBOL(napi_complete);
4182 
4183 /* must be called under rcu_read_lock(), as we dont take a reference */
4184 struct napi_struct *napi_by_id(unsigned int napi_id)
4185 {
4186 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4187 	struct napi_struct *napi;
4188 
4189 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4190 		if (napi->napi_id == napi_id)
4191 			return napi;
4192 
4193 	return NULL;
4194 }
4195 EXPORT_SYMBOL_GPL(napi_by_id);
4196 
4197 void napi_hash_add(struct napi_struct *napi)
4198 {
4199 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4200 
4201 		spin_lock(&napi_hash_lock);
4202 
4203 		/* 0 is not a valid id, we also skip an id that is taken
4204 		 * we expect both events to be extremely rare
4205 		 */
4206 		napi->napi_id = 0;
4207 		while (!napi->napi_id) {
4208 			napi->napi_id = ++napi_gen_id;
4209 			if (napi_by_id(napi->napi_id))
4210 				napi->napi_id = 0;
4211 		}
4212 
4213 		hlist_add_head_rcu(&napi->napi_hash_node,
4214 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4215 
4216 		spin_unlock(&napi_hash_lock);
4217 	}
4218 }
4219 EXPORT_SYMBOL_GPL(napi_hash_add);
4220 
4221 /* Warning : caller is responsible to make sure rcu grace period
4222  * is respected before freeing memory containing @napi
4223  */
4224 void napi_hash_del(struct napi_struct *napi)
4225 {
4226 	spin_lock(&napi_hash_lock);
4227 
4228 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4229 		hlist_del_rcu(&napi->napi_hash_node);
4230 
4231 	spin_unlock(&napi_hash_lock);
4232 }
4233 EXPORT_SYMBOL_GPL(napi_hash_del);
4234 
4235 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4236 		    int (*poll)(struct napi_struct *, int), int weight)
4237 {
4238 	INIT_LIST_HEAD(&napi->poll_list);
4239 	napi->gro_count = 0;
4240 	napi->gro_list = NULL;
4241 	napi->skb = NULL;
4242 	napi->poll = poll;
4243 	if (weight > NAPI_POLL_WEIGHT)
4244 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4245 			    weight, dev->name);
4246 	napi->weight = weight;
4247 	list_add(&napi->dev_list, &dev->napi_list);
4248 	napi->dev = dev;
4249 #ifdef CONFIG_NETPOLL
4250 	spin_lock_init(&napi->poll_lock);
4251 	napi->poll_owner = -1;
4252 #endif
4253 	set_bit(NAPI_STATE_SCHED, &napi->state);
4254 }
4255 EXPORT_SYMBOL(netif_napi_add);
4256 
4257 void netif_napi_del(struct napi_struct *napi)
4258 {
4259 	struct sk_buff *skb, *next;
4260 
4261 	list_del_init(&napi->dev_list);
4262 	napi_free_frags(napi);
4263 
4264 	for (skb = napi->gro_list; skb; skb = next) {
4265 		next = skb->next;
4266 		skb->next = NULL;
4267 		kfree_skb(skb);
4268 	}
4269 
4270 	napi->gro_list = NULL;
4271 	napi->gro_count = 0;
4272 }
4273 EXPORT_SYMBOL(netif_napi_del);
4274 
4275 static void net_rx_action(struct softirq_action *h)
4276 {
4277 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4278 	unsigned long time_limit = jiffies + 2;
4279 	int budget = netdev_budget;
4280 	void *have;
4281 
4282 	local_irq_disable();
4283 
4284 	while (!list_empty(&sd->poll_list)) {
4285 		struct napi_struct *n;
4286 		int work, weight;
4287 
4288 		/* If softirq window is exhuasted then punt.
4289 		 * Allow this to run for 2 jiffies since which will allow
4290 		 * an average latency of 1.5/HZ.
4291 		 */
4292 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4293 			goto softnet_break;
4294 
4295 		local_irq_enable();
4296 
4297 		/* Even though interrupts have been re-enabled, this
4298 		 * access is safe because interrupts can only add new
4299 		 * entries to the tail of this list, and only ->poll()
4300 		 * calls can remove this head entry from the list.
4301 		 */
4302 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4303 
4304 		have = netpoll_poll_lock(n);
4305 
4306 		weight = n->weight;
4307 
4308 		/* This NAPI_STATE_SCHED test is for avoiding a race
4309 		 * with netpoll's poll_napi().  Only the entity which
4310 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4311 		 * actually make the ->poll() call.  Therefore we avoid
4312 		 * accidentally calling ->poll() when NAPI is not scheduled.
4313 		 */
4314 		work = 0;
4315 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4316 			work = n->poll(n, weight);
4317 			trace_napi_poll(n);
4318 		}
4319 
4320 		WARN_ON_ONCE(work > weight);
4321 
4322 		budget -= work;
4323 
4324 		local_irq_disable();
4325 
4326 		/* Drivers must not modify the NAPI state if they
4327 		 * consume the entire weight.  In such cases this code
4328 		 * still "owns" the NAPI instance and therefore can
4329 		 * move the instance around on the list at-will.
4330 		 */
4331 		if (unlikely(work == weight)) {
4332 			if (unlikely(napi_disable_pending(n))) {
4333 				local_irq_enable();
4334 				napi_complete(n);
4335 				local_irq_disable();
4336 			} else {
4337 				if (n->gro_list) {
4338 					/* flush too old packets
4339 					 * If HZ < 1000, flush all packets.
4340 					 */
4341 					local_irq_enable();
4342 					napi_gro_flush(n, HZ >= 1000);
4343 					local_irq_disable();
4344 				}
4345 				list_move_tail(&n->poll_list, &sd->poll_list);
4346 			}
4347 		}
4348 
4349 		netpoll_poll_unlock(have);
4350 	}
4351 out:
4352 	net_rps_action_and_irq_enable(sd);
4353 
4354 #ifdef CONFIG_NET_DMA
4355 	/*
4356 	 * There may not be any more sk_buffs coming right now, so push
4357 	 * any pending DMA copies to hardware
4358 	 */
4359 	dma_issue_pending_all();
4360 #endif
4361 
4362 	return;
4363 
4364 softnet_break:
4365 	sd->time_squeeze++;
4366 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367 	goto out;
4368 }
4369 
4370 struct netdev_adjacent {
4371 	struct net_device *dev;
4372 
4373 	/* upper master flag, there can only be one master device per list */
4374 	bool master;
4375 
4376 	/* indicates that this dev is our first-level lower/upper device */
4377 	bool neighbour;
4378 
4379 	/* counter for the number of times this device was added to us */
4380 	u16 ref_nr;
4381 
4382 	struct list_head list;
4383 	struct rcu_head rcu;
4384 };
4385 
4386 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4387 						 struct net_device *adj_dev,
4388 						 bool upper)
4389 {
4390 	struct netdev_adjacent *adj;
4391 	struct list_head *dev_list;
4392 
4393 	dev_list = upper ? &dev->upper_dev_list : &dev->lower_dev_list;
4394 
4395 	list_for_each_entry(adj, dev_list, list) {
4396 		if (adj->dev == adj_dev)
4397 			return adj;
4398 	}
4399 	return NULL;
4400 }
4401 
4402 static inline struct netdev_adjacent *__netdev_find_upper(struct net_device *dev,
4403 							  struct net_device *udev)
4404 {
4405 	return __netdev_find_adj(dev, udev, true);
4406 }
4407 
4408 static inline struct netdev_adjacent *__netdev_find_lower(struct net_device *dev,
4409 							  struct net_device *ldev)
4410 {
4411 	return __netdev_find_adj(dev, ldev, false);
4412 }
4413 
4414 /**
4415  * netdev_has_upper_dev - Check if device is linked to an upper device
4416  * @dev: device
4417  * @upper_dev: upper device to check
4418  *
4419  * Find out if a device is linked to specified upper device and return true
4420  * in case it is. Note that this checks only immediate upper device,
4421  * not through a complete stack of devices. The caller must hold the RTNL lock.
4422  */
4423 bool netdev_has_upper_dev(struct net_device *dev,
4424 			  struct net_device *upper_dev)
4425 {
4426 	ASSERT_RTNL();
4427 
4428 	return __netdev_find_upper(dev, upper_dev);
4429 }
4430 EXPORT_SYMBOL(netdev_has_upper_dev);
4431 
4432 /**
4433  * netdev_has_any_upper_dev - Check if device is linked to some device
4434  * @dev: device
4435  *
4436  * Find out if a device is linked to an upper device and return true in case
4437  * it is. The caller must hold the RTNL lock.
4438  */
4439 bool netdev_has_any_upper_dev(struct net_device *dev)
4440 {
4441 	ASSERT_RTNL();
4442 
4443 	return !list_empty(&dev->upper_dev_list);
4444 }
4445 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4446 
4447 /**
4448  * netdev_master_upper_dev_get - Get master upper device
4449  * @dev: device
4450  *
4451  * Find a master upper device and return pointer to it or NULL in case
4452  * it's not there. The caller must hold the RTNL lock.
4453  */
4454 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4455 {
4456 	struct netdev_adjacent *upper;
4457 
4458 	ASSERT_RTNL();
4459 
4460 	if (list_empty(&dev->upper_dev_list))
4461 		return NULL;
4462 
4463 	upper = list_first_entry(&dev->upper_dev_list,
4464 				 struct netdev_adjacent, list);
4465 	if (likely(upper->master))
4466 		return upper->dev;
4467 	return NULL;
4468 }
4469 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4470 
4471 /* netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4472  * @dev: device
4473  * @iter: list_head ** of the current position
4474  *
4475  * Gets the next device from the dev's upper list, starting from iter
4476  * position. The caller must hold RCU read lock.
4477  */
4478 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4479 						 struct list_head **iter)
4480 {
4481 	struct netdev_adjacent *upper;
4482 
4483 	WARN_ON_ONCE(!rcu_read_lock_held());
4484 
4485 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4486 
4487 	if (&upper->list == &dev->upper_dev_list)
4488 		return NULL;
4489 
4490 	*iter = &upper->list;
4491 
4492 	return upper->dev;
4493 }
4494 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4495 
4496 /**
4497  * netdev_master_upper_dev_get_rcu - Get master upper device
4498  * @dev: device
4499  *
4500  * Find a master upper device and return pointer to it or NULL in case
4501  * it's not there. The caller must hold the RCU read lock.
