xref: /openbmc/linux/net/core/dev.c (revision 08283d30)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150 
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;	/* Taps */
158 static struct list_head offload_base __read_mostly;
159 
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 					 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static seqcount_t devnet_rename_seq;
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235 	struct net *net = dev_net(dev);
236 
237 	ASSERT_RTNL();
238 
239 	write_lock_bh(&dev_base_lock);
240 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 	hlist_add_head_rcu(&dev->index_hlist,
243 			   dev_index_hash(net, dev->ifindex));
244 	write_unlock_bh(&dev_base_lock);
245 
246 	dev_base_seq_inc(net);
247 }
248 
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254 	ASSERT_RTNL();
255 
256 	/* Unlink dev from the device chain */
257 	write_lock_bh(&dev_base_lock);
258 	list_del_rcu(&dev->dev_list);
259 	hlist_del_rcu(&dev->name_hlist);
260 	hlist_del_rcu(&dev->index_hlist);
261 	write_unlock_bh(&dev_base_lock);
262 
263 	dev_base_seq_inc(dev_net(dev));
264 }
265 
266 /*
267  *	Our notifier list
268  */
269 
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271 
272 /*
273  *	Device drivers call our routines to queue packets here. We empty the
274  *	queue in the local softnet handler.
275  */
276 
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 
280 /*******************************************************************************
281  *
282  *		Protocol management and registration routines
283  *
284  *******************************************************************************/
285 
286 
287 /*
288  *	Add a protocol ID to the list. Now that the input handler is
289  *	smarter we can dispense with all the messy stuff that used to be
290  *	here.
291  *
292  *	BEWARE!!! Protocol handlers, mangling input packets,
293  *	MUST BE last in hash buckets and checking protocol handlers
294  *	MUST start from promiscuous ptype_all chain in net_bh.
295  *	It is true now, do not change it.
296  *	Explanation follows: if protocol handler, mangling packet, will
297  *	be the first on list, it is not able to sense, that packet
298  *	is cloned and should be copied-on-write, so that it will
299  *	change it and subsequent readers will get broken packet.
300  *							--ANK (980803)
301  */
302 
303 static inline struct list_head *ptype_head(const struct packet_type *pt)
304 {
305 	if (pt->type == htons(ETH_P_ALL))
306 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
307 	else
308 		return pt->dev ? &pt->dev->ptype_specific :
309 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
310 }
311 
312 /**
313  *	dev_add_pack - add packet handler
314  *	@pt: packet type declaration
315  *
316  *	Add a protocol handler to the networking stack. The passed &packet_type
317  *	is linked into kernel lists and may not be freed until it has been
318  *	removed from the kernel lists.
319  *
320  *	This call does not sleep therefore it can not
321  *	guarantee all CPU's that are in middle of receiving packets
322  *	will see the new packet type (until the next received packet).
323  */
324 
325 void dev_add_pack(struct packet_type *pt)
326 {
327 	struct list_head *head = ptype_head(pt);
328 
329 	spin_lock(&ptype_lock);
330 	list_add_rcu(&pt->list, head);
331 	spin_unlock(&ptype_lock);
332 }
333 EXPORT_SYMBOL(dev_add_pack);
334 
335 /**
336  *	__dev_remove_pack	 - remove packet handler
337  *	@pt: packet type declaration
338  *
339  *	Remove a protocol handler that was previously added to the kernel
340  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
341  *	from the kernel lists and can be freed or reused once this function
342  *	returns.
343  *
344  *      The packet type might still be in use by receivers
345  *	and must not be freed until after all the CPU's have gone
346  *	through a quiescent state.
347  */
348 void __dev_remove_pack(struct packet_type *pt)
349 {
350 	struct list_head *head = ptype_head(pt);
351 	struct packet_type *pt1;
352 
353 	spin_lock(&ptype_lock);
354 
355 	list_for_each_entry(pt1, head, list) {
356 		if (pt == pt1) {
357 			list_del_rcu(&pt->list);
358 			goto out;
359 		}
360 	}
361 
362 	pr_warn("dev_remove_pack: %p not found\n", pt);
363 out:
364 	spin_unlock(&ptype_lock);
365 }
366 EXPORT_SYMBOL(__dev_remove_pack);
367 
368 /**
369  *	dev_remove_pack	 - remove packet handler
370  *	@pt: packet type declaration
371  *
372  *	Remove a protocol handler that was previously added to the kernel
373  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
374  *	from the kernel lists and can be freed or reused once this function
375  *	returns.
376  *
377  *	This call sleeps to guarantee that no CPU is looking at the packet
378  *	type after return.
379  */
380 void dev_remove_pack(struct packet_type *pt)
381 {
382 	__dev_remove_pack(pt);
383 
384 	synchronize_net();
385 }
386 EXPORT_SYMBOL(dev_remove_pack);
387 
388 
389 /**
390  *	dev_add_offload - register offload handlers
391  *	@po: protocol offload declaration
392  *
393  *	Add protocol offload handlers to the networking stack. The passed
394  *	&proto_offload is linked into kernel lists and may not be freed until
395  *	it has been removed from the kernel lists.
396  *
397  *	This call does not sleep therefore it can not
398  *	guarantee all CPU's that are in middle of receiving packets
399  *	will see the new offload handlers (until the next received packet).
400  */
401 void dev_add_offload(struct packet_offload *po)
402 {
403 	struct packet_offload *elem;
404 
405 	spin_lock(&offload_lock);
406 	list_for_each_entry(elem, &offload_base, list) {
407 		if (po->priority < elem->priority)
408 			break;
409 	}
410 	list_add_rcu(&po->list, elem->list.prev);
411 	spin_unlock(&offload_lock);
412 }
413 EXPORT_SYMBOL(dev_add_offload);
414 
415 /**
416  *	__dev_remove_offload	 - remove offload handler
417  *	@po: packet offload declaration
418  *
419  *	Remove a protocol offload handler that was previously added to the
420  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
421  *	is removed from the kernel lists and can be freed or reused once this
422  *	function returns.
423  *
424  *      The packet type might still be in use by receivers
425  *	and must not be freed until after all the CPU's have gone
426  *	through a quiescent state.
427  */
428 static void __dev_remove_offload(struct packet_offload *po)
429 {
430 	struct list_head *head = &offload_base;
431 	struct packet_offload *po1;
432 
433 	spin_lock(&offload_lock);
434 
435 	list_for_each_entry(po1, head, list) {
436 		if (po == po1) {
437 			list_del_rcu(&po->list);
438 			goto out;
439 		}
440 	}
441 
442 	pr_warn("dev_remove_offload: %p not found\n", po);
443 out:
444 	spin_unlock(&offload_lock);
445 }
446 
447 /**
448  *	dev_remove_offload	 - remove packet offload handler
449  *	@po: packet offload declaration
450  *
451  *	Remove a packet offload handler that was previously added to the kernel
452  *	offload handlers by dev_add_offload(). The passed &offload_type is
453  *	removed from the kernel lists and can be freed or reused once this
454  *	function returns.
455  *
456  *	This call sleeps to guarantee that no CPU is looking at the packet
457  *	type after return.
458  */
459 void dev_remove_offload(struct packet_offload *po)
460 {
461 	__dev_remove_offload(po);
462 
463 	synchronize_net();
464 }
465 EXPORT_SYMBOL(dev_remove_offload);
466 
467 /******************************************************************************
468  *
469  *		      Device Boot-time Settings Routines
470  *
471  ******************************************************************************/
472 
473 /* Boot time configuration table */
474 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
475 
476 /**
477  *	netdev_boot_setup_add	- add new setup entry
478  *	@name: name of the device
479  *	@map: configured settings for the device
480  *
481  *	Adds new setup entry to the dev_boot_setup list.  The function
482  *	returns 0 on error and 1 on success.  This is a generic routine to
483  *	all netdevices.
484  */
485 static int netdev_boot_setup_add(char *name, struct ifmap *map)
486 {
487 	struct netdev_boot_setup *s;
488 	int i;
489 
490 	s = dev_boot_setup;
491 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
493 			memset(s[i].name, 0, sizeof(s[i].name));
494 			strlcpy(s[i].name, name, IFNAMSIZ);
495 			memcpy(&s[i].map, map, sizeof(s[i].map));
496 			break;
497 		}
498 	}
499 
500 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
501 }
502 
503 /**
504  * netdev_boot_setup_check	- check boot time settings
505  * @dev: the netdevice
506  *
507  * Check boot time settings for the device.
508  * The found settings are set for the device to be used
509  * later in the device probing.
510  * Returns 0 if no settings found, 1 if they are.
511  */
512 int netdev_boot_setup_check(struct net_device *dev)
513 {
514 	struct netdev_boot_setup *s = dev_boot_setup;
515 	int i;
516 
517 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
518 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
519 		    !strcmp(dev->name, s[i].name)) {
520 			dev->irq = s[i].map.irq;
521 			dev->base_addr = s[i].map.base_addr;
522 			dev->mem_start = s[i].map.mem_start;
523 			dev->mem_end = s[i].map.mem_end;
524 			return 1;
525 		}
526 	}
527 	return 0;
528 }
529 EXPORT_SYMBOL(netdev_boot_setup_check);
530 
531 
532 /**
533  * netdev_boot_base	- get address from boot time settings
534  * @prefix: prefix for network device
535  * @unit: id for network device
536  *
537  * Check boot time settings for the base address of device.
538  * The found settings are set for the device to be used
539  * later in the device probing.
540  * Returns 0 if no settings found.
541  */
542 unsigned long netdev_boot_base(const char *prefix, int unit)
543 {
544 	const struct netdev_boot_setup *s = dev_boot_setup;
545 	char name[IFNAMSIZ];
546 	int i;
547 
548 	sprintf(name, "%s%d", prefix, unit);
549 
550 	/*
551 	 * If device already registered then return base of 1
552 	 * to indicate not to probe for this interface
553 	 */
554 	if (__dev_get_by_name(&init_net, name))
555 		return 1;
556 
557 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
558 		if (!strcmp(name, s[i].name))
559 			return s[i].map.base_addr;
560 	return 0;
561 }
562 
563 /*
564  * Saves at boot time configured settings for any netdevice.
565  */
566 int __init netdev_boot_setup(char *str)
567 {
568 	int ints[5];
569 	struct ifmap map;
570 
571 	str = get_options(str, ARRAY_SIZE(ints), ints);
572 	if (!str || !*str)
573 		return 0;
574 
575 	/* Save settings */
576 	memset(&map, 0, sizeof(map));
577 	if (ints[0] > 0)
578 		map.irq = ints[1];
579 	if (ints[0] > 1)
580 		map.base_addr = ints[2];
581 	if (ints[0] > 2)
582 		map.mem_start = ints[3];
583 	if (ints[0] > 3)
584 		map.mem_end = ints[4];
585 
586 	/* Add new entry to the list */
587 	return netdev_boot_setup_add(str, &map);
588 }
589 
590 __setup("netdev=", netdev_boot_setup);
591 
592 /*******************************************************************************
593  *
594  *			    Device Interface Subroutines
595  *
596  *******************************************************************************/
597 
598 /**
599  *	dev_get_iflink	- get 'iflink' value of a interface
600  *	@dev: targeted interface
601  *
602  *	Indicates the ifindex the interface is linked to.
603  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
604  */
605 
606 int dev_get_iflink(const struct net_device *dev)
607 {
608 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
609 		return dev->netdev_ops->ndo_get_iflink(dev);
610 
611 	return dev->ifindex;
612 }
613 EXPORT_SYMBOL(dev_get_iflink);
614 
615 /**
616  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
617  *	@dev: targeted interface
618  *	@skb: The packet.
619  *
620  *	For better visibility of tunnel traffic OVS needs to retrieve
621  *	egress tunnel information for a packet. Following API allows
622  *	user to get this info.
623  */
624 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
625 {
626 	struct ip_tunnel_info *info;
627 
628 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
629 		return -EINVAL;
630 
631 	info = skb_tunnel_info_unclone(skb);
632 	if (!info)
633 		return -ENOMEM;
634 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
635 		return -EINVAL;
636 
637 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
638 }
639 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
640 
641 /**
642  *	__dev_get_by_name	- find a device by its name
643  *	@net: the applicable net namespace
644  *	@name: name to find
645  *
646  *	Find an interface by name. Must be called under RTNL semaphore
647  *	or @dev_base_lock. If the name is found a pointer to the device
648  *	is returned. If the name is not found then %NULL is returned. The
649  *	reference counters are not incremented so the caller must be
650  *	careful with locks.
651  */
652 
653 struct net_device *__dev_get_by_name(struct net *net, const char *name)
654 {
655 	struct net_device *dev;
656 	struct hlist_head *head = dev_name_hash(net, name);
657 
658 	hlist_for_each_entry(dev, head, name_hlist)
659 		if (!strncmp(dev->name, name, IFNAMSIZ))
660 			return dev;
661 
662 	return NULL;
663 }
664 EXPORT_SYMBOL(__dev_get_by_name);
665 
666 /**
667  * dev_get_by_name_rcu	- find a device by its name
668  * @net: the applicable net namespace
669  * @name: name to find
670  *
671  * Find an interface by name.
672  * If the name is found a pointer to the device is returned.
673  * If the name is not found then %NULL is returned.
674  * The reference counters are not incremented so the caller must be
675  * careful with locks. The caller must hold RCU lock.
676  */
677 
678 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
679 {
680 	struct net_device *dev;
681 	struct hlist_head *head = dev_name_hash(net, name);
682 
683 	hlist_for_each_entry_rcu(dev, head, name_hlist)
684 		if (!strncmp(dev->name, name, IFNAMSIZ))
685 			return dev;
686 
687 	return NULL;
688 }
689 EXPORT_SYMBOL(dev_get_by_name_rcu);
690 
691 /**
692  *	dev_get_by_name		- find a device by its name
693  *	@net: the applicable net namespace
694  *	@name: name to find
695  *
696  *	Find an interface by name. This can be called from any
697  *	context and does its own locking. The returned handle has
698  *	the usage count incremented and the caller must use dev_put() to
699  *	release it when it is no longer needed. %NULL is returned if no
700  *	matching device is found.
701  */
702 
703 struct net_device *dev_get_by_name(struct net *net, const char *name)
704 {
705 	struct net_device *dev;
706 
707 	rcu_read_lock();
708 	dev = dev_get_by_name_rcu(net, name);
709 	if (dev)
710 		dev_hold(dev);
711 	rcu_read_unlock();
712 	return dev;
713 }
714 EXPORT_SYMBOL(dev_get_by_name);
715 
716 /**
717  *	__dev_get_by_index - find a device by its ifindex
718  *	@net: the applicable net namespace
719  *	@ifindex: index of device
720  *
721  *	Search for an interface by index. Returns %NULL if the device
722  *	is not found or a pointer to the device. The device has not
723  *	had its reference counter increased so the caller must be careful
724  *	about locking. The caller must hold either the RTNL semaphore
725  *	or @dev_base_lock.
726  */
727 
728 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
729 {
730 	struct net_device *dev;
731 	struct hlist_head *head = dev_index_hash(net, ifindex);
732 
733 	hlist_for_each_entry(dev, head, index_hlist)
734 		if (dev->ifindex == ifindex)
735 			return dev;
736 
737 	return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_index);
740 
741 /**
742  *	dev_get_by_index_rcu - find a device by its ifindex
743  *	@net: the applicable net namespace
744  *	@ifindex: index of device
745  *
746  *	Search for an interface by index. Returns %NULL if the device
747  *	is not found or a pointer to the device. The device has not
748  *	had its reference counter increased so the caller must be careful
749  *	about locking. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
753 {
754 	struct net_device *dev;
755 	struct hlist_head *head = dev_index_hash(net, ifindex);
756 
757 	hlist_for_each_entry_rcu(dev, head, index_hlist)
758 		if (dev->ifindex == ifindex)
759 			return dev;
760 
761 	return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_index_rcu);
764 
765 
766 /**
767  *	dev_get_by_index - find a device by its ifindex
768  *	@net: the applicable net namespace
769  *	@ifindex: index of device
770  *
771  *	Search for an interface by index. Returns NULL if the device
772  *	is not found or a pointer to the device. The device returned has
773  *	had a reference added and the pointer is safe until the user calls
774  *	dev_put to indicate they have finished with it.
775  */
776 
777 struct net_device *dev_get_by_index(struct net *net, int ifindex)
778 {
779 	struct net_device *dev;
780 
781 	rcu_read_lock();
782 	dev = dev_get_by_index_rcu(net, ifindex);
783 	if (dev)
784 		dev_hold(dev);
785 	rcu_read_unlock();
786 	return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_index);
789 
790 /**
791  *	dev_get_by_napi_id - find a device by napi_id
792  *	@napi_id: ID of the NAPI struct
793  *
794  *	Search for an interface by NAPI ID. Returns %NULL if the device
795  *	is not found or a pointer to the device. The device has not had
796  *	its reference counter increased so the caller must be careful
797  *	about locking. The caller must hold RCU lock.
798  */
799 
800 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
801 {
802 	struct napi_struct *napi;
803 
804 	WARN_ON_ONCE(!rcu_read_lock_held());
805 
806 	if (napi_id < MIN_NAPI_ID)
807 		return NULL;
808 
809 	napi = napi_by_id(napi_id);
810 
811 	return napi ? napi->dev : NULL;
812 }
813 EXPORT_SYMBOL(dev_get_by_napi_id);
814 
815 /**
816  *	netdev_get_name - get a netdevice name, knowing its ifindex.
817  *	@net: network namespace
818  *	@name: a pointer to the buffer where the name will be stored.
819  *	@ifindex: the ifindex of the interface to get the name from.
820  *
821  *	The use of raw_seqcount_begin() and cond_resched() before
822  *	retrying is required as we want to give the writers a chance
823  *	to complete when CONFIG_PREEMPT is not set.
824  */
825 int netdev_get_name(struct net *net, char *name, int ifindex)
826 {
827 	struct net_device *dev;
828 	unsigned int seq;
829 
830 retry:
831 	seq = raw_seqcount_begin(&devnet_rename_seq);
832 	rcu_read_lock();
833 	dev = dev_get_by_index_rcu(net, ifindex);
834 	if (!dev) {
835 		rcu_read_unlock();
836 		return -ENODEV;
837 	}
838 
839 	strcpy(name, dev->name);
840 	rcu_read_unlock();
841 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
842 		cond_resched();
843 		goto retry;
844 	}
845 
846 	return 0;
847 }
848 
849 /**
850  *	dev_getbyhwaddr_rcu - find a device by its hardware address
851  *	@net: the applicable net namespace
852  *	@type: media type of device
853  *	@ha: hardware address
854  *
855  *	Search for an interface by MAC address. Returns NULL if the device
856  *	is not found or a pointer to the device.
857  *	The caller must hold RCU or RTNL.
858  *	The returned device has not had its ref count increased
859  *	and the caller must therefore be careful about locking
860  *
861  */
862 
863 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
864 				       const char *ha)
865 {
866 	struct net_device *dev;
867 
868 	for_each_netdev_rcu(net, dev)
869 		if (dev->type == type &&
870 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
871 			return dev;
872 
873 	return NULL;
874 }
875 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
876 
877 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 	struct net_device *dev;
880 
881 	ASSERT_RTNL();
882 	for_each_netdev(net, dev)
883 		if (dev->type == type)
884 			return dev;
885 
886 	return NULL;
887 }
888 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
889 
890 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
891 {
892 	struct net_device *dev, *ret = NULL;
893 
894 	rcu_read_lock();
895 	for_each_netdev_rcu(net, dev)
896 		if (dev->type == type) {
897 			dev_hold(dev);
898 			ret = dev;
899 			break;
900 		}
901 	rcu_read_unlock();
902 	return ret;
903 }
904 EXPORT_SYMBOL(dev_getfirstbyhwtype);
905 
906 /**
907  *	__dev_get_by_flags - find any device with given flags
908  *	@net: the applicable net namespace
909  *	@if_flags: IFF_* values
910  *	@mask: bitmask of bits in if_flags to check
911  *
912  *	Search for any interface with the given flags. Returns NULL if a device
913  *	is not found or a pointer to the device. Must be called inside
914  *	rtnl_lock(), and result refcount is unchanged.
915  */
916 
917 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
918 				      unsigned short mask)
919 {
920 	struct net_device *dev, *ret;
921 
922 	ASSERT_RTNL();
923 
924 	ret = NULL;
925 	for_each_netdev(net, dev) {
926 		if (((dev->flags ^ if_flags) & mask) == 0) {
927 			ret = dev;
928 			break;
929 		}
930 	}
931 	return ret;
932 }
933 EXPORT_SYMBOL(__dev_get_by_flags);
934 
935 /**
936  *	dev_valid_name - check if name is okay for network device
937  *	@name: name string
938  *
939  *	Network device names need to be valid file names to
940  *	to allow sysfs to work.  We also disallow any kind of
941  *	whitespace.
942  */
943 bool dev_valid_name(const char *name)
944 {
945 	if (*name == '\0')
946 		return false;
947 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
948 		return false;
949 	if (!strcmp(name, ".") || !strcmp(name, ".."))
950 		return false;
951 
952 	while (*name) {
953 		if (*name == '/' || *name == ':' || isspace(*name))
954 			return false;
955 		name++;
956 	}
957 	return true;
958 }
959 EXPORT_SYMBOL(dev_valid_name);
960 
961 /**
962  *	__dev_alloc_name - allocate a name for a device
963  *	@net: network namespace to allocate the device name in
964  *	@name: name format string
965  *	@buf:  scratch buffer and result name string
966  *
967  *	Passed a format string - eg "lt%d" it will try and find a suitable
968  *	id. It scans list of devices to build up a free map, then chooses
969  *	the first empty slot. The caller must hold the dev_base or rtnl lock
970  *	while allocating the name and adding the device in order to avoid
971  *	duplicates.
972  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
973  *	Returns the number of the unit assigned or a negative errno code.
974  */
975 
976 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
977 {
978 	int i = 0;
979 	const char *p;
980 	const int max_netdevices = 8*PAGE_SIZE;
981 	unsigned long *inuse;
982 	struct net_device *d;
983 
984 	if (!dev_valid_name(name))
985 		return -EINVAL;
986 
987 	p = strchr(name, '%');
988 	if (p) {
989 		/*
990 		 * Verify the string as this thing may have come from
991 		 * the user.  There must be either one "%d" and no other "%"
992 		 * characters.
993 		 */
994 		if (p[1] != 'd' || strchr(p + 2, '%'))
995 			return -EINVAL;
996 
997 		/* Use one page as a bit array of possible slots */
998 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
999 		if (!inuse)
1000 			return -ENOMEM;
1001 
1002 		for_each_netdev(net, d) {
1003 			if (!sscanf(d->name, name, &i))
1004 				continue;
1005 			if (i < 0 || i >= max_netdevices)
1006 				continue;
1007 
1008 			/*  avoid cases where sscanf is not exact inverse of printf */
1009 			snprintf(buf, IFNAMSIZ, name, i);
1010 			if (!strncmp(buf, d->name, IFNAMSIZ))
1011 				set_bit(i, inuse);
1012 		}
1013 
1014 		i = find_first_zero_bit(inuse, max_netdevices);
1015 		free_page((unsigned long) inuse);
1016 	}
1017 
1018 	snprintf(buf, IFNAMSIZ, name, i);
1019 	if (!__dev_get_by_name(net, buf))
1020 		return i;
1021 
1022 	/* It is possible to run out of possible slots
1023 	 * when the name is long and there isn't enough space left
1024 	 * for the digits, or if all bits are used.
1025 	 */
1026 	return -ENFILE;
1027 }
1028 
1029 static int dev_alloc_name_ns(struct net *net,
1030 			     struct net_device *dev,
1031 			     const char *name)
1032 {
1033 	char buf[IFNAMSIZ];
1034 	int ret;
1035 
1036 	BUG_ON(!net);
1037 	ret = __dev_alloc_name(net, name, buf);
1038 	if (ret >= 0)
1039 		strlcpy(dev->name, buf, IFNAMSIZ);
1040 	return ret;
1041 }
1042 
1043 /**
1044  *	dev_alloc_name - allocate a name for a device
1045  *	@dev: device
1046  *	@name: name format string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 int dev_alloc_name(struct net_device *dev, const char *name)
1058 {
1059 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1060 }
1061 EXPORT_SYMBOL(dev_alloc_name);
1062 
1063 int dev_get_valid_name(struct net *net, struct net_device *dev,
1064 		       const char *name)
1065 {
1066 	BUG_ON(!net);
1067 
1068 	if (!dev_valid_name(name))
1069 		return -EINVAL;
1070 
1071 	if (strchr(name, '%'))
1072 		return dev_alloc_name_ns(net, dev, name);
1073 	else if (__dev_get_by_name(net, name))
1074 		return -EEXIST;
1075 	else if (dev->name != name)
1076 		strlcpy(dev->name, name, IFNAMSIZ);
1077 
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL(dev_get_valid_name);
1081 
1082 /**
1083  *	dev_change_name - change name of a device
1084  *	@dev: device
1085  *	@newname: name (or format string) must be at least IFNAMSIZ
1086  *
1087  *	Change name of a device, can pass format strings "eth%d".
1088  *	for wildcarding.
1089  */
1090 int dev_change_name(struct net_device *dev, const char *newname)
1091 {
1092 	unsigned char old_assign_type;
1093 	char oldname[IFNAMSIZ];
1094 	int err = 0;
1095 	int ret;
1096 	struct net *net;
1097 
1098 	ASSERT_RTNL();
1099 	BUG_ON(!dev_net(dev));
1100 
1101 	net = dev_net(dev);
1102 
1103 	/* Some auto-enslaved devices e.g. failover slaves are
1104 	 * special, as userspace might rename the device after
1105 	 * the interface had been brought up and running since
1106 	 * the point kernel initiated auto-enslavement. Allow
1107 	 * live name change even when these slave devices are
1108 	 * up and running.
1109 	 *
1110 	 * Typically, users of these auto-enslaving devices
1111 	 * don't actually care about slave name change, as
1112 	 * they are supposed to operate on master interface
1113 	 * directly.
1114 	 */
1115 	if (dev->flags & IFF_UP &&
1116 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1117 		return -EBUSY;
1118 
1119 	write_seqcount_begin(&devnet_rename_seq);
1120 
1121 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1122 		write_seqcount_end(&devnet_rename_seq);
1123 		return 0;
1124 	}
1125 
1126 	memcpy(oldname, dev->name, IFNAMSIZ);
1127 
1128 	err = dev_get_valid_name(net, dev, newname);
1129 	if (err < 0) {
1130 		write_seqcount_end(&devnet_rename_seq);
1131 		return err;
1132 	}
1133 
1134 	if (oldname[0] && !strchr(oldname, '%'))
1135 		netdev_info(dev, "renamed from %s\n", oldname);
1136 
1137 	old_assign_type = dev->name_assign_type;
1138 	dev->name_assign_type = NET_NAME_RENAMED;
1139 
1140 rollback:
1141 	ret = device_rename(&dev->dev, dev->name);
1142 	if (ret) {
1143 		memcpy(dev->name, oldname, IFNAMSIZ);
1144 		dev->name_assign_type = old_assign_type;
1145 		write_seqcount_end(&devnet_rename_seq);
1146 		return ret;
1147 	}
1148 
1149 	write_seqcount_end(&devnet_rename_seq);
1150 
1151 	netdev_adjacent_rename_links(dev, oldname);
1152 
1153 	write_lock_bh(&dev_base_lock);
1154 	hlist_del_rcu(&dev->name_hlist);
1155 	write_unlock_bh(&dev_base_lock);
1156 
1157 	synchronize_rcu();
1158 
1159 	write_lock_bh(&dev_base_lock);
1160 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1161 	write_unlock_bh(&dev_base_lock);
1162 
1163 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1164 	ret = notifier_to_errno(ret);
1165 
1166 	if (ret) {
1167 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1168 		if (err >= 0) {
1169 			err = ret;
1170 			write_seqcount_begin(&devnet_rename_seq);
1171 			memcpy(dev->name, oldname, IFNAMSIZ);
1172 			memcpy(oldname, newname, IFNAMSIZ);
1173 			dev->name_assign_type = old_assign_type;
1174 			old_assign_type = NET_NAME_RENAMED;
1175 			goto rollback;
1176 		} else {
1177 			pr_err("%s: name change rollback failed: %d\n",
1178 			       dev->name, ret);
1179 		}
1180 	}
1181 
1182 	return err;
1183 }
1184 
1185 /**
1186  *	dev_set_alias - change ifalias of a device
1187  *	@dev: device
1188  *	@alias: name up to IFALIASZ
1189  *	@len: limit of bytes to copy from info
1190  *
1191  *	Set ifalias for a device,
1192  */
1193 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1194 {
1195 	struct dev_ifalias *new_alias = NULL;
1196 
1197 	if (len >= IFALIASZ)
1198 		return -EINVAL;
1199 
1200 	if (len) {
1201 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1202 		if (!new_alias)
1203 			return -ENOMEM;
1204 
1205 		memcpy(new_alias->ifalias, alias, len);
1206 		new_alias->ifalias[len] = 0;
1207 	}
1208 
1209 	mutex_lock(&ifalias_mutex);
1210 	rcu_swap_protected(dev->ifalias, new_alias,
1211 			   mutex_is_locked(&ifalias_mutex));
1212 	mutex_unlock(&ifalias_mutex);
1213 
1214 	if (new_alias)
1215 		kfree_rcu(new_alias, rcuhead);
1216 
1217 	return len;
1218 }
1219 EXPORT_SYMBOL(dev_set_alias);
1220 
1221 /**
1222  *	dev_get_alias - get ifalias of a device
1223  *	@dev: device
1224  *	@name: buffer to store name of ifalias
1225  *	@len: size of buffer
1226  *
1227  *	get ifalias for a device.  Caller must make sure dev cannot go
1228  *	away,  e.g. rcu read lock or own a reference count to device.
1229  */
1230 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1231 {
1232 	const struct dev_ifalias *alias;
1233 	int ret = 0;
1234 
1235 	rcu_read_lock();
1236 	alias = rcu_dereference(dev->ifalias);
1237 	if (alias)
1238 		ret = snprintf(name, len, "%s", alias->ifalias);
1239 	rcu_read_unlock();
1240 
1241 	return ret;
1242 }
1243 
1244 /**
1245  *	netdev_features_change - device changes features
1246  *	@dev: device to cause notification
1247  *
1248  *	Called to indicate a device has changed features.
1249  */
1250 void netdev_features_change(struct net_device *dev)
1251 {
1252 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1253 }
1254 EXPORT_SYMBOL(netdev_features_change);
1255 
1256 /**
1257  *	netdev_state_change - device changes state
1258  *	@dev: device to cause notification
1259  *
1260  *	Called to indicate a device has changed state. This function calls
1261  *	the notifier chains for netdev_chain and sends a NEWLINK message
1262  *	to the routing socket.
1263  */
1264 void netdev_state_change(struct net_device *dev)
1265 {
1266 	if (dev->flags & IFF_UP) {
1267 		struct netdev_notifier_change_info change_info = {
1268 			.info.dev = dev,
1269 		};
1270 
1271 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1272 					      &change_info.info);
1273 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1274 	}
1275 }
1276 EXPORT_SYMBOL(netdev_state_change);
1277 
1278 /**
1279  * netdev_notify_peers - notify network peers about existence of @dev
1280  * @dev: network device
1281  *
1282  * Generate traffic such that interested network peers are aware of
1283  * @dev, such as by generating a gratuitous ARP. This may be used when
1284  * a device wants to inform the rest of the network about some sort of
1285  * reconfiguration such as a failover event or virtual machine
1286  * migration.
1287  */
1288 void netdev_notify_peers(struct net_device *dev)
1289 {
1290 	rtnl_lock();
1291 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1292 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1293 	rtnl_unlock();
1294 }
1295 EXPORT_SYMBOL(netdev_notify_peers);
1296 
1297 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1298 {
1299 	const struct net_device_ops *ops = dev->netdev_ops;
1300 	int ret;
1301 
1302 	ASSERT_RTNL();
1303 
1304 	if (!netif_device_present(dev))
1305 		return -ENODEV;
1306 
1307 	/* Block netpoll from trying to do any rx path servicing.
1308 	 * If we don't do this there is a chance ndo_poll_controller
1309 	 * or ndo_poll may be running while we open the device
1310 	 */
1311 	netpoll_poll_disable(dev);
1312 
1313 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1314 	ret = notifier_to_errno(ret);
1315 	if (ret)
1316 		return ret;
1317 
1318 	set_bit(__LINK_STATE_START, &dev->state);
1319 
1320 	if (ops->ndo_validate_addr)
1321 		ret = ops->ndo_validate_addr(dev);
1322 
1323 	if (!ret && ops->ndo_open)
1324 		ret = ops->ndo_open(dev);
1325 
1326 	netpoll_poll_enable(dev);
1327 
1328 	if (ret)
1329 		clear_bit(__LINK_STATE_START, &dev->state);
1330 	else {
1331 		dev->flags |= IFF_UP;
1332 		dev_set_rx_mode(dev);
1333 		dev_activate(dev);
1334 		add_device_randomness(dev->dev_addr, dev->addr_len);
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 /**
1341  *	dev_open	- prepare an interface for use.
1342  *	@dev: device to open
1343  *	@extack: netlink extended ack
1344  *
1345  *	Takes a device from down to up state. The device's private open
1346  *	function is invoked and then the multicast lists are loaded. Finally
1347  *	the device is moved into the up state and a %NETDEV_UP message is
1348  *	sent to the netdev notifier chain.
1349  *
1350  *	Calling this function on an active interface is a nop. On a failure
1351  *	a negative errno code is returned.
1352  */
1353 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1354 {
1355 	int ret;
1356 
1357 	if (dev->flags & IFF_UP)
1358 		return 0;
1359 
1360 	ret = __dev_open(dev, extack);
1361 	if (ret < 0)
1362 		return ret;
1363 
1364 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1365 	call_netdevice_notifiers(NETDEV_UP, dev);
1366 
1367 	return ret;
1368 }
1369 EXPORT_SYMBOL(dev_open);
1370 
1371 static void __dev_close_many(struct list_head *head)
1372 {
1373 	struct net_device *dev;
1374 
1375 	ASSERT_RTNL();
1376 	might_sleep();
1377 
1378 	list_for_each_entry(dev, head, close_list) {
1379 		/* Temporarily disable netpoll until the interface is down */
1380 		netpoll_poll_disable(dev);
1381 
1382 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1383 
1384 		clear_bit(__LINK_STATE_START, &dev->state);
1385 
1386 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1387 		 * can be even on different cpu. So just clear netif_running().
1388 		 *
1389 		 * dev->stop() will invoke napi_disable() on all of it's
1390 		 * napi_struct instances on this device.
1391 		 */
1392 		smp_mb__after_atomic(); /* Commit netif_running(). */
1393 	}
1394 
1395 	dev_deactivate_many(head);
1396 
1397 	list_for_each_entry(dev, head, close_list) {
1398 		const struct net_device_ops *ops = dev->netdev_ops;
1399 
1400 		/*
1401 		 *	Call the device specific close. This cannot fail.
1402 		 *	Only if device is UP
1403 		 *
1404 		 *	We allow it to be called even after a DETACH hot-plug
1405 		 *	event.
1406 		 */
1407 		if (ops->ndo_stop)
1408 			ops->ndo_stop(dev);
1409 
1410 		dev->flags &= ~IFF_UP;
1411 		netpoll_poll_enable(dev);
1412 	}
1413 }
1414 
1415 static void __dev_close(struct net_device *dev)
1416 {
1417 	LIST_HEAD(single);
1418 
1419 	list_add(&dev->close_list, &single);
1420 	__dev_close_many(&single);
1421 	list_del(&single);
1422 }
1423 
1424 void dev_close_many(struct list_head *head, bool unlink)
1425 {
1426 	struct net_device *dev, *tmp;
1427 
1428 	/* Remove the devices that don't need to be closed */
1429 	list_for_each_entry_safe(dev, tmp, head, close_list)
1430 		if (!(dev->flags & IFF_UP))
1431 			list_del_init(&dev->close_list);
1432 
1433 	__dev_close_many(head);
1434 
1435 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1436 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1437 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1438 		if (unlink)
1439 			list_del_init(&dev->close_list);
1440 	}
1441 }
1442 EXPORT_SYMBOL(dev_close_many);
1443 
1444 /**
1445  *	dev_close - shutdown an interface.
1446  *	@dev: device to shutdown
1447  *
1448  *	This function moves an active device into down state. A
1449  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1450  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1451  *	chain.
1452  */
1453 void dev_close(struct net_device *dev)
1454 {
1455 	if (dev->flags & IFF_UP) {
1456 		LIST_HEAD(single);
1457 
1458 		list_add(&dev->close_list, &single);
1459 		dev_close_many(&single, true);
1460 		list_del(&single);
1461 	}
1462 }
1463 EXPORT_SYMBOL(dev_close);
1464 
1465 
1466 /**
1467  *	dev_disable_lro - disable Large Receive Offload on a device
1468  *	@dev: device
1469  *
1470  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1471  *	called under RTNL.  This is needed if received packets may be
1472  *	forwarded to another interface.
1473  */
1474 void dev_disable_lro(struct net_device *dev)
1475 {
1476 	struct net_device *lower_dev;
1477 	struct list_head *iter;
1478 
1479 	dev->wanted_features &= ~NETIF_F_LRO;
1480 	netdev_update_features(dev);
1481 
1482 	if (unlikely(dev->features & NETIF_F_LRO))
1483 		netdev_WARN(dev, "failed to disable LRO!\n");
1484 
1485 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1486 		dev_disable_lro(lower_dev);
1487 }
1488 EXPORT_SYMBOL(dev_disable_lro);
1489 
1490 /**
1491  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1492  *	@dev: device
1493  *
1494  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1495  *	called under RTNL.  This is needed if Generic XDP is installed on
1496  *	the device.
