xref: /openbmc/linux/net/core/dev.c (revision 08720988)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 /*******************************************************************************
402  *
403  *		Protocol management and registration routines
404  *
405  *******************************************************************************/
406 
407 
408 /*
409  *	Add a protocol ID to the list. Now that the input handler is
410  *	smarter we can dispense with all the messy stuff that used to be
411  *	here.
412  *
413  *	BEWARE!!! Protocol handlers, mangling input packets,
414  *	MUST BE last in hash buckets and checking protocol handlers
415  *	MUST start from promiscuous ptype_all chain in net_bh.
416  *	It is true now, do not change it.
417  *	Explanation follows: if protocol handler, mangling packet, will
418  *	be the first on list, it is not able to sense, that packet
419  *	is cloned and should be copied-on-write, so that it will
420  *	change it and subsequent readers will get broken packet.
421  *							--ANK (980803)
422  */
423 
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426 	if (pt->type == htons(ETH_P_ALL))
427 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428 	else
429 		return pt->dev ? &pt->dev->ptype_specific :
430 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432 
433 /**
434  *	dev_add_pack - add packet handler
435  *	@pt: packet type declaration
436  *
437  *	Add a protocol handler to the networking stack. The passed &packet_type
438  *	is linked into kernel lists and may not be freed until it has been
439  *	removed from the kernel lists.
440  *
441  *	This call does not sleep therefore it can not
442  *	guarantee all CPU's that are in middle of receiving packets
443  *	will see the new packet type (until the next received packet).
444  */
445 
446 void dev_add_pack(struct packet_type *pt)
447 {
448 	struct list_head *head = ptype_head(pt);
449 
450 	spin_lock(&ptype_lock);
451 	list_add_rcu(&pt->list, head);
452 	spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455 
456 /**
457  *	__dev_remove_pack	 - remove packet handler
458  *	@pt: packet type declaration
459  *
460  *	Remove a protocol handler that was previously added to the kernel
461  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *	from the kernel lists and can be freed or reused once this function
463  *	returns.
464  *
465  *      The packet type might still be in use by receivers
466  *	and must not be freed until after all the CPU's have gone
467  *	through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471 	struct list_head *head = ptype_head(pt);
472 	struct packet_type *pt1;
473 
474 	spin_lock(&ptype_lock);
475 
476 	list_for_each_entry(pt1, head, list) {
477 		if (pt == pt1) {
478 			list_del_rcu(&pt->list);
479 			goto out;
480 		}
481 	}
482 
483 	pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485 	spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488 
489 /**
490  *	dev_remove_pack	 - remove packet handler
491  *	@pt: packet type declaration
492  *
493  *	Remove a protocol handler that was previously added to the kernel
494  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *	from the kernel lists and can be freed or reused once this function
496  *	returns.
497  *
498  *	This call sleeps to guarantee that no CPU is looking at the packet
499  *	type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503 	__dev_remove_pack(pt);
504 
505 	synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508 
509 
510 /**
511  *	dev_add_offload - register offload handlers
512  *	@po: protocol offload declaration
513  *
514  *	Add protocol offload handlers to the networking stack. The passed
515  *	&proto_offload is linked into kernel lists and may not be freed until
516  *	it has been removed from the kernel lists.
517  *
518  *	This call does not sleep therefore it can not
519  *	guarantee all CPU's that are in middle of receiving packets
520  *	will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524 	struct packet_offload *elem;
525 
526 	spin_lock(&offload_lock);
527 	list_for_each_entry(elem, &offload_base, list) {
528 		if (po->priority < elem->priority)
529 			break;
530 	}
531 	list_add_rcu(&po->list, elem->list.prev);
532 	spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535 
536 /**
537  *	__dev_remove_offload	 - remove offload handler
538  *	@po: packet offload declaration
539  *
540  *	Remove a protocol offload handler that was previously added to the
541  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *	is removed from the kernel lists and can be freed or reused once this
543  *	function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *	and must not be freed until after all the CPU's have gone
547  *	through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551 	struct list_head *head = &offload_base;
552 	struct packet_offload *po1;
553 
554 	spin_lock(&offload_lock);
555 
556 	list_for_each_entry(po1, head, list) {
557 		if (po == po1) {
558 			list_del_rcu(&po->list);
559 			goto out;
560 		}
561 	}
562 
563 	pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565 	spin_unlock(&offload_lock);
566 }
567 
568 /**
569  *	dev_remove_offload	 - remove packet offload handler
570  *	@po: packet offload declaration
571  *
572  *	Remove a packet offload handler that was previously added to the kernel
573  *	offload handlers by dev_add_offload(). The passed &offload_type is
574  *	removed from the kernel lists and can be freed or reused once this
575  *	function returns.
576  *
577  *	This call sleeps to guarantee that no CPU is looking at the packet
578  *	type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582 	__dev_remove_offload(po);
583 
584 	synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587 
588 /******************************************************************************
589  *
590  *		      Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593 
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596 
597 /**
598  *	netdev_boot_setup_add	- add new setup entry
599  *	@name: name of the device
600  *	@map: configured settings for the device
601  *
602  *	Adds new setup entry to the dev_boot_setup list.  The function
603  *	returns 0 on error and 1 on success.  This is a generic routine to
604  *	all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608 	struct netdev_boot_setup *s;
609 	int i;
610 
611 	s = dev_boot_setup;
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 			memset(s[i].name, 0, sizeof(s[i].name));
615 			strlcpy(s[i].name, name, IFNAMSIZ);
616 			memcpy(&s[i].map, map, sizeof(s[i].map));
617 			break;
618 		}
619 	}
620 
621 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623 
624 /**
625  * netdev_boot_setup_check	- check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635 	struct netdev_boot_setup *s = dev_boot_setup;
636 	int i;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 		    !strcmp(dev->name, s[i].name)) {
641 			dev->irq = s[i].map.irq;
642 			dev->base_addr = s[i].map.base_addr;
643 			dev->mem_start = s[i].map.mem_start;
644 			dev->mem_end = s[i].map.mem_end;
645 			return 1;
646 		}
647 	}
648 	return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651 
652 
653 /**
654  * netdev_boot_base	- get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665 	const struct netdev_boot_setup *s = dev_boot_setup;
666 	char name[IFNAMSIZ];
667 	int i;
668 
669 	sprintf(name, "%s%d", prefix, unit);
670 
671 	/*
672 	 * If device already registered then return base of 1
673 	 * to indicate not to probe for this interface
674 	 */
675 	if (__dev_get_by_name(&init_net, name))
676 		return 1;
677 
678 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 		if (!strcmp(name, s[i].name))
680 			return s[i].map.base_addr;
681 	return 0;
682 }
683 
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689 	int ints[5];
690 	struct ifmap map;
691 
692 	str = get_options(str, ARRAY_SIZE(ints), ints);
693 	if (!str || !*str)
694 		return 0;
695 
696 	/* Save settings */
697 	memset(&map, 0, sizeof(map));
698 	if (ints[0] > 0)
699 		map.irq = ints[1];
700 	if (ints[0] > 1)
701 		map.base_addr = ints[2];
702 	if (ints[0] > 2)
703 		map.mem_start = ints[3];
704 	if (ints[0] > 3)
705 		map.mem_end = ints[4];
706 
707 	/* Add new entry to the list */
708 	return netdev_boot_setup_add(str, &map);
709 }
710 
711 __setup("netdev=", netdev_boot_setup);
712 
713 /*******************************************************************************
714  *
715  *			    Device Interface Subroutines
716  *
717  *******************************************************************************/
718 
719 /**
720  *	dev_get_iflink	- get 'iflink' value of a interface
721  *	@dev: targeted interface
722  *
723  *	Indicates the ifindex the interface is linked to.
724  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726 
727 int dev_get_iflink(const struct net_device *dev)
728 {
729 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 		return dev->netdev_ops->ndo_get_iflink(dev);
731 
732 	return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735 
736 /**
737  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *	@dev: targeted interface
739  *	@skb: The packet.
740  *
741  *	For better visibility of tunnel traffic OVS needs to retrieve
742  *	egress tunnel information for a packet. Following API allows
743  *	user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747 	struct ip_tunnel_info *info;
748 
749 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750 		return -EINVAL;
751 
752 	info = skb_tunnel_info_unclone(skb);
753 	if (!info)
754 		return -ENOMEM;
755 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 		return -EINVAL;
757 
758 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761 
762 /**
763  *	__dev_get_by_name	- find a device by its name
764  *	@net: the applicable net namespace
765  *	@name: name to find
766  *
767  *	Find an interface by name. Must be called under RTNL semaphore
768  *	or @dev_base_lock. If the name is found a pointer to the device
769  *	is returned. If the name is not found then %NULL is returned. The
770  *	reference counters are not incremented so the caller must be
771  *	careful with locks.
772  */
773 
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776 	struct netdev_name_node *node_name;
777 
778 	node_name = netdev_name_node_lookup(net, name);
779 	return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782 
783 /**
784  * dev_get_by_name_rcu	- find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797 	struct netdev_name_node *node_name;
798 
799 	node_name = netdev_name_node_lookup_rcu(net, name);
800 	return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803 
804 /**
805  *	dev_get_by_name		- find a device by its name
806  *	@net: the applicable net namespace
807  *	@name: name to find
808  *
809  *	Find an interface by name. This can be called from any
810  *	context and does its own locking. The returned handle has
811  *	the usage count incremented and the caller must use dev_put() to
812  *	release it when it is no longer needed. %NULL is returned if no
813  *	matching device is found.
814  */
815 
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	dev = dev_get_by_name_rcu(net, name);
822 	if (dev)
823 		dev_hold(dev);
824 	rcu_read_unlock();
825 	return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828 
829 /**
830  *	__dev_get_by_index - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold either the RTNL semaphore
838  *	or @dev_base_lock.
839  */
840 
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 	struct hlist_head *head = dev_index_hash(net, ifindex);
845 
846 	hlist_for_each_entry(dev, head, index_hlist)
847 		if (dev->ifindex == ifindex)
848 			return dev;
849 
850 	return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853 
854 /**
855  *	dev_get_by_index_rcu - find a device by its ifindex
856  *	@net: the applicable net namespace
857  *	@ifindex: index of device
858  *
859  *	Search for an interface by index. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not
861  *	had its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867 	struct net_device *dev;
868 	struct hlist_head *head = dev_index_hash(net, ifindex);
869 
870 	hlist_for_each_entry_rcu(dev, head, index_hlist)
871 		if (dev->ifindex == ifindex)
872 			return dev;
873 
874 	return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877 
878 
879 /**
880  *	dev_get_by_index - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *
884  *	Search for an interface by index. Returns NULL if the device
885  *	is not found or a pointer to the device. The device returned has
886  *	had a reference added and the pointer is safe until the user calls
887  *	dev_put to indicate they have finished with it.
888  */
889 
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892 	struct net_device *dev;
893 
894 	rcu_read_lock();
895 	dev = dev_get_by_index_rcu(net, ifindex);
896 	if (dev)
897 		dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  *
934  *	The use of raw_seqcount_begin() and cond_resched() before
935  *	retrying is required as we want to give the writers a chance
936  *	to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940 	struct net_device *dev;
941 	unsigned int seq;
942 
943 retry:
944 	seq = raw_seqcount_begin(&devnet_rename_seq);
945 	rcu_read_lock();
946 	dev = dev_get_by_index_rcu(net, ifindex);
947 	if (!dev) {
948 		rcu_read_unlock();
949 		return -ENODEV;
950 	}
951 
952 	strcpy(name, dev->name);
953 	rcu_read_unlock();
954 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 		cond_resched();
956 		goto retry;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  *	dev_getbyhwaddr_rcu - find a device by its hardware address
964  *	@net: the applicable net namespace
965  *	@type: media type of device
966  *	@ha: hardware address
967  *
968  *	Search for an interface by MAC address. Returns NULL if the device
969  *	is not found or a pointer to the device.
970  *	The caller must hold RCU or RTNL.
971  *	The returned device has not had its ref count increased
972  *	and the caller must therefore be careful about locking
973  *
974  */
975 
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 				       const char *ha)
978 {
979 	struct net_device *dev;
980 
981 	for_each_netdev_rcu(net, dev)
982 		if (dev->type == type &&
983 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
984 			return dev;
985 
986 	return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989 
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992 	struct net_device *dev;
993 
994 	ASSERT_RTNL();
995 	for_each_netdev(net, dev)
996 		if (dev->type == type)
997 			return dev;
998 
999 	return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002 
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005 	struct net_device *dev, *ret = NULL;
1006 
1007 	rcu_read_lock();
1008 	for_each_netdev_rcu(net, dev)
1009 		if (dev->type == type) {
1010 			dev_hold(dev);
1011 			ret = dev;
1012 			break;
1013 		}
1014 	rcu_read_unlock();
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018 
1019 /**
1020  *	__dev_get_by_flags - find any device with given flags
1021  *	@net: the applicable net namespace
1022  *	@if_flags: IFF_* values
1023  *	@mask: bitmask of bits in if_flags to check
1024  *
1025  *	Search for any interface with the given flags. Returns NULL if a device
1026  *	is not found or a pointer to the device. Must be called inside
1027  *	rtnl_lock(), and result refcount is unchanged.
1028  */
1029 
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 				      unsigned short mask)
1032 {
1033 	struct net_device *dev, *ret;
1034 
1035 	ASSERT_RTNL();
1036 
1037 	ret = NULL;
1038 	for_each_netdev(net, dev) {
1039 		if (((dev->flags ^ if_flags) & mask) == 0) {
1040 			ret = dev;
1041 			break;
1042 		}
1043 	}
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047 
1048 /**
1049  *	dev_valid_name - check if name is okay for network device
1050  *	@name: name string
1051  *
1052  *	Network device names need to be valid file names to
1053  *	to allow sysfs to work.  We also disallow any kind of
1054  *	whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058 	if (*name == '\0')
1059 		return false;
1060 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061 		return false;
1062 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1063 		return false;
1064 
1065 	while (*name) {
1066 		if (*name == '/' || *name == ':' || isspace(*name))
1067 			return false;
1068 		name++;
1069 	}
1070 	return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073 
1074 /**
1075  *	__dev_alloc_name - allocate a name for a device
1076  *	@net: network namespace to allocate the device name in
1077  *	@name: name format string
1078  *	@buf:  scratch buffer and result name string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091 	int i = 0;
1092 	const char *p;
1093 	const int max_netdevices = 8*PAGE_SIZE;
1094 	unsigned long *inuse;
1095 	struct net_device *d;
1096 
1097 	if (!dev_valid_name(name))
1098 		return -EINVAL;
1099 
1100 	p = strchr(name, '%');
1101 	if (p) {
1102 		/*
1103 		 * Verify the string as this thing may have come from
1104 		 * the user.  There must be either one "%d" and no other "%"
1105 		 * characters.
1106 		 */
1107 		if (p[1] != 'd' || strchr(p + 2, '%'))
1108 			return -EINVAL;
1109 
1110 		/* Use one page as a bit array of possible slots */
1111 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112 		if (!inuse)
1113 			return -ENOMEM;
1114 
1115 		for_each_netdev(net, d) {
1116 			if (!sscanf(d->name, name, &i))
1117 				continue;
1118 			if (i < 0 || i >= max_netdevices)
1119 				continue;
1120 
1121 			/*  avoid cases where sscanf is not exact inverse of printf */
1122 			snprintf(buf, IFNAMSIZ, name, i);
1123 			if (!strncmp(buf, d->name, IFNAMSIZ))
1124 				set_bit(i, inuse);
1125 		}
1126 
1127 		i = find_first_zero_bit(inuse, max_netdevices);
1128 		free_page((unsigned long) inuse);
1129 	}
1130 
1131 	snprintf(buf, IFNAMSIZ, name, i);
1132 	if (!__dev_get_by_name(net, buf))
1133 		return i;
1134 
1135 	/* It is possible to run out of possible slots
1136 	 * when the name is long and there isn't enough space left
1137 	 * for the digits, or if all bits are used.
1138 	 */
1139 	return -ENFILE;
1140 }
1141 
1142 static int dev_alloc_name_ns(struct net *net,
1143 			     struct net_device *dev,
1144 			     const char *name)
1145 {
1146 	char buf[IFNAMSIZ];
1147 	int ret;
1148 
1149 	BUG_ON(!net);
1150 	ret = __dev_alloc_name(net, name, buf);
1151 	if (ret >= 0)
1152 		strlcpy(dev->name, buf, IFNAMSIZ);
1153 	return ret;
1154 }
1155 
1156 /**
1157  *	dev_alloc_name - allocate a name for a device
1158  *	@dev: device
1159  *	@name: name format string
1160  *
1161  *	Passed a format string - eg "lt%d" it will try and find a suitable
1162  *	id. It scans list of devices to build up a free map, then chooses
1163  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *	while allocating the name and adding the device in order to avoid
1165  *	duplicates.
1166  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *	Returns the number of the unit assigned or a negative errno code.
1168  */
1169 
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175 
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 			      const char *name)
1178 {
1179 	BUG_ON(!net);
1180 
1181 	if (!dev_valid_name(name))
1182 		return -EINVAL;
1183 
1184 	if (strchr(name, '%'))
1185 		return dev_alloc_name_ns(net, dev, name);
1186 	else if (__dev_get_by_name(net, name))
1187 		return -EEXIST;
1188 	else if (dev->name != name)
1189 		strlcpy(dev->name, name, IFNAMSIZ);
1190 
1191 	return 0;
1192 }
1193 
1194 /**
1195  *	dev_change_name - change name of a device
1196  *	@dev: device
1197  *	@newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *	Change name of a device, can pass format strings "eth%d".
1200  *	for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204 	unsigned char old_assign_type;
1205 	char oldname[IFNAMSIZ];
1206 	int err = 0;
1207 	int ret;
1208 	struct net *net;
1209 
1210 	ASSERT_RTNL();
1211 	BUG_ON(!dev_net(dev));
1212 
1213 	net = dev_net(dev);
1214 
1215 	/* Some auto-enslaved devices e.g. failover slaves are
1216 	 * special, as userspace might rename the device after
1217 	 * the interface had been brought up and running since
1218 	 * the point kernel initiated auto-enslavement. Allow
1219 	 * live name change even when these slave devices are
1220 	 * up and running.
1221 	 *
1222 	 * Typically, users of these auto-enslaving devices
1223 	 * don't actually care about slave name change, as
1224 	 * they are supposed to operate on master interface
1225 	 * directly.
1226 	 */
1227 	if (dev->flags & IFF_UP &&
1228 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229 		return -EBUSY;
1230 
1231 	write_seqcount_begin(&devnet_rename_seq);
1232 
1233 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 		write_seqcount_end(&devnet_rename_seq);
1235 		return 0;
1236 	}
1237 
1238 	memcpy(oldname, dev->name, IFNAMSIZ);
1239 
1240 	err = dev_get_valid_name(net, dev, newname);
1241 	if (err < 0) {
1242 		write_seqcount_end(&devnet_rename_seq);
1243 		return err;
1244 	}
1245 
1246 	if (oldname[0] && !strchr(oldname, '%'))
1247 		netdev_info(dev, "renamed from %s\n", oldname);
1248 
1249 	old_assign_type = dev->name_assign_type;
1250 	dev->name_assign_type = NET_NAME_RENAMED;
1251 
1252 rollback:
1253 	ret = device_rename(&dev->dev, dev->name);
1254 	if (ret) {
1255 		memcpy(dev->name, oldname, IFNAMSIZ);
1256 		dev->name_assign_type = old_assign_type;
1257 		write_seqcount_end(&devnet_rename_seq);
1258 		return ret;
1259 	}
1260 
1261 	write_seqcount_end(&devnet_rename_seq);
1262 
1263 	netdev_adjacent_rename_links(dev, oldname);
1264 
1265 	write_lock_bh(&dev_base_lock);
1266 	netdev_name_node_del(dev->name_node);
1267 	write_unlock_bh(&dev_base_lock);
1268 
1269 	synchronize_rcu();
1270 
1271 	write_lock_bh(&dev_base_lock);
1272 	netdev_name_node_add(net, dev->name_node);
1273 	write_unlock_bh(&dev_base_lock);
1274 
1275 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 	ret = notifier_to_errno(ret);
1277 
1278 	if (ret) {
1279 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1280 		if (err >= 0) {
1281 			err = ret;
1282 			write_seqcount_begin(&devnet_rename_seq);
1283 			memcpy(dev->name, oldname, IFNAMSIZ);
1284 			memcpy(oldname, newname, IFNAMSIZ);
1285 			dev->name_assign_type = old_assign_type;
1286 			old_assign_type = NET_NAME_RENAMED;
1287 			goto rollback;
1288 		} else {
1289 			pr_err("%s: name change rollback failed: %d\n",
1290 			       dev->name, ret);
1291 		}
1292 	}
1293 
1294 	return err;
1295 }
1296 
1297 /**
1298  *	dev_set_alias - change ifalias of a device
1299  *	@dev: device
1300  *	@alias: name up to IFALIASZ
1301  *	@len: limit of bytes to copy from info
1302  *
1303  *	Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307 	struct dev_ifalias *new_alias = NULL;
1308 
1309 	if (len >= IFALIASZ)
1310 		return -EINVAL;
1311 
1312 	if (len) {
1313 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 		if (!new_alias)
1315 			return -ENOMEM;
1316 
1317 		memcpy(new_alias->ifalias, alias, len);
1318 		new_alias->ifalias[len] = 0;
1319 	}
1320 
1321 	mutex_lock(&ifalias_mutex);
1322 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 					mutex_is_locked(&ifalias_mutex));
1324 	mutex_unlock(&ifalias_mutex);
1325 
1326 	if (new_alias)
1327 		kfree_rcu(new_alias, rcuhead);
1328 
1329 	return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332 
1333 /**
1334  *	dev_get_alias - get ifalias of a device
1335  *	@dev: device
1336  *	@name: buffer to store name of ifalias
1337  *	@len: size of buffer
1338  *
1339  *	get ifalias for a device.  Caller must make sure dev cannot go
1340  *	away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344 	const struct dev_ifalias *alias;
1345 	int ret = 0;
1346 
1347 	rcu_read_lock();
1348 	alias = rcu_dereference(dev->ifalias);
1349 	if (alias)
1350 		ret = snprintf(name, len, "%s", alias->ifalias);
1351 	rcu_read_unlock();
1352 
1353 	return ret;
1354 }
1355 
1356 /**
1357  *	netdev_features_change - device changes features
1358  *	@dev: device to cause notification
1359  *
1360  *	Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367 
1368 /**
1369  *	netdev_state_change - device changes state
1370  *	@dev: device to cause notification
1371  *
1372  *	Called to indicate a device has changed state. This function calls
1373  *	the notifier chains for netdev_chain and sends a NEWLINK message
1374  *	to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378 	if (dev->flags & IFF_UP) {
1379 		struct netdev_notifier_change_info change_info = {
1380 			.info.dev = dev,
1381 		};
1382 
1383 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1384 					      &change_info.info);
1385 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386 	}
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389 
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402 	rtnl_lock();
1403 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405 	rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408 
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411 	const struct net_device_ops *ops = dev->netdev_ops;
1412 	int ret;
1413 
1414 	ASSERT_RTNL();
1415 
1416 	if (!netif_device_present(dev))
1417 		return -ENODEV;
1418 
1419 	/* Block netpoll from trying to do any rx path servicing.
1420 	 * If we don't do this there is a chance ndo_poll_controller
1421 	 * or ndo_poll may be running while we open the device
1422 	 */
1423 	netpoll_poll_disable(dev);
1424 
1425 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 	ret = notifier_to_errno(ret);
1427 	if (ret)
1428 		return ret;
1429 
1430 	set_bit(__LINK_STATE_START, &dev->state);
1431 
1432 	if (ops->ndo_validate_addr)
1433 		ret = ops->ndo_validate_addr(dev);
1434 
1435 	if (!ret && ops->ndo_open)
1436 		ret = ops->ndo_open(dev);
1437 
1438 	netpoll_poll_enable(dev);
1439 
1440 	if (ret)
1441 		clear_bit(__LINK_STATE_START, &dev->state);
1442 	else {
1443 		dev->flags |= IFF_UP;
1444 		dev_set_rx_mode(dev);
1445 		dev_activate(dev);
1446 		add_device_randomness(dev->dev_addr, dev->addr_len);
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 /**
1453  *	dev_open	- prepare an interface for use.
1454  *	@dev: device to open
1455  *	@extack: netlink extended ack
1456  *
1457  *	Takes a device from down to up state. The device's private open
1458  *	function is invoked and then the multicast lists are loaded. Finally
1459  *	the device is moved into the up state and a %NETDEV_UP message is
1460  *	sent to the netdev notifier chain.
1461  *
1462  *	Calling this function on an active interface is a nop. On a failure
1463  *	a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467 	int ret;
1468 
1469 	if (dev->flags & IFF_UP)
1470 		return 0;
1471 
1472 	ret = __dev_open(dev, extack);
1473 	if (ret < 0)
1474 		return ret;
1475 
1476 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 	call_netdevice_notifiers(NETDEV_UP, dev);
1478 
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482 
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485 	struct net_device *dev;
1486 
1487 	ASSERT_RTNL();
1488 	might_sleep();
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		/* Temporarily disable netpoll until the interface is down */
1492 		netpoll_poll_disable(dev);
1493 
1494 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495 
1496 		clear_bit(__LINK_STATE_START, &dev->state);
1497 
1498 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1499 		 * can be even on different cpu. So just clear netif_running().
1500 		 *
1501 		 * dev->stop() will invoke napi_disable() on all of it's
1502 		 * napi_struct instances on this device.
1503 		 */
1504 		smp_mb__after_atomic(); /* Commit netif_running(). */
1505 	}
1506 
1507 	dev_deactivate_many(head);
1508 
1509 	list_for_each_entry(dev, head, close_list) {
1510 		const struct net_device_ops *ops = dev->netdev_ops;
1511 
1512 		/*
1513 		 *	Call the device specific close. This cannot fail.
1514 		 *	Only if device is UP
1515 		 *
1516 		 *	We allow it to be called even after a DETACH hot-plug
1517 		 *	event.
1518 		 */
1519 		if (ops->ndo_stop)
1520 			ops->ndo_stop(dev);
1521 
1522 		dev->flags &= ~IFF_UP;
1523 		netpoll_poll_enable(dev);
1524 	}
1525 }
1526 
1527 static void __dev_close(struct net_device *dev)
1528 {
1529 	LIST_HEAD(single);
1530 
1531 	list_add(&dev->close_list, &single);
1532 	__dev_close_many(&single);
1533 	list_del(&single);
1534 }
1535 
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538 	struct net_device *dev, *tmp;
1539 
1540 	/* Remove the devices that don't need to be closed */
1541 	list_for_each_entry_safe(dev, tmp, head, close_list)
1542 		if (!(dev->flags & IFF_UP))
1543 			list_del_init(&dev->close_list);
1544 
1545 	__dev_close_many(head);
1546 
1547 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1550 		if (unlink)
1551 			list_del_init(&dev->close_list);
1552 	}
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555 
1556 /**
1557  *	dev_close - shutdown an interface.
1558  *	@dev: device to shutdown
1559  *
1560  *	This function moves an active device into down state. A
1561  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *	chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567 	if (dev->flags & IFF_UP) {
1568 		LIST_HEAD(single);
1569 
1570 		list_add(&dev->close_list, &single);
1571 		dev_close_many(&single, true);
1572 		list_del(&single);
1573 	}
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576 
1577 
1578 /**
1579  *	dev_disable_lro - disable Large Receive Offload on a device
1580  *	@dev: device
1581  *
1582  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *	called under RTNL.  This is needed if received packets may be
1584  *	forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588 	struct net_device *lower_dev;
1589 	struct list_head *iter;
1590 
1591 	dev->wanted_features &= ~NETIF_F_LRO;
1592 	netdev_update_features(dev);
1593 
1594 	if (unlikely(dev->features & NETIF_F_LRO))
1595 		netdev_WARN(dev, "failed to disable LRO!\n");
1596 
1597 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 		dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601 
1602 /**
1603  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *	@dev: device
1605  *
1606  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *	called under RTNL.  This is needed if Generic XDP is installed on
1608  *	the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 	netdev_update_features(dev);
1614 
1615 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618 
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val) 						\
1622 	case NETDEV_##val:				\
1623 		return "NETDEV_" __stringify(val);
1624 	switch (cmd) {
1625 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634 	N(PRE_CHANGEADDR)
1635 	}
1636 #undef N
1637 	return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640 
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 				   struct net_device *dev)
1643 {
1644 	struct netdev_notifier_info info = {
1645 		.dev = dev,
1646 	};
1647 
1648 	return nb->notifier_call(nb, val, &info);
1649 }
1650 
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 					     struct net_device *dev)
1653 {
1654 	int err;
1655 
1656 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 	err = notifier_to_errno(err);
1658 	if (err)
1659 		return err;
1660 
1661 	if (!(dev->flags & IFF_UP))
1662 		return 0;
1663 
1664 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 	return 0;
1666 }
1667 
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 						struct net_device *dev)
1670 {
1671 	if (dev->flags & IFF_UP) {
1672 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 					dev);
1674 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 	}
1676 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678 
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 						 struct net *net)
1681 {
1682 	struct net_device *dev;
1683 	int err;
1684 
1685 	for_each_netdev(net, dev) {
1686 		err = call_netdevice_register_notifiers(nb, dev);
1687 		if (err)
1688 			goto rollback;
1689 	}
1690 	return 0;
1691 
1692 rollback:
1693 	for_each_netdev_continue_reverse(net, dev)
1694 		call_netdevice_unregister_notifiers(nb, dev);
1695 	return err;
1696 }
1697 
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 						    struct net *net)
1700 {
1701 	struct net_device *dev;
1702 
1703 	for_each_netdev(net, dev)
1704 		call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706 
1707 static int dev_boot_phase = 1;
1708 
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722 
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725 	struct net *net;
1726 	int err;
1727 
1728 	/* Close race with setup_net() and cleanup_net() */
1729 	down_write(&pernet_ops_rwsem);
1730 	rtnl_lock();
1731 	err = raw_notifier_chain_register(&netdev_chain, nb);
1732 	if (err)
1733 		goto unlock;
1734 	if (dev_boot_phase)
1735 		goto unlock;
1736 	for_each_net(net) {
1737 		err = call_netdevice_register_net_notifiers(nb, net);
1738 		if (err)
1739 			goto rollback;
1740 	}
1741 
1742 unlock:
1743 	rtnl_unlock();
1744 	up_write(&pernet_ops_rwsem);
1745 	return err;
1746 
1747 rollback:
1748 	for_each_net_continue_reverse(net)
1749 		call_netdevice_unregister_net_notifiers(nb, net);
1750 
1751 	raw_notifier_chain_unregister(&netdev_chain, nb);
1752 	goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755 
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769 
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772 	struct net *net;
1773 	int err;
1774 
1775 	/* Close race with setup_net() and cleanup_net() */
1776 	down_write(&pernet_ops_rwsem);
1777 	rtnl_lock();
1778 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779 	if (err)
1780 		goto unlock;
1781 
1782 	for_each_net(net)
1783 		call_netdevice_unregister_net_notifiers(nb, net);
1784 
1785 unlock:
1786 	rtnl_unlock();
1787 	up_write(&pernet_ops_rwsem);
1788 	return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791 
1792 static int __register_netdevice_notifier_net(struct net *net,
1793 					     struct notifier_block *nb,
1794 					     bool ignore_call_fail)
1795 {
1796 	int err;
1797 
1798 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 	if (err)
1800 		return err;
1801 	if (dev_boot_phase)
1802 		return 0;
1803 
1804 	err = call_netdevice_register_net_notifiers(nb, net);
1805 	if (err && !ignore_call_fail)
1806 		goto chain_unregister;
1807 
1808 	return 0;
1809 
1810 chain_unregister:
1811 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 	return err;
1813 }
1814 
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816 					       struct notifier_block *nb)
1817 {
1818 	int err;
1819 
1820 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 	if (err)
1822 		return err;
1823 
1824 	call_netdevice_unregister_net_notifiers(nb, net);
1825 	return 0;
1826 }
1827 
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842 
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845 	int err;
1846 
1847 	rtnl_lock();
1848 	err = __register_netdevice_notifier_net(net, nb, false);
1849 	rtnl_unlock();
1850 	return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853 
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869 
1870 int unregister_netdevice_notifier_net(struct net *net,
1871 				      struct notifier_block *nb)
1872 {
1873 	int err;
1874 
1875 	rtnl_lock();
1876 	err = __unregister_netdevice_notifier_net(net, nb);
1877 	rtnl_unlock();
1878 	return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881 
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 					struct notifier_block *nb,
1884 					struct netdev_net_notifier *nn)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 	if (!err) {
1891 		nn->nb = nb;
1892 		list_add(&nn->list, &dev->net_notifier_list);
1893 	}
1894 	rtnl_unlock();
1895 	return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898 
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 					  struct notifier_block *nb,
1901 					  struct netdev_net_notifier *nn)
1902 {
1903 	int err;
1904 
1905 	rtnl_lock();
1906 	list_del(&nn->list);
1907 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 	rtnl_unlock();
1909 	return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912 
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 					     struct net *net)
1915 {
1916 	struct netdev_net_notifier *nn;
1917 
1918 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 		__register_netdevice_notifier_net(net, nn->nb, true);
1921 	}
1922 }
1923 
1924 /**
1925  *	call_netdevice_notifiers_info - call all network notifier blocks
1926  *	@val: value passed unmodified to notifier function
1927  *	@info: notifier information data
1928  *
1929  *	Call all network notifier blocks.  Parameters and return value
1930  *	are as for raw_notifier_call_chain().
1931  */
1932 
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934 					 struct netdev_notifier_info *info)
1935 {
1936 	struct net *net = dev_net(info->dev);
1937 	int ret;
1938 
1939 	ASSERT_RTNL();
1940 
1941 	/* Run per-netns notifier block chain first, then run the global one.
1942 	 * Hopefully, one day, the global one is going to be removed after
1943 	 * all notifier block registrators get converted to be per-netns.
1944 	 */
1945 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 	if (ret & NOTIFY_STOP_MASK)
1947 		return ret;
1948 	return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950 
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952 					   struct net_device *dev,
1953 					   struct netlink_ext_ack *extack)
1954 {
1955 	struct netdev_notifier_info info = {
1956 		.dev = dev,
1957 		.extack = extack,
1958 	};
1959 
1960 	return call_netdevice_notifiers_info(val, &info);
1961 }
1962 
1963 /**
1964  *	call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *	Call all network notifier blocks.  Parameters and return value
1969  *	are as for raw_notifier_call_chain().
