1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/bpf.h> 95 #include <linux/bpf_trace.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <net/busy_poll.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dsa.h> 102 #include <net/dst.h> 103 #include <net/dst_metadata.h> 104 #include <net/pkt_sched.h> 105 #include <net/pkt_cls.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/inetdevice.h> 133 #include <linux/cpu_rmap.h> 134 #include <linux/static_key.h> 135 #include <linux/hashtable.h> 136 #include <linux/vmalloc.h> 137 #include <linux/if_macvlan.h> 138 #include <linux/errqueue.h> 139 #include <linux/hrtimer.h> 140 #include <linux/netfilter_ingress.h> 141 #include <linux/crash_dump.h> 142 #include <linux/sctp.h> 143 #include <net/udp_tunnel.h> 144 #include <linux/net_namespace.h> 145 #include <linux/indirect_call_wrapper.h> 146 #include <net/devlink.h> 147 #include <linux/pm_runtime.h> 148 #include <linux/prandom.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169 static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171 /* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190 DEFINE_RWLOCK(dev_base_lock); 191 EXPORT_SYMBOL(dev_base_lock); 192 193 static DEFINE_MUTEX(ifalias_mutex); 194 195 /* protects napi_hash addition/deletion and napi_gen_id */ 196 static DEFINE_SPINLOCK(napi_hash_lock); 197 198 static unsigned int napi_gen_id = NR_CPUS; 199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201 static DECLARE_RWSEM(devnet_rename_sem); 202 203 static inline void dev_base_seq_inc(struct net *net) 204 { 205 while (++net->dev_base_seq == 0) 206 ; 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 236 const char *name) 237 { 238 struct netdev_name_node *name_node; 239 240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 241 if (!name_node) 242 return NULL; 243 INIT_HLIST_NODE(&name_node->hlist); 244 name_node->dev = dev; 245 name_node->name = name; 246 return name_node; 247 } 248 249 static struct netdev_name_node * 250 netdev_name_node_head_alloc(struct net_device *dev) 251 { 252 struct netdev_name_node *name_node; 253 254 name_node = netdev_name_node_alloc(dev, dev->name); 255 if (!name_node) 256 return NULL; 257 INIT_LIST_HEAD(&name_node->list); 258 return name_node; 259 } 260 261 static void netdev_name_node_free(struct netdev_name_node *name_node) 262 { 263 kfree(name_node); 264 } 265 266 static void netdev_name_node_add(struct net *net, 267 struct netdev_name_node *name_node) 268 { 269 hlist_add_head_rcu(&name_node->hlist, 270 dev_name_hash(net, name_node->name)); 271 } 272 273 static void netdev_name_node_del(struct netdev_name_node *name_node) 274 { 275 hlist_del_rcu(&name_node->hlist); 276 } 277 278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 279 const char *name) 280 { 281 struct hlist_head *head = dev_name_hash(net, name); 282 struct netdev_name_node *name_node; 283 284 hlist_for_each_entry(name_node, head, hlist) 285 if (!strcmp(name_node->name, name)) 286 return name_node; 287 return NULL; 288 } 289 290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 291 const char *name) 292 { 293 struct hlist_head *head = dev_name_hash(net, name); 294 struct netdev_name_node *name_node; 295 296 hlist_for_each_entry_rcu(name_node, head, hlist) 297 if (!strcmp(name_node->name, name)) 298 return name_node; 299 return NULL; 300 } 301 302 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 303 { 304 struct netdev_name_node *name_node; 305 struct net *net = dev_net(dev); 306 307 name_node = netdev_name_node_lookup(net, name); 308 if (name_node) 309 return -EEXIST; 310 name_node = netdev_name_node_alloc(dev, name); 311 if (!name_node) 312 return -ENOMEM; 313 netdev_name_node_add(net, name_node); 314 /* The node that holds dev->name acts as a head of per-device list. */ 315 list_add_tail(&name_node->list, &dev->name_node->list); 316 317 return 0; 318 } 319 EXPORT_SYMBOL(netdev_name_node_alt_create); 320 321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 322 { 323 list_del(&name_node->list); 324 netdev_name_node_del(name_node); 325 kfree(name_node->name); 326 netdev_name_node_free(name_node); 327 } 328 329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 330 { 331 struct netdev_name_node *name_node; 332 struct net *net = dev_net(dev); 333 334 name_node = netdev_name_node_lookup(net, name); 335 if (!name_node) 336 return -ENOENT; 337 /* lookup might have found our primary name or a name belonging 338 * to another device. 339 */ 340 if (name_node == dev->name_node || name_node->dev != dev) 341 return -EINVAL; 342 343 __netdev_name_node_alt_destroy(name_node); 344 345 return 0; 346 } 347 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 348 349 static void netdev_name_node_alt_flush(struct net_device *dev) 350 { 351 struct netdev_name_node *name_node, *tmp; 352 353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 354 __netdev_name_node_alt_destroy(name_node); 355 } 356 357 /* Device list insertion */ 358 static void list_netdevice(struct net_device *dev) 359 { 360 struct net *net = dev_net(dev); 361 362 ASSERT_RTNL(); 363 364 write_lock_bh(&dev_base_lock); 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 366 netdev_name_node_add(net, dev->name_node); 367 hlist_add_head_rcu(&dev->index_hlist, 368 dev_index_hash(net, dev->ifindex)); 369 write_unlock_bh(&dev_base_lock); 370 371 dev_base_seq_inc(net); 372 } 373 374 /* Device list removal 375 * caller must respect a RCU grace period before freeing/reusing dev 376 */ 377 static void unlist_netdevice(struct net_device *dev) 378 { 379 ASSERT_RTNL(); 380 381 /* Unlink dev from the device chain */ 382 write_lock_bh(&dev_base_lock); 383 list_del_rcu(&dev->dev_list); 384 netdev_name_node_del(dev->name_node); 385 hlist_del_rcu(&dev->index_hlist); 386 write_unlock_bh(&dev_base_lock); 387 388 dev_base_seq_inc(dev_net(dev)); 389 } 390 391 /* 392 * Our notifier list 393 */ 394 395 static RAW_NOTIFIER_HEAD(netdev_chain); 396 397 /* 398 * Device drivers call our routines to queue packets here. We empty the 399 * queue in the local softnet handler. 400 */ 401 402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 403 EXPORT_PER_CPU_SYMBOL(softnet_data); 404 405 #ifdef CONFIG_LOCKDEP 406 /* 407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 408 * according to dev->type 409 */ 410 static const unsigned short netdev_lock_type[] = { 411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 426 427 static const char *const netdev_lock_name[] = { 428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 443 444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 446 447 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 448 { 449 int i; 450 451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 452 if (netdev_lock_type[i] == dev_type) 453 return i; 454 /* the last key is used by default */ 455 return ARRAY_SIZE(netdev_lock_type) - 1; 456 } 457 458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 459 unsigned short dev_type) 460 { 461 int i; 462 463 i = netdev_lock_pos(dev_type); 464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 465 netdev_lock_name[i]); 466 } 467 468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 469 { 470 int i; 471 472 i = netdev_lock_pos(dev->type); 473 lockdep_set_class_and_name(&dev->addr_list_lock, 474 &netdev_addr_lock_key[i], 475 netdev_lock_name[i]); 476 } 477 #else 478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 479 unsigned short dev_type) 480 { 481 } 482 483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 484 { 485 } 486 #endif 487 488 /******************************************************************************* 489 * 490 * Protocol management and registration routines 491 * 492 *******************************************************************************/ 493 494 495 /* 496 * Add a protocol ID to the list. Now that the input handler is 497 * smarter we can dispense with all the messy stuff that used to be 498 * here. 499 * 500 * BEWARE!!! Protocol handlers, mangling input packets, 501 * MUST BE last in hash buckets and checking protocol handlers 502 * MUST start from promiscuous ptype_all chain in net_bh. 503 * It is true now, do not change it. 504 * Explanation follows: if protocol handler, mangling packet, will 505 * be the first on list, it is not able to sense, that packet 506 * is cloned and should be copied-on-write, so that it will 507 * change it and subsequent readers will get broken packet. 508 * --ANK (980803) 509 */ 510 511 static inline struct list_head *ptype_head(const struct packet_type *pt) 512 { 513 if (pt->type == htons(ETH_P_ALL)) 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 515 else 516 return pt->dev ? &pt->dev->ptype_specific : 517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 518 } 519 520 /** 521 * dev_add_pack - add packet handler 522 * @pt: packet type declaration 523 * 524 * Add a protocol handler to the networking stack. The passed &packet_type 525 * is linked into kernel lists and may not be freed until it has been 526 * removed from the kernel lists. 527 * 528 * This call does not sleep therefore it can not 529 * guarantee all CPU's that are in middle of receiving packets 530 * will see the new packet type (until the next received packet). 531 */ 532 533 void dev_add_pack(struct packet_type *pt) 534 { 535 struct list_head *head = ptype_head(pt); 536 537 spin_lock(&ptype_lock); 538 list_add_rcu(&pt->list, head); 539 spin_unlock(&ptype_lock); 540 } 541 EXPORT_SYMBOL(dev_add_pack); 542 543 /** 544 * __dev_remove_pack - remove packet handler 545 * @pt: packet type declaration 546 * 547 * Remove a protocol handler that was previously added to the kernel 548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 549 * from the kernel lists and can be freed or reused once this function 550 * returns. 551 * 552 * The packet type might still be in use by receivers 553 * and must not be freed until after all the CPU's have gone 554 * through a quiescent state. 555 */ 556 void __dev_remove_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 struct packet_type *pt1; 560 561 spin_lock(&ptype_lock); 562 563 list_for_each_entry(pt1, head, list) { 564 if (pt == pt1) { 565 list_del_rcu(&pt->list); 566 goto out; 567 } 568 } 569 570 pr_warn("dev_remove_pack: %p not found\n", pt); 571 out: 572 spin_unlock(&ptype_lock); 573 } 574 EXPORT_SYMBOL(__dev_remove_pack); 575 576 /** 577 * dev_remove_pack - remove packet handler 578 * @pt: packet type declaration 579 * 580 * Remove a protocol handler that was previously added to the kernel 581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 582 * from the kernel lists and can be freed or reused once this function 583 * returns. 584 * 585 * This call sleeps to guarantee that no CPU is looking at the packet 586 * type after return. 587 */ 588 void dev_remove_pack(struct packet_type *pt) 589 { 590 __dev_remove_pack(pt); 591 592 synchronize_net(); 593 } 594 EXPORT_SYMBOL(dev_remove_pack); 595 596 597 /** 598 * dev_add_offload - register offload handlers 599 * @po: protocol offload declaration 600 * 601 * Add protocol offload handlers to the networking stack. The passed 602 * &proto_offload is linked into kernel lists and may not be freed until 603 * it has been removed from the kernel lists. 604 * 605 * This call does not sleep therefore it can not 606 * guarantee all CPU's that are in middle of receiving packets 607 * will see the new offload handlers (until the next received packet). 608 */ 609 void dev_add_offload(struct packet_offload *po) 610 { 611 struct packet_offload *elem; 612 613 spin_lock(&offload_lock); 614 list_for_each_entry(elem, &offload_base, list) { 615 if (po->priority < elem->priority) 616 break; 617 } 618 list_add_rcu(&po->list, elem->list.prev); 619 spin_unlock(&offload_lock); 620 } 621 EXPORT_SYMBOL(dev_add_offload); 622 623 /** 624 * __dev_remove_offload - remove offload handler 625 * @po: packet offload declaration 626 * 627 * Remove a protocol offload handler that was previously added to the 628 * kernel offload handlers by dev_add_offload(). The passed &offload_type 629 * is removed from the kernel lists and can be freed or reused once this 630 * function returns. 631 * 632 * The packet type might still be in use by receivers 633 * and must not be freed until after all the CPU's have gone 634 * through a quiescent state. 635 */ 636 static void __dev_remove_offload(struct packet_offload *po) 637 { 638 struct list_head *head = &offload_base; 639 struct packet_offload *po1; 640 641 spin_lock(&offload_lock); 642 643 list_for_each_entry(po1, head, list) { 644 if (po == po1) { 645 list_del_rcu(&po->list); 646 goto out; 647 } 648 } 649 650 pr_warn("dev_remove_offload: %p not found\n", po); 651 out: 652 spin_unlock(&offload_lock); 653 } 654 655 /** 656 * dev_remove_offload - remove packet offload handler 657 * @po: packet offload declaration 658 * 659 * Remove a packet offload handler that was previously added to the kernel 660 * offload handlers by dev_add_offload(). The passed &offload_type is 661 * removed from the kernel lists and can be freed or reused once this 662 * function returns. 663 * 664 * This call sleeps to guarantee that no CPU is looking at the packet 665 * type after return. 666 */ 667 void dev_remove_offload(struct packet_offload *po) 668 { 669 __dev_remove_offload(po); 670 671 synchronize_net(); 672 } 673 EXPORT_SYMBOL(dev_remove_offload); 674 675 /****************************************************************************** 676 * 677 * Device Boot-time Settings Routines 678 * 679 ******************************************************************************/ 680 681 /* Boot time configuration table */ 682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 683 684 /** 685 * netdev_boot_setup_add - add new setup entry 686 * @name: name of the device 687 * @map: configured settings for the device 688 * 689 * Adds new setup entry to the dev_boot_setup list. The function 690 * returns 0 on error and 1 on success. This is a generic routine to 691 * all netdevices. 692 */ 693 static int netdev_boot_setup_add(char *name, struct ifmap *map) 694 { 695 struct netdev_boot_setup *s; 696 int i; 697 698 s = dev_boot_setup; 699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 701 memset(s[i].name, 0, sizeof(s[i].name)); 702 strlcpy(s[i].name, name, IFNAMSIZ); 703 memcpy(&s[i].map, map, sizeof(s[i].map)); 704 break; 705 } 706 } 707 708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 709 } 710 711 /** 712 * netdev_boot_setup_check - check boot time settings 713 * @dev: the netdevice 714 * 715 * Check boot time settings for the device. 716 * The found settings are set for the device to be used 717 * later in the device probing. 718 * Returns 0 if no settings found, 1 if they are. 719 */ 720 int netdev_boot_setup_check(struct net_device *dev) 721 { 722 struct netdev_boot_setup *s = dev_boot_setup; 723 int i; 724 725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 727 !strcmp(dev->name, s[i].name)) { 728 dev->irq = s[i].map.irq; 729 dev->base_addr = s[i].map.base_addr; 730 dev->mem_start = s[i].map.mem_start; 731 dev->mem_end = s[i].map.mem_end; 732 return 1; 733 } 734 } 735 return 0; 736 } 737 EXPORT_SYMBOL(netdev_boot_setup_check); 738 739 740 /** 741 * netdev_boot_base - get address from boot time settings 742 * @prefix: prefix for network device 743 * @unit: id for network device 744 * 745 * Check boot time settings for the base address of device. 746 * The found settings are set for the device to be used 747 * later in the device probing. 748 * Returns 0 if no settings found. 749 */ 750 unsigned long netdev_boot_base(const char *prefix, int unit) 751 { 752 const struct netdev_boot_setup *s = dev_boot_setup; 753 char name[IFNAMSIZ]; 754 int i; 755 756 sprintf(name, "%s%d", prefix, unit); 757 758 /* 759 * If device already registered then return base of 1 760 * to indicate not to probe for this interface 761 */ 762 if (__dev_get_by_name(&init_net, name)) 763 return 1; 764 765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 766 if (!strcmp(name, s[i].name)) 767 return s[i].map.base_addr; 768 return 0; 769 } 770 771 /* 772 * Saves at boot time configured settings for any netdevice. 773 */ 774 int __init netdev_boot_setup(char *str) 775 { 776 int ints[5]; 777 struct ifmap map; 778 779 str = get_options(str, ARRAY_SIZE(ints), ints); 780 if (!str || !*str) 781 return 0; 782 783 /* Save settings */ 784 memset(&map, 0, sizeof(map)); 785 if (ints[0] > 0) 786 map.irq = ints[1]; 787 if (ints[0] > 1) 788 map.base_addr = ints[2]; 789 if (ints[0] > 2) 790 map.mem_start = ints[3]; 791 if (ints[0] > 3) 792 map.mem_end = ints[4]; 793 794 /* Add new entry to the list */ 795 return netdev_boot_setup_add(str, &map); 796 } 797 798 __setup("netdev=", netdev_boot_setup); 799 800 /******************************************************************************* 801 * 802 * Device Interface Subroutines 803 * 804 *******************************************************************************/ 805 806 /** 807 * dev_get_iflink - get 'iflink' value of a interface 808 * @dev: targeted interface 809 * 810 * Indicates the ifindex the interface is linked to. 811 * Physical interfaces have the same 'ifindex' and 'iflink' values. 812 */ 813 814 int dev_get_iflink(const struct net_device *dev) 815 { 816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 817 return dev->netdev_ops->ndo_get_iflink(dev); 818 819 return dev->ifindex; 820 } 821 EXPORT_SYMBOL(dev_get_iflink); 822 823 /** 824 * dev_fill_metadata_dst - Retrieve tunnel egress information. 825 * @dev: targeted interface 826 * @skb: The packet. 827 * 828 * For better visibility of tunnel traffic OVS needs to retrieve 829 * egress tunnel information for a packet. Following API allows 830 * user to get this info. 831 */ 832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 833 { 834 struct ip_tunnel_info *info; 835 836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 837 return -EINVAL; 838 839 info = skb_tunnel_info_unclone(skb); 840 if (!info) 841 return -ENOMEM; 842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 843 return -EINVAL; 844 845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 846 } 847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 848 849 /** 850 * __dev_get_by_name - find a device by its name 851 * @net: the applicable net namespace 852 * @name: name to find 853 * 854 * Find an interface by name. Must be called under RTNL semaphore 855 * or @dev_base_lock. If the name is found a pointer to the device 856 * is returned. If the name is not found then %NULL is returned. The 857 * reference counters are not incremented so the caller must be 858 * careful with locks. 859 */ 860 861 struct net_device *__dev_get_by_name(struct net *net, const char *name) 862 { 863 struct netdev_name_node *node_name; 864 865 node_name = netdev_name_node_lookup(net, name); 866 return node_name ? node_name->dev : NULL; 867 } 868 EXPORT_SYMBOL(__dev_get_by_name); 869 870 /** 871 * dev_get_by_name_rcu - find a device by its name 872 * @net: the applicable net namespace 873 * @name: name to find 874 * 875 * Find an interface by name. 876 * If the name is found a pointer to the device is returned. 877 * If the name is not found then %NULL is returned. 878 * The reference counters are not incremented so the caller must be 879 * careful with locks. The caller must hold RCU lock. 880 */ 881 882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 883 { 884 struct netdev_name_node *node_name; 885 886 node_name = netdev_name_node_lookup_rcu(net, name); 887 return node_name ? node_name->dev : NULL; 888 } 889 EXPORT_SYMBOL(dev_get_by_name_rcu); 890 891 /** 892 * dev_get_by_name - find a device by its name 893 * @net: the applicable net namespace 894 * @name: name to find 895 * 896 * Find an interface by name. This can be called from any 897 * context and does its own locking. The returned handle has 898 * the usage count incremented and the caller must use dev_put() to 899 * release it when it is no longer needed. %NULL is returned if no 900 * matching device is found. 