1497  */
1498 static void dev_disable_gro_hw(struct net_device *dev)
1499 {
1500 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1501 	netdev_update_features(dev);
1502 
1503 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1504 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1505 }
1506 
1507 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1508 {
1509 #define N(val) 						\
1510 	case NETDEV_##val:				\
1511 		return "NETDEV_" __stringify(val);
1512 	switch (cmd) {
1513 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1514 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1515 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1516 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1517 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1518 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1519 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1520 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1521 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1522 	N(PRE_CHANGEADDR)
1523 	}
1524 #undef N
1525 	return "UNKNOWN_NETDEV_EVENT";
1526 }
1527 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1528 
1529 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1530 				   struct net_device *dev)
1531 {
1532 	struct netdev_notifier_info info = {
1533 		.dev = dev,
1534 	};
1535 
1536 	return nb->notifier_call(nb, val, &info);
1537 }
1538 
1539 static int dev_boot_phase = 1;
1540 
1541 /**
1542  * register_netdevice_notifier - register a network notifier block
1543  * @nb: notifier
1544  *
1545  * Register a notifier to be called when network device events occur.
1546  * The notifier passed is linked into the kernel structures and must
1547  * not be reused until it has been unregistered. A negative errno code
1548  * is returned on a failure.
1549  *
1550  * When registered all registration and up events are replayed
1551  * to the new notifier to allow device to have a race free
1552  * view of the network device list.
1553  */
1554 
1555 int register_netdevice_notifier(struct notifier_block *nb)
1556 {
1557 	struct net_device *dev;
1558 	struct net_device *last;
1559 	struct net *net;
1560 	int err;
1561 
1562 	/* Close race with setup_net() and cleanup_net() */
1563 	down_write(&pernet_ops_rwsem);
1564 	rtnl_lock();
1565 	err = raw_notifier_chain_register(&netdev_chain, nb);
1566 	if (err)
1567 		goto unlock;
1568 	if (dev_boot_phase)
1569 		goto unlock;
1570 	for_each_net(net) {
1571 		for_each_netdev(net, dev) {
1572 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1573 			err = notifier_to_errno(err);
1574 			if (err)
1575 				goto rollback;
1576 
1577 			if (!(dev->flags & IFF_UP))
1578 				continue;
1579 
1580 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1581 		}
1582 	}
1583 
1584 unlock:
1585 	rtnl_unlock();
1586 	up_write(&pernet_ops_rwsem);
1587 	return err;
1588 
1589 rollback:
1590 	last = dev;
1591 	for_each_net(net) {
1592 		for_each_netdev(net, dev) {
1593 			if (dev == last)
1594 				goto outroll;
1595 
1596 			if (dev->flags & IFF_UP) {
1597 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1598 							dev);
1599 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1600 			}
1601 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1602 		}
1603 	}
1604 
1605 outroll:
1606 	raw_notifier_chain_unregister(&netdev_chain, nb);
1607 	goto unlock;
1608 }
1609 EXPORT_SYMBOL(register_netdevice_notifier);
1610 
1611 /**
1612  * unregister_netdevice_notifier - unregister a network notifier block
1613  * @nb: notifier
1614  *
1615  * Unregister a notifier previously registered by
1616  * register_netdevice_notifier(). The notifier is unlinked into the
1617  * kernel structures and may then be reused. A negative errno code
1618  * is returned on a failure.
1619  *
1620  * After unregistering unregister and down device events are synthesized
1621  * for all devices on the device list to the removed notifier to remove
1622  * the need for special case cleanup code.
1623  */
1624 
1625 int unregister_netdevice_notifier(struct notifier_block *nb)
1626 {
1627 	struct net_device *dev;
1628 	struct net *net;
1629 	int err;
1630 
1631 	/* Close race with setup_net() and cleanup_net() */
1632 	down_write(&pernet_ops_rwsem);
1633 	rtnl_lock();
1634 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1635 	if (err)
1636 		goto unlock;
1637 
1638 	for_each_net(net) {
1639 		for_each_netdev(net, dev) {
1640 			if (dev->flags & IFF_UP) {
1641 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1642 							dev);
1643 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1644 			}
1645 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1646 		}
1647 	}
1648 unlock:
1649 	rtnl_unlock();
1650 	up_write(&pernet_ops_rwsem);
1651 	return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654 
1655 /**
1656  *	call_netdevice_notifiers_info - call all network notifier blocks
1657  *	@val: value passed unmodified to notifier function
1658  *	@info: notifier information data
1659  *
1660  *	Call all network notifier blocks.  Parameters and return value
1661  *	are as for raw_notifier_call_chain().
1662  */
1663 
1664 static int call_netdevice_notifiers_info(unsigned long val,
1665 					 struct netdev_notifier_info *info)
1666 {
1667 	ASSERT_RTNL();
1668 	return raw_notifier_call_chain(&netdev_chain, val, info);
1669 }
1670 
1671 static int call_netdevice_notifiers_extack(unsigned long val,
1672 					   struct net_device *dev,
1673 					   struct netlink_ext_ack *extack)
1674 {
1675 	struct netdev_notifier_info info = {
1676 		.dev = dev,
1677 		.extack = extack,
1678 	};
1679 
1680 	return call_netdevice_notifiers_info(val, &info);
1681 }
1682 
1683 /**
1684  *	call_netdevice_notifiers - call all network notifier blocks
1685  *      @val: value passed unmodified to notifier function
1686  *      @dev: net_device pointer passed unmodified to notifier function
1687  *
1688  *	Call all network notifier blocks.  Parameters and return value
1689  *	are as for raw_notifier_call_chain().
1690  */
1691 
1692 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1693 {
1694 	return call_netdevice_notifiers_extack(val, dev, NULL);
1695 }
1696 EXPORT_SYMBOL(call_netdevice_notifiers);
1697 
1698 /**
1699  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1700  *	@val: value passed unmodified to notifier function
1701  *	@dev: net_device pointer passed unmodified to notifier function
1702  *	@arg: additional u32 argument passed to the notifier function
1703  *
1704  *	Call all network notifier blocks.  Parameters and return value
1705  *	are as for raw_notifier_call_chain().
1706  */
1707 static int call_netdevice_notifiers_mtu(unsigned long val,
1708 					struct net_device *dev, u32 arg)
1709 {
1710 	struct netdev_notifier_info_ext info = {
1711 		.info.dev = dev,
1712 		.ext.mtu = arg,
1713 	};
1714 
1715 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1716 
1717 	return call_netdevice_notifiers_info(val, &info.info);
1718 }
1719 
1720 #ifdef CONFIG_NET_INGRESS
1721 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1722 
1723 void net_inc_ingress_queue(void)
1724 {
1725 	static_branch_inc(&ingress_needed_key);
1726 }
1727 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1728 
1729 void net_dec_ingress_queue(void)
1730 {
1731 	static_branch_dec(&ingress_needed_key);
1732 }
1733 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1734 #endif
1735 
1736 #ifdef CONFIG_NET_EGRESS
1737 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1738 
1739 void net_inc_egress_queue(void)
1740 {
1741 	static_branch_inc(&egress_needed_key);
1742 }
1743 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1744 
1745 void net_dec_egress_queue(void)
1746 {
1747 	static_branch_dec(&egress_needed_key);
1748 }
1749 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1750 #endif
1751 
1752 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1753 #ifdef CONFIG_JUMP_LABEL
1754 static atomic_t netstamp_needed_deferred;
1755 static atomic_t netstamp_wanted;
1756 static void netstamp_clear(struct work_struct *work)
1757 {
1758 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1759 	int wanted;
1760 
1761 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1762 	if (wanted > 0)
1763 		static_branch_enable(&netstamp_needed_key);
1764 	else
1765 		static_branch_disable(&netstamp_needed_key);
1766 }
1767 static DECLARE_WORK(netstamp_work, netstamp_clear);
1768 #endif
1769 
1770 void net_enable_timestamp(void)
1771 {
1772 #ifdef CONFIG_JUMP_LABEL
1773 	int wanted;
1774 
1775 	while (1) {
1776 		wanted = atomic_read(&netstamp_wanted);
1777 		if (wanted <= 0)
1778 			break;
1779 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1780 			return;
1781 	}
1782 	atomic_inc(&netstamp_needed_deferred);
1783 	schedule_work(&netstamp_work);
1784 #else
1785 	static_branch_inc(&netstamp_needed_key);
1786 #endif
1787 }
1788 EXPORT_SYMBOL(net_enable_timestamp);
1789 
1790 void net_disable_timestamp(void)
1791 {
1792 #ifdef CONFIG_JUMP_LABEL
1793 	int wanted;
1794 
1795 	while (1) {
1796 		wanted = atomic_read(&netstamp_wanted);
1797 		if (wanted <= 1)
1798 			break;
1799 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1800 			return;
1801 	}
1802 	atomic_dec(&netstamp_needed_deferred);
1803 	schedule_work(&netstamp_work);
1804 #else
1805 	static_branch_dec(&netstamp_needed_key);
1806 #endif
1807 }
1808 EXPORT_SYMBOL(net_disable_timestamp);
1809 
1810 static inline void net_timestamp_set(struct sk_buff *skb)
1811 {
1812 	skb->tstamp = 0;
1813 	if (static_branch_unlikely(&netstamp_needed_key))
1814 		__net_timestamp(skb);
1815 }
1816 
1817 #define net_timestamp_check(COND, SKB)				\
1818 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1819 		if ((COND) && !(SKB)->tstamp)			\
1820 			__net_timestamp(SKB);			\
1821 	}							\
1822 
1823 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1824 {
1825 	unsigned int len;
1826 
1827 	if (!(dev->flags & IFF_UP))
1828 		return false;
1829 
1830 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1831 	if (skb->len <= len)
1832 		return true;
1833 
1834 	/* if TSO is enabled, we don't care about the length as the packet
1835 	 * could be forwarded without being segmented before
1836 	 */
1837 	if (skb_is_gso(skb))
1838 		return true;
1839 
1840 	return false;
1841 }
1842 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1843 
1844 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1845 {
1846 	int ret = ____dev_forward_skb(dev, skb);
1847 
1848 	if (likely(!ret)) {
1849 		skb->protocol = eth_type_trans(skb, dev);
1850 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1851 	}
1852 
1853 	return ret;
1854 }
1855 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1856 
1857 /**
1858  * dev_forward_skb - loopback an skb to another netif
1859  *
1860  * @dev: destination network device
1861  * @skb: buffer to forward
1862  *
1863  * return values:
1864  *	NET_RX_SUCCESS	(no congestion)
1865  *	NET_RX_DROP     (packet was dropped, but freed)
1866  *
1867  * dev_forward_skb can be used for injecting an skb from the
1868  * start_xmit function of one device into the receive queue
1869  * of another device.
1870  *
1871  * The receiving device may be in another namespace, so
1872  * we have to clear all information in the skb that could
1873  * impact namespace isolation.
1874  */
1875 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1876 {
1877 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1878 }
1879 EXPORT_SYMBOL_GPL(dev_forward_skb);
1880 
1881 static inline int deliver_skb(struct sk_buff *skb,
1882 			      struct packet_type *pt_prev,
1883 			      struct net_device *orig_dev)
1884 {
1885 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1886 		return -ENOMEM;
1887 	refcount_inc(&skb->users);
1888 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1889 }
1890 
1891 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1892 					  struct packet_type **pt,
1893 					  struct net_device *orig_dev,
1894 					  __be16 type,
1895 					  struct list_head *ptype_list)
1896 {
1897 	struct packet_type *ptype, *pt_prev = *pt;
1898 
1899 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1900 		if (ptype->type != type)
1901 			continue;
1902 		if (pt_prev)
1903 			deliver_skb(skb, pt_prev, orig_dev);
1904 		pt_prev = ptype;
1905 	}
1906 	*pt = pt_prev;
1907 }
1908 
1909 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1910 {
1911 	if (!ptype->af_packet_priv || !skb->sk)
1912 		return false;
1913 
1914 	if (ptype->id_match)
1915 		return ptype->id_match(ptype, skb->sk);
1916 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1917 		return true;
1918 
1919 	return false;
1920 }
1921 
1922 /**
1923  * dev_nit_active - return true if any network interface taps are in use
1924  *
1925  * @dev: network device to check for the presence of taps
1926  */
1927 bool dev_nit_active(struct net_device *dev)
1928 {
1929 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1930 }
1931 EXPORT_SYMBOL_GPL(dev_nit_active);
1932 
1933 /*
1934  *	Support routine. Sends outgoing frames to any network
1935  *	taps currently in use.
1936  */
1937 
1938 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1939 {
1940 	struct packet_type *ptype;
1941 	struct sk_buff *skb2 = NULL;
1942 	struct packet_type *pt_prev = NULL;
1943 	struct list_head *ptype_list = &ptype_all;
1944 
1945 	rcu_read_lock();
1946 again:
1947 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1948 		if (ptype->ignore_outgoing)
1949 			continue;
1950 
1951 		/* Never send packets back to the socket
1952 		 * they originated from - MvS (miquels@drinkel.ow.org)
1953 		 */
1954 		if (skb_loop_sk(ptype, skb))
1955 			continue;
1956 
1957 		if (pt_prev) {
1958 			deliver_skb(skb2, pt_prev, skb->dev);
1959 			pt_prev = ptype;
1960 			continue;
1961 		}
1962 
1963 		/* need to clone skb, done only once */
1964 		skb2 = skb_clone(skb, GFP_ATOMIC);
1965 		if (!skb2)
1966 			goto out_unlock;
1967 
1968 		net_timestamp_set(skb2);
1969 
1970 		/* skb->nh should be correctly
1971 		 * set by sender, so that the second statement is
1972 		 * just protection against buggy protocols.
1973 		 */
1974 		skb_reset_mac_header(skb2);
1975 
1976 		if (skb_network_header(skb2) < skb2->data ||
1977 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1978 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1979 					     ntohs(skb2->protocol),
1980 					     dev->name);
1981 			skb_reset_network_header(skb2);
1982 		}
1983 
1984 		skb2->transport_header = skb2->network_header;
1985 		skb2->pkt_type = PACKET_OUTGOING;
1986 		pt_prev = ptype;
1987 	}
1988 
1989 	if (ptype_list == &ptype_all) {
1990 		ptype_list = &dev->ptype_all;
1991 		goto again;
1992 	}
1993 out_unlock:
1994 	if (pt_prev) {
1995 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1996 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1997 		else
1998 			kfree_skb(skb2);
1999 	}
2000 	rcu_read_unlock();
2001 }
2002 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2003 
2004 /**
2005  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2006  * @dev: Network device
2007  * @txq: number of queues available
2008  *
2009  * If real_num_tx_queues is changed the tc mappings may no longer be
2010  * valid. To resolve this verify the tc mapping remains valid and if
2011  * not NULL the mapping. With no priorities mapping to this
2012  * offset/count pair it will no longer be used. In the worst case TC0
2013  * is invalid nothing can be done so disable priority mappings. If is
2014  * expected that drivers will fix this mapping if they can before
2015  * calling netif_set_real_num_tx_queues.
2016  */
2017 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2018 {
2019 	int i;
2020 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2021 
2022 	/* If TC0 is invalidated disable TC mapping */
2023 	if (tc->offset + tc->count > txq) {
2024 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2025 		dev->num_tc = 0;
2026 		return;
2027 	}
2028 
2029 	/* Invalidated prio to tc mappings set to TC0 */
2030 	for (i = 1; i < TC_BITMASK + 1; i++) {
2031 		int q = netdev_get_prio_tc_map(dev, i);
2032 
2033 		tc = &dev->tc_to_txq[q];
2034 		if (tc->offset + tc->count > txq) {
2035 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2036 				i, q);
2037 			netdev_set_prio_tc_map(dev, i, 0);
2038 		}
2039 	}
2040 }
2041 
2042 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2043 {
2044 	if (dev->num_tc) {
2045 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2046 		int i;
2047 
2048 		/* walk through the TCs and see if it falls into any of them */
2049 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2050 			if ((txq - tc->offset) < tc->count)
2051 				return i;
2052 		}
2053 
2054 		/* didn't find it, just return -1 to indicate no match */
2055 		return -1;
2056 	}
2057 
2058 	return 0;
2059 }
2060 EXPORT_SYMBOL(netdev_txq_to_tc);
2061 
2062 #ifdef CONFIG_XPS
2063 struct static_key xps_needed __read_mostly;
2064 EXPORT_SYMBOL(xps_needed);
2065 struct static_key xps_rxqs_needed __read_mostly;
2066 EXPORT_SYMBOL(xps_rxqs_needed);
2067 static DEFINE_MUTEX(xps_map_mutex);
2068 #define xmap_dereference(P)		\
2069 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2070 
2071 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2072 			     int tci, u16 index)
2073 {
2074 	struct xps_map *map = NULL;
2075 	int pos;
2076 
2077 	if (dev_maps)
2078 		map = xmap_dereference(dev_maps->attr_map[tci]);
2079 	if (!map)
2080 		return false;
2081 
2082 	for (pos = map->len; pos--;) {
2083 		if (map->queues[pos] != index)
2084 			continue;
2085 
2086 		if (map->len > 1) {
2087 			map->queues[pos] = map->queues[--map->len];
2088 			break;
2089 		}
2090 
2091 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2092 		kfree_rcu(map, rcu);
2093 		return false;
2094 	}
2095 
2096 	return true;
2097 }
2098 
2099 static bool remove_xps_queue_cpu(struct net_device *dev,
2100 				 struct xps_dev_maps *dev_maps,
2101 				 int cpu, u16 offset, u16 count)
2102 {
2103 	int num_tc = dev->num_tc ? : 1;
2104 	bool active = false;
2105 	int tci;
2106 
2107 	for (tci = cpu * num_tc; num_tc--; tci++) {
2108 		int i, j;
2109 
2110 		for (i = count, j = offset; i--; j++) {
2111 			if (!remove_xps_queue(dev_maps, tci, j))
2112 				break;
2113 		}
2114 
2115 		active |= i < 0;
2116 	}
2117 
2118 	return active;
2119 }
2120 
2121 static void reset_xps_maps(struct net_device *dev,
2122 			   struct xps_dev_maps *dev_maps,
2123 			   bool is_rxqs_map)
2124 {
2125 	if (is_rxqs_map) {
2126 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2127 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2128 	} else {
2129 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2130 	}
2131 	static_key_slow_dec_cpuslocked(&xps_needed);
2132 	kfree_rcu(dev_maps, rcu);
2133 }
2134 
2135 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2136 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2137 			   u16 offset, u16 count, bool is_rxqs_map)
2138 {
2139 	bool active = false;
2140 	int i, j;
2141 
2142 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2143 	     j < nr_ids;)
2144 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2145 					       count);
2146 	if (!active)
2147 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2148 
2149 	if (!is_rxqs_map) {
2150 		for (i = offset + (count - 1); count--; i--) {
2151 			netdev_queue_numa_node_write(
2152 				netdev_get_tx_queue(dev, i),
2153 				NUMA_NO_NODE);
2154 		}
2155 	}
2156 }
2157 
2158 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2159 				   u16 count)
2160 {
2161 	const unsigned long *possible_mask = NULL;
2162 	struct xps_dev_maps *dev_maps;
2163 	unsigned int nr_ids;
2164 
2165 	if (!static_key_false(&xps_needed))
2166 		return;
2167 
2168 	cpus_read_lock();
2169 	mutex_lock(&xps_map_mutex);
2170 
2171 	if (static_key_false(&xps_rxqs_needed)) {
2172 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2173 		if (dev_maps) {
2174 			nr_ids = dev->num_rx_queues;
2175 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2176 				       offset, count, true);
2177 		}
2178 	}
2179 
2180 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2181 	if (!dev_maps)
2182 		goto out_no_maps;
2183 
2184 	if (num_possible_cpus() > 1)
2185 		possible_mask = cpumask_bits(cpu_possible_mask);
2186 	nr_ids = nr_cpu_ids;
2187 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2188 		       false);
2189 
2190 out_no_maps:
2191 	mutex_unlock(&xps_map_mutex);
2192 	cpus_read_unlock();
2193 }
2194 
2195 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2196 {
2197 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2198 }
2199 
2200 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2201 				      u16 index, bool is_rxqs_map)
2202 {
2203 	struct xps_map *new_map;
2204 	int alloc_len = XPS_MIN_MAP_ALLOC;
2205 	int i, pos;
2206 
2207 	for (pos = 0; map && pos < map->len; pos++) {
2208 		if (map->queues[pos] != index)
2209 			continue;
2210 		return map;
2211 	}
2212 
2213 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2214 	if (map) {
2215 		if (pos < map->alloc_len)
2216 			return map;
2217 
2218 		alloc_len = map->alloc_len * 2;
2219 	}
2220 
2221 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2222 	 *  map
2223 	 */
2224 	if (is_rxqs_map)
2225 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2226 	else
2227 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2228 				       cpu_to_node(attr_index));
2229 	if (!new_map)
2230 		return NULL;
2231 
2232 	for (i = 0; i < pos; i++)
2233 		new_map->queues[i] = map->queues[i];
2234 	new_map->alloc_len = alloc_len;
2235 	new_map->len = pos;
2236 
2237 	return new_map;
2238 }
2239 
2240 /* Must be called under cpus_read_lock */
2241 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2242 			  u16 index, bool is_rxqs_map)
2243 {
2244 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2245 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2246 	int i, j, tci, numa_node_id = -2;
2247 	int maps_sz, num_tc = 1, tc = 0;
2248 	struct xps_map *map, *new_map;
2249 	bool active = false;
2250 	unsigned int nr_ids;
2251 
2252 	if (dev->num_tc) {
2253 		/* Do not allow XPS on subordinate device directly */
2254 		num_tc = dev->num_tc;
2255 		if (num_tc < 0)
2256 			return -EINVAL;
2257 
2258 		/* If queue belongs to subordinate dev use its map */
2259 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2260 
2261 		tc = netdev_txq_to_tc(dev, index);
2262 		if (tc < 0)
2263 			return -EINVAL;
2264 	}
2265 
2266 	mutex_lock(&xps_map_mutex);
2267 	if (is_rxqs_map) {
2268 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2269 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2270 		nr_ids = dev->num_rx_queues;
2271 	} else {
2272 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2273 		if (num_possible_cpus() > 1) {
2274 			online_mask = cpumask_bits(cpu_online_mask);
2275 			possible_mask = cpumask_bits(cpu_possible_mask);
2276 		}
2277 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2278 		nr_ids = nr_cpu_ids;
2279 	}
2280 
2281 	if (maps_sz < L1_CACHE_BYTES)
2282 		maps_sz = L1_CACHE_BYTES;
2283 
2284 	/* allocate memory for queue storage */
2285 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2286 	     j < nr_ids;) {
2287 		if (!new_dev_maps)
2288 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2289 		if (!new_dev_maps) {
2290 			mutex_unlock(&xps_map_mutex);
2291 			return -ENOMEM;
2292 		}
2293 
2294 		tci = j * num_tc + tc;
2295 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2296 				 NULL;
2297 
2298 		map = expand_xps_map(map, j, index, is_rxqs_map);
2299 		if (!map)
2300 			goto error;
2301 
2302 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2303 	}
2304 
2305 	if (!new_dev_maps)
2306 		goto out_no_new_maps;
2307 
2308 	if (!dev_maps) {
2309 		/* Increment static keys at most once per type */
2310 		static_key_slow_inc_cpuslocked(&xps_needed);
2311 		if (is_rxqs_map)
2312 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2313 	}
2314 
2315 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2316 	     j < nr_ids;) {
2317 		/* copy maps belonging to foreign traffic classes */
2318 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2319 			/* fill in the new device map from the old device map */
2320 			map = xmap_dereference(dev_maps->attr_map[tci]);
2321 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2322 		}
2323 
2324 		/* We need to explicitly update tci as prevous loop
2325 		 * could break out early if dev_maps is NULL.
2326 		 */
2327 		tci = j * num_tc + tc;
2328 
2329 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2330 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2331 			/* add tx-queue to CPU/rx-queue maps */
2332 			int pos = 0;
2333 
2334 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2335 			while ((pos < map->len) && (map->queues[pos] != index))
2336 				pos++;
2337 
2338 			if (pos == map->len)
2339 				map->queues[map->len++] = index;
2340 #ifdef CONFIG_NUMA
2341 			if (!is_rxqs_map) {
2342 				if (numa_node_id == -2)
2343 					numa_node_id = cpu_to_node(j);
2344 				else if (numa_node_id != cpu_to_node(j))
2345 					numa_node_id = -1;
2346 			}
2347 #endif
2348 		} else if (dev_maps) {
2349 			/* fill in the new device map from the old device map */
2350 			map = xmap_dereference(dev_maps->attr_map[tci]);
2351 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2352 		}
2353 
2354 		/* copy maps belonging to foreign traffic classes */
2355 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2356 			/* fill in the new device map from the old device map */
2357 			map = xmap_dereference(dev_maps->attr_map[tci]);
2358 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2359 		}
2360 	}
2361 
2362 	if (is_rxqs_map)
2363 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2364 	else
2365 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2366 
2367 	/* Cleanup old maps */
2368 	if (!dev_maps)
2369 		goto out_no_old_maps;
2370 
2371 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2372 	     j < nr_ids;) {
2373 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2374 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2375 			map = xmap_dereference(dev_maps->attr_map[tci]);
2376 			if (map && map != new_map)
2377 				kfree_rcu(map, rcu);
2378 		}
2379 	}
2380 
2381 	kfree_rcu(dev_maps, rcu);
2382 
2383 out_no_old_maps:
2384 	dev_maps = new_dev_maps;
2385 	active = true;
2386 
2387 out_no_new_maps:
2388 	if (!is_rxqs_map) {
2389 		/* update Tx queue numa node */
2390 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2391 					     (numa_node_id >= 0) ?
2392 					     numa_node_id : NUMA_NO_NODE);
2393 	}
2394 
2395 	if (!dev_maps)
2396 		goto out_no_maps;
2397 
2398 	/* removes tx-queue from unused CPUs/rx-queues */
2399 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2400 	     j < nr_ids;) {
2401 		for (i = tc, tci = j * num_tc; i--; tci++)
2402 			active |= remove_xps_queue(dev_maps, tci, index);
2403 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2404 		    !netif_attr_test_online(j, online_mask, nr_ids))
2405 			active |= remove_xps_queue(dev_maps, tci, index);
2406 		for (i = num_tc - tc, tci++; --i; tci++)
2407 			active |= remove_xps_queue(dev_maps, tci, index);
2408 	}
2409 
2410 	/* free map if not active */
2411 	if (!active)
2412 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2413 
2414 out_no_maps:
2415 	mutex_unlock(&xps_map_mutex);
2416 
2417 	return 0;
2418 error:
2419 	/* remove any maps that we added */
2420 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2421 	     j < nr_ids;) {
2422 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2423 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2424 			map = dev_maps ?
2425 			      xmap_dereference(dev_maps->attr_map[tci]) :
2426 			      NULL;
2427 			if (new_map && new_map != map)
2428 				kfree(new_map);
2429 		}
2430 	}
2431 
2432 	mutex_unlock(&xps_map_mutex);
2433 
2434 	kfree(new_dev_maps);
2435 	return -ENOMEM;
2436 }
2437 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2438 
2439 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2440 			u16 index)
2441 {
2442 	int ret;
2443 
2444 	cpus_read_lock();
2445 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2446 	cpus_read_unlock();
2447 
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL(netif_set_xps_queue);
2451 
2452 #endif
2453 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2454 {
2455 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2456 
2457 	/* Unbind any subordinate channels */
2458 	while (txq-- != &dev->_tx[0]) {
2459 		if (txq->sb_dev)
2460 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2461 	}
2462 }
2463 
2464 void netdev_reset_tc(struct net_device *dev)
2465 {
2466 #ifdef CONFIG_XPS
2467 	netif_reset_xps_queues_gt(dev, 0);
2468 #endif
2469 	netdev_unbind_all_sb_channels(dev);
2470 
2471 	/* Reset TC configuration of device */
2472 	dev->num_tc = 0;
2473 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2474 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2475 }
2476 EXPORT_SYMBOL(netdev_reset_tc);
2477 
2478 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2479 {
2480 	if (tc >= dev->num_tc)
2481 		return -EINVAL;
2482 
2483 #ifdef CONFIG_XPS
2484 	netif_reset_xps_queues(dev, offset, count);
2485 #endif
2486 	dev->tc_to_txq[tc].count = count;
2487 	dev->tc_to_txq[tc].offset = offset;
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL(netdev_set_tc_queue);
2491 
2492 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2493 {
2494 	if (num_tc > TC_MAX_QUEUE)
2495 		return -EINVAL;
2496 
2497 #ifdef CONFIG_XPS
2498 	netif_reset_xps_queues_gt(dev, 0);
2499 #endif
2500 	netdev_unbind_all_sb_channels(dev);
2501 
2502 	dev->num_tc = num_tc;
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL(netdev_set_num_tc);
2506 
2507 void netdev_unbind_sb_channel(struct net_device *dev,
2508 			      struct net_device *sb_dev)
2509 {
2510 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2511 
2512 #ifdef CONFIG_XPS
2513 	netif_reset_xps_queues_gt(sb_dev, 0);
2514 #endif
2515 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2516 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2517 
2518 	while (txq-- != &dev->_tx[0]) {
2519 		if (txq->sb_dev == sb_dev)
2520 			txq->sb_dev = NULL;
2521 	}
2522 }
2523 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2524 
2525 int netdev_bind_sb_channel_queue(struct net_device *dev,
2526 				 struct net_device *sb_dev,
2527 				 u8 tc, u16 count, u16 offset)
2528 {
2529 	/* Make certain the sb_dev and dev are already configured */
2530 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2531 		return -EINVAL;
2532 
2533 	/* We cannot hand out queues we don't have */
2534 	if ((offset + count) > dev->real_num_tx_queues)
2535 		return -EINVAL;
2536 
2537 	/* Record the mapping */
2538 	sb_dev->tc_to_txq[tc].count = count;
2539 	sb_dev->tc_to_txq[tc].offset = offset;
2540 
2541 	/* Provide a way for Tx queue to find the tc_to_txq map or
2542 	 * XPS map for itself.
2543 	 */
2544 	while (count--)
2545 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2546 
2547 	return 0;
2548 }
2549 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2550 
2551 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2552 {
2553 	/* Do not use a multiqueue device to represent a subordinate channel */
2554 	if (netif_is_multiqueue(dev))
2555 		return -ENODEV;
2556 
2557 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2558 	 * Channel 0 is meant to be "native" mode and used only to represent
2559 	 * the main root device. We allow writing 0 to reset the device back
2560 	 * to normal mode after being used as a subordinate channel.
2561 	 */
2562 	if (channel > S16_MAX)
2563 		return -EINVAL;
2564 
2565 	dev->num_tc = -channel;
2566 
2567 	return 0;
2568 }
2569 EXPORT_SYMBOL(netdev_set_sb_channel);
2570 
2571 /*
2572  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2573  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2574  */
2575 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2576 {
2577 	bool disabling;
2578 	int rc;
2579 
2580 	disabling = txq < dev->real_num_tx_queues;
2581 
2582 	if (txq < 1 || txq > dev->num_tx_queues)
2583 		return -EINVAL;
2584 
2585 	if (dev->reg_state == NETREG_REGISTERED ||
2586 	    dev->reg_state == NETREG_UNREGISTERING) {
2587 		ASSERT_RTNL();
2588 
2589 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2590 						  txq);
2591 		if (rc)
2592 			return rc;
2593 
2594 		if (dev->num_tc)
2595 			netif_setup_tc(dev, txq);
2596 
2597 		dev->real_num_tx_queues = txq;
2598 
2599 		if (disabling) {
2600 			synchronize_net();
2601 			qdisc_reset_all_tx_gt(dev, txq);
2602 #ifdef CONFIG_XPS
2603 			netif_reset_xps_queues_gt(dev, txq);
2604 #endif
2605 		}
2606 	} else {
2607 		dev->real_num_tx_queues = txq;
2608 	}
2609 
2610 	return 0;
2611 }
2612 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2613 
2614 #ifdef CONFIG_SYSFS
2615 /**
2616  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2617  *	@dev: Network device
2618  *	@rxq: Actual number of RX queues
2619  *
2620  *	This must be called either with the rtnl_lock held or before
2621  *	registration of the net device.  Returns 0 on success, or a
2622  *	negative error code.  If called before registration, it always
2623  *	succeeds.
2624  */
2625 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2626 {
2627 	int rc;
2628 
2629 	if (rxq < 1 || rxq > dev->num_rx_queues)
2630 		return -EINVAL;
2631 
2632 	if (dev->reg_state == NETREG_REGISTERED) {
2633 		ASSERT_RTNL();
2634 
2635 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2636 						  rxq);
2637 		if (rc)
2638 			return rc;
2639 	}
2640 
2641 	dev->real_num_rx_queues = rxq;
2642 	return 0;
2643 }
2644 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2645 #endif
2646 
2647 /**
2648  * netif_get_num_default_rss_queues - default number of RSS queues
2649  *
2650  * This routine should set an upper limit on the number of RSS queues
2651  * used by default by multiqueue devices.
2652  */
2653 int netif_get_num_default_rss_queues(void)
2654 {
2655 	return is_kdump_kernel() ?
2656 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2657 }
2658 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2659 
2660 static void __netif_reschedule(struct Qdisc *q)
2661 {
2662 	struct softnet_data *sd;
2663 	unsigned long flags;
2664 
2665 	local_irq_save(flags);
2666 	sd = this_cpu_ptr(&softnet_data);
2667 	q->next_sched = NULL;
2668 	*sd->output_queue_tailp = q;
2669 	sd->output_queue_tailp = &q->next_sched;
2670 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2671 	local_irq_restore(flags);
2672 }
2673 
2674 void __netif_schedule(struct Qdisc *q)
2675 {
2676 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2677 		__netif_reschedule(q);
2678 }
2679 EXPORT_SYMBOL(__netif_schedule);
2680 
2681 struct dev_kfree_skb_cb {
2682 	enum skb_free_reason reason;
2683 };
2684 
2685 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2686 {
2687 	return (struct dev_kfree_skb_cb *)skb->cb;
2688 }
2689 
2690 void netif_schedule_queue(struct netdev_queue *txq)
2691 {
2692 	rcu_read_lock();
2693 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2694 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2695 
2696 		__netif_schedule(q);
2697 	}
2698 	rcu_read_unlock();
2699 }
2700 EXPORT_SYMBOL(netif_schedule_queue);
2701 
2702 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2703 {
2704 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2705 		struct Qdisc *q;
2706 
2707 		rcu_read_lock();
2708 		q = rcu_dereference(dev_queue->qdisc);
2709 		__netif_schedule(q);
2710 		rcu_read_unlock();
2711 	}
2712 }
2713 EXPORT_SYMBOL(netif_tx_wake_queue);
2714 
2715 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2716 {
2717 	unsigned long flags;
2718 
2719 	if (unlikely(!skb))
2720 		return;
2721 
2722 	if (likely(refcount_read(&skb->users) == 1)) {
2723 		smp_rmb();
2724 		refcount_set(&skb->users, 0);
2725 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2726 		return;
2727 	}
2728 	get_kfree_skb_cb(skb)->reason = reason;
2729 	local_irq_save(flags);
2730 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2731 	__this_cpu_write(softnet_data.completion_queue, skb);
2732 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2733 	local_irq_restore(flags);
2734 }
2735 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2736 
2737 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2738 {
2739 	if (in_irq() || irqs_disabled())
2740 		__dev_kfree_skb_irq(skb, reason);
2741 	else
2742 		dev_kfree_skb(skb);
2743 }
2744 EXPORT_SYMBOL(__dev_kfree_skb_any);
2745 
2746 
2747 /**
2748  * netif_device_detach - mark device as removed
2749  * @dev: network device
2750  *
2751  * Mark device as removed from system and therefore no longer available.
2752  */
2753 void netif_device_detach(struct net_device *dev)
2754 {
2755 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2756 	    netif_running(dev)) {
2757 		netif_tx_stop_all_queues(dev);
2758 	}
2759 }
2760 EXPORT_SYMBOL(netif_device_detach);
2761 
2762 /**
2763  * netif_device_attach - mark device as attached
2764  * @dev: network device
2765  *
2766  * Mark device as attached from system and restart if needed.
2767  */
2768 void netif_device_attach(struct net_device *dev)
2769 {
2770 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2771 	    netif_running(dev)) {
2772 		netif_tx_wake_all_queues(dev);
2773 		__netdev_watchdog_up(dev);
2774 	}
2775 }
2776 EXPORT_SYMBOL(netif_device_attach);
2777 
2778 /*
2779  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2780  * to be used as a distribution range.