1970  */
1971 
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974 	return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977 
1978 /**
1979  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@dev: net_device pointer passed unmodified to notifier function
1982  *	@arg: additional u32 argument passed to the notifier function
1983  *
1984  *	Call all network notifier blocks.  Parameters and return value
1985  *	are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988 					struct net_device *dev, u32 arg)
1989 {
1990 	struct netdev_notifier_info_ext info = {
1991 		.info.dev = dev,
1992 		.ext.mtu = arg,
1993 	};
1994 
1995 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996 
1997 	return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999 
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002 
2003 void net_inc_ingress_queue(void)
2004 {
2005 	static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008 
2009 void net_dec_ingress_queue(void)
2010 {
2011 	static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015 
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018 
2019 void net_inc_egress_queue(void)
2020 {
2021 	static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024 
2025 void net_dec_egress_queue(void)
2026 {
2027 	static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031 
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039 	int wanted;
2040 
2041 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 	if (wanted > 0)
2043 		static_branch_enable(&netstamp_needed_key);
2044 	else
2045 		static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049 
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053 	int wanted;
2054 
2055 	while (1) {
2056 		wanted = atomic_read(&netstamp_wanted);
2057 		if (wanted <= 0)
2058 			break;
2059 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 			return;
2061 	}
2062 	atomic_inc(&netstamp_needed_deferred);
2063 	schedule_work(&netstamp_work);
2064 #else
2065 	static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069 
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073 	int wanted;
2074 
2075 	while (1) {
2076 		wanted = atomic_read(&netstamp_wanted);
2077 		if (wanted <= 1)
2078 			break;
2079 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 			return;
2081 	}
2082 	atomic_dec(&netstamp_needed_deferred);
2083 	schedule_work(&netstamp_work);
2084 #else
2085 	static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089 
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092 	skb->tstamp = 0;
2093 	if (static_branch_unlikely(&netstamp_needed_key))
2094 		__net_timestamp(skb);
2095 }
2096 
2097 #define net_timestamp_check(COND, SKB)				\
2098 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2099 		if ((COND) && !(SKB)->tstamp)			\
2100 			__net_timestamp(SKB);			\
2101 	}							\
2102 
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105 	unsigned int len;
2106 
2107 	if (!(dev->flags & IFF_UP))
2108 		return false;
2109 
2110 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 	if (skb->len <= len)
2112 		return true;
2113 
2114 	/* if TSO is enabled, we don't care about the length as the packet
2115 	 * could be forwarded without being segmented before
2116 	 */
2117 	if (skb_is_gso(skb))
2118 		return true;
2119 
2120 	return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123 
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126 	int ret = ____dev_forward_skb(dev, skb);
2127 
2128 	if (likely(!ret)) {
2129 		skb->protocol = eth_type_trans(skb, dev);
2130 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 	}
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136 
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *	NET_RX_SUCCESS	(no congestion)
2145  *	NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160 
2161 static inline int deliver_skb(struct sk_buff *skb,
2162 			      struct packet_type *pt_prev,
2163 			      struct net_device *orig_dev)
2164 {
2165 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166 		return -ENOMEM;
2167 	refcount_inc(&skb->users);
2168 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170 
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 					  struct packet_type **pt,
2173 					  struct net_device *orig_dev,
2174 					  __be16 type,
2175 					  struct list_head *ptype_list)
2176 {
2177 	struct packet_type *ptype, *pt_prev = *pt;
2178 
2179 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 		if (ptype->type != type)
2181 			continue;
2182 		if (pt_prev)
2183 			deliver_skb(skb, pt_prev, orig_dev);
2184 		pt_prev = ptype;
2185 	}
2186 	*pt = pt_prev;
2187 }
2188 
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191 	if (!ptype->af_packet_priv || !skb->sk)
2192 		return false;
2193 
2194 	if (ptype->id_match)
2195 		return ptype->id_match(ptype, skb->sk);
2196 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 		return true;
2198 
2199 	return false;
2200 }
2201 
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212 
2213 /*
2214  *	Support routine. Sends outgoing frames to any network
2215  *	taps currently in use.
2216  */
2217 
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220 	struct packet_type *ptype;
2221 	struct sk_buff *skb2 = NULL;
2222 	struct packet_type *pt_prev = NULL;
2223 	struct list_head *ptype_list = &ptype_all;
2224 
2225 	rcu_read_lock();
2226 again:
2227 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 		if (ptype->ignore_outgoing)
2229 			continue;
2230 
2231 		/* Never send packets back to the socket
2232 		 * they originated from - MvS (miquels@drinkel.ow.org)
2233 		 */
2234 		if (skb_loop_sk(ptype, skb))
2235 			continue;
2236 
2237 		if (pt_prev) {
2238 			deliver_skb(skb2, pt_prev, skb->dev);
2239 			pt_prev = ptype;
2240 			continue;
2241 		}
2242 
2243 		/* need to clone skb, done only once */
2244 		skb2 = skb_clone(skb, GFP_ATOMIC);
2245 		if (!skb2)
2246 			goto out_unlock;
2247 
2248 		net_timestamp_set(skb2);
2249 
2250 		/* skb->nh should be correctly
2251 		 * set by sender, so that the second statement is
2252 		 * just protection against buggy protocols.
2253 		 */
2254 		skb_reset_mac_header(skb2);
2255 
2256 		if (skb_network_header(skb2) < skb2->data ||
2257 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 					     ntohs(skb2->protocol),
2260 					     dev->name);
2261 			skb_reset_network_header(skb2);
2262 		}
2263 
2264 		skb2->transport_header = skb2->network_header;
2265 		skb2->pkt_type = PACKET_OUTGOING;
2266 		pt_prev = ptype;
2267 	}
2268 
2269 	if (ptype_list == &ptype_all) {
2270 		ptype_list = &dev->ptype_all;
2271 		goto again;
2272 	}
2273 out_unlock:
2274 	if (pt_prev) {
2275 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 		else
2278 			kfree_skb(skb2);
2279 	}
2280 	rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283 
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299 	int i;
2300 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301 
2302 	/* If TC0 is invalidated disable TC mapping */
2303 	if (tc->offset + tc->count > txq) {
2304 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305 		dev->num_tc = 0;
2306 		return;
2307 	}
2308 
2309 	/* Invalidated prio to tc mappings set to TC0 */
2310 	for (i = 1; i < TC_BITMASK + 1; i++) {
2311 		int q = netdev_get_prio_tc_map(dev, i);
2312 
2313 		tc = &dev->tc_to_txq[q];
2314 		if (tc->offset + tc->count > txq) {
2315 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 				i, q);
2317 			netdev_set_prio_tc_map(dev, i, 0);
2318 		}
2319 	}
2320 }
2321 
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324 	if (dev->num_tc) {
2325 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 		int i;
2327 
2328 		/* walk through the TCs and see if it falls into any of them */
2329 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 			if ((txq - tc->offset) < tc->count)
2331 				return i;
2332 		}
2333 
2334 		/* didn't find it, just return -1 to indicate no match */
2335 		return -1;
2336 	}
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341 
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)		\
2349 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350 
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 			     int tci, u16 index)
2353 {
2354 	struct xps_map *map = NULL;
2355 	int pos;
2356 
2357 	if (dev_maps)
2358 		map = xmap_dereference(dev_maps->attr_map[tci]);
2359 	if (!map)
2360 		return false;
2361 
2362 	for (pos = map->len; pos--;) {
2363 		if (map->queues[pos] != index)
2364 			continue;
2365 
2366 		if (map->len > 1) {
2367 			map->queues[pos] = map->queues[--map->len];
2368 			break;
2369 		}
2370 
2371 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 		kfree_rcu(map, rcu);
2373 		return false;
2374 	}
2375 
2376 	return true;
2377 }
2378 
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380 				 struct xps_dev_maps *dev_maps,
2381 				 int cpu, u16 offset, u16 count)
2382 {
2383 	int num_tc = dev->num_tc ? : 1;
2384 	bool active = false;
2385 	int tci;
2386 
2387 	for (tci = cpu * num_tc; num_tc--; tci++) {
2388 		int i, j;
2389 
2390 		for (i = count, j = offset; i--; j++) {
2391 			if (!remove_xps_queue(dev_maps, tci, j))
2392 				break;
2393 		}
2394 
2395 		active |= i < 0;
2396 	}
2397 
2398 	return active;
2399 }
2400 
2401 static void reset_xps_maps(struct net_device *dev,
2402 			   struct xps_dev_maps *dev_maps,
2403 			   bool is_rxqs_map)
2404 {
2405 	if (is_rxqs_map) {
2406 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 	} else {
2409 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 	}
2411 	static_key_slow_dec_cpuslocked(&xps_needed);
2412 	kfree_rcu(dev_maps, rcu);
2413 }
2414 
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 			   u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419 	bool active = false;
2420 	int i, j;
2421 
2422 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 	     j < nr_ids;)
2424 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 					       count);
2426 	if (!active)
2427 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428 
2429 	if (!is_rxqs_map) {
2430 		for (i = offset + (count - 1); count--; i--) {
2431 			netdev_queue_numa_node_write(
2432 				netdev_get_tx_queue(dev, i),
2433 				NUMA_NO_NODE);
2434 		}
2435 	}
2436 }
2437 
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 				   u16 count)
2440 {
2441 	const unsigned long *possible_mask = NULL;
2442 	struct xps_dev_maps *dev_maps;
2443 	unsigned int nr_ids;
2444 
2445 	if (!static_key_false(&xps_needed))
2446 		return;
2447 
2448 	cpus_read_lock();
2449 	mutex_lock(&xps_map_mutex);
2450 
2451 	if (static_key_false(&xps_rxqs_needed)) {
2452 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 		if (dev_maps) {
2454 			nr_ids = dev->num_rx_queues;
2455 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 				       offset, count, true);
2457 		}
2458 	}
2459 
2460 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 	if (!dev_maps)
2462 		goto out_no_maps;
2463 
2464 	if (num_possible_cpus() > 1)
2465 		possible_mask = cpumask_bits(cpu_possible_mask);
2466 	nr_ids = nr_cpu_ids;
2467 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 		       false);
2469 
2470 out_no_maps:
2471 	mutex_unlock(&xps_map_mutex);
2472 	cpus_read_unlock();
2473 }
2474 
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479 
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 				      u16 index, bool is_rxqs_map)
2482 {
2483 	struct xps_map *new_map;
2484 	int alloc_len = XPS_MIN_MAP_ALLOC;
2485 	int i, pos;
2486 
2487 	for (pos = 0; map && pos < map->len; pos++) {
2488 		if (map->queues[pos] != index)
2489 			continue;
2490 		return map;
2491 	}
2492 
2493 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 	if (map) {
2495 		if (pos < map->alloc_len)
2496 			return map;
2497 
2498 		alloc_len = map->alloc_len * 2;
2499 	}
2500 
2501 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 	 *  map
2503 	 */
2504 	if (is_rxqs_map)
2505 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 	else
2507 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 				       cpu_to_node(attr_index));
2509 	if (!new_map)
2510 		return NULL;
2511 
2512 	for (i = 0; i < pos; i++)
2513 		new_map->queues[i] = map->queues[i];
2514 	new_map->alloc_len = alloc_len;
2515 	new_map->len = pos;
2516 
2517 	return new_map;
2518 }
2519 
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 			  u16 index, bool is_rxqs_map)
2523 {
2524 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 	int i, j, tci, numa_node_id = -2;
2527 	int maps_sz, num_tc = 1, tc = 0;
2528 	struct xps_map *map, *new_map;
2529 	bool active = false;
2530 	unsigned int nr_ids;
2531 
2532 	if (dev->num_tc) {
2533 		/* Do not allow XPS on subordinate device directly */
2534 		num_tc = dev->num_tc;
2535 		if (num_tc < 0)
2536 			return -EINVAL;
2537 
2538 		/* If queue belongs to subordinate dev use its map */
2539 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540 
2541 		tc = netdev_txq_to_tc(dev, index);
2542 		if (tc < 0)
2543 			return -EINVAL;
2544 	}
2545 
2546 	mutex_lock(&xps_map_mutex);
2547 	if (is_rxqs_map) {
2548 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 		nr_ids = dev->num_rx_queues;
2551 	} else {
2552 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 		if (num_possible_cpus() > 1) {
2554 			online_mask = cpumask_bits(cpu_online_mask);
2555 			possible_mask = cpumask_bits(cpu_possible_mask);
2556 		}
2557 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 		nr_ids = nr_cpu_ids;
2559 	}
2560 
2561 	if (maps_sz < L1_CACHE_BYTES)
2562 		maps_sz = L1_CACHE_BYTES;
2563 
2564 	/* allocate memory for queue storage */
2565 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 	     j < nr_ids;) {
2567 		if (!new_dev_maps)
2568 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 		if (!new_dev_maps) {
2570 			mutex_unlock(&xps_map_mutex);
2571 			return -ENOMEM;
2572 		}
2573 
2574 		tci = j * num_tc + tc;
2575 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576 				 NULL;
2577 
2578 		map = expand_xps_map(map, j, index, is_rxqs_map);
2579 		if (!map)
2580 			goto error;
2581 
2582 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583 	}
2584 
2585 	if (!new_dev_maps)
2586 		goto out_no_new_maps;
2587 
2588 	if (!dev_maps) {
2589 		/* Increment static keys at most once per type */
2590 		static_key_slow_inc_cpuslocked(&xps_needed);
2591 		if (is_rxqs_map)
2592 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 	}
2594 
2595 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 	     j < nr_ids;) {
2597 		/* copy maps belonging to foreign traffic classes */
2598 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 			/* fill in the new device map from the old device map */
2600 			map = xmap_dereference(dev_maps->attr_map[tci]);
2601 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602 		}
2603 
2604 		/* We need to explicitly update tci as prevous loop
2605 		 * could break out early if dev_maps is NULL.
2606 		 */
2607 		tci = j * num_tc + tc;
2608 
2609 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2611 			/* add tx-queue to CPU/rx-queue maps */
2612 			int pos = 0;
2613 
2614 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 			while ((pos < map->len) && (map->queues[pos] != index))
2616 				pos++;
2617 
2618 			if (pos == map->len)
2619 				map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621 			if (!is_rxqs_map) {
2622 				if (numa_node_id == -2)
2623 					numa_node_id = cpu_to_node(j);
2624 				else if (numa_node_id != cpu_to_node(j))
2625 					numa_node_id = -1;
2626 			}
2627 #endif
2628 		} else if (dev_maps) {
2629 			/* fill in the new device map from the old device map */
2630 			map = xmap_dereference(dev_maps->attr_map[tci]);
2631 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632 		}
2633 
2634 		/* copy maps belonging to foreign traffic classes */
2635 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 			/* fill in the new device map from the old device map */
2637 			map = xmap_dereference(dev_maps->attr_map[tci]);
2638 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639 		}
2640 	}
2641 
2642 	if (is_rxqs_map)
2643 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 	else
2645 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646 
2647 	/* Cleanup old maps */
2648 	if (!dev_maps)
2649 		goto out_no_old_maps;
2650 
2651 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 	     j < nr_ids;) {
2653 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 			map = xmap_dereference(dev_maps->attr_map[tci]);
2656 			if (map && map != new_map)
2657 				kfree_rcu(map, rcu);
2658 		}
2659 	}
2660 
2661 	kfree_rcu(dev_maps, rcu);
2662 
2663 out_no_old_maps:
2664 	dev_maps = new_dev_maps;
2665 	active = true;
2666 
2667 out_no_new_maps:
2668 	if (!is_rxqs_map) {
2669 		/* update Tx queue numa node */
2670 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 					     (numa_node_id >= 0) ?
2672 					     numa_node_id : NUMA_NO_NODE);
2673 	}
2674 
2675 	if (!dev_maps)
2676 		goto out_no_maps;
2677 
2678 	/* removes tx-queue from unused CPUs/rx-queues */
2679 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 	     j < nr_ids;) {
2681 		for (i = tc, tci = j * num_tc; i--; tci++)
2682 			active |= remove_xps_queue(dev_maps, tci, index);
2683 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 		    !netif_attr_test_online(j, online_mask, nr_ids))
2685 			active |= remove_xps_queue(dev_maps, tci, index);
2686 		for (i = num_tc - tc, tci++; --i; tci++)
2687 			active |= remove_xps_queue(dev_maps, tci, index);
2688 	}
2689 
2690 	/* free map if not active */
2691 	if (!active)
2692 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693 
2694 out_no_maps:
2695 	mutex_unlock(&xps_map_mutex);
2696 
2697 	return 0;
2698 error:
2699 	/* remove any maps that we added */
2700 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 	     j < nr_ids;) {
2702 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 			map = dev_maps ?
2705 			      xmap_dereference(dev_maps->attr_map[tci]) :
2706 			      NULL;
2707 			if (new_map && new_map != map)
2708 				kfree(new_map);
2709 		}
2710 	}
2711 
2712 	mutex_unlock(&xps_map_mutex);
2713 
2714 	kfree(new_dev_maps);
2715 	return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718 
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 			u16 index)
2721 {
2722 	int ret;
2723 
2724 	cpus_read_lock();
2725 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 	cpus_read_unlock();
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731 
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736 
2737 	/* Unbind any subordinate channels */
2738 	while (txq-- != &dev->_tx[0]) {
2739 		if (txq->sb_dev)
2740 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 	}
2742 }
2743 
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747 	netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749 	netdev_unbind_all_sb_channels(dev);
2750 
2751 	/* Reset TC configuration of device */
2752 	dev->num_tc = 0;
2753 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757 
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760 	if (tc >= dev->num_tc)
2761 		return -EINVAL;
2762 
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766 	dev->tc_to_txq[tc].count = count;
2767 	dev->tc_to_txq[tc].offset = offset;
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771 
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774 	if (num_tc > TC_MAX_QUEUE)
2775 		return -EINVAL;
2776 
2777 #ifdef CONFIG_XPS
2778 	netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780 	netdev_unbind_all_sb_channels(dev);
2781 
2782 	dev->num_tc = num_tc;
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786 
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788 			      struct net_device *sb_dev)
2789 {
2790 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791 
2792 #ifdef CONFIG_XPS
2793 	netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797 
2798 	while (txq-- != &dev->_tx[0]) {
2799 		if (txq->sb_dev == sb_dev)
2800 			txq->sb_dev = NULL;
2801 	}
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804 
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 				 struct net_device *sb_dev,
2807 				 u8 tc, u16 count, u16 offset)
2808 {
2809 	/* Make certain the sb_dev and dev are already configured */
2810 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 		return -EINVAL;
2812 
2813 	/* We cannot hand out queues we don't have */
2814 	if ((offset + count) > dev->real_num_tx_queues)
2815 		return -EINVAL;
2816 
2817 	/* Record the mapping */
2818 	sb_dev->tc_to_txq[tc].count = count;
2819 	sb_dev->tc_to_txq[tc].offset = offset;
2820 
2821 	/* Provide a way for Tx queue to find the tc_to_txq map or
2822 	 * XPS map for itself.
2823 	 */
2824 	while (count--)
2825 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830 
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833 	/* Do not use a multiqueue device to represent a subordinate channel */
2834 	if (netif_is_multiqueue(dev))
2835 		return -ENODEV;
2836 
2837 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2838 	 * Channel 0 is meant to be "native" mode and used only to represent
2839 	 * the main root device. We allow writing 0 to reset the device back
2840 	 * to normal mode after being used as a subordinate channel.
2841 	 */
2842 	if (channel > S16_MAX)
2843 		return -EINVAL;
2844 
2845 	dev->num_tc = -channel;
2846 
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850 
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857 	bool disabling;
2858 	int rc;
2859 
2860 	disabling = txq < dev->real_num_tx_queues;
2861 
2862 	if (txq < 1 || txq > dev->num_tx_queues)
2863 		return -EINVAL;
2864 
2865 	if (dev->reg_state == NETREG_REGISTERED ||
2866 	    dev->reg_state == NETREG_UNREGISTERING) {
2867 		ASSERT_RTNL();
2868 
2869 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 						  txq);
2871 		if (rc)
2872 			return rc;
2873 
2874 		if (dev->num_tc)
2875 			netif_setup_tc(dev, txq);
2876 
2877 		dev->real_num_tx_queues = txq;
2878 
2879 		if (disabling) {
2880 			synchronize_net();
2881 			qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883 			netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885 		}
2886 	} else {
2887 		dev->real_num_tx_queues = txq;
2888 	}
2889 
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893 
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *	@dev: Network device
2898  *	@rxq: Actual number of RX queues
2899  *
2900  *	This must be called either with the rtnl_lock held or before
2901  *	registration of the net device.  Returns 0 on success, or a
2902  *	negative error code.  If called before registration, it always
2903  *	succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907 	int rc;
2908 
2909 	if (rxq < 1 || rxq > dev->num_rx_queues)
2910 		return -EINVAL;
2911 
2912 	if (dev->reg_state == NETREG_REGISTERED) {
2913 		ASSERT_RTNL();
2914 
2915 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 						  rxq);
2917 		if (rc)
2918 			return rc;
2919 	}
2920 
2921 	dev->real_num_rx_queues = rxq;
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926 
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935 	return is_kdump_kernel() ?
2936 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939 
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942 	struct softnet_data *sd;
2943 	unsigned long flags;
2944 
2945 	local_irq_save(flags);
2946 	sd = this_cpu_ptr(&softnet_data);
2947 	q->next_sched = NULL;
2948 	*sd->output_queue_tailp = q;
2949 	sd->output_queue_tailp = &q->next_sched;
2950 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 	local_irq_restore(flags);
2952 }
2953 
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 		__netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960 
2961 struct dev_kfree_skb_cb {
2962 	enum skb_free_reason reason;
2963 };
2964 
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967 	return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969 
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972 	rcu_read_lock();
2973 	if (!netif_xmit_stopped(txq)) {
2974 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2975 
2976 		__netif_schedule(q);
2977 	}
2978 	rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981 
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 		struct Qdisc *q;
2986 
2987 		rcu_read_lock();
2988 		q = rcu_dereference(dev_queue->qdisc);
2989 		__netif_schedule(q);
2990 		rcu_read_unlock();
2991 	}
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994 
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997 	unsigned long flags;
2998 
2999 	if (unlikely(!skb))
3000 		return;
3001 
3002 	if (likely(refcount_read(&skb->users) == 1)) {
3003 		smp_rmb();
3004 		refcount_set(&skb->users, 0);
3005 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3006 		return;
3007 	}
3008 	get_kfree_skb_cb(skb)->reason = reason;
3009 	local_irq_save(flags);
3010 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 	__this_cpu_write(softnet_data.completion_queue, skb);
3012 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 	local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016 
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019 	if (in_irq() || irqs_disabled())
3020 		__dev_kfree_skb_irq(skb, reason);
3021 	else
3022 		dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025 
3026 
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 	    netif_running(dev)) {
3037 		netif_tx_stop_all_queues(dev);
3038 	}
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041 
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 	    netif_running(dev)) {
3052 		netif_tx_wake_all_queues(dev);
3053 		__netdev_watchdog_up(dev);
3054 	}
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057 
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063 		       const struct net_device *sb_dev,
3064 		       struct sk_buff *skb)
3065 {
3066 	u32 hash;
3067 	u16 qoffset = 0;
3068 	u16 qcount = dev->real_num_tx_queues;
3069 
3070 	if (dev->num_tc) {
3071 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072 
3073 		qoffset = sb_dev->tc_to_txq[tc].offset;
3074 		qcount = sb_dev->tc_to_txq[tc].count;
3075 	}
3076 
3077 	if (skb_rx_queue_recorded(skb)) {
3078 		hash = skb_get_rx_queue(skb);
3079 		while (unlikely(hash >= qcount))
3080 			hash -= qcount;
3081 		return hash + qoffset;
3082 	}
3083 
3084 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3085 }
3086 
3087 static void skb_warn_bad_offload(const struct sk_buff *skb)
3088 {
3089 	static const netdev_features_t null_features;
3090 	struct net_device *dev = skb->dev;
3091 	const char *name = "";
3092 
3093 	if (!net_ratelimit())
3094 		return;
3095 
3096 	if (dev) {
3097 		if (dev->dev.parent)
3098 			name = dev_driver_string(dev->dev.parent);
3099 		else
3100 			name = netdev_name(dev);
3101 	}
3102 	skb_dump(KERN_WARNING, skb, false);
3103 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3104 	     name, dev ? &dev->features : &null_features,
3105 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3106 }
3107 
3108 /*
3109  * Invalidate hardware checksum when packet is to be mangled, and
3110  * complete checksum manually on outgoing path.
3111  */
3112 int skb_checksum_help(struct sk_buff *skb)
3113 {
3114 	__wsum csum;
3115 	int ret = 0, offset;
3116 
3117 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3118 		goto out_set_summed;
3119 
3120 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3121 		skb_warn_bad_offload(skb);
3122 		return -EINVAL;
3123 	}
3124 
3125 	/* Before computing a checksum, we should make sure no frag could
3126 	 * be modified by an external entity : checksum could be wrong.
3127 	 */
3128 	if (skb_has_shared_frag(skb)) {
3129 		ret = __skb_linearize(skb);
3130 		if (ret)
3131 			goto out;
3132 	}
3133 
3134 	offset = skb_checksum_start_offset(skb);
3135 	BUG_ON(offset >= skb_headlen(skb));
3136 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3137 
3138 	offset += skb->csum_offset;
3139 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3140 
3141 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3142 	if (ret)
3143 		goto out;
3144 
3145 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3146 out_set_summed:
3147 	skb->ip_summed = CHECKSUM_NONE;
3148 out:
3149 	return ret;
3150 }
3151 EXPORT_SYMBOL(skb_checksum_help);
3152 
3153 int skb_crc32c_csum_help(struct sk_buff *skb)
3154 {
3155 	__le32 crc32c_csum;
3156 	int ret = 0, offset, start;
3157 
3158 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3159 		goto out;
3160 
3161 	if (unlikely(skb_is_gso(skb)))
3162 		goto out;
3163 
3164 	/* Before computing a checksum, we should make sure no frag could
3165 	 * be modified by an external entity : checksum could be wrong.
3166 	 */
3167 	if (unlikely(skb_has_shared_frag(skb))) {
3168 		ret = __skb_linearize(skb);
3169 		if (ret)
3170 			goto out;
3171 	}
3172 	start = skb_checksum_start_offset(skb);
3173 	offset = start + offsetof(struct sctphdr, checksum);
3174 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3175 		ret = -EINVAL;
3176 		goto out;
3177 	}
3178 
3179 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3180 	if (ret)
3181 		goto out;
3182 
3183 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3184 						  skb->len - start, ~(__u32)0,
3185 						  crc32c_csum_stub));
3186 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3187 	skb->ip_summed = CHECKSUM_NONE;
3188 	skb->csum_not_inet = 0;
3189 out:
3190 	return ret;
3191 }
3192 
3193 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3194 {
3195 	__be16 type = skb->protocol;
3196 
3197 	/* Tunnel gso handlers can set protocol to ethernet. */
3198 	if (type == htons(ETH_P_TEB)) {
3199 		struct ethhdr *eth;
3200 
3201 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3202 			return 0;
3203 
3204 		eth = (struct ethhdr *)skb->data;
3205 		type = eth->h_proto;
3206 	}
3207 
3208 	return __vlan_get_protocol(skb, type, depth);
3209 }
3210 
3211 /**
3212  *	skb_mac_gso_segment - mac layer segmentation handler.
3213  *	@skb: buffer to segment
3214  *	@features: features for the output path (see dev->features)
3215  */
3216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3217 				    netdev_features_t features)
3218 {
3219 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3220 	struct packet_offload *ptype;
3221 	int vlan_depth = skb->mac_len;
3222 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3223 
3224 	if (unlikely(!type))
3225 		return ERR_PTR(-EINVAL);
3226 
3227 	__skb_pull(skb, vlan_depth);
3228 
3229 	rcu_read_lock();
3230 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3231 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3232 			segs = ptype->callbacks.gso_segment(skb, features);
3233 			break;
3234 		}
3235 	}
3236 	rcu_read_unlock();
3237 
3238 	__skb_push(skb, skb->data - skb_mac_header(skb));
3239 
3240 	return segs;
3241 }
3242 EXPORT_SYMBOL(skb_mac_gso_segment);
3243 
3244 
3245 /* openvswitch calls this on rx path, so we need a different check.
3246  */
3247 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3248 {
3249 	if (tx_path)
3250 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3251 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3252 
3253 	return skb->ip_summed == CHECKSUM_NONE;
3254 }
3255 
3256 /**
3257  *	__skb_gso_segment - Perform segmentation on skb.
3258  *	@skb: buffer to segment
3259  *	@features: features for the output path (see dev->features)
3260  *	@tx_path: whether it is called in TX path
3261  *
3262  *	This function segments the given skb and returns a list of segments.
3263  *
3264  *	It may return NULL if the skb requires no segmentation.  This is
3265  *	only possible when GSO is used for verifying header integrity.
3266  *
3267  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3268  */
3269 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3270 				  netdev_features_t features, bool tx_path)
3271 {
3272 	struct sk_buff *segs;
3273 
3274 	if (unlikely(skb_needs_check(skb, tx_path))) {
3275 		int err;
3276 
3277 		/* We're going to init ->check field in TCP or UDP header */
3278 		err = skb_cow_head(skb, 0);
3279 		if (err < 0)
3280 			return ERR_PTR(err);
3281 	}
3282 
3283 	/* Only report GSO partial support if it will enable us to
3284 	 * support segmentation on this frame without needing additional
3285 	 * work.
3286 	 */
3287 	if (features & NETIF_F_GSO_PARTIAL) {
3288 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3289 		struct net_device *dev = skb->dev;
3290 
3291 		partial_features |= dev->features & dev->gso_partial_features;
3292 		if (!skb_gso_ok(skb, features | partial_features))
3293 			features &= ~NETIF_F_GSO_PARTIAL;
3294 	}
3295 
3296 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3297 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3298 
3299 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3300 	SKB_GSO_CB(skb)->encap_level = 0;
3301 
3302 	skb_reset_mac_header(skb);
3303 	skb_reset_mac_len(skb);
3304 
3305 	segs = skb_mac_gso_segment(skb, features);
3306 
3307 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3308 		skb_warn_bad_offload(skb);
3309 
3310 	return segs;
3311 }
3312 EXPORT_SYMBOL(__skb_gso_segment);
3313 
3314 /* Take action when hardware reception checksum errors are detected. */
3315 #ifdef CONFIG_BUG
3316 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3317 {
3318 	if (net_ratelimit()) {
3319 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3320 		skb_dump(KERN_ERR, skb, true);
3321 		dump_stack();
3322 	}
3323 }
3324 EXPORT_SYMBOL(netdev_rx_csum_fault);
3325 #endif
3326 
3327 /* XXX: check that highmem exists at all on the given machine. */
3328 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3329 {
3330 #ifdef CONFIG_HIGHMEM
3331 	int i;
3332 
3333 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3334 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3335 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3336 
3337 			if (PageHighMem(skb_frag_page(frag)))
3338 				return 1;
3339 		}
3340 	}
3341 #endif
3342 	return 0;
3343 }
3344 
3345 /* If MPLS offload request, verify we are testing hardware MPLS features
3346  * instead of standard features for the netdev.
3347  */
3348 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3349 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3350 					   netdev_features_t features,
3351 					   __be16 type)
3352 {
3353 	if (eth_p_mpls(type))
3354 		features &= skb->dev->mpls_features;
3355 
3356 	return features;
3357 }
3358 #else
3359 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3360 					   netdev_features_t features,
3361 					   __be16 type)
3362 {
3363 	return features;
3364 }
3365 #endif
3366 
3367 static netdev_features_t harmonize_features(struct sk_buff *skb,
3368 	netdev_features_t features)
3369 {
3370 	int tmp;
3371 	__be16 type;
3372 
3373 	type = skb_network_protocol(skb, &tmp);
3374 	features = net_mpls_features(skb, features, type);
3375 
3376 	if (skb->ip_summed != CHECKSUM_NONE &&
3377 	    !can_checksum_protocol(features, type)) {
3378 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3379 	}
3380 	if (illegal_highdma(skb->dev, skb))
3381 		features &= ~NETIF_F_SG;
3382 
3383 	return features;
3384 }
3385 
3386 netdev_features_t passthru_features_check(struct sk_buff *skb,
3387 					  struct net_device *dev,
3388 					  netdev_features_t features)
3389 {
3390 	return features;
3391 }
3392 EXPORT_SYMBOL(passthru_features_check);
3393 
3394 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3395 					     struct net_device *dev,
3396 					     netdev_features_t features)
3397 {
3398 	return vlan_features_check(skb, features);
3399 }
3400 
3401 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3402 					    struct net_device *dev,
3403 					    netdev_features_t features)
3404 {
3405 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3406 
3407 	if (gso_segs > dev->gso_max_segs)
3408 		return features & ~NETIF_F_GSO_MASK;
3409 
3410 	/* Support for GSO partial features requires software
3411 	 * intervention before we can actually process the packets
3412 	 * so we need to strip support for any partial features now
3413 	 * and we can pull them back in after we have partially
3414 	 * segmented the frame.
3415 	 */
3416 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3417 		features &= ~dev->gso_partial_features;
3418 
3419 	/* Make sure to clear the IPv4 ID mangling feature if the
3420 	 * IPv4 header has the potential to be fragmented.
3421 	 */
3422 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3423 		struct iphdr *iph = skb->encapsulation ?
3424 				    inner_ip_hdr(skb) : ip_hdr(skb);
3425 
3426 		if (!(iph->frag_off & htons(IP_DF)))
3427 			features &= ~NETIF_F_TSO_MANGLEID;
3428 	}
3429 
3430 	return features;
3431 }
3432 
3433 netdev_features_t netif_skb_features(struct sk_buff *skb)
3434 {
3435 	struct net_device *dev = skb->dev;
3436 	netdev_features_t features = dev->features;
3437 
3438 	if (skb_is_gso(skb))
3439 		features = gso_features_check(skb, dev, features);
3440 
3441 	/* If encapsulation offload request, verify we are testing
3442 	 * hardware encapsulation features instead of standard
3443 	 * features for the netdev
3444 	 */
3445 	if (skb->encapsulation)
3446 		features &= dev->hw_enc_features;
3447 
3448 	if (skb_vlan_tagged(skb))
3449 		features = netdev_intersect_features(features,
3450 						     dev->vlan_features |
3451 						     NETIF_F_HW_VLAN_CTAG_TX |
3452 						     NETIF_F_HW_VLAN_STAG_TX);
3453 
3454 	if (dev->netdev_ops->ndo_features_check)
3455 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3456 								features);
3457 	else
3458 		features &= dflt_features_check(skb, dev, features);
3459 
3460 	return harmonize_features(skb, features);
3461 }
3462 EXPORT_SYMBOL(netif_skb_features);
3463 
3464 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3465 		    struct netdev_queue *txq, bool more)
3466 {
3467 	unsigned int len;
3468 	int rc;
3469 
3470 	if (dev_nit_active(dev))
3471 		dev_queue_xmit_nit(skb, dev);
3472 
3473 	len = skb->len;
3474 	trace_net_dev_start_xmit(skb, dev);
3475 	rc = netdev_start_xmit(skb, dev, txq, more);
3476 	trace_net_dev_xmit(skb, rc, dev, len);
3477 
3478 	return rc;
3479 }
3480 
3481 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3482 				    struct netdev_queue *txq, int *ret)
3483 {
3484 	struct sk_buff *skb = first;
3485 	int rc = NETDEV_TX_OK;
3486 
3487 	while (skb) {
3488 		struct sk_buff *next = skb->next;
3489 
3490 		skb_mark_not_on_list(skb);
3491 		rc = xmit_one(skb, dev, txq, next != NULL);
3492 		if (unlikely(!dev_xmit_complete(rc))) {
3493 			skb->next = next;
3494 			goto out;
3495 		}
3496 
3497 		skb = next;
3498 		if (netif_tx_queue_stopped(txq) && skb) {
3499 			rc = NETDEV_TX_BUSY;
3500 			break;
3501 		}
3502 	}
3503 
3504 out:
3505 	*ret = rc;
3506 	return skb;
3507 }
3508 
3509 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3510 					  netdev_features_t features)
3511 {
3512 	if (skb_vlan_tag_present(skb) &&
3513 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3514 		skb = __vlan_hwaccel_push_inside(skb);
3515 	return skb;
3516 }
3517 
3518 int skb_csum_hwoffload_help(struct sk_buff *skb,
3519 			    const netdev_features_t features)
3520 {
3521 	if (unlikely(skb->csum_not_inet))
3522 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3523 			skb_crc32c_csum_help(skb);
3524 
3525 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3526 }
3527 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3528 
3529 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3530 {
3531 	netdev_features_t features;
3532 
3533 	features = netif_skb_features(skb);
3534 	skb = validate_xmit_vlan(skb, features);
3535 	if (unlikely(!skb))
3536 		goto out_null;
3537 
3538 	skb = sk_validate_xmit_skb(skb, dev);
3539 	if (unlikely(!skb))
3540 		goto out_null;
3541 
3542 	if (netif_needs_gso(skb, features)) {
3543 		struct sk_buff *segs;
3544 
3545 		segs = skb_gso_segment(skb, features);
3546 		if (IS_ERR(segs)) {
3547 			goto out_kfree_skb;
3548 		} else if (segs) {
3549 			consume_skb(skb);
3550 			skb = segs;
3551 		}
3552 	} else {
3553 		if (skb_needs_linearize(skb, features) &&
3554 		    __skb_linearize(skb))
3555 			goto out_kfree_skb;
3556 
3557 		/* If packet is not checksummed and device does not
3558 		 * support checksumming for this protocol, complete
3559 		 * checksumming here.