901 */ 902 903 struct net_device *dev_get_by_name(struct net *net, const char *name) 904 { 905 struct net_device *dev; 906 907 rcu_read_lock(); 908 dev = dev_get_by_name_rcu(net, name); 909 if (dev) 910 dev_hold(dev); 911 rcu_read_unlock(); 912 return dev; 913 } 914 EXPORT_SYMBOL(dev_get_by_name); 915 916 /** 917 * __dev_get_by_index - find a device by its ifindex 918 * @net: the applicable net namespace 919 * @ifindex: index of device 920 * 921 * Search for an interface by index. Returns %NULL if the device 922 * is not found or a pointer to the device. The device has not 923 * had its reference counter increased so the caller must be careful 924 * about locking. The caller must hold either the RTNL semaphore 925 * or @dev_base_lock. 926 */ 927 928 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 929 { 930 struct net_device *dev; 931 struct hlist_head *head = dev_index_hash(net, ifindex); 932 933 hlist_for_each_entry(dev, head, index_hlist) 934 if (dev->ifindex == ifindex) 935 return dev; 936 937 return NULL; 938 } 939 EXPORT_SYMBOL(__dev_get_by_index); 940 941 /** 942 * dev_get_by_index_rcu - find a device by its ifindex 943 * @net: the applicable net namespace 944 * @ifindex: index of device 945 * 946 * Search for an interface by index. Returns %NULL if the device 947 * is not found or a pointer to the device. The device has not 948 * had its reference counter increased so the caller must be careful 949 * about locking. The caller must hold RCU lock. 950 */ 951 952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 953 { 954 struct net_device *dev; 955 struct hlist_head *head = dev_index_hash(net, ifindex); 956 957 hlist_for_each_entry_rcu(dev, head, index_hlist) 958 if (dev->ifindex == ifindex) 959 return dev; 960 961 return NULL; 962 } 963 EXPORT_SYMBOL(dev_get_by_index_rcu); 964 965 966 /** 967 * dev_get_by_index - find a device by its ifindex 968 * @net: the applicable net namespace 969 * @ifindex: index of device 970 * 971 * Search for an interface by index. Returns NULL if the device 972 * is not found or a pointer to the device. The device returned has 973 * had a reference added and the pointer is safe until the user calls 974 * dev_put to indicate they have finished with it. 975 */ 976 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 if (dev) 984 dev_hold(dev); 985 rcu_read_unlock(); 986 return dev; 987 } 988 EXPORT_SYMBOL(dev_get_by_index); 989 990 /** 991 * dev_get_by_napi_id - find a device by napi_id 992 * @napi_id: ID of the NAPI struct 993 * 994 * Search for an interface by NAPI ID. Returns %NULL if the device 995 * is not found or a pointer to the device. The device has not had 996 * its reference counter increased so the caller must be careful 997 * about locking. The caller must hold RCU lock. 998 */ 999 1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1001 { 1002 struct napi_struct *napi; 1003 1004 WARN_ON_ONCE(!rcu_read_lock_held()); 1005 1006 if (napi_id < MIN_NAPI_ID) 1007 return NULL; 1008 1009 napi = napi_by_id(napi_id); 1010 1011 return napi ? napi->dev : NULL; 1012 } 1013 EXPORT_SYMBOL(dev_get_by_napi_id); 1014 1015 /** 1016 * netdev_get_name - get a netdevice name, knowing its ifindex. 1017 * @net: network namespace 1018 * @name: a pointer to the buffer where the name will be stored. 1019 * @ifindex: the ifindex of the interface to get the name from. 1020 */ 1021 int netdev_get_name(struct net *net, char *name, int ifindex) 1022 { 1023 struct net_device *dev; 1024 int ret; 1025 1026 down_read(&devnet_rename_sem); 1027 rcu_read_lock(); 1028 1029 dev = dev_get_by_index_rcu(net, ifindex); 1030 if (!dev) { 1031 ret = -ENODEV; 1032 goto out; 1033 } 1034 1035 strcpy(name, dev->name); 1036 1037 ret = 0; 1038 out: 1039 rcu_read_unlock(); 1040 up_read(&devnet_rename_sem); 1041 return ret; 1042 } 1043 1044 /** 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address 1046 * @net: the applicable net namespace 1047 * @type: media type of device 1048 * @ha: hardware address 1049 * 1050 * Search for an interface by MAC address. Returns NULL if the device 1051 * is not found or a pointer to the device. 1052 * The caller must hold RCU or RTNL. 1053 * The returned device has not had its ref count increased 1054 * and the caller must therefore be careful about locking 1055 * 1056 */ 1057 1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1059 const char *ha) 1060 { 1061 struct net_device *dev; 1062 1063 for_each_netdev_rcu(net, dev) 1064 if (dev->type == type && 1065 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1066 return dev; 1067 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1071 1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1073 { 1074 struct net_device *dev; 1075 1076 ASSERT_RTNL(); 1077 for_each_netdev(net, dev) 1078 if (dev->type == type) 1079 return dev; 1080 1081 return NULL; 1082 } 1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1084 1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1086 { 1087 struct net_device *dev, *ret = NULL; 1088 1089 rcu_read_lock(); 1090 for_each_netdev_rcu(net, dev) 1091 if (dev->type == type) { 1092 dev_hold(dev); 1093 ret = dev; 1094 break; 1095 } 1096 rcu_read_unlock(); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1100 1101 /** 1102 * __dev_get_by_flags - find any device with given flags 1103 * @net: the applicable net namespace 1104 * @if_flags: IFF_* values 1105 * @mask: bitmask of bits in if_flags to check 1106 * 1107 * Search for any interface with the given flags. Returns NULL if a device 1108 * is not found or a pointer to the device. Must be called inside 1109 * rtnl_lock(), and result refcount is unchanged. 1110 */ 1111 1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1113 unsigned short mask) 1114 { 1115 struct net_device *dev, *ret; 1116 1117 ASSERT_RTNL(); 1118 1119 ret = NULL; 1120 for_each_netdev(net, dev) { 1121 if (((dev->flags ^ if_flags) & mask) == 0) { 1122 ret = dev; 1123 break; 1124 } 1125 } 1126 return ret; 1127 } 1128 EXPORT_SYMBOL(__dev_get_by_flags); 1129 1130 /** 1131 * dev_valid_name - check if name is okay for network device 1132 * @name: name string 1133 * 1134 * Network device names need to be valid file names to 1135 * allow sysfs to work. We also disallow any kind of 1136 * whitespace. 1137 */ 1138 bool dev_valid_name(const char *name) 1139 { 1140 if (*name == '\0') 1141 return false; 1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1143 return false; 1144 if (!strcmp(name, ".") || !strcmp(name, "..")) 1145 return false; 1146 1147 while (*name) { 1148 if (*name == '/' || *name == ':' || isspace(*name)) 1149 return false; 1150 name++; 1151 } 1152 return true; 1153 } 1154 EXPORT_SYMBOL(dev_valid_name); 1155 1156 /** 1157 * __dev_alloc_name - allocate a name for a device 1158 * @net: network namespace to allocate the device name in 1159 * @name: name format string 1160 * @buf: scratch buffer and result name string 1161 * 1162 * Passed a format string - eg "lt%d" it will try and find a suitable 1163 * id. It scans list of devices to build up a free map, then chooses 1164 * the first empty slot. The caller must hold the dev_base or rtnl lock 1165 * while allocating the name and adding the device in order to avoid 1166 * duplicates. 1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1168 * Returns the number of the unit assigned or a negative errno code. 1169 */ 1170 1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1172 { 1173 int i = 0; 1174 const char *p; 1175 const int max_netdevices = 8*PAGE_SIZE; 1176 unsigned long *inuse; 1177 struct net_device *d; 1178 1179 if (!dev_valid_name(name)) 1180 return -EINVAL; 1181 1182 p = strchr(name, '%'); 1183 if (p) { 1184 /* 1185 * Verify the string as this thing may have come from 1186 * the user. There must be either one "%d" and no other "%" 1187 * characters. 1188 */ 1189 if (p[1] != 'd' || strchr(p + 2, '%')) 1190 return -EINVAL; 1191 1192 /* Use one page as a bit array of possible slots */ 1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1194 if (!inuse) 1195 return -ENOMEM; 1196 1197 for_each_netdev(net, d) { 1198 if (!sscanf(d->name, name, &i)) 1199 continue; 1200 if (i < 0 || i >= max_netdevices) 1201 continue; 1202 1203 /* avoid cases where sscanf is not exact inverse of printf */ 1204 snprintf(buf, IFNAMSIZ, name, i); 1205 if (!strncmp(buf, d->name, IFNAMSIZ)) 1206 set_bit(i, inuse); 1207 } 1208 1209 i = find_first_zero_bit(inuse, max_netdevices); 1210 free_page((unsigned long) inuse); 1211 } 1212 1213 snprintf(buf, IFNAMSIZ, name, i); 1214 if (!__dev_get_by_name(net, buf)) 1215 return i; 1216 1217 /* It is possible to run out of possible slots 1218 * when the name is long and there isn't enough space left 1219 * for the digits, or if all bits are used. 1220 */ 1221 return -ENFILE; 1222 } 1223 1224 static int dev_alloc_name_ns(struct net *net, 1225 struct net_device *dev, 1226 const char *name) 1227 { 1228 char buf[IFNAMSIZ]; 1229 int ret; 1230 1231 BUG_ON(!net); 1232 ret = __dev_alloc_name(net, name, buf); 1233 if (ret >= 0) 1234 strlcpy(dev->name, buf, IFNAMSIZ); 1235 return ret; 1236 } 1237 1238 /** 1239 * dev_alloc_name - allocate a name for a device 1240 * @dev: device 1241 * @name: name format string 1242 * 1243 * Passed a format string - eg "lt%d" it will try and find a suitable 1244 * id. It scans list of devices to build up a free map, then chooses 1245 * the first empty slot. The caller must hold the dev_base or rtnl lock 1246 * while allocating the name and adding the device in order to avoid 1247 * duplicates. 1248 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1249 * Returns the number of the unit assigned or a negative errno code. 1250 */ 1251 1252 int dev_alloc_name(struct net_device *dev, const char *name) 1253 { 1254 return dev_alloc_name_ns(dev_net(dev), dev, name); 1255 } 1256 EXPORT_SYMBOL(dev_alloc_name); 1257 1258 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1259 const char *name) 1260 { 1261 BUG_ON(!net); 1262 1263 if (!dev_valid_name(name)) 1264 return -EINVAL; 1265 1266 if (strchr(name, '%')) 1267 return dev_alloc_name_ns(net, dev, name); 1268 else if (__dev_get_by_name(net, name)) 1269 return -EEXIST; 1270 else if (dev->name != name) 1271 strlcpy(dev->name, name, IFNAMSIZ); 1272 1273 return 0; 1274 } 1275 1276 /** 1277 * dev_change_name - change name of a device 1278 * @dev: device 1279 * @newname: name (or format string) must be at least IFNAMSIZ 1280 * 1281 * Change name of a device, can pass format strings "eth%d". 1282 * for wildcarding. 1283 */ 1284 int dev_change_name(struct net_device *dev, const char *newname) 1285 { 1286 unsigned char old_assign_type; 1287 char oldname[IFNAMSIZ]; 1288 int err = 0; 1289 int ret; 1290 struct net *net; 1291 1292 ASSERT_RTNL(); 1293 BUG_ON(!dev_net(dev)); 1294 1295 net = dev_net(dev); 1296 1297 /* Some auto-enslaved devices e.g. failover slaves are 1298 * special, as userspace might rename the device after 1299 * the interface had been brought up and running since 1300 * the point kernel initiated auto-enslavement. Allow 1301 * live name change even when these slave devices are 1302 * up and running. 1303 * 1304 * Typically, users of these auto-enslaving devices 1305 * don't actually care about slave name change, as 1306 * they are supposed to operate on master interface 1307 * directly. 1308 */ 1309 if (dev->flags & IFF_UP && 1310 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1311 return -EBUSY; 1312 1313 down_write(&devnet_rename_sem); 1314 1315 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1316 up_write(&devnet_rename_sem); 1317 return 0; 1318 } 1319 1320 memcpy(oldname, dev->name, IFNAMSIZ); 1321 1322 err = dev_get_valid_name(net, dev, newname); 1323 if (err < 0) { 1324 up_write(&devnet_rename_sem); 1325 return err; 1326 } 1327 1328 if (oldname[0] && !strchr(oldname, '%')) 1329 netdev_info(dev, "renamed from %s\n", oldname); 1330 1331 old_assign_type = dev->name_assign_type; 1332 dev->name_assign_type = NET_NAME_RENAMED; 1333 1334 rollback: 1335 ret = device_rename(&dev->dev, dev->name); 1336 if (ret) { 1337 memcpy(dev->name, oldname, IFNAMSIZ); 1338 dev->name_assign_type = old_assign_type; 1339 up_write(&devnet_rename_sem); 1340 return ret; 1341 } 1342 1343 up_write(&devnet_rename_sem); 1344 1345 netdev_adjacent_rename_links(dev, oldname); 1346 1347 write_lock_bh(&dev_base_lock); 1348 netdev_name_node_del(dev->name_node); 1349 write_unlock_bh(&dev_base_lock); 1350 1351 synchronize_rcu(); 1352 1353 write_lock_bh(&dev_base_lock); 1354 netdev_name_node_add(net, dev->name_node); 1355 write_unlock_bh(&dev_base_lock); 1356 1357 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1358 ret = notifier_to_errno(ret); 1359 1360 if (ret) { 1361 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1362 if (err >= 0) { 1363 err = ret; 1364 down_write(&devnet_rename_sem); 1365 memcpy(dev->name, oldname, IFNAMSIZ); 1366 memcpy(oldname, newname, IFNAMSIZ); 1367 dev->name_assign_type = old_assign_type; 1368 old_assign_type = NET_NAME_RENAMED; 1369 goto rollback; 1370 } else { 1371 pr_err("%s: name change rollback failed: %d\n", 1372 dev->name, ret); 1373 } 1374 } 1375 1376 return err; 1377 } 1378 1379 /** 1380 * dev_set_alias - change ifalias of a device 1381 * @dev: device 1382 * @alias: name up to IFALIASZ 1383 * @len: limit of bytes to copy from info 1384 * 1385 * Set ifalias for a device, 1386 */ 1387 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1388 { 1389 struct dev_ifalias *new_alias = NULL; 1390 1391 if (len >= IFALIASZ) 1392 return -EINVAL; 1393 1394 if (len) { 1395 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1396 if (!new_alias) 1397 return -ENOMEM; 1398 1399 memcpy(new_alias->ifalias, alias, len); 1400 new_alias->ifalias[len] = 0; 1401 } 1402 1403 mutex_lock(&ifalias_mutex); 1404 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1405 mutex_is_locked(&ifalias_mutex)); 1406 mutex_unlock(&ifalias_mutex); 1407 1408 if (new_alias) 1409 kfree_rcu(new_alias, rcuhead); 1410 1411 return len; 1412 } 1413 EXPORT_SYMBOL(dev_set_alias); 1414 1415 /** 1416 * dev_get_alias - get ifalias of a device 1417 * @dev: device 1418 * @name: buffer to store name of ifalias 1419 * @len: size of buffer 1420 * 1421 * get ifalias for a device. Caller must make sure dev cannot go 1422 * away, e.g. rcu read lock or own a reference count to device. 1423 */ 1424 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1425 { 1426 const struct dev_ifalias *alias; 1427 int ret = 0; 1428 1429 rcu_read_lock(); 1430 alias = rcu_dereference(dev->ifalias); 1431 if (alias) 1432 ret = snprintf(name, len, "%s", alias->ifalias); 1433 rcu_read_unlock(); 1434 1435 return ret; 1436 } 1437 1438 /** 1439 * netdev_features_change - device changes features 1440 * @dev: device to cause notification 1441 * 1442 * Called to indicate a device has changed features. 1443 */ 1444 void netdev_features_change(struct net_device *dev) 1445 { 1446 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1447 } 1448 EXPORT_SYMBOL(netdev_features_change); 1449 1450 /** 1451 * netdev_state_change - device changes state 1452 * @dev: device to cause notification 1453 * 1454 * Called to indicate a device has changed state. This function calls 1455 * the notifier chains for netdev_chain and sends a NEWLINK message 1456 * to the routing socket. 1457 */ 1458 void netdev_state_change(struct net_device *dev) 1459 { 1460 if (dev->flags & IFF_UP) { 1461 struct netdev_notifier_change_info change_info = { 1462 .info.dev = dev, 1463 }; 1464 1465 call_netdevice_notifiers_info(NETDEV_CHANGE, 1466 &change_info.info); 1467 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1468 } 1469 } 1470 EXPORT_SYMBOL(netdev_state_change); 1471 1472 /** 1473 * netdev_notify_peers - notify network peers about existence of @dev 1474 * @dev: network device 1475 * 1476 * Generate traffic such that interested network peers are aware of 1477 * @dev, such as by generating a gratuitous ARP. This may be used when 1478 * a device wants to inform the rest of the network about some sort of 1479 * reconfiguration such as a failover event or virtual machine 1480 * migration. 1481 */ 1482 void netdev_notify_peers(struct net_device *dev) 1483 { 1484 rtnl_lock(); 1485 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1486 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1487 rtnl_unlock(); 1488 } 1489 EXPORT_SYMBOL(netdev_notify_peers); 1490 1491 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1492 { 1493 const struct net_device_ops *ops = dev->netdev_ops; 1494 int ret; 1495 1496 ASSERT_RTNL(); 1497 1498 if (!netif_device_present(dev)) { 1499 /* may be detached because parent is runtime-suspended */ 1500 if (dev->dev.parent) 1501 pm_runtime_resume(dev->dev.parent); 1502 if (!netif_device_present(dev)) 1503 return -ENODEV; 1504 } 1505 1506 /* Block netpoll from trying to do any rx path servicing. 1507 * If we don't do this there is a chance ndo_poll_controller 1508 * or ndo_poll may be running while we open the device 1509 */ 1510 netpoll_poll_disable(dev); 1511 1512 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1513 ret = notifier_to_errno(ret); 1514 if (ret) 1515 return ret; 1516 1517 set_bit(__LINK_STATE_START, &dev->state); 1518 1519 if (ops->ndo_validate_addr) 1520 ret = ops->ndo_validate_addr(dev); 1521 1522 if (!ret && ops->ndo_open) 1523 ret = ops->ndo_open(dev); 1524 1525 netpoll_poll_enable(dev); 1526 1527 if (ret) 1528 clear_bit(__LINK_STATE_START, &dev->state); 1529 else { 1530 dev->flags |= IFF_UP; 1531 dev_set_rx_mode(dev); 1532 dev_activate(dev); 1533 add_device_randomness(dev->dev_addr, dev->addr_len); 1534 } 1535 1536 return ret; 1537 } 1538 1539 /** 1540 * dev_open - prepare an interface for use. 1541 * @dev: device to open 1542 * @extack: netlink extended ack 1543 * 1544 * Takes a device from down to up state. The device's private open 1545 * function is invoked and then the multicast lists are loaded. Finally 1546 * the device is moved into the up state and a %NETDEV_UP message is 1547 * sent to the netdev notifier chain. 1548 * 1549 * Calling this function on an active interface is a nop. On a failure 1550 * a negative errno code is returned. 1551 */ 1552 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1553 { 1554 int ret; 1555 1556 if (dev->flags & IFF_UP) 1557 return 0; 1558 1559 ret = __dev_open(dev, extack); 1560 if (ret < 0) 1561 return ret; 1562 1563 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1564 call_netdevice_notifiers(NETDEV_UP, dev); 1565 1566 return ret; 1567 } 1568 EXPORT_SYMBOL(dev_open); 1569 1570 static void __dev_close_many(struct list_head *head) 1571 { 1572 struct net_device *dev; 1573 1574 ASSERT_RTNL(); 1575 might_sleep(); 1576 1577 list_for_each_entry(dev, head, close_list) { 1578 /* Temporarily disable netpoll until the interface is down */ 1579 netpoll_poll_disable(dev); 1580 1581 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1582 1583 clear_bit(__LINK_STATE_START, &dev->state); 1584 1585 /* Synchronize to scheduled poll. We cannot touch poll list, it 1586 * can be even on different cpu. So just clear netif_running(). 1587 * 1588 * dev->stop() will invoke napi_disable() on all of it's 1589 * napi_struct instances on this device. 1590 */ 1591 smp_mb__after_atomic(); /* Commit netif_running(). */ 1592 } 1593 1594 dev_deactivate_many(head); 1595 1596 list_for_each_entry(dev, head, close_list) { 1597 const struct net_device_ops *ops = dev->netdev_ops; 1598 1599 /* 1600 * Call the device specific close. This cannot fail. 1601 * Only if device is UP 1602 * 1603 * We allow it to be called even after a DETACH hot-plug 1604 * event. 1605 */ 1606 if (ops->ndo_stop) 1607 ops->ndo_stop(dev); 1608 1609 dev->flags &= ~IFF_UP; 1610 netpoll_poll_enable(dev); 1611 } 1612 } 1613 1614 static void __dev_close(struct net_device *dev) 1615 { 1616 LIST_HEAD(single); 1617 1618 list_add(&dev->close_list, &single); 1619 __dev_close_many(&single); 1620 list_del(&single); 1621 } 1622 1623 void dev_close_many(struct list_head *head, bool unlink) 1624 { 1625 struct net_device *dev, *tmp; 1626 1627 /* Remove the devices that don't need to be closed */ 1628 list_for_each_entry_safe(dev, tmp, head, close_list) 1629 if (!(dev->flags & IFF_UP)) 1630 list_del_init(&dev->close_list); 1631 1632 __dev_close_many(head); 1633 1634 list_for_each_entry_safe(dev, tmp, head, close_list) { 1635 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1636 call_netdevice_notifiers(NETDEV_DOWN, dev); 1637 if (unlink) 1638 list_del_init(&dev->close_list); 1639 } 1640 } 1641 EXPORT_SYMBOL(dev_close_many); 1642 1643 /** 1644 * dev_close - shutdown an interface. 1645 * @dev: device to shutdown 1646 * 1647 * This function moves an active device into down state. A 1648 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1649 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1650 * chain. 1651 */ 1652 void dev_close(struct net_device *dev) 1653 { 1654 if (dev->flags & IFF_UP) { 1655 LIST_HEAD(single); 1656 1657 list_add(&dev->close_list, &single); 1658 dev_close_many(&single, true); 1659 list_del(&single); 1660 } 1661 } 1662 EXPORT_SYMBOL(dev_close); 1663 1664 1665 /** 1666 * dev_disable_lro - disable Large Receive Offload on a device 1667 * @dev: device 1668 * 1669 * Disable Large Receive Offload (LRO) on a net device. Must be 1670 * called under RTNL. This is needed if received packets may be 1671 * forwarded to another interface. 