4502  */
4503 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4504 {
4505 	struct netdev_adjacent *upper;
4506 
4507 	upper = list_first_or_null_rcu(&dev->upper_dev_list,
4508 				       struct netdev_adjacent, list);
4509 	if (upper && likely(upper->master))
4510 		return upper->dev;
4511 	return NULL;
4512 }
4513 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4514 
4515 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4516 					struct net_device *adj_dev,
4517 					bool neighbour, bool master,
4518 					bool upper)
4519 {
4520 	struct netdev_adjacent *adj;
4521 
4522 	adj = __netdev_find_adj(dev, adj_dev, upper);
4523 
4524 	if (adj) {
4525 		BUG_ON(neighbour);
4526 		adj->ref_nr++;
4527 		return 0;
4528 	}
4529 
4530 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4531 	if (!adj)
4532 		return -ENOMEM;
4533 
4534 	adj->dev = adj_dev;
4535 	adj->master = master;
4536 	adj->neighbour = neighbour;
4537 	adj->ref_nr = 1;
4538 
4539 	dev_hold(adj_dev);
4540 	pr_debug("dev_hold for %s, because of %s link added from %s to %s\n",
4541 		 adj_dev->name, upper ? "upper" : "lower", dev->name,
4542 		 adj_dev->name);
4543 
4544 	if (!upper) {
4545 		list_add_tail_rcu(&adj->list, &dev->lower_dev_list);
4546 		return 0;
4547 	}
4548 
4549 	/* Ensure that master upper link is always the first item in list. */
4550 	if (master)
4551 		list_add_rcu(&adj->list, &dev->upper_dev_list);
4552 	else
4553 		list_add_tail_rcu(&adj->list, &dev->upper_dev_list);
4554 
4555 	return 0;
4556 }
4557 
4558 static inline int __netdev_upper_dev_insert(struct net_device *dev,
4559 					    struct net_device *udev,
4560 					    bool master, bool neighbour)
4561 {
4562 	return __netdev_adjacent_dev_insert(dev, udev, neighbour, master,
4563 					    true);
4564 }
4565 
4566 static inline int __netdev_lower_dev_insert(struct net_device *dev,
4567 					    struct net_device *ldev,
4568 					    bool neighbour)
4569 {
4570 	return __netdev_adjacent_dev_insert(dev, ldev, neighbour, false,
4571 					    false);
4572 }
4573 
4574 void __netdev_adjacent_dev_remove(struct net_device *dev,
4575 				  struct net_device *adj_dev, bool upper)
4576 {
4577 	struct netdev_adjacent *adj;
4578 
4579 	if (upper)
4580 		adj = __netdev_find_upper(dev, adj_dev);
4581 	else
4582 		adj = __netdev_find_lower(dev, adj_dev);
4583 
4584 	if (!adj)
4585 		BUG();
4586 
4587 	if (adj->ref_nr > 1) {
4588 		adj->ref_nr--;
4589 		return;
4590 	}
4591 
4592 	list_del_rcu(&adj->list);
4593 	pr_debug("dev_put for %s, because of %s link removed from %s to %s\n",
4594 		 adj_dev->name, upper ? "upper" : "lower", dev->name,
4595 		 adj_dev->name);
4596 	dev_put(adj_dev);
4597 	kfree_rcu(adj, rcu);
4598 }
4599 
4600 static inline void __netdev_upper_dev_remove(struct net_device *dev,
4601 					     struct net_device *udev)
4602 {
4603 	return __netdev_adjacent_dev_remove(dev, udev, true);
4604 }
4605 
4606 static inline void __netdev_lower_dev_remove(struct net_device *dev,
4607 					     struct net_device *ldev)
4608 {
4609 	return __netdev_adjacent_dev_remove(dev, ldev, false);
4610 }
4611 
4612 int __netdev_adjacent_dev_insert_link(struct net_device *dev,
4613 				      struct net_device *upper_dev,
4614 				      bool master, bool neighbour)
4615 {
4616 	int ret;
4617 
4618 	ret = __netdev_upper_dev_insert(dev, upper_dev, master, neighbour);
4619 	if (ret)
4620 		return ret;
4621 
4622 	ret = __netdev_lower_dev_insert(upper_dev, dev, neighbour);
4623 	if (ret) {
4624 		__netdev_upper_dev_remove(dev, upper_dev);
4625 		return ret;
4626 	}
4627 
4628 	return 0;
4629 }
4630 
4631 static inline int __netdev_adjacent_dev_link(struct net_device *dev,
4632 					     struct net_device *udev)
4633 {
4634 	return __netdev_adjacent_dev_insert_link(dev, udev, false, false);
4635 }
4636 
4637 static inline int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4638 						       struct net_device *udev,
4639 						       bool master)
4640 {
4641 	return __netdev_adjacent_dev_insert_link(dev, udev, master, true);
4642 }
4643 
4644 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4645 				  struct net_device *upper_dev)
4646 {
4647 	__netdev_upper_dev_remove(dev, upper_dev);
4648 	__netdev_lower_dev_remove(upper_dev, dev);
4649 }
4650 
4651 
4652 static int __netdev_upper_dev_link(struct net_device *dev,
4653 				   struct net_device *upper_dev, bool master)
4654 {
4655 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4656 	int ret = 0;
4657 
4658 	ASSERT_RTNL();
4659 
4660 	if (dev == upper_dev)
4661 		return -EBUSY;
4662 
4663 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4664 	if (__netdev_find_upper(upper_dev, dev))
4665 		return -EBUSY;
4666 
4667 	if (__netdev_find_upper(dev, upper_dev))
4668 		return -EEXIST;
4669 
4670 	if (master && netdev_master_upper_dev_get(dev))
4671 		return -EBUSY;
4672 
4673 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, master);
4674 	if (ret)
4675 		return ret;
4676 
4677 	/* Now that we linked these devs, make all the upper_dev's
4678 	 * upper_dev_list visible to every dev's lower_dev_list and vice
4679 	 * versa, and don't forget the devices itself. All of these
4680 	 * links are non-neighbours.
4681 	 */
4682 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4683 		list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4684 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4685 			if (ret)
4686 				goto rollback_mesh;
4687 		}
4688 	}
4689 
4690 	/* add dev to every upper_dev's upper device */
4691 	list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4692 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4693 		if (ret)
4694 			goto rollback_upper_mesh;
4695 	}
4696 
4697 	/* add upper_dev to every dev's lower device */
4698 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4699 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4700 		if (ret)
4701 			goto rollback_lower_mesh;
4702 	}
4703 
4704 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4705 	return 0;
4706 
4707 rollback_lower_mesh:
4708 	to_i = i;
4709 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4710 		if (i == to_i)
4711 			break;
4712 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4713 	}
4714 
4715 	i = NULL;
4716 
4717 rollback_upper_mesh:
4718 	to_i = i;
4719 	list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4720 		if (i == to_i)
4721 			break;
4722 		__netdev_adjacent_dev_unlink(dev, i->dev);
4723 	}
4724 
4725 	i = j = NULL;
4726 
4727 rollback_mesh:
4728 	to_i = i;
4729 	to_j = j;
4730 	list_for_each_entry(i, &dev->lower_dev_list, list) {
4731 		list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4732 			if (i == to_i && j == to_j)
4733 				break;
4734 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4735 		}
4736 		if (i == to_i)
4737 			break;
4738 	}
4739 
4740 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4741 
4742 	return ret;
4743 }
4744 
4745 /**
4746  * netdev_upper_dev_link - Add a link to the upper device
4747  * @dev: device
4748  * @upper_dev: new upper device
4749  *
4750  * Adds a link to device which is upper to this one. The caller must hold
4751  * the RTNL lock. On a failure a negative errno code is returned.
4752  * On success the reference counts are adjusted and the function
4753  * returns zero.
4754  */
4755 int netdev_upper_dev_link(struct net_device *dev,
4756 			  struct net_device *upper_dev)
4757 {
4758 	return __netdev_upper_dev_link(dev, upper_dev, false);
4759 }
4760 EXPORT_SYMBOL(netdev_upper_dev_link);
4761 
4762 /**
4763  * netdev_master_upper_dev_link - Add a master link to the upper device
4764  * @dev: device
4765  * @upper_dev: new upper device
4766  *
4767  * Adds a link to device which is upper to this one. In this case, only
4768  * one master upper device can be linked, although other non-master devices
4769  * might be linked as well. The caller must hold the RTNL lock.
4770  * On a failure a negative errno code is returned. On success the reference
4771  * counts are adjusted and the function returns zero.
4772  */
4773 int netdev_master_upper_dev_link(struct net_device *dev,
4774 				 struct net_device *upper_dev)
4775 {
4776 	return __netdev_upper_dev_link(dev, upper_dev, true);
4777 }
4778 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4779 
4780 /**
4781  * netdev_upper_dev_unlink - Removes a link to upper device
4782  * @dev: device
4783  * @upper_dev: new upper device
4784  *
4785  * Removes a link to device which is upper to this one. The caller must hold
4786  * the RTNL lock.
4787  */
4788 void netdev_upper_dev_unlink(struct net_device *dev,
4789 			     struct net_device *upper_dev)
4790 {
4791 	struct netdev_adjacent *i, *j;
4792 	ASSERT_RTNL();
4793 
4794 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4795 
4796 	/* Here is the tricky part. We must remove all dev's lower
4797 	 * devices from all upper_dev's upper devices and vice
4798 	 * versa, to maintain the graph relationship.