3560 		 */
3561 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3562 			if (skb->encapsulation)
3563 				skb_set_inner_transport_header(skb,
3564 							       skb_checksum_start_offset(skb));
3565 			else
3566 				skb_set_transport_header(skb,
3567 							 skb_checksum_start_offset(skb));
3568 			if (skb_csum_hwoffload_help(skb, features))
3569 				goto out_kfree_skb;
3570 		}
3571 	}
3572 
3573 	skb = validate_xmit_xfrm(skb, features, again);
3574 
3575 	return skb;
3576 
3577 out_kfree_skb:
3578 	kfree_skb(skb);
3579 out_null:
3580 	atomic_long_inc(&dev->tx_dropped);
3581 	return NULL;
3582 }
3583 
3584 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3585 {
3586 	struct sk_buff *next, *head = NULL, *tail;
3587 
3588 	for (; skb != NULL; skb = next) {
3589 		next = skb->next;
3590 		skb_mark_not_on_list(skb);
3591 
3592 		/* in case skb wont be segmented, point to itself */
3593 		skb->prev = skb;
3594 
3595 		skb = validate_xmit_skb(skb, dev, again);
3596 		if (!skb)
3597 			continue;
3598 
3599 		if (!head)
3600 			head = skb;
3601 		else
3602 			tail->next = skb;
3603 		/* If skb was segmented, skb->prev points to
3604 		 * the last segment. If not, it still contains skb.
3605 		 */
3606 		tail = skb->prev;
3607 	}
3608 	return head;
3609 }
3610 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3611 
3612 static void qdisc_pkt_len_init(struct sk_buff *skb)
3613 {
3614 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3615 
3616 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3617 
3618 	/* To get more precise estimation of bytes sent on wire,
3619 	 * we add to pkt_len the headers size of all segments
3620 	 */
3621 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3622 		unsigned int hdr_len;
3623 		u16 gso_segs = shinfo->gso_segs;
3624 
3625 		/* mac layer + network layer */
3626 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3627 
3628 		/* + transport layer */
3629 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3630 			const struct tcphdr *th;
3631 			struct tcphdr _tcphdr;
3632 
3633 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3634 						sizeof(_tcphdr), &_tcphdr);
3635 			if (likely(th))
3636 				hdr_len += __tcp_hdrlen(th);
3637 		} else {
3638 			struct udphdr _udphdr;
3639 
3640 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3641 					       sizeof(_udphdr), &_udphdr))
3642 				hdr_len += sizeof(struct udphdr);
3643 		}
3644 
3645 		if (shinfo->gso_type & SKB_GSO_DODGY)
3646 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3647 						shinfo->gso_size);
3648 
3649 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3650 	}
3651 }
3652 
3653 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3654 				 struct net_device *dev,
3655 				 struct netdev_queue *txq)
3656 {
3657 	spinlock_t *root_lock = qdisc_lock(q);
3658 	struct sk_buff *to_free = NULL;
3659 	bool contended;
3660 	int rc;
3661 
3662 	qdisc_calculate_pkt_len(skb, q);
3663 
3664 	if (q->flags & TCQ_F_NOLOCK) {
3665 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3666 		qdisc_run(q);
3667 
3668 		if (unlikely(to_free))
3669 			kfree_skb_list(to_free);
3670 		return rc;
3671 	}
3672 
3673 	/*
3674 	 * Heuristic to force contended enqueues to serialize on a
3675 	 * separate lock before trying to get qdisc main lock.
3676 	 * This permits qdisc->running owner to get the lock more
3677 	 * often and dequeue packets faster.
3678 	 */
3679 	contended = qdisc_is_running(q);
3680 	if (unlikely(contended))
3681 		spin_lock(&q->busylock);
3682 
3683 	spin_lock(root_lock);
3684 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3685 		__qdisc_drop(skb, &to_free);
3686 		rc = NET_XMIT_DROP;
3687 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3688 		   qdisc_run_begin(q)) {
3689 		/*
3690 		 * This is a work-conserving queue; there are no old skbs
3691 		 * waiting to be sent out; and the qdisc is not running -
3692 		 * xmit the skb directly.
3693 		 */
3694 
3695 		qdisc_bstats_update(q, skb);
3696 
3697 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3698 			if (unlikely(contended)) {
3699 				spin_unlock(&q->busylock);
3700 				contended = false;
3701 			}
3702 			__qdisc_run(q);
3703 		}
3704 
3705 		qdisc_run_end(q);
3706 		rc = NET_XMIT_SUCCESS;
3707 	} else {
3708 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3709 		if (qdisc_run_begin(q)) {
3710 			if (unlikely(contended)) {
3711 				spin_unlock(&q->busylock);
3712 				contended = false;
3713 			}
3714 			__qdisc_run(q);
3715 			qdisc_run_end(q);
3716 		}
3717 	}
3718 	spin_unlock(root_lock);
3719 	if (unlikely(to_free))
3720 		kfree_skb_list(to_free);
3721 	if (unlikely(contended))
3722 		spin_unlock(&q->busylock);
3723 	return rc;
3724 }
3725 
3726 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3727 static void skb_update_prio(struct sk_buff *skb)
3728 {
3729 	const struct netprio_map *map;
3730 	const struct sock *sk;
3731 	unsigned int prioidx;
3732 
3733 	if (skb->priority)
3734 		return;
3735 	map = rcu_dereference_bh(skb->dev->priomap);
3736 	if (!map)
3737 		return;
3738 	sk = skb_to_full_sk(skb);
3739 	if (!sk)
3740 		return;
3741 
3742 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3743 
3744 	if (prioidx < map->priomap_len)
3745 		skb->priority = map->priomap[prioidx];
3746 }
3747 #else
3748 #define skb_update_prio(skb)
3749 #endif
3750 
3751 /**
3752  *	dev_loopback_xmit - loop back @skb
3753  *	@net: network namespace this loopback is happening in
3754  *	@sk:  sk needed to be a netfilter okfn
3755  *	@skb: buffer to transmit
3756  */
3757 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3758 {
3759 	skb_reset_mac_header(skb);
3760 	__skb_pull(skb, skb_network_offset(skb));
3761 	skb->pkt_type = PACKET_LOOPBACK;
3762 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3763 	WARN_ON(!skb_dst(skb));
3764 	skb_dst_force(skb);
3765 	netif_rx_ni(skb);
3766 	return 0;
3767 }
3768 EXPORT_SYMBOL(dev_loopback_xmit);
3769 
3770 #ifdef CONFIG_NET_EGRESS
3771 static struct sk_buff *
3772 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3773 {
3774 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3775 	struct tcf_result cl_res;
3776 
3777 	if (!miniq)
3778 		return skb;
3779 
3780 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3781 	mini_qdisc_bstats_cpu_update(miniq, skb);
3782 
3783 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3784 	case TC_ACT_OK:
3785 	case TC_ACT_RECLASSIFY:
3786 		skb->tc_index = TC_H_MIN(cl_res.classid);
3787 		break;
3788 	case TC_ACT_SHOT:
3789 		mini_qdisc_qstats_cpu_drop(miniq);
3790 		*ret = NET_XMIT_DROP;
3791 		kfree_skb(skb);
3792 		return NULL;
3793 	case TC_ACT_STOLEN:
3794 	case TC_ACT_QUEUED:
3795 	case TC_ACT_TRAP:
3796 		*ret = NET_XMIT_SUCCESS;
3797 		consume_skb(skb);
3798 		return NULL;
3799 	case TC_ACT_REDIRECT:
3800 		/* No need to push/pop skb's mac_header here on egress! */
3801 		skb_do_redirect(skb);
3802 		*ret = NET_XMIT_SUCCESS;
3803 		return NULL;
3804 	default:
3805 		break;
3806 	}
3807 
3808 	return skb;
3809 }
3810 #endif /* CONFIG_NET_EGRESS */
3811 
3812 #ifdef CONFIG_XPS
3813 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3814 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3815 {
3816 	struct xps_map *map;
3817 	int queue_index = -1;
3818 
3819 	if (dev->num_tc) {
3820 		tci *= dev->num_tc;
3821 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3822 	}
3823 
3824 	map = rcu_dereference(dev_maps->attr_map[tci]);
3825 	if (map) {
3826 		if (map->len == 1)
3827 			queue_index = map->queues[0];
3828 		else
3829 			queue_index = map->queues[reciprocal_scale(
3830 						skb_get_hash(skb), map->len)];
3831 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3832 			queue_index = -1;
3833 	}
3834 	return queue_index;
3835 }
3836 #endif
3837 
3838 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3839 			 struct sk_buff *skb)
3840 {
3841 #ifdef CONFIG_XPS
3842 	struct xps_dev_maps *dev_maps;
3843 	struct sock *sk = skb->sk;
3844 	int queue_index = -1;
3845 
3846 	if (!static_key_false(&xps_needed))
3847 		return -1;
3848 
3849 	rcu_read_lock();
3850 	if (!static_key_false(&xps_rxqs_needed))
3851 		goto get_cpus_map;
3852 
3853 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3854 	if (dev_maps) {
3855 		int tci = sk_rx_queue_get(sk);
3856 
3857 		if (tci >= 0 && tci < dev->num_rx_queues)
3858 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3859 							  tci);
3860 	}
3861 
3862 get_cpus_map:
3863 	if (queue_index < 0) {
3864 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3865 		if (dev_maps) {
3866 			unsigned int tci = skb->sender_cpu - 1;
3867 
3868 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3869 							  tci);
3870 		}
3871 	}
3872 	rcu_read_unlock();
3873 
3874 	return queue_index;
3875 #else
3876 	return -1;
3877 #endif
3878 }
3879 
3880 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3881 		     struct net_device *sb_dev)
3882 {
3883 	return 0;
3884 }
3885 EXPORT_SYMBOL(dev_pick_tx_zero);
3886 
3887 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3888 		       struct net_device *sb_dev)
3889 {
3890 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3891 }
3892 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3893 
3894 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3895 		     struct net_device *sb_dev)
3896 {
3897 	struct sock *sk = skb->sk;
3898 	int queue_index = sk_tx_queue_get(sk);
3899 
3900 	sb_dev = sb_dev ? : dev;
3901 
3902 	if (queue_index < 0 || skb->ooo_okay ||
3903 	    queue_index >= dev->real_num_tx_queues) {
3904 		int new_index = get_xps_queue(dev, sb_dev, skb);
3905 
3906 		if (new_index < 0)
3907 			new_index = skb_tx_hash(dev, sb_dev, skb);
3908 
3909 		if (queue_index != new_index && sk &&
3910 		    sk_fullsock(sk) &&
3911 		    rcu_access_pointer(sk->sk_dst_cache))
3912 			sk_tx_queue_set(sk, new_index);
3913 
3914 		queue_index = new_index;
3915 	}
3916 
3917 	return queue_index;
3918 }
3919 EXPORT_SYMBOL(netdev_pick_tx);
3920 
3921 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3922 					 struct sk_buff *skb,
3923 					 struct net_device *sb_dev)
3924 {
3925 	int queue_index = 0;
3926 
3927 #ifdef CONFIG_XPS
3928 	u32 sender_cpu = skb->sender_cpu - 1;
3929 
3930 	if (sender_cpu >= (u32)NR_CPUS)
3931 		skb->sender_cpu = raw_smp_processor_id() + 1;
3932 #endif
3933 
3934 	if (dev->real_num_tx_queues != 1) {
3935 		const struct net_device_ops *ops = dev->netdev_ops;
3936 
3937 		if (ops->ndo_select_queue)
3938 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3939 		else
3940 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3941 
3942 		queue_index = netdev_cap_txqueue(dev, queue_index);
3943 	}
3944 
3945 	skb_set_queue_mapping(skb, queue_index);
3946 	return netdev_get_tx_queue(dev, queue_index);
3947 }
3948 
3949 /**
3950  *	__dev_queue_xmit - transmit a buffer
3951  *	@skb: buffer to transmit
3952  *	@sb_dev: suboordinate device used for L2 forwarding offload
3953  *
3954  *	Queue a buffer for transmission to a network device. The caller must
3955  *	have set the device and priority and built the buffer before calling
3956  *	this function. The function can be called from an interrupt.
3957  *
3958  *	A negative errno code is returned on a failure. A success does not
3959  *	guarantee the frame will be transmitted as it may be dropped due
3960  *	to congestion or traffic shaping.
3961  *
3962  * -----------------------------------------------------------------------------------
3963  *      I notice this method can also return errors from the queue disciplines,
3964  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3965  *      be positive.
3966  *
3967  *      Regardless of the return value, the skb is consumed, so it is currently
3968  *      difficult to retry a send to this method.  (You can bump the ref count
3969  *      before sending to hold a reference for retry if you are careful.)
3970  *
3971  *      When calling this method, interrupts MUST be enabled.  This is because
3972  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3973  *          --BLG
3974  */
3975 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3976 {
3977 	struct net_device *dev = skb->dev;
3978 	struct netdev_queue *txq;
3979 	struct Qdisc *q;
3980 	int rc = -ENOMEM;
3981 	bool again = false;
3982 
3983 	skb_reset_mac_header(skb);
3984 
3985 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3986 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3987 
3988 	/* Disable soft irqs for various locks below. Also
3989 	 * stops preemption for RCU.
3990 	 */
3991 	rcu_read_lock_bh();
3992 
3993 	skb_update_prio(skb);
3994 
3995 	qdisc_pkt_len_init(skb);
3996 #ifdef CONFIG_NET_CLS_ACT
3997 	skb->tc_at_ingress = 0;
3998 # ifdef CONFIG_NET_EGRESS
3999 	if (static_branch_unlikely(&egress_needed_key)) {
4000 		skb = sch_handle_egress(skb, &rc, dev);
4001 		if (!skb)
4002 			goto out;
4003 	}
4004 # endif
4005 #endif
4006 	/* If device/qdisc don't need skb->dst, release it right now while
4007 	 * its hot in this cpu cache.
4008 	 */
4009 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4010 		skb_dst_drop(skb);
4011 	else
4012 		skb_dst_force(skb);
4013 
4014 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4015 	q = rcu_dereference_bh(txq->qdisc);
4016 
4017 	trace_net_dev_queue(skb);
4018 	if (q->enqueue) {
4019 		rc = __dev_xmit_skb(skb, q, dev, txq);
4020 		goto out;
4021 	}
4022 
4023 	/* The device has no queue. Common case for software devices:
4024 	 * loopback, all the sorts of tunnels...
4025 
4026 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4027 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4028 	 * counters.)
4029 	 * However, it is possible, that they rely on protection
4030 	 * made by us here.
4031 
4032 	 * Check this and shot the lock. It is not prone from deadlocks.
4033 	 *Either shot noqueue qdisc, it is even simpler 8)
4034 	 */
4035 	if (dev->flags & IFF_UP) {
4036 		int cpu = smp_processor_id(); /* ok because BHs are off */
4037 
4038 		if (txq->xmit_lock_owner != cpu) {
4039 			if (dev_xmit_recursion())
4040 				goto recursion_alert;
4041 
4042 			skb = validate_xmit_skb(skb, dev, &again);
4043 			if (!skb)
4044 				goto out;
4045 
4046 			HARD_TX_LOCK(dev, txq, cpu);
4047 
4048 			if (!netif_xmit_stopped(txq)) {
4049 				dev_xmit_recursion_inc();
4050 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4051 				dev_xmit_recursion_dec();
4052 				if (dev_xmit_complete(rc)) {
4053 					HARD_TX_UNLOCK(dev, txq);
4054 					goto out;
4055 				}
4056 			}
4057 			HARD_TX_UNLOCK(dev, txq);
4058 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4059 					     dev->name);
4060 		} else {
4061 			/* Recursion is detected! It is possible,
4062 			 * unfortunately
4063 			 */
4064 recursion_alert:
4065 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4066 					     dev->name);
4067 		}
4068 	}
4069 
4070 	rc = -ENETDOWN;
4071 	rcu_read_unlock_bh();
4072 
4073 	atomic_long_inc(&dev->tx_dropped);
4074 	kfree_skb_list(skb);
4075 	return rc;
4076 out:
4077 	rcu_read_unlock_bh();
4078 	return rc;
4079 }
4080 
4081 int dev_queue_xmit(struct sk_buff *skb)
4082 {
4083 	return __dev_queue_xmit(skb, NULL);
4084 }
4085 EXPORT_SYMBOL(dev_queue_xmit);
4086 
4087 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4088 {
4089 	return __dev_queue_xmit(skb, sb_dev);
4090 }
4091 EXPORT_SYMBOL(dev_queue_xmit_accel);
4092 
4093 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4094 {
4095 	struct net_device *dev = skb->dev;
4096 	struct sk_buff *orig_skb = skb;
4097 	struct netdev_queue *txq;
4098 	int ret = NETDEV_TX_BUSY;
4099 	bool again = false;
4100 
4101 	if (unlikely(!netif_running(dev) ||
4102 		     !netif_carrier_ok(dev)))
4103 		goto drop;
4104 
4105 	skb = validate_xmit_skb_list(skb, dev, &again);
4106 	if (skb != orig_skb)
4107 		goto drop;
4108 
4109 	skb_set_queue_mapping(skb, queue_id);
4110 	txq = skb_get_tx_queue(dev, skb);
4111 
4112 	local_bh_disable();
4113 
4114 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4115 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4116 		ret = netdev_start_xmit(skb, dev, txq, false);
4117 	HARD_TX_UNLOCK(dev, txq);
4118 
4119 	local_bh_enable();
4120 
4121 	if (!dev_xmit_complete(ret))
4122 		kfree_skb(skb);
4123 
4124 	return ret;
4125 drop:
4126 	atomic_long_inc(&dev->tx_dropped);
4127 	kfree_skb_list(skb);
4128 	return NET_XMIT_DROP;
4129 }
4130 EXPORT_SYMBOL(dev_direct_xmit);
4131 
4132 /*************************************************************************
4133  *			Receiver routines
4134  *************************************************************************/
4135 
4136 int netdev_max_backlog __read_mostly = 1000;
4137 EXPORT_SYMBOL(netdev_max_backlog);
4138 
4139 int netdev_tstamp_prequeue __read_mostly = 1;
4140 int netdev_budget __read_mostly = 300;
4141 unsigned int __read_mostly netdev_budget_usecs = 2000;
4142 int weight_p __read_mostly = 64;           /* old backlog weight */
4143 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4144 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4145 int dev_rx_weight __read_mostly = 64;
4146 int dev_tx_weight __read_mostly = 64;
4147 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4148 int gro_normal_batch __read_mostly = 8;
4149 
4150 /* Called with irq disabled */
4151 static inline void ____napi_schedule(struct softnet_data *sd,
4152 				     struct napi_struct *napi)
4153 {
4154 	list_add_tail(&napi->poll_list, &sd->poll_list);
4155 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4156 }
4157 
4158 #ifdef CONFIG_RPS
4159 
4160 /* One global table that all flow-based protocols share. */
4161 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4162 EXPORT_SYMBOL(rps_sock_flow_table);
4163 u32 rps_cpu_mask __read_mostly;
4164 EXPORT_SYMBOL(rps_cpu_mask);
4165 
4166 struct static_key_false rps_needed __read_mostly;
4167 EXPORT_SYMBOL(rps_needed);
4168 struct static_key_false rfs_needed __read_mostly;
4169 EXPORT_SYMBOL(rfs_needed);
4170 
4171 static struct rps_dev_flow *
4172 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4173 	    struct rps_dev_flow *rflow, u16 next_cpu)
4174 {
4175 	if (next_cpu < nr_cpu_ids) {
4176 #ifdef CONFIG_RFS_ACCEL
4177 		struct netdev_rx_queue *rxqueue;
4178 		struct rps_dev_flow_table *flow_table;
4179 		struct rps_dev_flow *old_rflow;
4180 		u32 flow_id;
4181 		u16 rxq_index;
4182 		int rc;
4183 
4184 		/* Should we steer this flow to a different hardware queue? */
4185 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4186 		    !(dev->features & NETIF_F_NTUPLE))
4187 			goto out;
4188 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4189 		if (rxq_index == skb_get_rx_queue(skb))
4190 			goto out;
4191 
4192 		rxqueue = dev->_rx + rxq_index;
4193 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4194 		if (!flow_table)
4195 			goto out;
4196 		flow_id = skb_get_hash(skb) & flow_table->mask;
4197 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4198 							rxq_index, flow_id);
4199 		if (rc < 0)
4200 			goto out;
4201 		old_rflow = rflow;
4202 		rflow = &flow_table->flows[flow_id];
4203 		rflow->filter = rc;
4204 		if (old_rflow->filter == rflow->filter)
4205 			old_rflow->filter = RPS_NO_FILTER;
4206 	out:
4207 #endif
4208 		rflow->last_qtail =
4209 			per_cpu(softnet_data, next_cpu).input_queue_head;
4210 	}
4211 
4212 	rflow->cpu = next_cpu;
4213 	return rflow;
4214 }
4215 
4216 /*
4217  * get_rps_cpu is called from netif_receive_skb and returns the target
4218  * CPU from the RPS map of the receiving queue for a given skb.
4219  * rcu_read_lock must be held on entry.
4220  */
4221 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4222 		       struct rps_dev_flow **rflowp)
4223 {
4224 	const struct rps_sock_flow_table *sock_flow_table;
4225 	struct netdev_rx_queue *rxqueue = dev->_rx;
4226 	struct rps_dev_flow_table *flow_table;
4227 	struct rps_map *map;
4228 	int cpu = -1;
4229 	u32 tcpu;
4230 	u32 hash;
4231 
4232 	if (skb_rx_queue_recorded(skb)) {
4233 		u16 index = skb_get_rx_queue(skb);
4234 
4235 		if (unlikely(index >= dev->real_num_rx_queues)) {
4236 			WARN_ONCE(dev->real_num_rx_queues > 1,
4237 				  "%s received packet on queue %u, but number "
4238 				  "of RX queues is %u\n",
4239 				  dev->name, index, dev->real_num_rx_queues);
4240 			goto done;
4241 		}
4242 		rxqueue += index;
4243 	}
4244 
4245 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4246 
4247 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4248 	map = rcu_dereference(rxqueue->rps_map);
4249 	if (!flow_table && !map)
4250 		goto done;
4251 
4252 	skb_reset_network_header(skb);
4253 	hash = skb_get_hash(skb);
4254 	if (!hash)
4255 		goto done;
4256 
4257 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4258 	if (flow_table && sock_flow_table) {
4259 		struct rps_dev_flow *rflow;
4260 		u32 next_cpu;
4261 		u32 ident;
4262 
4263 		/* First check into global flow table if there is a match */
4264 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4265 		if ((ident ^ hash) & ~rps_cpu_mask)
4266 			goto try_rps;
4267 
4268 		next_cpu = ident & rps_cpu_mask;
4269 
4270 		/* OK, now we know there is a match,
4271 		 * we can look at the local (per receive queue) flow table
4272 		 */
4273 		rflow = &flow_table->flows[hash & flow_table->mask];
4274 		tcpu = rflow->cpu;
4275 
4276 		/*
4277 		 * If the desired CPU (where last recvmsg was done) is
4278 		 * different from current CPU (one in the rx-queue flow
4279 		 * table entry), switch if one of the following holds:
4280 		 *   - Current CPU is unset (>= nr_cpu_ids).
4281 		 *   - Current CPU is offline.
4282 		 *   - The current CPU's queue tail has advanced beyond the
4283 		 *     last packet that was enqueued using this table entry.
4284 		 *     This guarantees that all previous packets for the flow
4285 		 *     have been dequeued, thus preserving in order delivery.
4286 		 */
4287 		if (unlikely(tcpu != next_cpu) &&
4288 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4289 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4290 		      rflow->last_qtail)) >= 0)) {
4291 			tcpu = next_cpu;
4292 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4293 		}
4294 
4295 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4296 			*rflowp = rflow;
4297 			cpu = tcpu;
4298 			goto done;
4299 		}
4300 	}
4301 
4302 try_rps:
4303 
4304 	if (map) {
4305 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4306 		if (cpu_online(tcpu)) {
4307 			cpu = tcpu;
4308 			goto done;
4309 		}
4310 	}
4311 
4312 done:
4313 	return cpu;
4314 }
4315 
4316 #ifdef CONFIG_RFS_ACCEL
4317 
4318 /**
4319  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4320  * @dev: Device on which the filter was set
4321  * @rxq_index: RX queue index
4322  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4323  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4324  *
4325  * Drivers that implement ndo_rx_flow_steer() should periodically call
4326  * this function for each installed filter and remove the filters for
4327  * which it returns %true.
4328  */
4329 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4330 			 u32 flow_id, u16 filter_id)
4331 {
4332 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4333 	struct rps_dev_flow_table *flow_table;
4334 	struct rps_dev_flow *rflow;
4335 	bool expire = true;
4336 	unsigned int cpu;
4337 
4338 	rcu_read_lock();
4339 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4340 	if (flow_table && flow_id <= flow_table->mask) {
4341 		rflow = &flow_table->flows[flow_id];
4342 		cpu = READ_ONCE(rflow->cpu);
4343 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4344 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4345 			   rflow->last_qtail) <
4346 		     (int)(10 * flow_table->mask)))
4347 			expire = false;
4348 	}
4349 	rcu_read_unlock();
4350 	return expire;
4351 }
4352 EXPORT_SYMBOL(rps_may_expire_flow);
4353 
4354 #endif /* CONFIG_RFS_ACCEL */
4355 
4356 /* Called from hardirq (IPI) context */
4357 static void rps_trigger_softirq(void *data)
4358 {
4359 	struct softnet_data *sd = data;
4360 
4361 	____napi_schedule(sd, &sd->backlog);
4362 	sd->received_rps++;
4363 }
4364 
4365 #endif /* CONFIG_RPS */
4366 
4367 /*
4368  * Check if this softnet_data structure is another cpu one
4369  * If yes, queue it to our IPI list and return 1
4370  * If no, return 0
4371  */
4372 static int rps_ipi_queued(struct softnet_data *sd)
4373 {
4374 #ifdef CONFIG_RPS
4375 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4376 
4377 	if (sd != mysd) {
4378 		sd->rps_ipi_next = mysd->rps_ipi_list;
4379 		mysd->rps_ipi_list = sd;
4380 
4381 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4382 		return 1;
4383 	}
4384 #endif /* CONFIG_RPS */
4385 	return 0;
4386 }
4387 
4388 #ifdef CONFIG_NET_FLOW_LIMIT
4389 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4390 #endif
4391 
4392 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4393 {
4394 #ifdef CONFIG_NET_FLOW_LIMIT
4395 	struct sd_flow_limit *fl;
4396 	struct softnet_data *sd;
4397 	unsigned int old_flow, new_flow;
4398 
4399 	if (qlen < (netdev_max_backlog >> 1))
4400 		return false;
4401 
4402 	sd = this_cpu_ptr(&softnet_data);
4403 
4404 	rcu_read_lock();
4405 	fl = rcu_dereference(sd->flow_limit);
4406 	if (fl) {
4407 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4408 		old_flow = fl->history[fl->history_head];
4409 		fl->history[fl->history_head] = new_flow;
4410 
4411 		fl->history_head++;
4412 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4413 
4414 		if (likely(fl->buckets[old_flow]))
4415 			fl->buckets[old_flow]--;
4416 
4417 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4418 			fl->count++;
4419 			rcu_read_unlock();
4420 			return true;
4421 		}
4422 	}
4423 	rcu_read_unlock();
4424 #endif
4425 	return false;
4426 }
4427 
4428 /*
4429  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4430  * queue (may be a remote CPU queue).
4431  */
4432 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4433 			      unsigned int *qtail)
4434 {
4435 	struct softnet_data *sd;
4436 	unsigned long flags;
4437 	unsigned int qlen;
4438 
4439 	sd = &per_cpu(softnet_data, cpu);
4440 
4441 	local_irq_save(flags);
4442 
4443 	rps_lock(sd);
4444 	if (!netif_running(skb->dev))
4445 		goto drop;
4446 	qlen = skb_queue_len(&sd->input_pkt_queue);
4447 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4448 		if (qlen) {
4449 enqueue:
4450 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4451 			input_queue_tail_incr_save(sd, qtail);
4452 			rps_unlock(sd);
4453 			local_irq_restore(flags);
4454 			return NET_RX_SUCCESS;
4455 		}
4456 
4457 		/* Schedule NAPI for backlog device
4458 		 * We can use non atomic operation since we own the queue lock
4459 		 */
4460 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4461 			if (!rps_ipi_queued(sd))
4462 				____napi_schedule(sd, &sd->backlog);
4463 		}
4464 		goto enqueue;
4465 	}
4466 
4467 drop:
4468 	sd->dropped++;
4469 	rps_unlock(sd);
4470 
4471 	local_irq_restore(flags);
4472 
4473 	atomic_long_inc(&skb->dev->rx_dropped);
4474 	kfree_skb(skb);
4475 	return NET_RX_DROP;
4476 }
4477 
4478 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4479 {
4480 	struct net_device *dev = skb->dev;
4481 	struct netdev_rx_queue *rxqueue;
4482 
4483 	rxqueue = dev->_rx;
4484 
4485 	if (skb_rx_queue_recorded(skb)) {
4486 		u16 index = skb_get_rx_queue(skb);
4487 
4488 		if (unlikely(index >= dev->real_num_rx_queues)) {
4489 			WARN_ONCE(dev->real_num_rx_queues > 1,
4490 				  "%s received packet on queue %u, but number "
4491 				  "of RX queues is %u\n",
4492 				  dev->name, index, dev->real_num_rx_queues);
4493 
4494 			return rxqueue; /* Return first rxqueue */
4495 		}
4496 		rxqueue += index;
4497 	}
4498 	return rxqueue;
4499 }
4500 
4501 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4502 				     struct xdp_buff *xdp,
4503 				     struct bpf_prog *xdp_prog)
4504 {
4505 	struct netdev_rx_queue *rxqueue;
4506 	void *orig_data, *orig_data_end;
4507 	u32 metalen, act = XDP_DROP;
4508 	__be16 orig_eth_type;
4509 	struct ethhdr *eth;
4510 	bool orig_bcast;
4511 	int hlen, off;
4512 	u32 mac_len;
4513 
4514 	/* Reinjected packets coming from act_mirred or similar should
4515 	 * not get XDP generic processing.
4516 	 */
4517 	if (skb_is_tc_redirected(skb))
4518 		return XDP_PASS;
4519 
4520 	/* XDP packets must be linear and must have sufficient headroom
4521 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4522 	 * native XDP provides, thus we need to do it here as well.
4523 	 */
4524 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4525 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4526 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4527 		int troom = skb->tail + skb->data_len - skb->end;
4528 
4529 		/* In case we have to go down the path and also linearize,
4530 		 * then lets do the pskb_expand_head() work just once here.
4531 		 */
4532 		if (pskb_expand_head(skb,
4533 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4534 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4535 			goto do_drop;
4536 		if (skb_linearize(skb))
4537 			goto do_drop;
4538 	}
4539 
4540 	/* The XDP program wants to see the packet starting at the MAC
4541 	 * header.
4542 	 */
4543 	mac_len = skb->data - skb_mac_header(skb);
4544 	hlen = skb_headlen(skb) + mac_len;
4545 	xdp->data = skb->data - mac_len;
4546 	xdp->data_meta = xdp->data;
4547 	xdp->data_end = xdp->data + hlen;
4548 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4549 	orig_data_end = xdp->data_end;
4550 	orig_data = xdp->data;
4551 	eth = (struct ethhdr *)xdp->data;
4552 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4553 	orig_eth_type = eth->h_proto;
4554 
4555 	rxqueue = netif_get_rxqueue(skb);
4556 	xdp->rxq = &rxqueue->xdp_rxq;
4557 
4558 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4559 
4560 	/* check if bpf_xdp_adjust_head was used */
4561 	off = xdp->data - orig_data;
4562 	if (off) {
4563 		if (off > 0)
4564 			__skb_pull(skb, off);
4565 		else if (off < 0)
4566 			__skb_push(skb, -off);
4567 
4568 		skb->mac_header += off;
4569 		skb_reset_network_header(skb);
4570 	}
4571 
4572 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4573 	 * pckt.
4574 	 */
4575 	off = orig_data_end - xdp->data_end;
4576 	if (off != 0) {
4577 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4578 		skb->len -= off;
4579 
4580 	}
4581 
4582 	/* check if XDP changed eth hdr such SKB needs update */
4583 	eth = (struct ethhdr *)xdp->data;
4584 	if ((orig_eth_type != eth->h_proto) ||
4585 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4586 		__skb_push(skb, ETH_HLEN);
4587 		skb->protocol = eth_type_trans(skb, skb->dev);
4588 	}
4589 
4590 	switch (act) {
4591 	case XDP_REDIRECT:
4592 	case XDP_TX:
4593 		__skb_push(skb, mac_len);
4594 		break;
4595 	case XDP_PASS:
4596 		metalen = xdp->data - xdp->data_meta;
4597 		if (metalen)
4598 			skb_metadata_set(skb, metalen);
4599 		break;
4600 	default:
4601 		bpf_warn_invalid_xdp_action(act);
4602 		/* fall through */
4603 	case XDP_ABORTED:
4604 		trace_xdp_exception(skb->dev, xdp_prog, act);
4605 		/* fall through */
4606 	case XDP_DROP:
4607 	do_drop:
4608 		kfree_skb(skb);
4609 		break;
4610 	}
4611 
4612 	return act;
4613 }
4614 
4615 /* When doing generic XDP we have to bypass the qdisc layer and the
4616  * network taps in order to match in-driver-XDP behavior.