1672 */ 1673 void dev_disable_lro(struct net_device *dev) 1674 { 1675 struct net_device *lower_dev; 1676 struct list_head *iter; 1677 1678 dev->wanted_features &= ~NETIF_F_LRO; 1679 netdev_update_features(dev); 1680 1681 if (unlikely(dev->features & NETIF_F_LRO)) 1682 netdev_WARN(dev, "failed to disable LRO!\n"); 1683 1684 netdev_for_each_lower_dev(dev, lower_dev, iter) 1685 dev_disable_lro(lower_dev); 1686 } 1687 EXPORT_SYMBOL(dev_disable_lro); 1688 1689 /** 1690 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1691 * @dev: device 1692 * 1693 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1694 * called under RTNL. This is needed if Generic XDP is installed on 1695 * the device. 1696 */ 1697 static void dev_disable_gro_hw(struct net_device *dev) 1698 { 1699 dev->wanted_features &= ~NETIF_F_GRO_HW; 1700 netdev_update_features(dev); 1701 1702 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1703 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1704 } 1705 1706 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1707 { 1708 #define N(val) \ 1709 case NETDEV_##val: \ 1710 return "NETDEV_" __stringify(val); 1711 switch (cmd) { 1712 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1713 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1714 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1715 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1716 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1717 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1718 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1719 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1720 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1721 N(PRE_CHANGEADDR) 1722 } 1723 #undef N 1724 return "UNKNOWN_NETDEV_EVENT"; 1725 } 1726 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1727 1728 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1729 struct net_device *dev) 1730 { 1731 struct netdev_notifier_info info = { 1732 .dev = dev, 1733 }; 1734 1735 return nb->notifier_call(nb, val, &info); 1736 } 1737 1738 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1739 struct net_device *dev) 1740 { 1741 int err; 1742 1743 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1744 err = notifier_to_errno(err); 1745 if (err) 1746 return err; 1747 1748 if (!(dev->flags & IFF_UP)) 1749 return 0; 1750 1751 call_netdevice_notifier(nb, NETDEV_UP, dev); 1752 return 0; 1753 } 1754 1755 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1756 struct net_device *dev) 1757 { 1758 if (dev->flags & IFF_UP) { 1759 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1760 dev); 1761 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1762 } 1763 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1764 } 1765 1766 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1767 struct net *net) 1768 { 1769 struct net_device *dev; 1770 int err; 1771 1772 for_each_netdev(net, dev) { 1773 err = call_netdevice_register_notifiers(nb, dev); 1774 if (err) 1775 goto rollback; 1776 } 1777 return 0; 1778 1779 rollback: 1780 for_each_netdev_continue_reverse(net, dev) 1781 call_netdevice_unregister_notifiers(nb, dev); 1782 return err; 1783 } 1784 1785 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1786 struct net *net) 1787 { 1788 struct net_device *dev; 1789 1790 for_each_netdev(net, dev) 1791 call_netdevice_unregister_notifiers(nb, dev); 1792 } 1793 1794 static int dev_boot_phase = 1; 1795 1796 /** 1797 * register_netdevice_notifier - register a network notifier block 1798 * @nb: notifier 1799 * 1800 * Register a notifier to be called when network device events occur. 1801 * The notifier passed is linked into the kernel structures and must 1802 * not be reused until it has been unregistered. A negative errno code 1803 * is returned on a failure. 1804 * 1805 * When registered all registration and up events are replayed 1806 * to the new notifier to allow device to have a race free 1807 * view of the network device list. 1808 */ 1809 1810 int register_netdevice_notifier(struct notifier_block *nb) 1811 { 1812 struct net *net; 1813 int err; 1814 1815 /* Close race with setup_net() and cleanup_net() */ 1816 down_write(&pernet_ops_rwsem); 1817 rtnl_lock(); 1818 err = raw_notifier_chain_register(&netdev_chain, nb); 1819 if (err) 1820 goto unlock; 1821 if (dev_boot_phase) 1822 goto unlock; 1823 for_each_net(net) { 1824 err = call_netdevice_register_net_notifiers(nb, net); 1825 if (err) 1826 goto rollback; 1827 } 1828 1829 unlock: 1830 rtnl_unlock(); 1831 up_write(&pernet_ops_rwsem); 1832 return err; 1833 1834 rollback: 1835 for_each_net_continue_reverse(net) 1836 call_netdevice_unregister_net_notifiers(nb, net); 1837 1838 raw_notifier_chain_unregister(&netdev_chain, nb); 1839 goto unlock; 1840 } 1841 EXPORT_SYMBOL(register_netdevice_notifier); 1842 1843 /** 1844 * unregister_netdevice_notifier - unregister a network notifier block 1845 * @nb: notifier 1846 * 1847 * Unregister a notifier previously registered by 1848 * register_netdevice_notifier(). The notifier is unlinked into the 1849 * kernel structures and may then be reused. A negative errno code 1850 * is returned on a failure. 1851 * 1852 * After unregistering unregister and down device events are synthesized 1853 * for all devices on the device list to the removed notifier to remove 1854 * the need for special case cleanup code. 1855 */ 1856 1857 int unregister_netdevice_notifier(struct notifier_block *nb) 1858 { 1859 struct net *net; 1860 int err; 1861 1862 /* Close race with setup_net() and cleanup_net() */ 1863 down_write(&pernet_ops_rwsem); 1864 rtnl_lock(); 1865 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1866 if (err) 1867 goto unlock; 1868 1869 for_each_net(net) 1870 call_netdevice_unregister_net_notifiers(nb, net); 1871 1872 unlock: 1873 rtnl_unlock(); 1874 up_write(&pernet_ops_rwsem); 1875 return err; 1876 } 1877 EXPORT_SYMBOL(unregister_netdevice_notifier); 1878 1879 static int __register_netdevice_notifier_net(struct net *net, 1880 struct notifier_block *nb, 1881 bool ignore_call_fail) 1882 { 1883 int err; 1884 1885 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1886 if (err) 1887 return err; 1888 if (dev_boot_phase) 1889 return 0; 1890 1891 err = call_netdevice_register_net_notifiers(nb, net); 1892 if (err && !ignore_call_fail) 1893 goto chain_unregister; 1894 1895 return 0; 1896 1897 chain_unregister: 1898 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1899 return err; 1900 } 1901 1902 static int __unregister_netdevice_notifier_net(struct net *net, 1903 struct notifier_block *nb) 1904 { 1905 int err; 1906 1907 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1908 if (err) 1909 return err; 1910 1911 call_netdevice_unregister_net_notifiers(nb, net); 1912 return 0; 1913 } 1914 1915 /** 1916 * register_netdevice_notifier_net - register a per-netns network notifier block 1917 * @net: network namespace 1918 * @nb: notifier 1919 * 1920 * Register a notifier to be called when network device events occur. 1921 * The notifier passed is linked into the kernel structures and must 1922 * not be reused until it has been unregistered. A negative errno code 1923 * is returned on a failure. 1924 * 1925 * When registered all registration and up events are replayed 1926 * to the new notifier to allow device to have a race free 1927 * view of the network device list. 1928 */ 1929 1930 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1931 { 1932 int err; 1933 1934 rtnl_lock(); 1935 err = __register_netdevice_notifier_net(net, nb, false); 1936 rtnl_unlock(); 1937 return err; 1938 } 1939 EXPORT_SYMBOL(register_netdevice_notifier_net); 1940 1941 /** 1942 * unregister_netdevice_notifier_net - unregister a per-netns 1943 * network notifier block 1944 * @net: network namespace 1945 * @nb: notifier 1946 * 1947 * Unregister a notifier previously registered by 1948 * register_netdevice_notifier(). The notifier is unlinked into the 1949 * kernel structures and may then be reused. A negative errno code 1950 * is returned on a failure. 1951 * 1952 * After unregistering unregister and down device events are synthesized 1953 * for all devices on the device list to the removed notifier to remove 1954 * the need for special case cleanup code. 1955 */ 1956 1957 int unregister_netdevice_notifier_net(struct net *net, 1958 struct notifier_block *nb) 1959 { 1960 int err; 1961 1962 rtnl_lock(); 1963 err = __unregister_netdevice_notifier_net(net, nb); 1964 rtnl_unlock(); 1965 return err; 1966 } 1967 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1968 1969 int register_netdevice_notifier_dev_net(struct net_device *dev, 1970 struct notifier_block *nb, 1971 struct netdev_net_notifier *nn) 1972 { 1973 int err; 1974 1975 rtnl_lock(); 1976 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1977 if (!err) { 1978 nn->nb = nb; 1979 list_add(&nn->list, &dev->net_notifier_list); 1980 } 1981 rtnl_unlock(); 1982 return err; 1983 } 1984 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1985 1986 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1987 struct notifier_block *nb, 1988 struct netdev_net_notifier *nn) 1989 { 1990 int err; 1991 1992 rtnl_lock(); 1993 list_del(&nn->list); 1994 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1995 rtnl_unlock(); 1996 return err; 1997 } 1998 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1999 2000 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2001 struct net *net) 2002 { 2003 struct netdev_net_notifier *nn; 2004 2005 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2006 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2007 __register_netdevice_notifier_net(net, nn->nb, true); 2008 } 2009 } 2010 2011 /** 2012 * call_netdevice_notifiers_info - call all network notifier blocks 2013 * @val: value passed unmodified to notifier function 2014 * @info: notifier information data 2015 * 2016 * Call all network notifier blocks. Parameters and return value 2017 * are as for raw_notifier_call_chain(). 2018 */ 2019 2020 static int call_netdevice_notifiers_info(unsigned long val, 2021 struct netdev_notifier_info *info) 2022 { 2023 struct net *net = dev_net(info->dev); 2024 int ret; 2025 2026 ASSERT_RTNL(); 2027 2028 /* Run per-netns notifier block chain first, then run the global one. 2029 * Hopefully, one day, the global one is going to be removed after 2030 * all notifier block registrators get converted to be per-netns. 2031 */ 2032 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2033 if (ret & NOTIFY_STOP_MASK) 2034 return ret; 2035 return raw_notifier_call_chain(&netdev_chain, val, info); 2036 } 2037 2038 static int call_netdevice_notifiers_extack(unsigned long val, 2039 struct net_device *dev, 2040 struct netlink_ext_ack *extack) 2041 { 2042 struct netdev_notifier_info info = { 2043 .dev = dev, 2044 .extack = extack, 2045 }; 2046 2047 return call_netdevice_notifiers_info(val, &info); 2048 } 2049 2050 /** 2051 * call_netdevice_notifiers - call all network notifier blocks 2052 * @val: value passed unmodified to notifier function 2053 * @dev: net_device pointer passed unmodified to notifier function 2054 * 2055 * Call all network notifier blocks. Parameters and return value 2056 * are as for raw_notifier_call_chain(). 2057 */ 2058 2059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2060 { 2061 return call_netdevice_notifiers_extack(val, dev, NULL); 2062 } 2063 EXPORT_SYMBOL(call_netdevice_notifiers); 2064 2065 /** 2066 * call_netdevice_notifiers_mtu - call all network notifier blocks 2067 * @val: value passed unmodified to notifier function 2068 * @dev: net_device pointer passed unmodified to notifier function 2069 * @arg: additional u32 argument passed to the notifier function 2070 * 2071 * Call all network notifier blocks. Parameters and return value 2072 * are as for raw_notifier_call_chain(). 2073 */ 2074 static int call_netdevice_notifiers_mtu(unsigned long val, 2075 struct net_device *dev, u32 arg) 2076 { 2077 struct netdev_notifier_info_ext info = { 2078 .info.dev = dev, 2079 .ext.mtu = arg, 2080 }; 2081 2082 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2083 2084 return call_netdevice_notifiers_info(val, &info.info); 2085 } 2086 2087 #ifdef CONFIG_NET_INGRESS 2088 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2089 2090 void net_inc_ingress_queue(void) 2091 { 2092 static_branch_inc(&ingress_needed_key); 2093 } 2094 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2095 2096 void net_dec_ingress_queue(void) 2097 { 2098 static_branch_dec(&ingress_needed_key); 2099 } 2100 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2101 #endif 2102 2103 #ifdef CONFIG_NET_EGRESS 2104 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2105 2106 void net_inc_egress_queue(void) 2107 { 2108 static_branch_inc(&egress_needed_key); 2109 } 2110 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2111 2112 void net_dec_egress_queue(void) 2113 { 2114 static_branch_dec(&egress_needed_key); 2115 } 2116 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2117 #endif 2118 2119 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2120 #ifdef CONFIG_JUMP_LABEL 2121 static atomic_t netstamp_needed_deferred; 2122 static atomic_t netstamp_wanted; 2123 static void netstamp_clear(struct work_struct *work) 2124 { 2125 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2126 int wanted; 2127 2128 wanted = atomic_add_return(deferred, &netstamp_wanted); 2129 if (wanted > 0) 2130 static_branch_enable(&netstamp_needed_key); 2131 else 2132 static_branch_disable(&netstamp_needed_key); 2133 } 2134 static DECLARE_WORK(netstamp_work, netstamp_clear); 2135 #endif 2136 2137 void net_enable_timestamp(void) 2138 { 2139 #ifdef CONFIG_JUMP_LABEL 2140 int wanted; 2141 2142 while (1) { 2143 wanted = atomic_read(&netstamp_wanted); 2144 if (wanted <= 0) 2145 break; 2146 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2147 return; 2148 } 2149 atomic_inc(&netstamp_needed_deferred); 2150 schedule_work(&netstamp_work); 2151 #else 2152 static_branch_inc(&netstamp_needed_key); 2153 #endif 2154 } 2155 EXPORT_SYMBOL(net_enable_timestamp); 2156 2157 void net_disable_timestamp(void) 2158 { 2159 #ifdef CONFIG_JUMP_LABEL 2160 int wanted; 2161 2162 while (1) { 2163 wanted = atomic_read(&netstamp_wanted); 2164 if (wanted <= 1) 2165 break; 2166 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2167 return; 2168 } 2169 atomic_dec(&netstamp_needed_deferred); 2170 schedule_work(&netstamp_work); 2171 #else 2172 static_branch_dec(&netstamp_needed_key); 2173 #endif 2174 } 2175 EXPORT_SYMBOL(net_disable_timestamp); 2176 2177 static inline void net_timestamp_set(struct sk_buff *skb) 2178 { 2179 skb->tstamp = 0; 2180 if (static_branch_unlikely(&netstamp_needed_key)) 2181 __net_timestamp(skb); 2182 } 2183 2184 #define net_timestamp_check(COND, SKB) \ 2185 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2186 if ((COND) && !(SKB)->tstamp) \ 2187 __net_timestamp(SKB); \ 2188 } \ 2189 2190 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2191 { 2192 unsigned int len; 2193 2194 if (!(dev->flags & IFF_UP)) 2195 return false; 2196 2197 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2198 if (skb->len <= len) 2199 return true; 2200 2201 /* if TSO is enabled, we don't care about the length as the packet 2202 * could be forwarded without being segmented before 2203 */ 2204 if (skb_is_gso(skb)) 2205 return true; 2206 2207 return false; 2208 } 2209 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2210 2211 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2212 { 2213 int ret = ____dev_forward_skb(dev, skb); 2214 2215 if (likely(!ret)) { 2216 skb->protocol = eth_type_trans(skb, dev); 2217 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2218 } 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2223 2224 /** 2225 * dev_forward_skb - loopback an skb to another netif 2226 * 2227 * @dev: destination network device 2228 * @skb: buffer to forward 2229 * 2230 * return values: 2231 * NET_RX_SUCCESS (no congestion) 2232 * NET_RX_DROP (packet was dropped, but freed) 2233 * 2234 * dev_forward_skb can be used for injecting an skb from the 2235 * start_xmit function of one device into the receive queue 2236 * of another device. 2237 * 2238 * The receiving device may be in another namespace, so 2239 * we have to clear all information in the skb that could 2240 * impact namespace isolation. 2241 */ 2242 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2243 { 2244 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2245 } 2246 EXPORT_SYMBOL_GPL(dev_forward_skb); 2247 2248 static inline int deliver_skb(struct sk_buff *skb, 2249 struct packet_type *pt_prev, 2250 struct net_device *orig_dev) 2251 { 2252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2253 return -ENOMEM; 2254 refcount_inc(&skb->users); 2255 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2256 } 2257 2258 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2259 struct packet_type **pt, 2260 struct net_device *orig_dev, 2261 __be16 type, 2262 struct list_head *ptype_list) 2263 { 2264 struct packet_type *ptype, *pt_prev = *pt; 2265 2266 list_for_each_entry_rcu(ptype, ptype_list, list) { 2267 if (ptype->type != type) 2268 continue; 2269 if (pt_prev) 2270 deliver_skb(skb, pt_prev, orig_dev); 2271 pt_prev = ptype; 2272 } 2273 *pt = pt_prev; 2274 } 2275 2276 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2277 { 2278 if (!ptype->af_packet_priv || !skb->sk) 2279 return false; 2280 2281 if (ptype->id_match) 2282 return ptype->id_match(ptype, skb->sk); 2283 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2284 return true; 2285 2286 return false; 2287 } 2288 2289 /** 2290 * dev_nit_active - return true if any network interface taps are in use 2291 * 2292 * @dev: network device to check for the presence of taps 2293 */ 2294 bool dev_nit_active(struct net_device *dev) 2295 { 2296 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2297 } 2298 EXPORT_SYMBOL_GPL(dev_nit_active); 2299 2300 /* 2301 * Support routine. Sends outgoing frames to any network 2302 * taps currently in use. 2303 */ 2304 2305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2306 { 2307 struct packet_type *ptype; 2308 struct sk_buff *skb2 = NULL; 2309 struct packet_type *pt_prev = NULL; 2310 struct list_head *ptype_list = &ptype_all; 2311 2312 rcu_read_lock(); 2313 again: 2314 list_for_each_entry_rcu(ptype, ptype_list, list) { 2315 if (ptype->ignore_outgoing) 2316 continue; 2317 2318 /* Never send packets back to the socket 2319 * they originated from - MvS (miquels@drinkel.ow.org) 2320 */ 2321 if (skb_loop_sk(ptype, skb)) 2322 continue; 2323 2324 if (pt_prev) { 2325 deliver_skb(skb2, pt_prev, skb->dev); 2326 pt_prev = ptype; 2327 continue; 2328 } 2329 2330 /* need to clone skb, done only once */ 2331 skb2 = skb_clone(skb, GFP_ATOMIC); 2332 if (!skb2) 2333 goto out_unlock; 2334 2335 net_timestamp_set(skb2); 2336 2337 /* skb->nh should be correctly 2338 * set by sender, so that the second statement is 2339 * just protection against buggy protocols. 2340 */ 2341 skb_reset_mac_header(skb2); 2342 2343 if (skb_network_header(skb2) < skb2->data || 2344 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2345 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2346 ntohs(skb2->protocol), 2347 dev->name); 2348 skb_reset_network_header(skb2); 2349 } 2350 2351 skb2->transport_header = skb2->network_header; 2352 skb2->pkt_type = PACKET_OUTGOING; 2353 pt_prev = ptype; 2354 } 2355 2356 if (ptype_list == &ptype_all) { 2357 ptype_list = &dev->ptype_all; 2358 goto again; 2359 } 2360 out_unlock: 2361 if (pt_prev) { 2362 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2363 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2364 else 2365 kfree_skb(skb2); 2366 } 2367 rcu_read_unlock(); 2368 } 2369 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2370 2371 /** 2372 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2373 * @dev: Network device 2374 * @txq: number of queues available 2375 * 2376 * If real_num_tx_queues is changed the tc mappings may no longer be 2377 * valid. To resolve this verify the tc mapping remains valid and if 2378 * not NULL the mapping. With no priorities mapping to this 2379 * offset/count pair it will no longer be used. In the worst case TC0 2380 * is invalid nothing can be done so disable priority mappings. If is 2381 * expected that drivers will fix this mapping if they can before 2382 * calling netif_set_real_num_tx_queues. 