2781  */
2782 static u16 skb_tx_hash(const struct net_device *dev,
2783 		       const struct net_device *sb_dev,
2784 		       struct sk_buff *skb)
2785 {
2786 	u32 hash;
2787 	u16 qoffset = 0;
2788 	u16 qcount = dev->real_num_tx_queues;
2789 
2790 	if (dev->num_tc) {
2791 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2792 
2793 		qoffset = sb_dev->tc_to_txq[tc].offset;
2794 		qcount = sb_dev->tc_to_txq[tc].count;
2795 	}
2796 
2797 	if (skb_rx_queue_recorded(skb)) {
2798 		hash = skb_get_rx_queue(skb);
2799 		while (unlikely(hash >= qcount))
2800 			hash -= qcount;
2801 		return hash + qoffset;
2802 	}
2803 
2804 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2805 }
2806 
2807 static void skb_warn_bad_offload(const struct sk_buff *skb)
2808 {
2809 	static const netdev_features_t null_features;
2810 	struct net_device *dev = skb->dev;
2811 	const char *name = "";
2812 
2813 	if (!net_ratelimit())
2814 		return;
2815 
2816 	if (dev) {
2817 		if (dev->dev.parent)
2818 			name = dev_driver_string(dev->dev.parent);
2819 		else
2820 			name = netdev_name(dev);
2821 	}
2822 	skb_dump(KERN_WARNING, skb, false);
2823 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
2824 	     name, dev ? &dev->features : &null_features,
2825 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
2826 }
2827 
2828 /*
2829  * Invalidate hardware checksum when packet is to be mangled, and
2830  * complete checksum manually on outgoing path.
2831  */
2832 int skb_checksum_help(struct sk_buff *skb)
2833 {
2834 	__wsum csum;
2835 	int ret = 0, offset;
2836 
2837 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2838 		goto out_set_summed;
2839 
2840 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2841 		skb_warn_bad_offload(skb);
2842 		return -EINVAL;
2843 	}
2844 
2845 	/* Before computing a checksum, we should make sure no frag could
2846 	 * be modified by an external entity : checksum could be wrong.
2847 	 */
2848 	if (skb_has_shared_frag(skb)) {
2849 		ret = __skb_linearize(skb);
2850 		if (ret)
2851 			goto out;
2852 	}
2853 
2854 	offset = skb_checksum_start_offset(skb);
2855 	BUG_ON(offset >= skb_headlen(skb));
2856 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2857 
2858 	offset += skb->csum_offset;
2859 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2860 
2861 	if (skb_cloned(skb) &&
2862 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2863 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2864 		if (ret)
2865 			goto out;
2866 	}
2867 
2868 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2869 out_set_summed:
2870 	skb->ip_summed = CHECKSUM_NONE;
2871 out:
2872 	return ret;
2873 }
2874 EXPORT_SYMBOL(skb_checksum_help);
2875 
2876 int skb_crc32c_csum_help(struct sk_buff *skb)
2877 {
2878 	__le32 crc32c_csum;
2879 	int ret = 0, offset, start;
2880 
2881 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2882 		goto out;
2883 
2884 	if (unlikely(skb_is_gso(skb)))
2885 		goto out;
2886 
2887 	/* Before computing a checksum, we should make sure no frag could
2888 	 * be modified by an external entity : checksum could be wrong.
2889 	 */
2890 	if (unlikely(skb_has_shared_frag(skb))) {
2891 		ret = __skb_linearize(skb);
2892 		if (ret)
2893 			goto out;
2894 	}
2895 	start = skb_checksum_start_offset(skb);
2896 	offset = start + offsetof(struct sctphdr, checksum);
2897 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2898 		ret = -EINVAL;
2899 		goto out;
2900 	}
2901 	if (skb_cloned(skb) &&
2902 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2903 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904 		if (ret)
2905 			goto out;
2906 	}
2907 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2908 						  skb->len - start, ~(__u32)0,
2909 						  crc32c_csum_stub));
2910 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2911 	skb->ip_summed = CHECKSUM_NONE;
2912 	skb->csum_not_inet = 0;
2913 out:
2914 	return ret;
2915 }
2916 
2917 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2918 {
2919 	__be16 type = skb->protocol;
2920 
2921 	/* Tunnel gso handlers can set protocol to ethernet. */
2922 	if (type == htons(ETH_P_TEB)) {
2923 		struct ethhdr *eth;
2924 
2925 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2926 			return 0;
2927 
2928 		eth = (struct ethhdr *)skb->data;
2929 		type = eth->h_proto;
2930 	}
2931 
2932 	return __vlan_get_protocol(skb, type, depth);
2933 }
2934 
2935 /**
2936  *	skb_mac_gso_segment - mac layer segmentation handler.
2937  *	@skb: buffer to segment
2938  *	@features: features for the output path (see dev->features)
2939  */
2940 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2941 				    netdev_features_t features)
2942 {
2943 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2944 	struct packet_offload *ptype;
2945 	int vlan_depth = skb->mac_len;
2946 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2947 
2948 	if (unlikely(!type))
2949 		return ERR_PTR(-EINVAL);
2950 
2951 	__skb_pull(skb, vlan_depth);
2952 
2953 	rcu_read_lock();
2954 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2955 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2956 			segs = ptype->callbacks.gso_segment(skb, features);
2957 			break;
2958 		}
2959 	}
2960 	rcu_read_unlock();
2961 
2962 	__skb_push(skb, skb->data - skb_mac_header(skb));
2963 
2964 	return segs;
2965 }
2966 EXPORT_SYMBOL(skb_mac_gso_segment);
2967 
2968 
2969 /* openvswitch calls this on rx path, so we need a different check.
2970  */
2971 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2972 {
2973 	if (tx_path)
2974 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2975 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2976 
2977 	return skb->ip_summed == CHECKSUM_NONE;
2978 }
2979 
2980 /**
2981  *	__skb_gso_segment - Perform segmentation on skb.
2982  *	@skb: buffer to segment
2983  *	@features: features for the output path (see dev->features)
2984  *	@tx_path: whether it is called in TX path
2985  *
2986  *	This function segments the given skb and returns a list of segments.
2987  *
2988  *	It may return NULL if the skb requires no segmentation.  This is
2989  *	only possible when GSO is used for verifying header integrity.
2990  *
2991  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2992  */
2993 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2994 				  netdev_features_t features, bool tx_path)
2995 {
2996 	struct sk_buff *segs;
2997 
2998 	if (unlikely(skb_needs_check(skb, tx_path))) {
2999 		int err;
3000 
3001 		/* We're going to init ->check field in TCP or UDP header */
3002 		err = skb_cow_head(skb, 0);
3003 		if (err < 0)
3004 			return ERR_PTR(err);
3005 	}
3006 
3007 	/* Only report GSO partial support if it will enable us to
3008 	 * support segmentation on this frame without needing additional
3009 	 * work.
3010 	 */
3011 	if (features & NETIF_F_GSO_PARTIAL) {
3012 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3013 		struct net_device *dev = skb->dev;
3014 
3015 		partial_features |= dev->features & dev->gso_partial_features;
3016 		if (!skb_gso_ok(skb, features | partial_features))
3017 			features &= ~NETIF_F_GSO_PARTIAL;
3018 	}
3019 
3020 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3021 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3022 
3023 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3024 	SKB_GSO_CB(skb)->encap_level = 0;
3025 
3026 	skb_reset_mac_header(skb);
3027 	skb_reset_mac_len(skb);
3028 
3029 	segs = skb_mac_gso_segment(skb, features);
3030 
3031 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3032 		skb_warn_bad_offload(skb);
3033 
3034 	return segs;
3035 }
3036 EXPORT_SYMBOL(__skb_gso_segment);
3037 
3038 /* Take action when hardware reception checksum errors are detected. */
3039 #ifdef CONFIG_BUG
3040 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3041 {
3042 	if (net_ratelimit()) {
3043 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3044 		skb_dump(KERN_ERR, skb, true);
3045 		dump_stack();
3046 	}
3047 }
3048 EXPORT_SYMBOL(netdev_rx_csum_fault);
3049 #endif
3050 
3051 /* XXX: check that highmem exists at all on the given machine. */
3052 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3053 {
3054 #ifdef CONFIG_HIGHMEM
3055 	int i;
3056 
3057 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3058 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3059 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3060 
3061 			if (PageHighMem(skb_frag_page(frag)))
3062 				return 1;
3063 		}
3064 	}
3065 #endif
3066 	return 0;
3067 }
3068 
3069 /* If MPLS offload request, verify we are testing hardware MPLS features
3070  * instead of standard features for the netdev.
3071  */
3072 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3073 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3074 					   netdev_features_t features,
3075 					   __be16 type)
3076 {
3077 	if (eth_p_mpls(type))
3078 		features &= skb->dev->mpls_features;
3079 
3080 	return features;
3081 }
3082 #else
3083 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3084 					   netdev_features_t features,
3085 					   __be16 type)
3086 {
3087 	return features;
3088 }
3089 #endif
3090 
3091 static netdev_features_t harmonize_features(struct sk_buff *skb,
3092 	netdev_features_t features)
3093 {
3094 	int tmp;
3095 	__be16 type;
3096 
3097 	type = skb_network_protocol(skb, &tmp);
3098 	features = net_mpls_features(skb, features, type);
3099 
3100 	if (skb->ip_summed != CHECKSUM_NONE &&
3101 	    !can_checksum_protocol(features, type)) {
3102 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3103 	}
3104 	if (illegal_highdma(skb->dev, skb))
3105 		features &= ~NETIF_F_SG;
3106 
3107 	return features;
3108 }
3109 
3110 netdev_features_t passthru_features_check(struct sk_buff *skb,
3111 					  struct net_device *dev,
3112 					  netdev_features_t features)
3113 {
3114 	return features;
3115 }
3116 EXPORT_SYMBOL(passthru_features_check);
3117 
3118 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3119 					     struct net_device *dev,
3120 					     netdev_features_t features)
3121 {
3122 	return vlan_features_check(skb, features);
3123 }
3124 
3125 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3126 					    struct net_device *dev,
3127 					    netdev_features_t features)
3128 {
3129 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3130 
3131 	if (gso_segs > dev->gso_max_segs)
3132 		return features & ~NETIF_F_GSO_MASK;
3133 
3134 	/* Support for GSO partial features requires software
3135 	 * intervention before we can actually process the packets
3136 	 * so we need to strip support for any partial features now
3137 	 * and we can pull them back in after we have partially
3138 	 * segmented the frame.
3139 	 */
3140 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3141 		features &= ~dev->gso_partial_features;
3142 
3143 	/* Make sure to clear the IPv4 ID mangling feature if the
3144 	 * IPv4 header has the potential to be fragmented.
3145 	 */
3146 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3147 		struct iphdr *iph = skb->encapsulation ?
3148 				    inner_ip_hdr(skb) : ip_hdr(skb);
3149 
3150 		if (!(iph->frag_off & htons(IP_DF)))
3151 			features &= ~NETIF_F_TSO_MANGLEID;
3152 	}
3153 
3154 	return features;
3155 }
3156 
3157 netdev_features_t netif_skb_features(struct sk_buff *skb)
3158 {
3159 	struct net_device *dev = skb->dev;
3160 	netdev_features_t features = dev->features;
3161 
3162 	if (skb_is_gso(skb))
3163 		features = gso_features_check(skb, dev, features);
3164 
3165 	/* If encapsulation offload request, verify we are testing
3166 	 * hardware encapsulation features instead of standard
3167 	 * features for the netdev
3168 	 */
3169 	if (skb->encapsulation)
3170 		features &= dev->hw_enc_features;
3171 
3172 	if (skb_vlan_tagged(skb))
3173 		features = netdev_intersect_features(features,
3174 						     dev->vlan_features |
3175 						     NETIF_F_HW_VLAN_CTAG_TX |
3176 						     NETIF_F_HW_VLAN_STAG_TX);
3177 
3178 	if (dev->netdev_ops->ndo_features_check)
3179 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3180 								features);
3181 	else
3182 		features &= dflt_features_check(skb, dev, features);
3183 
3184 	return harmonize_features(skb, features);
3185 }
3186 EXPORT_SYMBOL(netif_skb_features);
3187 
3188 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3189 		    struct netdev_queue *txq, bool more)
3190 {
3191 	unsigned int len;
3192 	int rc;
3193 
3194 	if (dev_nit_active(dev))
3195 		dev_queue_xmit_nit(skb, dev);
3196 
3197 	len = skb->len;
3198 	trace_net_dev_start_xmit(skb, dev);
3199 	rc = netdev_start_xmit(skb, dev, txq, more);
3200 	trace_net_dev_xmit(skb, rc, dev, len);
3201 
3202 	return rc;
3203 }
3204 
3205 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3206 				    struct netdev_queue *txq, int *ret)
3207 {
3208 	struct sk_buff *skb = first;
3209 	int rc = NETDEV_TX_OK;
3210 
3211 	while (skb) {
3212 		struct sk_buff *next = skb->next;
3213 
3214 		skb_mark_not_on_list(skb);
3215 		rc = xmit_one(skb, dev, txq, next != NULL);
3216 		if (unlikely(!dev_xmit_complete(rc))) {
3217 			skb->next = next;
3218 			goto out;
3219 		}
3220 
3221 		skb = next;
3222 		if (netif_tx_queue_stopped(txq) && skb) {
3223 			rc = NETDEV_TX_BUSY;
3224 			break;
3225 		}
3226 	}
3227 
3228 out:
3229 	*ret = rc;
3230 	return skb;
3231 }
3232 
3233 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3234 					  netdev_features_t features)
3235 {
3236 	if (skb_vlan_tag_present(skb) &&
3237 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3238 		skb = __vlan_hwaccel_push_inside(skb);
3239 	return skb;
3240 }
3241 
3242 int skb_csum_hwoffload_help(struct sk_buff *skb,
3243 			    const netdev_features_t features)
3244 {
3245 	if (unlikely(skb->csum_not_inet))
3246 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3247 			skb_crc32c_csum_help(skb);
3248 
3249 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3250 }
3251 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3252 
3253 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3254 {
3255 	netdev_features_t features;
3256 
3257 	features = netif_skb_features(skb);
3258 	skb = validate_xmit_vlan(skb, features);
3259 	if (unlikely(!skb))
3260 		goto out_null;
3261 
3262 	skb = sk_validate_xmit_skb(skb, dev);
3263 	if (unlikely(!skb))
3264 		goto out_null;
3265 
3266 	if (netif_needs_gso(skb, features)) {
3267 		struct sk_buff *segs;
3268 
3269 		segs = skb_gso_segment(skb, features);
3270 		if (IS_ERR(segs)) {
3271 			goto out_kfree_skb;
3272 		} else if (segs) {
3273 			consume_skb(skb);
3274 			skb = segs;
3275 		}
3276 	} else {
3277 		if (skb_needs_linearize(skb, features) &&
3278 		    __skb_linearize(skb))
3279 			goto out_kfree_skb;
3280 
3281 		/* If packet is not checksummed and device does not
3282 		 * support checksumming for this protocol, complete
3283 		 * checksumming here.
3284 		 */
3285 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3286 			if (skb->encapsulation)
3287 				skb_set_inner_transport_header(skb,
3288 							       skb_checksum_start_offset(skb));
3289 			else
3290 				skb_set_transport_header(skb,
3291 							 skb_checksum_start_offset(skb));
3292 			if (skb_csum_hwoffload_help(skb, features))
3293 				goto out_kfree_skb;
3294 		}
3295 	}
3296 
3297 	skb = validate_xmit_xfrm(skb, features, again);
3298 
3299 	return skb;
3300 
3301 out_kfree_skb:
3302 	kfree_skb(skb);
3303 out_null:
3304 	atomic_long_inc(&dev->tx_dropped);
3305 	return NULL;
3306 }
3307 
3308 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3309 {
3310 	struct sk_buff *next, *head = NULL, *tail;
3311 
3312 	for (; skb != NULL; skb = next) {
3313 		next = skb->next;
3314 		skb_mark_not_on_list(skb);
3315 
3316 		/* in case skb wont be segmented, point to itself */
3317 		skb->prev = skb;
3318 
3319 		skb = validate_xmit_skb(skb, dev, again);
3320 		if (!skb)
3321 			continue;
3322 
3323 		if (!head)
3324 			head = skb;
3325 		else
3326 			tail->next = skb;
3327 		/* If skb was segmented, skb->prev points to
3328 		 * the last segment. If not, it still contains skb.
3329 		 */
3330 		tail = skb->prev;
3331 	}
3332 	return head;
3333 }
3334 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3335 
3336 static void qdisc_pkt_len_init(struct sk_buff *skb)
3337 {
3338 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3339 
3340 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3341 
3342 	/* To get more precise estimation of bytes sent on wire,
3343 	 * we add to pkt_len the headers size of all segments
3344 	 */
3345 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3346 		unsigned int hdr_len;
3347 		u16 gso_segs = shinfo->gso_segs;
3348 
3349 		/* mac layer + network layer */
3350 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3351 
3352 		/* + transport layer */
3353 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3354 			const struct tcphdr *th;
3355 			struct tcphdr _tcphdr;
3356 
3357 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3358 						sizeof(_tcphdr), &_tcphdr);
3359 			if (likely(th))
3360 				hdr_len += __tcp_hdrlen(th);
3361 		} else {
3362 			struct udphdr _udphdr;
3363 
3364 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3365 					       sizeof(_udphdr), &_udphdr))
3366 				hdr_len += sizeof(struct udphdr);
3367 		}
3368 
3369 		if (shinfo->gso_type & SKB_GSO_DODGY)
3370 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3371 						shinfo->gso_size);
3372 
3373 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3374 	}
3375 }
3376 
3377 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3378 				 struct net_device *dev,
3379 				 struct netdev_queue *txq)
3380 {
3381 	spinlock_t *root_lock = qdisc_lock(q);
3382 	struct sk_buff *to_free = NULL;
3383 	bool contended;
3384 	int rc;
3385 
3386 	qdisc_calculate_pkt_len(skb, q);
3387 
3388 	if (q->flags & TCQ_F_NOLOCK) {
3389 		if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3390 		    qdisc_run_begin(q)) {
3391 			if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3392 					      &q->state))) {
3393 				__qdisc_drop(skb, &to_free);
3394 				rc = NET_XMIT_DROP;
3395 				goto end_run;
3396 			}
3397 			qdisc_bstats_cpu_update(q, skb);
3398 
3399 			rc = NET_XMIT_SUCCESS;
3400 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3401 				__qdisc_run(q);
3402 
3403 end_run:
3404 			qdisc_run_end(q);
3405 		} else {
3406 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3407 			qdisc_run(q);
3408 		}
3409 
3410 		if (unlikely(to_free))
3411 			kfree_skb_list(to_free);
3412 		return rc;
3413 	}
3414 
3415 	/*
3416 	 * Heuristic to force contended enqueues to serialize on a
3417 	 * separate lock before trying to get qdisc main lock.
3418 	 * This permits qdisc->running owner to get the lock more
3419 	 * often and dequeue packets faster.
3420 	 */
3421 	contended = qdisc_is_running(q);
3422 	if (unlikely(contended))
3423 		spin_lock(&q->busylock);
3424 
3425 	spin_lock(root_lock);
3426 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3427 		__qdisc_drop(skb, &to_free);
3428 		rc = NET_XMIT_DROP;
3429 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3430 		   qdisc_run_begin(q)) {
3431 		/*
3432 		 * This is a work-conserving queue; there are no old skbs
3433 		 * waiting to be sent out; and the qdisc is not running -
3434 		 * xmit the skb directly.
3435 		 */
3436 
3437 		qdisc_bstats_update(q, skb);
3438 
3439 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3440 			if (unlikely(contended)) {
3441 				spin_unlock(&q->busylock);
3442 				contended = false;
3443 			}
3444 			__qdisc_run(q);
3445 		}
3446 
3447 		qdisc_run_end(q);
3448 		rc = NET_XMIT_SUCCESS;
3449 	} else {
3450 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451 		if (qdisc_run_begin(q)) {
3452 			if (unlikely(contended)) {
3453 				spin_unlock(&q->busylock);
3454 				contended = false;
3455 			}
3456 			__qdisc_run(q);
3457 			qdisc_run_end(q);
3458 		}
3459 	}
3460 	spin_unlock(root_lock);
3461 	if (unlikely(to_free))
3462 		kfree_skb_list(to_free);
3463 	if (unlikely(contended))
3464 		spin_unlock(&q->busylock);
3465 	return rc;
3466 }
3467 
3468 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3469 static void skb_update_prio(struct sk_buff *skb)
3470 {
3471 	const struct netprio_map *map;
3472 	const struct sock *sk;
3473 	unsigned int prioidx;
3474 
3475 	if (skb->priority)
3476 		return;
3477 	map = rcu_dereference_bh(skb->dev->priomap);
3478 	if (!map)
3479 		return;
3480 	sk = skb_to_full_sk(skb);
3481 	if (!sk)
3482 		return;
3483 
3484 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3485 
3486 	if (prioidx < map->priomap_len)
3487 		skb->priority = map->priomap[prioidx];
3488 }
3489 #else
3490 #define skb_update_prio(skb)
3491 #endif
3492 
3493 /**
3494  *	dev_loopback_xmit - loop back @skb
3495  *	@net: network namespace this loopback is happening in
3496  *	@sk:  sk needed to be a netfilter okfn
3497  *	@skb: buffer to transmit
3498  */
3499 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3500 {
3501 	skb_reset_mac_header(skb);
3502 	__skb_pull(skb, skb_network_offset(skb));
3503 	skb->pkt_type = PACKET_LOOPBACK;
3504 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3505 	WARN_ON(!skb_dst(skb));
3506 	skb_dst_force(skb);
3507 	netif_rx_ni(skb);
3508 	return 0;
3509 }
3510 EXPORT_SYMBOL(dev_loopback_xmit);
3511 
3512 #ifdef CONFIG_NET_EGRESS
3513 static struct sk_buff *
3514 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3515 {
3516 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3517 	struct tcf_result cl_res;
3518 
3519 	if (!miniq)
3520 		return skb;
3521 
3522 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3523 	mini_qdisc_bstats_cpu_update(miniq, skb);
3524 
3525 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3526 	case TC_ACT_OK:
3527 	case TC_ACT_RECLASSIFY:
3528 		skb->tc_index = TC_H_MIN(cl_res.classid);
3529 		break;
3530 	case TC_ACT_SHOT:
3531 		mini_qdisc_qstats_cpu_drop(miniq);
3532 		*ret = NET_XMIT_DROP;
3533 		kfree_skb(skb);
3534 		return NULL;
3535 	case TC_ACT_STOLEN:
3536 	case TC_ACT_QUEUED:
3537 	case TC_ACT_TRAP:
3538 		*ret = NET_XMIT_SUCCESS;
3539 		consume_skb(skb);
3540 		return NULL;
3541 	case TC_ACT_REDIRECT:
3542 		/* No need to push/pop skb's mac_header here on egress! */
3543 		skb_do_redirect(skb);
3544 		*ret = NET_XMIT_SUCCESS;
3545 		return NULL;
3546 	default:
3547 		break;
3548 	}
3549 
3550 	return skb;
3551 }
3552 #endif /* CONFIG_NET_EGRESS */
3553 
3554 #ifdef CONFIG_XPS
3555 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3556 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3557 {
3558 	struct xps_map *map;
3559 	int queue_index = -1;
3560 
3561 	if (dev->num_tc) {
3562 		tci *= dev->num_tc;
3563 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3564 	}
3565 
3566 	map = rcu_dereference(dev_maps->attr_map[tci]);
3567 	if (map) {
3568 		if (map->len == 1)
3569 			queue_index = map->queues[0];
3570 		else
3571 			queue_index = map->queues[reciprocal_scale(
3572 						skb_get_hash(skb), map->len)];
3573 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3574 			queue_index = -1;
3575 	}
3576 	return queue_index;
3577 }
3578 #endif
3579 
3580 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3581 			 struct sk_buff *skb)
3582 {
3583 #ifdef CONFIG_XPS
3584 	struct xps_dev_maps *dev_maps;
3585 	struct sock *sk = skb->sk;
3586 	int queue_index = -1;
3587 
3588 	if (!static_key_false(&xps_needed))
3589 		return -1;
3590 
3591 	rcu_read_lock();
3592 	if (!static_key_false(&xps_rxqs_needed))
3593 		goto get_cpus_map;
3594 
3595 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3596 	if (dev_maps) {
3597 		int tci = sk_rx_queue_get(sk);
3598 
3599 		if (tci >= 0 && tci < dev->num_rx_queues)
3600 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3601 							  tci);
3602 	}
3603 
3604 get_cpus_map:
3605 	if (queue_index < 0) {
3606 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3607 		if (dev_maps) {
3608 			unsigned int tci = skb->sender_cpu - 1;
3609 
3610 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3611 							  tci);
3612 		}
3613 	}
3614 	rcu_read_unlock();
3615 
3616 	return queue_index;
3617 #else
3618 	return -1;
3619 #endif
3620 }
3621 
3622 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3623 		     struct net_device *sb_dev)
3624 {
3625 	return 0;
3626 }
3627 EXPORT_SYMBOL(dev_pick_tx_zero);
3628 
3629 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3630 		       struct net_device *sb_dev)
3631 {
3632 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3633 }
3634 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3635 
3636 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637 		     struct net_device *sb_dev)
3638 {
3639 	struct sock *sk = skb->sk;
3640 	int queue_index = sk_tx_queue_get(sk);
3641 
3642 	sb_dev = sb_dev ? : dev;
3643 
3644 	if (queue_index < 0 || skb->ooo_okay ||
3645 	    queue_index >= dev->real_num_tx_queues) {
3646 		int new_index = get_xps_queue(dev, sb_dev, skb);
3647 
3648 		if (new_index < 0)
3649 			new_index = skb_tx_hash(dev, sb_dev, skb);
3650 
3651 		if (queue_index != new_index && sk &&
3652 		    sk_fullsock(sk) &&
3653 		    rcu_access_pointer(sk->sk_dst_cache))
3654 			sk_tx_queue_set(sk, new_index);
3655 
3656 		queue_index = new_index;
3657 	}
3658 
3659 	return queue_index;
3660 }
3661 EXPORT_SYMBOL(netdev_pick_tx);
3662 
3663 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3664 					 struct sk_buff *skb,
3665 					 struct net_device *sb_dev)
3666 {
3667 	int queue_index = 0;
3668 
3669 #ifdef CONFIG_XPS
3670 	u32 sender_cpu = skb->sender_cpu - 1;
3671 
3672 	if (sender_cpu >= (u32)NR_CPUS)
3673 		skb->sender_cpu = raw_smp_processor_id() + 1;
3674 #endif
3675 
3676 	if (dev->real_num_tx_queues != 1) {
3677 		const struct net_device_ops *ops = dev->netdev_ops;
3678 
3679 		if (ops->ndo_select_queue)
3680 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3681 		else
3682 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3683 
3684 		queue_index = netdev_cap_txqueue(dev, queue_index);
3685 	}
3686 
3687 	skb_set_queue_mapping(skb, queue_index);
3688 	return netdev_get_tx_queue(dev, queue_index);
3689 }
3690 
3691 /**
3692  *	__dev_queue_xmit - transmit a buffer
3693  *	@skb: buffer to transmit
3694  *	@sb_dev: suboordinate device used for L2 forwarding offload
3695  *
3696  *	Queue a buffer for transmission to a network device. The caller must
3697  *	have set the device and priority and built the buffer before calling
3698  *	this function. The function can be called from an interrupt.
3699  *
3700  *	A negative errno code is returned on a failure. A success does not
3701  *	guarantee the frame will be transmitted as it may be dropped due
3702  *	to congestion or traffic shaping.
3703  *
3704  * -----------------------------------------------------------------------------------
3705  *      I notice this method can also return errors from the queue disciplines,
3706  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3707  *      be positive.
3708  *
3709  *      Regardless of the return value, the skb is consumed, so it is currently
3710  *      difficult to retry a send to this method.  (You can bump the ref count
3711  *      before sending to hold a reference for retry if you are careful.)
3712  *
3713  *      When calling this method, interrupts MUST be enabled.  This is because
3714  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3715  *          --BLG
3716  */
3717 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3718 {
3719 	struct net_device *dev = skb->dev;
3720 	struct netdev_queue *txq;
3721 	struct Qdisc *q;
3722 	int rc = -ENOMEM;
3723 	bool again = false;
3724 
3725 	skb_reset_mac_header(skb);
3726 
3727 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3729 
3730 	/* Disable soft irqs for various locks below. Also
3731 	 * stops preemption for RCU.
3732 	 */
3733 	rcu_read_lock_bh();
3734 
3735 	skb_update_prio(skb);
3736 
3737 	qdisc_pkt_len_init(skb);
3738 #ifdef CONFIG_NET_CLS_ACT
3739 	skb->tc_at_ingress = 0;
3740 # ifdef CONFIG_NET_EGRESS
3741 	if (static_branch_unlikely(&egress_needed_key)) {
3742 		skb = sch_handle_egress(skb, &rc, dev);
3743 		if (!skb)
3744 			goto out;
3745 	}
3746 # endif
3747 #endif
3748 	/* If device/qdisc don't need skb->dst, release it right now while
3749 	 * its hot in this cpu cache.
3750 	 */
3751 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3752 		skb_dst_drop(skb);
3753 	else
3754 		skb_dst_force(skb);
3755 
3756 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3757 	q = rcu_dereference_bh(txq->qdisc);
3758 
3759 	trace_net_dev_queue(skb);
3760 	if (q->enqueue) {
3761 		rc = __dev_xmit_skb(skb, q, dev, txq);
3762 		goto out;
3763 	}
3764 
3765 	/* The device has no queue. Common case for software devices:
3766 	 * loopback, all the sorts of tunnels...
3767 
3768 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3769 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3770 	 * counters.)
3771 	 * However, it is possible, that they rely on protection
3772 	 * made by us here.
3773 
3774 	 * Check this and shot the lock. It is not prone from deadlocks.
3775 	 *Either shot noqueue qdisc, it is even simpler 8)
3776 	 */
3777 	if (dev->flags & IFF_UP) {
3778 		int cpu = smp_processor_id(); /* ok because BHs are off */
3779 
3780 		if (txq->xmit_lock_owner != cpu) {
3781 			if (dev_xmit_recursion())
3782 				goto recursion_alert;
3783 
3784 			skb = validate_xmit_skb(skb, dev, &again);
3785 			if (!skb)
3786 				goto out;
3787 
3788 			HARD_TX_LOCK(dev, txq, cpu);
3789 
3790 			if (!netif_xmit_stopped(txq)) {
3791 				dev_xmit_recursion_inc();
3792 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3793 				dev_xmit_recursion_dec();
3794 				if (dev_xmit_complete(rc)) {
3795 					HARD_TX_UNLOCK(dev, txq);
3796 					goto out;
3797 				}
3798 			}
3799 			HARD_TX_UNLOCK(dev, txq);
3800 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3801 					     dev->name);
3802 		} else {
3803 			/* Recursion is detected! It is possible,
3804 			 * unfortunately
3805 			 */
3806 recursion_alert:
3807 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3808 					     dev->name);
3809 		}
3810 	}
3811 
3812 	rc = -ENETDOWN;
3813 	rcu_read_unlock_bh();
3814 
3815 	atomic_long_inc(&dev->tx_dropped);
3816 	kfree_skb_list(skb);
3817 	return rc;
3818 out:
3819 	rcu_read_unlock_bh();
3820 	return rc;
3821 }
3822 
3823 int dev_queue_xmit(struct sk_buff *skb)
3824 {
3825 	return __dev_queue_xmit(skb, NULL);
3826 }
3827 EXPORT_SYMBOL(dev_queue_xmit);
3828 
3829 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3830 {
3831 	return __dev_queue_xmit(skb, sb_dev);
3832 }
3833 EXPORT_SYMBOL(dev_queue_xmit_accel);
3834 
3835 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3836 {
3837 	struct net_device *dev = skb->dev;
3838 	struct sk_buff *orig_skb = skb;
3839 	struct netdev_queue *txq;
3840 	int ret = NETDEV_TX_BUSY;
3841 	bool again = false;
3842 
3843 	if (unlikely(!netif_running(dev) ||
3844 		     !netif_carrier_ok(dev)))
3845 		goto drop;
3846 
3847 	skb = validate_xmit_skb_list(skb, dev, &again);
3848 	if (skb != orig_skb)
3849 		goto drop;
3850 
3851 	skb_set_queue_mapping(skb, queue_id);
3852 	txq = skb_get_tx_queue(dev, skb);
3853 
3854 	local_bh_disable();
3855 
3856 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3857 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3858 		ret = netdev_start_xmit(skb, dev, txq, false);
3859 	HARD_TX_UNLOCK(dev, txq);
3860 
3861 	local_bh_enable();
3862 
3863 	if (!dev_xmit_complete(ret))
3864 		kfree_skb(skb);
3865 
3866 	return ret;
3867 drop:
3868 	atomic_long_inc(&dev->tx_dropped);
3869 	kfree_skb_list(skb);
3870 	return NET_XMIT_DROP;
3871 }
3872 EXPORT_SYMBOL(dev_direct_xmit);
3873 
3874 /*************************************************************************
3875  *			Receiver routines
3876  *************************************************************************/
3877 
3878 int netdev_max_backlog __read_mostly = 1000;
3879 EXPORT_SYMBOL(netdev_max_backlog);
3880 
3881 int netdev_tstamp_prequeue __read_mostly = 1;
3882 int netdev_budget __read_mostly = 300;
3883 unsigned int __read_mostly netdev_budget_usecs = 2000;
3884 int weight_p __read_mostly = 64;           /* old backlog weight */
3885 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3886 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3887 int dev_rx_weight __read_mostly = 64;
3888 int dev_tx_weight __read_mostly = 64;
3889 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3890 int gro_normal_batch __read_mostly = 8;
3891 
3892 /* Called with irq disabled */
3893 static inline void ____napi_schedule(struct softnet_data *sd,
3894 				     struct napi_struct *napi)
3895 {
3896 	list_add_tail(&napi->poll_list, &sd->poll_list);
3897 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3898 }
3899 
3900 #ifdef CONFIG_RPS
3901 
3902 /* One global table that all flow-based protocols share. */
3903 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3904 EXPORT_SYMBOL(rps_sock_flow_table);
3905 u32 rps_cpu_mask __read_mostly;
3906 EXPORT_SYMBOL(rps_cpu_mask);
3907 
3908 struct static_key_false rps_needed __read_mostly;
3909 EXPORT_SYMBOL(rps_needed);
3910 struct static_key_false rfs_needed __read_mostly;
3911 EXPORT_SYMBOL(rfs_needed);
3912 
3913 static struct rps_dev_flow *
3914 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3915 	    struct rps_dev_flow *rflow, u16 next_cpu)
3916 {
3917 	if (next_cpu < nr_cpu_ids) {
3918 #ifdef CONFIG_RFS_ACCEL
3919 		struct netdev_rx_queue *rxqueue;
3920 		struct rps_dev_flow_table *flow_table;
3921 		struct rps_dev_flow *old_rflow;
3922 		u32 flow_id;
3923 		u16 rxq_index;
3924 		int rc;
3925 
3926 		/* Should we steer this flow to a different hardware queue? */
3927 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3928 		    !(dev->features & NETIF_F_NTUPLE))
3929 			goto out;
3930 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3931 		if (rxq_index == skb_get_rx_queue(skb))
3932 			goto out;
3933 
3934 		rxqueue = dev->_rx + rxq_index;
3935 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3936 		if (!flow_table)
3937 			goto out;
3938 		flow_id = skb_get_hash(skb) & flow_table->mask;
3939 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3940 							rxq_index, flow_id);
3941 		if (rc < 0)
3942 			goto out;
3943 		old_rflow = rflow;
3944 		rflow = &flow_table->flows[flow_id];
3945 		rflow->filter = rc;
3946 		if (old_rflow->filter == rflow->filter)
3947 			old_rflow->filter = RPS_NO_FILTER;
3948 	out:
3949 #endif
3950 		rflow->last_qtail =
3951 			per_cpu(softnet_data, next_cpu).input_queue_head;
3952 	}
3953 
3954 	rflow->cpu = next_cpu;
3955 	return rflow;
3956 }
3957 
3958 /*
3959  * get_rps_cpu is called from netif_receive_skb and returns the target
3960  * CPU from the RPS map of the receiving queue for a given skb.
3961  * rcu_read_lock must be held on entry.
3962  */
3963 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964 		       struct rps_dev_flow **rflowp)
3965 {
3966 	const struct rps_sock_flow_table *sock_flow_table;
3967 	struct netdev_rx_queue *rxqueue = dev->_rx;
3968 	struct rps_dev_flow_table *flow_table;
3969 	struct rps_map *map;
3970 	int cpu = -1;
3971 	u32 tcpu;
3972 	u32 hash;
3973 
3974 	if (skb_rx_queue_recorded(skb)) {
3975 		u16 index = skb_get_rx_queue(skb);
3976 
3977 		if (unlikely(index >= dev->real_num_rx_queues)) {
3978 			WARN_ONCE(dev->real_num_rx_queues > 1,
3979 				  "%s received packet on queue %u, but number "
3980 				  "of RX queues is %u\n",
3981 				  dev->name, index, dev->real_num_rx_queues);
3982 			goto done;
3983 		}
3984 		rxqueue += index;
3985 	}
3986 
3987 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3988 
3989 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3990 	map = rcu_dereference(rxqueue->rps_map);
3991 	if (!flow_table && !map)
3992 		goto done;
3993 
3994 	skb_reset_network_header(skb);
3995 	hash = skb_get_hash(skb);
3996 	if (!hash)
3997 		goto done;
3998 
3999 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4000 	if (flow_table && sock_flow_table) {
4001 		struct rps_dev_flow *rflow;
4002 		u32 next_cpu;
4003 		u32 ident;
4004 
4005 		/* First check into global flow table if there is a match */
4006 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4007 		if ((ident ^ hash) & ~rps_cpu_mask)
4008 			goto try_rps;
4009 
4010 		next_cpu = ident & rps_cpu_mask;
4011 
4012 		/* OK, now we know there is a match,
4013 		 * we can look at the local (per receive queue) flow table
4014 		 */
4015 		rflow = &flow_table->flows[hash & flow_table->mask];
4016 		tcpu = rflow->cpu;
4017 
4018 		/*
4019 		 * If the desired CPU (where last recvmsg was done) is
4020 		 * different from current CPU (one in the rx-queue flow
4021 		 * table entry), switch if one of the following holds:
4022 		 *   - Current CPU is unset (>= nr_cpu_ids).