4799 	 */
4800 	list_for_each_entry(i, &dev->lower_dev_list, list)
4801 		list_for_each_entry(j, &upper_dev->upper_dev_list, list)
4802 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4803 
4804 	/* remove also the devices itself from lower/upper device
4805 	 * list
4806 	 */
4807 	list_for_each_entry(i, &dev->lower_dev_list, list)
4808 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4809 
4810 	list_for_each_entry(i, &upper_dev->upper_dev_list, list)
4811 		__netdev_adjacent_dev_unlink(dev, i->dev);
4812 
4813 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4814 }
4815 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4816 
4817 static void dev_change_rx_flags(struct net_device *dev, int flags)
4818 {
4819 	const struct net_device_ops *ops = dev->netdev_ops;
4820 
4821 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4822 		ops->ndo_change_rx_flags(dev, flags);
4823 }
4824 
4825 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4826 {
4827 	unsigned int old_flags = dev->flags;
4828 	kuid_t uid;
4829 	kgid_t gid;
4830 
4831 	ASSERT_RTNL();
4832 
4833 	dev->flags |= IFF_PROMISC;
4834 	dev->promiscuity += inc;
4835 	if (dev->promiscuity == 0) {
4836 		/*
4837 		 * Avoid overflow.
4838 		 * If inc causes overflow, untouch promisc and return error.
4839 		 */
4840 		if (inc < 0)
4841 			dev->flags &= ~IFF_PROMISC;
4842 		else {
4843 			dev->promiscuity -= inc;
4844 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4845 				dev->name);
4846 			return -EOVERFLOW;
4847 		}
4848 	}
4849 	if (dev->flags != old_flags) {
4850 		pr_info("device %s %s promiscuous mode\n",
4851 			dev->name,
4852 			dev->flags & IFF_PROMISC ? "entered" : "left");
4853 		if (audit_enabled) {
4854 			current_uid_gid(&uid, &gid);
4855 			audit_log(current->audit_context, GFP_ATOMIC,
4856 				AUDIT_ANOM_PROMISCUOUS,
4857 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4858 				dev->name, (dev->flags & IFF_PROMISC),
4859 				(old_flags & IFF_PROMISC),
4860 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4861 				from_kuid(&init_user_ns, uid),
4862 				from_kgid(&init_user_ns, gid),
4863 				audit_get_sessionid(current));
4864 		}
4865 
4866 		dev_change_rx_flags(dev, IFF_PROMISC);
4867 	}
4868 	return 0;
4869 }
4870 
4871 /**
4872  *	dev_set_promiscuity	- update promiscuity count on a device
4873  *	@dev: device
4874  *	@inc: modifier
4875  *
4876  *	Add or remove promiscuity from a device. While the count in the device
4877  *	remains above zero the interface remains promiscuous. Once it hits zero
4878  *	the device reverts back to normal filtering operation. A negative inc
4879  *	value is used to drop promiscuity on the device.
4880  *	Return 0 if successful or a negative errno code on error.
4881  */
4882 int dev_set_promiscuity(struct net_device *dev, int inc)
4883 {
4884 	unsigned int old_flags = dev->flags;
4885 	int err;
4886 
4887 	err = __dev_set_promiscuity(dev, inc);
4888 	if (err < 0)
4889 		return err;
4890 	if (dev->flags != old_flags)
4891 		dev_set_rx_mode(dev);
4892 	return err;
4893 }
4894 EXPORT_SYMBOL(dev_set_promiscuity);
4895 
4896 /**
4897  *	dev_set_allmulti	- update allmulti count on a device
4898  *	@dev: device
4899  *	@inc: modifier
4900  *
4901  *	Add or remove reception of all multicast frames to a device. While the
4902  *	count in the device remains above zero the interface remains listening
4903  *	to all interfaces. Once it hits zero the device reverts back to normal
4904  *	filtering operation. A negative @inc value is used to drop the counter
4905  *	when releasing a resource needing all multicasts.
4906  *	Return 0 if successful or a negative errno code on error.
4907  */
4908 
4909 int dev_set_allmulti(struct net_device *dev, int inc)
4910 {
4911 	unsigned int old_flags = dev->flags;
4912 
4913 	ASSERT_RTNL();
4914 
4915 	dev->flags |= IFF_ALLMULTI;
4916 	dev->allmulti += inc;
4917 	if (dev->allmulti == 0) {
4918 		/*
4919 		 * Avoid overflow.
4920 		 * If inc causes overflow, untouch allmulti and return error.
4921 		 */
4922 		if (inc < 0)
4923 			dev->flags &= ~IFF_ALLMULTI;
4924 		else {
4925 			dev->allmulti -= inc;
4926 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4927 				dev->name);
4928 			return -EOVERFLOW;
4929 		}
4930 	}
4931 	if (dev->flags ^ old_flags) {
4932 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4933 		dev_set_rx_mode(dev);
4934 	}
4935 	return 0;
4936 }
4937 EXPORT_SYMBOL(dev_set_allmulti);
4938 
4939 /*
4940  *	Upload unicast and multicast address lists to device and
4941  *	configure RX filtering. When the device doesn't support unicast
4942  *	filtering it is put in promiscuous mode while unicast addresses
4943  *	are present.
4944  */
4945 void __dev_set_rx_mode(struct net_device *dev)
4946 {
4947 	const struct net_device_ops *ops = dev->netdev_ops;
4948 
4949 	/* dev_open will call this function so the list will stay sane. */
4950 	if (!(dev->flags&IFF_UP))
4951 		return;
4952 
4953 	if (!netif_device_present(dev))
4954 		return;
4955 
4956 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4957 		/* Unicast addresses changes may only happen under the rtnl,
4958 		 * therefore calling __dev_set_promiscuity here is safe.
4959 		 */
4960 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4961 			__dev_set_promiscuity(dev, 1);
4962 			dev->uc_promisc = true;
4963 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4964 			__dev_set_promiscuity(dev, -1);
4965 			dev->uc_promisc = false;
4966 		}
4967 	}
4968 
4969 	if (ops->ndo_set_rx_mode)
4970 		ops->ndo_set_rx_mode(dev);
4971 }
4972 
4973 void dev_set_rx_mode(struct net_device *dev)
4974 {
4975 	netif_addr_lock_bh(dev);
4976 	__dev_set_rx_mode(dev);
4977 	netif_addr_unlock_bh(dev);
4978 }
4979 
4980 /**
4981  *	dev_get_flags - get flags reported to userspace
4982  *	@dev: device
4983  *
4984  *	Get the combination of flag bits exported through APIs to userspace.
4985  */
4986 unsigned int dev_get_flags(const struct net_device *dev)
4987 {
4988 	unsigned int flags;
4989 
4990 	flags = (dev->flags & ~(IFF_PROMISC |
4991 				IFF_ALLMULTI |
4992 				IFF_RUNNING |
4993 				IFF_LOWER_UP |
4994 				IFF_DORMANT)) |
4995 		(dev->gflags & (IFF_PROMISC |
4996 				IFF_ALLMULTI));
4997 
4998 	if (netif_running(dev)) {
4999 		if (netif_oper_up(dev))
5000 			flags |= IFF_RUNNING;
5001 		if (netif_carrier_ok(dev))
5002 			flags |= IFF_LOWER_UP;
5003 		if (netif_dormant(dev))
5004 			flags |= IFF_DORMANT;
5005 	}
5006 
5007 	return flags;
5008 }
5009 EXPORT_SYMBOL(dev_get_flags);
5010 
5011 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5012 {
5013 	unsigned int old_flags = dev->flags;
5014 	int ret;
5015 
5016 	ASSERT_RTNL();
5017 
5018 	/*
5019 	 *	Set the flags on our device.
5020 	 */
5021 
5022 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5023 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5024 			       IFF_AUTOMEDIA)) |
5025 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5026 				    IFF_ALLMULTI));
5027 
5028 	/*
5029 	 *	Load in the correct multicast list now the flags have changed.
5030 	 */
5031 
5032 	if ((old_flags ^ flags) & IFF_MULTICAST)
5033 		dev_change_rx_flags(dev, IFF_MULTICAST);
5034 
5035 	dev_set_rx_mode(dev);
5036 
5037 	/*
5038 	 *	Have we downed the interface. We handle IFF_UP ourselves
5039 	 *	according to user attempts to set it, rather than blindly
5040 	 *	setting it.
5041 	 */
5042 
5043 	ret = 0;
5044 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5045 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5046 
5047 		if (!ret)
5048 			dev_set_rx_mode(dev);
5049 	}
5050 
5051 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5052 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5053 
5054 		dev->gflags ^= IFF_PROMISC;
5055 		dev_set_promiscuity(dev, inc);
5056 	}
5057 
5058 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5059 	   is important. Some (broken) drivers set IFF_PROMISC, when
5060 	   IFF_ALLMULTI is requested not asking us and not reporting.
5061 	 */
5062 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5063 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5064 
5065 		dev->gflags ^= IFF_ALLMULTI;
5066 		dev_set_allmulti(dev, inc);
5067 	}
5068 
5069 	return ret;
5070 }
5071 
5072 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
5073 {
5074 	unsigned int changes = dev->flags ^ old_flags;
5075 
5076 	if (changes & IFF_UP) {
5077 		if (dev->flags & IFF_UP)
5078 			call_netdevice_notifiers(NETDEV_UP, dev);
5079 		else
5080 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5081 	}
5082 
5083 	if (dev->flags & IFF_UP &&
5084 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5085 		struct netdev_notifier_change_info change_info;
5086 
5087 		change_info.flags_changed = changes;
5088 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5089 					      &change_info.info);
5090 	}
5091 }
5092 
5093 /**
5094  *	dev_change_flags - change device settings
5095  *	@dev: device
5096  *	@flags: device state flags
5097  *
5098  *	Change settings on device based state flags. The flags are
5099  *	in the userspace exported format.
5100  */
5101 int dev_change_flags(struct net_device *dev, unsigned int flags)
5102 {
5103 	int ret;
5104 	unsigned int changes, old_flags = dev->flags;
5105 
5106 	ret = __dev_change_flags(dev, flags);
5107 	if (ret < 0)
5108 		return ret;
5109 
5110 	changes = old_flags ^ dev->flags;
5111 	if (changes)
5112 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
5113 
5114 	__dev_notify_flags(dev, old_flags);
5115 	return ret;
5116 }
5117 EXPORT_SYMBOL(dev_change_flags);
5118 
5119 /**
5120  *	dev_set_mtu - Change maximum transfer unit
5121  *	@dev: device
5122  *	@new_mtu: new transfer unit
5123  *
5124  *	Change the maximum transfer size of the network device.