2383 */ 2384 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2385 { 2386 int i; 2387 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2388 2389 /* If TC0 is invalidated disable TC mapping */ 2390 if (tc->offset + tc->count > txq) { 2391 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2392 dev->num_tc = 0; 2393 return; 2394 } 2395 2396 /* Invalidated prio to tc mappings set to TC0 */ 2397 for (i = 1; i < TC_BITMASK + 1; i++) { 2398 int q = netdev_get_prio_tc_map(dev, i); 2399 2400 tc = &dev->tc_to_txq[q]; 2401 if (tc->offset + tc->count > txq) { 2402 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2403 i, q); 2404 netdev_set_prio_tc_map(dev, i, 0); 2405 } 2406 } 2407 } 2408 2409 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2410 { 2411 if (dev->num_tc) { 2412 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2413 int i; 2414 2415 /* walk through the TCs and see if it falls into any of them */ 2416 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2417 if ((txq - tc->offset) < tc->count) 2418 return i; 2419 } 2420 2421 /* didn't find it, just return -1 to indicate no match */ 2422 return -1; 2423 } 2424 2425 return 0; 2426 } 2427 EXPORT_SYMBOL(netdev_txq_to_tc); 2428 2429 #ifdef CONFIG_XPS 2430 struct static_key xps_needed __read_mostly; 2431 EXPORT_SYMBOL(xps_needed); 2432 struct static_key xps_rxqs_needed __read_mostly; 2433 EXPORT_SYMBOL(xps_rxqs_needed); 2434 static DEFINE_MUTEX(xps_map_mutex); 2435 #define xmap_dereference(P) \ 2436 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2437 2438 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2439 int tci, u16 index) 2440 { 2441 struct xps_map *map = NULL; 2442 int pos; 2443 2444 if (dev_maps) 2445 map = xmap_dereference(dev_maps->attr_map[tci]); 2446 if (!map) 2447 return false; 2448 2449 for (pos = map->len; pos--;) { 2450 if (map->queues[pos] != index) 2451 continue; 2452 2453 if (map->len > 1) { 2454 map->queues[pos] = map->queues[--map->len]; 2455 break; 2456 } 2457 2458 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2459 kfree_rcu(map, rcu); 2460 return false; 2461 } 2462 2463 return true; 2464 } 2465 2466 static bool remove_xps_queue_cpu(struct net_device *dev, 2467 struct xps_dev_maps *dev_maps, 2468 int cpu, u16 offset, u16 count) 2469 { 2470 int num_tc = dev->num_tc ? : 1; 2471 bool active = false; 2472 int tci; 2473 2474 for (tci = cpu * num_tc; num_tc--; tci++) { 2475 int i, j; 2476 2477 for (i = count, j = offset; i--; j++) { 2478 if (!remove_xps_queue(dev_maps, tci, j)) 2479 break; 2480 } 2481 2482 active |= i < 0; 2483 } 2484 2485 return active; 2486 } 2487 2488 static void reset_xps_maps(struct net_device *dev, 2489 struct xps_dev_maps *dev_maps, 2490 bool is_rxqs_map) 2491 { 2492 if (is_rxqs_map) { 2493 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2494 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2495 } else { 2496 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2497 } 2498 static_key_slow_dec_cpuslocked(&xps_needed); 2499 kfree_rcu(dev_maps, rcu); 2500 } 2501 2502 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2503 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2504 u16 offset, u16 count, bool is_rxqs_map) 2505 { 2506 bool active = false; 2507 int i, j; 2508 2509 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2510 j < nr_ids;) 2511 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2512 count); 2513 if (!active) 2514 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2515 2516 if (!is_rxqs_map) { 2517 for (i = offset + (count - 1); count--; i--) { 2518 netdev_queue_numa_node_write( 2519 netdev_get_tx_queue(dev, i), 2520 NUMA_NO_NODE); 2521 } 2522 } 2523 } 2524 2525 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2526 u16 count) 2527 { 2528 const unsigned long *possible_mask = NULL; 2529 struct xps_dev_maps *dev_maps; 2530 unsigned int nr_ids; 2531 2532 if (!static_key_false(&xps_needed)) 2533 return; 2534 2535 cpus_read_lock(); 2536 mutex_lock(&xps_map_mutex); 2537 2538 if (static_key_false(&xps_rxqs_needed)) { 2539 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2540 if (dev_maps) { 2541 nr_ids = dev->num_rx_queues; 2542 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2543 offset, count, true); 2544 } 2545 } 2546 2547 dev_maps = xmap_dereference(dev->xps_cpus_map); 2548 if (!dev_maps) 2549 goto out_no_maps; 2550 2551 if (num_possible_cpus() > 1) 2552 possible_mask = cpumask_bits(cpu_possible_mask); 2553 nr_ids = nr_cpu_ids; 2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2555 false); 2556 2557 out_no_maps: 2558 mutex_unlock(&xps_map_mutex); 2559 cpus_read_unlock(); 2560 } 2561 2562 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2563 { 2564 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2565 } 2566 2567 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2568 u16 index, bool is_rxqs_map) 2569 { 2570 struct xps_map *new_map; 2571 int alloc_len = XPS_MIN_MAP_ALLOC; 2572 int i, pos; 2573 2574 for (pos = 0; map && pos < map->len; pos++) { 2575 if (map->queues[pos] != index) 2576 continue; 2577 return map; 2578 } 2579 2580 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2581 if (map) { 2582 if (pos < map->alloc_len) 2583 return map; 2584 2585 alloc_len = map->alloc_len * 2; 2586 } 2587 2588 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2589 * map 2590 */ 2591 if (is_rxqs_map) 2592 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2593 else 2594 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2595 cpu_to_node(attr_index)); 2596 if (!new_map) 2597 return NULL; 2598 2599 for (i = 0; i < pos; i++) 2600 new_map->queues[i] = map->queues[i]; 2601 new_map->alloc_len = alloc_len; 2602 new_map->len = pos; 2603 2604 return new_map; 2605 } 2606 2607 /* Must be called under cpus_read_lock */ 2608 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2609 u16 index, bool is_rxqs_map) 2610 { 2611 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2612 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2613 int i, j, tci, numa_node_id = -2; 2614 int maps_sz, num_tc = 1, tc = 0; 2615 struct xps_map *map, *new_map; 2616 bool active = false; 2617 unsigned int nr_ids; 2618 2619 if (dev->num_tc) { 2620 /* Do not allow XPS on subordinate device directly */ 2621 num_tc = dev->num_tc; 2622 if (num_tc < 0) 2623 return -EINVAL; 2624 2625 /* If queue belongs to subordinate dev use its map */ 2626 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2627 2628 tc = netdev_txq_to_tc(dev, index); 2629 if (tc < 0) 2630 return -EINVAL; 2631 } 2632 2633 mutex_lock(&xps_map_mutex); 2634 if (is_rxqs_map) { 2635 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2636 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2637 nr_ids = dev->num_rx_queues; 2638 } else { 2639 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2640 if (num_possible_cpus() > 1) { 2641 online_mask = cpumask_bits(cpu_online_mask); 2642 possible_mask = cpumask_bits(cpu_possible_mask); 2643 } 2644 dev_maps = xmap_dereference(dev->xps_cpus_map); 2645 nr_ids = nr_cpu_ids; 2646 } 2647 2648 if (maps_sz < L1_CACHE_BYTES) 2649 maps_sz = L1_CACHE_BYTES; 2650 2651 /* allocate memory for queue storage */ 2652 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2653 j < nr_ids;) { 2654 if (!new_dev_maps) 2655 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2656 if (!new_dev_maps) { 2657 mutex_unlock(&xps_map_mutex); 2658 return -ENOMEM; 2659 } 2660 2661 tci = j * num_tc + tc; 2662 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2663 NULL; 2664 2665 map = expand_xps_map(map, j, index, is_rxqs_map); 2666 if (!map) 2667 goto error; 2668 2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2670 } 2671 2672 if (!new_dev_maps) 2673 goto out_no_new_maps; 2674 2675 if (!dev_maps) { 2676 /* Increment static keys at most once per type */ 2677 static_key_slow_inc_cpuslocked(&xps_needed); 2678 if (is_rxqs_map) 2679 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2680 } 2681 2682 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2683 j < nr_ids;) { 2684 /* copy maps belonging to foreign traffic classes */ 2685 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2686 /* fill in the new device map from the old device map */ 2687 map = xmap_dereference(dev_maps->attr_map[tci]); 2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2689 } 2690 2691 /* We need to explicitly update tci as prevous loop 2692 * could break out early if dev_maps is NULL. 2693 */ 2694 tci = j * num_tc + tc; 2695 2696 if (netif_attr_test_mask(j, mask, nr_ids) && 2697 netif_attr_test_online(j, online_mask, nr_ids)) { 2698 /* add tx-queue to CPU/rx-queue maps */ 2699 int pos = 0; 2700 2701 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2702 while ((pos < map->len) && (map->queues[pos] != index)) 2703 pos++; 2704 2705 if (pos == map->len) 2706 map->queues[map->len++] = index; 2707 #ifdef CONFIG_NUMA 2708 if (!is_rxqs_map) { 2709 if (numa_node_id == -2) 2710 numa_node_id = cpu_to_node(j); 2711 else if (numa_node_id != cpu_to_node(j)) 2712 numa_node_id = -1; 2713 } 2714 #endif 2715 } else if (dev_maps) { 2716 /* fill in the new device map from the old device map */ 2717 map = xmap_dereference(dev_maps->attr_map[tci]); 2718 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2719 } 2720 2721 /* copy maps belonging to foreign traffic classes */ 2722 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2723 /* fill in the new device map from the old device map */ 2724 map = xmap_dereference(dev_maps->attr_map[tci]); 2725 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2726 } 2727 } 2728 2729 if (is_rxqs_map) 2730 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2731 else 2732 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2733 2734 /* Cleanup old maps */ 2735 if (!dev_maps) 2736 goto out_no_old_maps; 2737 2738 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2739 j < nr_ids;) { 2740 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2741 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2742 map = xmap_dereference(dev_maps->attr_map[tci]); 2743 if (map && map != new_map) 2744 kfree_rcu(map, rcu); 2745 } 2746 } 2747 2748 kfree_rcu(dev_maps, rcu); 2749 2750 out_no_old_maps: 2751 dev_maps = new_dev_maps; 2752 active = true; 2753 2754 out_no_new_maps: 2755 if (!is_rxqs_map) { 2756 /* update Tx queue numa node */ 2757 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2758 (numa_node_id >= 0) ? 2759 numa_node_id : NUMA_NO_NODE); 2760 } 2761 2762 if (!dev_maps) 2763 goto out_no_maps; 2764 2765 /* removes tx-queue from unused CPUs/rx-queues */ 2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2767 j < nr_ids;) { 2768 for (i = tc, tci = j * num_tc; i--; tci++) 2769 active |= remove_xps_queue(dev_maps, tci, index); 2770 if (!netif_attr_test_mask(j, mask, nr_ids) || 2771 !netif_attr_test_online(j, online_mask, nr_ids)) 2772 active |= remove_xps_queue(dev_maps, tci, index); 2773 for (i = num_tc - tc, tci++; --i; tci++) 2774 active |= remove_xps_queue(dev_maps, tci, index); 2775 } 2776 2777 /* free map if not active */ 2778 if (!active) 2779 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2780 2781 out_no_maps: 2782 mutex_unlock(&xps_map_mutex); 2783 2784 return 0; 2785 error: 2786 /* remove any maps that we added */ 2787 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2788 j < nr_ids;) { 2789 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2790 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2791 map = dev_maps ? 2792 xmap_dereference(dev_maps->attr_map[tci]) : 2793 NULL; 2794 if (new_map && new_map != map) 2795 kfree(new_map); 2796 } 2797 } 2798 2799 mutex_unlock(&xps_map_mutex); 2800 2801 kfree(new_dev_maps); 2802 return -ENOMEM; 2803 } 2804 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2805 2806 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2807 u16 index) 2808 { 2809 int ret; 2810 2811 cpus_read_lock(); 2812 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2813 cpus_read_unlock(); 2814 2815 return ret; 2816 } 2817 EXPORT_SYMBOL(netif_set_xps_queue); 2818 2819 #endif 2820 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2821 { 2822 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2823 2824 /* Unbind any subordinate channels */ 2825 while (txq-- != &dev->_tx[0]) { 2826 if (txq->sb_dev) 2827 netdev_unbind_sb_channel(dev, txq->sb_dev); 2828 } 2829 } 2830 2831 void netdev_reset_tc(struct net_device *dev) 2832 { 2833 #ifdef CONFIG_XPS 2834 netif_reset_xps_queues_gt(dev, 0); 2835 #endif 2836 netdev_unbind_all_sb_channels(dev); 2837 2838 /* Reset TC configuration of device */ 2839 dev->num_tc = 0; 2840 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2841 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2842 } 2843 EXPORT_SYMBOL(netdev_reset_tc); 2844 2845 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2846 { 2847 if (tc >= dev->num_tc) 2848 return -EINVAL; 2849 2850 #ifdef CONFIG_XPS 2851 netif_reset_xps_queues(dev, offset, count); 2852 #endif 2853 dev->tc_to_txq[tc].count = count; 2854 dev->tc_to_txq[tc].offset = offset; 2855 return 0; 2856 } 2857 EXPORT_SYMBOL(netdev_set_tc_queue); 2858 2859 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2860 { 2861 if (num_tc > TC_MAX_QUEUE) 2862 return -EINVAL; 2863 2864 #ifdef CONFIG_XPS 2865 netif_reset_xps_queues_gt(dev, 0); 2866 #endif 2867 netdev_unbind_all_sb_channels(dev); 2868 2869 dev->num_tc = num_tc; 2870 return 0; 2871 } 2872 EXPORT_SYMBOL(netdev_set_num_tc); 2873 2874 void netdev_unbind_sb_channel(struct net_device *dev, 2875 struct net_device *sb_dev) 2876 { 2877 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2878 2879 #ifdef CONFIG_XPS 2880 netif_reset_xps_queues_gt(sb_dev, 0); 2881 #endif 2882 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2883 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2884 2885 while (txq-- != &dev->_tx[0]) { 2886 if (txq->sb_dev == sb_dev) 2887 txq->sb_dev = NULL; 2888 } 2889 } 2890 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2891 2892 int netdev_bind_sb_channel_queue(struct net_device *dev, 2893 struct net_device *sb_dev, 2894 u8 tc, u16 count, u16 offset) 2895 { 2896 /* Make certain the sb_dev and dev are already configured */ 2897 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2898 return -EINVAL; 2899 2900 /* We cannot hand out queues we don't have */ 2901 if ((offset + count) > dev->real_num_tx_queues) 2902 return -EINVAL; 2903 2904 /* Record the mapping */ 2905 sb_dev->tc_to_txq[tc].count = count; 2906 sb_dev->tc_to_txq[tc].offset = offset; 2907 2908 /* Provide a way for Tx queue to find the tc_to_txq map or 2909 * XPS map for itself. 2910 */ 2911 while (count--) 2912 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2913 2914 return 0; 2915 } 2916 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2917 2918 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2919 { 2920 /* Do not use a multiqueue device to represent a subordinate channel */ 2921 if (netif_is_multiqueue(dev)) 2922 return -ENODEV; 2923 2924 /* We allow channels 1 - 32767 to be used for subordinate channels. 2925 * Channel 0 is meant to be "native" mode and used only to represent 2926 * the main root device. We allow writing 0 to reset the device back 2927 * to normal mode after being used as a subordinate channel. 2928 */ 2929 if (channel > S16_MAX) 2930 return -EINVAL; 2931 2932 dev->num_tc = -channel; 2933 2934 return 0; 2935 } 2936 EXPORT_SYMBOL(netdev_set_sb_channel); 2937 2938 /* 2939 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2940 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2941 */ 2942 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2943 { 2944 bool disabling; 2945 int rc; 2946 2947 disabling = txq < dev->real_num_tx_queues; 2948 2949 if (txq < 1 || txq > dev->num_tx_queues) 2950 return -EINVAL; 2951 2952 if (dev->reg_state == NETREG_REGISTERED || 2953 dev->reg_state == NETREG_UNREGISTERING) { 2954 ASSERT_RTNL(); 2955 2956 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2957 txq); 2958 if (rc) 2959 return rc; 2960 2961 if (dev->num_tc) 2962 netif_setup_tc(dev, txq); 2963 2964 dev->real_num_tx_queues = txq; 2965 2966 if (disabling) { 2967 synchronize_net(); 2968 qdisc_reset_all_tx_gt(dev, txq); 2969 #ifdef CONFIG_XPS 2970 netif_reset_xps_queues_gt(dev, txq); 2971 #endif 2972 } 2973 } else { 2974 dev->real_num_tx_queues = txq; 2975 } 2976 2977 return 0; 2978 } 2979 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2980 2981 #ifdef CONFIG_SYSFS 2982 /** 2983 * netif_set_real_num_rx_queues - set actual number of RX queues used 2984 * @dev: Network device 2985 * @rxq: Actual number of RX queues 2986 * 2987 * This must be called either with the rtnl_lock held or before 2988 * registration of the net device. Returns 0 on success, or a 2989 * negative error code. If called before registration, it always 2990 * succeeds. 2991 */ 2992 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2993 { 2994 int rc; 2995 2996 if (rxq < 1 || rxq > dev->num_rx_queues) 2997 return -EINVAL; 2998 2999 if (dev->reg_state == NETREG_REGISTERED) { 3000 ASSERT_RTNL(); 3001 3002 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3003 rxq); 3004 if (rc) 3005 return rc; 3006 } 3007 3008 dev->real_num_rx_queues = rxq; 3009 return 0; 3010 } 3011 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3012 #endif 3013 3014 /** 3015 * netif_get_num_default_rss_queues - default number of RSS queues 3016 * 3017 * This routine should set an upper limit on the number of RSS queues 3018 * used by default by multiqueue devices. 3019 */ 3020 int netif_get_num_default_rss_queues(void) 3021 { 3022 return is_kdump_kernel() ? 3023 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3024 } 3025 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3026 3027 static void __netif_reschedule(struct Qdisc *q) 3028 { 3029 struct softnet_data *sd; 3030 unsigned long flags; 3031 3032 local_irq_save(flags); 3033 sd = this_cpu_ptr(&softnet_data); 3034 q->next_sched = NULL; 3035 *sd->output_queue_tailp = q; 3036 sd->output_queue_tailp = &q->next_sched; 3037 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3038 local_irq_restore(flags); 3039 } 3040 3041 void __netif_schedule(struct Qdisc *q) 3042 { 3043 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3044 __netif_reschedule(q); 3045 } 3046 EXPORT_SYMBOL(__netif_schedule); 3047 3048 struct dev_kfree_skb_cb { 3049 enum skb_free_reason reason; 3050 }; 3051 3052 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3053 { 3054 return (struct dev_kfree_skb_cb *)skb->cb; 3055 } 3056 3057 void netif_schedule_queue(struct netdev_queue *txq) 3058 { 3059 rcu_read_lock(); 3060 if (!netif_xmit_stopped(txq)) { 3061 struct Qdisc *q = rcu_dereference(txq->qdisc); 3062 3063 __netif_schedule(q); 3064 } 3065 rcu_read_unlock(); 3066 } 3067 EXPORT_SYMBOL(netif_schedule_queue); 3068 3069 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3070 { 3071 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3072 struct Qdisc *q; 3073 3074 rcu_read_lock(); 3075 q = rcu_dereference(dev_queue->qdisc); 3076 __netif_schedule(q); 3077 rcu_read_unlock(); 3078 } 3079 } 3080 EXPORT_SYMBOL(netif_tx_wake_queue); 3081 3082 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3083 { 3084 unsigned long flags; 3085 3086 if (unlikely(!skb)) 3087 return; 3088 3089 if (likely(refcount_read(&skb->users) == 1)) { 3090 smp_rmb(); 3091 refcount_set(&skb->users, 0); 3092 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3093 return; 3094 } 3095 get_kfree_skb_cb(skb)->reason = reason; 3096 local_irq_save(flags); 3097 skb->next = __this_cpu_read(softnet_data.completion_queue); 3098 __this_cpu_write(softnet_data.completion_queue, skb); 3099 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3100 local_irq_restore(flags); 3101 } 3102 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3103 3104 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3105 { 3106 if (in_irq() || irqs_disabled()) 3107 __dev_kfree_skb_irq(skb, reason); 3108 else 3109 dev_kfree_skb(skb); 3110 } 3111 EXPORT_SYMBOL(__dev_kfree_skb_any); 3112 3113 3114 /** 3115 * netif_device_detach - mark device as removed 3116 * @dev: network device 3117 * 3118 * Mark device as removed from system and therefore no longer available. 3119 */ 3120 void netif_device_detach(struct net_device *dev) 3121 { 3122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3123 netif_running(dev)) { 3124 netif_tx_stop_all_queues(dev); 3125 } 3126 } 3127 EXPORT_SYMBOL(netif_device_detach); 3128 3129 /** 3130 * netif_device_attach - mark device as attached 3131 * @dev: network device 3132 * 3133 * Mark device as attached from system and restart if needed. 