4023 		 *   - Current CPU is offline.
4024 		 *   - The current CPU's queue tail has advanced beyond the
4025 		 *     last packet that was enqueued using this table entry.
4026 		 *     This guarantees that all previous packets for the flow
4027 		 *     have been dequeued, thus preserving in order delivery.
4028 		 */
4029 		if (unlikely(tcpu != next_cpu) &&
4030 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4031 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4032 		      rflow->last_qtail)) >= 0)) {
4033 			tcpu = next_cpu;
4034 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4035 		}
4036 
4037 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4038 			*rflowp = rflow;
4039 			cpu = tcpu;
4040 			goto done;
4041 		}
4042 	}
4043 
4044 try_rps:
4045 
4046 	if (map) {
4047 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4048 		if (cpu_online(tcpu)) {
4049 			cpu = tcpu;
4050 			goto done;
4051 		}
4052 	}
4053 
4054 done:
4055 	return cpu;
4056 }
4057 
4058 #ifdef CONFIG_RFS_ACCEL
4059 
4060 /**
4061  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4062  * @dev: Device on which the filter was set
4063  * @rxq_index: RX queue index
4064  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4065  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4066  *
4067  * Drivers that implement ndo_rx_flow_steer() should periodically call
4068  * this function for each installed filter and remove the filters for
4069  * which it returns %true.
4070  */
4071 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4072 			 u32 flow_id, u16 filter_id)
4073 {
4074 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4075 	struct rps_dev_flow_table *flow_table;
4076 	struct rps_dev_flow *rflow;
4077 	bool expire = true;
4078 	unsigned int cpu;
4079 
4080 	rcu_read_lock();
4081 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4082 	if (flow_table && flow_id <= flow_table->mask) {
4083 		rflow = &flow_table->flows[flow_id];
4084 		cpu = READ_ONCE(rflow->cpu);
4085 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4086 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4087 			   rflow->last_qtail) <
4088 		     (int)(10 * flow_table->mask)))
4089 			expire = false;
4090 	}
4091 	rcu_read_unlock();
4092 	return expire;
4093 }
4094 EXPORT_SYMBOL(rps_may_expire_flow);
4095 
4096 #endif /* CONFIG_RFS_ACCEL */
4097 
4098 /* Called from hardirq (IPI) context */
4099 static void rps_trigger_softirq(void *data)
4100 {
4101 	struct softnet_data *sd = data;
4102 
4103 	____napi_schedule(sd, &sd->backlog);
4104 	sd->received_rps++;
4105 }
4106 
4107 #endif /* CONFIG_RPS */
4108 
4109 /*
4110  * Check if this softnet_data structure is another cpu one
4111  * If yes, queue it to our IPI list and return 1
4112  * If no, return 0
4113  */
4114 static int rps_ipi_queued(struct softnet_data *sd)
4115 {
4116 #ifdef CONFIG_RPS
4117 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4118 
4119 	if (sd != mysd) {
4120 		sd->rps_ipi_next = mysd->rps_ipi_list;
4121 		mysd->rps_ipi_list = sd;
4122 
4123 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4124 		return 1;
4125 	}
4126 #endif /* CONFIG_RPS */
4127 	return 0;
4128 }
4129 
4130 #ifdef CONFIG_NET_FLOW_LIMIT
4131 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4132 #endif
4133 
4134 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4135 {
4136 #ifdef CONFIG_NET_FLOW_LIMIT
4137 	struct sd_flow_limit *fl;
4138 	struct softnet_data *sd;
4139 	unsigned int old_flow, new_flow;
4140 
4141 	if (qlen < (netdev_max_backlog >> 1))
4142 		return false;
4143 
4144 	sd = this_cpu_ptr(&softnet_data);
4145 
4146 	rcu_read_lock();
4147 	fl = rcu_dereference(sd->flow_limit);
4148 	if (fl) {
4149 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4150 		old_flow = fl->history[fl->history_head];
4151 		fl->history[fl->history_head] = new_flow;
4152 
4153 		fl->history_head++;
4154 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4155 
4156 		if (likely(fl->buckets[old_flow]))
4157 			fl->buckets[old_flow]--;
4158 
4159 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4160 			fl->count++;
4161 			rcu_read_unlock();
4162 			return true;
4163 		}
4164 	}
4165 	rcu_read_unlock();
4166 #endif
4167 	return false;
4168 }
4169 
4170 /*
4171  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4172  * queue (may be a remote CPU queue).
4173  */
4174 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4175 			      unsigned int *qtail)
4176 {
4177 	struct softnet_data *sd;
4178 	unsigned long flags;
4179 	unsigned int qlen;
4180 
4181 	sd = &per_cpu(softnet_data, cpu);
4182 
4183 	local_irq_save(flags);
4184 
4185 	rps_lock(sd);
4186 	if (!netif_running(skb->dev))
4187 		goto drop;
4188 	qlen = skb_queue_len(&sd->input_pkt_queue);
4189 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4190 		if (qlen) {
4191 enqueue:
4192 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4193 			input_queue_tail_incr_save(sd, qtail);
4194 			rps_unlock(sd);
4195 			local_irq_restore(flags);
4196 			return NET_RX_SUCCESS;
4197 		}
4198 
4199 		/* Schedule NAPI for backlog device
4200 		 * We can use non atomic operation since we own the queue lock
4201 		 */
4202 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4203 			if (!rps_ipi_queued(sd))
4204 				____napi_schedule(sd, &sd->backlog);
4205 		}
4206 		goto enqueue;
4207 	}
4208 
4209 drop:
4210 	sd->dropped++;
4211 	rps_unlock(sd);
4212 
4213 	local_irq_restore(flags);
4214 
4215 	atomic_long_inc(&skb->dev->rx_dropped);
4216 	kfree_skb(skb);
4217 	return NET_RX_DROP;
4218 }
4219 
4220 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4221 {
4222 	struct net_device *dev = skb->dev;
4223 	struct netdev_rx_queue *rxqueue;
4224 
4225 	rxqueue = dev->_rx;
4226 
4227 	if (skb_rx_queue_recorded(skb)) {
4228 		u16 index = skb_get_rx_queue(skb);
4229 
4230 		if (unlikely(index >= dev->real_num_rx_queues)) {
4231 			WARN_ONCE(dev->real_num_rx_queues > 1,
4232 				  "%s received packet on queue %u, but number "
4233 				  "of RX queues is %u\n",
4234 				  dev->name, index, dev->real_num_rx_queues);
4235 
4236 			return rxqueue; /* Return first rxqueue */
4237 		}
4238 		rxqueue += index;
4239 	}
4240 	return rxqueue;
4241 }
4242 
4243 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4244 				     struct xdp_buff *xdp,
4245 				     struct bpf_prog *xdp_prog)
4246 {
4247 	struct netdev_rx_queue *rxqueue;
4248 	void *orig_data, *orig_data_end;
4249 	u32 metalen, act = XDP_DROP;
4250 	__be16 orig_eth_type;
4251 	struct ethhdr *eth;
4252 	bool orig_bcast;
4253 	int hlen, off;
4254 	u32 mac_len;
4255 
4256 	/* Reinjected packets coming from act_mirred or similar should
4257 	 * not get XDP generic processing.
4258 	 */
4259 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4260 		return XDP_PASS;
4261 
4262 	/* XDP packets must be linear and must have sufficient headroom
4263 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4264 	 * native XDP provides, thus we need to do it here as well.
4265 	 */
4266 	if (skb_is_nonlinear(skb) ||
4267 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4268 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4269 		int troom = skb->tail + skb->data_len - skb->end;
4270 
4271 		/* In case we have to go down the path and also linearize,
4272 		 * then lets do the pskb_expand_head() work just once here.
4273 		 */
4274 		if (pskb_expand_head(skb,
4275 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4276 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4277 			goto do_drop;
4278 		if (skb_linearize(skb))
4279 			goto do_drop;
4280 	}
4281 
4282 	/* The XDP program wants to see the packet starting at the MAC
4283 	 * header.
4284 	 */
4285 	mac_len = skb->data - skb_mac_header(skb);
4286 	hlen = skb_headlen(skb) + mac_len;
4287 	xdp->data = skb->data - mac_len;
4288 	xdp->data_meta = xdp->data;
4289 	xdp->data_end = xdp->data + hlen;
4290 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4291 	orig_data_end = xdp->data_end;
4292 	orig_data = xdp->data;
4293 	eth = (struct ethhdr *)xdp->data;
4294 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4295 	orig_eth_type = eth->h_proto;
4296 
4297 	rxqueue = netif_get_rxqueue(skb);
4298 	xdp->rxq = &rxqueue->xdp_rxq;
4299 
4300 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4301 
4302 	/* check if bpf_xdp_adjust_head was used */
4303 	off = xdp->data - orig_data;
4304 	if (off) {
4305 		if (off > 0)
4306 			__skb_pull(skb, off);
4307 		else if (off < 0)
4308 			__skb_push(skb, -off);
4309 
4310 		skb->mac_header += off;
4311 		skb_reset_network_header(skb);
4312 	}
4313 
4314 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4315 	 * pckt.
4316 	 */
4317 	off = orig_data_end - xdp->data_end;
4318 	if (off != 0) {
4319 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4320 		skb->len -= off;
4321 
4322 	}
4323 
4324 	/* check if XDP changed eth hdr such SKB needs update */
4325 	eth = (struct ethhdr *)xdp->data;
4326 	if ((orig_eth_type != eth->h_proto) ||
4327 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4328 		__skb_push(skb, ETH_HLEN);
4329 		skb->protocol = eth_type_trans(skb, skb->dev);
4330 	}
4331 
4332 	switch (act) {
4333 	case XDP_REDIRECT:
4334 	case XDP_TX:
4335 		__skb_push(skb, mac_len);
4336 		break;
4337 	case XDP_PASS:
4338 		metalen = xdp->data - xdp->data_meta;
4339 		if (metalen)
4340 			skb_metadata_set(skb, metalen);
4341 		break;
4342 	default:
4343 		bpf_warn_invalid_xdp_action(act);
4344 		/* fall through */
4345 	case XDP_ABORTED:
4346 		trace_xdp_exception(skb->dev, xdp_prog, act);
4347 		/* fall through */
4348 	case XDP_DROP:
4349 	do_drop:
4350 		kfree_skb(skb);
4351 		break;
4352 	}
4353 
4354 	return act;
4355 }
4356 
4357 /* When doing generic XDP we have to bypass the qdisc layer and the
4358  * network taps in order to match in-driver-XDP behavior.
4359  */
4360 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4361 {
4362 	struct net_device *dev = skb->dev;
4363 	struct netdev_queue *txq;
4364 	bool free_skb = true;
4365 	int cpu, rc;
4366 
4367 	txq = netdev_core_pick_tx(dev, skb, NULL);
4368 	cpu = smp_processor_id();
4369 	HARD_TX_LOCK(dev, txq, cpu);
4370 	if (!netif_xmit_stopped(txq)) {
4371 		rc = netdev_start_xmit(skb, dev, txq, 0);
4372 		if (dev_xmit_complete(rc))
4373 			free_skb = false;
4374 	}
4375 	HARD_TX_UNLOCK(dev, txq);
4376 	if (free_skb) {
4377 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4378 		kfree_skb(skb);
4379 	}
4380 }
4381 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4382 
4383 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4384 
4385 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4386 {
4387 	if (xdp_prog) {
4388 		struct xdp_buff xdp;
4389 		u32 act;
4390 		int err;
4391 
4392 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4393 		if (act != XDP_PASS) {
4394 			switch (act) {
4395 			case XDP_REDIRECT:
4396 				err = xdp_do_generic_redirect(skb->dev, skb,
4397 							      &xdp, xdp_prog);
4398 				if (err)
4399 					goto out_redir;
4400 				break;
4401 			case XDP_TX:
4402 				generic_xdp_tx(skb, xdp_prog);
4403 				break;
4404 			}
4405 			return XDP_DROP;
4406 		}
4407 	}
4408 	return XDP_PASS;
4409 out_redir:
4410 	kfree_skb(skb);
4411 	return XDP_DROP;
4412 }
4413 EXPORT_SYMBOL_GPL(do_xdp_generic);
4414 
4415 static int netif_rx_internal(struct sk_buff *skb)
4416 {
4417 	int ret;
4418 
4419 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4420 
4421 	trace_netif_rx(skb);
4422 
4423 #ifdef CONFIG_RPS
4424 	if (static_branch_unlikely(&rps_needed)) {
4425 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4426 		int cpu;
4427 
4428 		preempt_disable();
4429 		rcu_read_lock();
4430 
4431 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4432 		if (cpu < 0)
4433 			cpu = smp_processor_id();
4434 
4435 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4436 
4437 		rcu_read_unlock();
4438 		preempt_enable();
4439 	} else
4440 #endif
4441 	{
4442 		unsigned int qtail;
4443 
4444 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4445 		put_cpu();
4446 	}
4447 	return ret;
4448 }
4449 
4450 /**
4451  *	netif_rx	-	post buffer to the network code
4452  *	@skb: buffer to post
4453  *
4454  *	This function receives a packet from a device driver and queues it for
4455  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4456  *	may be dropped during processing for congestion control or by the
4457  *	protocol layers.
4458  *
4459  *	return values:
4460  *	NET_RX_SUCCESS	(no congestion)
4461  *	NET_RX_DROP     (packet was dropped)
4462  *
4463  */
4464 
4465 int netif_rx(struct sk_buff *skb)
4466 {
4467 	int ret;
4468 
4469 	trace_netif_rx_entry(skb);
4470 
4471 	ret = netif_rx_internal(skb);
4472 	trace_netif_rx_exit(ret);
4473 
4474 	return ret;
4475 }
4476 EXPORT_SYMBOL(netif_rx);
4477 
4478 int netif_rx_ni(struct sk_buff *skb)
4479 {
4480 	int err;
4481 
4482 	trace_netif_rx_ni_entry(skb);
4483 
4484 	preempt_disable();
4485 	err = netif_rx_internal(skb);
4486 	if (local_softirq_pending())
4487 		do_softirq();
4488 	preempt_enable();
4489 	trace_netif_rx_ni_exit(err);
4490 
4491 	return err;
4492 }
4493 EXPORT_SYMBOL(netif_rx_ni);
4494 
4495 static __latent_entropy void net_tx_action(struct softirq_action *h)
4496 {
4497 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4498 
4499 	if (sd->completion_queue) {
4500 		struct sk_buff *clist;
4501 
4502 		local_irq_disable();
4503 		clist = sd->completion_queue;
4504 		sd->completion_queue = NULL;
4505 		local_irq_enable();
4506 
4507 		while (clist) {
4508 			struct sk_buff *skb = clist;
4509 
4510 			clist = clist->next;
4511 
4512 			WARN_ON(refcount_read(&skb->users));
4513 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514 				trace_consume_skb(skb);
4515 			else
4516 				trace_kfree_skb(skb, net_tx_action);
4517 
4518 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4519 				__kfree_skb(skb);
4520 			else
4521 				__kfree_skb_defer(skb);
4522 		}
4523 
4524 		__kfree_skb_flush();
4525 	}
4526 
4527 	if (sd->output_queue) {
4528 		struct Qdisc *head;
4529 
4530 		local_irq_disable();
4531 		head = sd->output_queue;
4532 		sd->output_queue = NULL;
4533 		sd->output_queue_tailp = &sd->output_queue;
4534 		local_irq_enable();
4535 
4536 		while (head) {
4537 			struct Qdisc *q = head;
4538 			spinlock_t *root_lock = NULL;
4539 
4540 			head = head->next_sched;
4541 
4542 			if (!(q->flags & TCQ_F_NOLOCK)) {
4543 				root_lock = qdisc_lock(q);
4544 				spin_lock(root_lock);
4545 			}
4546 			/* We need to make sure head->next_sched is read
4547 			 * before clearing __QDISC_STATE_SCHED
4548 			 */
4549 			smp_mb__before_atomic();
4550 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4551 			qdisc_run(q);
4552 			if (root_lock)
4553 				spin_unlock(root_lock);
4554 		}
4555 	}
4556 
4557 	xfrm_dev_backlog(sd);
4558 }
4559 
4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561 /* This hook is defined here for ATM LANE */
4562 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563 			     unsigned char *addr) __read_mostly;
4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4565 #endif
4566 
4567 static inline struct sk_buff *
4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569 		   struct net_device *orig_dev)
4570 {
4571 #ifdef CONFIG_NET_CLS_ACT
4572 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573 	struct tcf_result cl_res;
4574 
4575 	/* If there's at least one ingress present somewhere (so
4576 	 * we get here via enabled static key), remaining devices
4577 	 * that are not configured with an ingress qdisc will bail
4578 	 * out here.
4579 	 */
4580 	if (!miniq)
4581 		return skb;
4582 
4583 	if (*pt_prev) {
4584 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4585 		*pt_prev = NULL;
4586 	}
4587 
4588 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4589 	skb->tc_at_ingress = 1;
4590 	mini_qdisc_bstats_cpu_update(miniq, skb);
4591 
4592 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4593 	case TC_ACT_OK:
4594 	case TC_ACT_RECLASSIFY:
4595 		skb->tc_index = TC_H_MIN(cl_res.classid);
4596 		break;
4597 	case TC_ACT_SHOT:
4598 		mini_qdisc_qstats_cpu_drop(miniq);
4599 		kfree_skb(skb);
4600 		return NULL;
4601 	case TC_ACT_STOLEN:
4602 	case TC_ACT_QUEUED:
4603 	case TC_ACT_TRAP:
4604 		consume_skb(skb);
4605 		return NULL;
4606 	case TC_ACT_REDIRECT:
4607 		/* skb_mac_header check was done by cls/act_bpf, so
4608 		 * we can safely push the L2 header back before
4609 		 * redirecting to another netdev
4610 		 */
4611 		__skb_push(skb, skb->mac_len);
4612 		skb_do_redirect(skb);
4613 		return NULL;
4614 	case TC_ACT_CONSUMED:
4615 		return NULL;
4616 	default:
4617 		break;
4618 	}
4619 #endif /* CONFIG_NET_CLS_ACT */
4620 	return skb;
4621 }
4622 
4623 /**
4624  *	netdev_is_rx_handler_busy - check if receive handler is registered
4625  *	@dev: device to check
4626  *
4627  *	Check if a receive handler is already registered for a given device.
4628  *	Return true if there one.
4629  *
4630  *	The caller must hold the rtnl_mutex.
4631  */
4632 bool netdev_is_rx_handler_busy(struct net_device *dev)
4633 {
4634 	ASSERT_RTNL();
4635 	return dev && rtnl_dereference(dev->rx_handler);
4636 }
4637 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4638 
4639 /**
4640  *	netdev_rx_handler_register - register receive handler
4641  *	@dev: device to register a handler for
4642  *	@rx_handler: receive handler to register
4643  *	@rx_handler_data: data pointer that is used by rx handler
4644  *
4645  *	Register a receive handler for a device. This handler will then be
4646  *	called from __netif_receive_skb. A negative errno code is returned
4647  *	on a failure.
4648  *
4649  *	The caller must hold the rtnl_mutex.
4650  *
4651  *	For a general description of rx_handler, see enum rx_handler_result.
4652  */
4653 int netdev_rx_handler_register(struct net_device *dev,
4654 			       rx_handler_func_t *rx_handler,
4655 			       void *rx_handler_data)
4656 {
4657 	if (netdev_is_rx_handler_busy(dev))
4658 		return -EBUSY;
4659 
4660 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4661 		return -EINVAL;
4662 
4663 	/* Note: rx_handler_data must be set before rx_handler */
4664 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4665 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4666 
4667 	return 0;
4668 }
4669 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4670 
4671 /**
4672  *	netdev_rx_handler_unregister - unregister receive handler
4673  *	@dev: device to unregister a handler from
4674  *
4675  *	Unregister a receive handler from a device.
4676  *
4677  *	The caller must hold the rtnl_mutex.
4678  */
4679 void netdev_rx_handler_unregister(struct net_device *dev)
4680 {
4681 
4682 	ASSERT_RTNL();
4683 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4684 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4685 	 * section has a guarantee to see a non NULL rx_handler_data
4686 	 * as well.
4687 	 */
4688 	synchronize_net();
4689 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4690 }
4691 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4692 
4693 /*
4694  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4695  * the special handling of PFMEMALLOC skbs.
4696  */
4697 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4698 {
4699 	switch (skb->protocol) {
4700 	case htons(ETH_P_ARP):
4701 	case htons(ETH_P_IP):
4702 	case htons(ETH_P_IPV6):
4703 	case htons(ETH_P_8021Q):
4704 	case htons(ETH_P_8021AD):
4705 		return true;
4706 	default:
4707 		return false;
4708 	}
4709 }
4710 
4711 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4712 			     int *ret, struct net_device *orig_dev)
4713 {
4714 #ifdef CONFIG_NETFILTER_INGRESS
4715 	if (nf_hook_ingress_active(skb)) {
4716 		int ingress_retval;
4717 
4718 		if (*pt_prev) {
4719 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4720 			*pt_prev = NULL;
4721 		}
4722 
4723 		rcu_read_lock();
4724 		ingress_retval = nf_hook_ingress(skb);
4725 		rcu_read_unlock();
4726 		return ingress_retval;
4727 	}
4728 #endif /* CONFIG_NETFILTER_INGRESS */
4729 	return 0;
4730 }
4731 
4732 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4733 				    struct packet_type **ppt_prev)
4734 {
4735 	struct packet_type *ptype, *pt_prev;
4736 	rx_handler_func_t *rx_handler;
4737 	struct net_device *orig_dev;
4738 	bool deliver_exact = false;
4739 	int ret = NET_RX_DROP;
4740 	__be16 type;
4741 
4742 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4743 
4744 	trace_netif_receive_skb(skb);
4745 
4746 	orig_dev = skb->dev;
4747 
4748 	skb_reset_network_header(skb);
4749 	if (!skb_transport_header_was_set(skb))
4750 		skb_reset_transport_header(skb);
4751 	skb_reset_mac_len(skb);
4752 
4753 	pt_prev = NULL;
4754 
4755 another_round:
4756 	skb->skb_iif = skb->dev->ifindex;
4757 
4758 	__this_cpu_inc(softnet_data.processed);
4759 
4760 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4761 		int ret2;
4762 
4763 		preempt_disable();
4764 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4765 		preempt_enable();
4766 
4767 		if (ret2 != XDP_PASS)
4768 			return NET_RX_DROP;
4769 		skb_reset_mac_len(skb);
4770 	}
4771 
4772 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4773 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4774 		skb = skb_vlan_untag(skb);
4775 		if (unlikely(!skb))
4776 			goto out;
4777 	}
4778 
4779 	if (skb_skip_tc_classify(skb))
4780 		goto skip_classify;
4781 
4782 	if (pfmemalloc)
4783 		goto skip_taps;
4784 
4785 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4786 		if (pt_prev)
4787 			ret = deliver_skb(skb, pt_prev, orig_dev);
4788 		pt_prev = ptype;
4789 	}
4790 
4791 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4792 		if (pt_prev)
4793 			ret = deliver_skb(skb, pt_prev, orig_dev);
4794 		pt_prev = ptype;
4795 	}
4796 
4797 skip_taps:
4798 #ifdef CONFIG_NET_INGRESS
4799 	if (static_branch_unlikely(&ingress_needed_key)) {
4800 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4801 		if (!skb)
4802 			goto out;
4803 
4804 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4805 			goto out;
4806 	}
4807 #endif
4808 	skb_reset_tc(skb);
4809 skip_classify:
4810 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4811 		goto drop;
4812 
4813 	if (skb_vlan_tag_present(skb)) {
4814 		if (pt_prev) {
4815 			ret = deliver_skb(skb, pt_prev, orig_dev);
4816 			pt_prev = NULL;
4817 		}
4818 		if (vlan_do_receive(&skb))
4819 			goto another_round;
4820 		else if (unlikely(!skb))
4821 			goto out;
4822 	}
4823 
4824 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4825 	if (rx_handler) {
4826 		if (pt_prev) {
4827 			ret = deliver_skb(skb, pt_prev, orig_dev);
4828 			pt_prev = NULL;
4829 		}
4830 		switch (rx_handler(&skb)) {
4831 		case RX_HANDLER_CONSUMED:
4832 			ret = NET_RX_SUCCESS;
4833 			goto out;
4834 		case RX_HANDLER_ANOTHER:
4835 			goto another_round;
4836 		case RX_HANDLER_EXACT:
4837 			deliver_exact = true;
4838 		case RX_HANDLER_PASS:
4839 			break;
4840 		default:
4841 			BUG();
4842 		}
4843 	}
4844 
4845 	if (unlikely(skb_vlan_tag_present(skb))) {
4846 check_vlan_id:
4847 		if (skb_vlan_tag_get_id(skb)) {
4848 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
4849 			 * find vlan device.
4850 			 */
4851 			skb->pkt_type = PACKET_OTHERHOST;
4852 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854 			/* Outer header is 802.1P with vlan 0, inner header is
4855 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
4856 			 * not find vlan dev for vlan id 0.
4857 			 */
4858 			__vlan_hwaccel_clear_tag(skb);
4859 			skb = skb_vlan_untag(skb);
4860 			if (unlikely(!skb))
4861 				goto out;
4862 			if (vlan_do_receive(&skb))
4863 				/* After stripping off 802.1P header with vlan 0
4864 				 * vlan dev is found for inner header.
4865 				 */
4866 				goto another_round;
4867 			else if (unlikely(!skb))
4868 				goto out;
4869 			else
4870 				/* We have stripped outer 802.1P vlan 0 header.
4871 				 * But could not find vlan dev.
4872 				 * check again for vlan id to set OTHERHOST.
4873 				 */
4874 				goto check_vlan_id;
4875 		}
4876 		/* Note: we might in the future use prio bits
4877 		 * and set skb->priority like in vlan_do_receive()
4878 		 * For the time being, just ignore Priority Code Point
4879 		 */
4880 		__vlan_hwaccel_clear_tag(skb);
4881 	}
4882 
4883 	type = skb->protocol;
4884 
4885 	/* deliver only exact match when indicated */
4886 	if (likely(!deliver_exact)) {
4887 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4888 				       &ptype_base[ntohs(type) &
4889 						   PTYPE_HASH_MASK]);
4890 	}
4891 
4892 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4893 			       &orig_dev->ptype_specific);
4894 
4895 	if (unlikely(skb->dev != orig_dev)) {
4896 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4897 				       &skb->dev->ptype_specific);
4898 	}
4899 
4900 	if (pt_prev) {
4901 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4902 			goto drop;
4903 		*ppt_prev = pt_prev;
4904 	} else {
4905 drop:
4906 		if (!deliver_exact)
4907 			atomic_long_inc(&skb->dev->rx_dropped);
4908 		else
4909 			atomic_long_inc(&skb->dev->rx_nohandler);
4910 		kfree_skb(skb);
4911 		/* Jamal, now you will not able to escape explaining
4912 		 * me how you were going to use this. :-)
4913 		 */
4914 		ret = NET_RX_DROP;
4915 	}
4916 
4917 out:
4918 	return ret;
4919 }
4920 
4921 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4922 {
4923 	struct net_device *orig_dev = skb->dev;
4924 	struct packet_type *pt_prev = NULL;
4925 	int ret;
4926 
4927 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4928 	if (pt_prev)
4929 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4930 					 skb->dev, pt_prev, orig_dev);
4931 	return ret;
4932 }
4933 
4934 /**
4935  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4936  *	@skb: buffer to process
4937  *
4938  *	More direct receive version of netif_receive_skb().  It should
4939  *	only be used by callers that have a need to skip RPS and Generic XDP.
4940  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4941  *
4942  *	This function may only be called from softirq context and interrupts
4943  *	should be enabled.
4944  *
4945  *	Return values (usually ignored):
4946  *	NET_RX_SUCCESS: no congestion
4947  *	NET_RX_DROP: packet was dropped
4948  */
4949 int netif_receive_skb_core(struct sk_buff *skb)
4950 {
4951 	int ret;
4952 
4953 	rcu_read_lock();
4954 	ret = __netif_receive_skb_one_core(skb, false);
4955 	rcu_read_unlock();
4956 
4957 	return ret;
4958 }
4959 EXPORT_SYMBOL(netif_receive_skb_core);
4960 
4961 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4962 						  struct packet_type *pt_prev,
4963 						  struct net_device *orig_dev)
4964 {
4965 	struct sk_buff *skb, *next;
4966 
4967 	if (!pt_prev)
4968 		return;
4969 	if (list_empty(head))
4970 		return;
4971 	if (pt_prev->list_func != NULL)
4972 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
4973 				   ip_list_rcv, head, pt_prev, orig_dev);
4974 	else
4975 		list_for_each_entry_safe(skb, next, head, list) {
4976 			skb_list_del_init(skb);
4977 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4978 		}
4979 }
4980 
4981 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4982 {
4983 	/* Fast-path assumptions:
4984 	 * - There is no RX handler.
4985 	 * - Only one packet_type matches.
4986 	 * If either of these fails, we will end up doing some per-packet
4987 	 * processing in-line, then handling the 'last ptype' for the whole
4988 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4989 	 * because the 'last ptype' must be constant across the sublist, and all
4990 	 * other ptypes are handled per-packet.
4991 	 */
4992 	/* Current (common) ptype of sublist */
4993 	struct packet_type *pt_curr = NULL;
4994 	/* Current (common) orig_dev of sublist */
4995 	struct net_device *od_curr = NULL;
4996 	struct list_head sublist;
4997 	struct sk_buff *skb, *next;
4998 
4999 	INIT_LIST_HEAD(&sublist);
5000 	list_for_each_entry_safe(skb, next, head, list) {
5001 		struct net_device *orig_dev = skb->dev;
5002 		struct packet_type *pt_prev = NULL;
5003 
5004 		skb_list_del_init(skb);
5005 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5006 		if (!pt_prev)
5007 			continue;
5008 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5009 			/* dispatch old sublist */
5010 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5011 			/* start new sublist */
5012 			INIT_LIST_HEAD(&sublist);
5013 			pt_curr = pt_prev;
5014 			od_curr = orig_dev;
5015 		}
5016 		list_add_tail(&skb->list, &sublist);
5017 	}
5018 
5019 	/* dispatch final sublist */
5020 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5021 }
5022 
5023 static int __netif_receive_skb(struct sk_buff *skb)
5024 {
5025 	int ret;
5026 
5027 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5028 		unsigned int noreclaim_flag;
5029 
5030 		/*
5031 		 * PFMEMALLOC skbs are special, they should
5032 		 * - be delivered to SOCK_MEMALLOC sockets only
5033 		 * - stay away from userspace
5034 		 * - have bounded memory usage
5035 		 *
5036 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5037 		 * context down to all allocation sites.
5038 		 */
5039 		noreclaim_flag = memalloc_noreclaim_save();
5040 		ret = __netif_receive_skb_one_core(skb, true);
5041 		memalloc_noreclaim_restore(noreclaim_flag);
5042 	} else
5043 		ret = __netif_receive_skb_one_core(skb, false);
5044 
5045 	return ret;
5046 }
5047 
5048 static void __netif_receive_skb_list(struct list_head *head)
5049 {
5050 	unsigned long noreclaim_flag = 0;
5051 	struct sk_buff *skb, *next;
5052 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5053 
5054 	list_for_each_entry_safe(skb, next, head, list) {
5055 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5056 			struct list_head sublist;
5057 
5058 			/* Handle the previous sublist */
5059 			list_cut_before(&sublist, head, &skb->list);
5060 			if (!list_empty(&sublist))
5061 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5062 			pfmemalloc = !pfmemalloc;
5063 			/* See comments in __netif_receive_skb */
5064 			if (pfmemalloc)
5065 				noreclaim_flag = memalloc_noreclaim_save();
5066 			else
5067 				memalloc_noreclaim_restore(noreclaim_flag);
5068 		}
5069 	}
5070 	/* Handle the remaining sublist */
5071 	if (!list_empty(head))
5072 		__netif_receive_skb_list_core(head, pfmemalloc);
5073 	/* Restore pflags */
5074 	if (pfmemalloc)
5075 		memalloc_noreclaim_restore(noreclaim_flag);
5076 }
5077 
5078 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5079 {
5080 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5081 	struct bpf_prog *new = xdp->prog;
5082 	int ret = 0;
5083 
5084 	switch (xdp->command) {
5085 	case XDP_SETUP_PROG:
5086 		rcu_assign_pointer(dev->xdp_prog, new);
5087 		if (old)
5088 			bpf_prog_put(old);
5089 
5090 		if (old && !new) {
5091 			static_branch_dec(&generic_xdp_needed_key);
5092 		} else if (new && !old) {
5093 			static_branch_inc(&generic_xdp_needed_key);
5094 			dev_disable_lro(dev);
5095 			dev_disable_gro_hw(dev);
5096 		}
5097 		break;
5098 
5099 	case XDP_QUERY_PROG:
5100 		xdp->prog_id = old ? old->aux->id : 0;
5101 		break;
5102 
5103 	default:
5104 		ret = -EINVAL;
5105 		break;
5106 	}
5107 
5108 	return ret;
5109 }
5110 
5111 static int netif_receive_skb_internal(struct sk_buff *skb)
5112 {
5113 	int ret;
5114 
5115 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5116 
5117 	if (skb_defer_rx_timestamp(skb))
5118 		return NET_RX_SUCCESS;
5119 
5120 	rcu_read_lock();
5121 #ifdef CONFIG_RPS
5122 	if (static_branch_unlikely(&rps_needed)) {
5123 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5124 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5125 
5126 		if (cpu >= 0) {
5127 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5128 			rcu_read_unlock();
5129 			return ret;
5130 		}
5131 	}
5132 #endif
5133 	ret = __netif_receive_skb(skb);
5134 	rcu_read_unlock();
5135 	return ret;
5136 }
5137 
5138 static void netif_receive_skb_list_internal(struct list_head *head)
5139 {
5140 	struct sk_buff *skb, *next;
5141 	struct list_head sublist;
5142 
5143 	INIT_LIST_HEAD(&sublist);
5144 	list_for_each_entry_safe(skb, next, head, list) {
5145 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5146 		skb_list_del_init(skb);
5147 		if (!skb_defer_rx_timestamp(skb))
5148 			list_add_tail(&skb->list, &sublist);
5149 	}
5150 	list_splice_init(&sublist, head);
5151 
5152 	rcu_read_lock();
5153 #ifdef CONFIG_RPS
5154 	if (static_branch_unlikely(&rps_needed)) {
5155 		list_for_each_entry_safe(skb, next, head, list) {
5156 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5157 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5158 
5159 			if (cpu >= 0) {
5160 				/* Will be handled, remove from list */
5161 				skb_list_del_init(skb);
5162 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5163 			}
5164 		}
5165 	}
5166 #endif
5167 	__netif_receive_skb_list(head);
5168 	rcu_read_unlock();
5169 }
5170 
5171 /**
5172  *	netif_receive_skb - process receive buffer from network
5173  *	@skb: buffer to process
5174  *
5175  *	netif_receive_skb() is the main receive data processing function.
5176  *	It always succeeds. The buffer may be dropped during processing
5177  *	for congestion control or by the protocol layers.
5178  *
5179  *	This function may only be called from softirq context and interrupts
5180  *	should be enabled.
5181  *
5182  *	Return values (usually ignored):
5183  *	NET_RX_SUCCESS: no congestion
5184  *	NET_RX_DROP: packet was dropped
5185  */
5186 int netif_receive_skb(struct sk_buff *skb)
5187 {
5188 	int ret;
5189 
5190 	trace_netif_receive_skb_entry(skb);
5191 
5192 	ret = netif_receive_skb_internal(skb);
5193 	trace_netif_receive_skb_exit(ret);
5194 
5195 	return ret;
5196 }
5197 EXPORT_SYMBOL(netif_receive_skb);
5198 
5199 /**
5200  *	netif_receive_skb_list - process many receive buffers from network
5201  *	@head: list of skbs to process.
5202  *
5203  *	Since return value of netif_receive_skb() is normally ignored, and
5204  *	wouldn't be meaningful for a list, this function returns void.
5205  *
5206  *	This function may only be called from softirq context and interrupts
5207  *	should be enabled.