4617  */
4618 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4619 {
4620 	struct net_device *dev = skb->dev;
4621 	struct netdev_queue *txq;
4622 	bool free_skb = true;
4623 	int cpu, rc;
4624 
4625 	txq = netdev_core_pick_tx(dev, skb, NULL);
4626 	cpu = smp_processor_id();
4627 	HARD_TX_LOCK(dev, txq, cpu);
4628 	if (!netif_xmit_stopped(txq)) {
4629 		rc = netdev_start_xmit(skb, dev, txq, 0);
4630 		if (dev_xmit_complete(rc))
4631 			free_skb = false;
4632 	}
4633 	HARD_TX_UNLOCK(dev, txq);
4634 	if (free_skb) {
4635 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4636 		kfree_skb(skb);
4637 	}
4638 }
4639 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4640 
4641 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4642 
4643 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4644 {
4645 	if (xdp_prog) {
4646 		struct xdp_buff xdp;
4647 		u32 act;
4648 		int err;
4649 
4650 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4651 		if (act != XDP_PASS) {
4652 			switch (act) {
4653 			case XDP_REDIRECT:
4654 				err = xdp_do_generic_redirect(skb->dev, skb,
4655 							      &xdp, xdp_prog);
4656 				if (err)
4657 					goto out_redir;
4658 				break;
4659 			case XDP_TX:
4660 				generic_xdp_tx(skb, xdp_prog);
4661 				break;
4662 			}
4663 			return XDP_DROP;
4664 		}
4665 	}
4666 	return XDP_PASS;
4667 out_redir:
4668 	kfree_skb(skb);
4669 	return XDP_DROP;
4670 }
4671 EXPORT_SYMBOL_GPL(do_xdp_generic);
4672 
4673 static int netif_rx_internal(struct sk_buff *skb)
4674 {
4675 	int ret;
4676 
4677 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4678 
4679 	trace_netif_rx(skb);
4680 
4681 #ifdef CONFIG_RPS
4682 	if (static_branch_unlikely(&rps_needed)) {
4683 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4684 		int cpu;
4685 
4686 		preempt_disable();
4687 		rcu_read_lock();
4688 
4689 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4690 		if (cpu < 0)
4691 			cpu = smp_processor_id();
4692 
4693 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4694 
4695 		rcu_read_unlock();
4696 		preempt_enable();
4697 	} else
4698 #endif
4699 	{
4700 		unsigned int qtail;
4701 
4702 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4703 		put_cpu();
4704 	}
4705 	return ret;
4706 }
4707 
4708 /**
4709  *	netif_rx	-	post buffer to the network code
4710  *	@skb: buffer to post
4711  *
4712  *	This function receives a packet from a device driver and queues it for
4713  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4714  *	may be dropped during processing for congestion control or by the
4715  *	protocol layers.
4716  *
4717  *	return values:
4718  *	NET_RX_SUCCESS	(no congestion)
4719  *	NET_RX_DROP     (packet was dropped)
4720  *
4721  */
4722 
4723 int netif_rx(struct sk_buff *skb)
4724 {
4725 	int ret;
4726 
4727 	trace_netif_rx_entry(skb);
4728 
4729 	ret = netif_rx_internal(skb);
4730 	trace_netif_rx_exit(ret);
4731 
4732 	return ret;
4733 }
4734 EXPORT_SYMBOL(netif_rx);
4735 
4736 int netif_rx_ni(struct sk_buff *skb)
4737 {
4738 	int err;
4739 
4740 	trace_netif_rx_ni_entry(skb);
4741 
4742 	preempt_disable();
4743 	err = netif_rx_internal(skb);
4744 	if (local_softirq_pending())
4745 		do_softirq();
4746 	preempt_enable();
4747 	trace_netif_rx_ni_exit(err);
4748 
4749 	return err;
4750 }
4751 EXPORT_SYMBOL(netif_rx_ni);
4752 
4753 static __latent_entropy void net_tx_action(struct softirq_action *h)
4754 {
4755 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4756 
4757 	if (sd->completion_queue) {
4758 		struct sk_buff *clist;
4759 
4760 		local_irq_disable();
4761 		clist = sd->completion_queue;
4762 		sd->completion_queue = NULL;
4763 		local_irq_enable();
4764 
4765 		while (clist) {
4766 			struct sk_buff *skb = clist;
4767 
4768 			clist = clist->next;
4769 
4770 			WARN_ON(refcount_read(&skb->users));
4771 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4772 				trace_consume_skb(skb);
4773 			else
4774 				trace_kfree_skb(skb, net_tx_action);
4775 
4776 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4777 				__kfree_skb(skb);
4778 			else
4779 				__kfree_skb_defer(skb);
4780 		}
4781 
4782 		__kfree_skb_flush();
4783 	}
4784 
4785 	if (sd->output_queue) {
4786 		struct Qdisc *head;
4787 
4788 		local_irq_disable();
4789 		head = sd->output_queue;
4790 		sd->output_queue = NULL;
4791 		sd->output_queue_tailp = &sd->output_queue;
4792 		local_irq_enable();
4793 
4794 		while (head) {
4795 			struct Qdisc *q = head;
4796 			spinlock_t *root_lock = NULL;
4797 
4798 			head = head->next_sched;
4799 
4800 			if (!(q->flags & TCQ_F_NOLOCK)) {
4801 				root_lock = qdisc_lock(q);
4802 				spin_lock(root_lock);
4803 			}
4804 			/* We need to make sure head->next_sched is read
4805 			 * before clearing __QDISC_STATE_SCHED
4806 			 */
4807 			smp_mb__before_atomic();
4808 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4809 			qdisc_run(q);
4810 			if (root_lock)
4811 				spin_unlock(root_lock);
4812 		}
4813 	}
4814 
4815 	xfrm_dev_backlog(sd);
4816 }
4817 
4818 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4819 /* This hook is defined here for ATM LANE */
4820 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4821 			     unsigned char *addr) __read_mostly;
4822 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4823 #endif
4824 
4825 static inline struct sk_buff *
4826 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4827 		   struct net_device *orig_dev)
4828 {
4829 #ifdef CONFIG_NET_CLS_ACT
4830 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4831 	struct tcf_result cl_res;
4832 
4833 	/* If there's at least one ingress present somewhere (so
4834 	 * we get here via enabled static key), remaining devices
4835 	 * that are not configured with an ingress qdisc will bail
4836 	 * out here.
4837 	 */
4838 	if (!miniq)
4839 		return skb;
4840 
4841 	if (*pt_prev) {
4842 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4843 		*pt_prev = NULL;
4844 	}
4845 
4846 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4847 	skb->tc_at_ingress = 1;
4848 	mini_qdisc_bstats_cpu_update(miniq, skb);
4849 
4850 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4851 	case TC_ACT_OK:
4852 	case TC_ACT_RECLASSIFY:
4853 		skb->tc_index = TC_H_MIN(cl_res.classid);
4854 		break;
4855 	case TC_ACT_SHOT:
4856 		mini_qdisc_qstats_cpu_drop(miniq);
4857 		kfree_skb(skb);
4858 		return NULL;
4859 	case TC_ACT_STOLEN:
4860 	case TC_ACT_QUEUED:
4861 	case TC_ACT_TRAP:
4862 		consume_skb(skb);
4863 		return NULL;
4864 	case TC_ACT_REDIRECT:
4865 		/* skb_mac_header check was done by cls/act_bpf, so
4866 		 * we can safely push the L2 header back before
4867 		 * redirecting to another netdev
4868 		 */
4869 		__skb_push(skb, skb->mac_len);
4870 		skb_do_redirect(skb);
4871 		return NULL;
4872 	case TC_ACT_CONSUMED:
4873 		return NULL;
4874 	default:
4875 		break;
4876 	}
4877 #endif /* CONFIG_NET_CLS_ACT */
4878 	return skb;
4879 }
4880 
4881 /**
4882  *	netdev_is_rx_handler_busy - check if receive handler is registered
4883  *	@dev: device to check
4884  *
4885  *	Check if a receive handler is already registered for a given device.
4886  *	Return true if there one.
4887  *
4888  *	The caller must hold the rtnl_mutex.
4889  */
4890 bool netdev_is_rx_handler_busy(struct net_device *dev)
4891 {
4892 	ASSERT_RTNL();
4893 	return dev && rtnl_dereference(dev->rx_handler);
4894 }
4895 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4896 
4897 /**
4898  *	netdev_rx_handler_register - register receive handler
4899  *	@dev: device to register a handler for
4900  *	@rx_handler: receive handler to register
4901  *	@rx_handler_data: data pointer that is used by rx handler
4902  *
4903  *	Register a receive handler for a device. This handler will then be
4904  *	called from __netif_receive_skb. A negative errno code is returned
4905  *	on a failure.
4906  *
4907  *	The caller must hold the rtnl_mutex.
4908  *
4909  *	For a general description of rx_handler, see enum rx_handler_result.
4910  */
4911 int netdev_rx_handler_register(struct net_device *dev,
4912 			       rx_handler_func_t *rx_handler,
4913 			       void *rx_handler_data)
4914 {
4915 	if (netdev_is_rx_handler_busy(dev))
4916 		return -EBUSY;
4917 
4918 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4919 		return -EINVAL;
4920 
4921 	/* Note: rx_handler_data must be set before rx_handler */
4922 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4923 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4924 
4925 	return 0;
4926 }
4927 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4928 
4929 /**
4930  *	netdev_rx_handler_unregister - unregister receive handler
4931  *	@dev: device to unregister a handler from
4932  *
4933  *	Unregister a receive handler from a device.
4934  *
4935  *	The caller must hold the rtnl_mutex.
4936  */
4937 void netdev_rx_handler_unregister(struct net_device *dev)
4938 {
4939 
4940 	ASSERT_RTNL();
4941 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4942 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4943 	 * section has a guarantee to see a non NULL rx_handler_data
4944 	 * as well.
4945 	 */
4946 	synchronize_net();
4947 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4948 }
4949 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4950 
4951 /*
4952  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4953  * the special handling of PFMEMALLOC skbs.
4954  */
4955 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4956 {
4957 	switch (skb->protocol) {
4958 	case htons(ETH_P_ARP):
4959 	case htons(ETH_P_IP):
4960 	case htons(ETH_P_IPV6):
4961 	case htons(ETH_P_8021Q):
4962 	case htons(ETH_P_8021AD):
4963 		return true;
4964 	default:
4965 		return false;
4966 	}
4967 }
4968 
4969 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4970 			     int *ret, struct net_device *orig_dev)
4971 {
4972 	if (nf_hook_ingress_active(skb)) {
4973 		int ingress_retval;
4974 
4975 		if (*pt_prev) {
4976 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4977 			*pt_prev = NULL;
4978 		}
4979 
4980 		rcu_read_lock();
4981 		ingress_retval = nf_hook_ingress(skb);
4982 		rcu_read_unlock();
4983 		return ingress_retval;
4984 	}
4985 	return 0;
4986 }
4987 
4988 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4989 				    struct packet_type **ppt_prev)
4990 {
4991 	struct packet_type *ptype, *pt_prev;
4992 	rx_handler_func_t *rx_handler;
4993 	struct net_device *orig_dev;
4994 	bool deliver_exact = false;
4995 	int ret = NET_RX_DROP;
4996 	__be16 type;
4997 
4998 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4999 
5000 	trace_netif_receive_skb(skb);
5001 
5002 	orig_dev = skb->dev;
5003 
5004 	skb_reset_network_header(skb);
5005 	if (!skb_transport_header_was_set(skb))
5006 		skb_reset_transport_header(skb);
5007 	skb_reset_mac_len(skb);
5008 
5009 	pt_prev = NULL;
5010 
5011 another_round:
5012 	skb->skb_iif = skb->dev->ifindex;
5013 
5014 	__this_cpu_inc(softnet_data.processed);
5015 
5016 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5017 		int ret2;
5018 
5019 		preempt_disable();
5020 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5021 		preempt_enable();
5022 
5023 		if (ret2 != XDP_PASS)
5024 			return NET_RX_DROP;
5025 		skb_reset_mac_len(skb);
5026 	}
5027 
5028 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5029 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5030 		skb = skb_vlan_untag(skb);
5031 		if (unlikely(!skb))
5032 			goto out;
5033 	}
5034 
5035 	if (skb_skip_tc_classify(skb))
5036 		goto skip_classify;
5037 
5038 	if (pfmemalloc)
5039 		goto skip_taps;
5040 
5041 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5042 		if (pt_prev)
5043 			ret = deliver_skb(skb, pt_prev, orig_dev);
5044 		pt_prev = ptype;
5045 	}
5046 
5047 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5048 		if (pt_prev)
5049 			ret = deliver_skb(skb, pt_prev, orig_dev);
5050 		pt_prev = ptype;
5051 	}
5052 
5053 skip_taps:
5054 #ifdef CONFIG_NET_INGRESS
5055 	if (static_branch_unlikely(&ingress_needed_key)) {
5056 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5057 		if (!skb)
5058 			goto out;
5059 
5060 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5061 			goto out;
5062 	}
5063 #endif
5064 	skb_reset_tc(skb);
5065 skip_classify:
5066 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5067 		goto drop;
5068 
5069 	if (skb_vlan_tag_present(skb)) {
5070 		if (pt_prev) {
5071 			ret = deliver_skb(skb, pt_prev, orig_dev);
5072 			pt_prev = NULL;
5073 		}
5074 		if (vlan_do_receive(&skb))
5075 			goto another_round;
5076 		else if (unlikely(!skb))
5077 			goto out;
5078 	}
5079 
5080 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5081 	if (rx_handler) {
5082 		if (pt_prev) {
5083 			ret = deliver_skb(skb, pt_prev, orig_dev);
5084 			pt_prev = NULL;
5085 		}
5086 		switch (rx_handler(&skb)) {
5087 		case RX_HANDLER_CONSUMED:
5088 			ret = NET_RX_SUCCESS;
5089 			goto out;
5090 		case RX_HANDLER_ANOTHER:
5091 			goto another_round;
5092 		case RX_HANDLER_EXACT:
5093 			deliver_exact = true;
5094 		case RX_HANDLER_PASS:
5095 			break;
5096 		default:
5097 			BUG();
5098 		}
5099 	}
5100 
5101 	if (unlikely(skb_vlan_tag_present(skb))) {
5102 check_vlan_id:
5103 		if (skb_vlan_tag_get_id(skb)) {
5104 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5105 			 * find vlan device.
5106 			 */
5107 			skb->pkt_type = PACKET_OTHERHOST;
5108 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5109 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5110 			/* Outer header is 802.1P with vlan 0, inner header is
5111 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5112 			 * not find vlan dev for vlan id 0.
5113 			 */
5114 			__vlan_hwaccel_clear_tag(skb);
5115 			skb = skb_vlan_untag(skb);
5116 			if (unlikely(!skb))
5117 				goto out;
5118 			if (vlan_do_receive(&skb))
5119 				/* After stripping off 802.1P header with vlan 0
5120 				 * vlan dev is found for inner header.
5121 				 */
5122 				goto another_round;
5123 			else if (unlikely(!skb))
5124 				goto out;
5125 			else
5126 				/* We have stripped outer 802.1P vlan 0 header.
5127 				 * But could not find vlan dev.
5128 				 * check again for vlan id to set OTHERHOST.
5129 				 */
5130 				goto check_vlan_id;
5131 		}
5132 		/* Note: we might in the future use prio bits
5133 		 * and set skb->priority like in vlan_do_receive()
5134 		 * For the time being, just ignore Priority Code Point
5135 		 */
5136 		__vlan_hwaccel_clear_tag(skb);
5137 	}
5138 
5139 	type = skb->protocol;
5140 
5141 	/* deliver only exact match when indicated */
5142 	if (likely(!deliver_exact)) {
5143 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5144 				       &ptype_base[ntohs(type) &
5145 						   PTYPE_HASH_MASK]);
5146 	}
5147 
5148 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5149 			       &orig_dev->ptype_specific);
5150 
5151 	if (unlikely(skb->dev != orig_dev)) {
5152 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5153 				       &skb->dev->ptype_specific);
5154 	}
5155 
5156 	if (pt_prev) {
5157 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5158 			goto drop;
5159 		*ppt_prev = pt_prev;
5160 	} else {
5161 drop:
5162 		if (!deliver_exact)
5163 			atomic_long_inc(&skb->dev->rx_dropped);
5164 		else
5165 			atomic_long_inc(&skb->dev->rx_nohandler);
5166 		kfree_skb(skb);
5167 		/* Jamal, now you will not able to escape explaining
5168 		 * me how you were going to use this. :-)
5169 		 */
5170 		ret = NET_RX_DROP;
5171 	}
5172 
5173 out:
5174 	return ret;
5175 }
5176 
5177 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5178 {
5179 	struct net_device *orig_dev = skb->dev;
5180 	struct packet_type *pt_prev = NULL;
5181 	int ret;
5182 
5183 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5184 	if (pt_prev)
5185 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5186 					 skb->dev, pt_prev, orig_dev);
5187 	return ret;
5188 }
5189 
5190 /**
5191  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5192  *	@skb: buffer to process
5193  *
5194  *	More direct receive version of netif_receive_skb().  It should
5195  *	only be used by callers that have a need to skip RPS and Generic XDP.
5196  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5197  *
5198  *	This function may only be called from softirq context and interrupts
5199  *	should be enabled.
5200  *
5201  *	Return values (usually ignored):
5202  *	NET_RX_SUCCESS: no congestion
5203  *	NET_RX_DROP: packet was dropped
5204  */
5205 int netif_receive_skb_core(struct sk_buff *skb)
5206 {
5207 	int ret;
5208 
5209 	rcu_read_lock();
5210 	ret = __netif_receive_skb_one_core(skb, false);
5211 	rcu_read_unlock();
5212 
5213 	return ret;
5214 }
5215 EXPORT_SYMBOL(netif_receive_skb_core);
5216 
5217 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5218 						  struct packet_type *pt_prev,
5219 						  struct net_device *orig_dev)
5220 {
5221 	struct sk_buff *skb, *next;
5222 
5223 	if (!pt_prev)
5224 		return;
5225 	if (list_empty(head))
5226 		return;
5227 	if (pt_prev->list_func != NULL)
5228 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5229 				   ip_list_rcv, head, pt_prev, orig_dev);
5230 	else
5231 		list_for_each_entry_safe(skb, next, head, list) {
5232 			skb_list_del_init(skb);
5233 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5234 		}
5235 }
5236 
5237 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5238 {
5239 	/* Fast-path assumptions:
5240 	 * - There is no RX handler.
5241 	 * - Only one packet_type matches.
5242 	 * If either of these fails, we will end up doing some per-packet
5243 	 * processing in-line, then handling the 'last ptype' for the whole
5244 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5245 	 * because the 'last ptype' must be constant across the sublist, and all
5246 	 * other ptypes are handled per-packet.
5247 	 */
5248 	/* Current (common) ptype of sublist */
5249 	struct packet_type *pt_curr = NULL;
5250 	/* Current (common) orig_dev of sublist */
5251 	struct net_device *od_curr = NULL;
5252 	struct list_head sublist;
5253 	struct sk_buff *skb, *next;
5254 
5255 	INIT_LIST_HEAD(&sublist);
5256 	list_for_each_entry_safe(skb, next, head, list) {
5257 		struct net_device *orig_dev = skb->dev;
5258 		struct packet_type *pt_prev = NULL;
5259 
5260 		skb_list_del_init(skb);
5261 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5262 		if (!pt_prev)
5263 			continue;
5264 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5265 			/* dispatch old sublist */
5266 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5267 			/* start new sublist */
5268 			INIT_LIST_HEAD(&sublist);
5269 			pt_curr = pt_prev;
5270 			od_curr = orig_dev;
5271 		}
5272 		list_add_tail(&skb->list, &sublist);
5273 	}
5274 
5275 	/* dispatch final sublist */
5276 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5277 }
5278 
5279 static int __netif_receive_skb(struct sk_buff *skb)
5280 {
5281 	int ret;
5282 
5283 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5284 		unsigned int noreclaim_flag;
5285 
5286 		/*
5287 		 * PFMEMALLOC skbs are special, they should
5288 		 * - be delivered to SOCK_MEMALLOC sockets only
5289 		 * - stay away from userspace
5290 		 * - have bounded memory usage
5291 		 *
5292 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5293 		 * context down to all allocation sites.
5294 		 */
5295 		noreclaim_flag = memalloc_noreclaim_save();
5296 		ret = __netif_receive_skb_one_core(skb, true);
5297 		memalloc_noreclaim_restore(noreclaim_flag);
5298 	} else
5299 		ret = __netif_receive_skb_one_core(skb, false);
5300 
5301 	return ret;
5302 }
5303 
5304 static void __netif_receive_skb_list(struct list_head *head)
5305 {
5306 	unsigned long noreclaim_flag = 0;
5307 	struct sk_buff *skb, *next;
5308 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5309 
5310 	list_for_each_entry_safe(skb, next, head, list) {
5311 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5312 			struct list_head sublist;
5313 
5314 			/* Handle the previous sublist */
5315 			list_cut_before(&sublist, head, &skb->list);
5316 			if (!list_empty(&sublist))
5317 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5318 			pfmemalloc = !pfmemalloc;
5319 			/* See comments in __netif_receive_skb */
5320 			if (pfmemalloc)
5321 				noreclaim_flag = memalloc_noreclaim_save();
5322 			else
5323 				memalloc_noreclaim_restore(noreclaim_flag);
5324 		}
5325 	}
5326 	/* Handle the remaining sublist */
5327 	if (!list_empty(head))
5328 		__netif_receive_skb_list_core(head, pfmemalloc);
5329 	/* Restore pflags */
5330 	if (pfmemalloc)
5331 		memalloc_noreclaim_restore(noreclaim_flag);
5332 }
5333 
5334 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5335 {
5336 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5337 	struct bpf_prog *new = xdp->prog;
5338 	int ret = 0;
5339 
5340 	switch (xdp->command) {
5341 	case XDP_SETUP_PROG:
5342 		rcu_assign_pointer(dev->xdp_prog, new);
5343 		if (old)
5344 			bpf_prog_put(old);
5345 
5346 		if (old && !new) {
5347 			static_branch_dec(&generic_xdp_needed_key);
5348 		} else if (new && !old) {
5349 			static_branch_inc(&generic_xdp_needed_key);
5350 			dev_disable_lro(dev);
5351 			dev_disable_gro_hw(dev);
5352 		}
5353 		break;
5354 
5355 	case XDP_QUERY_PROG:
5356 		xdp->prog_id = old ? old->aux->id : 0;
5357 		break;
5358 
5359 	default:
5360 		ret = -EINVAL;
5361 		break;
5362 	}
5363 
5364 	return ret;
5365 }
5366 
5367 static int netif_receive_skb_internal(struct sk_buff *skb)
5368 {
5369 	int ret;
5370 
5371 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5372 
5373 	if (skb_defer_rx_timestamp(skb))
5374 		return NET_RX_SUCCESS;
5375 
5376 	rcu_read_lock();
5377 #ifdef CONFIG_RPS
5378 	if (static_branch_unlikely(&rps_needed)) {
5379 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5380 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5381 
5382 		if (cpu >= 0) {
5383 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384 			rcu_read_unlock();
5385 			return ret;
5386 		}
5387 	}
5388 #endif
5389 	ret = __netif_receive_skb(skb);
5390 	rcu_read_unlock();
5391 	return ret;
5392 }
5393 
5394 static void netif_receive_skb_list_internal(struct list_head *head)
5395 {
5396 	struct sk_buff *skb, *next;
5397 	struct list_head sublist;
5398 
5399 	INIT_LIST_HEAD(&sublist);
5400 	list_for_each_entry_safe(skb, next, head, list) {
5401 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5402 		skb_list_del_init(skb);
5403 		if (!skb_defer_rx_timestamp(skb))
5404 			list_add_tail(&skb->list, &sublist);
5405 	}
5406 	list_splice_init(&sublist, head);
5407 
5408 	rcu_read_lock();
5409 #ifdef CONFIG_RPS
5410 	if (static_branch_unlikely(&rps_needed)) {
5411 		list_for_each_entry_safe(skb, next, head, list) {
5412 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5413 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5414 
5415 			if (cpu >= 0) {
5416 				/* Will be handled, remove from list */
5417 				skb_list_del_init(skb);
5418 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5419 			}
5420 		}
5421 	}
5422 #endif
5423 	__netif_receive_skb_list(head);
5424 	rcu_read_unlock();
5425 }
5426 
5427 /**
5428  *	netif_receive_skb - process receive buffer from network
5429  *	@skb: buffer to process
5430  *
5431  *	netif_receive_skb() is the main receive data processing function.
5432  *	It always succeeds. The buffer may be dropped during processing
5433  *	for congestion control or by the protocol layers.
5434  *
5435  *	This function may only be called from softirq context and interrupts
5436  *	should be enabled.
5437  *
5438  *	Return values (usually ignored):
5439  *	NET_RX_SUCCESS: no congestion
5440  *	NET_RX_DROP: packet was dropped
5441  */
5442 int netif_receive_skb(struct sk_buff *skb)
5443 {
5444 	int ret;
5445 
5446 	trace_netif_receive_skb_entry(skb);
5447 
5448 	ret = netif_receive_skb_internal(skb);
5449 	trace_netif_receive_skb_exit(ret);
5450 
5451 	return ret;
5452 }
5453 EXPORT_SYMBOL(netif_receive_skb);
5454 
5455 /**
5456  *	netif_receive_skb_list - process many receive buffers from network
5457  *	@head: list of skbs to process.
5458  *
5459  *	Since return value of netif_receive_skb() is normally ignored, and
5460  *	wouldn't be meaningful for a list, this function returns void.
5461  *
5462  *	This function may only be called from softirq context and interrupts
5463  *	should be enabled.
5464  */
5465 void netif_receive_skb_list(struct list_head *head)
5466 {
5467 	struct sk_buff *skb;
5468 
5469 	if (list_empty(head))
5470 		return;
5471 	if (trace_netif_receive_skb_list_entry_enabled()) {
5472 		list_for_each_entry(skb, head, list)
5473 			trace_netif_receive_skb_list_entry(skb);
5474 	}
5475 	netif_receive_skb_list_internal(head);
5476 	trace_netif_receive_skb_list_exit(0);
5477 }
5478 EXPORT_SYMBOL(netif_receive_skb_list);
5479 
5480 DEFINE_PER_CPU(struct work_struct, flush_works);
5481 
5482 /* Network device is going away, flush any packets still pending */
5483 static void flush_backlog(struct work_struct *work)
5484 {
5485 	struct sk_buff *skb, *tmp;
5486 	struct softnet_data *sd;
5487 
5488 	local_bh_disable();
5489 	sd = this_cpu_ptr(&softnet_data);
5490 
5491 	local_irq_disable();
5492 	rps_lock(sd);
5493 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5494 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5495 			__skb_unlink(skb, &sd->input_pkt_queue);
5496 			kfree_skb(skb);
5497 			input_queue_head_incr(sd);
5498 		}
5499 	}
5500 	rps_unlock(sd);
5501 	local_irq_enable();
5502 
5503 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5504 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5505 			__skb_unlink(skb, &sd->process_queue);
5506 			kfree_skb(skb);
5507 			input_queue_head_incr(sd);
5508 		}
5509 	}
5510 	local_bh_enable();
5511 }
5512 
5513 static void flush_all_backlogs(void)
5514 {
5515 	unsigned int cpu;
5516 
5517 	get_online_cpus();
5518 
5519 	for_each_online_cpu(cpu)
5520 		queue_work_on(cpu, system_highpri_wq,
5521 			      per_cpu_ptr(&flush_works, cpu));
5522 
5523 	for_each_online_cpu(cpu)
5524 		flush_work(per_cpu_ptr(&flush_works, cpu));
5525 
5526 	put_online_cpus();
5527 }
5528 
5529 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5530 static void gro_normal_list(struct napi_struct *napi)
5531 {
5532 	if (!napi->rx_count)
5533 		return;
5534 	netif_receive_skb_list_internal(&napi->rx_list);
5535 	INIT_LIST_HEAD(&napi->rx_list);
5536 	napi->rx_count = 0;
5537 }
5538 
5539 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5540  * pass the whole batch up to the stack.
5541  */
5542 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5543 {
5544 	list_add_tail(&skb->list, &napi->rx_list);
5545 	if (++napi->rx_count >= gro_normal_batch)
5546 		gro_normal_list(napi);
5547 }
5548 
5549 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5550 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5551 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5552 {
5553 	struct packet_offload *ptype;
5554 	__be16 type = skb->protocol;
5555 	struct list_head *head = &offload_base;
5556 	int err = -ENOENT;
5557 
5558 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5559 
5560 	if (NAPI_GRO_CB(skb)->count == 1) {
5561 		skb_shinfo(skb)->gso_size = 0;
5562 		goto out;
5563 	}
5564 
5565 	rcu_read_lock();
5566 	list_for_each_entry_rcu(ptype, head, list) {
5567 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5568 			continue;
5569 
5570 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5571 					 ipv6_gro_complete, inet_gro_complete,
5572 					 skb, 0);
5573 		break;
5574 	}
5575 	rcu_read_unlock();
5576 
5577 	if (err) {
5578 		WARN_ON(&ptype->list == head);
5579 		kfree_skb(skb);
5580 		return NET_RX_SUCCESS;
5581 	}
5582 
5583 out:
5584 	gro_normal_one(napi, skb);
5585 	return NET_RX_SUCCESS;
5586 }
5587 
5588 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5589 				   bool flush_old)
5590 {
5591 	struct list_head *head = &napi->gro_hash[index].list;
5592 	struct sk_buff *skb, *p;
5593 
5594 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5595 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5596 			return;
5597 		skb_list_del_init(skb);
5598 		napi_gro_complete(napi, skb);
5599 		napi->gro_hash[index].count--;
5600 	}
5601 
5602 	if (!napi->gro_hash[index].count)
5603 		__clear_bit(index, &napi->gro_bitmask);
5604 }
5605 
5606 /* napi->gro_hash[].list contains packets ordered by age.
5607  * youngest packets at the head of it.
5608  * Complete skbs in reverse order to reduce latencies.
5609  */
5610 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5611 {
5612 	unsigned long bitmask = napi->gro_bitmask;
5613 	unsigned int i, base = ~0U;
5614 
5615 	while ((i = ffs(bitmask)) != 0) {
5616 		bitmask >>= i;
5617 		base += i;
5618 		__napi_gro_flush_chain(napi, base, flush_old);
5619 	}
5620 }
5621 EXPORT_SYMBOL(napi_gro_flush);
5622 
5623 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5624 					  struct sk_buff *skb)
5625 {
5626 	unsigned int maclen = skb->dev->hard_header_len;
5627 	u32 hash = skb_get_hash_raw(skb);
5628 	struct list_head *head;
5629 	struct sk_buff *p;
5630 
5631 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5632 	list_for_each_entry(p, head, list) {
5633 		unsigned long diffs;
5634 
5635 		NAPI_GRO_CB(p)->flush = 0;
5636 
5637 		if (hash != skb_get_hash_raw(p)) {
5638 			NAPI_GRO_CB(p)->same_flow = 0;
5639 			continue;
5640 		}
5641 
5642 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5643 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5644 		if (skb_vlan_tag_present(p))
5645 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5646 		diffs |= skb_metadata_dst_cmp(p, skb);
5647 		diffs |= skb_metadata_differs(p, skb);
5648 		if (maclen == ETH_HLEN)
5649 			diffs |= compare_ether_header(skb_mac_header(p),
5650 						      skb_mac_header(skb));
5651 		else if (!diffs)
5652 			diffs = memcmp(skb_mac_header(p),
5653 				       skb_mac_header(skb),
5654 				       maclen);
5655 		NAPI_GRO_CB(p)->same_flow = !diffs;
5656 	}
5657 
5658 	return head;
5659 }
5660 
5661 static void skb_gro_reset_offset(struct sk_buff *skb)
5662 {
5663 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5664 	const skb_frag_t *frag0 = &pinfo->frags[0];
5665 
5666 	NAPI_GRO_CB(skb)->data_offset = 0;
5667 	NAPI_GRO_CB(skb)->frag0 = NULL;
5668 	NAPI_GRO_CB(skb)->frag0_len = 0;
5669 
5670 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5671 	    !PageHighMem(skb_frag_page(frag0))) {
5672 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5673 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5674 						    skb_frag_size(frag0),
5675 						    skb->end - skb->tail);
5676 	}
5677 }
5678 
5679 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5680 {
5681 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5682 
5683 	BUG_ON(skb->end - skb->tail < grow);
5684 
5685 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5686 
5687 	skb->data_len -= grow;
5688 	skb->tail += grow;
5689 
5690 	skb_frag_off_add(&pinfo->frags[0], grow);
5691 	skb_frag_size_sub(&pinfo->frags[0], grow);
5692 
5693 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5694 		skb_frag_unref(skb, 0);
5695 		memmove(pinfo->frags, pinfo->frags + 1,
5696 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5697 	}
5698 }
5699 
5700 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5701 {
5702 	struct sk_buff *oldest;
5703 
5704 	oldest = list_last_entry(head, struct sk_buff, list);
5705 
5706 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5707 	 * impossible.
5708 	 */
5709 	if (WARN_ON_ONCE(!oldest))
5710 		return;
5711 
5712 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5713 	 * SKB to the chain.