3134 */ 3135 void netif_device_attach(struct net_device *dev) 3136 { 3137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3138 netif_running(dev)) { 3139 netif_tx_wake_all_queues(dev); 3140 __netdev_watchdog_up(dev); 3141 } 3142 } 3143 EXPORT_SYMBOL(netif_device_attach); 3144 3145 /* 3146 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3147 * to be used as a distribution range. 3148 */ 3149 static u16 skb_tx_hash(const struct net_device *dev, 3150 const struct net_device *sb_dev, 3151 struct sk_buff *skb) 3152 { 3153 u32 hash; 3154 u16 qoffset = 0; 3155 u16 qcount = dev->real_num_tx_queues; 3156 3157 if (dev->num_tc) { 3158 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3159 3160 qoffset = sb_dev->tc_to_txq[tc].offset; 3161 qcount = sb_dev->tc_to_txq[tc].count; 3162 } 3163 3164 if (skb_rx_queue_recorded(skb)) { 3165 hash = skb_get_rx_queue(skb); 3166 if (hash >= qoffset) 3167 hash -= qoffset; 3168 while (unlikely(hash >= qcount)) 3169 hash -= qcount; 3170 return hash + qoffset; 3171 } 3172 3173 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3174 } 3175 3176 static void skb_warn_bad_offload(const struct sk_buff *skb) 3177 { 3178 static const netdev_features_t null_features; 3179 struct net_device *dev = skb->dev; 3180 const char *name = ""; 3181 3182 if (!net_ratelimit()) 3183 return; 3184 3185 if (dev) { 3186 if (dev->dev.parent) 3187 name = dev_driver_string(dev->dev.parent); 3188 else 3189 name = netdev_name(dev); 3190 } 3191 skb_dump(KERN_WARNING, skb, false); 3192 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3193 name, dev ? &dev->features : &null_features, 3194 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3195 } 3196 3197 /* 3198 * Invalidate hardware checksum when packet is to be mangled, and 3199 * complete checksum manually on outgoing path. 3200 */ 3201 int skb_checksum_help(struct sk_buff *skb) 3202 { 3203 __wsum csum; 3204 int ret = 0, offset; 3205 3206 if (skb->ip_summed == CHECKSUM_COMPLETE) 3207 goto out_set_summed; 3208 3209 if (unlikely(skb_shinfo(skb)->gso_size)) { 3210 skb_warn_bad_offload(skb); 3211 return -EINVAL; 3212 } 3213 3214 /* Before computing a checksum, we should make sure no frag could 3215 * be modified by an external entity : checksum could be wrong. 3216 */ 3217 if (skb_has_shared_frag(skb)) { 3218 ret = __skb_linearize(skb); 3219 if (ret) 3220 goto out; 3221 } 3222 3223 offset = skb_checksum_start_offset(skb); 3224 BUG_ON(offset >= skb_headlen(skb)); 3225 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3226 3227 offset += skb->csum_offset; 3228 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3229 3230 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3231 if (ret) 3232 goto out; 3233 3234 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3235 out_set_summed: 3236 skb->ip_summed = CHECKSUM_NONE; 3237 out: 3238 return ret; 3239 } 3240 EXPORT_SYMBOL(skb_checksum_help); 3241 3242 int skb_crc32c_csum_help(struct sk_buff *skb) 3243 { 3244 __le32 crc32c_csum; 3245 int ret = 0, offset, start; 3246 3247 if (skb->ip_summed != CHECKSUM_PARTIAL) 3248 goto out; 3249 3250 if (unlikely(skb_is_gso(skb))) 3251 goto out; 3252 3253 /* Before computing a checksum, we should make sure no frag could 3254 * be modified by an external entity : checksum could be wrong. 3255 */ 3256 if (unlikely(skb_has_shared_frag(skb))) { 3257 ret = __skb_linearize(skb); 3258 if (ret) 3259 goto out; 3260 } 3261 start = skb_checksum_start_offset(skb); 3262 offset = start + offsetof(struct sctphdr, checksum); 3263 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3264 ret = -EINVAL; 3265 goto out; 3266 } 3267 3268 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3269 if (ret) 3270 goto out; 3271 3272 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3273 skb->len - start, ~(__u32)0, 3274 crc32c_csum_stub)); 3275 *(__le32 *)(skb->data + offset) = crc32c_csum; 3276 skb->ip_summed = CHECKSUM_NONE; 3277 skb->csum_not_inet = 0; 3278 out: 3279 return ret; 3280 } 3281 3282 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3283 { 3284 __be16 type = skb->protocol; 3285 3286 /* Tunnel gso handlers can set protocol to ethernet. */ 3287 if (type == htons(ETH_P_TEB)) { 3288 struct ethhdr *eth; 3289 3290 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3291 return 0; 3292 3293 eth = (struct ethhdr *)skb->data; 3294 type = eth->h_proto; 3295 } 3296 3297 return __vlan_get_protocol(skb, type, depth); 3298 } 3299 3300 /** 3301 * skb_mac_gso_segment - mac layer segmentation handler. 3302 * @skb: buffer to segment 3303 * @features: features for the output path (see dev->features) 3304 */ 3305 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3306 netdev_features_t features) 3307 { 3308 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3309 struct packet_offload *ptype; 3310 int vlan_depth = skb->mac_len; 3311 __be16 type = skb_network_protocol(skb, &vlan_depth); 3312 3313 if (unlikely(!type)) 3314 return ERR_PTR(-EINVAL); 3315 3316 __skb_pull(skb, vlan_depth); 3317 3318 rcu_read_lock(); 3319 list_for_each_entry_rcu(ptype, &offload_base, list) { 3320 if (ptype->type == type && ptype->callbacks.gso_segment) { 3321 segs = ptype->callbacks.gso_segment(skb, features); 3322 break; 3323 } 3324 } 3325 rcu_read_unlock(); 3326 3327 __skb_push(skb, skb->data - skb_mac_header(skb)); 3328 3329 return segs; 3330 } 3331 EXPORT_SYMBOL(skb_mac_gso_segment); 3332 3333 3334 /* openvswitch calls this on rx path, so we need a different check. 3335 */ 3336 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3337 { 3338 if (tx_path) 3339 return skb->ip_summed != CHECKSUM_PARTIAL && 3340 skb->ip_summed != CHECKSUM_UNNECESSARY; 3341 3342 return skb->ip_summed == CHECKSUM_NONE; 3343 } 3344 3345 /** 3346 * __skb_gso_segment - Perform segmentation on skb. 3347 * @skb: buffer to segment 3348 * @features: features for the output path (see dev->features) 3349 * @tx_path: whether it is called in TX path 3350 * 3351 * This function segments the given skb and returns a list of segments. 3352 * 3353 * It may return NULL if the skb requires no segmentation. This is 3354 * only possible when GSO is used for verifying header integrity. 3355 * 3356 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3357 */ 3358 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3359 netdev_features_t features, bool tx_path) 3360 { 3361 struct sk_buff *segs; 3362 3363 if (unlikely(skb_needs_check(skb, tx_path))) { 3364 int err; 3365 3366 /* We're going to init ->check field in TCP or UDP header */ 3367 err = skb_cow_head(skb, 0); 3368 if (err < 0) 3369 return ERR_PTR(err); 3370 } 3371 3372 /* Only report GSO partial support if it will enable us to 3373 * support segmentation on this frame without needing additional 3374 * work. 3375 */ 3376 if (features & NETIF_F_GSO_PARTIAL) { 3377 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3378 struct net_device *dev = skb->dev; 3379 3380 partial_features |= dev->features & dev->gso_partial_features; 3381 if (!skb_gso_ok(skb, features | partial_features)) 3382 features &= ~NETIF_F_GSO_PARTIAL; 3383 } 3384 3385 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3386 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3387 3388 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3389 SKB_GSO_CB(skb)->encap_level = 0; 3390 3391 skb_reset_mac_header(skb); 3392 skb_reset_mac_len(skb); 3393 3394 segs = skb_mac_gso_segment(skb, features); 3395 3396 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3397 skb_warn_bad_offload(skb); 3398 3399 return segs; 3400 } 3401 EXPORT_SYMBOL(__skb_gso_segment); 3402 3403 /* Take action when hardware reception checksum errors are detected. */ 3404 #ifdef CONFIG_BUG 3405 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3406 { 3407 if (net_ratelimit()) { 3408 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3409 skb_dump(KERN_ERR, skb, true); 3410 dump_stack(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netdev_rx_csum_fault); 3414 #endif 3415 3416 /* XXX: check that highmem exists at all on the given machine. */ 3417 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3418 { 3419 #ifdef CONFIG_HIGHMEM 3420 int i; 3421 3422 if (!(dev->features & NETIF_F_HIGHDMA)) { 3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3425 3426 if (PageHighMem(skb_frag_page(frag))) 3427 return 1; 3428 } 3429 } 3430 #endif 3431 return 0; 3432 } 3433 3434 /* If MPLS offload request, verify we are testing hardware MPLS features 3435 * instead of standard features for the netdev. 3436 */ 3437 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3438 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3439 netdev_features_t features, 3440 __be16 type) 3441 { 3442 if (eth_p_mpls(type)) 3443 features &= skb->dev->mpls_features; 3444 3445 return features; 3446 } 3447 #else 3448 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3449 netdev_features_t features, 3450 __be16 type) 3451 { 3452 return features; 3453 } 3454 #endif 3455 3456 static netdev_features_t harmonize_features(struct sk_buff *skb, 3457 netdev_features_t features) 3458 { 3459 __be16 type; 3460 3461 type = skb_network_protocol(skb, NULL); 3462 features = net_mpls_features(skb, features, type); 3463 3464 if (skb->ip_summed != CHECKSUM_NONE && 3465 !can_checksum_protocol(features, type)) { 3466 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3467 } 3468 if (illegal_highdma(skb->dev, skb)) 3469 features &= ~NETIF_F_SG; 3470 3471 return features; 3472 } 3473 3474 netdev_features_t passthru_features_check(struct sk_buff *skb, 3475 struct net_device *dev, 3476 netdev_features_t features) 3477 { 3478 return features; 3479 } 3480 EXPORT_SYMBOL(passthru_features_check); 3481 3482 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3483 struct net_device *dev, 3484 netdev_features_t features) 3485 { 3486 return vlan_features_check(skb, features); 3487 } 3488 3489 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3490 struct net_device *dev, 3491 netdev_features_t features) 3492 { 3493 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3494 3495 if (gso_segs > dev->gso_max_segs) 3496 return features & ~NETIF_F_GSO_MASK; 3497 3498 /* Support for GSO partial features requires software 3499 * intervention before we can actually process the packets 3500 * so we need to strip support for any partial features now 3501 * and we can pull them back in after we have partially 3502 * segmented the frame. 3503 */ 3504 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3505 features &= ~dev->gso_partial_features; 3506 3507 /* Make sure to clear the IPv4 ID mangling feature if the 3508 * IPv4 header has the potential to be fragmented. 3509 */ 3510 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3511 struct iphdr *iph = skb->encapsulation ? 3512 inner_ip_hdr(skb) : ip_hdr(skb); 3513 3514 if (!(iph->frag_off & htons(IP_DF))) 3515 features &= ~NETIF_F_TSO_MANGLEID; 3516 } 3517 3518 return features; 3519 } 3520 3521 netdev_features_t netif_skb_features(struct sk_buff *skb) 3522 { 3523 struct net_device *dev = skb->dev; 3524 netdev_features_t features = dev->features; 3525 3526 if (skb_is_gso(skb)) 3527 features = gso_features_check(skb, dev, features); 3528 3529 /* If encapsulation offload request, verify we are testing 3530 * hardware encapsulation features instead of standard 3531 * features for the netdev 3532 */ 3533 if (skb->encapsulation) 3534 features &= dev->hw_enc_features; 3535 3536 if (skb_vlan_tagged(skb)) 3537 features = netdev_intersect_features(features, 3538 dev->vlan_features | 3539 NETIF_F_HW_VLAN_CTAG_TX | 3540 NETIF_F_HW_VLAN_STAG_TX); 3541 3542 if (dev->netdev_ops->ndo_features_check) 3543 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3544 features); 3545 else 3546 features &= dflt_features_check(skb, dev, features); 3547 3548 return harmonize_features(skb, features); 3549 } 3550 EXPORT_SYMBOL(netif_skb_features); 3551 3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3553 struct netdev_queue *txq, bool more) 3554 { 3555 unsigned int len; 3556 int rc; 3557 3558 if (dev_nit_active(dev)) 3559 dev_queue_xmit_nit(skb, dev); 3560 3561 len = skb->len; 3562 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3563 trace_net_dev_start_xmit(skb, dev); 3564 rc = netdev_start_xmit(skb, dev, txq, more); 3565 trace_net_dev_xmit(skb, rc, dev, len); 3566 3567 return rc; 3568 } 3569 3570 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3571 struct netdev_queue *txq, int *ret) 3572 { 3573 struct sk_buff *skb = first; 3574 int rc = NETDEV_TX_OK; 3575 3576 while (skb) { 3577 struct sk_buff *next = skb->next; 3578 3579 skb_mark_not_on_list(skb); 3580 rc = xmit_one(skb, dev, txq, next != NULL); 3581 if (unlikely(!dev_xmit_complete(rc))) { 3582 skb->next = next; 3583 goto out; 3584 } 3585 3586 skb = next; 3587 if (netif_tx_queue_stopped(txq) && skb) { 3588 rc = NETDEV_TX_BUSY; 3589 break; 3590 } 3591 } 3592 3593 out: 3594 *ret = rc; 3595 return skb; 3596 } 3597 3598 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3599 netdev_features_t features) 3600 { 3601 if (skb_vlan_tag_present(skb) && 3602 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3603 skb = __vlan_hwaccel_push_inside(skb); 3604 return skb; 3605 } 3606 3607 int skb_csum_hwoffload_help(struct sk_buff *skb, 3608 const netdev_features_t features) 3609 { 3610 if (unlikely(skb->csum_not_inet)) 3611 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3612 skb_crc32c_csum_help(skb); 3613 3614 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3615 } 3616 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3617 3618 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3619 { 3620 netdev_features_t features; 3621 3622 features = netif_skb_features(skb); 3623 skb = validate_xmit_vlan(skb, features); 3624 if (unlikely(!skb)) 3625 goto out_null; 3626 3627 skb = sk_validate_xmit_skb(skb, dev); 3628 if (unlikely(!skb)) 3629 goto out_null; 3630 3631 if (netif_needs_gso(skb, features)) { 3632 struct sk_buff *segs; 3633 3634 segs = skb_gso_segment(skb, features); 3635 if (IS_ERR(segs)) { 3636 goto out_kfree_skb; 3637 } else if (segs) { 3638 consume_skb(skb); 3639 skb = segs; 3640 } 3641 } else { 3642 if (skb_needs_linearize(skb, features) && 3643 __skb_linearize(skb)) 3644 goto out_kfree_skb; 3645 3646 /* If packet is not checksummed and device does not 3647 * support checksumming for this protocol, complete 3648 * checksumming here. 3649 */ 3650 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3651 if (skb->encapsulation) 3652 skb_set_inner_transport_header(skb, 3653 skb_checksum_start_offset(skb)); 3654 else 3655 skb_set_transport_header(skb, 3656 skb_checksum_start_offset(skb)); 3657 if (skb_csum_hwoffload_help(skb, features)) 3658 goto out_kfree_skb; 3659 } 3660 } 3661 3662 skb = validate_xmit_xfrm(skb, features, again); 3663 3664 return skb; 3665 3666 out_kfree_skb: 3667 kfree_skb(skb); 3668 out_null: 3669 atomic_long_inc(&dev->tx_dropped); 3670 return NULL; 3671 } 3672 3673 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3674 { 3675 struct sk_buff *next, *head = NULL, *tail; 3676 3677 for (; skb != NULL; skb = next) { 3678 next = skb->next; 3679 skb_mark_not_on_list(skb); 3680 3681 /* in case skb wont be segmented, point to itself */ 3682 skb->prev = skb; 3683 3684 skb = validate_xmit_skb(skb, dev, again); 3685 if (!skb) 3686 continue; 3687 3688 if (!head) 3689 head = skb; 3690 else 3691 tail->next = skb; 3692 /* If skb was segmented, skb->prev points to 3693 * the last segment. If not, it still contains skb. 3694 */ 3695 tail = skb->prev; 3696 } 3697 return head; 3698 } 3699 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3700 3701 static void qdisc_pkt_len_init(struct sk_buff *skb) 3702 { 3703 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3704 3705 qdisc_skb_cb(skb)->pkt_len = skb->len; 3706 3707 /* To get more precise estimation of bytes sent on wire, 3708 * we add to pkt_len the headers size of all segments 3709 */ 3710 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3711 unsigned int hdr_len; 3712 u16 gso_segs = shinfo->gso_segs; 3713 3714 /* mac layer + network layer */ 3715 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3716 3717 /* + transport layer */ 3718 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3719 const struct tcphdr *th; 3720 struct tcphdr _tcphdr; 3721 3722 th = skb_header_pointer(skb, skb_transport_offset(skb), 3723 sizeof(_tcphdr), &_tcphdr); 3724 if (likely(th)) 3725 hdr_len += __tcp_hdrlen(th); 3726 } else { 3727 struct udphdr _udphdr; 3728 3729 if (skb_header_pointer(skb, skb_transport_offset(skb), 3730 sizeof(_udphdr), &_udphdr)) 3731 hdr_len += sizeof(struct udphdr); 3732 } 3733 3734 if (shinfo->gso_type & SKB_GSO_DODGY) 3735 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3736 shinfo->gso_size); 3737 3738 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3739 } 3740 } 3741 3742 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3743 struct net_device *dev, 3744 struct netdev_queue *txq) 3745 { 3746 spinlock_t *root_lock = qdisc_lock(q); 3747 struct sk_buff *to_free = NULL; 3748 bool contended; 3749 int rc; 3750 3751 qdisc_calculate_pkt_len(skb, q); 3752 3753 if (q->flags & TCQ_F_NOLOCK) { 3754 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3755 qdisc_run(q); 3756 3757 if (unlikely(to_free)) 3758 kfree_skb_list(to_free); 3759 return rc; 3760 } 3761 3762 /* 3763 * Heuristic to force contended enqueues to serialize on a 3764 * separate lock before trying to get qdisc main lock. 3765 * This permits qdisc->running owner to get the lock more 3766 * often and dequeue packets faster. 3767 */ 3768 contended = qdisc_is_running(q); 3769 if (unlikely(contended)) 3770 spin_lock(&q->busylock); 3771 3772 spin_lock(root_lock); 3773 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3774 __qdisc_drop(skb, &to_free); 3775 rc = NET_XMIT_DROP; 3776 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3777 qdisc_run_begin(q)) { 3778 /* 3779 * This is a work-conserving queue; there are no old skbs 3780 * waiting to be sent out; and the qdisc is not running - 3781 * xmit the skb directly. 