5125  */
5126 int dev_set_mtu(struct net_device *dev, int new_mtu)
5127 {
5128 	const struct net_device_ops *ops = dev->netdev_ops;
5129 	int err;
5130 
5131 	if (new_mtu == dev->mtu)
5132 		return 0;
5133 
5134 	/*	MTU must be positive.	 */
5135 	if (new_mtu < 0)
5136 		return -EINVAL;
5137 
5138 	if (!netif_device_present(dev))
5139 		return -ENODEV;
5140 
5141 	err = 0;
5142 	if (ops->ndo_change_mtu)
5143 		err = ops->ndo_change_mtu(dev, new_mtu);
5144 	else
5145 		dev->mtu = new_mtu;
5146 
5147 	if (!err)
5148 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5149 	return err;
5150 }
5151 EXPORT_SYMBOL(dev_set_mtu);
5152 
5153 /**
5154  *	dev_set_group - Change group this device belongs to
5155  *	@dev: device
5156  *	@new_group: group this device should belong to
5157  */
5158 void dev_set_group(struct net_device *dev, int new_group)
5159 {
5160 	dev->group = new_group;
5161 }
5162 EXPORT_SYMBOL(dev_set_group);
5163 
5164 /**
5165  *	dev_set_mac_address - Change Media Access Control Address
5166  *	@dev: device
5167  *	@sa: new address
5168  *
5169  *	Change the hardware (MAC) address of the device
5170  */
5171 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5172 {
5173 	const struct net_device_ops *ops = dev->netdev_ops;
5174 	int err;
5175 
5176 	if (!ops->ndo_set_mac_address)
5177 		return -EOPNOTSUPP;
5178 	if (sa->sa_family != dev->type)
5179 		return -EINVAL;
5180 	if (!netif_device_present(dev))
5181 		return -ENODEV;
5182 	err = ops->ndo_set_mac_address(dev, sa);
5183 	if (err)
5184 		return err;
5185 	dev->addr_assign_type = NET_ADDR_SET;
5186 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5187 	add_device_randomness(dev->dev_addr, dev->addr_len);
5188 	return 0;
5189 }
5190 EXPORT_SYMBOL(dev_set_mac_address);
5191 
5192 /**
5193  *	dev_change_carrier - Change device carrier
5194  *	@dev: device
5195  *	@new_carrier: new value
5196  *
5197  *	Change device carrier
5198  */
5199 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5200 {
5201 	const struct net_device_ops *ops = dev->netdev_ops;
5202 
5203 	if (!ops->ndo_change_carrier)
5204 		return -EOPNOTSUPP;
5205 	if (!netif_device_present(dev))
5206 		return -ENODEV;
5207 	return ops->ndo_change_carrier(dev, new_carrier);
5208 }
5209 EXPORT_SYMBOL(dev_change_carrier);
5210 
5211 /**
5212  *	dev_get_phys_port_id - Get device physical port ID
5213  *	@dev: device
5214  *	@ppid: port ID
5215  *
5216  *	Get device physical port ID
5217  */
5218 int dev_get_phys_port_id(struct net_device *dev,
5219 			 struct netdev_phys_port_id *ppid)
5220 {
5221 	const struct net_device_ops *ops = dev->netdev_ops;
5222 
5223 	if (!ops->ndo_get_phys_port_id)
5224 		return -EOPNOTSUPP;
5225 	return ops->ndo_get_phys_port_id(dev, ppid);
5226 }
5227 EXPORT_SYMBOL(dev_get_phys_port_id);
5228 
5229 /**
5230  *	dev_new_index	-	allocate an ifindex
5231  *	@net: the applicable net namespace
5232  *
5233  *	Returns a suitable unique value for a new device interface
5234  *	number.  The caller must hold the rtnl semaphore or the
5235  *	dev_base_lock to be sure it remains unique.
5236  */
5237 static int dev_new_index(struct net *net)
5238 {
5239 	int ifindex = net->ifindex;
5240 	for (;;) {
5241 		if (++ifindex <= 0)
5242 			ifindex = 1;
5243 		if (!__dev_get_by_index(net, ifindex))
5244 			return net->ifindex = ifindex;
5245 	}
5246 }
5247 
5248 /* Delayed registration/unregisteration */
5249 static LIST_HEAD(net_todo_list);
5250 
5251 static void net_set_todo(struct net_device *dev)
5252 {
5253 	list_add_tail(&dev->todo_list, &net_todo_list);
5254 }
5255 
5256 static void rollback_registered_many(struct list_head *head)
5257 {
5258 	struct net_device *dev, *tmp;
5259 
5260 	BUG_ON(dev_boot_phase);
5261 	ASSERT_RTNL();
5262 
5263 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5264 		/* Some devices call without registering
5265 		 * for initialization unwind. Remove those
5266 		 * devices and proceed with the remaining.
5267 		 */
5268 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5269 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5270 				 dev->name, dev);
5271 
5272 			WARN_ON(1);
5273 			list_del(&dev->unreg_list);
5274 			continue;
5275 		}
5276 		dev->dismantle = true;
5277 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5278 	}
5279 
5280 	/* If device is running, close it first. */
5281 	dev_close_many(head);
5282 
5283 	list_for_each_entry(dev, head, unreg_list) {
5284 		/* And unlink it from device chain. */
5285 		unlist_netdevice(dev);
5286 
5287 		dev->reg_state = NETREG_UNREGISTERING;
5288 	}
5289 
5290 	synchronize_net();
5291 
5292 	list_for_each_entry(dev, head, unreg_list) {
5293 		/* Shutdown queueing discipline. */
5294 		dev_shutdown(dev);
5295 
5296 
5297 		/* Notify protocols, that we are about to destroy
5298 		   this device. They should clean all the things.
5299 		*/
5300 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5301 
5302 		if (!dev->rtnl_link_ops ||
5303 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5304 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5305 
5306 		/*
5307 		 *	Flush the unicast and multicast chains
5308 		 */
5309 		dev_uc_flush(dev);
5310 		dev_mc_flush(dev);
5311 
5312 		if (dev->netdev_ops->ndo_uninit)
5313 			dev->netdev_ops->ndo_uninit(dev);
5314 
5315 		/* Notifier chain MUST detach us all upper devices. */
5316 		WARN_ON(netdev_has_any_upper_dev(dev));
5317 
5318 		/* Remove entries from kobject tree */
5319 		netdev_unregister_kobject(dev);
5320 #ifdef CONFIG_XPS
5321 		/* Remove XPS queueing entries */
5322 		netif_reset_xps_queues_gt(dev, 0);
5323 #endif
5324 	}
5325 
5326 	synchronize_net();
5327 
5328 	list_for_each_entry(dev, head, unreg_list)
5329 		dev_put(dev);
5330 }
5331 
5332 static void rollback_registered(struct net_device *dev)
5333 {
5334 	LIST_HEAD(single);
5335 
5336 	list_add(&dev->unreg_list, &single);
5337 	rollback_registered_many(&single);
5338 	list_del(&single);
5339 }
5340 
5341 static netdev_features_t netdev_fix_features(struct net_device *dev,
5342 	netdev_features_t features)
5343 {
5344 	/* Fix illegal checksum combinations */
5345 	if ((features & NETIF_F_HW_CSUM) &&
5346 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5347 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5348 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5349 	}
5350 
5351 	/* TSO requires that SG is present as well. */
5352 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5353 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5354 		features &= ~NETIF_F_ALL_TSO;
5355 	}
5356 
5357 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5358 					!(features & NETIF_F_IP_CSUM)) {
5359 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5360 		features &= ~NETIF_F_TSO;
5361 		features &= ~NETIF_F_TSO_ECN;
5362 	}
5363 
5364 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5365 					 !(features & NETIF_F_IPV6_CSUM)) {
5366 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5367 		features &= ~NETIF_F_TSO6;
5368 	}
5369 
5370 	/* TSO ECN requires that TSO is present as well. */
5371 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5372 		features &= ~NETIF_F_TSO_ECN;
5373 
5374 	/* Software GSO depends on SG. */
5375 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5376 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5377 		features &= ~NETIF_F_GSO;
5378 	}
5379 
5380 	/* UFO needs SG and checksumming */
5381 	if (features & NETIF_F_UFO) {
5382 		/* maybe split UFO into V4 and V6? */
5383 		if (!((features & NETIF_F_GEN_CSUM) ||
5384 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5385 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5386 			netdev_dbg(dev,
5387 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5388 			features &= ~NETIF_F_UFO;
5389 		}
5390 
5391 		if (!(features & NETIF_F_SG)) {
5392 			netdev_dbg(dev,
5393 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5394 			features &= ~NETIF_F_UFO;
5395 		}
5396 	}
5397 
5398 	return features;
5399 }
5400 
5401 int __netdev_update_features(struct net_device *dev)
5402 {
5403 	netdev_features_t features;
5404 	int err = 0;
5405 
5406 	ASSERT_RTNL();
5407 
5408 	features = netdev_get_wanted_features(dev);
5409 
5410 	if (dev->netdev_ops->ndo_fix_features)
5411 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5412 
5413 	/* driver might be less strict about feature dependencies */
5414 	features = netdev_fix_features(dev, features);
5415 
5416 	if (dev->features == features)
5417 		return 0;
5418 
5419 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5420 		&dev->features, &features);
5421 
5422 	if (dev->netdev_ops->ndo_set_features)
5423 		err = dev->netdev_ops->ndo_set_features(dev, features);
5424 
5425 	if (unlikely(err < 0)) {
5426 		netdev_err(dev,
5427 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5428 			err, &features, &dev->features);
5429 		return -1;
5430 	}
5431 
5432 	if (!err)
5433 		dev->features = features;
5434 
5435 	return 1;
5436 }
5437 
5438 /**
5439  *	netdev_update_features - recalculate device features
5440  *	@dev: the device to check
5441  *
5442  *	Recalculate dev->features set and send notifications if it
5443  *	has changed. Should be called after driver or hardware dependent
5444  *	conditions might have changed that influence the features.
5445  */
5446 void netdev_update_features(struct net_device *dev)
5447 {
5448 	if (__netdev_update_features(dev))
5449 		netdev_features_change(dev);
5450 }
5451 EXPORT_SYMBOL(netdev_update_features);
5452 
5453 /**
5454  *	netdev_change_features - recalculate device features
5455  *	@dev: the device to check
5456  *
5457  *	Recalculate dev->features set and send notifications even
5458  *	if they have not changed. Should be called instead of
5459  *	netdev_update_features() if also dev->vlan_features might
5460  *	have changed to allow the changes to be propagated to stacked
5461  *	VLAN devices.