5714 	 */
5715 	skb_list_del_init(oldest);
5716 	napi_gro_complete(napi, oldest);
5717 }
5718 
5719 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5720 							   struct sk_buff *));
5721 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5722 							   struct sk_buff *));
5723 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5724 {
5725 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5726 	struct list_head *head = &offload_base;
5727 	struct packet_offload *ptype;
5728 	__be16 type = skb->protocol;
5729 	struct list_head *gro_head;
5730 	struct sk_buff *pp = NULL;
5731 	enum gro_result ret;
5732 	int same_flow;
5733 	int grow;
5734 
5735 	if (netif_elide_gro(skb->dev))
5736 		goto normal;
5737 
5738 	gro_head = gro_list_prepare(napi, skb);
5739 
5740 	rcu_read_lock();
5741 	list_for_each_entry_rcu(ptype, head, list) {
5742 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5743 			continue;
5744 
5745 		skb_set_network_header(skb, skb_gro_offset(skb));
5746 		skb_reset_mac_len(skb);
5747 		NAPI_GRO_CB(skb)->same_flow = 0;
5748 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5749 		NAPI_GRO_CB(skb)->free = 0;
5750 		NAPI_GRO_CB(skb)->encap_mark = 0;
5751 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5752 		NAPI_GRO_CB(skb)->is_fou = 0;
5753 		NAPI_GRO_CB(skb)->is_atomic = 1;
5754 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5755 
5756 		/* Setup for GRO checksum validation */
5757 		switch (skb->ip_summed) {
5758 		case CHECKSUM_COMPLETE:
5759 			NAPI_GRO_CB(skb)->csum = skb->csum;
5760 			NAPI_GRO_CB(skb)->csum_valid = 1;
5761 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5762 			break;
5763 		case CHECKSUM_UNNECESSARY:
5764 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5765 			NAPI_GRO_CB(skb)->csum_valid = 0;
5766 			break;
5767 		default:
5768 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5769 			NAPI_GRO_CB(skb)->csum_valid = 0;
5770 		}
5771 
5772 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5773 					ipv6_gro_receive, inet_gro_receive,
5774 					gro_head, skb);
5775 		break;
5776 	}
5777 	rcu_read_unlock();
5778 
5779 	if (&ptype->list == head)
5780 		goto normal;
5781 
5782 	if (PTR_ERR(pp) == -EINPROGRESS) {
5783 		ret = GRO_CONSUMED;
5784 		goto ok;
5785 	}
5786 
5787 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5788 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5789 
5790 	if (pp) {
5791 		skb_list_del_init(pp);
5792 		napi_gro_complete(napi, pp);
5793 		napi->gro_hash[hash].count--;
5794 	}
5795 
5796 	if (same_flow)
5797 		goto ok;
5798 
5799 	if (NAPI_GRO_CB(skb)->flush)
5800 		goto normal;
5801 
5802 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5803 		gro_flush_oldest(napi, gro_head);
5804 	} else {
5805 		napi->gro_hash[hash].count++;
5806 	}
5807 	NAPI_GRO_CB(skb)->count = 1;
5808 	NAPI_GRO_CB(skb)->age = jiffies;
5809 	NAPI_GRO_CB(skb)->last = skb;
5810 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5811 	list_add(&skb->list, gro_head);
5812 	ret = GRO_HELD;
5813 
5814 pull:
5815 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5816 	if (grow > 0)
5817 		gro_pull_from_frag0(skb, grow);
5818 ok:
5819 	if (napi->gro_hash[hash].count) {
5820 		if (!test_bit(hash, &napi->gro_bitmask))
5821 			__set_bit(hash, &napi->gro_bitmask);
5822 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5823 		__clear_bit(hash, &napi->gro_bitmask);
5824 	}
5825 
5826 	return ret;
5827 
5828 normal:
5829 	ret = GRO_NORMAL;
5830 	goto pull;
5831 }
5832 
5833 struct packet_offload *gro_find_receive_by_type(__be16 type)
5834 {
5835 	struct list_head *offload_head = &offload_base;
5836 	struct packet_offload *ptype;
5837 
5838 	list_for_each_entry_rcu(ptype, offload_head, list) {
5839 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5840 			continue;
5841 		return ptype;
5842 	}
5843 	return NULL;
5844 }
5845 EXPORT_SYMBOL(gro_find_receive_by_type);
5846 
5847 struct packet_offload *gro_find_complete_by_type(__be16 type)
5848 {
5849 	struct list_head *offload_head = &offload_base;
5850 	struct packet_offload *ptype;
5851 
5852 	list_for_each_entry_rcu(ptype, offload_head, list) {
5853 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5854 			continue;
5855 		return ptype;
5856 	}
5857 	return NULL;
5858 }
5859 EXPORT_SYMBOL(gro_find_complete_by_type);
5860 
5861 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5862 {
5863 	skb_dst_drop(skb);
5864 	skb_ext_put(skb);
5865 	kmem_cache_free(skbuff_head_cache, skb);
5866 }
5867 
5868 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5869 				    struct sk_buff *skb,
5870 				    gro_result_t ret)
5871 {
5872 	switch (ret) {
5873 	case GRO_NORMAL:
5874 		gro_normal_one(napi, skb);
5875 		break;
5876 
5877 	case GRO_DROP:
5878 		kfree_skb(skb);
5879 		break;
5880 
5881 	case GRO_MERGED_FREE:
5882 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5883 			napi_skb_free_stolen_head(skb);
5884 		else
5885 			__kfree_skb(skb);
5886 		break;
5887 
5888 	case GRO_HELD:
5889 	case GRO_MERGED:
5890 	case GRO_CONSUMED:
5891 		break;
5892 	}
5893 
5894 	return ret;
5895 }
5896 
5897 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5898 {
5899 	gro_result_t ret;
5900 
5901 	skb_mark_napi_id(skb, napi);
5902 	trace_napi_gro_receive_entry(skb);
5903 
5904 	skb_gro_reset_offset(skb);
5905 
5906 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5907 	trace_napi_gro_receive_exit(ret);
5908 
5909 	return ret;
5910 }
5911 EXPORT_SYMBOL(napi_gro_receive);
5912 
5913 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5914 {
5915 	if (unlikely(skb->pfmemalloc)) {
5916 		consume_skb(skb);
5917 		return;
5918 	}
5919 	__skb_pull(skb, skb_headlen(skb));
5920 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5921 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5922 	__vlan_hwaccel_clear_tag(skb);
5923 	skb->dev = napi->dev;
5924 	skb->skb_iif = 0;
5925 
5926 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5927 	skb->pkt_type = PACKET_HOST;
5928 
5929 	skb->encapsulation = 0;
5930 	skb_shinfo(skb)->gso_type = 0;
5931 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5932 	skb_ext_reset(skb);
5933 
5934 	napi->skb = skb;
5935 }
5936 
5937 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5938 {
5939 	struct sk_buff *skb = napi->skb;
5940 
5941 	if (!skb) {
5942 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5943 		if (skb) {
5944 			napi->skb = skb;
5945 			skb_mark_napi_id(skb, napi);
5946 		}
5947 	}
5948 	return skb;
5949 }
5950 EXPORT_SYMBOL(napi_get_frags);
5951 
5952 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5953 				      struct sk_buff *skb,
5954 				      gro_result_t ret)
5955 {
5956 	switch (ret) {
5957 	case GRO_NORMAL:
5958 	case GRO_HELD:
5959 		__skb_push(skb, ETH_HLEN);
5960 		skb->protocol = eth_type_trans(skb, skb->dev);
5961 		if (ret == GRO_NORMAL)
5962 			gro_normal_one(napi, skb);
5963 		break;
5964 
5965 	case GRO_DROP:
5966 		napi_reuse_skb(napi, skb);
5967 		break;
5968 
5969 	case GRO_MERGED_FREE:
5970 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5971 			napi_skb_free_stolen_head(skb);
5972 		else
5973 			napi_reuse_skb(napi, skb);
5974 		break;
5975 
5976 	case GRO_MERGED:
5977 	case GRO_CONSUMED:
5978 		break;
5979 	}
5980 
5981 	return ret;
5982 }
5983 
5984 /* Upper GRO stack assumes network header starts at gro_offset=0
5985  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5986  * We copy ethernet header into skb->data to have a common layout.
5987  */
5988 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5989 {
5990 	struct sk_buff *skb = napi->skb;
5991 	const struct ethhdr *eth;
5992 	unsigned int hlen = sizeof(*eth);
5993 
5994 	napi->skb = NULL;
5995 
5996 	skb_reset_mac_header(skb);
5997 	skb_gro_reset_offset(skb);
5998 
5999 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6000 		eth = skb_gro_header_slow(skb, hlen, 0);
6001 		if (unlikely(!eth)) {
6002 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6003 					     __func__, napi->dev->name);
6004 			napi_reuse_skb(napi, skb);
6005 			return NULL;
6006 		}
6007 	} else {
6008 		eth = (const struct ethhdr *)skb->data;
6009 		gro_pull_from_frag0(skb, hlen);
6010 		NAPI_GRO_CB(skb)->frag0 += hlen;
6011 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6012 	}
6013 	__skb_pull(skb, hlen);
6014 
6015 	/*
6016 	 * This works because the only protocols we care about don't require
6017 	 * special handling.
6018 	 * We'll fix it up properly in napi_frags_finish()
6019 	 */
6020 	skb->protocol = eth->h_proto;
6021 
6022 	return skb;
6023 }
6024 
6025 gro_result_t napi_gro_frags(struct napi_struct *napi)
6026 {
6027 	gro_result_t ret;
6028 	struct sk_buff *skb = napi_frags_skb(napi);
6029 
6030 	if (!skb)
6031 		return GRO_DROP;
6032 
6033 	trace_napi_gro_frags_entry(skb);
6034 
6035 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6036 	trace_napi_gro_frags_exit(ret);
6037 
6038 	return ret;
6039 }
6040 EXPORT_SYMBOL(napi_gro_frags);
6041 
6042 /* Compute the checksum from gro_offset and return the folded value
6043  * after adding in any pseudo checksum.
6044  */
6045 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6046 {
6047 	__wsum wsum;
6048 	__sum16 sum;
6049 
6050 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6051 
6052 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6053 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6054 	/* See comments in __skb_checksum_complete(). */
6055 	if (likely(!sum)) {
6056 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6057 		    !skb->csum_complete_sw)
6058 			netdev_rx_csum_fault(skb->dev, skb);
6059 	}
6060 
6061 	NAPI_GRO_CB(skb)->csum = wsum;
6062 	NAPI_GRO_CB(skb)->csum_valid = 1;
6063 
6064 	return sum;
6065 }
6066 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6067 
6068 static void net_rps_send_ipi(struct softnet_data *remsd)
6069 {
6070 #ifdef CONFIG_RPS
6071 	while (remsd) {
6072 		struct softnet_data *next = remsd->rps_ipi_next;
6073 
6074 		if (cpu_online(remsd->cpu))
6075 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6076 		remsd = next;
6077 	}
6078 #endif
6079 }
6080 
6081 /*
6082  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6083  * Note: called with local irq disabled, but exits with local irq enabled.
6084  */
6085 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6086 {
6087 #ifdef CONFIG_RPS
6088 	struct softnet_data *remsd = sd->rps_ipi_list;
6089 
6090 	if (remsd) {
6091 		sd->rps_ipi_list = NULL;
6092 
6093 		local_irq_enable();
6094 
6095 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6096 		net_rps_send_ipi(remsd);
6097 	} else
6098 #endif
6099 		local_irq_enable();
6100 }
6101 
6102 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6103 {
6104 #ifdef CONFIG_RPS
6105 	return sd->rps_ipi_list != NULL;
6106 #else
6107 	return false;
6108 #endif
6109 }
6110 
6111 static int process_backlog(struct napi_struct *napi, int quota)
6112 {
6113 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6114 	bool again = true;
6115 	int work = 0;
6116 
6117 	/* Check if we have pending ipi, its better to send them now,
6118 	 * not waiting net_rx_action() end.
6119 	 */
6120 	if (sd_has_rps_ipi_waiting(sd)) {
6121 		local_irq_disable();
6122 		net_rps_action_and_irq_enable(sd);
6123 	}
6124 
6125 	napi->weight = dev_rx_weight;
6126 	while (again) {
6127 		struct sk_buff *skb;
6128 
6129 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6130 			rcu_read_lock();
6131 			__netif_receive_skb(skb);
6132 			rcu_read_unlock();
6133 			input_queue_head_incr(sd);
6134 			if (++work >= quota)
6135 				return work;
6136 
6137 		}
6138 
6139 		local_irq_disable();
6140 		rps_lock(sd);
6141 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6142 			/*
6143 			 * Inline a custom version of __napi_complete().
6144 			 * only current cpu owns and manipulates this napi,
6145 			 * and NAPI_STATE_SCHED is the only possible flag set
6146 			 * on backlog.
6147 			 * We can use a plain write instead of clear_bit(),
6148 			 * and we dont need an smp_mb() memory barrier.
6149 			 */
6150 			napi->state = 0;
6151 			again = false;
6152 		} else {
6153 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6154 						   &sd->process_queue);
6155 		}
6156 		rps_unlock(sd);
6157 		local_irq_enable();
6158 	}
6159 
6160 	return work;
6161 }
6162 
6163 /**
6164  * __napi_schedule - schedule for receive
6165  * @n: entry to schedule
6166  *
6167  * The entry's receive function will be scheduled to run.
6168  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6169  */
6170 void __napi_schedule(struct napi_struct *n)
6171 {
6172 	unsigned long flags;
6173 
6174 	local_irq_save(flags);
6175 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6176 	local_irq_restore(flags);
6177 }
6178 EXPORT_SYMBOL(__napi_schedule);
6179 
6180 /**
6181  *	napi_schedule_prep - check if napi can be scheduled
6182  *	@n: napi context
6183  *
6184  * Test if NAPI routine is already running, and if not mark
6185  * it as running.  This is used as a condition variable
6186  * insure only one NAPI poll instance runs.  We also make
6187  * sure there is no pending NAPI disable.
6188  */
6189 bool napi_schedule_prep(struct napi_struct *n)
6190 {
6191 	unsigned long val, new;
6192 
6193 	do {
6194 		val = READ_ONCE(n->state);
6195 		if (unlikely(val & NAPIF_STATE_DISABLE))
6196 			return false;
6197 		new = val | NAPIF_STATE_SCHED;
6198 
6199 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6200 		 * This was suggested by Alexander Duyck, as compiler
6201 		 * emits better code than :
6202 		 * if (val & NAPIF_STATE_SCHED)
6203 		 *     new |= NAPIF_STATE_MISSED;
6204 		 */
6205 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6206 						   NAPIF_STATE_MISSED;
6207 	} while (cmpxchg(&n->state, val, new) != val);
6208 
6209 	return !(val & NAPIF_STATE_SCHED);
6210 }
6211 EXPORT_SYMBOL(napi_schedule_prep);
6212 
6213 /**
6214  * __napi_schedule_irqoff - schedule for receive
6215  * @n: entry to schedule
6216  *
6217  * Variant of __napi_schedule() assuming hard irqs are masked
6218  */
6219 void __napi_schedule_irqoff(struct napi_struct *n)
6220 {
6221 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6222 }
6223 EXPORT_SYMBOL(__napi_schedule_irqoff);
6224 
6225 bool napi_complete_done(struct napi_struct *n, int work_done)
6226 {
6227 	unsigned long flags, val, new;
6228 
6229 	/*
6230 	 * 1) Don't let napi dequeue from the cpu poll list
6231 	 *    just in case its running on a different cpu.
6232 	 * 2) If we are busy polling, do nothing here, we have
6233 	 *    the guarantee we will be called later.
6234 	 */
6235 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6236 				 NAPIF_STATE_IN_BUSY_POLL)))
6237 		return false;
6238 
6239 	if (n->gro_bitmask) {
6240 		unsigned long timeout = 0;
6241 
6242 		if (work_done)
6243 			timeout = n->dev->gro_flush_timeout;
6244 
6245 		/* When the NAPI instance uses a timeout and keeps postponing
6246 		 * it, we need to bound somehow the time packets are kept in
6247 		 * the GRO layer
6248 		 */
6249 		napi_gro_flush(n, !!timeout);
6250 		if (timeout)
6251 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6252 				      HRTIMER_MODE_REL_PINNED);
6253 	}
6254 
6255 	gro_normal_list(n);
6256 
6257 	if (unlikely(!list_empty(&n->poll_list))) {
6258 		/* If n->poll_list is not empty, we need to mask irqs */
6259 		local_irq_save(flags);
6260 		list_del_init(&n->poll_list);
6261 		local_irq_restore(flags);
6262 	}
6263 
6264 	do {
6265 		val = READ_ONCE(n->state);
6266 
6267 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6268 
6269 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6270 
6271 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6272 		 * because we will call napi->poll() one more time.
6273 		 * This C code was suggested by Alexander Duyck to help gcc.
6274 		 */
6275 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6276 						    NAPIF_STATE_SCHED;
6277 	} while (cmpxchg(&n->state, val, new) != val);
6278 
6279 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6280 		__napi_schedule(n);
6281 		return false;
6282 	}
6283 
6284 	return true;
6285 }
6286 EXPORT_SYMBOL(napi_complete_done);
6287 
6288 /* must be called under rcu_read_lock(), as we dont take a reference */
6289 static struct napi_struct *napi_by_id(unsigned int napi_id)
6290 {
6291 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6292 	struct napi_struct *napi;
6293 
6294 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6295 		if (napi->napi_id == napi_id)
6296 			return napi;
6297 
6298 	return NULL;
6299 }
6300 
6301 #if defined(CONFIG_NET_RX_BUSY_POLL)
6302 
6303 #define BUSY_POLL_BUDGET 8
6304 
6305 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6306 {
6307 	int rc;
6308 
6309 	/* Busy polling means there is a high chance device driver hard irq
6310 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6311 	 * set in napi_schedule_prep().
6312 	 * Since we are about to call napi->poll() once more, we can safely
6313 	 * clear NAPI_STATE_MISSED.
6314 	 *
6315 	 * Note: x86 could use a single "lock and ..." instruction
6316 	 * to perform these two clear_bit()
6317 	 */
6318 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6319 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6320 
6321 	local_bh_disable();
6322 
6323 	/* All we really want here is to re-enable device interrupts.
6324 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6325 	 */
6326 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6327 	/* We can't gro_normal_list() here, because napi->poll() might have
6328 	 * rearmed the napi (napi_complete_done()) in which case it could
6329 	 * already be running on another CPU.
6330 	 */
6331 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6332 	netpoll_poll_unlock(have_poll_lock);
6333 	if (rc == BUSY_POLL_BUDGET) {
6334 		/* As the whole budget was spent, we still own the napi so can
6335 		 * safely handle the rx_list.
6336 		 */
6337 		gro_normal_list(napi);
6338 		__napi_schedule(napi);
6339 	}
6340 	local_bh_enable();
6341 }
6342 
6343 void napi_busy_loop(unsigned int napi_id,
6344 		    bool (*loop_end)(void *, unsigned long),
6345 		    void *loop_end_arg)
6346 {
6347 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6348 	int (*napi_poll)(struct napi_struct *napi, int budget);
6349 	void *have_poll_lock = NULL;
6350 	struct napi_struct *napi;
6351 
6352 restart:
6353 	napi_poll = NULL;
6354 
6355 	rcu_read_lock();
6356 
6357 	napi = napi_by_id(napi_id);
6358 	if (!napi)
6359 		goto out;
6360 
6361 	preempt_disable();
6362 	for (;;) {
6363 		int work = 0;
6364 
6365 		local_bh_disable();
6366 		if (!napi_poll) {
6367 			unsigned long val = READ_ONCE(napi->state);
6368 
6369 			/* If multiple threads are competing for this napi,
6370 			 * we avoid dirtying napi->state as much as we can.
6371 			 */
6372 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6373 				   NAPIF_STATE_IN_BUSY_POLL))
6374 				goto count;
6375 			if (cmpxchg(&napi->state, val,
6376 				    val | NAPIF_STATE_IN_BUSY_POLL |
6377 					  NAPIF_STATE_SCHED) != val)
6378 				goto count;
6379 			have_poll_lock = netpoll_poll_lock(napi);
6380 			napi_poll = napi->poll;
6381 		}
6382 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6383 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6384 		gro_normal_list(napi);
6385 count:
6386 		if (work > 0)
6387 			__NET_ADD_STATS(dev_net(napi->dev),
6388 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6389 		local_bh_enable();
6390 
6391 		if (!loop_end || loop_end(loop_end_arg, start_time))
6392 			break;
6393 
6394 		if (unlikely(need_resched())) {
6395 			if (napi_poll)
6396 				busy_poll_stop(napi, have_poll_lock);
6397 			preempt_enable();
6398 			rcu_read_unlock();
6399 			cond_resched();
6400 			if (loop_end(loop_end_arg, start_time))
6401 				return;
6402 			goto restart;
6403 		}
6404 		cpu_relax();
6405 	}
6406 	if (napi_poll)
6407 		busy_poll_stop(napi, have_poll_lock);
6408 	preempt_enable();
6409 out:
6410 	rcu_read_unlock();
6411 }
6412 EXPORT_SYMBOL(napi_busy_loop);
6413 
6414 #endif /* CONFIG_NET_RX_BUSY_POLL */
6415 
6416 static void napi_hash_add(struct napi_struct *napi)
6417 {
6418 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6419 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6420 		return;
6421 
6422 	spin_lock(&napi_hash_lock);
6423 
6424 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6425 	do {
6426 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6427 			napi_gen_id = MIN_NAPI_ID;
6428 	} while (napi_by_id(napi_gen_id));
6429 	napi->napi_id = napi_gen_id;
6430 
6431 	hlist_add_head_rcu(&napi->napi_hash_node,
6432 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6433 
6434 	spin_unlock(&napi_hash_lock);
6435 }
6436 
6437 /* Warning : caller is responsible to make sure rcu grace period
6438  * is respected before freeing memory containing @napi
6439  */
6440 bool napi_hash_del(struct napi_struct *napi)
6441 {
6442 	bool rcu_sync_needed = false;
6443 
6444 	spin_lock(&napi_hash_lock);
6445 
6446 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6447 		rcu_sync_needed = true;
6448 		hlist_del_rcu(&napi->napi_hash_node);
6449 	}
6450 	spin_unlock(&napi_hash_lock);
6451 	return rcu_sync_needed;
6452 }
6453 EXPORT_SYMBOL_GPL(napi_hash_del);
6454 
6455 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6456 {
6457 	struct napi_struct *napi;
6458 
6459 	napi = container_of(timer, struct napi_struct, timer);
6460 
6461 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6462 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6463 	 */
6464 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6465 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6466 		__napi_schedule_irqoff(napi);
6467 
6468 	return HRTIMER_NORESTART;
6469 }
6470 
6471 static void init_gro_hash(struct napi_struct *napi)
6472 {
6473 	int i;
6474 
6475 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6476 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6477 		napi->gro_hash[i].count = 0;
6478 	}
6479 	napi->gro_bitmask = 0;
6480 }
6481 
6482 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6483 		    int (*poll)(struct napi_struct *, int), int weight)
6484 {
6485 	INIT_LIST_HEAD(&napi->poll_list);
6486 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6487 	napi->timer.function = napi_watchdog;
6488 	init_gro_hash(napi);
6489 	napi->skb = NULL;
6490 	INIT_LIST_HEAD(&napi->rx_list);
6491 	napi->rx_count = 0;
6492 	napi->poll = poll;
6493 	if (weight > NAPI_POLL_WEIGHT)
6494 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6495 				weight);
6496 	napi->weight = weight;
6497 	list_add(&napi->dev_list, &dev->napi_list);
6498 	napi->dev = dev;
6499 #ifdef CONFIG_NETPOLL
6500 	napi->poll_owner = -1;
6501 #endif
6502 	set_bit(NAPI_STATE_SCHED, &napi->state);
6503 	napi_hash_add(napi);
6504 }
6505 EXPORT_SYMBOL(netif_napi_add);
6506 
6507 void napi_disable(struct napi_struct *n)
6508 {
6509 	might_sleep();
6510 	set_bit(NAPI_STATE_DISABLE, &n->state);
6511 
6512 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6513 		msleep(1);
6514 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6515 		msleep(1);
6516 
6517 	hrtimer_cancel(&n->timer);
6518 
6519 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6520 }
6521 EXPORT_SYMBOL(napi_disable);
6522 
6523 static void flush_gro_hash(struct napi_struct *napi)
6524 {
6525 	int i;
6526 
6527 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6528 		struct sk_buff *skb, *n;
6529 
6530 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6531 			kfree_skb(skb);
6532 		napi->gro_hash[i].count = 0;
6533 	}
6534 }
6535 
6536 /* Must be called in process context */
6537 void netif_napi_del(struct napi_struct *napi)
6538 {
6539 	might_sleep();
6540 	if (napi_hash_del(napi))
6541 		synchronize_net();
6542 	list_del_init(&napi->dev_list);
6543 	napi_free_frags(napi);
6544 
6545 	flush_gro_hash(napi);
6546 	napi->gro_bitmask = 0;
6547 }
6548 EXPORT_SYMBOL(netif_napi_del);
6549 
6550 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6551 {
6552 	void *have;
6553 	int work, weight;
6554 
6555 	list_del_init(&n->poll_list);
6556 
6557 	have = netpoll_poll_lock(n);
6558 
6559 	weight = n->weight;
6560 
6561 	/* This NAPI_STATE_SCHED test is for avoiding a race
6562 	 * with netpoll's poll_napi().  Only the entity which
6563 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6564 	 * actually make the ->poll() call.  Therefore we avoid
6565 	 * accidentally calling ->poll() when NAPI is not scheduled.
6566 	 */
6567 	work = 0;
6568 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6569 		work = n->poll(n, weight);
6570 		trace_napi_poll(n, work, weight);
6571 	}
6572 
6573 	WARN_ON_ONCE(work > weight);
6574 
6575 	if (likely(work < weight))
6576 		goto out_unlock;
6577 
6578 	/* Drivers must not modify the NAPI state if they
6579 	 * consume the entire weight.  In such cases this code
6580 	 * still "owns" the NAPI instance and therefore can
6581 	 * move the instance around on the list at-will.
6582 	 */
6583 	if (unlikely(napi_disable_pending(n))) {
6584 		napi_complete(n);
6585 		goto out_unlock;
6586 	}
6587 
6588 	if (n->gro_bitmask) {
6589 		/* flush too old packets
6590 		 * If HZ < 1000, flush all packets.
6591 		 */
6592 		napi_gro_flush(n, HZ >= 1000);
6593 	}
6594 
6595 	gro_normal_list(n);
6596 
6597 	/* Some drivers may have called napi_schedule
6598 	 * prior to exhausting their budget.
6599 	 */
6600 	if (unlikely(!list_empty(&n->poll_list))) {
6601 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6602 			     n->dev ? n->dev->name : "backlog");
6603 		goto out_unlock;
6604 	}
6605 
6606 	list_add_tail(&n->poll_list, repoll);
6607 
6608 out_unlock:
6609 	netpoll_poll_unlock(have);
6610 
6611 	return work;
6612 }
6613 
6614 static __latent_entropy void net_rx_action(struct softirq_action *h)
6615 {
6616 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6617 	unsigned long time_limit = jiffies +
6618 		usecs_to_jiffies(netdev_budget_usecs);
6619 	int budget = netdev_budget;
6620 	LIST_HEAD(list);
6621 	LIST_HEAD(repoll);
6622 
6623 	local_irq_disable();
6624 	list_splice_init(&sd->poll_list, &list);
6625 	local_irq_enable();
6626 
6627 	for (;;) {
6628 		struct napi_struct *n;
6629 
6630 		if (list_empty(&list)) {
6631 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6632 				goto out;
6633 			break;
6634 		}
6635 
6636 		n = list_first_entry(&list, struct napi_struct, poll_list);
6637 		budget -= napi_poll(n, &repoll);
6638 
6639 		/* If softirq window is exhausted then punt.
6640 		 * Allow this to run for 2 jiffies since which will allow
6641 		 * an average latency of 1.5/HZ.
6642 		 */
6643 		if (unlikely(budget <= 0 ||
6644 			     time_after_eq(jiffies, time_limit))) {
6645 			sd->time_squeeze++;
6646 			break;
6647 		}
6648 	}
6649 
6650 	local_irq_disable();
6651 
6652 	list_splice_tail_init(&sd->poll_list, &list);
6653 	list_splice_tail(&repoll, &list);
6654 	list_splice(&list, &sd->poll_list);
6655 	if (!list_empty(&sd->poll_list))
6656 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6657 
6658 	net_rps_action_and_irq_enable(sd);
6659 out:
6660 	__kfree_skb_flush();
6661 }
6662 
6663 struct netdev_adjacent {
6664 	struct net_device *dev;
6665 
6666 	/* upper master flag, there can only be one master device per list */
6667 	bool master;
6668 
6669 	/* lookup ignore flag */
6670 	bool ignore;
6671 
6672 	/* counter for the number of times this device was added to us */
6673 	u16 ref_nr;
6674 
6675 	/* private field for the users */
6676 	void *private;
6677 
6678 	struct list_head list;
6679 	struct rcu_head rcu;
6680 };
6681 
6682 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6683 						 struct list_head *adj_list)
6684 {
6685 	struct netdev_adjacent *adj;
6686 
6687 	list_for_each_entry(adj, adj_list, list) {
6688 		if (adj->dev == adj_dev)
6689 			return adj;
6690 	}
6691 	return NULL;
6692 }
6693 
6694 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6695 {
6696 	struct net_device *dev = data;
6697 
6698 	return upper_dev == dev;
6699 }
6700 
6701 /**
6702  * netdev_has_upper_dev - Check if device is linked to an upper device
6703  * @dev: device
6704  * @upper_dev: upper device to check
6705  *
6706  * Find out if a device is linked to specified upper device and return true
6707  * in case it is. Note that this checks only immediate upper device,
6708  * not through a complete stack of devices. The caller must hold the RTNL lock.
6709  */
6710 bool netdev_has_upper_dev(struct net_device *dev,
6711 			  struct net_device *upper_dev)
6712 {
6713 	ASSERT_RTNL();
6714 
6715 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6716 					     upper_dev);
6717 }
6718 EXPORT_SYMBOL(netdev_has_upper_dev);
6719 
6720 /**
6721  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6722  * @dev: device
6723  * @upper_dev: upper device to check
6724  *
6725  * Find out if a device is linked to specified upper device and return true
6726  * in case it is. Note that this checks the entire upper device chain.
6727  * The caller must hold rcu lock.
6728  */
6729 
6730 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6731 				  struct net_device *upper_dev)
6732 {
6733 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6734 					       upper_dev);
6735 }
6736 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6737 
6738 /**
6739  * netdev_has_any_upper_dev - Check if device is linked to some device
6740  * @dev: device
6741  *
6742  * Find out if a device is linked to an upper device and return true in case
6743  * it is. The caller must hold the RTNL lock.
6744  */
6745 bool netdev_has_any_upper_dev(struct net_device *dev)
6746 {
6747 	ASSERT_RTNL();
6748 
6749 	return !list_empty(&dev->adj_list.upper);
6750 }
6751 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6752 
6753 /**
6754  * netdev_master_upper_dev_get - Get master upper device
6755  * @dev: device
6756  *
6757  * Find a master upper device and return pointer to it or NULL in case
6758  * it's not there. The caller must hold the RTNL lock.
6759  */
6760 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6761 {
6762 	struct netdev_adjacent *upper;
6763 
6764 	ASSERT_RTNL();
6765 
6766 	if (list_empty(&dev->adj_list.upper))
6767 		return NULL;
6768 
6769 	upper = list_first_entry(&dev->adj_list.upper,
6770 				 struct netdev_adjacent, list);
6771 	if (likely(upper->master))
6772 		return upper->dev;
6773 	return NULL;
6774 }
6775 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6776 
6777 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6778 {
6779 	struct netdev_adjacent *upper;
6780 
6781 	ASSERT_RTNL();
6782 
6783 	if (list_empty(&dev->adj_list.upper))
6784 		return NULL;
6785 
6786 	upper = list_first_entry(&dev->adj_list.upper,
6787 				 struct netdev_adjacent, list);
6788 	if (likely(upper->master) && !upper->ignore)
6789 		return upper->dev;
6790 	return NULL;
6791 }
6792 
6793 /**
6794  * netdev_has_any_lower_dev - Check if device is linked to some device
6795  * @dev: device
6796  *
6797  * Find out if a device is linked to a lower device and return true in case
6798  * it is. The caller must hold the RTNL lock.
6799  */
6800 static bool netdev_has_any_lower_dev(struct net_device *dev)
6801 {
6802 	ASSERT_RTNL();
6803 
6804 	return !list_empty(&dev->adj_list.lower);
6805 }
6806 
6807 void *netdev_adjacent_get_private(struct list_head *adj_list)
6808 {
6809 	struct netdev_adjacent *adj;
6810 
6811 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6812 
6813 	return adj->private;
6814 }
6815 EXPORT_SYMBOL(netdev_adjacent_get_private);
6816 
6817 /**
6818  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6819  * @dev: device
6820  * @iter: list_head ** of the current position
6821  *
6822  * Gets the next device from the dev's upper list, starting from iter
6823  * position. The caller must hold RCU read lock.
6824  */
6825 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6826 						 struct list_head **iter)
6827 {
6828 	struct netdev_adjacent *upper;
6829 
6830 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6831 
6832 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6833 
6834 	if (&upper->list == &dev->adj_list.upper)
6835 		return NULL;
6836 
6837 	*iter = &upper->list;
6838 
6839 	return upper->dev;
6840 }
6841 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6842 
6843 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6844 						  struct list_head **iter,
6845 						  bool *ignore)
6846 {
6847 	struct netdev_adjacent *upper;
6848 
6849 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6850 
6851 	if (&upper->list == &dev->adj_list.upper)
6852 		return NULL;
6853 
6854 	*iter = &upper->list;
6855 	*ignore = upper->ignore;
6856 
6857 	return upper->dev;
6858 }
6859 
6860 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6861 						    struct list_head **iter)
6862 {
6863 	struct netdev_adjacent *upper;
6864 
6865 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6866 
6867 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6868 
6869 	if (&upper->list == &dev->adj_list.upper)
6870 		return NULL;
6871 
6872 	*iter = &upper->list;
6873 
6874 	return upper->dev;
6875 }
6876 
6877 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6878 				       int (*fn)(struct net_device *dev,
6879 						 void *data),
6880 				       void *data)
6881 {
6882 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6883 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6884 	int ret, cur = 0;
6885 	bool ignore;
6886 
6887 	now = dev;
6888 	iter = &dev->adj_list.upper;
6889 
6890 	while (1) {
6891 		if (now != dev) {
6892 			ret = fn(now, data);
6893 			if (ret)
6894 				return ret;
6895 		}
6896 
6897 		next = NULL;
6898 		while (1) {
6899 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6900 			if (!udev)
6901 				break;
6902 			if (ignore)
6903 				continue;
6904 
6905 			next = udev;
6906 			niter = &udev->adj_list.upper;
6907 			dev_stack[cur] = now;
6908 			iter_stack[cur++] = iter;
6909 			break;
6910 		}
6911 
6912 		if (!next) {
6913 			if (!cur)
6914 				return 0;
6915 			next = dev_stack[--cur];
6916 			niter = iter_stack[cur];
6917 		}
6918 
6919 		now = next;
6920 		iter = niter;
6921 	}
6922 
6923 	return 0;
6924 }
6925 
6926 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6927 				  int (*fn)(struct net_device *dev,
6928 					    void *data),
6929 				  void *data)
6930 {
6931 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6932 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6933 	int ret, cur = 0;
6934 
6935 	now = dev;
6936 	iter = &dev->adj_list.upper;
6937 
6938 	while (1) {
6939 		if (now != dev) {
6940 			ret = fn(now, data);
6941 			if (ret)
6942 				return ret;
6943 		}
6944 
6945 		next = NULL;
6946 		while (1) {
6947 			udev = netdev_next_upper_dev_rcu(now, &iter);
6948 			if (!udev)
6949 				break;
6950 
6951 			next = udev;
6952 			niter = &udev->adj_list.upper;
6953 			dev_stack[cur] = now;
6954 			iter_stack[cur++] = iter;
6955 			break;
6956 		}
6957 
6958 		if (!next) {
6959 			if (!cur)
6960 				return 0;
6961 			next = dev_stack[--cur];
6962 			niter = iter_stack[cur];
6963 		}
6964 
6965 		now = next;
6966 		iter = niter;
6967 	}
6968 
6969 	return 0;
6970 }
6971 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6972 
6973 static bool __netdev_has_upper_dev(struct net_device *dev,
6974 				   struct net_device *upper_dev)
6975 {
6976 	ASSERT_RTNL();
6977 
6978 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6979 					   upper_dev);
6980 }
6981 
6982 /**
6983  * netdev_lower_get_next_private - Get the next ->private from the
6984  *				   lower neighbour list
6985  * @dev: device
6986  * @iter: list_head ** of the current position
6987  *
6988  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6989  * list, starting from iter position. The caller must hold either hold the
6990  * RTNL lock or its own locking that guarantees that the neighbour lower
6991  * list will remain unchanged.
6992  */
6993 void *netdev_lower_get_next_private(struct net_device *dev,
6994 				    struct list_head **iter)
6995 {
6996 	struct netdev_adjacent *lower;
6997 
6998 	lower = list_entry(*iter, struct netdev_adjacent, list);
6999 
7000 	if (&lower->list == &dev->adj_list.lower)
7001 		return NULL;
7002 
7003 	*iter = lower->list.next;
7004 
7005 	return lower->private;
7006 }
7007 EXPORT_SYMBOL(netdev_lower_get_next_private);
7008 
7009 /**
7010  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7011  *				       lower neighbour list, RCU
7012  *				       variant
7013  * @dev: device
7014  * @iter: list_head ** of the current position
7015  *
7016  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7017  * list, starting from iter position. The caller must hold RCU read lock.