3782 */ 3783 3784 qdisc_bstats_update(q, skb); 3785 3786 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3787 if (unlikely(contended)) { 3788 spin_unlock(&q->busylock); 3789 contended = false; 3790 } 3791 __qdisc_run(q); 3792 } 3793 3794 qdisc_run_end(q); 3795 rc = NET_XMIT_SUCCESS; 3796 } else { 3797 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3798 if (qdisc_run_begin(q)) { 3799 if (unlikely(contended)) { 3800 spin_unlock(&q->busylock); 3801 contended = false; 3802 } 3803 __qdisc_run(q); 3804 qdisc_run_end(q); 3805 } 3806 } 3807 spin_unlock(root_lock); 3808 if (unlikely(to_free)) 3809 kfree_skb_list(to_free); 3810 if (unlikely(contended)) 3811 spin_unlock(&q->busylock); 3812 return rc; 3813 } 3814 3815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3816 static void skb_update_prio(struct sk_buff *skb) 3817 { 3818 const struct netprio_map *map; 3819 const struct sock *sk; 3820 unsigned int prioidx; 3821 3822 if (skb->priority) 3823 return; 3824 map = rcu_dereference_bh(skb->dev->priomap); 3825 if (!map) 3826 return; 3827 sk = skb_to_full_sk(skb); 3828 if (!sk) 3829 return; 3830 3831 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3832 3833 if (prioidx < map->priomap_len) 3834 skb->priority = map->priomap[prioidx]; 3835 } 3836 #else 3837 #define skb_update_prio(skb) 3838 #endif 3839 3840 /** 3841 * dev_loopback_xmit - loop back @skb 3842 * @net: network namespace this loopback is happening in 3843 * @sk: sk needed to be a netfilter okfn 3844 * @skb: buffer to transmit 3845 */ 3846 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3847 { 3848 skb_reset_mac_header(skb); 3849 __skb_pull(skb, skb_network_offset(skb)); 3850 skb->pkt_type = PACKET_LOOPBACK; 3851 skb->ip_summed = CHECKSUM_UNNECESSARY; 3852 WARN_ON(!skb_dst(skb)); 3853 skb_dst_force(skb); 3854 netif_rx_ni(skb); 3855 return 0; 3856 } 3857 EXPORT_SYMBOL(dev_loopback_xmit); 3858 3859 #ifdef CONFIG_NET_EGRESS 3860 static struct sk_buff * 3861 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3862 { 3863 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3864 struct tcf_result cl_res; 3865 3866 if (!miniq) 3867 return skb; 3868 3869 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3870 mini_qdisc_bstats_cpu_update(miniq, skb); 3871 3872 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3873 case TC_ACT_OK: 3874 case TC_ACT_RECLASSIFY: 3875 skb->tc_index = TC_H_MIN(cl_res.classid); 3876 break; 3877 case TC_ACT_SHOT: 3878 mini_qdisc_qstats_cpu_drop(miniq); 3879 *ret = NET_XMIT_DROP; 3880 kfree_skb(skb); 3881 return NULL; 3882 case TC_ACT_STOLEN: 3883 case TC_ACT_QUEUED: 3884 case TC_ACT_TRAP: 3885 *ret = NET_XMIT_SUCCESS; 3886 consume_skb(skb); 3887 return NULL; 3888 case TC_ACT_REDIRECT: 3889 /* No need to push/pop skb's mac_header here on egress! */ 3890 skb_do_redirect(skb); 3891 *ret = NET_XMIT_SUCCESS; 3892 return NULL; 3893 default: 3894 break; 3895 } 3896 3897 return skb; 3898 } 3899 #endif /* CONFIG_NET_EGRESS */ 3900 3901 #ifdef CONFIG_XPS 3902 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3903 struct xps_dev_maps *dev_maps, unsigned int tci) 3904 { 3905 struct xps_map *map; 3906 int queue_index = -1; 3907 3908 if (dev->num_tc) { 3909 tci *= dev->num_tc; 3910 tci += netdev_get_prio_tc_map(dev, skb->priority); 3911 } 3912 3913 map = rcu_dereference(dev_maps->attr_map[tci]); 3914 if (map) { 3915 if (map->len == 1) 3916 queue_index = map->queues[0]; 3917 else 3918 queue_index = map->queues[reciprocal_scale( 3919 skb_get_hash(skb), map->len)]; 3920 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3921 queue_index = -1; 3922 } 3923 return queue_index; 3924 } 3925 #endif 3926 3927 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3928 struct sk_buff *skb) 3929 { 3930 #ifdef CONFIG_XPS 3931 struct xps_dev_maps *dev_maps; 3932 struct sock *sk = skb->sk; 3933 int queue_index = -1; 3934 3935 if (!static_key_false(&xps_needed)) 3936 return -1; 3937 3938 rcu_read_lock(); 3939 if (!static_key_false(&xps_rxqs_needed)) 3940 goto get_cpus_map; 3941 3942 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3943 if (dev_maps) { 3944 int tci = sk_rx_queue_get(sk); 3945 3946 if (tci >= 0 && tci < dev->num_rx_queues) 3947 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3948 tci); 3949 } 3950 3951 get_cpus_map: 3952 if (queue_index < 0) { 3953 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3954 if (dev_maps) { 3955 unsigned int tci = skb->sender_cpu - 1; 3956 3957 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3958 tci); 3959 } 3960 } 3961 rcu_read_unlock(); 3962 3963 return queue_index; 3964 #else 3965 return -1; 3966 #endif 3967 } 3968 3969 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3970 struct net_device *sb_dev) 3971 { 3972 return 0; 3973 } 3974 EXPORT_SYMBOL(dev_pick_tx_zero); 3975 3976 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3977 struct net_device *sb_dev) 3978 { 3979 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3980 } 3981 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3982 3983 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3984 struct net_device *sb_dev) 3985 { 3986 struct sock *sk = skb->sk; 3987 int queue_index = sk_tx_queue_get(sk); 3988 3989 sb_dev = sb_dev ? : dev; 3990 3991 if (queue_index < 0 || skb->ooo_okay || 3992 queue_index >= dev->real_num_tx_queues) { 3993 int new_index = get_xps_queue(dev, sb_dev, skb); 3994 3995 if (new_index < 0) 3996 new_index = skb_tx_hash(dev, sb_dev, skb); 3997 3998 if (queue_index != new_index && sk && 3999 sk_fullsock(sk) && 4000 rcu_access_pointer(sk->sk_dst_cache)) 4001 sk_tx_queue_set(sk, new_index); 4002 4003 queue_index = new_index; 4004 } 4005 4006 return queue_index; 4007 } 4008 EXPORT_SYMBOL(netdev_pick_tx); 4009 4010 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4011 struct sk_buff *skb, 4012 struct net_device *sb_dev) 4013 { 4014 int queue_index = 0; 4015 4016 #ifdef CONFIG_XPS 4017 u32 sender_cpu = skb->sender_cpu - 1; 4018 4019 if (sender_cpu >= (u32)NR_CPUS) 4020 skb->sender_cpu = raw_smp_processor_id() + 1; 4021 #endif 4022 4023 if (dev->real_num_tx_queues != 1) { 4024 const struct net_device_ops *ops = dev->netdev_ops; 4025 4026 if (ops->ndo_select_queue) 4027 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4028 else 4029 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4030 4031 queue_index = netdev_cap_txqueue(dev, queue_index); 4032 } 4033 4034 skb_set_queue_mapping(skb, queue_index); 4035 return netdev_get_tx_queue(dev, queue_index); 4036 } 4037 4038 /** 4039 * __dev_queue_xmit - transmit a buffer 4040 * @skb: buffer to transmit 4041 * @sb_dev: suboordinate device used for L2 forwarding offload 4042 * 4043 * Queue a buffer for transmission to a network device. The caller must 4044 * have set the device and priority and built the buffer before calling 4045 * this function. The function can be called from an interrupt. 4046 * 4047 * A negative errno code is returned on a failure. A success does not 4048 * guarantee the frame will be transmitted as it may be dropped due 4049 * to congestion or traffic shaping. 4050 * 4051 * ----------------------------------------------------------------------------------- 4052 * I notice this method can also return errors from the queue disciplines, 4053 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4054 * be positive. 4055 * 4056 * Regardless of the return value, the skb is consumed, so it is currently 4057 * difficult to retry a send to this method. (You can bump the ref count 4058 * before sending to hold a reference for retry if you are careful.) 4059 * 4060 * When calling this method, interrupts MUST be enabled. This is because 4061 * the BH enable code must have IRQs enabled so that it will not deadlock. 4062 * --BLG 4063 */ 4064 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4065 { 4066 struct net_device *dev = skb->dev; 4067 struct netdev_queue *txq; 4068 struct Qdisc *q; 4069 int rc = -ENOMEM; 4070 bool again = false; 4071 4072 skb_reset_mac_header(skb); 4073 4074 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4075 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4076 4077 /* Disable soft irqs for various locks below. Also 4078 * stops preemption for RCU. 4079 */ 4080 rcu_read_lock_bh(); 4081 4082 skb_update_prio(skb); 4083 4084 qdisc_pkt_len_init(skb); 4085 #ifdef CONFIG_NET_CLS_ACT 4086 skb->tc_at_ingress = 0; 4087 # ifdef CONFIG_NET_EGRESS 4088 if (static_branch_unlikely(&egress_needed_key)) { 4089 skb = sch_handle_egress(skb, &rc, dev); 4090 if (!skb) 4091 goto out; 4092 } 4093 # endif 4094 #endif 4095 /* If device/qdisc don't need skb->dst, release it right now while 4096 * its hot in this cpu cache. 4097 */ 4098 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4099 skb_dst_drop(skb); 4100 else 4101 skb_dst_force(skb); 4102 4103 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4104 q = rcu_dereference_bh(txq->qdisc); 4105 4106 trace_net_dev_queue(skb); 4107 if (q->enqueue) { 4108 rc = __dev_xmit_skb(skb, q, dev, txq); 4109 goto out; 4110 } 4111 4112 /* The device has no queue. Common case for software devices: 4113 * loopback, all the sorts of tunnels... 4114 4115 * Really, it is unlikely that netif_tx_lock protection is necessary 4116 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4117 * counters.) 4118 * However, it is possible, that they rely on protection 4119 * made by us here. 4120 4121 * Check this and shot the lock. It is not prone from deadlocks. 4122 *Either shot noqueue qdisc, it is even simpler 8) 4123 */ 4124 if (dev->flags & IFF_UP) { 4125 int cpu = smp_processor_id(); /* ok because BHs are off */ 4126 4127 if (txq->xmit_lock_owner != cpu) { 4128 if (dev_xmit_recursion()) 4129 goto recursion_alert; 4130 4131 skb = validate_xmit_skb(skb, dev, &again); 4132 if (!skb) 4133 goto out; 4134 4135 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4136 HARD_TX_LOCK(dev, txq, cpu); 4137 4138 if (!netif_xmit_stopped(txq)) { 4139 dev_xmit_recursion_inc(); 4140 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4141 dev_xmit_recursion_dec(); 4142 if (dev_xmit_complete(rc)) { 4143 HARD_TX_UNLOCK(dev, txq); 4144 goto out; 4145 } 4146 } 4147 HARD_TX_UNLOCK(dev, txq); 4148 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4149 dev->name); 4150 } else { 4151 /* Recursion is detected! It is possible, 4152 * unfortunately 4153 */ 4154 recursion_alert: 4155 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4156 dev->name); 4157 } 4158 } 4159 4160 rc = -ENETDOWN; 4161 rcu_read_unlock_bh(); 4162 4163 atomic_long_inc(&dev->tx_dropped); 4164 kfree_skb_list(skb); 4165 return rc; 4166 out: 4167 rcu_read_unlock_bh(); 4168 return rc; 4169 } 4170 4171 int dev_queue_xmit(struct sk_buff *skb) 4172 { 4173 return __dev_queue_xmit(skb, NULL); 4174 } 4175 EXPORT_SYMBOL(dev_queue_xmit); 4176 4177 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4178 { 4179 return __dev_queue_xmit(skb, sb_dev); 4180 } 4181 EXPORT_SYMBOL(dev_queue_xmit_accel); 4182 4183 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4184 { 4185 struct net_device *dev = skb->dev; 4186 struct sk_buff *orig_skb = skb; 4187 struct netdev_queue *txq; 4188 int ret = NETDEV_TX_BUSY; 4189 bool again = false; 4190 4191 if (unlikely(!netif_running(dev) || 4192 !netif_carrier_ok(dev))) 4193 goto drop; 4194 4195 skb = validate_xmit_skb_list(skb, dev, &again); 4196 if (skb != orig_skb) 4197 goto drop; 4198 4199 skb_set_queue_mapping(skb, queue_id); 4200 txq = skb_get_tx_queue(dev, skb); 4201 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4202 4203 local_bh_disable(); 4204 4205 dev_xmit_recursion_inc(); 4206 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4207 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4208 ret = netdev_start_xmit(skb, dev, txq, false); 4209 HARD_TX_UNLOCK(dev, txq); 4210 dev_xmit_recursion_dec(); 4211 4212 local_bh_enable(); 4213 return ret; 4214 drop: 4215 atomic_long_inc(&dev->tx_dropped); 4216 kfree_skb_list(skb); 4217 return NET_XMIT_DROP; 4218 } 4219 EXPORT_SYMBOL(__dev_direct_xmit); 4220 4221 /************************************************************************* 4222 * Receiver routines 4223 *************************************************************************/ 4224 4225 int netdev_max_backlog __read_mostly = 1000; 4226 EXPORT_SYMBOL(netdev_max_backlog); 4227 4228 int netdev_tstamp_prequeue __read_mostly = 1; 4229 int netdev_budget __read_mostly = 300; 4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4232 int weight_p __read_mostly = 64; /* old backlog weight */ 4233 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4234 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4235 int dev_rx_weight __read_mostly = 64; 4236 int dev_tx_weight __read_mostly = 64; 4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4238 int gro_normal_batch __read_mostly = 8; 4239 4240 /* Called with irq disabled */ 4241 static inline void ____napi_schedule(struct softnet_data *sd, 4242 struct napi_struct *napi) 4243 { 4244 list_add_tail(&napi->poll_list, &sd->poll_list); 4245 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4246 } 4247 4248 #ifdef CONFIG_RPS 4249 4250 /* One global table that all flow-based protocols share. */ 4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4252 EXPORT_SYMBOL(rps_sock_flow_table); 4253 u32 rps_cpu_mask __read_mostly; 4254 EXPORT_SYMBOL(rps_cpu_mask); 4255 4256 struct static_key_false rps_needed __read_mostly; 4257 EXPORT_SYMBOL(rps_needed); 4258 struct static_key_false rfs_needed __read_mostly; 4259 EXPORT_SYMBOL(rfs_needed); 4260 4261 static struct rps_dev_flow * 4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4263 struct rps_dev_flow *rflow, u16 next_cpu) 4264 { 4265 if (next_cpu < nr_cpu_ids) { 4266 #ifdef CONFIG_RFS_ACCEL 4267 struct netdev_rx_queue *rxqueue; 4268 struct rps_dev_flow_table *flow_table; 4269 struct rps_dev_flow *old_rflow; 4270 u32 flow_id; 4271 u16 rxq_index; 4272 int rc; 4273 4274 /* Should we steer this flow to a different hardware queue? */ 4275 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4276 !(dev->features & NETIF_F_NTUPLE)) 4277 goto out; 4278 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4279 if (rxq_index == skb_get_rx_queue(skb)) 4280 goto out; 4281 4282 rxqueue = dev->_rx + rxq_index; 4283 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4284 if (!flow_table) 4285 goto out; 4286 flow_id = skb_get_hash(skb) & flow_table->mask; 4287 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4288 rxq_index, flow_id); 4289 if (rc < 0) 4290 goto out; 4291 old_rflow = rflow; 4292 rflow = &flow_table->flows[flow_id]; 4293 rflow->filter = rc; 4294 if (old_rflow->filter == rflow->filter) 4295 old_rflow->filter = RPS_NO_FILTER; 4296 out: 4297 #endif 4298 rflow->last_qtail = 4299 per_cpu(softnet_data, next_cpu).input_queue_head; 4300 } 4301 4302 rflow->cpu = next_cpu; 4303 return rflow; 4304 } 4305 4306 /* 4307 * get_rps_cpu is called from netif_receive_skb and returns the target 4308 * CPU from the RPS map of the receiving queue for a given skb. 4309 * rcu_read_lock must be held on entry. 4310 */ 4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4312 struct rps_dev_flow **rflowp) 4313 { 4314 const struct rps_sock_flow_table *sock_flow_table; 4315 struct netdev_rx_queue *rxqueue = dev->_rx; 4316 struct rps_dev_flow_table *flow_table; 4317 struct rps_map *map; 4318 int cpu = -1; 4319 u32 tcpu; 4320 u32 hash; 4321 4322 if (skb_rx_queue_recorded(skb)) { 4323 u16 index = skb_get_rx_queue(skb); 4324 4325 if (unlikely(index >= dev->real_num_rx_queues)) { 4326 WARN_ONCE(dev->real_num_rx_queues > 1, 4327 "%s received packet on queue %u, but number " 4328 "of RX queues is %u\n", 4329 dev->name, index, dev->real_num_rx_queues); 4330 goto done; 4331 } 4332 rxqueue += index; 4333 } 4334 4335 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4336 4337 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4338 map = rcu_dereference(rxqueue->rps_map); 4339 if (!flow_table && !map) 4340 goto done; 4341 4342 skb_reset_network_header(skb); 4343 hash = skb_get_hash(skb); 4344 if (!hash) 4345 goto done; 4346 4347 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4348 if (flow_table && sock_flow_table) { 4349 struct rps_dev_flow *rflow; 4350 u32 next_cpu; 4351 u32 ident; 4352 4353 /* First check into global flow table if there is a match */ 4354 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4355 if ((ident ^ hash) & ~rps_cpu_mask) 4356 goto try_rps; 4357 4358 next_cpu = ident & rps_cpu_mask; 4359 4360 /* OK, now we know there is a match, 4361 * we can look at the local (per receive queue) flow table 4362 */ 4363 rflow = &flow_table->flows[hash & flow_table->mask]; 4364 tcpu = rflow->cpu; 4365 4366 /* 4367 * If the desired CPU (where last recvmsg was done) is 4368 * different from current CPU (one in the rx-queue flow 4369 * table entry), switch if one of the following holds: 4370 * - Current CPU is unset (>= nr_cpu_ids). 4371 * - Current CPU is offline. 4372 * - The current CPU's queue tail has advanced beyond the 4373 * last packet that was enqueued using this table entry. 4374 * This guarantees that all previous packets for the flow 4375 * have been dequeued, thus preserving in order delivery. 4376 */ 4377 if (unlikely(tcpu != next_cpu) && 4378 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4379 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4380 rflow->last_qtail)) >= 0)) { 4381 tcpu = next_cpu; 4382 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4383 } 4384 4385 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4386 *rflowp = rflow; 4387 cpu = tcpu; 4388 goto done; 4389 } 4390 } 4391 4392 try_rps: 4393 4394 if (map) { 4395 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4396 if (cpu_online(tcpu)) { 4397 cpu = tcpu; 4398 goto done; 4399 } 4400 } 4401 4402 done: 4403 return cpu; 4404 } 4405 4406 #ifdef CONFIG_RFS_ACCEL 4407 4408 /** 4409 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4410 * @dev: Device on which the filter was set 4411 * @rxq_index: RX queue index 4412 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4413 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4414 * 4415 * Drivers that implement ndo_rx_flow_steer() should periodically call 4416 * this function for each installed filter and remove the filters for 4417 * which it returns %true. 4418 */ 4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4420 u32 flow_id, u16 filter_id) 4421 { 4422 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4423 struct rps_dev_flow_table *flow_table; 4424 struct rps_dev_flow *rflow; 4425 bool expire = true; 4426 unsigned int cpu; 4427 4428 rcu_read_lock(); 4429 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4430 if (flow_table && flow_id <= flow_table->mask) { 4431 rflow = &flow_table->flows[flow_id]; 4432 cpu = READ_ONCE(rflow->cpu); 4433 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4434 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4435 rflow->last_qtail) < 4436 (int)(10 * flow_table->mask))) 4437 expire = false; 4438 } 4439 rcu_read_unlock(); 4440 return expire; 4441 } 4442 EXPORT_SYMBOL(rps_may_expire_flow); 4443 4444 #endif /* CONFIG_RFS_ACCEL */ 4445 4446 /* Called from hardirq (IPI) context */ 4447 static void rps_trigger_softirq(void *data) 4448 { 4449 struct softnet_data *sd = data; 4450 4451 ____napi_schedule(sd, &sd->backlog); 4452 sd->received_rps++; 4453 } 4454 4455 #endif /* CONFIG_RPS */ 4456 4457 /* 4458 * Check if this softnet_data structure is another cpu one 4459 * If yes, queue it to our IPI list and return 1 4460 * If no, return 0 4461 */ 4462 static int rps_ipi_queued(struct softnet_data *sd) 4463 { 4464 #ifdef CONFIG_RPS 4465 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4466 4467 if (sd != mysd) { 4468 sd->rps_ipi_next = mysd->rps_ipi_list; 4469 mysd->rps_ipi_list = sd; 4470 4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4472 return 1; 4473 } 4474 #endif /* CONFIG_RPS */ 4475 return 0; 4476 } 4477 4478 #ifdef CONFIG_NET_FLOW_LIMIT 4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4480 #endif 4481 4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4483 { 4484 #ifdef CONFIG_NET_FLOW_LIMIT 4485 struct sd_flow_limit *fl; 4486 struct softnet_data *sd; 4487 unsigned int old_flow, new_flow; 4488 4489 if (qlen < (netdev_max_backlog >> 1)) 4490 return false; 4491 4492 sd = this_cpu_ptr(&softnet_data); 4493 4494 rcu_read_lock(); 4495 fl = rcu_dereference(sd->flow_limit); 4496 if (fl) { 4497 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4498 old_flow = fl->history[fl->history_head]; 4499 fl->history[fl->history_head] = new_flow; 4500 4501 fl->history_head++; 4502 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4503 4504 if (likely(fl->buckets[old_flow])) 4505 fl->buckets[old_flow]--; 4506 4507 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4508 fl->count++; 4509 rcu_read_unlock(); 4510 return true; 4511 } 4512 } 4513 rcu_read_unlock(); 4514 #endif 4515 return false; 4516 } 4517 4518 /* 4519 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4520 * queue (may be a remote CPU queue). 4521 */ 4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4523 unsigned int *qtail) 4524 { 4525 struct softnet_data *sd; 4526 unsigned long flags; 4527 unsigned int qlen; 4528 4529 sd = &per_cpu(softnet_data, cpu); 4530 4531 local_irq_save(flags); 4532 4533 rps_lock(sd); 4534 if (!netif_running(skb->dev)) 4535 goto drop; 4536 qlen = skb_queue_len(&sd->input_pkt_queue); 4537 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4538 if (qlen) { 4539 enqueue: 4540 __skb_queue_tail(&sd->input_pkt_queue, skb); 4541 input_queue_tail_incr_save(sd, qtail); 4542 rps_unlock(sd); 4543 local_irq_restore(flags); 4544 return NET_RX_SUCCESS; 4545 } 4546 4547 /* Schedule NAPI for backlog device 4548 * We can use non atomic operation since we own the queue lock 4549 */ 4550 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4551 if (!rps_ipi_queued(sd)) 4552 ____napi_schedule(sd, &sd->backlog); 4553 } 4554 goto enqueue; 4555 } 4556 4557 drop: 4558 sd->dropped++; 4559 rps_unlock(sd); 4560 4561 local_irq_restore(flags); 4562 4563 atomic_long_inc(&skb->dev->rx_dropped); 4564 kfree_skb(skb); 4565 return NET_RX_DROP; 4566 } 4567 4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4569 { 4570 struct net_device *dev = skb->dev; 4571 struct netdev_rx_queue *rxqueue; 4572 4573 rxqueue = dev->_rx; 4574 4575 if (skb_rx_queue_recorded(skb)) { 4576 u16 index = skb_get_rx_queue(skb); 4577 4578 if (unlikely(index >= dev->real_num_rx_queues)) { 4579 WARN_ONCE(dev->real_num_rx_queues > 1, 4580 "%s received packet on queue %u, but number " 4581 "of RX queues is %u\n", 4582 dev->name, index, dev->real_num_rx_queues); 4583 4584 return rxqueue; /* Return first rxqueue */ 4585 } 4586 rxqueue += index; 4587 } 4588 return rxqueue; 4589 } 4590 4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4592 struct xdp_buff *xdp, 4593 struct bpf_prog *xdp_prog) 4594 { 4595 struct netdev_rx_queue *rxqueue; 4596 void *orig_data, *orig_data_end; 4597 u32 metalen, act = XDP_DROP; 4598 __be16 orig_eth_type; 4599 struct ethhdr *eth; 4600 bool orig_bcast; 4601 int hlen, off; 4602 u32 mac_len; 4603 4604 /* Reinjected packets coming from act_mirred or similar should 4605 * not get XDP generic processing. 