5208  */
5209 void netif_receive_skb_list(struct list_head *head)
5210 {
5211 	struct sk_buff *skb;
5212 
5213 	if (list_empty(head))
5214 		return;
5215 	if (trace_netif_receive_skb_list_entry_enabled()) {
5216 		list_for_each_entry(skb, head, list)
5217 			trace_netif_receive_skb_list_entry(skb);
5218 	}
5219 	netif_receive_skb_list_internal(head);
5220 	trace_netif_receive_skb_list_exit(0);
5221 }
5222 EXPORT_SYMBOL(netif_receive_skb_list);
5223 
5224 DEFINE_PER_CPU(struct work_struct, flush_works);
5225 
5226 /* Network device is going away, flush any packets still pending */
5227 static void flush_backlog(struct work_struct *work)
5228 {
5229 	struct sk_buff *skb, *tmp;
5230 	struct softnet_data *sd;
5231 
5232 	local_bh_disable();
5233 	sd = this_cpu_ptr(&softnet_data);
5234 
5235 	local_irq_disable();
5236 	rps_lock(sd);
5237 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5238 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5239 			__skb_unlink(skb, &sd->input_pkt_queue);
5240 			kfree_skb(skb);
5241 			input_queue_head_incr(sd);
5242 		}
5243 	}
5244 	rps_unlock(sd);
5245 	local_irq_enable();
5246 
5247 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5248 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5249 			__skb_unlink(skb, &sd->process_queue);
5250 			kfree_skb(skb);
5251 			input_queue_head_incr(sd);
5252 		}
5253 	}
5254 	local_bh_enable();
5255 }
5256 
5257 static void flush_all_backlogs(void)
5258 {
5259 	unsigned int cpu;
5260 
5261 	get_online_cpus();
5262 
5263 	for_each_online_cpu(cpu)
5264 		queue_work_on(cpu, system_highpri_wq,
5265 			      per_cpu_ptr(&flush_works, cpu));
5266 
5267 	for_each_online_cpu(cpu)
5268 		flush_work(per_cpu_ptr(&flush_works, cpu));
5269 
5270 	put_online_cpus();
5271 }
5272 
5273 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5274 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5275 static int napi_gro_complete(struct sk_buff *skb)
5276 {
5277 	struct packet_offload *ptype;
5278 	__be16 type = skb->protocol;
5279 	struct list_head *head = &offload_base;
5280 	int err = -ENOENT;
5281 
5282 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5283 
5284 	if (NAPI_GRO_CB(skb)->count == 1) {
5285 		skb_shinfo(skb)->gso_size = 0;
5286 		goto out;
5287 	}
5288 
5289 	rcu_read_lock();
5290 	list_for_each_entry_rcu(ptype, head, list) {
5291 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5292 			continue;
5293 
5294 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5295 					 ipv6_gro_complete, inet_gro_complete,
5296 					 skb, 0);
5297 		break;
5298 	}
5299 	rcu_read_unlock();
5300 
5301 	if (err) {
5302 		WARN_ON(&ptype->list == head);
5303 		kfree_skb(skb);
5304 		return NET_RX_SUCCESS;
5305 	}
5306 
5307 out:
5308 	return netif_receive_skb_internal(skb);
5309 }
5310 
5311 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5312 				   bool flush_old)
5313 {
5314 	struct list_head *head = &napi->gro_hash[index].list;
5315 	struct sk_buff *skb, *p;
5316 
5317 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5318 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5319 			return;
5320 		skb_list_del_init(skb);
5321 		napi_gro_complete(skb);
5322 		napi->gro_hash[index].count--;
5323 	}
5324 
5325 	if (!napi->gro_hash[index].count)
5326 		__clear_bit(index, &napi->gro_bitmask);
5327 }
5328 
5329 /* napi->gro_hash[].list contains packets ordered by age.
5330  * youngest packets at the head of it.
5331  * Complete skbs in reverse order to reduce latencies.
5332  */
5333 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5334 {
5335 	unsigned long bitmask = napi->gro_bitmask;
5336 	unsigned int i, base = ~0U;
5337 
5338 	while ((i = ffs(bitmask)) != 0) {
5339 		bitmask >>= i;
5340 		base += i;
5341 		__napi_gro_flush_chain(napi, base, flush_old);
5342 	}
5343 }
5344 EXPORT_SYMBOL(napi_gro_flush);
5345 
5346 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5347 					  struct sk_buff *skb)
5348 {
5349 	unsigned int maclen = skb->dev->hard_header_len;
5350 	u32 hash = skb_get_hash_raw(skb);
5351 	struct list_head *head;
5352 	struct sk_buff *p;
5353 
5354 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5355 	list_for_each_entry(p, head, list) {
5356 		unsigned long diffs;
5357 
5358 		NAPI_GRO_CB(p)->flush = 0;
5359 
5360 		if (hash != skb_get_hash_raw(p)) {
5361 			NAPI_GRO_CB(p)->same_flow = 0;
5362 			continue;
5363 		}
5364 
5365 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5366 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5367 		if (skb_vlan_tag_present(p))
5368 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5369 		diffs |= skb_metadata_dst_cmp(p, skb);
5370 		diffs |= skb_metadata_differs(p, skb);
5371 		if (maclen == ETH_HLEN)
5372 			diffs |= compare_ether_header(skb_mac_header(p),
5373 						      skb_mac_header(skb));
5374 		else if (!diffs)
5375 			diffs = memcmp(skb_mac_header(p),
5376 				       skb_mac_header(skb),
5377 				       maclen);
5378 		NAPI_GRO_CB(p)->same_flow = !diffs;
5379 	}
5380 
5381 	return head;
5382 }
5383 
5384 static void skb_gro_reset_offset(struct sk_buff *skb)
5385 {
5386 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5387 	const skb_frag_t *frag0 = &pinfo->frags[0];
5388 
5389 	NAPI_GRO_CB(skb)->data_offset = 0;
5390 	NAPI_GRO_CB(skb)->frag0 = NULL;
5391 	NAPI_GRO_CB(skb)->frag0_len = 0;
5392 
5393 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5394 	    pinfo->nr_frags &&
5395 	    !PageHighMem(skb_frag_page(frag0))) {
5396 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5397 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5398 						    skb_frag_size(frag0),
5399 						    skb->end - skb->tail);
5400 	}
5401 }
5402 
5403 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5404 {
5405 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5406 
5407 	BUG_ON(skb->end - skb->tail < grow);
5408 
5409 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5410 
5411 	skb->data_len -= grow;
5412 	skb->tail += grow;
5413 
5414 	skb_frag_off_add(&pinfo->frags[0], grow);
5415 	skb_frag_size_sub(&pinfo->frags[0], grow);
5416 
5417 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5418 		skb_frag_unref(skb, 0);
5419 		memmove(pinfo->frags, pinfo->frags + 1,
5420 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5421 	}
5422 }
5423 
5424 static void gro_flush_oldest(struct list_head *head)
5425 {
5426 	struct sk_buff *oldest;
5427 
5428 	oldest = list_last_entry(head, struct sk_buff, list);
5429 
5430 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5431 	 * impossible.
5432 	 */
5433 	if (WARN_ON_ONCE(!oldest))
5434 		return;
5435 
5436 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5437 	 * SKB to the chain.
5438 	 */
5439 	skb_list_del_init(oldest);
5440 	napi_gro_complete(oldest);
5441 }
5442 
5443 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5444 							   struct sk_buff *));
5445 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5446 							   struct sk_buff *));
5447 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5448 {
5449 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5450 	struct list_head *head = &offload_base;
5451 	struct packet_offload *ptype;
5452 	__be16 type = skb->protocol;
5453 	struct list_head *gro_head;
5454 	struct sk_buff *pp = NULL;
5455 	enum gro_result ret;
5456 	int same_flow;
5457 	int grow;
5458 
5459 	if (netif_elide_gro(skb->dev))
5460 		goto normal;
5461 
5462 	gro_head = gro_list_prepare(napi, skb);
5463 
5464 	rcu_read_lock();
5465 	list_for_each_entry_rcu(ptype, head, list) {
5466 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5467 			continue;
5468 
5469 		skb_set_network_header(skb, skb_gro_offset(skb));
5470 		skb_reset_mac_len(skb);
5471 		NAPI_GRO_CB(skb)->same_flow = 0;
5472 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5473 		NAPI_GRO_CB(skb)->free = 0;
5474 		NAPI_GRO_CB(skb)->encap_mark = 0;
5475 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5476 		NAPI_GRO_CB(skb)->is_fou = 0;
5477 		NAPI_GRO_CB(skb)->is_atomic = 1;
5478 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5479 
5480 		/* Setup for GRO checksum validation */
5481 		switch (skb->ip_summed) {
5482 		case CHECKSUM_COMPLETE:
5483 			NAPI_GRO_CB(skb)->csum = skb->csum;
5484 			NAPI_GRO_CB(skb)->csum_valid = 1;
5485 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5486 			break;
5487 		case CHECKSUM_UNNECESSARY:
5488 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5489 			NAPI_GRO_CB(skb)->csum_valid = 0;
5490 			break;
5491 		default:
5492 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5493 			NAPI_GRO_CB(skb)->csum_valid = 0;
5494 		}
5495 
5496 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5497 					ipv6_gro_receive, inet_gro_receive,
5498 					gro_head, skb);
5499 		break;
5500 	}
5501 	rcu_read_unlock();
5502 
5503 	if (&ptype->list == head)
5504 		goto normal;
5505 
5506 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5507 		ret = GRO_CONSUMED;
5508 		goto ok;
5509 	}
5510 
5511 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5512 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5513 
5514 	if (pp) {
5515 		skb_list_del_init(pp);
5516 		napi_gro_complete(pp);
5517 		napi->gro_hash[hash].count--;
5518 	}
5519 
5520 	if (same_flow)
5521 		goto ok;
5522 
5523 	if (NAPI_GRO_CB(skb)->flush)
5524 		goto normal;
5525 
5526 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5527 		gro_flush_oldest(gro_head);
5528 	} else {
5529 		napi->gro_hash[hash].count++;
5530 	}
5531 	NAPI_GRO_CB(skb)->count = 1;
5532 	NAPI_GRO_CB(skb)->age = jiffies;
5533 	NAPI_GRO_CB(skb)->last = skb;
5534 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5535 	list_add(&skb->list, gro_head);
5536 	ret = GRO_HELD;
5537 
5538 pull:
5539 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5540 	if (grow > 0)
5541 		gro_pull_from_frag0(skb, grow);
5542 ok:
5543 	if (napi->gro_hash[hash].count) {
5544 		if (!test_bit(hash, &napi->gro_bitmask))
5545 			__set_bit(hash, &napi->gro_bitmask);
5546 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5547 		__clear_bit(hash, &napi->gro_bitmask);
5548 	}
5549 
5550 	return ret;
5551 
5552 normal:
5553 	ret = GRO_NORMAL;
5554 	goto pull;
5555 }
5556 
5557 struct packet_offload *gro_find_receive_by_type(__be16 type)
5558 {
5559 	struct list_head *offload_head = &offload_base;
5560 	struct packet_offload *ptype;
5561 
5562 	list_for_each_entry_rcu(ptype, offload_head, list) {
5563 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5564 			continue;
5565 		return ptype;
5566 	}
5567 	return NULL;
5568 }
5569 EXPORT_SYMBOL(gro_find_receive_by_type);
5570 
5571 struct packet_offload *gro_find_complete_by_type(__be16 type)
5572 {
5573 	struct list_head *offload_head = &offload_base;
5574 	struct packet_offload *ptype;
5575 
5576 	list_for_each_entry_rcu(ptype, offload_head, list) {
5577 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5578 			continue;
5579 		return ptype;
5580 	}
5581 	return NULL;
5582 }
5583 EXPORT_SYMBOL(gro_find_complete_by_type);
5584 
5585 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5586 {
5587 	skb_dst_drop(skb);
5588 	skb_ext_put(skb);
5589 	kmem_cache_free(skbuff_head_cache, skb);
5590 }
5591 
5592 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5593 {
5594 	switch (ret) {
5595 	case GRO_NORMAL:
5596 		if (netif_receive_skb_internal(skb))
5597 			ret = GRO_DROP;
5598 		break;
5599 
5600 	case GRO_DROP:
5601 		kfree_skb(skb);
5602 		break;
5603 
5604 	case GRO_MERGED_FREE:
5605 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5606 			napi_skb_free_stolen_head(skb);
5607 		else
5608 			__kfree_skb(skb);
5609 		break;
5610 
5611 	case GRO_HELD:
5612 	case GRO_MERGED:
5613 	case GRO_CONSUMED:
5614 		break;
5615 	}
5616 
5617 	return ret;
5618 }
5619 
5620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5621 {
5622 	gro_result_t ret;
5623 
5624 	skb_mark_napi_id(skb, napi);
5625 	trace_napi_gro_receive_entry(skb);
5626 
5627 	skb_gro_reset_offset(skb);
5628 
5629 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5630 	trace_napi_gro_receive_exit(ret);
5631 
5632 	return ret;
5633 }
5634 EXPORT_SYMBOL(napi_gro_receive);
5635 
5636 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5637 {
5638 	if (unlikely(skb->pfmemalloc)) {
5639 		consume_skb(skb);
5640 		return;
5641 	}
5642 	__skb_pull(skb, skb_headlen(skb));
5643 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5644 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5645 	__vlan_hwaccel_clear_tag(skb);
5646 	skb->dev = napi->dev;
5647 	skb->skb_iif = 0;
5648 
5649 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5650 	skb->pkt_type = PACKET_HOST;
5651 
5652 	skb->encapsulation = 0;
5653 	skb_shinfo(skb)->gso_type = 0;
5654 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5655 	skb_ext_reset(skb);
5656 
5657 	napi->skb = skb;
5658 }
5659 
5660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5661 {
5662 	struct sk_buff *skb = napi->skb;
5663 
5664 	if (!skb) {
5665 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5666 		if (skb) {
5667 			napi->skb = skb;
5668 			skb_mark_napi_id(skb, napi);
5669 		}
5670 	}
5671 	return skb;
5672 }
5673 EXPORT_SYMBOL(napi_get_frags);
5674 
5675 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5676 static void gro_normal_list(struct napi_struct *napi)
5677 {
5678 	if (!napi->rx_count)
5679 		return;
5680 	netif_receive_skb_list_internal(&napi->rx_list);
5681 	INIT_LIST_HEAD(&napi->rx_list);
5682 	napi->rx_count = 0;
5683 }
5684 
5685 /* Queue one GRO_NORMAL SKB up for list processing.  If batch size exceeded,
5686  * pass the whole batch up to the stack.
5687  */
5688 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5689 {
5690 	list_add_tail(&skb->list, &napi->rx_list);
5691 	if (++napi->rx_count >= gro_normal_batch)
5692 		gro_normal_list(napi);
5693 }
5694 
5695 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5696 				      struct sk_buff *skb,
5697 				      gro_result_t ret)
5698 {
5699 	switch (ret) {
5700 	case GRO_NORMAL:
5701 	case GRO_HELD:
5702 		__skb_push(skb, ETH_HLEN);
5703 		skb->protocol = eth_type_trans(skb, skb->dev);
5704 		if (ret == GRO_NORMAL)
5705 			gro_normal_one(napi, skb);
5706 		break;
5707 
5708 	case GRO_DROP:
5709 		napi_reuse_skb(napi, skb);
5710 		break;
5711 
5712 	case GRO_MERGED_FREE:
5713 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5714 			napi_skb_free_stolen_head(skb);
5715 		else
5716 			napi_reuse_skb(napi, skb);
5717 		break;
5718 
5719 	case GRO_MERGED:
5720 	case GRO_CONSUMED:
5721 		break;
5722 	}
5723 
5724 	return ret;
5725 }
5726 
5727 /* Upper GRO stack assumes network header starts at gro_offset=0
5728  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5729  * We copy ethernet header into skb->data to have a common layout.
5730  */
5731 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5732 {
5733 	struct sk_buff *skb = napi->skb;
5734 	const struct ethhdr *eth;
5735 	unsigned int hlen = sizeof(*eth);
5736 
5737 	napi->skb = NULL;
5738 
5739 	skb_reset_mac_header(skb);
5740 	skb_gro_reset_offset(skb);
5741 
5742 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5743 		eth = skb_gro_header_slow(skb, hlen, 0);
5744 		if (unlikely(!eth)) {
5745 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5746 					     __func__, napi->dev->name);
5747 			napi_reuse_skb(napi, skb);
5748 			return NULL;
5749 		}
5750 	} else {
5751 		eth = (const struct ethhdr *)skb->data;
5752 		gro_pull_from_frag0(skb, hlen);
5753 		NAPI_GRO_CB(skb)->frag0 += hlen;
5754 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5755 	}
5756 	__skb_pull(skb, hlen);
5757 
5758 	/*
5759 	 * This works because the only protocols we care about don't require
5760 	 * special handling.
5761 	 * We'll fix it up properly in napi_frags_finish()
5762 	 */
5763 	skb->protocol = eth->h_proto;
5764 
5765 	return skb;
5766 }
5767 
5768 gro_result_t napi_gro_frags(struct napi_struct *napi)
5769 {
5770 	gro_result_t ret;
5771 	struct sk_buff *skb = napi_frags_skb(napi);
5772 
5773 	if (!skb)
5774 		return GRO_DROP;
5775 
5776 	trace_napi_gro_frags_entry(skb);
5777 
5778 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5779 	trace_napi_gro_frags_exit(ret);
5780 
5781 	return ret;
5782 }
5783 EXPORT_SYMBOL(napi_gro_frags);
5784 
5785 /* Compute the checksum from gro_offset and return the folded value
5786  * after adding in any pseudo checksum.
5787  */
5788 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5789 {
5790 	__wsum wsum;
5791 	__sum16 sum;
5792 
5793 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5794 
5795 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5796 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5797 	/* See comments in __skb_checksum_complete(). */
5798 	if (likely(!sum)) {
5799 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5800 		    !skb->csum_complete_sw)
5801 			netdev_rx_csum_fault(skb->dev, skb);
5802 	}
5803 
5804 	NAPI_GRO_CB(skb)->csum = wsum;
5805 	NAPI_GRO_CB(skb)->csum_valid = 1;
5806 
5807 	return sum;
5808 }
5809 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5810 
5811 static void net_rps_send_ipi(struct softnet_data *remsd)
5812 {
5813 #ifdef CONFIG_RPS
5814 	while (remsd) {
5815 		struct softnet_data *next = remsd->rps_ipi_next;
5816 
5817 		if (cpu_online(remsd->cpu))
5818 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5819 		remsd = next;
5820 	}
5821 #endif
5822 }
5823 
5824 /*
5825  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5826  * Note: called with local irq disabled, but exits with local irq enabled.
5827  */
5828 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5829 {
5830 #ifdef CONFIG_RPS
5831 	struct softnet_data *remsd = sd->rps_ipi_list;
5832 
5833 	if (remsd) {
5834 		sd->rps_ipi_list = NULL;
5835 
5836 		local_irq_enable();
5837 
5838 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5839 		net_rps_send_ipi(remsd);
5840 	} else
5841 #endif
5842 		local_irq_enable();
5843 }
5844 
5845 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5846 {
5847 #ifdef CONFIG_RPS
5848 	return sd->rps_ipi_list != NULL;
5849 #else
5850 	return false;
5851 #endif
5852 }
5853 
5854 static int process_backlog(struct napi_struct *napi, int quota)
5855 {
5856 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5857 	bool again = true;
5858 	int work = 0;
5859 
5860 	/* Check if we have pending ipi, its better to send them now,
5861 	 * not waiting net_rx_action() end.
5862 	 */
5863 	if (sd_has_rps_ipi_waiting(sd)) {
5864 		local_irq_disable();
5865 		net_rps_action_and_irq_enable(sd);
5866 	}
5867 
5868 	napi->weight = dev_rx_weight;
5869 	while (again) {
5870 		struct sk_buff *skb;
5871 
5872 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5873 			rcu_read_lock();
5874 			__netif_receive_skb(skb);
5875 			rcu_read_unlock();
5876 			input_queue_head_incr(sd);
5877 			if (++work >= quota)
5878 				return work;
5879 
5880 		}
5881 
5882 		local_irq_disable();
5883 		rps_lock(sd);
5884 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5885 			/*
5886 			 * Inline a custom version of __napi_complete().
5887 			 * only current cpu owns and manipulates this napi,
5888 			 * and NAPI_STATE_SCHED is the only possible flag set
5889 			 * on backlog.
5890 			 * We can use a plain write instead of clear_bit(),
5891 			 * and we dont need an smp_mb() memory barrier.
5892 			 */
5893 			napi->state = 0;
5894 			again = false;
5895 		} else {
5896 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5897 						   &sd->process_queue);
5898 		}
5899 		rps_unlock(sd);
5900 		local_irq_enable();
5901 	}
5902 
5903 	return work;
5904 }
5905 
5906 /**
5907  * __napi_schedule - schedule for receive
5908  * @n: entry to schedule
5909  *
5910  * The entry's receive function will be scheduled to run.
5911  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5912  */
5913 void __napi_schedule(struct napi_struct *n)
5914 {
5915 	unsigned long flags;
5916 
5917 	local_irq_save(flags);
5918 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5919 	local_irq_restore(flags);
5920 }
5921 EXPORT_SYMBOL(__napi_schedule);
5922 
5923 /**
5924  *	napi_schedule_prep - check if napi can be scheduled
5925  *	@n: napi context
5926  *
5927  * Test if NAPI routine is already running, and if not mark
5928  * it as running.  This is used as a condition variable
5929  * insure only one NAPI poll instance runs.  We also make
5930  * sure there is no pending NAPI disable.
5931  */
5932 bool napi_schedule_prep(struct napi_struct *n)
5933 {
5934 	unsigned long val, new;
5935 
5936 	do {
5937 		val = READ_ONCE(n->state);
5938 		if (unlikely(val & NAPIF_STATE_DISABLE))
5939 			return false;
5940 		new = val | NAPIF_STATE_SCHED;
5941 
5942 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5943 		 * This was suggested by Alexander Duyck, as compiler
5944 		 * emits better code than :
5945 		 * if (val & NAPIF_STATE_SCHED)
5946 		 *     new |= NAPIF_STATE_MISSED;
5947 		 */
5948 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5949 						   NAPIF_STATE_MISSED;
5950 	} while (cmpxchg(&n->state, val, new) != val);
5951 
5952 	return !(val & NAPIF_STATE_SCHED);
5953 }
5954 EXPORT_SYMBOL(napi_schedule_prep);
5955 
5956 /**
5957  * __napi_schedule_irqoff - schedule for receive
5958  * @n: entry to schedule
5959  *
5960  * Variant of __napi_schedule() assuming hard irqs are masked
5961  */
5962 void __napi_schedule_irqoff(struct napi_struct *n)
5963 {
5964 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5965 }
5966 EXPORT_SYMBOL(__napi_schedule_irqoff);
5967 
5968 bool napi_complete_done(struct napi_struct *n, int work_done)
5969 {
5970 	unsigned long flags, val, new;
5971 
5972 	/*
5973 	 * 1) Don't let napi dequeue from the cpu poll list
5974 	 *    just in case its running on a different cpu.
5975 	 * 2) If we are busy polling, do nothing here, we have
5976 	 *    the guarantee we will be called later.
5977 	 */
5978 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5979 				 NAPIF_STATE_IN_BUSY_POLL)))
5980 		return false;
5981 
5982 	gro_normal_list(n);
5983 
5984 	if (n->gro_bitmask) {
5985 		unsigned long timeout = 0;
5986 
5987 		if (work_done)
5988 			timeout = n->dev->gro_flush_timeout;
5989 
5990 		/* When the NAPI instance uses a timeout and keeps postponing
5991 		 * it, we need to bound somehow the time packets are kept in
5992 		 * the GRO layer
5993 		 */
5994 		napi_gro_flush(n, !!timeout);
5995 		if (timeout)
5996 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5997 				      HRTIMER_MODE_REL_PINNED);
5998 	}
5999 	if (unlikely(!list_empty(&n->poll_list))) {
6000 		/* If n->poll_list is not empty, we need to mask irqs */
6001 		local_irq_save(flags);
6002 		list_del_init(&n->poll_list);
6003 		local_irq_restore(flags);
6004 	}
6005 
6006 	do {
6007 		val = READ_ONCE(n->state);
6008 
6009 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6010 
6011 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6012 
6013 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6014 		 * because we will call napi->poll() one more time.
6015 		 * This C code was suggested by Alexander Duyck to help gcc.
6016 		 */
6017 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6018 						    NAPIF_STATE_SCHED;
6019 	} while (cmpxchg(&n->state, val, new) != val);
6020 
6021 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6022 		__napi_schedule(n);
6023 		return false;
6024 	}
6025 
6026 	return true;
6027 }
6028 EXPORT_SYMBOL(napi_complete_done);
6029 
6030 /* must be called under rcu_read_lock(), as we dont take a reference */
6031 static struct napi_struct *napi_by_id(unsigned int napi_id)
6032 {
6033 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6034 	struct napi_struct *napi;
6035 
6036 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6037 		if (napi->napi_id == napi_id)
6038 			return napi;
6039 
6040 	return NULL;
6041 }
6042 
6043 #if defined(CONFIG_NET_RX_BUSY_POLL)
6044 
6045 #define BUSY_POLL_BUDGET 8
6046 
6047 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6048 {
6049 	int rc;
6050 
6051 	/* Busy polling means there is a high chance device driver hard irq
6052 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6053 	 * set in napi_schedule_prep().
6054 	 * Since we are about to call napi->poll() once more, we can safely
6055 	 * clear NAPI_STATE_MISSED.
6056 	 *
6057 	 * Note: x86 could use a single "lock and ..." instruction
6058 	 * to perform these two clear_bit()
6059 	 */
6060 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6061 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6062 
6063 	local_bh_disable();
6064 
6065 	/* All we really want here is to re-enable device interrupts.
6066 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6067 	 */
6068 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6069 	/* We can't gro_normal_list() here, because napi->poll() might have
6070 	 * rearmed the napi (napi_complete_done()) in which case it could
6071 	 * already be running on another CPU.
6072 	 */
6073 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6074 	netpoll_poll_unlock(have_poll_lock);
6075 	if (rc == BUSY_POLL_BUDGET) {
6076 		/* As the whole budget was spent, we still own the napi so can
6077 		 * safely handle the rx_list.
6078 		 */
6079 		gro_normal_list(napi);
6080 		__napi_schedule(napi);
6081 	}
6082 	local_bh_enable();
6083 }
6084 
6085 void napi_busy_loop(unsigned int napi_id,
6086 		    bool (*loop_end)(void *, unsigned long),
6087 		    void *loop_end_arg)
6088 {
6089 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6090 	int (*napi_poll)(struct napi_struct *napi, int budget);
6091 	void *have_poll_lock = NULL;
6092 	struct napi_struct *napi;
6093 
6094 restart:
6095 	napi_poll = NULL;
6096 
6097 	rcu_read_lock();
6098 
6099 	napi = napi_by_id(napi_id);
6100 	if (!napi)
6101 		goto out;
6102 
6103 	preempt_disable();
6104 	for (;;) {
6105 		int work = 0;
6106 
6107 		local_bh_disable();
6108 		if (!napi_poll) {
6109 			unsigned long val = READ_ONCE(napi->state);
6110 
6111 			/* If multiple threads are competing for this napi,
6112 			 * we avoid dirtying napi->state as much as we can.
6113 			 */
6114 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6115 				   NAPIF_STATE_IN_BUSY_POLL))
6116 				goto count;
6117 			if (cmpxchg(&napi->state, val,
6118 				    val | NAPIF_STATE_IN_BUSY_POLL |
6119 					  NAPIF_STATE_SCHED) != val)
6120 				goto count;
6121 			have_poll_lock = netpoll_poll_lock(napi);
6122 			napi_poll = napi->poll;
6123 		}
6124 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6125 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6126 		gro_normal_list(napi);
6127 count:
6128 		if (work > 0)
6129 			__NET_ADD_STATS(dev_net(napi->dev),
6130 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6131 		local_bh_enable();
6132 
6133 		if (!loop_end || loop_end(loop_end_arg, start_time))
6134 			break;
6135 
6136 		if (unlikely(need_resched())) {
6137 			if (napi_poll)
6138 				busy_poll_stop(napi, have_poll_lock);
6139 			preempt_enable();
6140 			rcu_read_unlock();
6141 			cond_resched();
6142 			if (loop_end(loop_end_arg, start_time))
6143 				return;
6144 			goto restart;
6145 		}
6146 		cpu_relax();
6147 	}
6148 	if (napi_poll)
6149 		busy_poll_stop(napi, have_poll_lock);
6150 	preempt_enable();
6151 out:
6152 	rcu_read_unlock();
6153 }
6154 EXPORT_SYMBOL(napi_busy_loop);
6155 
6156 #endif /* CONFIG_NET_RX_BUSY_POLL */
6157 
6158 static void napi_hash_add(struct napi_struct *napi)
6159 {
6160 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6161 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6162 		return;
6163 
6164 	spin_lock(&napi_hash_lock);
6165 
6166 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6167 	do {
6168 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6169 			napi_gen_id = MIN_NAPI_ID;
6170 	} while (napi_by_id(napi_gen_id));
6171 	napi->napi_id = napi_gen_id;
6172 
6173 	hlist_add_head_rcu(&napi->napi_hash_node,
6174 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6175 
6176 	spin_unlock(&napi_hash_lock);
6177 }
6178 
6179 /* Warning : caller is responsible to make sure rcu grace period
6180  * is respected before freeing memory containing @napi
6181  */
6182 bool napi_hash_del(struct napi_struct *napi)
6183 {
6184 	bool rcu_sync_needed = false;
6185 
6186 	spin_lock(&napi_hash_lock);
6187 
6188 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6189 		rcu_sync_needed = true;
6190 		hlist_del_rcu(&napi->napi_hash_node);
6191 	}
6192 	spin_unlock(&napi_hash_lock);
6193 	return rcu_sync_needed;
6194 }
6195 EXPORT_SYMBOL_GPL(napi_hash_del);
6196 
6197 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6198 {
6199 	struct napi_struct *napi;
6200 
6201 	napi = container_of(timer, struct napi_struct, timer);
6202 
6203 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6204 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6205 	 */
6206 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6207 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6208 		__napi_schedule_irqoff(napi);
6209 
6210 	return HRTIMER_NORESTART;
6211 }
6212 
6213 static void init_gro_hash(struct napi_struct *napi)
6214 {
6215 	int i;
6216 
6217 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6218 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6219 		napi->gro_hash[i].count = 0;
6220 	}
6221 	napi->gro_bitmask = 0;
6222 }
6223 
6224 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6225 		    int (*poll)(struct napi_struct *, int), int weight)
6226 {
6227 	INIT_LIST_HEAD(&napi->poll_list);
6228 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6229 	napi->timer.function = napi_watchdog;
6230 	init_gro_hash(napi);
6231 	napi->skb = NULL;
6232 	INIT_LIST_HEAD(&napi->rx_list);
6233 	napi->rx_count = 0;
6234 	napi->poll = poll;
6235 	if (weight > NAPI_POLL_WEIGHT)
6236 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6237 				weight);
6238 	napi->weight = weight;
6239 	list_add(&napi->dev_list, &dev->napi_list);
6240 	napi->dev = dev;
6241 #ifdef CONFIG_NETPOLL
6242 	napi->poll_owner = -1;
6243 #endif
6244 	set_bit(NAPI_STATE_SCHED, &napi->state);
6245 	napi_hash_add(napi);
6246 }
6247 EXPORT_SYMBOL(netif_napi_add);
6248 
6249 void napi_disable(struct napi_struct *n)
6250 {
6251 	might_sleep();
6252 	set_bit(NAPI_STATE_DISABLE, &n->state);
6253 
6254 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6255 		msleep(1);
6256 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6257 		msleep(1);
6258 
6259 	hrtimer_cancel(&n->timer);
6260 
6261 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6262 }
6263 EXPORT_SYMBOL(napi_disable);
6264 
6265 static void flush_gro_hash(struct napi_struct *napi)
6266 {
6267 	int i;
6268 
6269 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6270 		struct sk_buff *skb, *n;
6271 
6272 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6273 			kfree_skb(skb);
6274 		napi->gro_hash[i].count = 0;
6275 	}
6276 }
6277 
6278 /* Must be called in process context */
6279 void netif_napi_del(struct napi_struct *napi)
6280 {
6281 	might_sleep();
6282 	if (napi_hash_del(napi))
6283 		synchronize_net();
6284 	list_del_init(&napi->dev_list);
6285 	napi_free_frags(napi);
6286 
6287 	flush_gro_hash(napi);
6288 	napi->gro_bitmask = 0;
6289 }
6290 EXPORT_SYMBOL(netif_napi_del);
6291 
6292 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6293 {
6294 	void *have;
6295 	int work, weight;
6296 
6297 	list_del_init(&n->poll_list);
6298 
6299 	have = netpoll_poll_lock(n);
6300 
6301 	weight = n->weight;
6302 
6303 	/* This NAPI_STATE_SCHED test is for avoiding a race
6304 	 * with netpoll's poll_napi().  Only the entity which
6305 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6306 	 * actually make the ->poll() call.  Therefore we avoid
6307 	 * accidentally calling ->poll() when NAPI is not scheduled.
6308 	 */
6309 	work = 0;
6310 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6311 		work = n->poll(n, weight);
6312 		trace_napi_poll(n, work, weight);
6313 	}
6314 
6315 	WARN_ON_ONCE(work > weight);
6316 
6317 	if (likely(work < weight))
6318 		goto out_unlock;
6319 
6320 	/* Drivers must not modify the NAPI state if they
6321 	 * consume the entire weight.  In such cases this code
6322 	 * still "owns" the NAPI instance and therefore can
6323 	 * move the instance around on the list at-will.
6324 	 */
6325 	if (unlikely(napi_disable_pending(n))) {
6326 		napi_complete(n);
6327 		goto out_unlock;
6328 	}
6329 
6330 	gro_normal_list(n);
6331 
6332 	if (n->gro_bitmask) {
6333 		/* flush too old packets
6334 		 * If HZ < 1000, flush all packets.
6335 		 */
6336 		napi_gro_flush(n, HZ >= 1000);
6337 	}
6338 
6339 	/* Some drivers may have called napi_schedule
6340 	 * prior to exhausting their budget.
6341 	 */
6342 	if (unlikely(!list_empty(&n->poll_list))) {
6343 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6344 			     n->dev ? n->dev->name : "backlog");
6345 		goto out_unlock;
6346 	}
6347 
6348 	list_add_tail(&n->poll_list, repoll);
6349 
6350 out_unlock:
6351 	netpoll_poll_unlock(have);
6352 
6353 	return work;
6354 }
6355 
6356 static __latent_entropy void net_rx_action(struct softirq_action *h)
6357 {
6358 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6359 	unsigned long time_limit = jiffies +
6360 		usecs_to_jiffies(netdev_budget_usecs);
6361 	int budget = netdev_budget;
6362 	LIST_HEAD(list);
6363 	LIST_HEAD(repoll);
6364 
6365 	local_irq_disable();
6366 	list_splice_init(&sd->poll_list, &list);
6367 	local_irq_enable();
6368 
6369 	for (;;) {
6370 		struct napi_struct *n;
6371 
6372 		if (list_empty(&list)) {
6373 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6374 				goto out;
6375 			break;
6376 		}
6377 
6378 		n = list_first_entry(&list, struct napi_struct, poll_list);
6379 		budget -= napi_poll(n, &repoll);
6380 
6381 		/* If softirq window is exhausted then punt.
6382 		 * Allow this to run for 2 jiffies since which will allow
6383 		 * an average latency of 1.5/HZ.
6384 		 */
6385 		if (unlikely(budget <= 0 ||
6386 			     time_after_eq(jiffies, time_limit))) {
6387 			sd->time_squeeze++;
6388 			break;
6389 		}
6390 	}
6391 
6392 	local_irq_disable();
6393 
6394 	list_splice_tail_init(&sd->poll_list, &list);
6395 	list_splice_tail(&repoll, &list);
6396 	list_splice(&list, &sd->poll_list);
6397 	if (!list_empty(&sd->poll_list))
6398 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6399 
6400 	net_rps_action_and_irq_enable(sd);
6401 out:
6402 	__kfree_skb_flush();
6403 }
6404 
6405 struct netdev_adjacent {
6406 	struct net_device *dev;
6407 
6408 	/* upper master flag, there can only be one master device per list */
6409 	bool master;
6410 
6411 	/* lookup ignore flag */
6412 	bool ignore;
6413 
6414 	/* counter for the number of times this device was added to us */
6415 	u16 ref_nr;
6416 
6417 	/* private field for the users */
6418 	void *private;
6419 
6420 	struct list_head list;
6421 	struct rcu_head rcu;
6422 };
6423 
6424 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6425 						 struct list_head *adj_list)
6426 {
6427 	struct netdev_adjacent *adj;
6428 
6429 	list_for_each_entry(adj, adj_list, list) {
6430 		if (adj->dev == adj_dev)
6431 			return adj;
6432 	}
6433 	return NULL;
6434 }
6435 
6436 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6437 {
6438 	struct net_device *dev = data;
6439 
6440 	return upper_dev == dev;
6441 }
6442 
6443 /**
6444  * netdev_has_upper_dev - Check if device is linked to an upper device
6445  * @dev: device
6446  * @upper_dev: upper device to check
6447  *
6448  * Find out if a device is linked to specified upper device and return true
6449  * in case it is. Note that this checks only immediate upper device,
6450  * not through a complete stack of devices. The caller must hold the RTNL lock.
6451  */
6452 bool netdev_has_upper_dev(struct net_device *dev,
6453 			  struct net_device *upper_dev)
6454 {
6455 	ASSERT_RTNL();
6456 
6457 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6458 					     upper_dev);
6459 }
6460 EXPORT_SYMBOL(netdev_has_upper_dev);
6461 
6462 /**
6463  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6464  * @dev: device
6465  * @upper_dev: upper device to check
6466  *
6467  * Find out if a device is linked to specified upper device and return true
6468  * in case it is. Note that this checks the entire upper device chain.
6469  * The caller must hold rcu lock.