7018  */
7019 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7020 					struct list_head **iter)
7021 {
7022 	struct netdev_adjacent *lower;
7023 
7024 	WARN_ON_ONCE(!rcu_read_lock_held());
7025 
7026 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7027 
7028 	if (&lower->list == &dev->adj_list.lower)
7029 		return NULL;
7030 
7031 	*iter = &lower->list;
7032 
7033 	return lower->private;
7034 }
7035 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7036 
7037 /**
7038  * netdev_lower_get_next - Get the next device from the lower neighbour
7039  *                         list
7040  * @dev: device
7041  * @iter: list_head ** of the current position
7042  *
7043  * Gets the next netdev_adjacent from the dev's lower neighbour
7044  * list, starting from iter position. The caller must hold RTNL lock or
7045  * its own locking that guarantees that the neighbour lower
7046  * list will remain unchanged.
7047  */
7048 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7049 {
7050 	struct netdev_adjacent *lower;
7051 
7052 	lower = list_entry(*iter, struct netdev_adjacent, list);
7053 
7054 	if (&lower->list == &dev->adj_list.lower)
7055 		return NULL;
7056 
7057 	*iter = lower->list.next;
7058 
7059 	return lower->dev;
7060 }
7061 EXPORT_SYMBOL(netdev_lower_get_next);
7062 
7063 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7064 						struct list_head **iter)
7065 {
7066 	struct netdev_adjacent *lower;
7067 
7068 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7069 
7070 	if (&lower->list == &dev->adj_list.lower)
7071 		return NULL;
7072 
7073 	*iter = &lower->list;
7074 
7075 	return lower->dev;
7076 }
7077 
7078 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7079 						  struct list_head **iter,
7080 						  bool *ignore)
7081 {
7082 	struct netdev_adjacent *lower;
7083 
7084 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7085 
7086 	if (&lower->list == &dev->adj_list.lower)
7087 		return NULL;
7088 
7089 	*iter = &lower->list;
7090 	*ignore = lower->ignore;
7091 
7092 	return lower->dev;
7093 }
7094 
7095 int netdev_walk_all_lower_dev(struct net_device *dev,
7096 			      int (*fn)(struct net_device *dev,
7097 					void *data),
7098 			      void *data)
7099 {
7100 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7101 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7102 	int ret, cur = 0;
7103 
7104 	now = dev;
7105 	iter = &dev->adj_list.lower;
7106 
7107 	while (1) {
7108 		if (now != dev) {
7109 			ret = fn(now, data);
7110 			if (ret)
7111 				return ret;
7112 		}
7113 
7114 		next = NULL;
7115 		while (1) {
7116 			ldev = netdev_next_lower_dev(now, &iter);
7117 			if (!ldev)
7118 				break;
7119 
7120 			next = ldev;
7121 			niter = &ldev->adj_list.lower;
7122 			dev_stack[cur] = now;
7123 			iter_stack[cur++] = iter;
7124 			break;
7125 		}
7126 
7127 		if (!next) {
7128 			if (!cur)
7129 				return 0;
7130 			next = dev_stack[--cur];
7131 			niter = iter_stack[cur];
7132 		}
7133 
7134 		now = next;
7135 		iter = niter;
7136 	}
7137 
7138 	return 0;
7139 }
7140 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7141 
7142 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7143 				       int (*fn)(struct net_device *dev,
7144 						 void *data),
7145 				       void *data)
7146 {
7147 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7148 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7149 	int ret, cur = 0;
7150 	bool ignore;
7151 
7152 	now = dev;
7153 	iter = &dev->adj_list.lower;
7154 
7155 	while (1) {
7156 		if (now != dev) {
7157 			ret = fn(now, data);
7158 			if (ret)
7159 				return ret;
7160 		}
7161 
7162 		next = NULL;
7163 		while (1) {
7164 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7165 			if (!ldev)
7166 				break;
7167 			if (ignore)
7168 				continue;
7169 
7170 			next = ldev;
7171 			niter = &ldev->adj_list.lower;
7172 			dev_stack[cur] = now;
7173 			iter_stack[cur++] = iter;
7174 			break;
7175 		}
7176 
7177 		if (!next) {
7178 			if (!cur)
7179 				return 0;
7180 			next = dev_stack[--cur];
7181 			niter = iter_stack[cur];
7182 		}
7183 
7184 		now = next;
7185 		iter = niter;
7186 	}
7187 
7188 	return 0;
7189 }
7190 
7191 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7192 					     struct list_head **iter)
7193 {
7194 	struct netdev_adjacent *lower;
7195 
7196 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7197 	if (&lower->list == &dev->adj_list.lower)
7198 		return NULL;
7199 
7200 	*iter = &lower->list;
7201 
7202 	return lower->dev;
7203 }
7204 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7205 
7206 static u8 __netdev_upper_depth(struct net_device *dev)
7207 {
7208 	struct net_device *udev;
7209 	struct list_head *iter;
7210 	u8 max_depth = 0;
7211 	bool ignore;
7212 
7213 	for (iter = &dev->adj_list.upper,
7214 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7215 	     udev;
7216 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7217 		if (ignore)
7218 			continue;
7219 		if (max_depth < udev->upper_level)
7220 			max_depth = udev->upper_level;
7221 	}
7222 
7223 	return max_depth;
7224 }
7225 
7226 static u8 __netdev_lower_depth(struct net_device *dev)
7227 {
7228 	struct net_device *ldev;
7229 	struct list_head *iter;
7230 	u8 max_depth = 0;
7231 	bool ignore;
7232 
7233 	for (iter = &dev->adj_list.lower,
7234 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7235 	     ldev;
7236 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7237 		if (ignore)
7238 			continue;
7239 		if (max_depth < ldev->lower_level)
7240 			max_depth = ldev->lower_level;
7241 	}
7242 
7243 	return max_depth;
7244 }
7245 
7246 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7247 {
7248 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7249 	return 0;
7250 }
7251 
7252 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7253 {
7254 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7255 	return 0;
7256 }
7257 
7258 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7259 				  int (*fn)(struct net_device *dev,
7260 					    void *data),
7261 				  void *data)
7262 {
7263 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7264 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7265 	int ret, cur = 0;
7266 
7267 	now = dev;
7268 	iter = &dev->adj_list.lower;
7269 
7270 	while (1) {
7271 		if (now != dev) {
7272 			ret = fn(now, data);
7273 			if (ret)
7274 				return ret;
7275 		}
7276 
7277 		next = NULL;
7278 		while (1) {
7279 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7280 			if (!ldev)
7281 				break;
7282 
7283 			next = ldev;
7284 			niter = &ldev->adj_list.lower;
7285 			dev_stack[cur] = now;
7286 			iter_stack[cur++] = iter;
7287 			break;
7288 		}
7289 
7290 		if (!next) {
7291 			if (!cur)
7292 				return 0;
7293 			next = dev_stack[--cur];
7294 			niter = iter_stack[cur];
7295 		}
7296 
7297 		now = next;
7298 		iter = niter;
7299 	}
7300 
7301 	return 0;
7302 }
7303 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7304 
7305 /**
7306  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7307  *				       lower neighbour list, RCU
7308  *				       variant
7309  * @dev: device
7310  *
7311  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7312  * list. The caller must hold RCU read lock.
7313  */
7314 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7315 {
7316 	struct netdev_adjacent *lower;
7317 
7318 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7319 			struct netdev_adjacent, list);
7320 	if (lower)
7321 		return lower->private;
7322 	return NULL;
7323 }
7324 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7325 
7326 /**
7327  * netdev_master_upper_dev_get_rcu - Get master upper device
7328  * @dev: device
7329  *
7330  * Find a master upper device and return pointer to it or NULL in case
7331  * it's not there. The caller must hold the RCU read lock.
7332  */
7333 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7334 {
7335 	struct netdev_adjacent *upper;
7336 
7337 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7338 				       struct netdev_adjacent, list);
7339 	if (upper && likely(upper->master))
7340 		return upper->dev;
7341 	return NULL;
7342 }
7343 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7344 
7345 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7346 			      struct net_device *adj_dev,
7347 			      struct list_head *dev_list)
7348 {
7349 	char linkname[IFNAMSIZ+7];
7350 
7351 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7352 		"upper_%s" : "lower_%s", adj_dev->name);
7353 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7354 				 linkname);
7355 }
7356 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7357 			       char *name,
7358 			       struct list_head *dev_list)
7359 {
7360 	char linkname[IFNAMSIZ+7];
7361 
7362 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7363 		"upper_%s" : "lower_%s", name);
7364 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7365 }
7366 
7367 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7368 						 struct net_device *adj_dev,
7369 						 struct list_head *dev_list)
7370 {
7371 	return (dev_list == &dev->adj_list.upper ||
7372 		dev_list == &dev->adj_list.lower) &&
7373 		net_eq(dev_net(dev), dev_net(adj_dev));
7374 }
7375 
7376 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7377 					struct net_device *adj_dev,
7378 					struct list_head *dev_list,
7379 					void *private, bool master)
7380 {
7381 	struct netdev_adjacent *adj;
7382 	int ret;
7383 
7384 	adj = __netdev_find_adj(adj_dev, dev_list);
7385 
7386 	if (adj) {
7387 		adj->ref_nr += 1;
7388 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7389 			 dev->name, adj_dev->name, adj->ref_nr);
7390 
7391 		return 0;
7392 	}
7393 
7394 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7395 	if (!adj)
7396 		return -ENOMEM;
7397 
7398 	adj->dev = adj_dev;
7399 	adj->master = master;
7400 	adj->ref_nr = 1;
7401 	adj->private = private;
7402 	adj->ignore = false;
7403 	dev_hold(adj_dev);
7404 
7405 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7406 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7407 
7408 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7409 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7410 		if (ret)
7411 			goto free_adj;
7412 	}
7413 
7414 	/* Ensure that master link is always the first item in list. */
7415 	if (master) {
7416 		ret = sysfs_create_link(&(dev->dev.kobj),
7417 					&(adj_dev->dev.kobj), "master");
7418 		if (ret)
7419 			goto remove_symlinks;
7420 
7421 		list_add_rcu(&adj->list, dev_list);
7422 	} else {
7423 		list_add_tail_rcu(&adj->list, dev_list);
7424 	}
7425 
7426 	return 0;
7427 
7428 remove_symlinks:
7429 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7430 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7431 free_adj:
7432 	kfree(adj);
7433 	dev_put(adj_dev);
7434 
7435 	return ret;
7436 }
7437 
7438 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7439 					 struct net_device *adj_dev,
7440 					 u16 ref_nr,
7441 					 struct list_head *dev_list)
7442 {
7443 	struct netdev_adjacent *adj;
7444 
7445 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7446 		 dev->name, adj_dev->name, ref_nr);
7447 
7448 	adj = __netdev_find_adj(adj_dev, dev_list);
7449 
7450 	if (!adj) {
7451 		pr_err("Adjacency does not exist for device %s from %s\n",
7452 		       dev->name, adj_dev->name);
7453 		WARN_ON(1);
7454 		return;
7455 	}
7456 
7457 	if (adj->ref_nr > ref_nr) {
7458 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7459 			 dev->name, adj_dev->name, ref_nr,
7460 			 adj->ref_nr - ref_nr);
7461 		adj->ref_nr -= ref_nr;
7462 		return;
7463 	}
7464 
7465 	if (adj->master)
7466 		sysfs_remove_link(&(dev->dev.kobj), "master");
7467 
7468 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7469 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7470 
7471 	list_del_rcu(&adj->list);
7472 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7473 		 adj_dev->name, dev->name, adj_dev->name);
7474 	dev_put(adj_dev);
7475 	kfree_rcu(adj, rcu);
7476 }
7477 
7478 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7479 					    struct net_device *upper_dev,
7480 					    struct list_head *up_list,
7481 					    struct list_head *down_list,
7482 					    void *private, bool master)
7483 {
7484 	int ret;
7485 
7486 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7487 					   private, master);
7488 	if (ret)
7489 		return ret;
7490 
7491 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7492 					   private, false);
7493 	if (ret) {
7494 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7495 		return ret;
7496 	}
7497 
7498 	return 0;
7499 }
7500 
7501 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7502 					       struct net_device *upper_dev,
7503 					       u16 ref_nr,
7504 					       struct list_head *up_list,
7505 					       struct list_head *down_list)
7506 {
7507 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7508 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7509 }
7510 
7511 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7512 						struct net_device *upper_dev,
7513 						void *private, bool master)
7514 {
7515 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7516 						&dev->adj_list.upper,
7517 						&upper_dev->adj_list.lower,
7518 						private, master);
7519 }
7520 
7521 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7522 						   struct net_device *upper_dev)
7523 {
7524 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7525 					   &dev->adj_list.upper,
7526 					   &upper_dev->adj_list.lower);
7527 }
7528 
7529 static int __netdev_upper_dev_link(struct net_device *dev,
7530 				   struct net_device *upper_dev, bool master,
7531 				   void *upper_priv, void *upper_info,
7532 				   struct netlink_ext_ack *extack)
7533 {
7534 	struct netdev_notifier_changeupper_info changeupper_info = {
7535 		.info = {
7536 			.dev = dev,
7537 			.extack = extack,
7538 		},
7539 		.upper_dev = upper_dev,
7540 		.master = master,
7541 		.linking = true,
7542 		.upper_info = upper_info,
7543 	};
7544 	struct net_device *master_dev;
7545 	int ret = 0;
7546 
7547 	ASSERT_RTNL();
7548 
7549 	if (dev == upper_dev)
7550 		return -EBUSY;
7551 
7552 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7553 	if (__netdev_has_upper_dev(upper_dev, dev))
7554 		return -EBUSY;
7555 
7556 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7557 		return -EMLINK;
7558 
7559 	if (!master) {
7560 		if (__netdev_has_upper_dev(dev, upper_dev))
7561 			return -EEXIST;
7562 	} else {
7563 		master_dev = __netdev_master_upper_dev_get(dev);
7564 		if (master_dev)
7565 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7566 	}
7567 
7568 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7569 					    &changeupper_info.info);
7570 	ret = notifier_to_errno(ret);
7571 	if (ret)
7572 		return ret;
7573 
7574 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7575 						   master);
7576 	if (ret)
7577 		return ret;
7578 
7579 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7580 					    &changeupper_info.info);
7581 	ret = notifier_to_errno(ret);
7582 	if (ret)
7583 		goto rollback;
7584 
7585 	__netdev_update_upper_level(dev, NULL);
7586 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7587 
7588 	__netdev_update_lower_level(upper_dev, NULL);
7589 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7590 				    NULL);
7591 
7592 	return 0;
7593 
7594 rollback:
7595 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7596 
7597 	return ret;
7598 }
7599 
7600 /**
7601  * netdev_upper_dev_link - Add a link to the upper device
7602  * @dev: device
7603  * @upper_dev: new upper device
7604  * @extack: netlink extended ack
7605  *
7606  * Adds a link to device which is upper to this one. The caller must hold
7607  * the RTNL lock. On a failure a negative errno code is returned.
7608  * On success the reference counts are adjusted and the function
7609  * returns zero.
7610  */
7611 int netdev_upper_dev_link(struct net_device *dev,
7612 			  struct net_device *upper_dev,
7613 			  struct netlink_ext_ack *extack)
7614 {
7615 	return __netdev_upper_dev_link(dev, upper_dev, false,
7616 				       NULL, NULL, extack);
7617 }
7618 EXPORT_SYMBOL(netdev_upper_dev_link);
7619 
7620 /**
7621  * netdev_master_upper_dev_link - Add a master link to the upper device
7622  * @dev: device
7623  * @upper_dev: new upper device
7624  * @upper_priv: upper device private
7625  * @upper_info: upper info to be passed down via notifier
7626  * @extack: netlink extended ack
7627  *
7628  * Adds a link to device which is upper to this one. In this case, only
7629  * one master upper device can be linked, although other non-master devices
7630  * might be linked as well. The caller must hold the RTNL lock.
7631  * On a failure a negative errno code is returned. On success the reference
7632  * counts are adjusted and the function returns zero.
7633  */
7634 int netdev_master_upper_dev_link(struct net_device *dev,
7635 				 struct net_device *upper_dev,
7636 				 void *upper_priv, void *upper_info,
7637 				 struct netlink_ext_ack *extack)
7638 {
7639 	return __netdev_upper_dev_link(dev, upper_dev, true,
7640 				       upper_priv, upper_info, extack);
7641 }
7642 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7643 
7644 /**
7645  * netdev_upper_dev_unlink - Removes a link to upper device
7646  * @dev: device
7647  * @upper_dev: new upper device
7648  *
7649  * Removes a link to device which is upper to this one. The caller must hold
7650  * the RTNL lock.
7651  */
7652 void netdev_upper_dev_unlink(struct net_device *dev,
7653 			     struct net_device *upper_dev)
7654 {
7655 	struct netdev_notifier_changeupper_info changeupper_info = {
7656 		.info = {
7657 			.dev = dev,
7658 		},
7659 		.upper_dev = upper_dev,
7660 		.linking = false,
7661 	};
7662 
7663 	ASSERT_RTNL();
7664 
7665 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7666 
7667 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7668 				      &changeupper_info.info);
7669 
7670 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7671 
7672 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7673 				      &changeupper_info.info);
7674 
7675 	__netdev_update_upper_level(dev, NULL);
7676 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7677 
7678 	__netdev_update_lower_level(upper_dev, NULL);
7679 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7680 				    NULL);
7681 }
7682 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7683 
7684 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7685 				      struct net_device *lower_dev,
7686 				      bool val)
7687 {
7688 	struct netdev_adjacent *adj;
7689 
7690 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7691 	if (adj)
7692 		adj->ignore = val;
7693 
7694 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7695 	if (adj)
7696 		adj->ignore = val;
7697 }
7698 
7699 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7700 					struct net_device *lower_dev)
7701 {
7702 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7703 }
7704 
7705 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7706 				       struct net_device *lower_dev)
7707 {
7708 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7709 }
7710 
7711 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7712 				   struct net_device *new_dev,
7713 				   struct net_device *dev,
7714 				   struct netlink_ext_ack *extack)
7715 {
7716 	int err;
7717 
7718 	if (!new_dev)
7719 		return 0;
7720 
7721 	if (old_dev && new_dev != old_dev)
7722 		netdev_adjacent_dev_disable(dev, old_dev);
7723 
7724 	err = netdev_upper_dev_link(new_dev, dev, extack);
7725 	if (err) {
7726 		if (old_dev && new_dev != old_dev)
7727 			netdev_adjacent_dev_enable(dev, old_dev);
7728 		return err;
7729 	}
7730 
7731 	return 0;
7732 }
7733 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7734 
7735 void netdev_adjacent_change_commit(struct net_device *old_dev,
7736 				   struct net_device *new_dev,
7737 				   struct net_device *dev)
7738 {
7739 	if (!new_dev || !old_dev)
7740 		return;
7741 
7742 	if (new_dev == old_dev)
7743 		return;
7744 
7745 	netdev_adjacent_dev_enable(dev, old_dev);
7746 	netdev_upper_dev_unlink(old_dev, dev);
7747 }
7748 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7749 
7750 void netdev_adjacent_change_abort(struct net_device *old_dev,
7751 				  struct net_device *new_dev,
7752 				  struct net_device *dev)
7753 {
7754 	if (!new_dev)
7755 		return;
7756 
7757 	if (old_dev && new_dev != old_dev)
7758 		netdev_adjacent_dev_enable(dev, old_dev);
7759 
7760 	netdev_upper_dev_unlink(new_dev, dev);
7761 }
7762 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7763 
7764 /**
7765  * netdev_bonding_info_change - Dispatch event about slave change
7766  * @dev: device
7767  * @bonding_info: info to dispatch
7768  *
7769  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7770  * The caller must hold the RTNL lock.
7771  */
7772 void netdev_bonding_info_change(struct net_device *dev,
7773 				struct netdev_bonding_info *bonding_info)
7774 {
7775 	struct netdev_notifier_bonding_info info = {
7776 		.info.dev = dev,
7777 	};
7778 
7779 	memcpy(&info.bonding_info, bonding_info,
7780 	       sizeof(struct netdev_bonding_info));
7781 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7782 				      &info.info);
7783 }
7784 EXPORT_SYMBOL(netdev_bonding_info_change);
7785 
7786 static void netdev_adjacent_add_links(struct net_device *dev)
7787 {
7788 	struct netdev_adjacent *iter;
7789 
7790 	struct net *net = dev_net(dev);
7791 
7792 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7793 		if (!net_eq(net, dev_net(iter->dev)))
7794 			continue;
7795 		netdev_adjacent_sysfs_add(iter->dev, dev,
7796 					  &iter->dev->adj_list.lower);
7797 		netdev_adjacent_sysfs_add(dev, iter->dev,
7798 					  &dev->adj_list.upper);
7799 	}
7800 
7801 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7802 		if (!net_eq(net, dev_net(iter->dev)))
7803 			continue;
7804 		netdev_adjacent_sysfs_add(iter->dev, dev,
7805 					  &iter->dev->adj_list.upper);
7806 		netdev_adjacent_sysfs_add(dev, iter->dev,
7807 					  &dev->adj_list.lower);
7808 	}
7809 }
7810 
7811 static void netdev_adjacent_del_links(struct net_device *dev)
7812 {
7813 	struct netdev_adjacent *iter;
7814 
7815 	struct net *net = dev_net(dev);
7816 
7817 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7818 		if (!net_eq(net, dev_net(iter->dev)))
7819 			continue;
7820 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7821 					  &iter->dev->adj_list.lower);
7822 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7823 					  &dev->adj_list.upper);
7824 	}
7825 
7826 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7827 		if (!net_eq(net, dev_net(iter->dev)))
7828 			continue;
7829 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7830 					  &iter->dev->adj_list.upper);
7831 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7832 					  &dev->adj_list.lower);
7833 	}
7834 }
7835 
7836 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7837 {
7838 	struct netdev_adjacent *iter;
7839 
7840 	struct net *net = dev_net(dev);
7841 
7842 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7843 		if (!net_eq(net, dev_net(iter->dev)))
7844 			continue;
7845 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7846 					  &iter->dev->adj_list.lower);
7847 		netdev_adjacent_sysfs_add(iter->dev, dev,
7848 					  &iter->dev->adj_list.lower);
7849 	}
7850 
7851 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7852 		if (!net_eq(net, dev_net(iter->dev)))
7853 			continue;
7854 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7855 					  &iter->dev->adj_list.upper);
7856 		netdev_adjacent_sysfs_add(iter->dev, dev,
7857 					  &iter->dev->adj_list.upper);
7858 	}
7859 }
7860 
7861 void *netdev_lower_dev_get_private(struct net_device *dev,
7862 				   struct net_device *lower_dev)
7863 {
7864 	struct netdev_adjacent *lower;
7865 
7866 	if (!lower_dev)
7867 		return NULL;
7868 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7869 	if (!lower)
7870 		return NULL;
7871 
7872 	return lower->private;
7873 }
7874 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7875 
7876 
7877 /**
7878  * netdev_lower_change - Dispatch event about lower device state change
7879  * @lower_dev: device
7880  * @lower_state_info: state to dispatch
7881  *
7882  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7883  * The caller must hold the RTNL lock.
7884  */
7885 void netdev_lower_state_changed(struct net_device *lower_dev,
7886 				void *lower_state_info)
7887 {
7888 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7889 		.info.dev = lower_dev,
7890 	};
7891 
7892 	ASSERT_RTNL();
7893 	changelowerstate_info.lower_state_info = lower_state_info;
7894 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7895 				      &changelowerstate_info.info);
7896 }
7897 EXPORT_SYMBOL(netdev_lower_state_changed);
7898 
7899 static void dev_change_rx_flags(struct net_device *dev, int flags)
7900 {
7901 	const struct net_device_ops *ops = dev->netdev_ops;
7902 
7903 	if (ops->ndo_change_rx_flags)
7904 		ops->ndo_change_rx_flags(dev, flags);
7905 }
7906 
7907 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7908 {
7909 	unsigned int old_flags = dev->flags;
7910 	kuid_t uid;
7911 	kgid_t gid;
7912 
7913 	ASSERT_RTNL();
7914 
7915 	dev->flags |= IFF_PROMISC;
7916 	dev->promiscuity += inc;
7917 	if (dev->promiscuity == 0) {
7918 		/*
7919 		 * Avoid overflow.
7920 		 * If inc causes overflow, untouch promisc and return error.
7921 		 */
7922 		if (inc < 0)
7923 			dev->flags &= ~IFF_PROMISC;
7924 		else {
7925 			dev->promiscuity -= inc;
7926 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7927 				dev->name);
7928 			return -EOVERFLOW;
7929 		}
7930 	}
7931 	if (dev->flags != old_flags) {
7932 		pr_info("device %s %s promiscuous mode\n",
7933 			dev->name,
7934 			dev->flags & IFF_PROMISC ? "entered" : "left");
7935 		if (audit_enabled) {
7936 			current_uid_gid(&uid, &gid);
7937 			audit_log(audit_context(), GFP_ATOMIC,
7938 				  AUDIT_ANOM_PROMISCUOUS,
7939 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7940 				  dev->name, (dev->flags & IFF_PROMISC),
7941 				  (old_flags & IFF_PROMISC),
7942 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7943 				  from_kuid(&init_user_ns, uid),
7944 				  from_kgid(&init_user_ns, gid),
7945 				  audit_get_sessionid(current));
7946 		}
7947 
7948 		dev_change_rx_flags(dev, IFF_PROMISC);
7949 	}
7950 	if (notify)
7951 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7952 	return 0;
7953 }
7954 
7955 /**
7956  *	dev_set_promiscuity	- update promiscuity count on a device
7957  *	@dev: device
7958  *	@inc: modifier
7959  *
7960  *	Add or remove promiscuity from a device. While the count in the device
7961  *	remains above zero the interface remains promiscuous. Once it hits zero
7962  *	the device reverts back to normal filtering operation. A negative inc
7963  *	value is used to drop promiscuity on the device.
7964  *	Return 0 if successful or a negative errno code on error.
7965  */
7966 int dev_set_promiscuity(struct net_device *dev, int inc)
7967 {
7968 	unsigned int old_flags = dev->flags;
7969 	int err;
7970 
7971 	err = __dev_set_promiscuity(dev, inc, true);
7972 	if (err < 0)
7973 		return err;
7974 	if (dev->flags != old_flags)
7975 		dev_set_rx_mode(dev);
7976 	return err;
7977 }
7978 EXPORT_SYMBOL(dev_set_promiscuity);
7979 
7980 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7981 {
7982 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7983 
7984 	ASSERT_RTNL();
7985 
7986 	dev->flags |= IFF_ALLMULTI;
7987 	dev->allmulti += inc;
7988 	if (dev->allmulti == 0) {
7989 		/*
7990 		 * Avoid overflow.
7991 		 * If inc causes overflow, untouch allmulti and return error.
7992 		 */
7993 		if (inc < 0)
7994 			dev->flags &= ~IFF_ALLMULTI;
7995 		else {
7996 			dev->allmulti -= inc;
7997 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7998 				dev->name);
7999 			return -EOVERFLOW;
8000 		}
8001 	}
8002 	if (dev->flags ^ old_flags) {
8003 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8004 		dev_set_rx_mode(dev);
8005 		if (notify)
8006 			__dev_notify_flags(dev, old_flags,
8007 					   dev->gflags ^ old_gflags);
8008 	}
8009 	return 0;
8010 }
8011 
8012 /**
8013  *	dev_set_allmulti	- update allmulti count on a device
8014  *	@dev: device
8015  *	@inc: modifier
8016  *
8017  *	Add or remove reception of all multicast frames to a device. While the
8018  *	count in the device remains above zero the interface remains listening
8019  *	to all interfaces. Once it hits zero the device reverts back to normal
8020  *	filtering operation. A negative @inc value is used to drop the counter
8021  *	when releasing a resource needing all multicasts.
8022  *	Return 0 if successful or a negative errno code on error.
8023  */
8024 
8025 int dev_set_allmulti(struct net_device *dev, int inc)
8026 {
8027 	return __dev_set_allmulti(dev, inc, true);
8028 }
8029 EXPORT_SYMBOL(dev_set_allmulti);
8030 
8031 /*
8032  *	Upload unicast and multicast address lists to device and
8033  *	configure RX filtering. When the device doesn't support unicast
8034  *	filtering it is put in promiscuous mode while unicast addresses
8035  *	are present.
8036  */
8037 void __dev_set_rx_mode(struct net_device *dev)
8038 {
8039 	const struct net_device_ops *ops = dev->netdev_ops;
8040 
8041 	/* dev_open will call this function so the list will stay sane. */
8042 	if (!(dev->flags&IFF_UP))
8043 		return;
8044 
8045 	if (!netif_device_present(dev))
8046 		return;
8047 
8048 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8049 		/* Unicast addresses changes may only happen under the rtnl,
8050 		 * therefore calling __dev_set_promiscuity here is safe.
8051 		 */
8052 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8053 			__dev_set_promiscuity(dev, 1, false);
8054 			dev->uc_promisc = true;
8055 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8056 			__dev_set_promiscuity(dev, -1, false);
8057 			dev->uc_promisc = false;
8058 		}
8059 	}
8060 
8061 	if (ops->ndo_set_rx_mode)
8062 		ops->ndo_set_rx_mode(dev);
8063 }
8064 
8065 void dev_set_rx_mode(struct net_device *dev)
8066 {
8067 	netif_addr_lock_bh(dev);
8068 	__dev_set_rx_mode(dev);
8069 	netif_addr_unlock_bh(dev);
8070 }
8071 
8072 /**
8073  *	dev_get_flags - get flags reported to userspace
8074  *	@dev: device
8075  *
8076  *	Get the combination of flag bits exported through APIs to userspace.
8077  */
8078 unsigned int dev_get_flags(const struct net_device *dev)
8079 {
8080 	unsigned int flags;
8081 
8082 	flags = (dev->flags & ~(IFF_PROMISC |
8083 				IFF_ALLMULTI |
8084 				IFF_RUNNING |
8085 				IFF_LOWER_UP |
8086 				IFF_DORMANT)) |
8087 		(dev->gflags & (IFF_PROMISC |
8088 				IFF_ALLMULTI));
8089 
8090 	if (netif_running(dev)) {
8091 		if (netif_oper_up(dev))
8092 			flags |= IFF_RUNNING;
8093 		if (netif_carrier_ok(dev))
8094 			flags |= IFF_LOWER_UP;
8095 		if (netif_dormant(dev))
8096 			flags |= IFF_DORMANT;
8097 	}
8098 
8099 	return flags;
8100 }
8101 EXPORT_SYMBOL(dev_get_flags);
8102 
8103 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8104 		       struct netlink_ext_ack *extack)
8105 {
8106 	unsigned int old_flags = dev->flags;
8107 	int ret;
8108 
8109 	ASSERT_RTNL();
8110 
8111 	/*
8112 	 *	Set the flags on our device.
8113 	 */
8114 
8115 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8116 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8117 			       IFF_AUTOMEDIA)) |
8118 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8119 				    IFF_ALLMULTI));
8120 
8121 	/*
8122 	 *	Load in the correct multicast list now the flags have changed.
8123 	 */
8124 
8125 	if ((old_flags ^ flags) & IFF_MULTICAST)
8126 		dev_change_rx_flags(dev, IFF_MULTICAST);
8127 
8128 	dev_set_rx_mode(dev);
8129 
8130 	/*
8131 	 *	Have we downed the interface. We handle IFF_UP ourselves
8132 	 *	according to user attempts to set it, rather than blindly
8133 	 *	setting it.
8134 	 */
8135 
8136 	ret = 0;
8137 	if ((old_flags ^ flags) & IFF_UP) {
8138 		if (old_flags & IFF_UP)
8139 			__dev_close(dev);
8140 		else
8141 			ret = __dev_open(dev, extack);
8142 	}
8143 
8144 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8145 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8146 		unsigned int old_flags = dev->flags;
8147 
8148 		dev->gflags ^= IFF_PROMISC;
8149 
8150 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8151 			if (dev->flags != old_flags)
8152 				dev_set_rx_mode(dev);
8153 	}
8154 
8155 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8156 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8157 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8158 	 */
8159 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8160 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8161 
8162 		dev->gflags ^= IFF_ALLMULTI;
8163 		__dev_set_allmulti(dev, inc, false);
8164 	}
8165 
8166 	return ret;
8167 }
8168 
8169 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8170 			unsigned int gchanges)
8171 {
8172 	unsigned int changes = dev->flags ^ old_flags;
8173 
8174 	if (gchanges)
8175 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8176 
8177 	if (changes & IFF_UP) {
8178 		if (dev->flags & IFF_UP)
8179 			call_netdevice_notifiers(NETDEV_UP, dev);
8180 		else
8181 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8182 	}
8183 
8184 	if (dev->flags & IFF_UP &&
8185 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8186 		struct netdev_notifier_change_info change_info = {
8187 			.info = {
8188 				.dev = dev,
8189 			},
8190 			.flags_changed = changes,
8191 		};
8192 
8193 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8194 	}
8195 }
8196 
8197 /**
8198  *	dev_change_flags - change device settings
8199  *	@dev: device
8200  *	@flags: device state flags
8201  *	@extack: netlink extended ack
8202  *
8203  *	Change settings on device based state flags. The flags are
8204  *	in the userspace exported format.
8205  */
8206 int dev_change_flags(struct net_device *dev, unsigned int flags,
8207 		     struct netlink_ext_ack *extack)
8208 {
8209 	int ret;
8210 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8211 
8212 	ret = __dev_change_flags(dev, flags, extack);
8213 	if (ret < 0)
8214 		return ret;
8215 
8216 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8217 	__dev_notify_flags(dev, old_flags, changes);
8218 	return ret;
8219 }
8220 EXPORT_SYMBOL(dev_change_flags);
8221 
8222 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8223 {
8224 	const struct net_device_ops *ops = dev->netdev_ops;
8225 
8226 	if (ops->ndo_change_mtu)
8227 		return ops->ndo_change_mtu(dev, new_mtu);
8228 
8229 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8230 	WRITE_ONCE(dev->mtu, new_mtu);
8231 	return 0;
8232 }
8233 EXPORT_SYMBOL(__dev_set_mtu);
8234 
8235 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8236 		     struct netlink_ext_ack *extack)
8237 {
8238 	/* MTU must be positive, and in range */
8239 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8240 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8241 		return -EINVAL;
8242 	}
8243 
8244 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8245 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8246 		return -EINVAL;
8247 	}
8248 	return 0;
8249 }
8250 
8251 /**
8252  *	dev_set_mtu_ext - Change maximum transfer unit
8253  *	@dev: device
8254  *	@new_mtu: new transfer unit
8255  *	@extack: netlink extended ack
8256  *
8257  *	Change the maximum transfer size of the network device.
8258  */
8259 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8260 		    struct netlink_ext_ack *extack)
8261 {
8262 	int err, orig_mtu;
8263 
8264 	if (new_mtu == dev->mtu)
8265 		return 0;
8266 
8267 	err = dev_validate_mtu(dev, new_mtu, extack);
8268 	if (err)
8269 		return err;
8270 
8271 	if (!netif_device_present(dev))
8272 		return -ENODEV;
8273 
8274 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8275 	err = notifier_to_errno(err);
8276 	if (err)
8277 		return err;
8278 
8279 	orig_mtu = dev->mtu;
8280 	err = __dev_set_mtu(dev, new_mtu);
8281 
8282 	if (!err) {
8283 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8284 						   orig_mtu);
8285 		err = notifier_to_errno(err);
8286 		if (err) {
8287 			/* setting mtu back and notifying everyone again,
8288 			 * so that they have a chance to revert changes.