4606 */ 4607 if (skb_is_redirected(skb)) 4608 return XDP_PASS; 4609 4610 /* XDP packets must be linear and must have sufficient headroom 4611 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4612 * native XDP provides, thus we need to do it here as well. 4613 */ 4614 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4615 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4616 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4617 int troom = skb->tail + skb->data_len - skb->end; 4618 4619 /* In case we have to go down the path and also linearize, 4620 * then lets do the pskb_expand_head() work just once here. 4621 */ 4622 if (pskb_expand_head(skb, 4623 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4624 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4625 goto do_drop; 4626 if (skb_linearize(skb)) 4627 goto do_drop; 4628 } 4629 4630 /* The XDP program wants to see the packet starting at the MAC 4631 * header. 4632 */ 4633 mac_len = skb->data - skb_mac_header(skb); 4634 hlen = skb_headlen(skb) + mac_len; 4635 xdp->data = skb->data - mac_len; 4636 xdp->data_meta = xdp->data; 4637 xdp->data_end = xdp->data + hlen; 4638 xdp->data_hard_start = skb->data - skb_headroom(skb); 4639 4640 /* SKB "head" area always have tailroom for skb_shared_info */ 4641 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4642 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4643 4644 orig_data_end = xdp->data_end; 4645 orig_data = xdp->data; 4646 eth = (struct ethhdr *)xdp->data; 4647 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4648 orig_eth_type = eth->h_proto; 4649 4650 rxqueue = netif_get_rxqueue(skb); 4651 xdp->rxq = &rxqueue->xdp_rxq; 4652 4653 act = bpf_prog_run_xdp(xdp_prog, xdp); 4654 4655 /* check if bpf_xdp_adjust_head was used */ 4656 off = xdp->data - orig_data; 4657 if (off) { 4658 if (off > 0) 4659 __skb_pull(skb, off); 4660 else if (off < 0) 4661 __skb_push(skb, -off); 4662 4663 skb->mac_header += off; 4664 skb_reset_network_header(skb); 4665 } 4666 4667 /* check if bpf_xdp_adjust_tail was used */ 4668 off = xdp->data_end - orig_data_end; 4669 if (off != 0) { 4670 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4671 skb->len += off; /* positive on grow, negative on shrink */ 4672 } 4673 4674 /* check if XDP changed eth hdr such SKB needs update */ 4675 eth = (struct ethhdr *)xdp->data; 4676 if ((orig_eth_type != eth->h_proto) || 4677 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4678 __skb_push(skb, ETH_HLEN); 4679 skb->protocol = eth_type_trans(skb, skb->dev); 4680 } 4681 4682 switch (act) { 4683 case XDP_REDIRECT: 4684 case XDP_TX: 4685 __skb_push(skb, mac_len); 4686 break; 4687 case XDP_PASS: 4688 metalen = xdp->data - xdp->data_meta; 4689 if (metalen) 4690 skb_metadata_set(skb, metalen); 4691 break; 4692 default: 4693 bpf_warn_invalid_xdp_action(act); 4694 fallthrough; 4695 case XDP_ABORTED: 4696 trace_xdp_exception(skb->dev, xdp_prog, act); 4697 fallthrough; 4698 case XDP_DROP: 4699 do_drop: 4700 kfree_skb(skb); 4701 break; 4702 } 4703 4704 return act; 4705 } 4706 4707 /* When doing generic XDP we have to bypass the qdisc layer and the 4708 * network taps in order to match in-driver-XDP behavior. 4709 */ 4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4711 { 4712 struct net_device *dev = skb->dev; 4713 struct netdev_queue *txq; 4714 bool free_skb = true; 4715 int cpu, rc; 4716 4717 txq = netdev_core_pick_tx(dev, skb, NULL); 4718 cpu = smp_processor_id(); 4719 HARD_TX_LOCK(dev, txq, cpu); 4720 if (!netif_xmit_stopped(txq)) { 4721 rc = netdev_start_xmit(skb, dev, txq, 0); 4722 if (dev_xmit_complete(rc)) 4723 free_skb = false; 4724 } 4725 HARD_TX_UNLOCK(dev, txq); 4726 if (free_skb) { 4727 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4728 kfree_skb(skb); 4729 } 4730 } 4731 4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4733 4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4735 { 4736 if (xdp_prog) { 4737 struct xdp_buff xdp; 4738 u32 act; 4739 int err; 4740 4741 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4742 if (act != XDP_PASS) { 4743 switch (act) { 4744 case XDP_REDIRECT: 4745 err = xdp_do_generic_redirect(skb->dev, skb, 4746 &xdp, xdp_prog); 4747 if (err) 4748 goto out_redir; 4749 break; 4750 case XDP_TX: 4751 generic_xdp_tx(skb, xdp_prog); 4752 break; 4753 } 4754 return XDP_DROP; 4755 } 4756 } 4757 return XDP_PASS; 4758 out_redir: 4759 kfree_skb(skb); 4760 return XDP_DROP; 4761 } 4762 EXPORT_SYMBOL_GPL(do_xdp_generic); 4763 4764 static int netif_rx_internal(struct sk_buff *skb) 4765 { 4766 int ret; 4767 4768 net_timestamp_check(netdev_tstamp_prequeue, skb); 4769 4770 trace_netif_rx(skb); 4771 4772 #ifdef CONFIG_RPS 4773 if (static_branch_unlikely(&rps_needed)) { 4774 struct rps_dev_flow voidflow, *rflow = &voidflow; 4775 int cpu; 4776 4777 preempt_disable(); 4778 rcu_read_lock(); 4779 4780 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4781 if (cpu < 0) 4782 cpu = smp_processor_id(); 4783 4784 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4785 4786 rcu_read_unlock(); 4787 preempt_enable(); 4788 } else 4789 #endif 4790 { 4791 unsigned int qtail; 4792 4793 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4794 put_cpu(); 4795 } 4796 return ret; 4797 } 4798 4799 /** 4800 * netif_rx - post buffer to the network code 4801 * @skb: buffer to post 4802 * 4803 * This function receives a packet from a device driver and queues it for 4804 * the upper (protocol) levels to process. It always succeeds. The buffer 4805 * may be dropped during processing for congestion control or by the 4806 * protocol layers. 4807 * 4808 * return values: 4809 * NET_RX_SUCCESS (no congestion) 4810 * NET_RX_DROP (packet was dropped) 4811 * 4812 */ 4813 4814 int netif_rx(struct sk_buff *skb) 4815 { 4816 int ret; 4817 4818 trace_netif_rx_entry(skb); 4819 4820 ret = netif_rx_internal(skb); 4821 trace_netif_rx_exit(ret); 4822 4823 return ret; 4824 } 4825 EXPORT_SYMBOL(netif_rx); 4826 4827 int netif_rx_ni(struct sk_buff *skb) 4828 { 4829 int err; 4830 4831 trace_netif_rx_ni_entry(skb); 4832 4833 preempt_disable(); 4834 err = netif_rx_internal(skb); 4835 if (local_softirq_pending()) 4836 do_softirq(); 4837 preempt_enable(); 4838 trace_netif_rx_ni_exit(err); 4839 4840 return err; 4841 } 4842 EXPORT_SYMBOL(netif_rx_ni); 4843 4844 int netif_rx_any_context(struct sk_buff *skb) 4845 { 4846 /* 4847 * If invoked from contexts which do not invoke bottom half 4848 * processing either at return from interrupt or when softrqs are 4849 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4850 * directly. 4851 */ 4852 if (in_interrupt()) 4853 return netif_rx(skb); 4854 else 4855 return netif_rx_ni(skb); 4856 } 4857 EXPORT_SYMBOL(netif_rx_any_context); 4858 4859 static __latent_entropy void net_tx_action(struct softirq_action *h) 4860 { 4861 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4862 4863 if (sd->completion_queue) { 4864 struct sk_buff *clist; 4865 4866 local_irq_disable(); 4867 clist = sd->completion_queue; 4868 sd->completion_queue = NULL; 4869 local_irq_enable(); 4870 4871 while (clist) { 4872 struct sk_buff *skb = clist; 4873 4874 clist = clist->next; 4875 4876 WARN_ON(refcount_read(&skb->users)); 4877 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4878 trace_consume_skb(skb); 4879 else 4880 trace_kfree_skb(skb, net_tx_action); 4881 4882 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4883 __kfree_skb(skb); 4884 else 4885 __kfree_skb_defer(skb); 4886 } 4887 4888 __kfree_skb_flush(); 4889 } 4890 4891 if (sd->output_queue) { 4892 struct Qdisc *head; 4893 4894 local_irq_disable(); 4895 head = sd->output_queue; 4896 sd->output_queue = NULL; 4897 sd->output_queue_tailp = &sd->output_queue; 4898 local_irq_enable(); 4899 4900 while (head) { 4901 struct Qdisc *q = head; 4902 spinlock_t *root_lock = NULL; 4903 4904 head = head->next_sched; 4905 4906 if (!(q->flags & TCQ_F_NOLOCK)) { 4907 root_lock = qdisc_lock(q); 4908 spin_lock(root_lock); 4909 } 4910 /* We need to make sure head->next_sched is read 4911 * before clearing __QDISC_STATE_SCHED 4912 */ 4913 smp_mb__before_atomic(); 4914 clear_bit(__QDISC_STATE_SCHED, &q->state); 4915 qdisc_run(q); 4916 if (root_lock) 4917 spin_unlock(root_lock); 4918 } 4919 } 4920 4921 xfrm_dev_backlog(sd); 4922 } 4923 4924 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4925 /* This hook is defined here for ATM LANE */ 4926 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4927 unsigned char *addr) __read_mostly; 4928 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4929 #endif 4930 4931 static inline struct sk_buff * 4932 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4933 struct net_device *orig_dev, bool *another) 4934 { 4935 #ifdef CONFIG_NET_CLS_ACT 4936 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4937 struct tcf_result cl_res; 4938 4939 /* If there's at least one ingress present somewhere (so 4940 * we get here via enabled static key), remaining devices 4941 * that are not configured with an ingress qdisc will bail 4942 * out here. 4943 */ 4944 if (!miniq) 4945 return skb; 4946 4947 if (*pt_prev) { 4948 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4949 *pt_prev = NULL; 4950 } 4951 4952 qdisc_skb_cb(skb)->pkt_len = skb->len; 4953 skb->tc_at_ingress = 1; 4954 mini_qdisc_bstats_cpu_update(miniq, skb); 4955 4956 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4957 &cl_res, false)) { 4958 case TC_ACT_OK: 4959 case TC_ACT_RECLASSIFY: 4960 skb->tc_index = TC_H_MIN(cl_res.classid); 4961 break; 4962 case TC_ACT_SHOT: 4963 mini_qdisc_qstats_cpu_drop(miniq); 4964 kfree_skb(skb); 4965 return NULL; 4966 case TC_ACT_STOLEN: 4967 case TC_ACT_QUEUED: 4968 case TC_ACT_TRAP: 4969 consume_skb(skb); 4970 return NULL; 4971 case TC_ACT_REDIRECT: 4972 /* skb_mac_header check was done by cls/act_bpf, so 4973 * we can safely push the L2 header back before 4974 * redirecting to another netdev 4975 */ 4976 __skb_push(skb, skb->mac_len); 4977 if (skb_do_redirect(skb) == -EAGAIN) { 4978 __skb_pull(skb, skb->mac_len); 4979 *another = true; 4980 break; 4981 } 4982 return NULL; 4983 case TC_ACT_CONSUMED: 4984 return NULL; 4985 default: 4986 break; 4987 } 4988 #endif /* CONFIG_NET_CLS_ACT */ 4989 return skb; 4990 } 4991 4992 /** 4993 * netdev_is_rx_handler_busy - check if receive handler is registered 4994 * @dev: device to check 4995 * 4996 * Check if a receive handler is already registered for a given device. 4997 * Return true if there one. 4998 * 4999 * The caller must hold the rtnl_mutex. 5000 */ 5001 bool netdev_is_rx_handler_busy(struct net_device *dev) 5002 { 5003 ASSERT_RTNL(); 5004 return dev && rtnl_dereference(dev->rx_handler); 5005 } 5006 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5007 5008 /** 5009 * netdev_rx_handler_register - register receive handler 5010 * @dev: device to register a handler for 5011 * @rx_handler: receive handler to register 5012 * @rx_handler_data: data pointer that is used by rx handler 5013 * 5014 * Register a receive handler for a device. This handler will then be 5015 * called from __netif_receive_skb. A negative errno code is returned 5016 * on a failure. 5017 * 5018 * The caller must hold the rtnl_mutex. 5019 * 5020 * For a general description of rx_handler, see enum rx_handler_result. 5021 */ 5022 int netdev_rx_handler_register(struct net_device *dev, 5023 rx_handler_func_t *rx_handler, 5024 void *rx_handler_data) 5025 { 5026 if (netdev_is_rx_handler_busy(dev)) 5027 return -EBUSY; 5028 5029 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5030 return -EINVAL; 5031 5032 /* Note: rx_handler_data must be set before rx_handler */ 5033 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5034 rcu_assign_pointer(dev->rx_handler, rx_handler); 5035 5036 return 0; 5037 } 5038 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5039 5040 /** 5041 * netdev_rx_handler_unregister - unregister receive handler 5042 * @dev: device to unregister a handler from 5043 * 5044 * Unregister a receive handler from a device. 5045 * 5046 * The caller must hold the rtnl_mutex. 5047 */ 5048 void netdev_rx_handler_unregister(struct net_device *dev) 5049 { 5050 5051 ASSERT_RTNL(); 5052 RCU_INIT_POINTER(dev->rx_handler, NULL); 5053 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5054 * section has a guarantee to see a non NULL rx_handler_data 5055 * as well. 5056 */ 5057 synchronize_net(); 5058 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5059 } 5060 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5061 5062 /* 5063 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5064 * the special handling of PFMEMALLOC skbs. 5065 */ 5066 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5067 { 5068 switch (skb->protocol) { 5069 case htons(ETH_P_ARP): 5070 case htons(ETH_P_IP): 5071 case htons(ETH_P_IPV6): 5072 case htons(ETH_P_8021Q): 5073 case htons(ETH_P_8021AD): 5074 return true; 5075 default: 5076 return false; 5077 } 5078 } 5079 5080 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5081 int *ret, struct net_device *orig_dev) 5082 { 5083 if (nf_hook_ingress_active(skb)) { 5084 int ingress_retval; 5085 5086 if (*pt_prev) { 5087 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5088 *pt_prev = NULL; 5089 } 5090 5091 rcu_read_lock(); 5092 ingress_retval = nf_hook_ingress(skb); 5093 rcu_read_unlock(); 5094 return ingress_retval; 5095 } 5096 return 0; 5097 } 5098 5099 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5100 struct packet_type **ppt_prev) 5101 { 5102 struct packet_type *ptype, *pt_prev; 5103 rx_handler_func_t *rx_handler; 5104 struct sk_buff *skb = *pskb; 5105 struct net_device *orig_dev; 5106 bool deliver_exact = false; 5107 int ret = NET_RX_DROP; 5108 __be16 type; 5109 5110 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5111 5112 trace_netif_receive_skb(skb); 5113 5114 orig_dev = skb->dev; 5115 5116 skb_reset_network_header(skb); 5117 if (!skb_transport_header_was_set(skb)) 5118 skb_reset_transport_header(skb); 5119 skb_reset_mac_len(skb); 5120 5121 pt_prev = NULL; 5122 5123 another_round: 5124 skb->skb_iif = skb->dev->ifindex; 5125 5126 __this_cpu_inc(softnet_data.processed); 5127 5128 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5129 int ret2; 5130 5131 preempt_disable(); 5132 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5133 preempt_enable(); 5134 5135 if (ret2 != XDP_PASS) { 5136 ret = NET_RX_DROP; 5137 goto out; 5138 } 5139 skb_reset_mac_len(skb); 5140 } 5141 5142 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5143 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5144 skb = skb_vlan_untag(skb); 5145 if (unlikely(!skb)) 5146 goto out; 5147 } 5148 5149 if (skb_skip_tc_classify(skb)) 5150 goto skip_classify; 5151 5152 if (pfmemalloc) 5153 goto skip_taps; 5154 5155 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5156 if (pt_prev) 5157 ret = deliver_skb(skb, pt_prev, orig_dev); 5158 pt_prev = ptype; 5159 } 5160 5161 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5162 if (pt_prev) 5163 ret = deliver_skb(skb, pt_prev, orig_dev); 5164 pt_prev = ptype; 5165 } 5166 5167 skip_taps: 5168 #ifdef CONFIG_NET_INGRESS 5169 if (static_branch_unlikely(&ingress_needed_key)) { 5170 bool another = false; 5171 5172 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5173 &another); 5174 if (another) 5175 goto another_round; 5176 if (!skb) 5177 goto out; 5178 5179 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5180 goto out; 5181 } 5182 #endif 5183 skb_reset_redirect(skb); 5184 skip_classify: 5185 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5186 goto drop; 5187 5188 if (skb_vlan_tag_present(skb)) { 5189 if (pt_prev) { 5190 ret = deliver_skb(skb, pt_prev, orig_dev); 5191 pt_prev = NULL; 5192 } 5193 if (vlan_do_receive(&skb)) 5194 goto another_round; 5195 else if (unlikely(!skb)) 5196 goto out; 5197 } 5198 5199 rx_handler = rcu_dereference(skb->dev->rx_handler); 5200 if (rx_handler) { 5201 if (pt_prev) { 5202 ret = deliver_skb(skb, pt_prev, orig_dev); 5203 pt_prev = NULL; 5204 } 5205 switch (rx_handler(&skb)) { 5206 case RX_HANDLER_CONSUMED: 5207 ret = NET_RX_SUCCESS; 5208 goto out; 5209 case RX_HANDLER_ANOTHER: 5210 goto another_round; 5211 case RX_HANDLER_EXACT: 5212 deliver_exact = true; 5213 case RX_HANDLER_PASS: 5214 break; 5215 default: 5216 BUG(); 5217 } 5218 } 5219 5220 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5221 check_vlan_id: 5222 if (skb_vlan_tag_get_id(skb)) { 5223 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5224 * find vlan device. 5225 */ 5226 skb->pkt_type = PACKET_OTHERHOST; 5227 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5228 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5229 /* Outer header is 802.1P with vlan 0, inner header is 5230 * 802.1Q or 802.1AD and vlan_do_receive() above could 5231 * not find vlan dev for vlan id 0. 5232 */ 5233 __vlan_hwaccel_clear_tag(skb); 5234 skb = skb_vlan_untag(skb); 5235 if (unlikely(!skb)) 5236 goto out; 5237 if (vlan_do_receive(&skb)) 5238 /* After stripping off 802.1P header with vlan 0 5239 * vlan dev is found for inner header. 5240 */ 5241 goto another_round; 5242 else if (unlikely(!skb)) 5243 goto out; 5244 else 5245 /* We have stripped outer 802.1P vlan 0 header. 5246 * But could not find vlan dev. 5247 * check again for vlan id to set OTHERHOST. 5248 */ 5249 goto check_vlan_id; 5250 } 5251 /* Note: we might in the future use prio bits 5252 * and set skb->priority like in vlan_do_receive() 5253 * For the time being, just ignore Priority Code Point 5254 */ 5255 __vlan_hwaccel_clear_tag(skb); 5256 } 5257 5258 type = skb->protocol; 5259 5260 /* deliver only exact match when indicated */ 5261 if (likely(!deliver_exact)) { 5262 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5263 &ptype_base[ntohs(type) & 5264 PTYPE_HASH_MASK]); 5265 } 5266 5267 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5268 &orig_dev->ptype_specific); 5269 5270 if (unlikely(skb->dev != orig_dev)) { 5271 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5272 &skb->dev->ptype_specific); 5273 } 5274 5275 if (pt_prev) { 5276 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5277 goto drop; 5278 *ppt_prev = pt_prev; 5279 } else { 5280 drop: 5281 if (!deliver_exact) 5282 atomic_long_inc(&skb->dev->rx_dropped); 5283 else 5284 atomic_long_inc(&skb->dev->rx_nohandler); 5285 kfree_skb(skb); 5286 /* Jamal, now you will not able to escape explaining 5287 * me how you were going to use this. :-) 5288 */ 5289 ret = NET_RX_DROP; 5290 } 5291 5292 out: 5293 /* The invariant here is that if *ppt_prev is not NULL 5294 * then skb should also be non-NULL. 5295 * 5296 * Apparently *ppt_prev assignment above holds this invariant due to 5297 * skb dereferencing near it. 5298 */ 5299 *pskb = skb; 5300 return ret; 5301 } 5302 5303 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5304 { 5305 struct net_device *orig_dev = skb->dev; 5306 struct packet_type *pt_prev = NULL; 5307 int ret; 5308 5309 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5310 if (pt_prev) 5311 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5312 skb->dev, pt_prev, orig_dev); 5313 return ret; 5314 } 5315 5316 /** 5317 * netif_receive_skb_core - special purpose version of netif_receive_skb 5318 * @skb: buffer to process 5319 * 5320 * More direct receive version of netif_receive_skb(). It should 5321 * only be used by callers that have a need to skip RPS and Generic XDP. 5322 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5323 * 5324 * This function may only be called from softirq context and interrupts 5325 * should be enabled. 5326 * 5327 * Return values (usually ignored): 5328 * NET_RX_SUCCESS: no congestion 5329 * NET_RX_DROP: packet was dropped 5330 */ 5331 int netif_receive_skb_core(struct sk_buff *skb) 5332 { 5333 int ret; 5334 5335 rcu_read_lock(); 5336 ret = __netif_receive_skb_one_core(skb, false); 5337 rcu_read_unlock(); 5338 5339 return ret; 5340 } 5341 EXPORT_SYMBOL(netif_receive_skb_core); 5342 5343 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5344 struct packet_type *pt_prev, 5345 struct net_device *orig_dev) 5346 { 5347 struct sk_buff *skb, *next; 5348 5349 if (!pt_prev) 5350 return; 5351 if (list_empty(head)) 5352 return; 5353 if (pt_prev->list_func != NULL) 5354 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5355 ip_list_rcv, head, pt_prev, orig_dev); 5356 else 5357 list_for_each_entry_safe(skb, next, head, list) { 5358 skb_list_del_init(skb); 5359 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5360 } 5361 } 5362 5363 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5364 { 5365 /* Fast-path assumptions: 5366 * - There is no RX handler. 5367 * - Only one packet_type matches. 