5462  */
5463 void netdev_change_features(struct net_device *dev)
5464 {
5465 	__netdev_update_features(dev);
5466 	netdev_features_change(dev);
5467 }
5468 EXPORT_SYMBOL(netdev_change_features);
5469 
5470 /**
5471  *	netif_stacked_transfer_operstate -	transfer operstate
5472  *	@rootdev: the root or lower level device to transfer state from
5473  *	@dev: the device to transfer operstate to
5474  *
5475  *	Transfer operational state from root to device. This is normally
5476  *	called when a stacking relationship exists between the root
5477  *	device and the device(a leaf device).
5478  */
5479 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5480 					struct net_device *dev)
5481 {
5482 	if (rootdev->operstate == IF_OPER_DORMANT)
5483 		netif_dormant_on(dev);
5484 	else
5485 		netif_dormant_off(dev);
5486 
5487 	if (netif_carrier_ok(rootdev)) {
5488 		if (!netif_carrier_ok(dev))
5489 			netif_carrier_on(dev);
5490 	} else {
5491 		if (netif_carrier_ok(dev))
5492 			netif_carrier_off(dev);
5493 	}
5494 }
5495 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5496 
5497 #ifdef CONFIG_RPS
5498 static int netif_alloc_rx_queues(struct net_device *dev)
5499 {
5500 	unsigned int i, count = dev->num_rx_queues;
5501 	struct netdev_rx_queue *rx;
5502 
5503 	BUG_ON(count < 1);
5504 
5505 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5506 	if (!rx)
5507 		return -ENOMEM;
5508 
5509 	dev->_rx = rx;
5510 
5511 	for (i = 0; i < count; i++)
5512 		rx[i].dev = dev;
5513 	return 0;
5514 }
5515 #endif
5516 
5517 static void netdev_init_one_queue(struct net_device *dev,
5518 				  struct netdev_queue *queue, void *_unused)
5519 {
5520 	/* Initialize queue lock */
5521 	spin_lock_init(&queue->_xmit_lock);
5522 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5523 	queue->xmit_lock_owner = -1;
5524 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5525 	queue->dev = dev;
5526 #ifdef CONFIG_BQL
5527 	dql_init(&queue->dql, HZ);
5528 #endif
5529 }
5530 
5531 static void netif_free_tx_queues(struct net_device *dev)
5532 {
5533 	if (is_vmalloc_addr(dev->_tx))
5534 		vfree(dev->_tx);
5535 	else
5536 		kfree(dev->_tx);
5537 }
5538 
5539 static int netif_alloc_netdev_queues(struct net_device *dev)
5540 {
5541 	unsigned int count = dev->num_tx_queues;
5542 	struct netdev_queue *tx;
5543 	size_t sz = count * sizeof(*tx);
5544 
5545 	BUG_ON(count < 1 || count > 0xffff);
5546 
5547 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5548 	if (!tx) {
5549 		tx = vzalloc(sz);
5550 		if (!tx)
5551 			return -ENOMEM;
5552 	}
5553 	dev->_tx = tx;
5554 
5555 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5556 	spin_lock_init(&dev->tx_global_lock);
5557 
5558 	return 0;
5559 }
5560 
5561 /**
5562  *	register_netdevice	- register a network device
5563  *	@dev: device to register
5564  *
5565  *	Take a completed network device structure and add it to the kernel
5566  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5567  *	chain. 0 is returned on success. A negative errno code is returned
5568  *	on a failure to set up the device, or if the name is a duplicate.
5569  *
5570  *	Callers must hold the rtnl semaphore. You may want
5571  *	register_netdev() instead of this.
5572  *
5573  *	BUGS:
5574  *	The locking appears insufficient to guarantee two parallel registers
5575  *	will not get the same name.
5576  */
5577 
5578 int register_netdevice(struct net_device *dev)
5579 {
5580 	int ret;
5581 	struct net *net = dev_net(dev);
5582 
5583 	BUG_ON(dev_boot_phase);
5584 	ASSERT_RTNL();
5585 
5586 	might_sleep();
5587 
5588 	/* When net_device's are persistent, this will be fatal. */
5589 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5590 	BUG_ON(!net);
5591 
5592 	spin_lock_init(&dev->addr_list_lock);
5593 	netdev_set_addr_lockdep_class(dev);
5594 
5595 	dev->iflink = -1;
5596 
5597 	ret = dev_get_valid_name(net, dev, dev->name);
5598 	if (ret < 0)
5599 		goto out;
5600 
5601 	/* Init, if this function is available */
5602 	if (dev->netdev_ops->ndo_init) {
5603 		ret = dev->netdev_ops->ndo_init(dev);
5604 		if (ret) {
5605 			if (ret > 0)
5606 				ret = -EIO;
5607 			goto out;
5608 		}
5609 	}
5610 
5611 	if (((dev->hw_features | dev->features) &
5612 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5613 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5614 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5615 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5616 		ret = -EINVAL;
5617 		goto err_uninit;
5618 	}
5619 
5620 	ret = -EBUSY;
5621 	if (!dev->ifindex)
5622 		dev->ifindex = dev_new_index(net);
5623 	else if (__dev_get_by_index(net, dev->ifindex))
5624 		goto err_uninit;
5625 
5626 	if (dev->iflink == -1)
5627 		dev->iflink = dev->ifindex;
5628 
5629 	/* Transfer changeable features to wanted_features and enable
5630 	 * software offloads (GSO and GRO).
5631 	 */
5632 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5633 	dev->features |= NETIF_F_SOFT_FEATURES;
5634 	dev->wanted_features = dev->features & dev->hw_features;
5635 
5636 	/* Turn on no cache copy if HW is doing checksum */
5637 	if (!(dev->flags & IFF_LOOPBACK)) {
5638 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5639 		if (dev->features & NETIF_F_ALL_CSUM) {
5640 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5641 			dev->features |= NETIF_F_NOCACHE_COPY;
5642 		}
5643 	}
5644 
5645 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5646 	 */
5647 	dev->vlan_features |= NETIF_F_HIGHDMA;
5648 
5649 	/* Make NETIF_F_SG inheritable to tunnel devices.
5650 	 */
5651 	dev->hw_enc_features |= NETIF_F_SG;
5652 
5653 	/* Make NETIF_F_SG inheritable to MPLS.
5654 	 */
5655 	dev->mpls_features |= NETIF_F_SG;
5656 
5657 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5658 	ret = notifier_to_errno(ret);
5659 	if (ret)
5660 		goto err_uninit;
5661 
5662 	ret = netdev_register_kobject(dev);
5663 	if (ret)
5664 		goto err_uninit;
5665 	dev->reg_state = NETREG_REGISTERED;
5666 
5667 	__netdev_update_features(dev);
5668 
5669 	/*
5670 	 *	Default initial state at registry is that the
5671 	 *	device is present.
5672 	 */
5673 
5674 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5675 
5676 	linkwatch_init_dev(dev);
5677 
5678 	dev_init_scheduler(dev);
5679 	dev_hold(dev);
5680 	list_netdevice(dev);
5681 	add_device_randomness(dev->dev_addr, dev->addr_len);
5682 
5683 	/* If the device has permanent device address, driver should
5684 	 * set dev_addr and also addr_assign_type should be set to
5685 	 * NET_ADDR_PERM (default value).
5686 	 */
5687 	if (dev->addr_assign_type == NET_ADDR_PERM)
5688 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5689 
5690 	/* Notify protocols, that a new device appeared. */
5691 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5692 	ret = notifier_to_errno(ret);
5693 	if (ret) {
5694 		rollback_registered(dev);
5695 		dev->reg_state = NETREG_UNREGISTERED;
5696 	}
5697 	/*
5698 	 *	Prevent userspace races by waiting until the network
5699 	 *	device is fully setup before sending notifications.
5700 	 */
5701 	if (!dev->rtnl_link_ops ||
5702 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5703 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5704 
5705 out:
5706 	return ret;
5707 
5708 err_uninit:
5709 	if (dev->netdev_ops->ndo_uninit)
5710 		dev->netdev_ops->ndo_uninit(dev);
5711 	goto out;
5712 }
5713 EXPORT_SYMBOL(register_netdevice);
5714 
5715 /**
5716  *	init_dummy_netdev	- init a dummy network device for NAPI
5717  *	@dev: device to init
5718  *
5719  *	This takes a network device structure and initialize the minimum
5720  *	amount of fields so it can be used to schedule NAPI polls without
5721  *	registering a full blown interface. This is to be used by drivers
5722  *	that need to tie several hardware interfaces to a single NAPI
5723  *	poll scheduler due to HW limitations.
5724  */
5725 int init_dummy_netdev(struct net_device *dev)
5726 {
5727 	/* Clear everything. Note we don't initialize spinlocks
5728 	 * are they aren't supposed to be taken by any of the
5729 	 * NAPI code and this dummy netdev is supposed to be
5730 	 * only ever used for NAPI polls
5731 	 */
5732 	memset(dev, 0, sizeof(struct net_device));
5733 
5734 	/* make sure we BUG if trying to hit standard
5735 	 * register/unregister code path
5736 	 */
5737 	dev->reg_state = NETREG_DUMMY;
5738 
5739 	/* NAPI wants this */
5740 	INIT_LIST_HEAD(&dev->napi_list);
5741 
5742 	/* a dummy interface is started by default */
5743 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5744 	set_bit(__LINK_STATE_START, &dev->state);
5745 
5746 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5747 	 * because users of this 'device' dont need to change
5748 	 * its refcount.
5749 	 */
5750 
5751 	return 0;
5752 }
5753 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5754 
5755 
5756 /**
5757  *	register_netdev	- register a network device
5758  *	@dev: device to register
5759  *
5760  *	Take a completed network device structure and add it to the kernel
5761  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5762  *	chain. 0 is returned on success. A negative errno code is returned
5763  *	on a failure to set up the device, or if the name is a duplicate.
5764  *
5765  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5766  *	and expands the device name if you passed a format string to
5767  *	alloc_netdev.