6470  */
6471 
6472 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6473 				  struct net_device *upper_dev)
6474 {
6475 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6476 					       upper_dev);
6477 }
6478 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6479 
6480 /**
6481  * netdev_has_any_upper_dev - Check if device is linked to some device
6482  * @dev: device
6483  *
6484  * Find out if a device is linked to an upper device and return true in case
6485  * it is. The caller must hold the RTNL lock.
6486  */
6487 bool netdev_has_any_upper_dev(struct net_device *dev)
6488 {
6489 	ASSERT_RTNL();
6490 
6491 	return !list_empty(&dev->adj_list.upper);
6492 }
6493 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6494 
6495 /**
6496  * netdev_master_upper_dev_get - Get master upper device
6497  * @dev: device
6498  *
6499  * Find a master upper device and return pointer to it or NULL in case
6500  * it's not there. The caller must hold the RTNL lock.
6501  */
6502 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6503 {
6504 	struct netdev_adjacent *upper;
6505 
6506 	ASSERT_RTNL();
6507 
6508 	if (list_empty(&dev->adj_list.upper))
6509 		return NULL;
6510 
6511 	upper = list_first_entry(&dev->adj_list.upper,
6512 				 struct netdev_adjacent, list);
6513 	if (likely(upper->master))
6514 		return upper->dev;
6515 	return NULL;
6516 }
6517 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6518 
6519 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6520 {
6521 	struct netdev_adjacent *upper;
6522 
6523 	ASSERT_RTNL();
6524 
6525 	if (list_empty(&dev->adj_list.upper))
6526 		return NULL;
6527 
6528 	upper = list_first_entry(&dev->adj_list.upper,
6529 				 struct netdev_adjacent, list);
6530 	if (likely(upper->master) && !upper->ignore)
6531 		return upper->dev;
6532 	return NULL;
6533 }
6534 
6535 /**
6536  * netdev_has_any_lower_dev - Check if device is linked to some device
6537  * @dev: device
6538  *
6539  * Find out if a device is linked to a lower device and return true in case
6540  * it is. The caller must hold the RTNL lock.
6541  */
6542 static bool netdev_has_any_lower_dev(struct net_device *dev)
6543 {
6544 	ASSERT_RTNL();
6545 
6546 	return !list_empty(&dev->adj_list.lower);
6547 }
6548 
6549 void *netdev_adjacent_get_private(struct list_head *adj_list)
6550 {
6551 	struct netdev_adjacent *adj;
6552 
6553 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6554 
6555 	return adj->private;
6556 }
6557 EXPORT_SYMBOL(netdev_adjacent_get_private);
6558 
6559 /**
6560  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6561  * @dev: device
6562  * @iter: list_head ** of the current position
6563  *
6564  * Gets the next device from the dev's upper list, starting from iter
6565  * position. The caller must hold RCU read lock.
6566  */
6567 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6568 						 struct list_head **iter)
6569 {
6570 	struct netdev_adjacent *upper;
6571 
6572 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6573 
6574 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6575 
6576 	if (&upper->list == &dev->adj_list.upper)
6577 		return NULL;
6578 
6579 	*iter = &upper->list;
6580 
6581 	return upper->dev;
6582 }
6583 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6584 
6585 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6586 						  struct list_head **iter,
6587 						  bool *ignore)
6588 {
6589 	struct netdev_adjacent *upper;
6590 
6591 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6592 
6593 	if (&upper->list == &dev->adj_list.upper)
6594 		return NULL;
6595 
6596 	*iter = &upper->list;
6597 	*ignore = upper->ignore;
6598 
6599 	return upper->dev;
6600 }
6601 
6602 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6603 						    struct list_head **iter)
6604 {
6605 	struct netdev_adjacent *upper;
6606 
6607 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6608 
6609 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6610 
6611 	if (&upper->list == &dev->adj_list.upper)
6612 		return NULL;
6613 
6614 	*iter = &upper->list;
6615 
6616 	return upper->dev;
6617 }
6618 
6619 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6620 				       int (*fn)(struct net_device *dev,
6621 						 void *data),
6622 				       void *data)
6623 {
6624 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6625 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6626 	int ret, cur = 0;
6627 	bool ignore;
6628 
6629 	now = dev;
6630 	iter = &dev->adj_list.upper;
6631 
6632 	while (1) {
6633 		if (now != dev) {
6634 			ret = fn(now, data);
6635 			if (ret)
6636 				return ret;
6637 		}
6638 
6639 		next = NULL;
6640 		while (1) {
6641 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6642 			if (!udev)
6643 				break;
6644 			if (ignore)
6645 				continue;
6646 
6647 			next = udev;
6648 			niter = &udev->adj_list.upper;
6649 			dev_stack[cur] = now;
6650 			iter_stack[cur++] = iter;
6651 			break;
6652 		}
6653 
6654 		if (!next) {
6655 			if (!cur)
6656 				return 0;
6657 			next = dev_stack[--cur];
6658 			niter = iter_stack[cur];
6659 		}
6660 
6661 		now = next;
6662 		iter = niter;
6663 	}
6664 
6665 	return 0;
6666 }
6667 
6668 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6669 				  int (*fn)(struct net_device *dev,
6670 					    void *data),
6671 				  void *data)
6672 {
6673 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6674 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6675 	int ret, cur = 0;
6676 
6677 	now = dev;
6678 	iter = &dev->adj_list.upper;
6679 
6680 	while (1) {
6681 		if (now != dev) {
6682 			ret = fn(now, data);
6683 			if (ret)
6684 				return ret;
6685 		}
6686 
6687 		next = NULL;
6688 		while (1) {
6689 			udev = netdev_next_upper_dev_rcu(now, &iter);
6690 			if (!udev)
6691 				break;
6692 
6693 			next = udev;
6694 			niter = &udev->adj_list.upper;
6695 			dev_stack[cur] = now;
6696 			iter_stack[cur++] = iter;
6697 			break;
6698 		}
6699 
6700 		if (!next) {
6701 			if (!cur)
6702 				return 0;
6703 			next = dev_stack[--cur];
6704 			niter = iter_stack[cur];
6705 		}
6706 
6707 		now = next;
6708 		iter = niter;
6709 	}
6710 
6711 	return 0;
6712 }
6713 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6714 
6715 static bool __netdev_has_upper_dev(struct net_device *dev,
6716 				   struct net_device *upper_dev)
6717 {
6718 	ASSERT_RTNL();
6719 
6720 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6721 					   upper_dev);
6722 }
6723 
6724 /**
6725  * netdev_lower_get_next_private - Get the next ->private from the
6726  *				   lower neighbour list
6727  * @dev: device
6728  * @iter: list_head ** of the current position
6729  *
6730  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6731  * list, starting from iter position. The caller must hold either hold the
6732  * RTNL lock or its own locking that guarantees that the neighbour lower
6733  * list will remain unchanged.
6734  */
6735 void *netdev_lower_get_next_private(struct net_device *dev,
6736 				    struct list_head **iter)
6737 {
6738 	struct netdev_adjacent *lower;
6739 
6740 	lower = list_entry(*iter, struct netdev_adjacent, list);
6741 
6742 	if (&lower->list == &dev->adj_list.lower)
6743 		return NULL;
6744 
6745 	*iter = lower->list.next;
6746 
6747 	return lower->private;
6748 }
6749 EXPORT_SYMBOL(netdev_lower_get_next_private);
6750 
6751 /**
6752  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6753  *				       lower neighbour list, RCU
6754  *				       variant
6755  * @dev: device
6756  * @iter: list_head ** of the current position
6757  *
6758  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6759  * list, starting from iter position. The caller must hold RCU read lock.
6760  */
6761 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6762 					struct list_head **iter)
6763 {
6764 	struct netdev_adjacent *lower;
6765 
6766 	WARN_ON_ONCE(!rcu_read_lock_held());
6767 
6768 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6769 
6770 	if (&lower->list == &dev->adj_list.lower)
6771 		return NULL;
6772 
6773 	*iter = &lower->list;
6774 
6775 	return lower->private;
6776 }
6777 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6778 
6779 /**
6780  * netdev_lower_get_next - Get the next device from the lower neighbour
6781  *                         list
6782  * @dev: device
6783  * @iter: list_head ** of the current position
6784  *
6785  * Gets the next netdev_adjacent from the dev's lower neighbour
6786  * list, starting from iter position. The caller must hold RTNL lock or
6787  * its own locking that guarantees that the neighbour lower
6788  * list will remain unchanged.
6789  */
6790 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6791 {
6792 	struct netdev_adjacent *lower;
6793 
6794 	lower = list_entry(*iter, struct netdev_adjacent, list);
6795 
6796 	if (&lower->list == &dev->adj_list.lower)
6797 		return NULL;
6798 
6799 	*iter = lower->list.next;
6800 
6801 	return lower->dev;
6802 }
6803 EXPORT_SYMBOL(netdev_lower_get_next);
6804 
6805 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6806 						struct list_head **iter)
6807 {
6808 	struct netdev_adjacent *lower;
6809 
6810 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6811 
6812 	if (&lower->list == &dev->adj_list.lower)
6813 		return NULL;
6814 
6815 	*iter = &lower->list;
6816 
6817 	return lower->dev;
6818 }
6819 
6820 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6821 						  struct list_head **iter,
6822 						  bool *ignore)
6823 {
6824 	struct netdev_adjacent *lower;
6825 
6826 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6827 
6828 	if (&lower->list == &dev->adj_list.lower)
6829 		return NULL;
6830 
6831 	*iter = &lower->list;
6832 	*ignore = lower->ignore;
6833 
6834 	return lower->dev;
6835 }
6836 
6837 int netdev_walk_all_lower_dev(struct net_device *dev,
6838 			      int (*fn)(struct net_device *dev,
6839 					void *data),
6840 			      void *data)
6841 {
6842 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6843 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6844 	int ret, cur = 0;
6845 
6846 	now = dev;
6847 	iter = &dev->adj_list.lower;
6848 
6849 	while (1) {
6850 		if (now != dev) {
6851 			ret = fn(now, data);
6852 			if (ret)
6853 				return ret;
6854 		}
6855 
6856 		next = NULL;
6857 		while (1) {
6858 			ldev = netdev_next_lower_dev(now, &iter);
6859 			if (!ldev)
6860 				break;
6861 
6862 			next = ldev;
6863 			niter = &ldev->adj_list.lower;
6864 			dev_stack[cur] = now;
6865 			iter_stack[cur++] = iter;
6866 			break;
6867 		}
6868 
6869 		if (!next) {
6870 			if (!cur)
6871 				return 0;
6872 			next = dev_stack[--cur];
6873 			niter = iter_stack[cur];
6874 		}
6875 
6876 		now = next;
6877 		iter = niter;
6878 	}
6879 
6880 	return 0;
6881 }
6882 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6883 
6884 static int __netdev_walk_all_lower_dev(struct net_device *dev,
6885 				       int (*fn)(struct net_device *dev,
6886 						 void *data),
6887 				       void *data)
6888 {
6889 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6890 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6891 	int ret, cur = 0;
6892 	bool ignore;
6893 
6894 	now = dev;
6895 	iter = &dev->adj_list.lower;
6896 
6897 	while (1) {
6898 		if (now != dev) {
6899 			ret = fn(now, data);
6900 			if (ret)
6901 				return ret;
6902 		}
6903 
6904 		next = NULL;
6905 		while (1) {
6906 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
6907 			if (!ldev)
6908 				break;
6909 			if (ignore)
6910 				continue;
6911 
6912 			next = ldev;
6913 			niter = &ldev->adj_list.lower;
6914 			dev_stack[cur] = now;
6915 			iter_stack[cur++] = iter;
6916 			break;
6917 		}
6918 
6919 		if (!next) {
6920 			if (!cur)
6921 				return 0;
6922 			next = dev_stack[--cur];
6923 			niter = iter_stack[cur];
6924 		}
6925 
6926 		now = next;
6927 		iter = niter;
6928 	}
6929 
6930 	return 0;
6931 }
6932 
6933 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6934 						    struct list_head **iter)
6935 {
6936 	struct netdev_adjacent *lower;
6937 
6938 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6939 	if (&lower->list == &dev->adj_list.lower)
6940 		return NULL;
6941 
6942 	*iter = &lower->list;
6943 
6944 	return lower->dev;
6945 }
6946 
6947 static u8 __netdev_upper_depth(struct net_device *dev)
6948 {
6949 	struct net_device *udev;
6950 	struct list_head *iter;
6951 	u8 max_depth = 0;
6952 	bool ignore;
6953 
6954 	for (iter = &dev->adj_list.upper,
6955 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
6956 	     udev;
6957 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
6958 		if (ignore)
6959 			continue;
6960 		if (max_depth < udev->upper_level)
6961 			max_depth = udev->upper_level;
6962 	}
6963 
6964 	return max_depth;
6965 }
6966 
6967 static u8 __netdev_lower_depth(struct net_device *dev)
6968 {
6969 	struct net_device *ldev;
6970 	struct list_head *iter;
6971 	u8 max_depth = 0;
6972 	bool ignore;
6973 
6974 	for (iter = &dev->adj_list.lower,
6975 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
6976 	     ldev;
6977 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
6978 		if (ignore)
6979 			continue;
6980 		if (max_depth < ldev->lower_level)
6981 			max_depth = ldev->lower_level;
6982 	}
6983 
6984 	return max_depth;
6985 }
6986 
6987 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6988 {
6989 	dev->upper_level = __netdev_upper_depth(dev) + 1;
6990 	return 0;
6991 }
6992 
6993 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6994 {
6995 	dev->lower_level = __netdev_lower_depth(dev) + 1;
6996 	return 0;
6997 }
6998 
6999 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7000 				  int (*fn)(struct net_device *dev,
7001 					    void *data),
7002 				  void *data)
7003 {
7004 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7005 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7006 	int ret, cur = 0;
7007 
7008 	now = dev;
7009 	iter = &dev->adj_list.lower;
7010 
7011 	while (1) {
7012 		if (now != dev) {
7013 			ret = fn(now, data);
7014 			if (ret)
7015 				return ret;
7016 		}
7017 
7018 		next = NULL;
7019 		while (1) {
7020 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7021 			if (!ldev)
7022 				break;
7023 
7024 			next = ldev;
7025 			niter = &ldev->adj_list.lower;
7026 			dev_stack[cur] = now;
7027 			iter_stack[cur++] = iter;
7028 			break;
7029 		}
7030 
7031 		if (!next) {
7032 			if (!cur)
7033 				return 0;
7034 			next = dev_stack[--cur];
7035 			niter = iter_stack[cur];
7036 		}
7037 
7038 		now = next;
7039 		iter = niter;
7040 	}
7041 
7042 	return 0;
7043 }
7044 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7045 
7046 /**
7047  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7048  *				       lower neighbour list, RCU
7049  *				       variant
7050  * @dev: device
7051  *
7052  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7053  * list. The caller must hold RCU read lock.
7054  */
7055 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7056 {
7057 	struct netdev_adjacent *lower;
7058 
7059 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7060 			struct netdev_adjacent, list);
7061 	if (lower)
7062 		return lower->private;
7063 	return NULL;
7064 }
7065 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7066 
7067 /**
7068  * netdev_master_upper_dev_get_rcu - Get master upper device
7069  * @dev: device
7070  *
7071  * Find a master upper device and return pointer to it or NULL in case
7072  * it's not there. The caller must hold the RCU read lock.
7073  */
7074 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7075 {
7076 	struct netdev_adjacent *upper;
7077 
7078 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7079 				       struct netdev_adjacent, list);
7080 	if (upper && likely(upper->master))
7081 		return upper->dev;
7082 	return NULL;
7083 }
7084 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7085 
7086 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7087 			      struct net_device *adj_dev,
7088 			      struct list_head *dev_list)
7089 {
7090 	char linkname[IFNAMSIZ+7];
7091 
7092 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7093 		"upper_%s" : "lower_%s", adj_dev->name);
7094 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7095 				 linkname);
7096 }
7097 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7098 			       char *name,
7099 			       struct list_head *dev_list)
7100 {
7101 	char linkname[IFNAMSIZ+7];
7102 
7103 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7104 		"upper_%s" : "lower_%s", name);
7105 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7106 }
7107 
7108 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7109 						 struct net_device *adj_dev,
7110 						 struct list_head *dev_list)
7111 {
7112 	return (dev_list == &dev->adj_list.upper ||
7113 		dev_list == &dev->adj_list.lower) &&
7114 		net_eq(dev_net(dev), dev_net(adj_dev));
7115 }
7116 
7117 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7118 					struct net_device *adj_dev,
7119 					struct list_head *dev_list,
7120 					void *private, bool master)
7121 {
7122 	struct netdev_adjacent *adj;
7123 	int ret;
7124 
7125 	adj = __netdev_find_adj(adj_dev, dev_list);
7126 
7127 	if (adj) {
7128 		adj->ref_nr += 1;
7129 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7130 			 dev->name, adj_dev->name, adj->ref_nr);
7131 
7132 		return 0;
7133 	}
7134 
7135 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7136 	if (!adj)
7137 		return -ENOMEM;
7138 
7139 	adj->dev = adj_dev;
7140 	adj->master = master;
7141 	adj->ref_nr = 1;
7142 	adj->private = private;
7143 	adj->ignore = false;
7144 	dev_hold(adj_dev);
7145 
7146 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7147 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7148 
7149 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7150 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7151 		if (ret)
7152 			goto free_adj;
7153 	}
7154 
7155 	/* Ensure that master link is always the first item in list. */
7156 	if (master) {
7157 		ret = sysfs_create_link(&(dev->dev.kobj),
7158 					&(adj_dev->dev.kobj), "master");
7159 		if (ret)
7160 			goto remove_symlinks;
7161 
7162 		list_add_rcu(&adj->list, dev_list);
7163 	} else {
7164 		list_add_tail_rcu(&adj->list, dev_list);
7165 	}
7166 
7167 	return 0;
7168 
7169 remove_symlinks:
7170 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7171 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7172 free_adj:
7173 	kfree(adj);
7174 	dev_put(adj_dev);
7175 
7176 	return ret;
7177 }
7178 
7179 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7180 					 struct net_device *adj_dev,
7181 					 u16 ref_nr,
7182 					 struct list_head *dev_list)
7183 {
7184 	struct netdev_adjacent *adj;
7185 
7186 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7187 		 dev->name, adj_dev->name, ref_nr);
7188 
7189 	adj = __netdev_find_adj(adj_dev, dev_list);
7190 
7191 	if (!adj) {
7192 		pr_err("Adjacency does not exist for device %s from %s\n",
7193 		       dev->name, adj_dev->name);
7194 		WARN_ON(1);
7195 		return;
7196 	}
7197 
7198 	if (adj->ref_nr > ref_nr) {
7199 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7200 			 dev->name, adj_dev->name, ref_nr,
7201 			 adj->ref_nr - ref_nr);
7202 		adj->ref_nr -= ref_nr;
7203 		return;
7204 	}
7205 
7206 	if (adj->master)
7207 		sysfs_remove_link(&(dev->dev.kobj), "master");
7208 
7209 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7210 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7211 
7212 	list_del_rcu(&adj->list);
7213 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7214 		 adj_dev->name, dev->name, adj_dev->name);
7215 	dev_put(adj_dev);
7216 	kfree_rcu(adj, rcu);
7217 }
7218 
7219 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7220 					    struct net_device *upper_dev,
7221 					    struct list_head *up_list,
7222 					    struct list_head *down_list,
7223 					    void *private, bool master)
7224 {
7225 	int ret;
7226 
7227 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7228 					   private, master);
7229 	if (ret)
7230 		return ret;
7231 
7232 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7233 					   private, false);
7234 	if (ret) {
7235 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7236 		return ret;
7237 	}
7238 
7239 	return 0;
7240 }
7241 
7242 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7243 					       struct net_device *upper_dev,
7244 					       u16 ref_nr,
7245 					       struct list_head *up_list,
7246 					       struct list_head *down_list)
7247 {
7248 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7249 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7250 }
7251 
7252 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7253 						struct net_device *upper_dev,
7254 						void *private, bool master)
7255 {
7256 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7257 						&dev->adj_list.upper,
7258 						&upper_dev->adj_list.lower,
7259 						private, master);
7260 }
7261 
7262 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7263 						   struct net_device *upper_dev)
7264 {
7265 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7266 					   &dev->adj_list.upper,
7267 					   &upper_dev->adj_list.lower);
7268 }
7269 
7270 static int __netdev_upper_dev_link(struct net_device *dev,
7271 				   struct net_device *upper_dev, bool master,
7272 				   void *upper_priv, void *upper_info,
7273 				   struct netlink_ext_ack *extack)
7274 {
7275 	struct netdev_notifier_changeupper_info changeupper_info = {
7276 		.info = {
7277 			.dev = dev,
7278 			.extack = extack,
7279 		},
7280 		.upper_dev = upper_dev,
7281 		.master = master,
7282 		.linking = true,
7283 		.upper_info = upper_info,
7284 	};
7285 	struct net_device *master_dev;
7286 	int ret = 0;
7287 
7288 	ASSERT_RTNL();
7289 
7290 	if (dev == upper_dev)
7291 		return -EBUSY;
7292 
7293 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7294 	if (__netdev_has_upper_dev(upper_dev, dev))
7295 		return -EBUSY;
7296 
7297 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7298 		return -EMLINK;
7299 
7300 	if (!master) {
7301 		if (__netdev_has_upper_dev(dev, upper_dev))
7302 			return -EEXIST;
7303 	} else {
7304 		master_dev = __netdev_master_upper_dev_get(dev);
7305 		if (master_dev)
7306 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7307 	}
7308 
7309 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7310 					    &changeupper_info.info);
7311 	ret = notifier_to_errno(ret);
7312 	if (ret)
7313 		return ret;
7314 
7315 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7316 						   master);
7317 	if (ret)
7318 		return ret;
7319 
7320 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7321 					    &changeupper_info.info);
7322 	ret = notifier_to_errno(ret);
7323 	if (ret)
7324 		goto rollback;
7325 
7326 	__netdev_update_upper_level(dev, NULL);
7327 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7328 
7329 	__netdev_update_lower_level(upper_dev, NULL);
7330 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7331 				    NULL);
7332 
7333 	return 0;
7334 
7335 rollback:
7336 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7337 
7338 	return ret;
7339 }
7340 
7341 /**
7342  * netdev_upper_dev_link - Add a link to the upper device
7343  * @dev: device
7344  * @upper_dev: new upper device
7345  * @extack: netlink extended ack
7346  *
7347  * Adds a link to device which is upper to this one. The caller must hold
7348  * the RTNL lock. On a failure a negative errno code is returned.
7349  * On success the reference counts are adjusted and the function
7350  * returns zero.
7351  */
7352 int netdev_upper_dev_link(struct net_device *dev,
7353 			  struct net_device *upper_dev,
7354 			  struct netlink_ext_ack *extack)
7355 {
7356 	return __netdev_upper_dev_link(dev, upper_dev, false,
7357 				       NULL, NULL, extack);
7358 }
7359 EXPORT_SYMBOL(netdev_upper_dev_link);
7360 
7361 /**
7362  * netdev_master_upper_dev_link - Add a master link to the upper device
7363  * @dev: device
7364  * @upper_dev: new upper device
7365  * @upper_priv: upper device private
7366  * @upper_info: upper info to be passed down via notifier
7367  * @extack: netlink extended ack
7368  *
7369  * Adds a link to device which is upper to this one. In this case, only
7370  * one master upper device can be linked, although other non-master devices
7371  * might be linked as well. The caller must hold the RTNL lock.
7372  * On a failure a negative errno code is returned. On success the reference
7373  * counts are adjusted and the function returns zero.
7374  */
7375 int netdev_master_upper_dev_link(struct net_device *dev,
7376 				 struct net_device *upper_dev,
7377 				 void *upper_priv, void *upper_info,
7378 				 struct netlink_ext_ack *extack)
7379 {
7380 	return __netdev_upper_dev_link(dev, upper_dev, true,
7381 				       upper_priv, upper_info, extack);
7382 }
7383 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7384 
7385 /**
7386  * netdev_upper_dev_unlink - Removes a link to upper device
7387  * @dev: device
7388  * @upper_dev: new upper device
7389  *
7390  * Removes a link to device which is upper to this one. The caller must hold
7391  * the RTNL lock.
7392  */
7393 void netdev_upper_dev_unlink(struct net_device *dev,
7394 			     struct net_device *upper_dev)
7395 {
7396 	struct netdev_notifier_changeupper_info changeupper_info = {
7397 		.info = {
7398 			.dev = dev,
7399 		},
7400 		.upper_dev = upper_dev,
7401 		.linking = false,
7402 	};
7403 
7404 	ASSERT_RTNL();
7405 
7406 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7407 
7408 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7409 				      &changeupper_info.info);
7410 
7411 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7412 
7413 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7414 				      &changeupper_info.info);
7415 
7416 	__netdev_update_upper_level(dev, NULL);
7417 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7418 
7419 	__netdev_update_lower_level(upper_dev, NULL);
7420 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7421 				    NULL);
7422 }
7423 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7424 
7425 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7426 				      struct net_device *lower_dev,
7427 				      bool val)
7428 {
7429 	struct netdev_adjacent *adj;
7430 
7431 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7432 	if (adj)
7433 		adj->ignore = val;
7434 
7435 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7436 	if (adj)
7437 		adj->ignore = val;
7438 }
7439 
7440 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7441 					struct net_device *lower_dev)
7442 {
7443 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7444 }
7445 
7446 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7447 				       struct net_device *lower_dev)
7448 {
7449 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7450 }
7451 
7452 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7453 				   struct net_device *new_dev,
7454 				   struct net_device *dev,
7455 				   struct netlink_ext_ack *extack)
7456 {
7457 	int err;
7458 
7459 	if (!new_dev)
7460 		return 0;
7461 
7462 	if (old_dev && new_dev != old_dev)
7463 		netdev_adjacent_dev_disable(dev, old_dev);
7464 
7465 	err = netdev_upper_dev_link(new_dev, dev, extack);
7466 	if (err) {
7467 		if (old_dev && new_dev != old_dev)
7468 			netdev_adjacent_dev_enable(dev, old_dev);
7469 		return err;
7470 	}
7471 
7472 	return 0;
7473 }
7474 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7475 
7476 void netdev_adjacent_change_commit(struct net_device *old_dev,
7477 				   struct net_device *new_dev,
7478 				   struct net_device *dev)
7479 {
7480 	if (!new_dev || !old_dev)
7481 		return;
7482 
7483 	if (new_dev == old_dev)
7484 		return;
7485 
7486 	netdev_adjacent_dev_enable(dev, old_dev);
7487 	netdev_upper_dev_unlink(old_dev, dev);
7488 }
7489 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7490 
7491 void netdev_adjacent_change_abort(struct net_device *old_dev,
7492 				  struct net_device *new_dev,
7493 				  struct net_device *dev)
7494 {
7495 	if (!new_dev)
7496 		return;
7497 
7498 	if (old_dev && new_dev != old_dev)
7499 		netdev_adjacent_dev_enable(dev, old_dev);
7500 
7501 	netdev_upper_dev_unlink(new_dev, dev);
7502 }
7503 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7504 
7505 /**
7506  * netdev_bonding_info_change - Dispatch event about slave change
7507  * @dev: device
7508  * @bonding_info: info to dispatch
7509  *
7510  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7511  * The caller must hold the RTNL lock.
7512  */
7513 void netdev_bonding_info_change(struct net_device *dev,
7514 				struct netdev_bonding_info *bonding_info)
7515 {
7516 	struct netdev_notifier_bonding_info info = {
7517 		.info.dev = dev,
7518 	};
7519 
7520 	memcpy(&info.bonding_info, bonding_info,
7521 	       sizeof(struct netdev_bonding_info));
7522 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7523 				      &info.info);
7524 }
7525 EXPORT_SYMBOL(netdev_bonding_info_change);
7526 
7527 static void netdev_adjacent_add_links(struct net_device *dev)
7528 {
7529 	struct netdev_adjacent *iter;
7530 
7531 	struct net *net = dev_net(dev);
7532 
7533 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7534 		if (!net_eq(net, dev_net(iter->dev)))
7535 			continue;
7536 		netdev_adjacent_sysfs_add(iter->dev, dev,
7537 					  &iter->dev->adj_list.lower);
7538 		netdev_adjacent_sysfs_add(dev, iter->dev,
7539 					  &dev->adj_list.upper);
7540 	}
7541 
7542 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7543 		if (!net_eq(net, dev_net(iter->dev)))
7544 			continue;
7545 		netdev_adjacent_sysfs_add(iter->dev, dev,
7546 					  &iter->dev->adj_list.upper);
7547 		netdev_adjacent_sysfs_add(dev, iter->dev,
7548 					  &dev->adj_list.lower);
7549 	}
7550 }
7551 
7552 static void netdev_adjacent_del_links(struct net_device *dev)
7553 {
7554 	struct netdev_adjacent *iter;
7555 
7556 	struct net *net = dev_net(dev);
7557 
7558 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7559 		if (!net_eq(net, dev_net(iter->dev)))
7560 			continue;
7561 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7562 					  &iter->dev->adj_list.lower);
7563 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7564 					  &dev->adj_list.upper);
7565 	}
7566 
7567 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7568 		if (!net_eq(net, dev_net(iter->dev)))
7569 			continue;
7570 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7571 					  &iter->dev->adj_list.upper);
7572 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7573 					  &dev->adj_list.lower);
7574 	}
7575 }
7576 
7577 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7578 {
7579 	struct netdev_adjacent *iter;
7580 
7581 	struct net *net = dev_net(dev);
7582 
7583 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7584 		if (!net_eq(net, dev_net(iter->dev)))
7585 			continue;
7586 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7587 					  &iter->dev->adj_list.lower);
7588 		netdev_adjacent_sysfs_add(iter->dev, dev,
7589 					  &iter->dev->adj_list.lower);
7590 	}
7591 
7592 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7593 		if (!net_eq(net, dev_net(iter->dev)))
7594 			continue;
7595 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7596 					  &iter->dev->adj_list.upper);
7597 		netdev_adjacent_sysfs_add(iter->dev, dev,
7598 					  &iter->dev->adj_list.upper);
7599 	}
7600 }
7601 
7602 void *netdev_lower_dev_get_private(struct net_device *dev,
7603 				   struct net_device *lower_dev)
7604 {
7605 	struct netdev_adjacent *lower;
7606 
7607 	if (!lower_dev)
7608 		return NULL;
7609 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7610 	if (!lower)
7611 		return NULL;
7612 
7613 	return lower->private;
7614 }
7615 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7616 
7617 
7618 /**
7619  * netdev_lower_change - Dispatch event about lower device state change
7620  * @lower_dev: device
7621  * @lower_state_info: state to dispatch
7622  *
7623  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7624  * The caller must hold the RTNL lock.
7625  */
7626 void netdev_lower_state_changed(struct net_device *lower_dev,
7627 				void *lower_state_info)
7628 {
7629 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7630 		.info.dev = lower_dev,
7631 	};
7632 
7633 	ASSERT_RTNL();
7634 	changelowerstate_info.lower_state_info = lower_state_info;
7635 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7636 				      &changelowerstate_info.info);
7637 }
7638 EXPORT_SYMBOL(netdev_lower_state_changed);
7639 
7640 static void dev_change_rx_flags(struct net_device *dev, int flags)
7641 {
7642 	const struct net_device_ops *ops = dev->netdev_ops;
7643 
7644 	if (ops->ndo_change_rx_flags)
7645 		ops->ndo_change_rx_flags(dev, flags);
7646 }
7647 
7648 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7649 {
7650 	unsigned int old_flags = dev->flags;
7651 	kuid_t uid;
7652 	kgid_t gid;
7653 
7654 	ASSERT_RTNL();
7655 
7656 	dev->flags |= IFF_PROMISC;
7657 	dev->promiscuity += inc;
7658 	if (dev->promiscuity == 0) {
7659 		/*
7660 		 * Avoid overflow.
7661 		 * If inc causes overflow, untouch promisc and return error.
7662 		 */
7663 		if (inc < 0)
7664 			dev->flags &= ~IFF_PROMISC;
7665 		else {
7666 			dev->promiscuity -= inc;
7667 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7668 				dev->name);
7669 			return -EOVERFLOW;
7670 		}
7671 	}
7672 	if (dev->flags != old_flags) {
7673 		pr_info("device %s %s promiscuous mode\n",
7674 			dev->name,
7675 			dev->flags & IFF_PROMISC ? "entered" : "left");
7676 		if (audit_enabled) {
7677 			current_uid_gid(&uid, &gid);
7678 			audit_log(audit_context(), GFP_ATOMIC,
7679 				  AUDIT_ANOM_PROMISCUOUS,
7680 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7681 				  dev->name, (dev->flags & IFF_PROMISC),
7682 				  (old_flags & IFF_PROMISC),
7683 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7684 				  from_kuid(&init_user_ns, uid),
7685 				  from_kgid(&init_user_ns, gid),
7686 				  audit_get_sessionid(current));
7687 		}
7688 
7689 		dev_change_rx_flags(dev, IFF_PROMISC);
7690 	}
7691 	if (notify)
7692 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7693 	return 0;
7694 }
7695 
7696 /**
7697  *	dev_set_promiscuity	- update promiscuity count on a device
7698  *	@dev: device
7699  *	@inc: modifier
7700  *
7701  *	Add or remove promiscuity from a device. While the count in the device
7702  *	remains above zero the interface remains promiscuous. Once it hits zero
7703  *	the device reverts back to normal filtering operation. A negative inc
7704  *	value is used to drop promiscuity on the device.
7705  *	Return 0 if successful or a negative errno code on error.
7706  */
7707 int dev_set_promiscuity(struct net_device *dev, int inc)
7708 {
7709 	unsigned int old_flags = dev->flags;
7710 	int err;
7711 
7712 	err = __dev_set_promiscuity(dev, inc, true);
7713 	if (err < 0)
7714 		return err;
7715 	if (dev->flags != old_flags)
7716 		dev_set_rx_mode(dev);
7717 	return err;
7718 }
7719 EXPORT_SYMBOL(dev_set_promiscuity);
7720 
7721 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7722 {
7723 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7724 
7725 	ASSERT_RTNL();
7726 
7727 	dev->flags |= IFF_ALLMULTI;
7728 	dev->allmulti += inc;
7729 	if (dev->allmulti == 0) {
7730 		/*
7731 		 * Avoid overflow.
7732 		 * If inc causes overflow, untouch allmulti and return error.
7733 		 */
7734 		if (inc < 0)
7735 			dev->flags &= ~IFF_ALLMULTI;
7736 		else {
7737 			dev->allmulti -= inc;
7738 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7739 				dev->name);
7740 			return -EOVERFLOW;
7741 		}
7742 	}
7743 	if (dev->flags ^ old_flags) {
7744 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7745 		dev_set_rx_mode(dev);
7746 		if (notify)
7747 			__dev_notify_flags(dev, old_flags,
7748 					   dev->gflags ^ old_gflags);
7749 	}
7750 	return 0;
7751 }
7752 
7753 /**
7754  *	dev_set_allmulti	- update allmulti count on a device
7755  *	@dev: device
7756  *	@inc: modifier
7757  *
7758  *	Add or remove reception of all multicast frames to a device. While the
7759  *	count in the device remains above zero the interface remains listening
7760  *	to all interfaces. Once it hits zero the device reverts back to normal
7761  *	filtering operation. A negative @inc value is used to drop the counter
7762  *	when releasing a resource needing all multicasts.
7763  *	Return 0 if successful or a negative errno code on error.
7764  */
7765 
7766 int dev_set_allmulti(struct net_device *dev, int inc)
7767 {
7768 	return __dev_set_allmulti(dev, inc, true);
7769 }
7770 EXPORT_SYMBOL(dev_set_allmulti);
7771 
7772 /*
7773  *	Upload unicast and multicast address lists to device and
7774  *	configure RX filtering. When the device doesn't support unicast
7775  *	filtering it is put in promiscuous mode while unicast addresses
7776  *	are present.
7777  */
7778 void __dev_set_rx_mode(struct net_device *dev)
7779 {
7780 	const struct net_device_ops *ops = dev->netdev_ops;
7781 
7782 	/* dev_open will call this function so the list will stay sane. */
7783 	if (!(dev->flags&IFF_UP))
7784 		return;
7785 
7786 	if (!netif_device_present(dev))
7787 		return;
7788 
7789 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7790 		/* Unicast addresses changes may only happen under the rtnl,
7791 		 * therefore calling __dev_set_promiscuity here is safe.
7792 		 */
7793 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7794 			__dev_set_promiscuity(dev, 1, false);
7795 			dev->uc_promisc = true;
7796 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7797 			__dev_set_promiscuity(dev, -1, false);
7798 			dev->uc_promisc = false;
7799 		}
7800 	}
7801 
7802 	if (ops->ndo_set_rx_mode)
7803 		ops->ndo_set_rx_mode(dev);
7804 }
7805 
7806 void dev_set_rx_mode(struct net_device *dev)
7807 {
7808 	netif_addr_lock_bh(dev);
7809 	__dev_set_rx_mode(dev);
7810 	netif_addr_unlock_bh(dev);
7811 }
7812 
7813 /**
7814  *	dev_get_flags - get flags reported to userspace
7815  *	@dev: device
7816  *
7817  *	Get the combination of flag bits exported through APIs to userspace.