8289 			 */
8290 			__dev_set_mtu(dev, orig_mtu);
8291 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8292 						     new_mtu);
8293 		}
8294 	}
8295 	return err;
8296 }
8297 
8298 int dev_set_mtu(struct net_device *dev, int new_mtu)
8299 {
8300 	struct netlink_ext_ack extack;
8301 	int err;
8302 
8303 	memset(&extack, 0, sizeof(extack));
8304 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8305 	if (err && extack._msg)
8306 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8307 	return err;
8308 }
8309 EXPORT_SYMBOL(dev_set_mtu);
8310 
8311 /**
8312  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8313  *	@dev: device
8314  *	@new_len: new tx queue length
8315  */
8316 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8317 {
8318 	unsigned int orig_len = dev->tx_queue_len;
8319 	int res;
8320 
8321 	if (new_len != (unsigned int)new_len)
8322 		return -ERANGE;
8323 
8324 	if (new_len != orig_len) {
8325 		dev->tx_queue_len = new_len;
8326 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8327 		res = notifier_to_errno(res);
8328 		if (res)
8329 			goto err_rollback;
8330 		res = dev_qdisc_change_tx_queue_len(dev);
8331 		if (res)
8332 			goto err_rollback;
8333 	}
8334 
8335 	return 0;
8336 
8337 err_rollback:
8338 	netdev_err(dev, "refused to change device tx_queue_len\n");
8339 	dev->tx_queue_len = orig_len;
8340 	return res;
8341 }
8342 
8343 /**
8344  *	dev_set_group - Change group this device belongs to
8345  *	@dev: device
8346  *	@new_group: group this device should belong to
8347  */
8348 void dev_set_group(struct net_device *dev, int new_group)
8349 {
8350 	dev->group = new_group;
8351 }
8352 EXPORT_SYMBOL(dev_set_group);
8353 
8354 /**
8355  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8356  *	@dev: device
8357  *	@addr: new address
8358  *	@extack: netlink extended ack
8359  */
8360 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8361 			      struct netlink_ext_ack *extack)
8362 {
8363 	struct netdev_notifier_pre_changeaddr_info info = {
8364 		.info.dev = dev,
8365 		.info.extack = extack,
8366 		.dev_addr = addr,
8367 	};
8368 	int rc;
8369 
8370 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8371 	return notifier_to_errno(rc);
8372 }
8373 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8374 
8375 /**
8376  *	dev_set_mac_address - Change Media Access Control Address
8377  *	@dev: device
8378  *	@sa: new address
8379  *	@extack: netlink extended ack
8380  *
8381  *	Change the hardware (MAC) address of the device
8382  */
8383 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8384 			struct netlink_ext_ack *extack)
8385 {
8386 	const struct net_device_ops *ops = dev->netdev_ops;
8387 	int err;
8388 
8389 	if (!ops->ndo_set_mac_address)
8390 		return -EOPNOTSUPP;
8391 	if (sa->sa_family != dev->type)
8392 		return -EINVAL;
8393 	if (!netif_device_present(dev))
8394 		return -ENODEV;
8395 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8396 	if (err)
8397 		return err;
8398 	err = ops->ndo_set_mac_address(dev, sa);
8399 	if (err)
8400 		return err;
8401 	dev->addr_assign_type = NET_ADDR_SET;
8402 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8403 	add_device_randomness(dev->dev_addr, dev->addr_len);
8404 	return 0;
8405 }
8406 EXPORT_SYMBOL(dev_set_mac_address);
8407 
8408 /**
8409  *	dev_change_carrier - Change device carrier
8410  *	@dev: device
8411  *	@new_carrier: new value
8412  *
8413  *	Change device carrier
8414  */
8415 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8416 {
8417 	const struct net_device_ops *ops = dev->netdev_ops;
8418 
8419 	if (!ops->ndo_change_carrier)
8420 		return -EOPNOTSUPP;
8421 	if (!netif_device_present(dev))
8422 		return -ENODEV;
8423 	return ops->ndo_change_carrier(dev, new_carrier);
8424 }
8425 EXPORT_SYMBOL(dev_change_carrier);
8426 
8427 /**
8428  *	dev_get_phys_port_id - Get device physical port ID
8429  *	@dev: device
8430  *	@ppid: port ID
8431  *
8432  *	Get device physical port ID
8433  */
8434 int dev_get_phys_port_id(struct net_device *dev,
8435 			 struct netdev_phys_item_id *ppid)
8436 {
8437 	const struct net_device_ops *ops = dev->netdev_ops;
8438 
8439 	if (!ops->ndo_get_phys_port_id)
8440 		return -EOPNOTSUPP;
8441 	return ops->ndo_get_phys_port_id(dev, ppid);
8442 }
8443 EXPORT_SYMBOL(dev_get_phys_port_id);
8444 
8445 /**
8446  *	dev_get_phys_port_name - Get device physical port name
8447  *	@dev: device
8448  *	@name: port name
8449  *	@len: limit of bytes to copy to name
8450  *
8451  *	Get device physical port name
8452  */
8453 int dev_get_phys_port_name(struct net_device *dev,
8454 			   char *name, size_t len)
8455 {
8456 	const struct net_device_ops *ops = dev->netdev_ops;
8457 	int err;
8458 
8459 	if (ops->ndo_get_phys_port_name) {
8460 		err = ops->ndo_get_phys_port_name(dev, name, len);
8461 		if (err != -EOPNOTSUPP)
8462 			return err;
8463 	}
8464 	return devlink_compat_phys_port_name_get(dev, name, len);
8465 }
8466 EXPORT_SYMBOL(dev_get_phys_port_name);
8467 
8468 /**
8469  *	dev_get_port_parent_id - Get the device's port parent identifier
8470  *	@dev: network device
8471  *	@ppid: pointer to a storage for the port's parent identifier
8472  *	@recurse: allow/disallow recursion to lower devices
8473  *
8474  *	Get the devices's port parent identifier
8475  */
8476 int dev_get_port_parent_id(struct net_device *dev,
8477 			   struct netdev_phys_item_id *ppid,
8478 			   bool recurse)
8479 {
8480 	const struct net_device_ops *ops = dev->netdev_ops;
8481 	struct netdev_phys_item_id first = { };
8482 	struct net_device *lower_dev;
8483 	struct list_head *iter;
8484 	int err;
8485 
8486 	if (ops->ndo_get_port_parent_id) {
8487 		err = ops->ndo_get_port_parent_id(dev, ppid);
8488 		if (err != -EOPNOTSUPP)
8489 			return err;
8490 	}
8491 
8492 	err = devlink_compat_switch_id_get(dev, ppid);
8493 	if (!err || err != -EOPNOTSUPP)
8494 		return err;
8495 
8496 	if (!recurse)
8497 		return -EOPNOTSUPP;
8498 
8499 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8500 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8501 		if (err)
8502 			break;
8503 		if (!first.id_len)
8504 			first = *ppid;
8505 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8506 			return -ENODATA;
8507 	}
8508 
8509 	return err;
8510 }
8511 EXPORT_SYMBOL(dev_get_port_parent_id);
8512 
8513 /**
8514  *	netdev_port_same_parent_id - Indicate if two network devices have
8515  *	the same port parent identifier
8516  *	@a: first network device
8517  *	@b: second network device
8518  */
8519 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8520 {
8521 	struct netdev_phys_item_id a_id = { };
8522 	struct netdev_phys_item_id b_id = { };
8523 
8524 	if (dev_get_port_parent_id(a, &a_id, true) ||
8525 	    dev_get_port_parent_id(b, &b_id, true))
8526 		return false;
8527 
8528 	return netdev_phys_item_id_same(&a_id, &b_id);
8529 }
8530 EXPORT_SYMBOL(netdev_port_same_parent_id);
8531 
8532 /**
8533  *	dev_change_proto_down - update protocol port state information
8534  *	@dev: device
8535  *	@proto_down: new value
8536  *
8537  *	This info can be used by switch drivers to set the phys state of the
8538  *	port.
8539  */
8540 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8541 {
8542 	const struct net_device_ops *ops = dev->netdev_ops;
8543 
8544 	if (!ops->ndo_change_proto_down)
8545 		return -EOPNOTSUPP;
8546 	if (!netif_device_present(dev))
8547 		return -ENODEV;
8548 	return ops->ndo_change_proto_down(dev, proto_down);
8549 }
8550 EXPORT_SYMBOL(dev_change_proto_down);
8551 
8552 /**
8553  *	dev_change_proto_down_generic - generic implementation for
8554  * 	ndo_change_proto_down that sets carrier according to
8555  * 	proto_down.
8556  *
8557  *	@dev: device
8558  *	@proto_down: new value
8559  */
8560 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8561 {
8562 	if (proto_down)
8563 		netif_carrier_off(dev);
8564 	else
8565 		netif_carrier_on(dev);
8566 	dev->proto_down = proto_down;
8567 	return 0;
8568 }
8569 EXPORT_SYMBOL(dev_change_proto_down_generic);
8570 
8571 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8572 		    enum bpf_netdev_command cmd)
8573 {
8574 	struct netdev_bpf xdp;
8575 
8576 	if (!bpf_op)
8577 		return 0;
8578 
8579 	memset(&xdp, 0, sizeof(xdp));
8580 	xdp.command = cmd;
8581 
8582 	/* Query must always succeed. */
8583 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8584 
8585 	return xdp.prog_id;
8586 }
8587 
8588 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8589 			   struct netlink_ext_ack *extack, u32 flags,
8590 			   struct bpf_prog *prog)
8591 {
8592 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8593 	struct bpf_prog *prev_prog = NULL;
8594 	struct netdev_bpf xdp;
8595 	int err;
8596 
8597 	if (non_hw) {
8598 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8599 							   XDP_QUERY_PROG));
8600 		if (IS_ERR(prev_prog))
8601 			prev_prog = NULL;
8602 	}
8603 
8604 	memset(&xdp, 0, sizeof(xdp));
8605 	if (flags & XDP_FLAGS_HW_MODE)
8606 		xdp.command = XDP_SETUP_PROG_HW;
8607 	else
8608 		xdp.command = XDP_SETUP_PROG;
8609 	xdp.extack = extack;
8610 	xdp.flags = flags;
8611 	xdp.prog = prog;
8612 
8613 	err = bpf_op(dev, &xdp);
8614 	if (!err && non_hw)
8615 		bpf_prog_change_xdp(prev_prog, prog);
8616 
8617 	if (prev_prog)
8618 		bpf_prog_put(prev_prog);
8619 
8620 	return err;
8621 }
8622 
8623 static void dev_xdp_uninstall(struct net_device *dev)
8624 {
8625 	struct netdev_bpf xdp;
8626 	bpf_op_t ndo_bpf;
8627 
8628 	/* Remove generic XDP */
8629 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8630 
8631 	/* Remove from the driver */
8632 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8633 	if (!ndo_bpf)
8634 		return;
8635 
8636 	memset(&xdp, 0, sizeof(xdp));
8637 	xdp.command = XDP_QUERY_PROG;
8638 	WARN_ON(ndo_bpf(dev, &xdp));
8639 	if (xdp.prog_id)
8640 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8641 					NULL));
8642 
8643 	/* Remove HW offload */
8644 	memset(&xdp, 0, sizeof(xdp));
8645 	xdp.command = XDP_QUERY_PROG_HW;
8646 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8647 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8648 					NULL));
8649 }
8650 
8651 /**
8652  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8653  *	@dev: device
8654  *	@extack: netlink extended ack
8655  *	@fd: new program fd or negative value to clear
8656  *	@flags: xdp-related flags
8657  *
8658  *	Set or clear a bpf program for a device
8659  */
8660 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8661 		      int fd, u32 flags)
8662 {
8663 	const struct net_device_ops *ops = dev->netdev_ops;
8664 	enum bpf_netdev_command query;
8665 	struct bpf_prog *prog = NULL;
8666 	bpf_op_t bpf_op, bpf_chk;
8667 	bool offload;
8668 	int err;
8669 
8670 	ASSERT_RTNL();
8671 
8672 	offload = flags & XDP_FLAGS_HW_MODE;
8673 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8674 
8675 	bpf_op = bpf_chk = ops->ndo_bpf;
8676 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8677 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8678 		return -EOPNOTSUPP;
8679 	}
8680 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8681 		bpf_op = generic_xdp_install;
8682 	if (bpf_op == bpf_chk)
8683 		bpf_chk = generic_xdp_install;
8684 
8685 	if (fd >= 0) {
8686 		u32 prog_id;
8687 
8688 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8689 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8690 			return -EEXIST;
8691 		}
8692 
8693 		prog_id = __dev_xdp_query(dev, bpf_op, query);
8694 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8695 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8696 			return -EBUSY;
8697 		}
8698 
8699 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8700 					     bpf_op == ops->ndo_bpf);
8701 		if (IS_ERR(prog))
8702 			return PTR_ERR(prog);
8703 
8704 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8705 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8706 			bpf_prog_put(prog);
8707 			return -EINVAL;
8708 		}
8709 
8710 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8711 		if (prog->aux->id && prog->aux->id == prog_id) {
8712 			bpf_prog_put(prog);
8713 			return 0;
8714 		}
8715 	} else {
8716 		if (!__dev_xdp_query(dev, bpf_op, query))
8717 			return 0;
8718 	}
8719 
8720 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8721 	if (err < 0 && prog)
8722 		bpf_prog_put(prog);
8723 
8724 	return err;
8725 }
8726 
8727 /**
8728  *	dev_new_index	-	allocate an ifindex
8729  *	@net: the applicable net namespace
8730  *
8731  *	Returns a suitable unique value for a new device interface
8732  *	number.  The caller must hold the rtnl semaphore or the
8733  *	dev_base_lock to be sure it remains unique.
8734  */
8735 static int dev_new_index(struct net *net)
8736 {
8737 	int ifindex = net->ifindex;
8738 
8739 	for (;;) {
8740 		if (++ifindex <= 0)
8741 			ifindex = 1;
8742 		if (!__dev_get_by_index(net, ifindex))
8743 			return net->ifindex = ifindex;
8744 	}
8745 }
8746 
8747 /* Delayed registration/unregisteration */
8748 static LIST_HEAD(net_todo_list);
8749 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8750 
8751 static void net_set_todo(struct net_device *dev)
8752 {
8753 	list_add_tail(&dev->todo_list, &net_todo_list);
8754 	dev_net(dev)->dev_unreg_count++;
8755 }
8756 
8757 static void rollback_registered_many(struct list_head *head)
8758 {
8759 	struct net_device *dev, *tmp;
8760 	LIST_HEAD(close_head);
8761 
8762 	BUG_ON(dev_boot_phase);
8763 	ASSERT_RTNL();
8764 
8765 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8766 		/* Some devices call without registering
8767 		 * for initialization unwind. Remove those
8768 		 * devices and proceed with the remaining.
8769 		 */
8770 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8771 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8772 				 dev->name, dev);
8773 
8774 			WARN_ON(1);
8775 			list_del(&dev->unreg_list);
8776 			continue;
8777 		}
8778 		dev->dismantle = true;
8779 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8780 	}
8781 
8782 	/* If device is running, close it first. */
8783 	list_for_each_entry(dev, head, unreg_list)
8784 		list_add_tail(&dev->close_list, &close_head);
8785 	dev_close_many(&close_head, true);
8786 
8787 	list_for_each_entry(dev, head, unreg_list) {
8788 		/* And unlink it from device chain. */
8789 		unlist_netdevice(dev);
8790 
8791 		dev->reg_state = NETREG_UNREGISTERING;
8792 	}
8793 	flush_all_backlogs();
8794 
8795 	synchronize_net();
8796 
8797 	list_for_each_entry(dev, head, unreg_list) {
8798 		struct sk_buff *skb = NULL;
8799 
8800 		/* Shutdown queueing discipline. */
8801 		dev_shutdown(dev);
8802 
8803 		dev_xdp_uninstall(dev);
8804 
8805 		/* Notify protocols, that we are about to destroy
8806 		 * this device. They should clean all the things.
8807 		 */
8808 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8809 
8810 		if (!dev->rtnl_link_ops ||
8811 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8812 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8813 						     GFP_KERNEL, NULL, 0);
8814 
8815 		/*
8816 		 *	Flush the unicast and multicast chains
8817 		 */
8818 		dev_uc_flush(dev);
8819 		dev_mc_flush(dev);
8820 
8821 		netdev_name_node_alt_flush(dev);
8822 		netdev_name_node_free(dev->name_node);
8823 
8824 		if (dev->netdev_ops->ndo_uninit)
8825 			dev->netdev_ops->ndo_uninit(dev);
8826 
8827 		if (skb)
8828 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8829 
8830 		/* Notifier chain MUST detach us all upper devices. */
8831 		WARN_ON(netdev_has_any_upper_dev(dev));
8832 		WARN_ON(netdev_has_any_lower_dev(dev));
8833 
8834 		/* Remove entries from kobject tree */
8835 		netdev_unregister_kobject(dev);
8836 #ifdef CONFIG_XPS
8837 		/* Remove XPS queueing entries */
8838 		netif_reset_xps_queues_gt(dev, 0);
8839 #endif
8840 	}
8841 
8842 	synchronize_net();
8843 
8844 	list_for_each_entry(dev, head, unreg_list)
8845 		dev_put(dev);
8846 }
8847 
8848 static void rollback_registered(struct net_device *dev)
8849 {
8850 	LIST_HEAD(single);
8851 
8852 	list_add(&dev->unreg_list, &single);
8853 	rollback_registered_many(&single);
8854 	list_del(&single);
8855 }
8856 
8857 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8858 	struct net_device *upper, netdev_features_t features)
8859 {
8860 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8861 	netdev_features_t feature;
8862 	int feature_bit;
8863 
8864 	for_each_netdev_feature(upper_disables, feature_bit) {
8865 		feature = __NETIF_F_BIT(feature_bit);
8866 		if (!(upper->wanted_features & feature)
8867 		    && (features & feature)) {
8868 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8869 				   &feature, upper->name);
8870 			features &= ~feature;
8871 		}
8872 	}
8873 
8874 	return features;
8875 }
8876 
8877 static void netdev_sync_lower_features(struct net_device *upper,
8878 	struct net_device *lower, netdev_features_t features)
8879 {
8880 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8881 	netdev_features_t feature;
8882 	int feature_bit;
8883 
8884 	for_each_netdev_feature(upper_disables, feature_bit) {
8885 		feature = __NETIF_F_BIT(feature_bit);
8886 		if (!(features & feature) && (lower->features & feature)) {
8887 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8888 				   &feature, lower->name);
8889 			lower->wanted_features &= ~feature;
8890 			netdev_update_features(lower);
8891 
8892 			if (unlikely(lower->features & feature))
8893 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8894 					    &feature, lower->name);
8895 		}
8896 	}
8897 }
8898 
8899 static netdev_features_t netdev_fix_features(struct net_device *dev,
8900 	netdev_features_t features)
8901 {
8902 	/* Fix illegal checksum combinations */
8903 	if ((features & NETIF_F_HW_CSUM) &&
8904 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8905 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8906 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8907 	}
8908 
8909 	/* TSO requires that SG is present as well. */
8910 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8911 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8912 		features &= ~NETIF_F_ALL_TSO;
8913 	}
8914 
8915 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8916 					!(features & NETIF_F_IP_CSUM)) {
8917 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8918 		features &= ~NETIF_F_TSO;
8919 		features &= ~NETIF_F_TSO_ECN;
8920 	}
8921 
8922 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8923 					 !(features & NETIF_F_IPV6_CSUM)) {
8924 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8925 		features &= ~NETIF_F_TSO6;
8926 	}
8927 
8928 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8929 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8930 		features &= ~NETIF_F_TSO_MANGLEID;
8931 
8932 	/* TSO ECN requires that TSO is present as well. */
8933 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8934 		features &= ~NETIF_F_TSO_ECN;
8935 
8936 	/* Software GSO depends on SG. */
8937 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8938 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8939 		features &= ~NETIF_F_GSO;
8940 	}
8941 
8942 	/* GSO partial features require GSO partial be set */
8943 	if ((features & dev->gso_partial_features) &&
8944 	    !(features & NETIF_F_GSO_PARTIAL)) {
8945 		netdev_dbg(dev,
8946 			   "Dropping partially supported GSO features since no GSO partial.\n");
8947 		features &= ~dev->gso_partial_features;
8948 	}
8949 
8950 	if (!(features & NETIF_F_RXCSUM)) {
8951 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8952 		 * successfully merged by hardware must also have the
8953 		 * checksum verified by hardware.  If the user does not
8954 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8955 		 */
8956 		if (features & NETIF_F_GRO_HW) {
8957 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8958 			features &= ~NETIF_F_GRO_HW;
8959 		}
8960 	}
8961 
8962 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8963 	if (features & NETIF_F_RXFCS) {
8964 		if (features & NETIF_F_LRO) {
8965 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8966 			features &= ~NETIF_F_LRO;
8967 		}
8968 
8969 		if (features & NETIF_F_GRO_HW) {
8970 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8971 			features &= ~NETIF_F_GRO_HW;
8972 		}
8973 	}
8974 
8975 	return features;
8976 }
8977 
8978 int __netdev_update_features(struct net_device *dev)
8979 {
8980 	struct net_device *upper, *lower;
8981 	netdev_features_t features;
8982 	struct list_head *iter;
8983 	int err = -1;
8984 
8985 	ASSERT_RTNL();
8986 
8987 	features = netdev_get_wanted_features(dev);
8988 
8989 	if (dev->netdev_ops->ndo_fix_features)
8990 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8991 
8992 	/* driver might be less strict about feature dependencies */
8993 	features = netdev_fix_features(dev, features);
8994 
8995 	/* some features can't be enabled if they're off an an upper device */
8996 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8997 		features = netdev_sync_upper_features(dev, upper, features);
8998 
8999 	if (dev->features == features)
9000 		goto sync_lower;
9001 
9002 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9003 		&dev->features, &features);
9004 
9005 	if (dev->netdev_ops->ndo_set_features)
9006 		err = dev->netdev_ops->ndo_set_features(dev, features);
9007 	else
9008 		err = 0;
9009 
9010 	if (unlikely(err < 0)) {
9011 		netdev_err(dev,
9012 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9013 			err, &features, &dev->features);
9014 		/* return non-0 since some features might have changed and
9015 		 * it's better to fire a spurious notification than miss it
9016 		 */
9017 		return -1;
9018 	}
9019 
9020 sync_lower:
9021 	/* some features must be disabled on lower devices when disabled
9022 	 * on an upper device (think: bonding master or bridge)
9023 	 */
9024 	netdev_for_each_lower_dev(dev, lower, iter)
9025 		netdev_sync_lower_features(dev, lower, features);
9026 
9027 	if (!err) {
9028 		netdev_features_t diff = features ^ dev->features;
9029 
9030 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9031 			/* udp_tunnel_{get,drop}_rx_info both need
9032 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9033 			 * device, or they won't do anything.
9034 			 * Thus we need to update dev->features
9035 			 * *before* calling udp_tunnel_get_rx_info,
9036 			 * but *after* calling udp_tunnel_drop_rx_info.
9037 			 */
9038 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9039 				dev->features = features;
9040 				udp_tunnel_get_rx_info(dev);
9041 			} else {
9042 				udp_tunnel_drop_rx_info(dev);
9043 			}
9044 		}
9045 
9046 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9047 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9048 				dev->features = features;
9049 				err |= vlan_get_rx_ctag_filter_info(dev);
9050 			} else {
9051 				vlan_drop_rx_ctag_filter_info(dev);
9052 			}
9053 		}
9054 
9055 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9056 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9057 				dev->features = features;
9058 				err |= vlan_get_rx_stag_filter_info(dev);
9059 			} else {
9060 				vlan_drop_rx_stag_filter_info(dev);
9061 			}
9062 		}
9063 
9064 		dev->features = features;
9065 	}
9066 
9067 	return err < 0 ? 0 : 1;
9068 }
9069 
9070 /**
9071  *	netdev_update_features - recalculate device features
9072  *	@dev: the device to check
9073  *
9074  *	Recalculate dev->features set and send notifications if it
9075  *	has changed. Should be called after driver or hardware dependent
9076  *	conditions might have changed that influence the features.
9077  */
9078 void netdev_update_features(struct net_device *dev)
9079 {
9080 	if (__netdev_update_features(dev))
9081 		netdev_features_change(dev);
9082 }
9083 EXPORT_SYMBOL(netdev_update_features);
9084 
9085 /**
9086  *	netdev_change_features - recalculate device features
9087  *	@dev: the device to check
9088  *
9089  *	Recalculate dev->features set and send notifications even
9090  *	if they have not changed. Should be called instead of
9091  *	netdev_update_features() if also dev->vlan_features might
9092  *	have changed to allow the changes to be propagated to stacked
9093  *	VLAN devices.
9094  */
9095 void netdev_change_features(struct net_device *dev)
9096 {
9097 	__netdev_update_features(dev);
9098 	netdev_features_change(dev);
9099 }
9100 EXPORT_SYMBOL(netdev_change_features);
9101 
9102 /**
9103  *	netif_stacked_transfer_operstate -	transfer operstate
9104  *	@rootdev: the root or lower level device to transfer state from
9105  *	@dev: the device to transfer operstate to
9106  *
9107  *	Transfer operational state from root to device. This is normally
9108  *	called when a stacking relationship exists between the root
9109  *	device and the device(a leaf device).
9110  */
9111 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9112 					struct net_device *dev)
9113 {
9114 	if (rootdev->operstate == IF_OPER_DORMANT)
9115 		netif_dormant_on(dev);
9116 	else
9117 		netif_dormant_off(dev);
9118 
9119 	if (netif_carrier_ok(rootdev))
9120 		netif_carrier_on(dev);
9121 	else
9122 		netif_carrier_off(dev);
9123 }
9124 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9125 
9126 static int netif_alloc_rx_queues(struct net_device *dev)
9127 {
9128 	unsigned int i, count = dev->num_rx_queues;
9129 	struct netdev_rx_queue *rx;
9130 	size_t sz = count * sizeof(*rx);
9131 	int err = 0;
9132 
9133 	BUG_ON(count < 1);
9134 
9135 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9136 	if (!rx)
9137 		return -ENOMEM;
9138 
9139 	dev->_rx = rx;
9140 
9141 	for (i = 0; i < count; i++) {
9142 		rx[i].dev = dev;
9143 
9144 		/* XDP RX-queue setup */
9145 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9146 		if (err < 0)
9147 			goto err_rxq_info;
9148 	}
9149 	return 0;
9150 
9151 err_rxq_info:
9152 	/* Rollback successful reg's and free other resources */
9153 	while (i--)
9154 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9155 	kvfree(dev->_rx);
9156 	dev->_rx = NULL;
9157 	return err;
9158 }
9159 
9160 static void netif_free_rx_queues(struct net_device *dev)
9161 {
9162 	unsigned int i, count = dev->num_rx_queues;
9163 
9164 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9165 	if (!dev->_rx)
9166 		return;
9167 
9168 	for (i = 0; i < count; i++)
9169 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9170 
9171 	kvfree(dev->_rx);
9172 }
9173 
9174 static void netdev_init_one_queue(struct net_device *dev,
9175 				  struct netdev_queue *queue, void *_unused)
9176 {
9177 	/* Initialize queue lock */
9178 	spin_lock_init(&queue->_xmit_lock);
9179 	lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9180 	queue->xmit_lock_owner = -1;
9181 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9182 	queue->dev = dev;
9183 #ifdef CONFIG_BQL
9184 	dql_init(&queue->dql, HZ);
9185 #endif
9186 }
9187 
9188 static void netif_free_tx_queues(struct net_device *dev)
9189 {
9190 	kvfree(dev->_tx);
9191 }
9192 
9193 static int netif_alloc_netdev_queues(struct net_device *dev)
9194 {
9195 	unsigned int count = dev->num_tx_queues;
9196 	struct netdev_queue *tx;
9197 	size_t sz = count * sizeof(*tx);
9198 
9199 	if (count < 1 || count > 0xffff)
9200 		return -EINVAL;
9201 
9202 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9203 	if (!tx)
9204 		return -ENOMEM;
9205 
9206 	dev->_tx = tx;
9207 
9208 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9209 	spin_lock_init(&dev->tx_global_lock);
9210 
9211 	return 0;
9212 }
9213 
9214 void netif_tx_stop_all_queues(struct net_device *dev)
9215 {
9216 	unsigned int i;
9217 
9218 	for (i = 0; i < dev->num_tx_queues; i++) {
9219 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9220 
9221 		netif_tx_stop_queue(txq);
9222 	}
9223 }
9224 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9225 
9226 static void netdev_register_lockdep_key(struct net_device *dev)
9227 {
9228 	lockdep_register_key(&dev->qdisc_tx_busylock_key);
9229 	lockdep_register_key(&dev->qdisc_running_key);
9230 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
9231 	lockdep_register_key(&dev->addr_list_lock_key);
9232 }
9233 
9234 static void netdev_unregister_lockdep_key(struct net_device *dev)
9235 {
9236 	lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9237 	lockdep_unregister_key(&dev->qdisc_running_key);
9238 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9239 	lockdep_unregister_key(&dev->addr_list_lock_key);
9240 }
9241 
9242 void netdev_update_lockdep_key(struct net_device *dev)
9243 {
9244 	lockdep_unregister_key(&dev->addr_list_lock_key);
9245 	lockdep_register_key(&dev->addr_list_lock_key);
9246 
9247 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9248 }
9249 EXPORT_SYMBOL(netdev_update_lockdep_key);
9250 
9251 /**
9252  *	register_netdevice	- register a network device
9253  *	@dev: device to register
9254  *
9255  *	Take a completed network device structure and add it to the kernel
9256  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9257  *	chain. 0 is returned on success. A negative errno code is returned
9258  *	on a failure to set up the device, or if the name is a duplicate.
9259  *
9260  *	Callers must hold the rtnl semaphore. You may want
9261  *	register_netdev() instead of this.
9262  *
9263  *	BUGS:
9264  *	The locking appears insufficient to guarantee two parallel registers
9265  *	will not get the same name.
9266  */
9267 
9268 int register_netdevice(struct net_device *dev)
9269 {
9270 	int ret;
9271 	struct net *net = dev_net(dev);
9272 
9273 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9274 		     NETDEV_FEATURE_COUNT);
9275 	BUG_ON(dev_boot_phase);
9276 	ASSERT_RTNL();
9277 
9278 	might_sleep();
9279 
9280 	/* When net_device's are persistent, this will be fatal. */
9281 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9282 	BUG_ON(!net);
9283 
9284 	spin_lock_init(&dev->addr_list_lock);
9285 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9286 
9287 	ret = dev_get_valid_name(net, dev, dev->name);
9288 	if (ret < 0)
9289 		goto out;
9290 
9291 	ret = -ENOMEM;
9292 	dev->name_node = netdev_name_node_head_alloc(dev);
9293 	if (!dev->name_node)
9294 		goto out;
9295 
9296 	/* Init, if this function is available */
9297 	if (dev->netdev_ops->ndo_init) {
9298 		ret = dev->netdev_ops->ndo_init(dev);
9299 		if (ret) {
9300 			if (ret > 0)
9301 				ret = -EIO;
9302 			goto err_free_name;
9303 		}
9304 	}
9305 
9306 	if (((dev->hw_features | dev->features) &
9307 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9308 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9309 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9310 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9311 		ret = -EINVAL;
9312 		goto err_uninit;
9313 	}
9314 
9315 	ret = -EBUSY;
9316 	if (!dev->ifindex)
9317 		dev->ifindex = dev_new_index(net);
9318 	else if (__dev_get_by_index(net, dev->ifindex))
9319 		goto err_uninit;
9320 
9321 	/* Transfer changeable features to wanted_features and enable
9322 	 * software offloads (GSO and GRO).
9323 	 */
9324 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9325 	dev->features |= NETIF_F_SOFT_FEATURES;
9326 
9327 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9328 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9329 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9330 	}
9331 
9332 	dev->wanted_features = dev->features & dev->hw_features;
9333 
9334 	if (!(dev->flags & IFF_LOOPBACK))
9335 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9336 
9337 	/* If IPv4 TCP segmentation offload is supported we should also
9338 	 * allow the device to enable segmenting the frame with the option
9339 	 * of ignoring a static IP ID value.  This doesn't enable the
9340 	 * feature itself but allows the user to enable it later.
9341 	 */
9342 	if (dev->hw_features & NETIF_F_TSO)
9343 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9344 	if (dev->vlan_features & NETIF_F_TSO)
9345 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9346 	if (dev->mpls_features & NETIF_F_TSO)
9347 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9348 	if (dev->hw_enc_features & NETIF_F_TSO)
9349 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9350 
9351 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9352 	 */
9353 	dev->vlan_features |= NETIF_F_HIGHDMA;
9354 
9355 	/* Make NETIF_F_SG inheritable to tunnel devices.
9356 	 */
9357 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9358 
9359 	/* Make NETIF_F_SG inheritable to MPLS.
9360 	 */
9361 	dev->mpls_features |= NETIF_F_SG;
9362 
9363 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9364 	ret = notifier_to_errno(ret);
9365 	if (ret)
9366 		goto err_uninit;
9367 
9368 	ret = netdev_register_kobject(dev);
9369 	if (ret) {
9370 		dev->reg_state = NETREG_UNREGISTERED;
9371 		goto err_uninit;
9372 	}
9373 	dev->reg_state = NETREG_REGISTERED;
9374 
9375 	__netdev_update_features(dev);
9376 
9377 	/*
9378 	 *	Default initial state at registry is that the
9379 	 *	device is present.
9380 	 */
9381 
9382 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9383 
9384 	linkwatch_init_dev(dev);
9385 
9386 	dev_init_scheduler(dev);
9387 	dev_hold(dev);
9388 	list_netdevice(dev);
9389 	add_device_randomness(dev->dev_addr, dev->addr_len);
9390 
9391 	/* If the device has permanent device address, driver should
9392 	 * set dev_addr and also addr_assign_type should be set to
9393 	 * NET_ADDR_PERM (default value).
9394 	 */
9395 	if (dev->addr_assign_type == NET_ADDR_PERM)
9396 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9397 
9398 	/* Notify protocols, that a new device appeared. */
9399 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9400 	ret = notifier_to_errno(ret);
9401 	if (ret) {
9402 		rollback_registered(dev);
9403 		rcu_barrier();
9404 
9405 		dev->reg_state = NETREG_UNREGISTERED;
9406 	}
9407 	/*
9408 	 *	Prevent userspace races by waiting until the network
9409 	 *	device is fully setup before sending notifications.
9410 	 */
9411 	if (!dev->rtnl_link_ops ||
9412 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9413 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9414 
9415 out:
9416 	return ret;
9417 
9418 err_uninit:
9419 	if (dev->netdev_ops->ndo_uninit)
9420 		dev->netdev_ops->ndo_uninit(dev);
9421 	if (dev->priv_destructor)
9422 		dev->priv_destructor(dev);
9423 err_free_name:
9424 	netdev_name_node_free(dev->name_node);
9425 	goto out;
9426 }
9427 EXPORT_SYMBOL(register_netdevice);
9428 
9429 /**
9430  *	init_dummy_netdev	- init a dummy network device for NAPI
9431  *	@dev: device to init
9432  *
9433  *	This takes a network device structure and initialize the minimum
9434  *	amount of fields so it can be used to schedule NAPI polls without
9435  *	registering a full blown interface. This is to be used by drivers
9436  *	that need to tie several hardware interfaces to a single NAPI
9437  *	poll scheduler due to HW limitations.