5768  */
5769 int register_netdev(struct net_device *dev)
5770 {
5771 	int err;
5772 
5773 	rtnl_lock();
5774 	err = register_netdevice(dev);
5775 	rtnl_unlock();
5776 	return err;
5777 }
5778 EXPORT_SYMBOL(register_netdev);
5779 
5780 int netdev_refcnt_read(const struct net_device *dev)
5781 {
5782 	int i, refcnt = 0;
5783 
5784 	for_each_possible_cpu(i)
5785 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5786 	return refcnt;
5787 }
5788 EXPORT_SYMBOL(netdev_refcnt_read);
5789 
5790 /**
5791  * netdev_wait_allrefs - wait until all references are gone.
5792  * @dev: target net_device
5793  *
5794  * This is called when unregistering network devices.
5795  *
5796  * Any protocol or device that holds a reference should register
5797  * for netdevice notification, and cleanup and put back the
5798  * reference if they receive an UNREGISTER event.
5799  * We can get stuck here if buggy protocols don't correctly
5800  * call dev_put.
5801  */
5802 static void netdev_wait_allrefs(struct net_device *dev)
5803 {
5804 	unsigned long rebroadcast_time, warning_time;
5805 	int refcnt;
5806 
5807 	linkwatch_forget_dev(dev);
5808 
5809 	rebroadcast_time = warning_time = jiffies;
5810 	refcnt = netdev_refcnt_read(dev);
5811 
5812 	while (refcnt != 0) {
5813 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5814 			rtnl_lock();
5815 
5816 			/* Rebroadcast unregister notification */
5817 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5818 
5819 			__rtnl_unlock();
5820 			rcu_barrier();
5821 			rtnl_lock();
5822 
5823 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5824 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5825 				     &dev->state)) {
5826 				/* We must not have linkwatch events
5827 				 * pending on unregister. If this
5828 				 * happens, we simply run the queue
5829 				 * unscheduled, resulting in a noop
5830 				 * for this device.
5831 				 */
5832 				linkwatch_run_queue();
5833 			}
5834 
5835 			__rtnl_unlock();
5836 
5837 			rebroadcast_time = jiffies;
5838 		}
5839 
5840 		msleep(250);
5841 
5842 		refcnt = netdev_refcnt_read(dev);
5843 
5844 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5845 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5846 				 dev->name, refcnt);
5847 			warning_time = jiffies;
5848 		}
5849 	}
5850 }
5851 
5852 /* The sequence is:
5853  *
5854  *	rtnl_lock();
5855  *	...
5856  *	register_netdevice(x1);
5857  *	register_netdevice(x2);
5858  *	...
5859  *	unregister_netdevice(y1);
5860  *	unregister_netdevice(y2);
5861  *      ...
5862  *	rtnl_unlock();
5863  *	free_netdev(y1);
5864  *	free_netdev(y2);
5865  *
5866  * We are invoked by rtnl_unlock().
5867  * This allows us to deal with problems:
5868  * 1) We can delete sysfs objects which invoke hotplug
5869  *    without deadlocking with linkwatch via keventd.
5870  * 2) Since we run with the RTNL semaphore not held, we can sleep
5871  *    safely in order to wait for the netdev refcnt to drop to zero.
5872  *
5873  * We must not return until all unregister events added during
5874  * the interval the lock was held have been completed.
5875  */
5876 void netdev_run_todo(void)
5877 {
5878 	struct list_head list;
5879 
5880 	/* Snapshot list, allow later requests */
5881 	list_replace_init(&net_todo_list, &list);
5882 
5883 	__rtnl_unlock();
5884 
5885 
5886 	/* Wait for rcu callbacks to finish before next phase */
5887 	if (!list_empty(&list))
5888 		rcu_barrier();
5889 
5890 	while (!list_empty(&list)) {
5891 		struct net_device *dev
5892 			= list_first_entry(&list, struct net_device, todo_list);
5893 		list_del(&dev->todo_list);
5894 
5895 		rtnl_lock();
5896 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5897 		__rtnl_unlock();
5898 
5899 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5900 			pr_err("network todo '%s' but state %d\n",
5901 			       dev->name, dev->reg_state);
5902 			dump_stack();
5903 			continue;
5904 		}
5905 
5906 		dev->reg_state = NETREG_UNREGISTERED;
5907 
5908 		on_each_cpu(flush_backlog, dev, 1);
5909 
5910 		netdev_wait_allrefs(dev);
5911 
5912 		/* paranoia */
5913 		BUG_ON(netdev_refcnt_read(dev));
5914 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5915 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5916 		WARN_ON(dev->dn_ptr);
5917 
5918 		if (dev->destructor)
5919 			dev->destructor(dev);
5920 
5921 		/* Free network device */
5922 		kobject_put(&dev->dev.kobj);
5923 	}
5924 }
5925 
5926 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5927  * fields in the same order, with only the type differing.
5928  */
5929 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5930 			     const struct net_device_stats *netdev_stats)
5931 {
5932 #if BITS_PER_LONG == 64
5933 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5934 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5935 #else
5936 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5937 	const unsigned long *src = (const unsigned long *)netdev_stats;
5938 	u64 *dst = (u64 *)stats64;
5939 
5940 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5941 		     sizeof(*stats64) / sizeof(u64));
5942 	for (i = 0; i < n; i++)
5943 		dst[i] = src[i];
5944 #endif
5945 }
5946 EXPORT_SYMBOL(netdev_stats_to_stats64);
5947 
5948 /**
5949  *	dev_get_stats	- get network device statistics
5950  *	@dev: device to get statistics from
5951  *	@storage: place to store stats
5952  *
5953  *	Get network statistics from device. Return @storage.
5954  *	The device driver may provide its own method by setting
5955  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5956  *	otherwise the internal statistics structure is used.
5957  */
5958 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5959 					struct rtnl_link_stats64 *storage)
5960 {
5961 	const struct net_device_ops *ops = dev->netdev_ops;
5962 
5963 	if (ops->ndo_get_stats64) {
5964 		memset(storage, 0, sizeof(*storage));
5965 		ops->ndo_get_stats64(dev, storage);
5966 	} else if (ops->ndo_get_stats) {
5967 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5968 	} else {
5969 		netdev_stats_to_stats64(storage, &dev->stats);
5970 	}
5971 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5972 	return storage;
5973 }
5974 EXPORT_SYMBOL(dev_get_stats);
5975 
5976 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5977 {
5978 	struct netdev_queue *queue = dev_ingress_queue(dev);
5979 
5980 #ifdef CONFIG_NET_CLS_ACT
5981 	if (queue)
5982 		return queue;
5983 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5984 	if (!queue)
5985 		return NULL;
5986 	netdev_init_one_queue(dev, queue, NULL);
5987 	queue->qdisc = &noop_qdisc;
5988 	queue->qdisc_sleeping = &noop_qdisc;
5989 	rcu_assign_pointer(dev->ingress_queue, queue);
5990 #endif
5991 	return queue;
5992 }
5993 
5994 static const struct ethtool_ops default_ethtool_ops;
5995 
5996 void netdev_set_default_ethtool_ops(struct net_device *dev,
5997 				    const struct ethtool_ops *ops)
5998 {
5999 	if (dev->ethtool_ops == &default_ethtool_ops)
6000 		dev->ethtool_ops = ops;
6001 }
6002 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6003 
6004 /**
6005  *	alloc_netdev_mqs - allocate network device
6006  *	@sizeof_priv:	size of private data to allocate space for
6007  *	@name:		device name format string
6008  *	@setup:		callback to initialize device
6009  *	@txqs:		the number of TX subqueues to allocate
6010  *	@rxqs:		the number of RX subqueues to allocate
6011  *
6012  *	Allocates a struct net_device with private data area for driver use
6013  *	and performs basic initialization.  Also allocates subquue structs
6014  *	for each queue on the device.
6015  */
6016 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6017 		void (*setup)(struct net_device *),
6018 		unsigned int txqs, unsigned int rxqs)
6019 {
6020 	struct net_device *dev;
6021 	size_t alloc_size;
6022 	struct net_device *p;
6023 
6024 	BUG_ON(strlen(name) >= sizeof(dev->name));
6025 
6026 	if (txqs < 1) {
6027 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6028 		return NULL;
6029 	}
6030 
6031 #ifdef CONFIG_RPS
6032 	if (rxqs < 1) {
6033 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6034 		return NULL;
6035 	}
6036 #endif
6037 
6038 	alloc_size = sizeof(struct net_device);
6039 	if (sizeof_priv) {
6040 		/* ensure 32-byte alignment of private area */
6041 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6042 		alloc_size += sizeof_priv;
6043 	}
6044 	/* ensure 32-byte alignment of whole construct */
6045 	alloc_size += NETDEV_ALIGN - 1;
6046 
6047 	p = kzalloc(alloc_size, GFP_KERNEL);
6048 	if (!p)
6049 		return NULL;
6050 
6051 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6052 	dev->padded = (char *)dev - (char *)p;
6053 
6054 	dev->pcpu_refcnt = alloc_percpu(int);
6055 	if (!dev->pcpu_refcnt)
6056 		goto free_p;
6057 
6058 	if (dev_addr_init(dev))
6059 		goto free_pcpu;
6060 
6061 	dev_mc_init(dev);
6062 	dev_uc_init(dev);
6063 
6064 	dev_net_set(dev, &init_net);
6065 
6066 	dev->gso_max_size = GSO_MAX_SIZE;
6067 	dev->gso_max_segs = GSO_MAX_SEGS;
6068 
6069 	INIT_LIST_HEAD(&dev->napi_list);
6070 	INIT_LIST_HEAD(&dev->unreg_list);
6071 	INIT_LIST_HEAD(&dev->link_watch_list);
6072 	INIT_LIST_HEAD(&dev->upper_dev_list);
6073 	INIT_LIST_HEAD(&dev->lower_dev_list);
6074 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6075 	setup(dev);
6076 
6077 	dev->num_tx_queues = txqs;
6078 	dev->real_num_tx_queues = txqs;
6079 	if (netif_alloc_netdev_queues(dev))
6080 		goto free_all;
6081 
6082 #ifdef CONFIG_RPS
6083 	dev->num_rx_queues = rxqs;
6084 	dev->real_num_rx_queues = rxqs;
6085 	if (netif_alloc_rx_queues(dev))
6086 		goto free_all;
6087 #endif
6088 
6089 	strcpy(dev->name, name);
6090 	dev->group = INIT_NETDEV_GROUP;
6091 	if (!dev->ethtool_ops)
6092 		dev->ethtool_ops = &default_ethtool_ops;
6093 	return dev;
6094 
6095 free_all:
6096 	free_netdev(dev);
6097 	return NULL;
6098 
6099 free_pcpu:
6100 	free_percpu(dev->pcpu_refcnt);
6101 	netif_free_tx_queues(dev);
6102 #ifdef CONFIG_RPS
6103 	kfree(dev->_rx);
6104 #endif
6105 
6106 free_p:
6107 	kfree(p);
6108 	return NULL;
6109 }
6110 EXPORT_SYMBOL(alloc_netdev_mqs);
6111 
6112 /**
6113  *	free_netdev - free network device
6114  *	@dev: device
6115  *
6116  *	This function does the last stage of destroying an allocated device
6117  * 	interface. The reference to the device object is released.