7818  */
7819 unsigned int dev_get_flags(const struct net_device *dev)
7820 {
7821 	unsigned int flags;
7822 
7823 	flags = (dev->flags & ~(IFF_PROMISC |
7824 				IFF_ALLMULTI |
7825 				IFF_RUNNING |
7826 				IFF_LOWER_UP |
7827 				IFF_DORMANT)) |
7828 		(dev->gflags & (IFF_PROMISC |
7829 				IFF_ALLMULTI));
7830 
7831 	if (netif_running(dev)) {
7832 		if (netif_oper_up(dev))
7833 			flags |= IFF_RUNNING;
7834 		if (netif_carrier_ok(dev))
7835 			flags |= IFF_LOWER_UP;
7836 		if (netif_dormant(dev))
7837 			flags |= IFF_DORMANT;
7838 	}
7839 
7840 	return flags;
7841 }
7842 EXPORT_SYMBOL(dev_get_flags);
7843 
7844 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7845 		       struct netlink_ext_ack *extack)
7846 {
7847 	unsigned int old_flags = dev->flags;
7848 	int ret;
7849 
7850 	ASSERT_RTNL();
7851 
7852 	/*
7853 	 *	Set the flags on our device.
7854 	 */
7855 
7856 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7857 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7858 			       IFF_AUTOMEDIA)) |
7859 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7860 				    IFF_ALLMULTI));
7861 
7862 	/*
7863 	 *	Load in the correct multicast list now the flags have changed.
7864 	 */
7865 
7866 	if ((old_flags ^ flags) & IFF_MULTICAST)
7867 		dev_change_rx_flags(dev, IFF_MULTICAST);
7868 
7869 	dev_set_rx_mode(dev);
7870 
7871 	/*
7872 	 *	Have we downed the interface. We handle IFF_UP ourselves
7873 	 *	according to user attempts to set it, rather than blindly
7874 	 *	setting it.
7875 	 */
7876 
7877 	ret = 0;
7878 	if ((old_flags ^ flags) & IFF_UP) {
7879 		if (old_flags & IFF_UP)
7880 			__dev_close(dev);
7881 		else
7882 			ret = __dev_open(dev, extack);
7883 	}
7884 
7885 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7886 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7887 		unsigned int old_flags = dev->flags;
7888 
7889 		dev->gflags ^= IFF_PROMISC;
7890 
7891 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7892 			if (dev->flags != old_flags)
7893 				dev_set_rx_mode(dev);
7894 	}
7895 
7896 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7897 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7898 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7899 	 */
7900 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7901 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7902 
7903 		dev->gflags ^= IFF_ALLMULTI;
7904 		__dev_set_allmulti(dev, inc, false);
7905 	}
7906 
7907 	return ret;
7908 }
7909 
7910 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7911 			unsigned int gchanges)
7912 {
7913 	unsigned int changes = dev->flags ^ old_flags;
7914 
7915 	if (gchanges)
7916 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7917 
7918 	if (changes & IFF_UP) {
7919 		if (dev->flags & IFF_UP)
7920 			call_netdevice_notifiers(NETDEV_UP, dev);
7921 		else
7922 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7923 	}
7924 
7925 	if (dev->flags & IFF_UP &&
7926 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7927 		struct netdev_notifier_change_info change_info = {
7928 			.info = {
7929 				.dev = dev,
7930 			},
7931 			.flags_changed = changes,
7932 		};
7933 
7934 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7935 	}
7936 }
7937 
7938 /**
7939  *	dev_change_flags - change device settings
7940  *	@dev: device
7941  *	@flags: device state flags
7942  *	@extack: netlink extended ack
7943  *
7944  *	Change settings on device based state flags. The flags are
7945  *	in the userspace exported format.
7946  */
7947 int dev_change_flags(struct net_device *dev, unsigned int flags,
7948 		     struct netlink_ext_ack *extack)
7949 {
7950 	int ret;
7951 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7952 
7953 	ret = __dev_change_flags(dev, flags, extack);
7954 	if (ret < 0)
7955 		return ret;
7956 
7957 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7958 	__dev_notify_flags(dev, old_flags, changes);
7959 	return ret;
7960 }
7961 EXPORT_SYMBOL(dev_change_flags);
7962 
7963 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7964 {
7965 	const struct net_device_ops *ops = dev->netdev_ops;
7966 
7967 	if (ops->ndo_change_mtu)
7968 		return ops->ndo_change_mtu(dev, new_mtu);
7969 
7970 	dev->mtu = new_mtu;
7971 	return 0;
7972 }
7973 EXPORT_SYMBOL(__dev_set_mtu);
7974 
7975 /**
7976  *	dev_set_mtu_ext - Change maximum transfer unit
7977  *	@dev: device
7978  *	@new_mtu: new transfer unit
7979  *	@extack: netlink extended ack
7980  *
7981  *	Change the maximum transfer size of the network device.
7982  */
7983 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7984 		    struct netlink_ext_ack *extack)
7985 {
7986 	int err, orig_mtu;
7987 
7988 	if (new_mtu == dev->mtu)
7989 		return 0;
7990 
7991 	/* MTU must be positive, and in range */
7992 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7993 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7994 		return -EINVAL;
7995 	}
7996 
7997 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7998 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7999 		return -EINVAL;
8000 	}
8001 
8002 	if (!netif_device_present(dev))
8003 		return -ENODEV;
8004 
8005 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8006 	err = notifier_to_errno(err);
8007 	if (err)
8008 		return err;
8009 
8010 	orig_mtu = dev->mtu;
8011 	err = __dev_set_mtu(dev, new_mtu);
8012 
8013 	if (!err) {
8014 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8015 						   orig_mtu);
8016 		err = notifier_to_errno(err);
8017 		if (err) {
8018 			/* setting mtu back and notifying everyone again,
8019 			 * so that they have a chance to revert changes.
8020 			 */
8021 			__dev_set_mtu(dev, orig_mtu);
8022 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8023 						     new_mtu);
8024 		}
8025 	}
8026 	return err;
8027 }
8028 
8029 int dev_set_mtu(struct net_device *dev, int new_mtu)
8030 {
8031 	struct netlink_ext_ack extack;
8032 	int err;
8033 
8034 	memset(&extack, 0, sizeof(extack));
8035 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8036 	if (err && extack._msg)
8037 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8038 	return err;
8039 }
8040 EXPORT_SYMBOL(dev_set_mtu);
8041 
8042 /**
8043  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8044  *	@dev: device
8045  *	@new_len: new tx queue length
8046  */
8047 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8048 {
8049 	unsigned int orig_len = dev->tx_queue_len;
8050 	int res;
8051 
8052 	if (new_len != (unsigned int)new_len)
8053 		return -ERANGE;
8054 
8055 	if (new_len != orig_len) {
8056 		dev->tx_queue_len = new_len;
8057 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8058 		res = notifier_to_errno(res);
8059 		if (res)
8060 			goto err_rollback;
8061 		res = dev_qdisc_change_tx_queue_len(dev);
8062 		if (res)
8063 			goto err_rollback;
8064 	}
8065 
8066 	return 0;
8067 
8068 err_rollback:
8069 	netdev_err(dev, "refused to change device tx_queue_len\n");
8070 	dev->tx_queue_len = orig_len;
8071 	return res;
8072 }
8073 
8074 /**
8075  *	dev_set_group - Change group this device belongs to
8076  *	@dev: device
8077  *	@new_group: group this device should belong to
8078  */
8079 void dev_set_group(struct net_device *dev, int new_group)
8080 {
8081 	dev->group = new_group;
8082 }
8083 EXPORT_SYMBOL(dev_set_group);
8084 
8085 /**
8086  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8087  *	@dev: device
8088  *	@addr: new address
8089  *	@extack: netlink extended ack
8090  */
8091 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8092 			      struct netlink_ext_ack *extack)
8093 {
8094 	struct netdev_notifier_pre_changeaddr_info info = {
8095 		.info.dev = dev,
8096 		.info.extack = extack,
8097 		.dev_addr = addr,
8098 	};
8099 	int rc;
8100 
8101 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8102 	return notifier_to_errno(rc);
8103 }
8104 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8105 
8106 /**
8107  *	dev_set_mac_address - Change Media Access Control Address
8108  *	@dev: device
8109  *	@sa: new address
8110  *	@extack: netlink extended ack
8111  *
8112  *	Change the hardware (MAC) address of the device
8113  */
8114 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8115 			struct netlink_ext_ack *extack)
8116 {
8117 	const struct net_device_ops *ops = dev->netdev_ops;
8118 	int err;
8119 
8120 	if (!ops->ndo_set_mac_address)
8121 		return -EOPNOTSUPP;
8122 	if (sa->sa_family != dev->type)
8123 		return -EINVAL;
8124 	if (!netif_device_present(dev))
8125 		return -ENODEV;
8126 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8127 	if (err)
8128 		return err;
8129 	err = ops->ndo_set_mac_address(dev, sa);
8130 	if (err)
8131 		return err;
8132 	dev->addr_assign_type = NET_ADDR_SET;
8133 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8134 	add_device_randomness(dev->dev_addr, dev->addr_len);
8135 	return 0;
8136 }
8137 EXPORT_SYMBOL(dev_set_mac_address);
8138 
8139 /**
8140  *	dev_change_carrier - Change device carrier
8141  *	@dev: device
8142  *	@new_carrier: new value
8143  *
8144  *	Change device carrier
8145  */
8146 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8147 {
8148 	const struct net_device_ops *ops = dev->netdev_ops;
8149 
8150 	if (!ops->ndo_change_carrier)
8151 		return -EOPNOTSUPP;
8152 	if (!netif_device_present(dev))
8153 		return -ENODEV;
8154 	return ops->ndo_change_carrier(dev, new_carrier);
8155 }
8156 EXPORT_SYMBOL(dev_change_carrier);
8157 
8158 /**
8159  *	dev_get_phys_port_id - Get device physical port ID
8160  *	@dev: device
8161  *	@ppid: port ID
8162  *
8163  *	Get device physical port ID
8164  */
8165 int dev_get_phys_port_id(struct net_device *dev,
8166 			 struct netdev_phys_item_id *ppid)
8167 {
8168 	const struct net_device_ops *ops = dev->netdev_ops;
8169 
8170 	if (!ops->ndo_get_phys_port_id)
8171 		return -EOPNOTSUPP;
8172 	return ops->ndo_get_phys_port_id(dev, ppid);
8173 }
8174 EXPORT_SYMBOL(dev_get_phys_port_id);
8175 
8176 /**
8177  *	dev_get_phys_port_name - Get device physical port name
8178  *	@dev: device
8179  *	@name: port name
8180  *	@len: limit of bytes to copy to name
8181  *
8182  *	Get device physical port name
8183  */
8184 int dev_get_phys_port_name(struct net_device *dev,
8185 			   char *name, size_t len)
8186 {
8187 	const struct net_device_ops *ops = dev->netdev_ops;
8188 	int err;
8189 
8190 	if (ops->ndo_get_phys_port_name) {
8191 		err = ops->ndo_get_phys_port_name(dev, name, len);
8192 		if (err != -EOPNOTSUPP)
8193 			return err;
8194 	}
8195 	return devlink_compat_phys_port_name_get(dev, name, len);
8196 }
8197 EXPORT_SYMBOL(dev_get_phys_port_name);
8198 
8199 /**
8200  *	dev_get_port_parent_id - Get the device's port parent identifier
8201  *	@dev: network device
8202  *	@ppid: pointer to a storage for the port's parent identifier
8203  *	@recurse: allow/disallow recursion to lower devices
8204  *
8205  *	Get the devices's port parent identifier
8206  */
8207 int dev_get_port_parent_id(struct net_device *dev,
8208 			   struct netdev_phys_item_id *ppid,
8209 			   bool recurse)
8210 {
8211 	const struct net_device_ops *ops = dev->netdev_ops;
8212 	struct netdev_phys_item_id first = { };
8213 	struct net_device *lower_dev;
8214 	struct list_head *iter;
8215 	int err;
8216 
8217 	if (ops->ndo_get_port_parent_id) {
8218 		err = ops->ndo_get_port_parent_id(dev, ppid);
8219 		if (err != -EOPNOTSUPP)
8220 			return err;
8221 	}
8222 
8223 	err = devlink_compat_switch_id_get(dev, ppid);
8224 	if (!err || err != -EOPNOTSUPP)
8225 		return err;
8226 
8227 	if (!recurse)
8228 		return -EOPNOTSUPP;
8229 
8230 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8231 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8232 		if (err)
8233 			break;
8234 		if (!first.id_len)
8235 			first = *ppid;
8236 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8237 			return -ENODATA;
8238 	}
8239 
8240 	return err;
8241 }
8242 EXPORT_SYMBOL(dev_get_port_parent_id);
8243 
8244 /**
8245  *	netdev_port_same_parent_id - Indicate if two network devices have
8246  *	the same port parent identifier
8247  *	@a: first network device
8248  *	@b: second network device
8249  */
8250 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8251 {
8252 	struct netdev_phys_item_id a_id = { };
8253 	struct netdev_phys_item_id b_id = { };
8254 
8255 	if (dev_get_port_parent_id(a, &a_id, true) ||
8256 	    dev_get_port_parent_id(b, &b_id, true))
8257 		return false;
8258 
8259 	return netdev_phys_item_id_same(&a_id, &b_id);
8260 }
8261 EXPORT_SYMBOL(netdev_port_same_parent_id);
8262 
8263 /**
8264  *	dev_change_proto_down - update protocol port state information
8265  *	@dev: device
8266  *	@proto_down: new value
8267  *
8268  *	This info can be used by switch drivers to set the phys state of the
8269  *	port.
8270  */
8271 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8272 {
8273 	const struct net_device_ops *ops = dev->netdev_ops;
8274 
8275 	if (!ops->ndo_change_proto_down)
8276 		return -EOPNOTSUPP;
8277 	if (!netif_device_present(dev))
8278 		return -ENODEV;
8279 	return ops->ndo_change_proto_down(dev, proto_down);
8280 }
8281 EXPORT_SYMBOL(dev_change_proto_down);
8282 
8283 /**
8284  *	dev_change_proto_down_generic - generic implementation for
8285  * 	ndo_change_proto_down that sets carrier according to
8286  * 	proto_down.
8287  *
8288  *	@dev: device
8289  *	@proto_down: new value
8290  */
8291 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8292 {
8293 	if (proto_down)
8294 		netif_carrier_off(dev);
8295 	else
8296 		netif_carrier_on(dev);
8297 	dev->proto_down = proto_down;
8298 	return 0;
8299 }
8300 EXPORT_SYMBOL(dev_change_proto_down_generic);
8301 
8302 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8303 		    enum bpf_netdev_command cmd)
8304 {
8305 	struct netdev_bpf xdp;
8306 
8307 	if (!bpf_op)
8308 		return 0;
8309 
8310 	memset(&xdp, 0, sizeof(xdp));
8311 	xdp.command = cmd;
8312 
8313 	/* Query must always succeed. */
8314 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8315 
8316 	return xdp.prog_id;
8317 }
8318 
8319 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8320 			   struct netlink_ext_ack *extack, u32 flags,
8321 			   struct bpf_prog *prog)
8322 {
8323 	struct netdev_bpf xdp;
8324 
8325 	memset(&xdp, 0, sizeof(xdp));
8326 	if (flags & XDP_FLAGS_HW_MODE)
8327 		xdp.command = XDP_SETUP_PROG_HW;
8328 	else
8329 		xdp.command = XDP_SETUP_PROG;
8330 	xdp.extack = extack;
8331 	xdp.flags = flags;
8332 	xdp.prog = prog;
8333 
8334 	return bpf_op(dev, &xdp);
8335 }
8336 
8337 static void dev_xdp_uninstall(struct net_device *dev)
8338 {
8339 	struct netdev_bpf xdp;
8340 	bpf_op_t ndo_bpf;
8341 
8342 	/* Remove generic XDP */
8343 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8344 
8345 	/* Remove from the driver */
8346 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8347 	if (!ndo_bpf)
8348 		return;
8349 
8350 	memset(&xdp, 0, sizeof(xdp));
8351 	xdp.command = XDP_QUERY_PROG;
8352 	WARN_ON(ndo_bpf(dev, &xdp));
8353 	if (xdp.prog_id)
8354 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8355 					NULL));
8356 
8357 	/* Remove HW offload */
8358 	memset(&xdp, 0, sizeof(xdp));
8359 	xdp.command = XDP_QUERY_PROG_HW;
8360 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8361 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8362 					NULL));
8363 }
8364 
8365 /**
8366  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8367  *	@dev: device
8368  *	@extack: netlink extended ack
8369  *	@fd: new program fd or negative value to clear
8370  *	@flags: xdp-related flags
8371  *
8372  *	Set or clear a bpf program for a device
8373  */
8374 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8375 		      int fd, u32 flags)
8376 {
8377 	const struct net_device_ops *ops = dev->netdev_ops;
8378 	enum bpf_netdev_command query;
8379 	struct bpf_prog *prog = NULL;
8380 	bpf_op_t bpf_op, bpf_chk;
8381 	bool offload;
8382 	int err;
8383 
8384 	ASSERT_RTNL();
8385 
8386 	offload = flags & XDP_FLAGS_HW_MODE;
8387 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8388 
8389 	bpf_op = bpf_chk = ops->ndo_bpf;
8390 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8391 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8392 		return -EOPNOTSUPP;
8393 	}
8394 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8395 		bpf_op = generic_xdp_install;
8396 	if (bpf_op == bpf_chk)
8397 		bpf_chk = generic_xdp_install;
8398 
8399 	if (fd >= 0) {
8400 		u32 prog_id;
8401 
8402 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8403 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8404 			return -EEXIST;
8405 		}
8406 
8407 		prog_id = __dev_xdp_query(dev, bpf_op, query);
8408 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8409 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8410 			return -EBUSY;
8411 		}
8412 
8413 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8414 					     bpf_op == ops->ndo_bpf);
8415 		if (IS_ERR(prog))
8416 			return PTR_ERR(prog);
8417 
8418 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8419 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8420 			bpf_prog_put(prog);
8421 			return -EINVAL;
8422 		}
8423 
8424 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8425 		if (prog->aux->id && prog->aux->id == prog_id) {
8426 			bpf_prog_put(prog);
8427 			return 0;
8428 		}
8429 	} else {
8430 		if (!__dev_xdp_query(dev, bpf_op, query))
8431 			return 0;
8432 	}
8433 
8434 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8435 	if (err < 0 && prog)
8436 		bpf_prog_put(prog);
8437 
8438 	return err;
8439 }
8440 
8441 /**
8442  *	dev_new_index	-	allocate an ifindex
8443  *	@net: the applicable net namespace
8444  *
8445  *	Returns a suitable unique value for a new device interface
8446  *	number.  The caller must hold the rtnl semaphore or the
8447  *	dev_base_lock to be sure it remains unique.
8448  */
8449 static int dev_new_index(struct net *net)
8450 {
8451 	int ifindex = net->ifindex;
8452 
8453 	for (;;) {
8454 		if (++ifindex <= 0)
8455 			ifindex = 1;
8456 		if (!__dev_get_by_index(net, ifindex))
8457 			return net->ifindex = ifindex;
8458 	}
8459 }
8460 
8461 /* Delayed registration/unregisteration */
8462 static LIST_HEAD(net_todo_list);
8463 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8464 
8465 static void net_set_todo(struct net_device *dev)
8466 {
8467 	list_add_tail(&dev->todo_list, &net_todo_list);
8468 	dev_net(dev)->dev_unreg_count++;
8469 }
8470 
8471 static void rollback_registered_many(struct list_head *head)
8472 {
8473 	struct net_device *dev, *tmp;
8474 	LIST_HEAD(close_head);
8475 
8476 	BUG_ON(dev_boot_phase);
8477 	ASSERT_RTNL();
8478 
8479 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8480 		/* Some devices call without registering
8481 		 * for initialization unwind. Remove those
8482 		 * devices and proceed with the remaining.
8483 		 */
8484 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8485 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8486 				 dev->name, dev);
8487 
8488 			WARN_ON(1);
8489 			list_del(&dev->unreg_list);
8490 			continue;
8491 		}
8492 		dev->dismantle = true;
8493 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8494 	}
8495 
8496 	/* If device is running, close it first. */
8497 	list_for_each_entry(dev, head, unreg_list)
8498 		list_add_tail(&dev->close_list, &close_head);
8499 	dev_close_many(&close_head, true);
8500 
8501 	list_for_each_entry(dev, head, unreg_list) {
8502 		/* And unlink it from device chain. */
8503 		unlist_netdevice(dev);
8504 
8505 		dev->reg_state = NETREG_UNREGISTERING;
8506 	}
8507 	flush_all_backlogs();
8508 
8509 	synchronize_net();
8510 
8511 	list_for_each_entry(dev, head, unreg_list) {
8512 		struct sk_buff *skb = NULL;
8513 
8514 		/* Shutdown queueing discipline. */
8515 		dev_shutdown(dev);
8516 
8517 		dev_xdp_uninstall(dev);
8518 
8519 		/* Notify protocols, that we are about to destroy
8520 		 * this device. They should clean all the things.
8521 		 */
8522 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8523 
8524 		if (!dev->rtnl_link_ops ||
8525 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8526 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8527 						     GFP_KERNEL, NULL, 0);
8528 
8529 		/*
8530 		 *	Flush the unicast and multicast chains
8531 		 */
8532 		dev_uc_flush(dev);
8533 		dev_mc_flush(dev);
8534 
8535 		if (dev->netdev_ops->ndo_uninit)
8536 			dev->netdev_ops->ndo_uninit(dev);
8537 
8538 		if (skb)
8539 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8540 
8541 		/* Notifier chain MUST detach us all upper devices. */
8542 		WARN_ON(netdev_has_any_upper_dev(dev));
8543 		WARN_ON(netdev_has_any_lower_dev(dev));
8544 
8545 		/* Remove entries from kobject tree */
8546 		netdev_unregister_kobject(dev);
8547 #ifdef CONFIG_XPS
8548 		/* Remove XPS queueing entries */
8549 		netif_reset_xps_queues_gt(dev, 0);
8550 #endif
8551 	}
8552 
8553 	synchronize_net();
8554 
8555 	list_for_each_entry(dev, head, unreg_list)
8556 		dev_put(dev);
8557 }
8558 
8559 static void rollback_registered(struct net_device *dev)
8560 {
8561 	LIST_HEAD(single);
8562 
8563 	list_add(&dev->unreg_list, &single);
8564 	rollback_registered_many(&single);
8565 	list_del(&single);
8566 }
8567 
8568 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8569 	struct net_device *upper, netdev_features_t features)
8570 {
8571 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8572 	netdev_features_t feature;
8573 	int feature_bit;
8574 
8575 	for_each_netdev_feature(upper_disables, feature_bit) {
8576 		feature = __NETIF_F_BIT(feature_bit);
8577 		if (!(upper->wanted_features & feature)
8578 		    && (features & feature)) {
8579 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8580 				   &feature, upper->name);
8581 			features &= ~feature;
8582 		}
8583 	}
8584 
8585 	return features;
8586 }
8587 
8588 static void netdev_sync_lower_features(struct net_device *upper,
8589 	struct net_device *lower, netdev_features_t features)
8590 {
8591 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8592 	netdev_features_t feature;
8593 	int feature_bit;
8594 
8595 	for_each_netdev_feature(upper_disables, feature_bit) {
8596 		feature = __NETIF_F_BIT(feature_bit);
8597 		if (!(features & feature) && (lower->features & feature)) {
8598 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8599 				   &feature, lower->name);
8600 			lower->wanted_features &= ~feature;
8601 			netdev_update_features(lower);
8602 
8603 			if (unlikely(lower->features & feature))
8604 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8605 					    &feature, lower->name);
8606 		}
8607 	}
8608 }
8609 
8610 static netdev_features_t netdev_fix_features(struct net_device *dev,
8611 	netdev_features_t features)
8612 {
8613 	/* Fix illegal checksum combinations */
8614 	if ((features & NETIF_F_HW_CSUM) &&
8615 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8616 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8617 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8618 	}
8619 
8620 	/* TSO requires that SG is present as well. */
8621 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8622 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8623 		features &= ~NETIF_F_ALL_TSO;
8624 	}
8625 
8626 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8627 					!(features & NETIF_F_IP_CSUM)) {
8628 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8629 		features &= ~NETIF_F_TSO;
8630 		features &= ~NETIF_F_TSO_ECN;
8631 	}
8632 
8633 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8634 					 !(features & NETIF_F_IPV6_CSUM)) {
8635 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8636 		features &= ~NETIF_F_TSO6;
8637 	}
8638 
8639 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8640 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8641 		features &= ~NETIF_F_TSO_MANGLEID;
8642 
8643 	/* TSO ECN requires that TSO is present as well. */
8644 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8645 		features &= ~NETIF_F_TSO_ECN;
8646 
8647 	/* Software GSO depends on SG. */
8648 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8649 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8650 		features &= ~NETIF_F_GSO;
8651 	}
8652 
8653 	/* GSO partial features require GSO partial be set */
8654 	if ((features & dev->gso_partial_features) &&
8655 	    !(features & NETIF_F_GSO_PARTIAL)) {
8656 		netdev_dbg(dev,
8657 			   "Dropping partially supported GSO features since no GSO partial.\n");
8658 		features &= ~dev->gso_partial_features;
8659 	}
8660 
8661 	if (!(features & NETIF_F_RXCSUM)) {
8662 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8663 		 * successfully merged by hardware must also have the
8664 		 * checksum verified by hardware.  If the user does not
8665 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8666 		 */
8667 		if (features & NETIF_F_GRO_HW) {
8668 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8669 			features &= ~NETIF_F_GRO_HW;
8670 		}
8671 	}
8672 
8673 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8674 	if (features & NETIF_F_RXFCS) {
8675 		if (features & NETIF_F_LRO) {
8676 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8677 			features &= ~NETIF_F_LRO;
8678 		}
8679 
8680 		if (features & NETIF_F_GRO_HW) {
8681 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8682 			features &= ~NETIF_F_GRO_HW;
8683 		}
8684 	}
8685 
8686 	return features;
8687 }
8688 
8689 int __netdev_update_features(struct net_device *dev)
8690 {
8691 	struct net_device *upper, *lower;
8692 	netdev_features_t features;
8693 	struct list_head *iter;
8694 	int err = -1;
8695 
8696 	ASSERT_RTNL();
8697 
8698 	features = netdev_get_wanted_features(dev);
8699 
8700 	if (dev->netdev_ops->ndo_fix_features)
8701 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8702 
8703 	/* driver might be less strict about feature dependencies */
8704 	features = netdev_fix_features(dev, features);
8705 
8706 	/* some features can't be enabled if they're off an an upper device */
8707 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8708 		features = netdev_sync_upper_features(dev, upper, features);
8709 
8710 	if (dev->features == features)
8711 		goto sync_lower;
8712 
8713 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8714 		&dev->features, &features);
8715 
8716 	if (dev->netdev_ops->ndo_set_features)
8717 		err = dev->netdev_ops->ndo_set_features(dev, features);
8718 	else
8719 		err = 0;
8720 
8721 	if (unlikely(err < 0)) {
8722 		netdev_err(dev,
8723 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8724 			err, &features, &dev->features);
8725 		/* return non-0 since some features might have changed and
8726 		 * it's better to fire a spurious notification than miss it
8727 		 */
8728 		return -1;
8729 	}
8730 
8731 sync_lower:
8732 	/* some features must be disabled on lower devices when disabled
8733 	 * on an upper device (think: bonding master or bridge)
8734 	 */
8735 	netdev_for_each_lower_dev(dev, lower, iter)
8736 		netdev_sync_lower_features(dev, lower, features);
8737 
8738 	if (!err) {
8739 		netdev_features_t diff = features ^ dev->features;
8740 
8741 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8742 			/* udp_tunnel_{get,drop}_rx_info both need
8743 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8744 			 * device, or they won't do anything.
8745 			 * Thus we need to update dev->features
8746 			 * *before* calling udp_tunnel_get_rx_info,
8747 			 * but *after* calling udp_tunnel_drop_rx_info.
8748 			 */
8749 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8750 				dev->features = features;
8751 				udp_tunnel_get_rx_info(dev);
8752 			} else {
8753 				udp_tunnel_drop_rx_info(dev);
8754 			}
8755 		}
8756 
8757 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8758 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8759 				dev->features = features;
8760 				err |= vlan_get_rx_ctag_filter_info(dev);
8761 			} else {
8762 				vlan_drop_rx_ctag_filter_info(dev);
8763 			}
8764 		}
8765 
8766 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8767 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8768 				dev->features = features;
8769 				err |= vlan_get_rx_stag_filter_info(dev);
8770 			} else {
8771 				vlan_drop_rx_stag_filter_info(dev);
8772 			}
8773 		}
8774 
8775 		dev->features = features;
8776 	}
8777 
8778 	return err < 0 ? 0 : 1;
8779 }
8780 
8781 /**
8782  *	netdev_update_features - recalculate device features
8783  *	@dev: the device to check
8784  *
8785  *	Recalculate dev->features set and send notifications if it
8786  *	has changed. Should be called after driver or hardware dependent
8787  *	conditions might have changed that influence the features.
8788  */
8789 void netdev_update_features(struct net_device *dev)
8790 {
8791 	if (__netdev_update_features(dev))
8792 		netdev_features_change(dev);
8793 }
8794 EXPORT_SYMBOL(netdev_update_features);
8795 
8796 /**
8797  *	netdev_change_features - recalculate device features
8798  *	@dev: the device to check
8799  *
8800  *	Recalculate dev->features set and send notifications even
8801  *	if they have not changed. Should be called instead of
8802  *	netdev_update_features() if also dev->vlan_features might
8803  *	have changed to allow the changes to be propagated to stacked
8804  *	VLAN devices.
8805  */
8806 void netdev_change_features(struct net_device *dev)
8807 {
8808 	__netdev_update_features(dev);
8809 	netdev_features_change(dev);
8810 }
8811 EXPORT_SYMBOL(netdev_change_features);
8812 
8813 /**
8814  *	netif_stacked_transfer_operstate -	transfer operstate
8815  *	@rootdev: the root or lower level device to transfer state from
8816  *	@dev: the device to transfer operstate to
8817  *
8818  *	Transfer operational state from root to device. This is normally
8819  *	called when a stacking relationship exists between the root
8820  *	device and the device(a leaf device).
8821  */
8822 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8823 					struct net_device *dev)
8824 {
8825 	if (rootdev->operstate == IF_OPER_DORMANT)
8826 		netif_dormant_on(dev);
8827 	else
8828 		netif_dormant_off(dev);
8829 
8830 	if (netif_carrier_ok(rootdev))
8831 		netif_carrier_on(dev);
8832 	else
8833 		netif_carrier_off(dev);
8834 }
8835 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8836 
8837 static int netif_alloc_rx_queues(struct net_device *dev)
8838 {
8839 	unsigned int i, count = dev->num_rx_queues;
8840 	struct netdev_rx_queue *rx;
8841 	size_t sz = count * sizeof(*rx);
8842 	int err = 0;
8843 
8844 	BUG_ON(count < 1);
8845 
8846 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8847 	if (!rx)
8848 		return -ENOMEM;
8849 
8850 	dev->_rx = rx;
8851 
8852 	for (i = 0; i < count; i++) {
8853 		rx[i].dev = dev;
8854 
8855 		/* XDP RX-queue setup */
8856 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8857 		if (err < 0)
8858 			goto err_rxq_info;
8859 	}
8860 	return 0;
8861 
8862 err_rxq_info:
8863 	/* Rollback successful reg's and free other resources */
8864 	while (i--)
8865 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8866 	kvfree(dev->_rx);
8867 	dev->_rx = NULL;
8868 	return err;
8869 }
8870 
8871 static void netif_free_rx_queues(struct net_device *dev)
8872 {
8873 	unsigned int i, count = dev->num_rx_queues;
8874 
8875 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8876 	if (!dev->_rx)
8877 		return;
8878 
8879 	for (i = 0; i < count; i++)
8880 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8881 
8882 	kvfree(dev->_rx);
8883 }
8884 
8885 static void netdev_init_one_queue(struct net_device *dev,
8886 				  struct netdev_queue *queue, void *_unused)
8887 {
8888 	/* Initialize queue lock */
8889 	spin_lock_init(&queue->_xmit_lock);
8890 	lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
8891 	queue->xmit_lock_owner = -1;
8892 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8893 	queue->dev = dev;
8894 #ifdef CONFIG_BQL
8895 	dql_init(&queue->dql, HZ);
8896 #endif
8897 }
8898 
8899 static void netif_free_tx_queues(struct net_device *dev)
8900 {
8901 	kvfree(dev->_tx);
8902 }
8903 
8904 static int netif_alloc_netdev_queues(struct net_device *dev)
8905 {
8906 	unsigned int count = dev->num_tx_queues;
8907 	struct netdev_queue *tx;
8908 	size_t sz = count * sizeof(*tx);
8909 
8910 	if (count < 1 || count > 0xffff)
8911 		return -EINVAL;
8912 
8913 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8914 	if (!tx)
8915 		return -ENOMEM;
8916 
8917 	dev->_tx = tx;
8918 
8919 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8920 	spin_lock_init(&dev->tx_global_lock);
8921 
8922 	return 0;
8923 }
8924 
8925 void netif_tx_stop_all_queues(struct net_device *dev)
8926 {
8927 	unsigned int i;
8928 
8929 	for (i = 0; i < dev->num_tx_queues; i++) {
8930 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8931 
8932 		netif_tx_stop_queue(txq);
8933 	}
8934 }
8935 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8936 
8937 static void netdev_register_lockdep_key(struct net_device *dev)
8938 {
8939 	lockdep_register_key(&dev->qdisc_tx_busylock_key);
8940 	lockdep_register_key(&dev->qdisc_running_key);
8941 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
8942 	lockdep_register_key(&dev->addr_list_lock_key);
8943 }
8944 
8945 static void netdev_unregister_lockdep_key(struct net_device *dev)
8946 {
8947 	lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
8948 	lockdep_unregister_key(&dev->qdisc_running_key);
8949 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8950 	lockdep_unregister_key(&dev->addr_list_lock_key);
8951 }
8952 
8953 void netdev_update_lockdep_key(struct net_device *dev)
8954 {
8955 	struct netdev_queue *queue;
8956 	int i;
8957 
8958 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8959 	lockdep_unregister_key(&dev->addr_list_lock_key);
8960 
8961 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
8962 	lockdep_register_key(&dev->addr_list_lock_key);
8963 
8964 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
8965 	for (i = 0; i < dev->num_tx_queues; i++) {
8966 		queue = netdev_get_tx_queue(dev, i);
8967 
8968 		lockdep_set_class(&queue->_xmit_lock,
8969 				  &dev->qdisc_xmit_lock_key);
8970 	}
8971 }
8972 EXPORT_SYMBOL(netdev_update_lockdep_key);
8973 
8974 /**
8975  *	register_netdevice	- register a network device
8976  *	@dev: device to register
8977  *
8978  *	Take a completed network device structure and add it to the kernel
8979  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8980  *	chain. 0 is returned on success. A negative errno code is returned
8981  *	on a failure to set up the device, or if the name is a duplicate.
8982  *
8983  *	Callers must hold the rtnl semaphore. You may want
8984  *	register_netdev() instead of this.
8985  *
8986  *	BUGS:
8987  *	The locking appears insufficient to guarantee two parallel registers
8988  *	will not get the same name.
8989  */
8990 
8991 int register_netdevice(struct net_device *dev)
8992 {
8993 	int ret;
8994 	struct net *net = dev_net(dev);
8995 
8996 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8997 		     NETDEV_FEATURE_COUNT);
8998 	BUG_ON(dev_boot_phase);
8999 	ASSERT_RTNL();
9000 
9001 	might_sleep();
9002 
9003 	/* When net_device's are persistent, this will be fatal. */
9004 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9005 	BUG_ON(!net);
9006 
9007 	spin_lock_init(&dev->addr_list_lock);
9008 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9009 
9010 	ret = dev_get_valid_name(net, dev, dev->name);
9011 	if (ret < 0)
9012 		goto out;
9013 
9014 	/* Init, if this function is available */
9015 	if (dev->netdev_ops->ndo_init) {
9016 		ret = dev->netdev_ops->ndo_init(dev);
9017 		if (ret) {
9018 			if (ret > 0)
9019 				ret = -EIO;
9020 			goto out;
9021 		}
9022 	}
9023 
9024 	if (((dev->hw_features | dev->features) &
9025 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9026 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9027 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9028 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9029 		ret = -EINVAL;
9030 		goto err_uninit;
9031 	}
9032 
9033 	ret = -EBUSY;
9034 	if (!dev->ifindex)
9035 		dev->ifindex = dev_new_index(net);
9036 	else if (__dev_get_by_index(net, dev->ifindex))
9037 		goto err_uninit;
9038 
9039 	/* Transfer changeable features to wanted_features and enable
9040 	 * software offloads (GSO and GRO).
9041 	 */
9042 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
9043 	dev->features |= NETIF_F_SOFT_FEATURES;
9044 
9045 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9046 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9047 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9048 	}
9049 
9050 	dev->wanted_features = dev->features & dev->hw_features;
9051 
9052 	if (!(dev->flags & IFF_LOOPBACK))
9053 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9054 
9055 	/* If IPv4 TCP segmentation offload is supported we should also
9056 	 * allow the device to enable segmenting the frame with the option
9057 	 * of ignoring a static IP ID value.  This doesn't enable the
9058 	 * feature itself but allows the user to enable it later.
9059 	 */
9060 	if (dev->hw_features & NETIF_F_TSO)
9061 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9062 	if (dev->vlan_features & NETIF_F_TSO)
9063 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9064 	if (dev->mpls_features & NETIF_F_TSO)
9065 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9066 	if (dev->hw_enc_features & NETIF_F_TSO)
9067 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9068 
9069 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9070 	 */
9071 	dev->vlan_features |= NETIF_F_HIGHDMA;
9072 
9073 	/* Make NETIF_F_SG inheritable to tunnel devices.