9438  */
9439 int init_dummy_netdev(struct net_device *dev)
9440 {
9441 	/* Clear everything. Note we don't initialize spinlocks
9442 	 * are they aren't supposed to be taken by any of the
9443 	 * NAPI code and this dummy netdev is supposed to be
9444 	 * only ever used for NAPI polls
9445 	 */
9446 	memset(dev, 0, sizeof(struct net_device));
9447 
9448 	/* make sure we BUG if trying to hit standard
9449 	 * register/unregister code path
9450 	 */
9451 	dev->reg_state = NETREG_DUMMY;
9452 
9453 	/* NAPI wants this */
9454 	INIT_LIST_HEAD(&dev->napi_list);
9455 
9456 	/* a dummy interface is started by default */
9457 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9458 	set_bit(__LINK_STATE_START, &dev->state);
9459 
9460 	/* napi_busy_loop stats accounting wants this */
9461 	dev_net_set(dev, &init_net);
9462 
9463 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9464 	 * because users of this 'device' dont need to change
9465 	 * its refcount.
9466 	 */
9467 
9468 	return 0;
9469 }
9470 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9471 
9472 
9473 /**
9474  *	register_netdev	- register a network device
9475  *	@dev: device to register
9476  *
9477  *	Take a completed network device structure and add it to the kernel
9478  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9479  *	chain. 0 is returned on success. A negative errno code is returned
9480  *	on a failure to set up the device, or if the name is a duplicate.
9481  *
9482  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9483  *	and expands the device name if you passed a format string to
9484  *	alloc_netdev.
9485  */
9486 int register_netdev(struct net_device *dev)
9487 {
9488 	int err;
9489 
9490 	if (rtnl_lock_killable())
9491 		return -EINTR;
9492 	err = register_netdevice(dev);
9493 	rtnl_unlock();
9494 	return err;
9495 }
9496 EXPORT_SYMBOL(register_netdev);
9497 
9498 int netdev_refcnt_read(const struct net_device *dev)
9499 {
9500 	int i, refcnt = 0;
9501 
9502 	for_each_possible_cpu(i)
9503 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9504 	return refcnt;
9505 }
9506 EXPORT_SYMBOL(netdev_refcnt_read);
9507 
9508 /**
9509  * netdev_wait_allrefs - wait until all references are gone.
9510  * @dev: target net_device
9511  *
9512  * This is called when unregistering network devices.
9513  *
9514  * Any protocol or device that holds a reference should register
9515  * for netdevice notification, and cleanup and put back the
9516  * reference if they receive an UNREGISTER event.
9517  * We can get stuck here if buggy protocols don't correctly
9518  * call dev_put.
9519  */
9520 static void netdev_wait_allrefs(struct net_device *dev)
9521 {
9522 	unsigned long rebroadcast_time, warning_time;
9523 	int refcnt;
9524 
9525 	linkwatch_forget_dev(dev);
9526 
9527 	rebroadcast_time = warning_time = jiffies;
9528 	refcnt = netdev_refcnt_read(dev);
9529 
9530 	while (refcnt != 0) {
9531 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9532 			rtnl_lock();
9533 
9534 			/* Rebroadcast unregister notification */
9535 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9536 
9537 			__rtnl_unlock();
9538 			rcu_barrier();
9539 			rtnl_lock();
9540 
9541 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9542 				     &dev->state)) {
9543 				/* We must not have linkwatch events
9544 				 * pending on unregister. If this
9545 				 * happens, we simply run the queue
9546 				 * unscheduled, resulting in a noop
9547 				 * for this device.
9548 				 */
9549 				linkwatch_run_queue();
9550 			}
9551 
9552 			__rtnl_unlock();
9553 
9554 			rebroadcast_time = jiffies;
9555 		}
9556 
9557 		msleep(250);
9558 
9559 		refcnt = netdev_refcnt_read(dev);
9560 
9561 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9562 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9563 				 dev->name, refcnt);
9564 			warning_time = jiffies;
9565 		}
9566 	}
9567 }
9568 
9569 /* The sequence is:
9570  *
9571  *	rtnl_lock();
9572  *	...
9573  *	register_netdevice(x1);
9574  *	register_netdevice(x2);
9575  *	...
9576  *	unregister_netdevice(y1);
9577  *	unregister_netdevice(y2);
9578  *      ...
9579  *	rtnl_unlock();
9580  *	free_netdev(y1);
9581  *	free_netdev(y2);
9582  *
9583  * We are invoked by rtnl_unlock().
9584  * This allows us to deal with problems:
9585  * 1) We can delete sysfs objects which invoke hotplug
9586  *    without deadlocking with linkwatch via keventd.
9587  * 2) Since we run with the RTNL semaphore not held, we can sleep
9588  *    safely in order to wait for the netdev refcnt to drop to zero.
9589  *
9590  * We must not return until all unregister events added during
9591  * the interval the lock was held have been completed.
9592  */
9593 void netdev_run_todo(void)
9594 {
9595 	struct list_head list;
9596 
9597 	/* Snapshot list, allow later requests */
9598 	list_replace_init(&net_todo_list, &list);
9599 
9600 	__rtnl_unlock();
9601 
9602 
9603 	/* Wait for rcu callbacks to finish before next phase */
9604 	if (!list_empty(&list))
9605 		rcu_barrier();
9606 
9607 	while (!list_empty(&list)) {
9608 		struct net_device *dev
9609 			= list_first_entry(&list, struct net_device, todo_list);
9610 		list_del(&dev->todo_list);
9611 
9612 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9613 			pr_err("network todo '%s' but state %d\n",
9614 			       dev->name, dev->reg_state);
9615 			dump_stack();
9616 			continue;
9617 		}
9618 
9619 		dev->reg_state = NETREG_UNREGISTERED;
9620 
9621 		netdev_wait_allrefs(dev);
9622 
9623 		/* paranoia */
9624 		BUG_ON(netdev_refcnt_read(dev));
9625 		BUG_ON(!list_empty(&dev->ptype_all));
9626 		BUG_ON(!list_empty(&dev->ptype_specific));
9627 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9628 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9629 #if IS_ENABLED(CONFIG_DECNET)
9630 		WARN_ON(dev->dn_ptr);
9631 #endif
9632 		if (dev->priv_destructor)
9633 			dev->priv_destructor(dev);
9634 		if (dev->needs_free_netdev)
9635 			free_netdev(dev);
9636 
9637 		/* Report a network device has been unregistered */
9638 		rtnl_lock();
9639 		dev_net(dev)->dev_unreg_count--;
9640 		__rtnl_unlock();
9641 		wake_up(&netdev_unregistering_wq);
9642 
9643 		/* Free network device */
9644 		kobject_put(&dev->dev.kobj);
9645 	}
9646 }
9647 
9648 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9649  * all the same fields in the same order as net_device_stats, with only
9650  * the type differing, but rtnl_link_stats64 may have additional fields
9651  * at the end for newer counters.
9652  */
9653 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9654 			     const struct net_device_stats *netdev_stats)
9655 {
9656 #if BITS_PER_LONG == 64
9657 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9658 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9659 	/* zero out counters that only exist in rtnl_link_stats64 */
9660 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9661 	       sizeof(*stats64) - sizeof(*netdev_stats));
9662 #else
9663 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9664 	const unsigned long *src = (const unsigned long *)netdev_stats;
9665 	u64 *dst = (u64 *)stats64;
9666 
9667 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9668 	for (i = 0; i < n; i++)
9669 		dst[i] = src[i];
9670 	/* zero out counters that only exist in rtnl_link_stats64 */
9671 	memset((char *)stats64 + n * sizeof(u64), 0,
9672 	       sizeof(*stats64) - n * sizeof(u64));
9673 #endif
9674 }
9675 EXPORT_SYMBOL(netdev_stats_to_stats64);
9676 
9677 /**
9678  *	dev_get_stats	- get network device statistics
9679  *	@dev: device to get statistics from
9680  *	@storage: place to store stats
9681  *
9682  *	Get network statistics from device. Return @storage.
9683  *	The device driver may provide its own method by setting
9684  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9685  *	otherwise the internal statistics structure is used.
9686  */
9687 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9688 					struct rtnl_link_stats64 *storage)
9689 {
9690 	const struct net_device_ops *ops = dev->netdev_ops;
9691 
9692 	if (ops->ndo_get_stats64) {
9693 		memset(storage, 0, sizeof(*storage));
9694 		ops->ndo_get_stats64(dev, storage);
9695 	} else if (ops->ndo_get_stats) {
9696 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9697 	} else {
9698 		netdev_stats_to_stats64(storage, &dev->stats);
9699 	}
9700 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9701 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9702 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9703 	return storage;
9704 }
9705 EXPORT_SYMBOL(dev_get_stats);
9706 
9707 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9708 {
9709 	struct netdev_queue *queue = dev_ingress_queue(dev);
9710 
9711 #ifdef CONFIG_NET_CLS_ACT
9712 	if (queue)
9713 		return queue;
9714 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9715 	if (!queue)
9716 		return NULL;
9717 	netdev_init_one_queue(dev, queue, NULL);
9718 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9719 	queue->qdisc_sleeping = &noop_qdisc;
9720 	rcu_assign_pointer(dev->ingress_queue, queue);
9721 #endif
9722 	return queue;
9723 }
9724 
9725 static const struct ethtool_ops default_ethtool_ops;
9726 
9727 void netdev_set_default_ethtool_ops(struct net_device *dev,
9728 				    const struct ethtool_ops *ops)
9729 {
9730 	if (dev->ethtool_ops == &default_ethtool_ops)
9731 		dev->ethtool_ops = ops;
9732 }
9733 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9734 
9735 void netdev_freemem(struct net_device *dev)
9736 {
9737 	char *addr = (char *)dev - dev->padded;
9738 
9739 	kvfree(addr);
9740 }
9741 
9742 /**
9743  * alloc_netdev_mqs - allocate network device
9744  * @sizeof_priv: size of private data to allocate space for
9745  * @name: device name format string
9746  * @name_assign_type: origin of device name
9747  * @setup: callback to initialize device
9748  * @txqs: the number of TX subqueues to allocate
9749  * @rxqs: the number of RX subqueues to allocate
9750  *
9751  * Allocates a struct net_device with private data area for driver use
9752  * and performs basic initialization.  Also allocates subqueue structs
9753  * for each queue on the device.
9754  */
9755 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9756 		unsigned char name_assign_type,
9757 		void (*setup)(struct net_device *),
9758 		unsigned int txqs, unsigned int rxqs)
9759 {
9760 	struct net_device *dev;
9761 	unsigned int alloc_size;
9762 	struct net_device *p;
9763 
9764 	BUG_ON(strlen(name) >= sizeof(dev->name));
9765 
9766 	if (txqs < 1) {
9767 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9768 		return NULL;
9769 	}
9770 
9771 	if (rxqs < 1) {
9772 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9773 		return NULL;
9774 	}
9775 
9776 	alloc_size = sizeof(struct net_device);
9777 	if (sizeof_priv) {
9778 		/* ensure 32-byte alignment of private area */
9779 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9780 		alloc_size += sizeof_priv;
9781 	}
9782 	/* ensure 32-byte alignment of whole construct */
9783 	alloc_size += NETDEV_ALIGN - 1;
9784 
9785 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9786 	if (!p)
9787 		return NULL;
9788 
9789 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9790 	dev->padded = (char *)dev - (char *)p;
9791 
9792 	dev->pcpu_refcnt = alloc_percpu(int);
9793 	if (!dev->pcpu_refcnt)
9794 		goto free_dev;
9795 
9796 	if (dev_addr_init(dev))
9797 		goto free_pcpu;
9798 
9799 	dev_mc_init(dev);
9800 	dev_uc_init(dev);
9801 
9802 	dev_net_set(dev, &init_net);
9803 
9804 	netdev_register_lockdep_key(dev);
9805 
9806 	dev->gso_max_size = GSO_MAX_SIZE;
9807 	dev->gso_max_segs = GSO_MAX_SEGS;
9808 	dev->upper_level = 1;
9809 	dev->lower_level = 1;
9810 
9811 	INIT_LIST_HEAD(&dev->napi_list);
9812 	INIT_LIST_HEAD(&dev->unreg_list);
9813 	INIT_LIST_HEAD(&dev->close_list);
9814 	INIT_LIST_HEAD(&dev->link_watch_list);
9815 	INIT_LIST_HEAD(&dev->adj_list.upper);
9816 	INIT_LIST_HEAD(&dev->adj_list.lower);
9817 	INIT_LIST_HEAD(&dev->ptype_all);
9818 	INIT_LIST_HEAD(&dev->ptype_specific);
9819 	INIT_LIST_HEAD(&dev->net_notifier_list);
9820 #ifdef CONFIG_NET_SCHED
9821 	hash_init(dev->qdisc_hash);
9822 #endif
9823 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9824 	setup(dev);
9825 
9826 	if (!dev->tx_queue_len) {
9827 		dev->priv_flags |= IFF_NO_QUEUE;
9828 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9829 	}
9830 
9831 	dev->num_tx_queues = txqs;
9832 	dev->real_num_tx_queues = txqs;
9833 	if (netif_alloc_netdev_queues(dev))
9834 		goto free_all;
9835 
9836 	dev->num_rx_queues = rxqs;
9837 	dev->real_num_rx_queues = rxqs;
9838 	if (netif_alloc_rx_queues(dev))
9839 		goto free_all;
9840 
9841 	strcpy(dev->name, name);
9842 	dev->name_assign_type = name_assign_type;
9843 	dev->group = INIT_NETDEV_GROUP;
9844 	if (!dev->ethtool_ops)
9845 		dev->ethtool_ops = &default_ethtool_ops;
9846 
9847 	nf_hook_ingress_init(dev);
9848 
9849 	return dev;
9850 
9851 free_all:
9852 	free_netdev(dev);
9853 	return NULL;
9854 
9855 free_pcpu:
9856 	free_percpu(dev->pcpu_refcnt);
9857 free_dev:
9858 	netdev_freemem(dev);
9859 	return NULL;
9860 }
9861 EXPORT_SYMBOL(alloc_netdev_mqs);
9862 
9863 /**
9864  * free_netdev - free network device
9865  * @dev: device
9866  *
9867  * This function does the last stage of destroying an allocated device
9868  * interface. The reference to the device object is released. If this
9869  * is the last reference then it will be freed.Must be called in process
9870  * context.
9871  */
9872 void free_netdev(struct net_device *dev)
9873 {
9874 	struct napi_struct *p, *n;
9875 
9876 	might_sleep();
9877 	netif_free_tx_queues(dev);
9878 	netif_free_rx_queues(dev);
9879 
9880 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9881 
9882 	/* Flush device addresses */
9883 	dev_addr_flush(dev);
9884 
9885 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9886 		netif_napi_del(p);
9887 
9888 	free_percpu(dev->pcpu_refcnt);
9889 	dev->pcpu_refcnt = NULL;
9890 	free_percpu(dev->xdp_bulkq);
9891 	dev->xdp_bulkq = NULL;
9892 
9893 	netdev_unregister_lockdep_key(dev);
9894 
9895 	/*  Compatibility with error handling in drivers */
9896 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9897 		netdev_freemem(dev);
9898 		return;
9899 	}
9900 
9901 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9902 	dev->reg_state = NETREG_RELEASED;
9903 
9904 	/* will free via device release */
9905 	put_device(&dev->dev);
9906 }
9907 EXPORT_SYMBOL(free_netdev);
9908 
9909 /**
9910  *	synchronize_net -  Synchronize with packet receive processing
9911  *
9912  *	Wait for packets currently being received to be done.
9913  *	Does not block later packets from starting.
9914  */
9915 void synchronize_net(void)
9916 {
9917 	might_sleep();
9918 	if (rtnl_is_locked())
9919 		synchronize_rcu_expedited();
9920 	else
9921 		synchronize_rcu();
9922 }
9923 EXPORT_SYMBOL(synchronize_net);
9924 
9925 /**
9926  *	unregister_netdevice_queue - remove device from the kernel
9927  *	@dev: device
9928  *	@head: list
9929  *
9930  *	This function shuts down a device interface and removes it
9931  *	from the kernel tables.
9932  *	If head not NULL, device is queued to be unregistered later.
9933  *
9934  *	Callers must hold the rtnl semaphore.  You may want
9935  *	unregister_netdev() instead of this.
9936  */
9937 
9938 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9939 {
9940 	ASSERT_RTNL();
9941 
9942 	if (head) {
9943 		list_move_tail(&dev->unreg_list, head);
9944 	} else {
9945 		rollback_registered(dev);
9946 		/* Finish processing unregister after unlock */
9947 		net_set_todo(dev);
9948 	}
9949 }
9950 EXPORT_SYMBOL(unregister_netdevice_queue);
9951 
9952 /**
9953  *	unregister_netdevice_many - unregister many devices
9954  *	@head: list of devices
9955  *
9956  *  Note: As most callers use a stack allocated list_head,
9957  *  we force a list_del() to make sure stack wont be corrupted later.
9958  */
9959 void unregister_netdevice_many(struct list_head *head)
9960 {
9961 	struct net_device *dev;
9962 
9963 	if (!list_empty(head)) {
9964 		rollback_registered_many(head);
9965 		list_for_each_entry(dev, head, unreg_list)
9966 			net_set_todo(dev);
9967 		list_del(head);
9968 	}
9969 }
9970 EXPORT_SYMBOL(unregister_netdevice_many);
9971 
9972 /**
9973  *	unregister_netdev - remove device from the kernel
9974  *	@dev: device
9975  *
9976  *	This function shuts down a device interface and removes it
9977  *	from the kernel tables.
9978  *
9979  *	This is just a wrapper for unregister_netdevice that takes
9980  *	the rtnl semaphore.  In general you want to use this and not
9981  *	unregister_netdevice.
9982  */
9983 void unregister_netdev(struct net_device *dev)
9984 {
9985 	rtnl_lock();
9986 	unregister_netdevice(dev);
9987 	rtnl_unlock();
9988 }
9989 EXPORT_SYMBOL(unregister_netdev);
9990 
9991 /**
9992  *	dev_change_net_namespace - move device to different nethost namespace
9993  *	@dev: device
9994  *	@net: network namespace
9995  *	@pat: If not NULL name pattern to try if the current device name
9996  *	      is already taken in the destination network namespace.
9997  *
9998  *	This function shuts down a device interface and moves it
9999  *	to a new network namespace. On success 0 is returned, on
10000  *	a failure a netagive errno code is returned.
10001  *
10002  *	Callers must hold the rtnl semaphore.
10003  */
10004 
10005 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10006 {
10007 	int err, new_nsid, new_ifindex;
10008 
10009 	ASSERT_RTNL();
10010 
10011 	/* Don't allow namespace local devices to be moved. */
10012 	err = -EINVAL;
10013 	if (dev->features & NETIF_F_NETNS_LOCAL)
10014 		goto out;
10015 
10016 	/* Ensure the device has been registrered */
10017 	if (dev->reg_state != NETREG_REGISTERED)
10018 		goto out;
10019 
10020 	/* Get out if there is nothing todo */
10021 	err = 0;
10022 	if (net_eq(dev_net(dev), net))
10023 		goto out;
10024 
10025 	/* Pick the destination device name, and ensure
10026 	 * we can use it in the destination network namespace.
10027 	 */
10028 	err = -EEXIST;
10029 	if (__dev_get_by_name(net, dev->name)) {
10030 		/* We get here if we can't use the current device name */
10031 		if (!pat)
10032 			goto out;
10033 		err = dev_get_valid_name(net, dev, pat);
10034 		if (err < 0)
10035 			goto out;
10036 	}
10037 
10038 	/*
10039 	 * And now a mini version of register_netdevice unregister_netdevice.
10040 	 */
10041 
10042 	/* If device is running close it first. */
10043 	dev_close(dev);
10044 
10045 	/* And unlink it from device chain */
10046 	unlist_netdevice(dev);
10047 
10048 	synchronize_net();
10049 
10050 	/* Shutdown queueing discipline. */
10051 	dev_shutdown(dev);
10052 
10053 	/* Notify protocols, that we are about to destroy
10054 	 * this device. They should clean all the things.
10055 	 *
10056 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10057 	 * This is wanted because this way 8021q and macvlan know
10058 	 * the device is just moving and can keep their slaves up.
10059 	 */
10060 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10061 	rcu_barrier();
10062 
10063 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10064 	/* If there is an ifindex conflict assign a new one */
10065 	if (__dev_get_by_index(net, dev->ifindex))
10066 		new_ifindex = dev_new_index(net);
10067 	else
10068 		new_ifindex = dev->ifindex;
10069 
10070 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10071 			    new_ifindex);
10072 
10073 	/*
10074 	 *	Flush the unicast and multicast chains
10075 	 */
10076 	dev_uc_flush(dev);
10077 	dev_mc_flush(dev);
10078 
10079 	/* Send a netdev-removed uevent to the old namespace */
10080 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10081 	netdev_adjacent_del_links(dev);
10082 
10083 	/* Move per-net netdevice notifiers that are following the netdevice */
10084 	move_netdevice_notifiers_dev_net(dev, net);
10085 
10086 	/* Actually switch the network namespace */
10087 	dev_net_set(dev, net);
10088 	dev->ifindex = new_ifindex;
10089 
10090 	/* Send a netdev-add uevent to the new namespace */
10091 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10092 	netdev_adjacent_add_links(dev);
10093 
10094 	/* Fixup kobjects */
10095 	err = device_rename(&dev->dev, dev->name);
10096 	WARN_ON(err);
10097 
10098 	/* Add the device back in the hashes */
10099 	list_netdevice(dev);
10100 
10101 	/* Notify protocols, that a new device appeared. */
10102 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10103 
10104 	/*
10105 	 *	Prevent userspace races by waiting until the network
10106 	 *	device is fully setup before sending notifications.
10107 	 */
10108 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10109 
10110 	synchronize_net();
10111 	err = 0;
10112 out:
10113 	return err;
10114 }
10115 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10116 
10117 static int dev_cpu_dead(unsigned int oldcpu)
10118 {
10119 	struct sk_buff **list_skb;
10120 	struct sk_buff *skb;
10121 	unsigned int cpu;
10122 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10123 
10124 	local_irq_disable();
10125 	cpu = smp_processor_id();
10126 	sd = &per_cpu(softnet_data, cpu);
10127 	oldsd = &per_cpu(softnet_data, oldcpu);
10128 
10129 	/* Find end of our completion_queue. */
10130 	list_skb = &sd->completion_queue;
10131 	while (*list_skb)
10132 		list_skb = &(*list_skb)->next;
10133 	/* Append completion queue from offline CPU. */
10134 	*list_skb = oldsd->completion_queue;
10135 	oldsd->completion_queue = NULL;
10136 
10137 	/* Append output queue from offline CPU. */
10138 	if (oldsd->output_queue) {
10139 		*sd->output_queue_tailp = oldsd->output_queue;
10140 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10141 		oldsd->output_queue = NULL;
10142 		oldsd->output_queue_tailp = &oldsd->output_queue;
10143 	}
10144 	/* Append NAPI poll list from offline CPU, with one exception :
10145 	 * process_backlog() must be called by cpu owning percpu backlog.
10146 	 * We properly handle process_queue & input_pkt_queue later.
10147 	 */
10148 	while (!list_empty(&oldsd->poll_list)) {
10149 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10150 							    struct napi_struct,
10151 							    poll_list);
10152 
10153 		list_del_init(&napi->poll_list);
10154 		if (napi->poll == process_backlog)
10155 			napi->state = 0;
10156 		else
10157 			____napi_schedule(sd, napi);
10158 	}
10159 
10160 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10161 	local_irq_enable();
10162 
10163 #ifdef CONFIG_RPS
10164 	remsd = oldsd->rps_ipi_list;
10165 	oldsd->rps_ipi_list = NULL;
10166 #endif
10167 	/* send out pending IPI's on offline CPU */
10168 	net_rps_send_ipi(remsd);
10169 
10170 	/* Process offline CPU's input_pkt_queue */
10171 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10172 		netif_rx_ni(skb);
10173 		input_queue_head_incr(oldsd);
10174 	}
10175 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10176 		netif_rx_ni(skb);
10177 		input_queue_head_incr(oldsd);
10178 	}
10179 
10180 	return 0;
10181 }
10182 
10183 /**
10184  *	netdev_increment_features - increment feature set by one
10185  *	@all: current feature set
10186  *	@one: new feature set
10187  *	@mask: mask feature set
10188  *
10189  *	Computes a new feature set after adding a device with feature set
10190  *	@one to the master device with current feature set @all.  Will not
10191  *	enable anything that is off in @mask. Returns the new feature set.
10192  */
10193 netdev_features_t netdev_increment_features(netdev_features_t all,
10194 	netdev_features_t one, netdev_features_t mask)
10195 {
10196 	if (mask & NETIF_F_HW_CSUM)
10197 		mask |= NETIF_F_CSUM_MASK;
10198 	mask |= NETIF_F_VLAN_CHALLENGED;
10199 
10200 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10201 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10202 
10203 	/* If one device supports hw checksumming, set for all. */
10204 	if (all & NETIF_F_HW_CSUM)
10205 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10206 
10207 	return all;
10208 }
10209 EXPORT_SYMBOL(netdev_increment_features);
10210 
10211 static struct hlist_head * __net_init netdev_create_hash(void)
10212 {
10213 	int i;
10214 	struct hlist_head *hash;
10215 
10216 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10217 	if (hash != NULL)
10218 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10219 			INIT_HLIST_HEAD(&hash[i]);
10220 
10221 	return hash;
10222 }
10223 
10224 /* Initialize per network namespace state */
10225 static int __net_init netdev_init(struct net *net)
10226 {
10227 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10228 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10229 
10230 	if (net != &init_net)
10231 		INIT_LIST_HEAD(&net->dev_base_head);
10232 
10233 	net->dev_name_head = netdev_create_hash();
10234 	if (net->dev_name_head == NULL)
10235 		goto err_name;
10236 
10237 	net->dev_index_head = netdev_create_hash();
10238 	if (net->dev_index_head == NULL)
10239 		goto err_idx;
10240 
10241 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10242 
10243 	return 0;
10244 
10245 err_idx:
10246 	kfree(net->dev_name_head);
10247 err_name:
10248 	return -ENOMEM;
10249 }
10250 
10251 /**
10252  *	netdev_drivername - network driver for the device
10253  *	@dev: network device
10254  *
10255  *	Determine network driver for device.
10256  */
10257 const char *netdev_drivername(const struct net_device *dev)
10258 {
10259 	const struct device_driver *driver;
10260 	const struct device *parent;
10261 	const char *empty = "";
10262 
10263 	parent = dev->dev.parent;
10264 	if (!parent)
10265 		return empty;
10266 
10267 	driver = parent->driver;
10268 	if (driver && driver->name)
10269 		return driver->name;
10270 	return empty;
10271 }
10272 
10273 static void __netdev_printk(const char *level, const struct net_device *dev,
10274 			    struct va_format *vaf)
10275 {
10276 	if (dev && dev->dev.parent) {
10277 		dev_printk_emit(level[1] - '0',
10278 				dev->dev.parent,
10279 				"%s %s %s%s: %pV",
10280 				dev_driver_string(dev->dev.parent),
10281 				dev_name(dev->dev.parent),
10282 				netdev_name(dev), netdev_reg_state(dev),
10283 				vaf);
10284 	} else if (dev) {
10285 		printk("%s%s%s: %pV",
10286 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10287 	} else {
10288 		printk("%s(NULL net_device): %pV", level, vaf);
10289 	}
10290 }
10291 
10292 void netdev_printk(const char *level, const struct net_device *dev,
10293 		   const char *format, ...)
10294 {
10295 	struct va_format vaf;
10296 	va_list args;
10297 
10298 	va_start(args, format);
10299 
10300 	vaf.fmt = format;
10301 	vaf.va = &args;
10302 
10303 	__netdev_printk(level, dev, &vaf);
10304 
10305 	va_end(args);
10306 }
10307 EXPORT_SYMBOL(netdev_printk);
10308 
10309 #define define_netdev_printk_level(func, level)			\
10310 void func(const struct net_device *dev, const char *fmt, ...)	\
10311 {								\
10312 	struct va_format vaf;					\
10313 	va_list args;						\
10314 								\
10315 	va_start(args, fmt);					\
10316 								\
10317 	vaf.fmt = fmt;						\
10318 	vaf.va = &args;						\
10319 								\
10320 	__netdev_printk(level, dev, &vaf);			\
10321 								\
10322 	va_end(args);						\
10323 }								\
10324 EXPORT_SYMBOL(func);
10325 
10326 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10327 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10328 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10329 define_netdev_printk_level(netdev_err, KERN_ERR);
10330 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10331 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10332 define_netdev_printk_level(netdev_info, KERN_INFO);
10333 
10334 static void __net_exit netdev_exit(struct net *net)
10335 {
10336 	kfree(net->dev_name_head);
10337 	kfree(net->dev_index_head);
10338 	if (net != &init_net)
10339 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10340 }
10341 
10342 static struct pernet_operations __net_initdata netdev_net_ops = {
10343 	.init = netdev_init,
10344 	.exit = netdev_exit,
10345 };
10346 
10347 static void __net_exit default_device_exit(struct net *net)
10348 {
10349 	struct net_device *dev, *aux;
10350 	/*
10351 	 * Push all migratable network devices back to the
10352 	 * initial network namespace
10353 	 */
10354 	rtnl_lock();
10355 	for_each_netdev_safe(net, dev, aux) {
10356 		int err;
10357 		char fb_name[IFNAMSIZ];
10358 
10359 		/* Ignore unmoveable devices (i.e. loopback) */
10360 		if (dev->features & NETIF_F_NETNS_LOCAL)
10361 			continue;
10362 
10363 		/* Leave virtual devices for the generic cleanup */
10364 		if (dev->rtnl_link_ops)
10365 			continue;
10366 
10367 		/* Push remaining network devices to init_net */
10368 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10369 		if (__dev_get_by_name(&init_net, fb_name))
10370 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10371 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10372 		if (err) {
10373 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10374 				 __func__, dev->name, err);
10375 			BUG();
10376 		}
10377 	}
10378 	rtnl_unlock();
10379 }
10380 
10381 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10382 {
10383 	/* Return with the rtnl_lock held when there are no network
10384 	 * devices unregistering in any network namespace in net_list.
10385 	 */
10386 	struct net *net;
10387 	bool unregistering;
10388 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10389 
10390 	add_wait_queue(&netdev_unregistering_wq, &wait);
10391 	for (;;) {
10392 		unregistering = false;
10393 		rtnl_lock();
10394 		list_for_each_entry(net, net_list, exit_list) {
10395 			if (net->dev_unreg_count > 0) {
10396 				unregistering = true;
10397 				break;
10398 			}
10399 		}
10400 		if (!unregistering)
10401 			break;
10402 		__rtnl_unlock();
10403 
10404 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10405 	}
10406 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10407 }
10408 
10409 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10410 {
10411 	/* At exit all network devices most be removed from a network
10412 	 * namespace.  Do this in the reverse order of registration.
10413 	 * Do this across as many network namespaces as possible to
10414 	 * improve batching efficiency.
10415 	 */
10416 	struct net_device *dev;
10417 	struct net *net;
10418 	LIST_HEAD(dev_kill_list);
10419 
10420 	/* To prevent network device cleanup code from dereferencing
10421 	 * loopback devices or network devices that have been freed
10422 	 * wait here for all pending unregistrations to complete,
10423 	 * before unregistring the loopback device and allowing the
10424 	 * network namespace be freed.
10425 	 *
10426 	 * The netdev todo list containing all network devices
10427 	 * unregistrations that happen in default_device_exit_batch
10428 	 * will run in the rtnl_unlock() at the end of
10429 	 * default_device_exit_batch.
10430 	 */
10431 	rtnl_lock_unregistering(net_list);
10432 	list_for_each_entry(net, net_list, exit_list) {
10433 		for_each_netdev_reverse(net, dev) {
10434 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10435 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10436 			else
10437 				unregister_netdevice_queue(dev, &dev_kill_list);
10438 		}
10439 	}
10440 	unregister_netdevice_many(&dev_kill_list);
10441 	rtnl_unlock();
10442 }
10443 
10444 static struct pernet_operations __net_initdata default_device_ops = {
10445 	.exit = default_device_exit,
10446 	.exit_batch = default_device_exit_batch,
10447 };
10448 
10449 /*
10450  *	Initialize the DEV module. At boot time this walks the device list and
10451  *	unhooks any devices that fail to initialise (normally hardware not
10452  *	present) and leaves us with a valid list of present and active devices.
10453  *
10454  */
10455 
10456 /*
10457  *       This is called single threaded during boot, so no need
10458  *       to take the rtnl semaphore.
10459  */
10460 static int __init net_dev_init(void)
10461 {
10462 	int i, rc = -ENOMEM;
10463 
10464 	BUG_ON(!dev_boot_phase);
10465 
10466 	if (dev_proc_init())
10467 		goto out;
10468 
10469 	if (netdev_kobject_init())
10470 		goto out;
10471 
10472 	INIT_LIST_HEAD(&ptype_all);
10473 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10474 		INIT_LIST_HEAD(&ptype_base[i]);
10475 
10476 	INIT_LIST_HEAD(&offload_base);
10477 
10478 	if (register_pernet_subsys(&netdev_net_ops))
10479 		goto out;
10480 
10481 	/*
10482 	 *	Initialise the packet receive queues.
10483 	 */
10484 
10485 	for_each_possible_cpu(i) {
10486 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10487 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10488 
10489 		INIT_WORK(flush, flush_backlog);
10490 
10491 		skb_queue_head_init(&sd->input_pkt_queue);
10492 		skb_queue_head_init(&sd->process_queue);
10493 #ifdef CONFIG_XFRM_OFFLOAD
10494 		skb_queue_head_init(&sd->xfrm_backlog);
10495 #endif
10496 		INIT_LIST_HEAD(&sd->poll_list);
10497 		sd->output_queue_tailp = &sd->output_queue;
10498 #ifdef CONFIG_RPS
10499 		sd->csd.func = rps_trigger_softirq;
10500 		sd->csd.info = sd;
10501 		sd->cpu = i;
10502 #endif
10503 
10504 		init_gro_hash(&sd->backlog);
10505 		sd->backlog.poll = process_backlog;
10506 		sd->backlog.weight = weight_p;
10507 	}
10508 
10509 	dev_boot_phase = 0;
10510 
10511 	/* The loopback device is special if any other network devices
10512 	 * is present in a network namespace the loopback device must
10513 	 * be present. Since we now dynamically allocate and free the
10514 	 * loopback device ensure this invariant is maintained by
10515 	 * keeping the loopback device as the first device on the
10516 	 * list of network devices.  Ensuring the loopback devices
10517 	 * is the first device that appears and the last network device
10518 	 * that disappears.
10519 	 */
10520 	if (register_pernet_device(&loopback_net_ops))
10521 		goto out;
10522 
10523 	if (register_pernet_device(&default_device_ops))
10524 		goto out;
10525 
10526 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10527 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10528 
10529 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10530 				       NULL, dev_cpu_dead);
10531 	WARN_ON(rc < 0);
10532 	rc = 0;
10533 out:
10534 	return rc;
10535 }
10536 
10537 subsys_initcall(net_dev_init);
10538