6118  *	If this is the last reference then it will be freed.
6119  */
6120 void free_netdev(struct net_device *dev)
6121 {
6122 	struct napi_struct *p, *n;
6123 
6124 	release_net(dev_net(dev));
6125 
6126 	netif_free_tx_queues(dev);
6127 #ifdef CONFIG_RPS
6128 	kfree(dev->_rx);
6129 #endif
6130 
6131 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6132 
6133 	/* Flush device addresses */
6134 	dev_addr_flush(dev);
6135 
6136 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6137 		netif_napi_del(p);
6138 
6139 	free_percpu(dev->pcpu_refcnt);
6140 	dev->pcpu_refcnt = NULL;
6141 
6142 	/*  Compatibility with error handling in drivers */
6143 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6144 		kfree((char *)dev - dev->padded);
6145 		return;
6146 	}
6147 
6148 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6149 	dev->reg_state = NETREG_RELEASED;
6150 
6151 	/* will free via device release */
6152 	put_device(&dev->dev);
6153 }
6154 EXPORT_SYMBOL(free_netdev);
6155 
6156 /**
6157  *	synchronize_net -  Synchronize with packet receive processing
6158  *
6159  *	Wait for packets currently being received to be done.
6160  *	Does not block later packets from starting.
6161  */
6162 void synchronize_net(void)
6163 {
6164 	might_sleep();
6165 	if (rtnl_is_locked())
6166 		synchronize_rcu_expedited();
6167 	else
6168 		synchronize_rcu();
6169 }
6170 EXPORT_SYMBOL(synchronize_net);
6171 
6172 /**
6173  *	unregister_netdevice_queue - remove device from the kernel
6174  *	@dev: device
6175  *	@head: list
6176  *
6177  *	This function shuts down a device interface and removes it
6178  *	from the kernel tables.
6179  *	If head not NULL, device is queued to be unregistered later.
6180  *
6181  *	Callers must hold the rtnl semaphore.  You may want
6182  *	unregister_netdev() instead of this.
6183  */
6184 
6185 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6186 {
6187 	ASSERT_RTNL();
6188 
6189 	if (head) {
6190 		list_move_tail(&dev->unreg_list, head);
6191 	} else {
6192 		rollback_registered(dev);
6193 		/* Finish processing unregister after unlock */
6194 		net_set_todo(dev);
6195 	}
6196 }
6197 EXPORT_SYMBOL(unregister_netdevice_queue);
6198 
6199 /**
6200  *	unregister_netdevice_many - unregister many devices
6201  *	@head: list of devices
6202  */
6203 void unregister_netdevice_many(struct list_head *head)
6204 {
6205 	struct net_device *dev;
6206 
6207 	if (!list_empty(head)) {
6208 		rollback_registered_many(head);
6209 		list_for_each_entry(dev, head, unreg_list)
6210 			net_set_todo(dev);
6211 	}
6212 }
6213 EXPORT_SYMBOL(unregister_netdevice_many);
6214 
6215 /**
6216  *	unregister_netdev - remove device from the kernel
6217  *	@dev: device
6218  *
6219  *	This function shuts down a device interface and removes it
6220  *	from the kernel tables.
6221  *
6222  *	This is just a wrapper for unregister_netdevice that takes
6223  *	the rtnl semaphore.  In general you want to use this and not
6224  *	unregister_netdevice.
6225  */
6226 void unregister_netdev(struct net_device *dev)
6227 {
6228 	rtnl_lock();
6229 	unregister_netdevice(dev);
6230 	rtnl_unlock();
6231 }
6232 EXPORT_SYMBOL(unregister_netdev);
6233 
6234 /**
6235  *	dev_change_net_namespace - move device to different nethost namespace
6236  *	@dev: device
6237  *	@net: network namespace
6238  *	@pat: If not NULL name pattern to try if the current device name
6239  *	      is already taken in the destination network namespace.
6240  *
6241  *	This function shuts down a device interface and moves it
6242  *	to a new network namespace. On success 0 is returned, on
6243  *	a failure a netagive errno code is returned.
6244  *
6245  *	Callers must hold the rtnl semaphore.
6246  */
6247 
6248 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6249 {
6250 	int err;
6251 
6252 	ASSERT_RTNL();
6253 
6254 	/* Don't allow namespace local devices to be moved. */
6255 	err = -EINVAL;
6256 	if (dev->features & NETIF_F_NETNS_LOCAL)
6257 		goto out;
6258 
6259 	/* Ensure the device has been registrered */
6260 	if (dev->reg_state != NETREG_REGISTERED)
6261 		goto out;
6262 
6263 	/* Get out if there is nothing todo */
6264 	err = 0;
6265 	if (net_eq(dev_net(dev), net))
6266 		goto out;
6267 
6268 	/* Pick the destination device name, and ensure
6269 	 * we can use it in the destination network namespace.
6270 	 */
6271 	err = -EEXIST;
6272 	if (__dev_get_by_name(net, dev->name)) {
6273 		/* We get here if we can't use the current device name */
6274 		if (!pat)
6275 			goto out;
6276 		if (dev_get_valid_name(net, dev, pat) < 0)
6277 			goto out;
6278 	}
6279 
6280 	/*
6281 	 * And now a mini version of register_netdevice unregister_netdevice.
6282 	 */
6283 
6284 	/* If device is running close it first. */
6285 	dev_close(dev);
6286 
6287 	/* And unlink it from device chain */
6288 	err = -ENODEV;
6289 	unlist_netdevice(dev);
6290 
6291 	synchronize_net();
6292 
6293 	/* Shutdown queueing discipline. */
6294 	dev_shutdown(dev);
6295 
6296 	/* Notify protocols, that we are about to destroy
6297 	   this device. They should clean all the things.
6298 
6299 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6300 	   This is wanted because this way 8021q and macvlan know
6301 	   the device is just moving and can keep their slaves up.
6302 	*/
6303 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6304 	rcu_barrier();
6305 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6306 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6307 
6308 	/*
6309 	 *	Flush the unicast and multicast chains
6310 	 */
6311 	dev_uc_flush(dev);
6312 	dev_mc_flush(dev);
6313 
6314 	/* Send a netdev-removed uevent to the old namespace */
6315 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6316 
6317 	/* Actually switch the network namespace */
6318 	dev_net_set(dev, net);
6319 
6320 	/* If there is an ifindex conflict assign a new one */
6321 	if (__dev_get_by_index(net, dev->ifindex)) {
6322 		int iflink = (dev->iflink == dev->ifindex);
6323 		dev->ifindex = dev_new_index(net);
6324 		if (iflink)
6325 			dev->iflink = dev->ifindex;
6326 	}
6327 
6328 	/* Send a netdev-add uevent to the new namespace */
6329 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6330 
6331 	/* Fixup kobjects */
6332 	err = device_rename(&dev->dev, dev->name);
6333 	WARN_ON(err);
6334 
6335 	/* Add the device back in the hashes */
6336 	list_netdevice(dev);
6337 
6338 	/* Notify protocols, that a new device appeared. */
6339 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6340 
6341 	/*
6342 	 *	Prevent userspace races by waiting until the network
6343 	 *	device is fully setup before sending notifications.
6344 	 */
6345 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6346 
6347 	synchronize_net();
6348 	err = 0;
6349 out:
6350 	return err;
6351 }
6352 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6353 
6354 static int dev_cpu_callback(struct notifier_block *nfb,
6355 			    unsigned long action,
6356 			    void *ocpu)
6357 {
6358 	struct sk_buff **list_skb;
6359 	struct sk_buff *skb;
6360 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6361 	struct softnet_data *sd, *oldsd;
6362 
6363 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6364 		return NOTIFY_OK;
6365 
6366 	local_irq_disable();
6367 	cpu = smp_processor_id();
6368 	sd = &per_cpu(softnet_data, cpu);
6369 	oldsd = &per_cpu(softnet_data, oldcpu);
6370 
6371 	/* Find end of our completion_queue. */
6372 	list_skb = &sd->completion_queue;
6373 	while (*list_skb)
6374 		list_skb = &(*list_skb)->next;
6375 	/* Append completion queue from offline CPU. */
6376 	*list_skb = oldsd->completion_queue;
6377 	oldsd->completion_queue = NULL;
6378 
6379 	/* Append output queue from offline CPU. */
6380 	if (oldsd->output_queue) {
6381 		*sd->output_queue_tailp = oldsd->output_queue;
6382 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6383 		oldsd->output_queue = NULL;
6384 		oldsd->output_queue_tailp = &oldsd->output_queue;
6385 	}
6386 	/* Append NAPI poll list from offline CPU. */
6387 	if (!list_empty(&oldsd->poll_list)) {
6388 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6389 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6390 	}
6391 
6392 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6393 	local_irq_enable();
6394 
6395 	/* Process offline CPU's input_pkt_queue */
6396 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6397 		netif_rx(skb);
6398 		input_queue_head_incr(oldsd);
6399 	}
6400 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6401 		netif_rx(skb);
6402 		input_queue_head_incr(oldsd);
6403 	}
6404 
6405 	return NOTIFY_OK;
6406 }
6407 
6408 
6409 /**
6410  *	netdev_increment_features - increment feature set by one
6411  *	@all: current feature set
6412  *	@one: new feature set
6413  *	@mask: mask feature set
6414  *
6415  *	Computes a new feature set after adding a device with feature set
6416  *	@one to the master device with current feature set @all.  Will not
6417  *	enable anything that is off in @mask. Returns the new feature set.