9074 	 */
9075 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9076 
9077 	/* Make NETIF_F_SG inheritable to MPLS.
9078 	 */
9079 	dev->mpls_features |= NETIF_F_SG;
9080 
9081 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9082 	ret = notifier_to_errno(ret);
9083 	if (ret)
9084 		goto err_uninit;
9085 
9086 	ret = netdev_register_kobject(dev);
9087 	if (ret)
9088 		goto err_uninit;
9089 	dev->reg_state = NETREG_REGISTERED;
9090 
9091 	__netdev_update_features(dev);
9092 
9093 	/*
9094 	 *	Default initial state at registry is that the
9095 	 *	device is present.
9096 	 */
9097 
9098 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9099 
9100 	linkwatch_init_dev(dev);
9101 
9102 	dev_init_scheduler(dev);
9103 	dev_hold(dev);
9104 	list_netdevice(dev);
9105 	add_device_randomness(dev->dev_addr, dev->addr_len);
9106 
9107 	/* If the device has permanent device address, driver should
9108 	 * set dev_addr and also addr_assign_type should be set to
9109 	 * NET_ADDR_PERM (default value).
9110 	 */
9111 	if (dev->addr_assign_type == NET_ADDR_PERM)
9112 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9113 
9114 	/* Notify protocols, that a new device appeared. */
9115 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9116 	ret = notifier_to_errno(ret);
9117 	if (ret) {
9118 		rollback_registered(dev);
9119 		rcu_barrier();
9120 
9121 		dev->reg_state = NETREG_UNREGISTERED;
9122 	}
9123 	/*
9124 	 *	Prevent userspace races by waiting until the network
9125 	 *	device is fully setup before sending notifications.
9126 	 */
9127 	if (!dev->rtnl_link_ops ||
9128 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9129 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9130 
9131 out:
9132 	return ret;
9133 
9134 err_uninit:
9135 	if (dev->netdev_ops->ndo_uninit)
9136 		dev->netdev_ops->ndo_uninit(dev);
9137 	if (dev->priv_destructor)
9138 		dev->priv_destructor(dev);
9139 	goto out;
9140 }
9141 EXPORT_SYMBOL(register_netdevice);
9142 
9143 /**
9144  *	init_dummy_netdev	- init a dummy network device for NAPI
9145  *	@dev: device to init
9146  *
9147  *	This takes a network device structure and initialize the minimum
9148  *	amount of fields so it can be used to schedule NAPI polls without
9149  *	registering a full blown interface. This is to be used by drivers
9150  *	that need to tie several hardware interfaces to a single NAPI
9151  *	poll scheduler due to HW limitations.
9152  */
9153 int init_dummy_netdev(struct net_device *dev)
9154 {
9155 	/* Clear everything. Note we don't initialize spinlocks
9156 	 * are they aren't supposed to be taken by any of the
9157 	 * NAPI code and this dummy netdev is supposed to be
9158 	 * only ever used for NAPI polls
9159 	 */
9160 	memset(dev, 0, sizeof(struct net_device));
9161 
9162 	/* make sure we BUG if trying to hit standard
9163 	 * register/unregister code path
9164 	 */
9165 	dev->reg_state = NETREG_DUMMY;
9166 
9167 	/* NAPI wants this */
9168 	INIT_LIST_HEAD(&dev->napi_list);
9169 
9170 	/* a dummy interface is started by default */
9171 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9172 	set_bit(__LINK_STATE_START, &dev->state);
9173 
9174 	/* napi_busy_loop stats accounting wants this */
9175 	dev_net_set(dev, &init_net);
9176 
9177 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9178 	 * because users of this 'device' dont need to change
9179 	 * its refcount.
9180 	 */
9181 
9182 	return 0;
9183 }
9184 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9185 
9186 
9187 /**
9188  *	register_netdev	- register a network device
9189  *	@dev: device to register
9190  *
9191  *	Take a completed network device structure and add it to the kernel
9192  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9193  *	chain. 0 is returned on success. A negative errno code is returned
9194  *	on a failure to set up the device, or if the name is a duplicate.
9195  *
9196  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9197  *	and expands the device name if you passed a format string to
9198  *	alloc_netdev.
9199  */
9200 int register_netdev(struct net_device *dev)
9201 {
9202 	int err;
9203 
9204 	if (rtnl_lock_killable())
9205 		return -EINTR;
9206 	err = register_netdevice(dev);
9207 	rtnl_unlock();
9208 	return err;
9209 }
9210 EXPORT_SYMBOL(register_netdev);
9211 
9212 int netdev_refcnt_read(const struct net_device *dev)
9213 {
9214 	int i, refcnt = 0;
9215 
9216 	for_each_possible_cpu(i)
9217 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9218 	return refcnt;
9219 }
9220 EXPORT_SYMBOL(netdev_refcnt_read);
9221 
9222 /**
9223  * netdev_wait_allrefs - wait until all references are gone.
9224  * @dev: target net_device
9225  *
9226  * This is called when unregistering network devices.
9227  *
9228  * Any protocol or device that holds a reference should register
9229  * for netdevice notification, and cleanup and put back the
9230  * reference if they receive an UNREGISTER event.
9231  * We can get stuck here if buggy protocols don't correctly
9232  * call dev_put.
9233  */
9234 static void netdev_wait_allrefs(struct net_device *dev)
9235 {
9236 	unsigned long rebroadcast_time, warning_time;
9237 	int refcnt;
9238 
9239 	linkwatch_forget_dev(dev);
9240 
9241 	rebroadcast_time = warning_time = jiffies;
9242 	refcnt = netdev_refcnt_read(dev);
9243 
9244 	while (refcnt != 0) {
9245 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9246 			rtnl_lock();
9247 
9248 			/* Rebroadcast unregister notification */
9249 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9250 
9251 			__rtnl_unlock();
9252 			rcu_barrier();
9253 			rtnl_lock();
9254 
9255 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9256 				     &dev->state)) {
9257 				/* We must not have linkwatch events
9258 				 * pending on unregister. If this
9259 				 * happens, we simply run the queue
9260 				 * unscheduled, resulting in a noop
9261 				 * for this device.
9262 				 */
9263 				linkwatch_run_queue();
9264 			}
9265 
9266 			__rtnl_unlock();
9267 
9268 			rebroadcast_time = jiffies;
9269 		}
9270 
9271 		msleep(250);
9272 
9273 		refcnt = netdev_refcnt_read(dev);
9274 
9275 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9276 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9277 				 dev->name, refcnt);
9278 			warning_time = jiffies;
9279 		}
9280 	}
9281 }
9282 
9283 /* The sequence is:
9284  *
9285  *	rtnl_lock();
9286  *	...
9287  *	register_netdevice(x1);
9288  *	register_netdevice(x2);
9289  *	...
9290  *	unregister_netdevice(y1);
9291  *	unregister_netdevice(y2);
9292  *      ...
9293  *	rtnl_unlock();
9294  *	free_netdev(y1);
9295  *	free_netdev(y2);
9296  *
9297  * We are invoked by rtnl_unlock().
9298  * This allows us to deal with problems:
9299  * 1) We can delete sysfs objects which invoke hotplug
9300  *    without deadlocking with linkwatch via keventd.
9301  * 2) Since we run with the RTNL semaphore not held, we can sleep
9302  *    safely in order to wait for the netdev refcnt to drop to zero.
9303  *
9304  * We must not return until all unregister events added during
9305  * the interval the lock was held have been completed.
9306  */
9307 void netdev_run_todo(void)
9308 {
9309 	struct list_head list;
9310 
9311 	/* Snapshot list, allow later requests */
9312 	list_replace_init(&net_todo_list, &list);
9313 
9314 	__rtnl_unlock();
9315 
9316 
9317 	/* Wait for rcu callbacks to finish before next phase */
9318 	if (!list_empty(&list))
9319 		rcu_barrier();
9320 
9321 	while (!list_empty(&list)) {
9322 		struct net_device *dev
9323 			= list_first_entry(&list, struct net_device, todo_list);
9324 		list_del(&dev->todo_list);
9325 
9326 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9327 			pr_err("network todo '%s' but state %d\n",
9328 			       dev->name, dev->reg_state);
9329 			dump_stack();
9330 			continue;
9331 		}
9332 
9333 		dev->reg_state = NETREG_UNREGISTERED;
9334 
9335 		netdev_wait_allrefs(dev);
9336 
9337 		/* paranoia */
9338 		BUG_ON(netdev_refcnt_read(dev));
9339 		BUG_ON(!list_empty(&dev->ptype_all));
9340 		BUG_ON(!list_empty(&dev->ptype_specific));
9341 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9342 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9343 #if IS_ENABLED(CONFIG_DECNET)
9344 		WARN_ON(dev->dn_ptr);
9345 #endif
9346 		if (dev->priv_destructor)
9347 			dev->priv_destructor(dev);
9348 		if (dev->needs_free_netdev)
9349 			free_netdev(dev);
9350 
9351 		/* Report a network device has been unregistered */
9352 		rtnl_lock();
9353 		dev_net(dev)->dev_unreg_count--;
9354 		__rtnl_unlock();
9355 		wake_up(&netdev_unregistering_wq);
9356 
9357 		/* Free network device */
9358 		kobject_put(&dev->dev.kobj);
9359 	}
9360 }
9361 
9362 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9363  * all the same fields in the same order as net_device_stats, with only
9364  * the type differing, but rtnl_link_stats64 may have additional fields
9365  * at the end for newer counters.
9366  */
9367 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9368 			     const struct net_device_stats *netdev_stats)
9369 {
9370 #if BITS_PER_LONG == 64
9371 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9372 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9373 	/* zero out counters that only exist in rtnl_link_stats64 */
9374 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9375 	       sizeof(*stats64) - sizeof(*netdev_stats));
9376 #else
9377 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9378 	const unsigned long *src = (const unsigned long *)netdev_stats;
9379 	u64 *dst = (u64 *)stats64;
9380 
9381 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9382 	for (i = 0; i < n; i++)
9383 		dst[i] = src[i];
9384 	/* zero out counters that only exist in rtnl_link_stats64 */
9385 	memset((char *)stats64 + n * sizeof(u64), 0,
9386 	       sizeof(*stats64) - n * sizeof(u64));
9387 #endif
9388 }
9389 EXPORT_SYMBOL(netdev_stats_to_stats64);
9390 
9391 /**
9392  *	dev_get_stats	- get network device statistics
9393  *	@dev: device to get statistics from
9394  *	@storage: place to store stats
9395  *
9396  *	Get network statistics from device. Return @storage.
9397  *	The device driver may provide its own method by setting
9398  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9399  *	otherwise the internal statistics structure is used.
9400  */
9401 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9402 					struct rtnl_link_stats64 *storage)
9403 {
9404 	const struct net_device_ops *ops = dev->netdev_ops;
9405 
9406 	if (ops->ndo_get_stats64) {
9407 		memset(storage, 0, sizeof(*storage));
9408 		ops->ndo_get_stats64(dev, storage);
9409 	} else if (ops->ndo_get_stats) {
9410 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9411 	} else {
9412 		netdev_stats_to_stats64(storage, &dev->stats);
9413 	}
9414 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9415 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9416 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9417 	return storage;
9418 }
9419 EXPORT_SYMBOL(dev_get_stats);
9420 
9421 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9422 {
9423 	struct netdev_queue *queue = dev_ingress_queue(dev);
9424 
9425 #ifdef CONFIG_NET_CLS_ACT
9426 	if (queue)
9427 		return queue;
9428 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9429 	if (!queue)
9430 		return NULL;
9431 	netdev_init_one_queue(dev, queue, NULL);
9432 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9433 	queue->qdisc_sleeping = &noop_qdisc;
9434 	rcu_assign_pointer(dev->ingress_queue, queue);
9435 #endif
9436 	return queue;
9437 }
9438 
9439 static const struct ethtool_ops default_ethtool_ops;
9440 
9441 void netdev_set_default_ethtool_ops(struct net_device *dev,
9442 				    const struct ethtool_ops *ops)
9443 {
9444 	if (dev->ethtool_ops == &default_ethtool_ops)
9445 		dev->ethtool_ops = ops;
9446 }
9447 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9448 
9449 void netdev_freemem(struct net_device *dev)
9450 {
9451 	char *addr = (char *)dev - dev->padded;
9452 
9453 	kvfree(addr);
9454 }
9455 
9456 /**
9457  * alloc_netdev_mqs - allocate network device
9458  * @sizeof_priv: size of private data to allocate space for
9459  * @name: device name format string
9460  * @name_assign_type: origin of device name
9461  * @setup: callback to initialize device
9462  * @txqs: the number of TX subqueues to allocate
9463  * @rxqs: the number of RX subqueues to allocate
9464  *
9465  * Allocates a struct net_device with private data area for driver use
9466  * and performs basic initialization.  Also allocates subqueue structs
9467  * for each queue on the device.
9468  */
9469 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9470 		unsigned char name_assign_type,
9471 		void (*setup)(struct net_device *),
9472 		unsigned int txqs, unsigned int rxqs)
9473 {
9474 	struct net_device *dev;
9475 	unsigned int alloc_size;
9476 	struct net_device *p;
9477 
9478 	BUG_ON(strlen(name) >= sizeof(dev->name));
9479 
9480 	if (txqs < 1) {
9481 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9482 		return NULL;
9483 	}
9484 
9485 	if (rxqs < 1) {
9486 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9487 		return NULL;
9488 	}
9489 
9490 	alloc_size = sizeof(struct net_device);
9491 	if (sizeof_priv) {
9492 		/* ensure 32-byte alignment of private area */
9493 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9494 		alloc_size += sizeof_priv;
9495 	}
9496 	/* ensure 32-byte alignment of whole construct */
9497 	alloc_size += NETDEV_ALIGN - 1;
9498 
9499 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9500 	if (!p)
9501 		return NULL;
9502 
9503 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9504 	dev->padded = (char *)dev - (char *)p;
9505 
9506 	dev->pcpu_refcnt = alloc_percpu(int);
9507 	if (!dev->pcpu_refcnt)
9508 		goto free_dev;
9509 
9510 	if (dev_addr_init(dev))
9511 		goto free_pcpu;
9512 
9513 	dev_mc_init(dev);
9514 	dev_uc_init(dev);
9515 
9516 	dev_net_set(dev, &init_net);
9517 
9518 	netdev_register_lockdep_key(dev);
9519 
9520 	dev->gso_max_size = GSO_MAX_SIZE;
9521 	dev->gso_max_segs = GSO_MAX_SEGS;
9522 	dev->upper_level = 1;
9523 	dev->lower_level = 1;
9524 
9525 	INIT_LIST_HEAD(&dev->napi_list);
9526 	INIT_LIST_HEAD(&dev->unreg_list);
9527 	INIT_LIST_HEAD(&dev->close_list);
9528 	INIT_LIST_HEAD(&dev->link_watch_list);
9529 	INIT_LIST_HEAD(&dev->adj_list.upper);
9530 	INIT_LIST_HEAD(&dev->adj_list.lower);
9531 	INIT_LIST_HEAD(&dev->ptype_all);
9532 	INIT_LIST_HEAD(&dev->ptype_specific);
9533 #ifdef CONFIG_NET_SCHED
9534 	hash_init(dev->qdisc_hash);
9535 #endif
9536 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9537 	setup(dev);
9538 
9539 	if (!dev->tx_queue_len) {
9540 		dev->priv_flags |= IFF_NO_QUEUE;
9541 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9542 	}
9543 
9544 	dev->num_tx_queues = txqs;
9545 	dev->real_num_tx_queues = txqs;
9546 	if (netif_alloc_netdev_queues(dev))
9547 		goto free_all;
9548 
9549 	dev->num_rx_queues = rxqs;
9550 	dev->real_num_rx_queues = rxqs;
9551 	if (netif_alloc_rx_queues(dev))
9552 		goto free_all;
9553 
9554 	strcpy(dev->name, name);
9555 	dev->name_assign_type = name_assign_type;
9556 	dev->group = INIT_NETDEV_GROUP;
9557 	if (!dev->ethtool_ops)
9558 		dev->ethtool_ops = &default_ethtool_ops;
9559 
9560 	nf_hook_ingress_init(dev);
9561 
9562 	return dev;
9563 
9564 free_all:
9565 	free_netdev(dev);
9566 	return NULL;
9567 
9568 free_pcpu:
9569 	free_percpu(dev->pcpu_refcnt);
9570 free_dev:
9571 	netdev_freemem(dev);
9572 	return NULL;
9573 }
9574 EXPORT_SYMBOL(alloc_netdev_mqs);
9575 
9576 /**
9577  * free_netdev - free network device
9578  * @dev: device
9579  *
9580  * This function does the last stage of destroying an allocated device
9581  * interface. The reference to the device object is released. If this
9582  * is the last reference then it will be freed.Must be called in process
9583  * context.
9584  */
9585 void free_netdev(struct net_device *dev)
9586 {
9587 	struct napi_struct *p, *n;
9588 
9589 	might_sleep();
9590 	netif_free_tx_queues(dev);
9591 	netif_free_rx_queues(dev);
9592 
9593 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9594 
9595 	/* Flush device addresses */
9596 	dev_addr_flush(dev);
9597 
9598 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9599 		netif_napi_del(p);
9600 
9601 	free_percpu(dev->pcpu_refcnt);
9602 	dev->pcpu_refcnt = NULL;
9603 
9604 	netdev_unregister_lockdep_key(dev);
9605 
9606 	/*  Compatibility with error handling in drivers */
9607 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9608 		netdev_freemem(dev);
9609 		return;
9610 	}
9611 
9612 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9613 	dev->reg_state = NETREG_RELEASED;
9614 
9615 	/* will free via device release */
9616 	put_device(&dev->dev);
9617 }
9618 EXPORT_SYMBOL(free_netdev);
9619 
9620 /**
9621  *	synchronize_net -  Synchronize with packet receive processing
9622  *
9623  *	Wait for packets currently being received to be done.
9624  *	Does not block later packets from starting.
9625  */
9626 void synchronize_net(void)
9627 {
9628 	might_sleep();
9629 	if (rtnl_is_locked())
9630 		synchronize_rcu_expedited();
9631 	else
9632 		synchronize_rcu();
9633 }
9634 EXPORT_SYMBOL(synchronize_net);
9635 
9636 /**
9637  *	unregister_netdevice_queue - remove device from the kernel
9638  *	@dev: device
9639  *	@head: list
9640  *
9641  *	This function shuts down a device interface and removes it
9642  *	from the kernel tables.
9643  *	If head not NULL, device is queued to be unregistered later.
9644  *
9645  *	Callers must hold the rtnl semaphore.  You may want
9646  *	unregister_netdev() instead of this.
9647  */
9648 
9649 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9650 {
9651 	ASSERT_RTNL();
9652 
9653 	if (head) {
9654 		list_move_tail(&dev->unreg_list, head);
9655 	} else {
9656 		rollback_registered(dev);
9657 		/* Finish processing unregister after unlock */
9658 		net_set_todo(dev);
9659 	}
9660 }
9661 EXPORT_SYMBOL(unregister_netdevice_queue);
9662 
9663 /**
9664  *	unregister_netdevice_many - unregister many devices
9665  *	@head: list of devices
9666  *
9667  *  Note: As most callers use a stack allocated list_head,
9668  *  we force a list_del() to make sure stack wont be corrupted later.
9669  */
9670 void unregister_netdevice_many(struct list_head *head)
9671 {
9672 	struct net_device *dev;
9673 
9674 	if (!list_empty(head)) {
9675 		rollback_registered_many(head);
9676 		list_for_each_entry(dev, head, unreg_list)
9677 			net_set_todo(dev);
9678 		list_del(head);
9679 	}
9680 }
9681 EXPORT_SYMBOL(unregister_netdevice_many);
9682 
9683 /**
9684  *	unregister_netdev - remove device from the kernel
9685  *	@dev: device
9686  *
9687  *	This function shuts down a device interface and removes it
9688  *	from the kernel tables.
9689  *
9690  *	This is just a wrapper for unregister_netdevice that takes
9691  *	the rtnl semaphore.  In general you want to use this and not
9692  *	unregister_netdevice.
9693  */
9694 void unregister_netdev(struct net_device *dev)
9695 {
9696 	rtnl_lock();
9697 	unregister_netdevice(dev);
9698 	rtnl_unlock();
9699 }
9700 EXPORT_SYMBOL(unregister_netdev);
9701 
9702 /**
9703  *	dev_change_net_namespace - move device to different nethost namespace
9704  *	@dev: device
9705  *	@net: network namespace
9706  *	@pat: If not NULL name pattern to try if the current device name
9707  *	      is already taken in the destination network namespace.
9708  *
9709  *	This function shuts down a device interface and moves it
9710  *	to a new network namespace. On success 0 is returned, on
9711  *	a failure a netagive errno code is returned.
9712  *
9713  *	Callers must hold the rtnl semaphore.
9714  */
9715 
9716 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9717 {
9718 	int err, new_nsid, new_ifindex;
9719 
9720 	ASSERT_RTNL();
9721 
9722 	/* Don't allow namespace local devices to be moved. */
9723 	err = -EINVAL;
9724 	if (dev->features & NETIF_F_NETNS_LOCAL)
9725 		goto out;
9726 
9727 	/* Ensure the device has been registrered */
9728 	if (dev->reg_state != NETREG_REGISTERED)
9729 		goto out;
9730 
9731 	/* Get out if there is nothing todo */
9732 	err = 0;
9733 	if (net_eq(dev_net(dev), net))
9734 		goto out;
9735 
9736 	/* Pick the destination device name, and ensure
9737 	 * we can use it in the destination network namespace.
9738 	 */
9739 	err = -EEXIST;
9740 	if (__dev_get_by_name(net, dev->name)) {
9741 		/* We get here if we can't use the current device name */
9742 		if (!pat)
9743 			goto out;
9744 		err = dev_get_valid_name(net, dev, pat);
9745 		if (err < 0)
9746 			goto out;
9747 	}
9748 
9749 	/*
9750 	 * And now a mini version of register_netdevice unregister_netdevice.
9751 	 */
9752 
9753 	/* If device is running close it first. */
9754 	dev_close(dev);
9755 
9756 	/* And unlink it from device chain */
9757 	unlist_netdevice(dev);
9758 
9759 	synchronize_net();
9760 
9761 	/* Shutdown queueing discipline. */
9762 	dev_shutdown(dev);
9763 
9764 	/* Notify protocols, that we are about to destroy
9765 	 * this device. They should clean all the things.
9766 	 *
9767 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9768 	 * This is wanted because this way 8021q and macvlan know
9769 	 * the device is just moving and can keep their slaves up.
9770 	 */
9771 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9772 	rcu_barrier();
9773 
9774 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9775 	/* If there is an ifindex conflict assign a new one */
9776 	if (__dev_get_by_index(net, dev->ifindex))
9777 		new_ifindex = dev_new_index(net);
9778 	else
9779 		new_ifindex = dev->ifindex;
9780 
9781 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9782 			    new_ifindex);
9783 
9784 	/*
9785 	 *	Flush the unicast and multicast chains
9786 	 */
9787 	dev_uc_flush(dev);
9788 	dev_mc_flush(dev);
9789 
9790 	/* Send a netdev-removed uevent to the old namespace */
9791 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9792 	netdev_adjacent_del_links(dev);
9793 
9794 	/* Actually switch the network namespace */
9795 	dev_net_set(dev, net);
9796 	dev->ifindex = new_ifindex;
9797 
9798 	/* Send a netdev-add uevent to the new namespace */
9799 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9800 	netdev_adjacent_add_links(dev);
9801 
9802 	/* Fixup kobjects */
9803 	err = device_rename(&dev->dev, dev->name);
9804 	WARN_ON(err);
9805 
9806 	/* Add the device back in the hashes */
9807 	list_netdevice(dev);
9808 
9809 	/* Notify protocols, that a new device appeared. */
9810 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9811 
9812 	/*
9813 	 *	Prevent userspace races by waiting until the network
9814 	 *	device is fully setup before sending notifications.
9815 	 */
9816 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9817 
9818 	synchronize_net();
9819 	err = 0;
9820 out:
9821 	return err;
9822 }
9823 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9824 
9825 static int dev_cpu_dead(unsigned int oldcpu)
9826 {
9827 	struct sk_buff **list_skb;
9828 	struct sk_buff *skb;
9829 	unsigned int cpu;
9830 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9831 
9832 	local_irq_disable();
9833 	cpu = smp_processor_id();
9834 	sd = &per_cpu(softnet_data, cpu);
9835 	oldsd = &per_cpu(softnet_data, oldcpu);
9836 
9837 	/* Find end of our completion_queue. */
9838 	list_skb = &sd->completion_queue;
9839 	while (*list_skb)
9840 		list_skb = &(*list_skb)->next;
9841 	/* Append completion queue from offline CPU. */
9842 	*list_skb = oldsd->completion_queue;
9843 	oldsd->completion_queue = NULL;
9844 
9845 	/* Append output queue from offline CPU. */
9846 	if (oldsd->output_queue) {
9847 		*sd->output_queue_tailp = oldsd->output_queue;
9848 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9849 		oldsd->output_queue = NULL;
9850 		oldsd->output_queue_tailp = &oldsd->output_queue;
9851 	}
9852 	/* Append NAPI poll list from offline CPU, with one exception :
9853 	 * process_backlog() must be called by cpu owning percpu backlog.
9854 	 * We properly handle process_queue & input_pkt_queue later.
9855 	 */
9856 	while (!list_empty(&oldsd->poll_list)) {
9857 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9858 							    struct napi_struct,
9859 							    poll_list);
9860 
9861 		list_del_init(&napi->poll_list);
9862 		if (napi->poll == process_backlog)
9863 			napi->state = 0;
9864 		else
9865 			____napi_schedule(sd, napi);
9866 	}
9867 
9868 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9869 	local_irq_enable();
9870 
9871 #ifdef CONFIG_RPS
9872 	remsd = oldsd->rps_ipi_list;
9873 	oldsd->rps_ipi_list = NULL;
9874 #endif
9875 	/* send out pending IPI's on offline CPU */
9876 	net_rps_send_ipi(remsd);
9877 
9878 	/* Process offline CPU's input_pkt_queue */
9879 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9880 		netif_rx_ni(skb);
9881 		input_queue_head_incr(oldsd);
9882 	}
9883 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9884 		netif_rx_ni(skb);
9885 		input_queue_head_incr(oldsd);
9886 	}
9887 
9888 	return 0;
9889 }
9890 
9891 /**
9892  *	netdev_increment_features - increment feature set by one
9893  *	@all: current feature set
9894  *	@one: new feature set
9895  *	@mask: mask feature set
9896  *
9897  *	Computes a new feature set after adding a device with feature set
9898  *	@one to the master device with current feature set @all.  Will not
9899  *	enable anything that is off in @mask. Returns the new feature set.
9900  */
9901 netdev_features_t netdev_increment_features(netdev_features_t all,
9902 	netdev_features_t one, netdev_features_t mask)
9903 {
9904 	if (mask & NETIF_F_HW_CSUM)
9905 		mask |= NETIF_F_CSUM_MASK;
9906 	mask |= NETIF_F_VLAN_CHALLENGED;
9907 
9908 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9909 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9910 
9911 	/* If one device supports hw checksumming, set for all. */
9912 	if (all & NETIF_F_HW_CSUM)
9913 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9914 
9915 	return all;
9916 }
9917 EXPORT_SYMBOL(netdev_increment_features);
9918 
9919 static struct hlist_head * __net_init netdev_create_hash(void)
9920 {
9921 	int i;
9922 	struct hlist_head *hash;
9923 
9924 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9925 	if (hash != NULL)
9926 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9927 			INIT_HLIST_HEAD(&hash[i]);
9928 
9929 	return hash;
9930 }
9931 
9932 /* Initialize per network namespace state */
9933 static int __net_init netdev_init(struct net *net)
9934 {
9935 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9936 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9937 
9938 	if (net != &init_net)
9939 		INIT_LIST_HEAD(&net->dev_base_head);
9940 
9941 	net->dev_name_head = netdev_create_hash();
9942 	if (net->dev_name_head == NULL)
9943 		goto err_name;
9944 
9945 	net->dev_index_head = netdev_create_hash();
9946 	if (net->dev_index_head == NULL)
9947 		goto err_idx;
9948 
9949 	return 0;
9950 
9951 err_idx:
9952 	kfree(net->dev_name_head);
9953 err_name:
9954 	return -ENOMEM;
9955 }
9956 
9957 /**
9958  *	netdev_drivername - network driver for the device
9959  *	@dev: network device
9960  *
9961  *	Determine network driver for device.
9962  */
9963 const char *netdev_drivername(const struct net_device *dev)
9964 {
9965 	const struct device_driver *driver;
9966 	const struct device *parent;
9967 	const char *empty = "";
9968 
9969 	parent = dev->dev.parent;
9970 	if (!parent)
9971 		return empty;
9972 
9973 	driver = parent->driver;
9974 	if (driver && driver->name)
9975 		return driver->name;
9976 	return empty;
9977 }
9978 
9979 static void __netdev_printk(const char *level, const struct net_device *dev,
9980 			    struct va_format *vaf)
9981 {
9982 	if (dev && dev->dev.parent) {
9983 		dev_printk_emit(level[1] - '0',
9984 				dev->dev.parent,
9985 				"%s %s %s%s: %pV",
9986 				dev_driver_string(dev->dev.parent),
9987 				dev_name(dev->dev.parent),
9988 				netdev_name(dev), netdev_reg_state(dev),
9989 				vaf);
9990 	} else if (dev) {
9991 		printk("%s%s%s: %pV",
9992 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9993 	} else {
9994 		printk("%s(NULL net_device): %pV", level, vaf);
9995 	}
9996 }
9997 
9998 void netdev_printk(const char *level, const struct net_device *dev,
9999 		   const char *format, ...)
10000 {
10001 	struct va_format vaf;
10002 	va_list args;
10003 
10004 	va_start(args, format);
10005 
10006 	vaf.fmt = format;
10007 	vaf.va = &args;
10008 
10009 	__netdev_printk(level, dev, &vaf);
10010 
10011 	va_end(args);
10012 }
10013 EXPORT_SYMBOL(netdev_printk);
10014 
10015 #define define_netdev_printk_level(func, level)			\
10016 void func(const struct net_device *dev, const char *fmt, ...)	\
10017 {								\
10018 	struct va_format vaf;					\
10019 	va_list args;						\
10020 								\
10021 	va_start(args, fmt);					\
10022 								\
10023 	vaf.fmt = fmt;						\
10024 	vaf.va = &args;						\
10025 								\
10026 	__netdev_printk(level, dev, &vaf);			\
10027 								\
10028 	va_end(args);						\
10029 }								\
10030 EXPORT_SYMBOL(func);
10031 
10032 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10033 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10034 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10035 define_netdev_printk_level(netdev_err, KERN_ERR);
10036 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10037 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10038 define_netdev_printk_level(netdev_info, KERN_INFO);
10039 
10040 static void __net_exit netdev_exit(struct net *net)
10041 {
10042 	kfree(net->dev_name_head);
10043 	kfree(net->dev_index_head);
10044 	if (net != &init_net)
10045 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10046 }
10047 
10048 static struct pernet_operations __net_initdata netdev_net_ops = {
10049 	.init = netdev_init,
10050 	.exit = netdev_exit,
10051 };
10052 
10053 static void __net_exit default_device_exit(struct net *net)
10054 {
10055 	struct net_device *dev, *aux;
10056 	/*
10057 	 * Push all migratable network devices back to the
10058 	 * initial network namespace
10059 	 */
10060 	rtnl_lock();
10061 	for_each_netdev_safe(net, dev, aux) {
10062 		int err;
10063 		char fb_name[IFNAMSIZ];
10064 
10065 		/* Ignore unmoveable devices (i.e. loopback) */
10066 		if (dev->features & NETIF_F_NETNS_LOCAL)
10067 			continue;
10068 
10069 		/* Leave virtual devices for the generic cleanup */
10070 		if (dev->rtnl_link_ops)
10071 			continue;
10072 
10073 		/* Push remaining network devices to init_net */
10074 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10075 		if (__dev_get_by_name(&init_net, fb_name))
10076 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10077 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10078 		if (err) {
10079 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10080 				 __func__, dev->name, err);
10081 			BUG();
10082 		}
10083 	}
10084 	rtnl_unlock();
10085 }
10086 
10087 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10088 {
10089 	/* Return with the rtnl_lock held when there are no network
10090 	 * devices unregistering in any network namespace in net_list.
10091 	 */
10092 	struct net *net;
10093 	bool unregistering;
10094 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10095 
10096 	add_wait_queue(&netdev_unregistering_wq, &wait);
10097 	for (;;) {
10098 		unregistering = false;
10099 		rtnl_lock();
10100 		list_for_each_entry(net, net_list, exit_list) {
10101 			if (net->dev_unreg_count > 0) {
10102 				unregistering = true;
10103 				break;
10104 			}
10105 		}
10106 		if (!unregistering)
10107 			break;
10108 		__rtnl_unlock();
10109 
10110 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10111 	}
10112 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10113 }
10114 
10115 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10116 {
10117 	/* At exit all network devices most be removed from a network
10118 	 * namespace.  Do this in the reverse order of registration.
10119 	 * Do this across as many network namespaces as possible to
10120 	 * improve batching efficiency.
10121 	 */
10122 	struct net_device *dev;
10123 	struct net *net;
10124 	LIST_HEAD(dev_kill_list);
10125 
10126 	/* To prevent network device cleanup code from dereferencing
10127 	 * loopback devices or network devices that have been freed
10128 	 * wait here for all pending unregistrations to complete,
10129 	 * before unregistring the loopback device and allowing the
10130 	 * network namespace be freed.
10131 	 *
10132 	 * The netdev todo list containing all network devices
10133 	 * unregistrations that happen in default_device_exit_batch
10134 	 * will run in the rtnl_unlock() at the end of
10135 	 * default_device_exit_batch.
10136 	 */
10137 	rtnl_lock_unregistering(net_list);
10138 	list_for_each_entry(net, net_list, exit_list) {
10139 		for_each_netdev_reverse(net, dev) {
10140 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10141 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10142 			else
10143 				unregister_netdevice_queue(dev, &dev_kill_list);
10144 		}
10145 	}
10146 	unregister_netdevice_many(&dev_kill_list);
10147 	rtnl_unlock();
10148 }
10149 
10150 static struct pernet_operations __net_initdata default_device_ops = {
10151 	.exit = default_device_exit,
10152 	.exit_batch = default_device_exit_batch,
10153 };
10154 
10155 /*
10156  *	Initialize the DEV module. At boot time this walks the device list and
10157  *	unhooks any devices that fail to initialise (normally hardware not
10158  *	present) and leaves us with a valid list of present and active devices.
10159  *
10160  */
10161 
10162 /*
10163  *       This is called single threaded during boot, so no need
10164  *       to take the rtnl semaphore.
10165  */
10166 static int __init net_dev_init(void)
10167 {
10168 	int i, rc = -ENOMEM;
10169 
10170 	BUG_ON(!dev_boot_phase);
10171 
10172 	if (dev_proc_init())
10173 		goto out;
10174 
10175 	if (netdev_kobject_init())
10176 		goto out;
10177 
10178 	INIT_LIST_HEAD(&ptype_all);
10179 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10180 		INIT_LIST_HEAD(&ptype_base[i]);
10181 
10182 	INIT_LIST_HEAD(&offload_base);
10183 
10184 	if (register_pernet_subsys(&netdev_net_ops))
10185 		goto out;
10186 
10187 	/*
10188 	 *	Initialise the packet receive queues.
10189 	 */
10190 
10191 	for_each_possible_cpu(i) {
10192 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10193 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10194 
10195 		INIT_WORK(flush, flush_backlog);
10196 
10197 		skb_queue_head_init(&sd->input_pkt_queue);
10198 		skb_queue_head_init(&sd->process_queue);
10199 #ifdef CONFIG_XFRM_OFFLOAD
10200 		skb_queue_head_init(&sd->xfrm_backlog);
10201 #endif
10202 		INIT_LIST_HEAD(&sd->poll_list);
10203 		sd->output_queue_tailp = &sd->output_queue;
10204 #ifdef CONFIG_RPS
10205 		sd->csd.func = rps_trigger_softirq;
10206 		sd->csd.info = sd;
10207 		sd->cpu = i;
10208 #endif
10209 
10210 		init_gro_hash(&sd->backlog);
10211 		sd->backlog.poll = process_backlog;
10212 		sd->backlog.weight = weight_p;
10213 	}
10214 
10215 	dev_boot_phase = 0;
10216 
10217 	/* The loopback device is special if any other network devices
10218 	 * is present in a network namespace the loopback device must
10219 	 * be present. Since we now dynamically allocate and free the
10220 	 * loopback device ensure this invariant is maintained by
10221 	 * keeping the loopback device as the first device on the
10222 	 * list of network devices.  Ensuring the loopback devices
10223 	 * is the first device that appears and the last network device
10224 	 * that disappears.
10225 	 */
10226 	if (register_pernet_device(&loopback_net_ops))
10227 		goto out;
10228 
10229 	if (register_pernet_device(&default_device_ops))
10230 		goto out;
10231 
10232 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10233 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10234 
10235 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10236 				       NULL, dev_cpu_dead);
10237 	WARN_ON(rc < 0);
10238 	rc = 0;
10239 out:
10240 	return rc;
10241 }
10242 
10243 subsys_initcall(net_dev_init);
10244