6418  */
6419 netdev_features_t netdev_increment_features(netdev_features_t all,
6420 	netdev_features_t one, netdev_features_t mask)
6421 {
6422 	if (mask & NETIF_F_GEN_CSUM)
6423 		mask |= NETIF_F_ALL_CSUM;
6424 	mask |= NETIF_F_VLAN_CHALLENGED;
6425 
6426 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6427 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6428 
6429 	/* If one device supports hw checksumming, set for all. */
6430 	if (all & NETIF_F_GEN_CSUM)
6431 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6432 
6433 	return all;
6434 }
6435 EXPORT_SYMBOL(netdev_increment_features);
6436 
6437 static struct hlist_head * __net_init netdev_create_hash(void)
6438 {
6439 	int i;
6440 	struct hlist_head *hash;
6441 
6442 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6443 	if (hash != NULL)
6444 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6445 			INIT_HLIST_HEAD(&hash[i]);
6446 
6447 	return hash;
6448 }
6449 
6450 /* Initialize per network namespace state */
6451 static int __net_init netdev_init(struct net *net)
6452 {
6453 	if (net != &init_net)
6454 		INIT_LIST_HEAD(&net->dev_base_head);
6455 
6456 	net->dev_name_head = netdev_create_hash();
6457 	if (net->dev_name_head == NULL)
6458 		goto err_name;
6459 
6460 	net->dev_index_head = netdev_create_hash();
6461 	if (net->dev_index_head == NULL)
6462 		goto err_idx;
6463 
6464 	return 0;
6465 
6466 err_idx:
6467 	kfree(net->dev_name_head);
6468 err_name:
6469 	return -ENOMEM;
6470 }
6471 
6472 /**
6473  *	netdev_drivername - network driver for the device
6474  *	@dev: network device
6475  *
6476  *	Determine network driver for device.
6477  */
6478 const char *netdev_drivername(const struct net_device *dev)
6479 {
6480 	const struct device_driver *driver;
6481 	const struct device *parent;
6482 	const char *empty = "";
6483 
6484 	parent = dev->dev.parent;
6485 	if (!parent)
6486 		return empty;
6487 
6488 	driver = parent->driver;
6489 	if (driver && driver->name)
6490 		return driver->name;
6491 	return empty;
6492 }
6493 
6494 static int __netdev_printk(const char *level, const struct net_device *dev,
6495 			   struct va_format *vaf)
6496 {
6497 	int r;
6498 
6499 	if (dev && dev->dev.parent) {
6500 		r = dev_printk_emit(level[1] - '0',
6501 				    dev->dev.parent,
6502 				    "%s %s %s: %pV",
6503 				    dev_driver_string(dev->dev.parent),
6504 				    dev_name(dev->dev.parent),
6505 				    netdev_name(dev), vaf);
6506 	} else if (dev) {
6507 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6508 	} else {
6509 		r = printk("%s(NULL net_device): %pV", level, vaf);
6510 	}
6511 
6512 	return r;
6513 }
6514 
6515 int netdev_printk(const char *level, const struct net_device *dev,
6516 		  const char *format, ...)
6517 {
6518 	struct va_format vaf;
6519 	va_list args;
6520 	int r;
6521 
6522 	va_start(args, format);
6523 
6524 	vaf.fmt = format;
6525 	vaf.va = &args;
6526 
6527 	r = __netdev_printk(level, dev, &vaf);
6528 
6529 	va_end(args);
6530 
6531 	return r;
6532 }
6533 EXPORT_SYMBOL(netdev_printk);
6534 
6535 #define define_netdev_printk_level(func, level)			\
6536 int func(const struct net_device *dev, const char *fmt, ...)	\
6537 {								\
6538 	int r;							\
6539 	struct va_format vaf;					\
6540 	va_list args;						\
6541 								\
6542 	va_start(args, fmt);					\
6543 								\
6544 	vaf.fmt = fmt;						\
6545 	vaf.va = &args;						\
6546 								\
6547 	r = __netdev_printk(level, dev, &vaf);			\
6548 								\
6549 	va_end(args);						\
6550 								\
6551 	return r;						\
6552 }								\
6553 EXPORT_SYMBOL(func);
6554 
6555 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6556 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6557 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6558 define_netdev_printk_level(netdev_err, KERN_ERR);
6559 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6560 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6561 define_netdev_printk_level(netdev_info, KERN_INFO);
6562 
6563 static void __net_exit netdev_exit(struct net *net)
6564 {
6565 	kfree(net->dev_name_head);
6566 	kfree(net->dev_index_head);
6567 }
6568 
6569 static struct pernet_operations __net_initdata netdev_net_ops = {
6570 	.init = netdev_init,
6571 	.exit = netdev_exit,
6572 };
6573 
6574 static void __net_exit default_device_exit(struct net *net)
6575 {
6576 	struct net_device *dev, *aux;
6577 	/*
6578 	 * Push all migratable network devices back to the
6579 	 * initial network namespace
6580 	 */
6581 	rtnl_lock();
6582 	for_each_netdev_safe(net, dev, aux) {
6583 		int err;
6584 		char fb_name[IFNAMSIZ];
6585 
6586 		/* Ignore unmoveable devices (i.e. loopback) */
6587 		if (dev->features & NETIF_F_NETNS_LOCAL)
6588 			continue;
6589 
6590 		/* Leave virtual devices for the generic cleanup */
6591 		if (dev->rtnl_link_ops)
6592 			continue;
6593 
6594 		/* Push remaining network devices to init_net */
6595 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6596 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6597 		if (err) {
6598 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6599 				 __func__, dev->name, err);
6600 			BUG();
6601 		}
6602 	}
6603 	rtnl_unlock();
6604 }
6605 
6606 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6607 {
6608 	/* At exit all network devices most be removed from a network
6609 	 * namespace.  Do this in the reverse order of registration.
6610 	 * Do this across as many network namespaces as possible to
6611 	 * improve batching efficiency.
6612 	 */
6613 	struct net_device *dev;
6614 	struct net *net;
6615 	LIST_HEAD(dev_kill_list);
6616 
6617 	rtnl_lock();
6618 	list_for_each_entry(net, net_list, exit_list) {
6619 		for_each_netdev_reverse(net, dev) {
6620 			if (dev->rtnl_link_ops)
6621 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6622 			else
6623 				unregister_netdevice_queue(dev, &dev_kill_list);
6624 		}
6625 	}
6626 	unregister_netdevice_many(&dev_kill_list);
6627 	list_del(&dev_kill_list);
6628 	rtnl_unlock();
6629 }
6630 
6631 static struct pernet_operations __net_initdata default_device_ops = {
6632 	.exit = default_device_exit,
6633 	.exit_batch = default_device_exit_batch,
6634 };
6635 
6636 /*
6637  *	Initialize the DEV module. At boot time this walks the device list and
6638  *	unhooks any devices that fail to initialise (normally hardware not
6639  *	present) and leaves us with a valid list of present and active devices.
6640  *
6641  */
6642 
6643 /*
6644  *       This is called single threaded during boot, so no need
6645  *       to take the rtnl semaphore.
6646  */
6647 static int __init net_dev_init(void)
6648 {
6649 	int i, rc = -ENOMEM;
6650 
6651 	BUG_ON(!dev_boot_phase);
6652 
6653 	if (dev_proc_init())
6654 		goto out;
6655 
6656 	if (netdev_kobject_init())
6657 		goto out;
6658 
6659 	INIT_LIST_HEAD(&ptype_all);
6660 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6661 		INIT_LIST_HEAD(&ptype_base[i]);
6662 
6663 	INIT_LIST_HEAD(&offload_base);
6664 
6665 	if (register_pernet_subsys(&netdev_net_ops))
6666 		goto out;
6667 
6668 	/*
6669 	 *	Initialise the packet receive queues.
6670 	 */
6671 
6672 	for_each_possible_cpu(i) {
6673 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6674 
6675 		memset(sd, 0, sizeof(*sd));
6676 		skb_queue_head_init(&sd->input_pkt_queue);
6677 		skb_queue_head_init(&sd->process_queue);
6678 		sd->completion_queue = NULL;
6679 		INIT_LIST_HEAD(&sd->poll_list);
6680 		sd->output_queue = NULL;
6681 		sd->output_queue_tailp = &sd->output_queue;
6682 #ifdef CONFIG_RPS
6683 		sd->csd.func = rps_trigger_softirq;
6684 		sd->csd.info = sd;
6685 		sd->csd.flags = 0;
6686 		sd->cpu = i;
6687 #endif
6688 
6689 		sd->backlog.poll = process_backlog;
6690 		sd->backlog.weight = weight_p;
6691 		sd->backlog.gro_list = NULL;
6692 		sd->backlog.gro_count = 0;
6693 
6694 #ifdef CONFIG_NET_FLOW_LIMIT
6695 		sd->flow_limit = NULL;
6696 #endif
6697 	}
6698 
6699 	dev_boot_phase = 0;
6700 
6701 	/* The loopback device is special if any other network devices
6702 	 * is present in a network namespace the loopback device must
6703 	 * be present. Since we now dynamically allocate and free the
6704 	 * loopback device ensure this invariant is maintained by
6705 	 * keeping the loopback device as the first device on the
6706 	 * list of network devices.  Ensuring the loopback devices
6707 	 * is the first device that appears and the last network device
6708 	 * that disappears.
6709 	 */
6710 	if (register_pernet_device(&loopback_net_ops))
6711 		goto out;
6712 
6713 	if (register_pernet_device(&default_device_ops))
6714 		goto out;
6715 
6716 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6717 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6718 
6719 	hotcpu_notifier(dev_cpu_callback, 0);
6720 	dst_init();
6721 	rc = 0;
6722 out:
6723 	return rc;
6724 }
6725 
6726 subsys_initcall(net_dev_init);
6727