5368 * If either of these fails, we will end up doing some per-packet 5369 * processing in-line, then handling the 'last ptype' for the whole 5370 * sublist. This can't cause out-of-order delivery to any single ptype, 5371 * because the 'last ptype' must be constant across the sublist, and all 5372 * other ptypes are handled per-packet. 5373 */ 5374 /* Current (common) ptype of sublist */ 5375 struct packet_type *pt_curr = NULL; 5376 /* Current (common) orig_dev of sublist */ 5377 struct net_device *od_curr = NULL; 5378 struct list_head sublist; 5379 struct sk_buff *skb, *next; 5380 5381 INIT_LIST_HEAD(&sublist); 5382 list_for_each_entry_safe(skb, next, head, list) { 5383 struct net_device *orig_dev = skb->dev; 5384 struct packet_type *pt_prev = NULL; 5385 5386 skb_list_del_init(skb); 5387 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5388 if (!pt_prev) 5389 continue; 5390 if (pt_curr != pt_prev || od_curr != orig_dev) { 5391 /* dispatch old sublist */ 5392 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5393 /* start new sublist */ 5394 INIT_LIST_HEAD(&sublist); 5395 pt_curr = pt_prev; 5396 od_curr = orig_dev; 5397 } 5398 list_add_tail(&skb->list, &sublist); 5399 } 5400 5401 /* dispatch final sublist */ 5402 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5403 } 5404 5405 static int __netif_receive_skb(struct sk_buff *skb) 5406 { 5407 int ret; 5408 5409 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5410 unsigned int noreclaim_flag; 5411 5412 /* 5413 * PFMEMALLOC skbs are special, they should 5414 * - be delivered to SOCK_MEMALLOC sockets only 5415 * - stay away from userspace 5416 * - have bounded memory usage 5417 * 5418 * Use PF_MEMALLOC as this saves us from propagating the allocation 5419 * context down to all allocation sites. 5420 */ 5421 noreclaim_flag = memalloc_noreclaim_save(); 5422 ret = __netif_receive_skb_one_core(skb, true); 5423 memalloc_noreclaim_restore(noreclaim_flag); 5424 } else 5425 ret = __netif_receive_skb_one_core(skb, false); 5426 5427 return ret; 5428 } 5429 5430 static void __netif_receive_skb_list(struct list_head *head) 5431 { 5432 unsigned long noreclaim_flag = 0; 5433 struct sk_buff *skb, *next; 5434 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5435 5436 list_for_each_entry_safe(skb, next, head, list) { 5437 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5438 struct list_head sublist; 5439 5440 /* Handle the previous sublist */ 5441 list_cut_before(&sublist, head, &skb->list); 5442 if (!list_empty(&sublist)) 5443 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5444 pfmemalloc = !pfmemalloc; 5445 /* See comments in __netif_receive_skb */ 5446 if (pfmemalloc) 5447 noreclaim_flag = memalloc_noreclaim_save(); 5448 else 5449 memalloc_noreclaim_restore(noreclaim_flag); 5450 } 5451 } 5452 /* Handle the remaining sublist */ 5453 if (!list_empty(head)) 5454 __netif_receive_skb_list_core(head, pfmemalloc); 5455 /* Restore pflags */ 5456 if (pfmemalloc) 5457 memalloc_noreclaim_restore(noreclaim_flag); 5458 } 5459 5460 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5461 { 5462 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5463 struct bpf_prog *new = xdp->prog; 5464 int ret = 0; 5465 5466 if (new) { 5467 u32 i; 5468 5469 mutex_lock(&new->aux->used_maps_mutex); 5470 5471 /* generic XDP does not work with DEVMAPs that can 5472 * have a bpf_prog installed on an entry 5473 */ 5474 for (i = 0; i < new->aux->used_map_cnt; i++) { 5475 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5476 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5477 mutex_unlock(&new->aux->used_maps_mutex); 5478 return -EINVAL; 5479 } 5480 } 5481 5482 mutex_unlock(&new->aux->used_maps_mutex); 5483 } 5484 5485 switch (xdp->command) { 5486 case XDP_SETUP_PROG: 5487 rcu_assign_pointer(dev->xdp_prog, new); 5488 if (old) 5489 bpf_prog_put(old); 5490 5491 if (old && !new) { 5492 static_branch_dec(&generic_xdp_needed_key); 5493 } else if (new && !old) { 5494 static_branch_inc(&generic_xdp_needed_key); 5495 dev_disable_lro(dev); 5496 dev_disable_gro_hw(dev); 5497 } 5498 break; 5499 5500 default: 5501 ret = -EINVAL; 5502 break; 5503 } 5504 5505 return ret; 5506 } 5507 5508 static int netif_receive_skb_internal(struct sk_buff *skb) 5509 { 5510 int ret; 5511 5512 net_timestamp_check(netdev_tstamp_prequeue, skb); 5513 5514 if (skb_defer_rx_timestamp(skb)) 5515 return NET_RX_SUCCESS; 5516 5517 rcu_read_lock(); 5518 #ifdef CONFIG_RPS 5519 if (static_branch_unlikely(&rps_needed)) { 5520 struct rps_dev_flow voidflow, *rflow = &voidflow; 5521 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5522 5523 if (cpu >= 0) { 5524 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5525 rcu_read_unlock(); 5526 return ret; 5527 } 5528 } 5529 #endif 5530 ret = __netif_receive_skb(skb); 5531 rcu_read_unlock(); 5532 return ret; 5533 } 5534 5535 static void netif_receive_skb_list_internal(struct list_head *head) 5536 { 5537 struct sk_buff *skb, *next; 5538 struct list_head sublist; 5539 5540 INIT_LIST_HEAD(&sublist); 5541 list_for_each_entry_safe(skb, next, head, list) { 5542 net_timestamp_check(netdev_tstamp_prequeue, skb); 5543 skb_list_del_init(skb); 5544 if (!skb_defer_rx_timestamp(skb)) 5545 list_add_tail(&skb->list, &sublist); 5546 } 5547 list_splice_init(&sublist, head); 5548 5549 rcu_read_lock(); 5550 #ifdef CONFIG_RPS 5551 if (static_branch_unlikely(&rps_needed)) { 5552 list_for_each_entry_safe(skb, next, head, list) { 5553 struct rps_dev_flow voidflow, *rflow = &voidflow; 5554 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5555 5556 if (cpu >= 0) { 5557 /* Will be handled, remove from list */ 5558 skb_list_del_init(skb); 5559 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5560 } 5561 } 5562 } 5563 #endif 5564 __netif_receive_skb_list(head); 5565 rcu_read_unlock(); 5566 } 5567 5568 /** 5569 * netif_receive_skb - process receive buffer from network 5570 * @skb: buffer to process 5571 * 5572 * netif_receive_skb() is the main receive data processing function. 5573 * It always succeeds. The buffer may be dropped during processing 5574 * for congestion control or by the protocol layers. 5575 * 5576 * This function may only be called from softirq context and interrupts 5577 * should be enabled. 5578 * 5579 * Return values (usually ignored): 5580 * NET_RX_SUCCESS: no congestion 5581 * NET_RX_DROP: packet was dropped 5582 */ 5583 int netif_receive_skb(struct sk_buff *skb) 5584 { 5585 int ret; 5586 5587 trace_netif_receive_skb_entry(skb); 5588 5589 ret = netif_receive_skb_internal(skb); 5590 trace_netif_receive_skb_exit(ret); 5591 5592 return ret; 5593 } 5594 EXPORT_SYMBOL(netif_receive_skb); 5595 5596 /** 5597 * netif_receive_skb_list - process many receive buffers from network 5598 * @head: list of skbs to process. 5599 * 5600 * Since return value of netif_receive_skb() is normally ignored, and 5601 * wouldn't be meaningful for a list, this function returns void. 5602 * 5603 * This function may only be called from softirq context and interrupts 5604 * should be enabled. 5605 */ 5606 void netif_receive_skb_list(struct list_head *head) 5607 { 5608 struct sk_buff *skb; 5609 5610 if (list_empty(head)) 5611 return; 5612 if (trace_netif_receive_skb_list_entry_enabled()) { 5613 list_for_each_entry(skb, head, list) 5614 trace_netif_receive_skb_list_entry(skb); 5615 } 5616 netif_receive_skb_list_internal(head); 5617 trace_netif_receive_skb_list_exit(0); 5618 } 5619 EXPORT_SYMBOL(netif_receive_skb_list); 5620 5621 static DEFINE_PER_CPU(struct work_struct, flush_works); 5622 5623 /* Network device is going away, flush any packets still pending */ 5624 static void flush_backlog(struct work_struct *work) 5625 { 5626 struct sk_buff *skb, *tmp; 5627 struct softnet_data *sd; 5628 5629 local_bh_disable(); 5630 sd = this_cpu_ptr(&softnet_data); 5631 5632 local_irq_disable(); 5633 rps_lock(sd); 5634 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5635 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5636 __skb_unlink(skb, &sd->input_pkt_queue); 5637 dev_kfree_skb_irq(skb); 5638 input_queue_head_incr(sd); 5639 } 5640 } 5641 rps_unlock(sd); 5642 local_irq_enable(); 5643 5644 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5645 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5646 __skb_unlink(skb, &sd->process_queue); 5647 kfree_skb(skb); 5648 input_queue_head_incr(sd); 5649 } 5650 } 5651 local_bh_enable(); 5652 } 5653 5654 static bool flush_required(int cpu) 5655 { 5656 #if IS_ENABLED(CONFIG_RPS) 5657 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5658 bool do_flush; 5659 5660 local_irq_disable(); 5661 rps_lock(sd); 5662 5663 /* as insertion into process_queue happens with the rps lock held, 5664 * process_queue access may race only with dequeue 5665 */ 5666 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5667 !skb_queue_empty_lockless(&sd->process_queue); 5668 rps_unlock(sd); 5669 local_irq_enable(); 5670 5671 return do_flush; 5672 #endif 5673 /* without RPS we can't safely check input_pkt_queue: during a 5674 * concurrent remote skb_queue_splice() we can detect as empty both 5675 * input_pkt_queue and process_queue even if the latter could end-up 5676 * containing a lot of packets. 5677 */ 5678 return true; 5679 } 5680 5681 static void flush_all_backlogs(void) 5682 { 5683 static cpumask_t flush_cpus; 5684 unsigned int cpu; 5685 5686 /* since we are under rtnl lock protection we can use static data 5687 * for the cpumask and avoid allocating on stack the possibly 5688 * large mask 5689 */ 5690 ASSERT_RTNL(); 5691 5692 get_online_cpus(); 5693 5694 cpumask_clear(&flush_cpus); 5695 for_each_online_cpu(cpu) { 5696 if (flush_required(cpu)) { 5697 queue_work_on(cpu, system_highpri_wq, 5698 per_cpu_ptr(&flush_works, cpu)); 5699 cpumask_set_cpu(cpu, &flush_cpus); 5700 } 5701 } 5702 5703 /* we can have in flight packet[s] on the cpus we are not flushing, 5704 * synchronize_net() in rollback_registered_many() will take care of 5705 * them 5706 */ 5707 for_each_cpu(cpu, &flush_cpus) 5708 flush_work(per_cpu_ptr(&flush_works, cpu)); 5709 5710 put_online_cpus(); 5711 } 5712 5713 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5714 static void gro_normal_list(struct napi_struct *napi) 5715 { 5716 if (!napi->rx_count) 5717 return; 5718 netif_receive_skb_list_internal(&napi->rx_list); 5719 INIT_LIST_HEAD(&napi->rx_list); 5720 napi->rx_count = 0; 5721 } 5722 5723 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5724 * pass the whole batch up to the stack. 5725 */ 5726 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5727 { 5728 list_add_tail(&skb->list, &napi->rx_list); 5729 if (++napi->rx_count >= gro_normal_batch) 5730 gro_normal_list(napi); 5731 } 5732 5733 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5734 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5735 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5736 { 5737 struct packet_offload *ptype; 5738 __be16 type = skb->protocol; 5739 struct list_head *head = &offload_base; 5740 int err = -ENOENT; 5741 5742 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5743 5744 if (NAPI_GRO_CB(skb)->count == 1) { 5745 skb_shinfo(skb)->gso_size = 0; 5746 goto out; 5747 } 5748 5749 rcu_read_lock(); 5750 list_for_each_entry_rcu(ptype, head, list) { 5751 if (ptype->type != type || !ptype->callbacks.gro_complete) 5752 continue; 5753 5754 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5755 ipv6_gro_complete, inet_gro_complete, 5756 skb, 0); 5757 break; 5758 } 5759 rcu_read_unlock(); 5760 5761 if (err) { 5762 WARN_ON(&ptype->list == head); 5763 kfree_skb(skb); 5764 return NET_RX_SUCCESS; 5765 } 5766 5767 out: 5768 gro_normal_one(napi, skb); 5769 return NET_RX_SUCCESS; 5770 } 5771 5772 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5773 bool flush_old) 5774 { 5775 struct list_head *head = &napi->gro_hash[index].list; 5776 struct sk_buff *skb, *p; 5777 5778 list_for_each_entry_safe_reverse(skb, p, head, list) { 5779 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5780 return; 5781 skb_list_del_init(skb); 5782 napi_gro_complete(napi, skb); 5783 napi->gro_hash[index].count--; 5784 } 5785 5786 if (!napi->gro_hash[index].count) 5787 __clear_bit(index, &napi->gro_bitmask); 5788 } 5789 5790 /* napi->gro_hash[].list contains packets ordered by age. 5791 * youngest packets at the head of it. 5792 * Complete skbs in reverse order to reduce latencies. 5793 */ 5794 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5795 { 5796 unsigned long bitmask = napi->gro_bitmask; 5797 unsigned int i, base = ~0U; 5798 5799 while ((i = ffs(bitmask)) != 0) { 5800 bitmask >>= i; 5801 base += i; 5802 __napi_gro_flush_chain(napi, base, flush_old); 5803 } 5804 } 5805 EXPORT_SYMBOL(napi_gro_flush); 5806 5807 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5808 struct sk_buff *skb) 5809 { 5810 unsigned int maclen = skb->dev->hard_header_len; 5811 u32 hash = skb_get_hash_raw(skb); 5812 struct list_head *head; 5813 struct sk_buff *p; 5814 5815 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5816 list_for_each_entry(p, head, list) { 5817 unsigned long diffs; 5818 5819 NAPI_GRO_CB(p)->flush = 0; 5820 5821 if (hash != skb_get_hash_raw(p)) { 5822 NAPI_GRO_CB(p)->same_flow = 0; 5823 continue; 5824 } 5825 5826 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5827 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5828 if (skb_vlan_tag_present(p)) 5829 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5830 diffs |= skb_metadata_dst_cmp(p, skb); 5831 diffs |= skb_metadata_differs(p, skb); 5832 if (maclen == ETH_HLEN) 5833 diffs |= compare_ether_header(skb_mac_header(p), 5834 skb_mac_header(skb)); 5835 else if (!diffs) 5836 diffs = memcmp(skb_mac_header(p), 5837 skb_mac_header(skb), 5838 maclen); 5839 NAPI_GRO_CB(p)->same_flow = !diffs; 5840 } 5841 5842 return head; 5843 } 5844 5845 static void skb_gro_reset_offset(struct sk_buff *skb) 5846 { 5847 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5848 const skb_frag_t *frag0 = &pinfo->frags[0]; 5849 5850 NAPI_GRO_CB(skb)->data_offset = 0; 5851 NAPI_GRO_CB(skb)->frag0 = NULL; 5852 NAPI_GRO_CB(skb)->frag0_len = 0; 5853 5854 if (!skb_headlen(skb) && pinfo->nr_frags && 5855 !PageHighMem(skb_frag_page(frag0))) { 5856 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5857 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5858 skb_frag_size(frag0), 5859 skb->end - skb->tail); 5860 } 5861 } 5862 5863 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5864 { 5865 struct skb_shared_info *pinfo = skb_shinfo(skb); 5866 5867 BUG_ON(skb->end - skb->tail < grow); 5868 5869 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5870 5871 skb->data_len -= grow; 5872 skb->tail += grow; 5873 5874 skb_frag_off_add(&pinfo->frags[0], grow); 5875 skb_frag_size_sub(&pinfo->frags[0], grow); 5876 5877 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5878 skb_frag_unref(skb, 0); 5879 memmove(pinfo->frags, pinfo->frags + 1, 5880 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5881 } 5882 } 5883 5884 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5885 { 5886 struct sk_buff *oldest; 5887 5888 oldest = list_last_entry(head, struct sk_buff, list); 5889 5890 /* We are called with head length >= MAX_GRO_SKBS, so this is 5891 * impossible. 5892 */ 5893 if (WARN_ON_ONCE(!oldest)) 5894 return; 5895 5896 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5897 * SKB to the chain. 5898 */ 5899 skb_list_del_init(oldest); 5900 napi_gro_complete(napi, oldest); 5901 } 5902 5903 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5904 struct sk_buff *)); 5905 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5906 struct sk_buff *)); 5907 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5908 { 5909 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5910 struct list_head *head = &offload_base; 5911 struct packet_offload *ptype; 5912 __be16 type = skb->protocol; 5913 struct list_head *gro_head; 5914 struct sk_buff *pp = NULL; 5915 enum gro_result ret; 5916 int same_flow; 5917 int grow; 5918 5919 if (netif_elide_gro(skb->dev)) 5920 goto normal; 5921 5922 gro_head = gro_list_prepare(napi, skb); 5923 5924 rcu_read_lock(); 5925 list_for_each_entry_rcu(ptype, head, list) { 5926 if (ptype->type != type || !ptype->callbacks.gro_receive) 5927 continue; 5928 5929 skb_set_network_header(skb, skb_gro_offset(skb)); 5930 skb_reset_mac_len(skb); 5931 NAPI_GRO_CB(skb)->same_flow = 0; 5932 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5933 NAPI_GRO_CB(skb)->free = 0; 5934 NAPI_GRO_CB(skb)->encap_mark = 0; 5935 NAPI_GRO_CB(skb)->recursion_counter = 0; 5936 NAPI_GRO_CB(skb)->is_fou = 0; 5937 NAPI_GRO_CB(skb)->is_atomic = 1; 5938 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5939 5940 /* Setup for GRO checksum validation */ 5941 switch (skb->ip_summed) { 5942 case CHECKSUM_COMPLETE: 5943 NAPI_GRO_CB(skb)->csum = skb->csum; 5944 NAPI_GRO_CB(skb)->csum_valid = 1; 5945 NAPI_GRO_CB(skb)->csum_cnt = 0; 5946 break; 5947 case CHECKSUM_UNNECESSARY: 5948 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5949 NAPI_GRO_CB(skb)->csum_valid = 0; 5950 break; 5951 default: 5952 NAPI_GRO_CB(skb)->csum_cnt = 0; 5953 NAPI_GRO_CB(skb)->csum_valid = 0; 5954 } 5955 5956 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5957 ipv6_gro_receive, inet_gro_receive, 5958 gro_head, skb); 5959 break; 5960 } 5961 rcu_read_unlock(); 5962 5963 if (&ptype->list == head) 5964 goto normal; 5965 5966 if (PTR_ERR(pp) == -EINPROGRESS) { 5967 ret = GRO_CONSUMED; 5968 goto ok; 5969 } 5970 5971 same_flow = NAPI_GRO_CB(skb)->same_flow; 5972 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5973 5974 if (pp) { 5975 skb_list_del_init(pp); 5976 napi_gro_complete(napi, pp); 5977 napi->gro_hash[hash].count--; 5978 } 5979 5980 if (same_flow) 5981 goto ok; 5982 5983 if (NAPI_GRO_CB(skb)->flush) 5984 goto normal; 5985 5986 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5987 gro_flush_oldest(napi, gro_head); 5988 } else { 5989 napi->gro_hash[hash].count++; 5990 } 5991 NAPI_GRO_CB(skb)->count = 1; 5992 NAPI_GRO_CB(skb)->age = jiffies; 5993 NAPI_GRO_CB(skb)->last = skb; 5994 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5995 list_add(&skb->list, gro_head); 5996 ret = GRO_HELD; 5997 5998 pull: 5999 grow = skb_gro_offset(skb) - skb_headlen(skb); 6000 if (grow > 0) 6001 gro_pull_from_frag0(skb, grow); 6002 ok: 6003 if (napi->gro_hash[hash].count) { 6004 if (!test_bit(hash, &napi->gro_bitmask)) 6005 __set_bit(hash, &napi->gro_bitmask); 6006 } else if (test_bit(hash, &napi->gro_bitmask)) { 6007 __clear_bit(hash, &napi->gro_bitmask); 6008 } 6009 6010 return ret; 6011 6012 normal: 6013 ret = GRO_NORMAL; 6014 goto pull; 6015 } 6016 6017 struct packet_offload *gro_find_receive_by_type(__be16 type) 6018 { 6019 struct list_head *offload_head = &offload_base; 6020 struct packet_offload *ptype; 6021 6022 list_for_each_entry_rcu(ptype, offload_head, list) { 6023 if (ptype->type != type || !ptype->callbacks.gro_receive) 6024 continue; 6025 return ptype; 6026 } 6027 return NULL; 6028 } 6029 EXPORT_SYMBOL(gro_find_receive_by_type); 6030 6031 struct packet_offload *gro_find_complete_by_type(__be16 type) 6032 { 6033 struct list_head *offload_head = &offload_base; 6034 struct packet_offload *ptype; 6035 6036 list_for_each_entry_rcu(ptype, offload_head, list) { 6037 if (ptype->type != type || !ptype->callbacks.gro_complete) 6038 continue; 6039 return ptype; 6040 } 6041 return NULL; 6042 } 6043 EXPORT_SYMBOL(gro_find_complete_by_type); 6044 6045 static void napi_skb_free_stolen_head(struct sk_buff *skb) 6046 { 6047 skb_dst_drop(skb); 6048 skb_ext_put(skb); 6049 kmem_cache_free(skbuff_head_cache, skb); 6050 } 6051 6052 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6053 struct sk_buff *skb, 6054 gro_result_t ret) 6055 { 6056 switch (ret) { 6057 case GRO_NORMAL: 6058 gro_normal_one(napi, skb); 6059 break; 6060 6061 case GRO_DROP: 6062 kfree_skb(skb); 6063 break; 6064 6065 case GRO_MERGED_FREE: 6066 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6067 napi_skb_free_stolen_head(skb); 6068 else 6069 __kfree_skb(skb); 6070 break; 6071 6072 case GRO_HELD: 6073 case GRO_MERGED: 6074 case GRO_CONSUMED: 6075 break; 6076 } 6077 6078 return ret; 6079 } 6080 6081 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6082 { 6083 gro_result_t ret; 6084 6085 skb_mark_napi_id(skb, napi); 6086 trace_napi_gro_receive_entry(skb); 6087 6088 skb_gro_reset_offset(skb); 6089 6090 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6091 trace_napi_gro_receive_exit(ret); 6092 6093 return ret; 6094 } 6095 EXPORT_SYMBOL(napi_gro_receive); 6096 6097 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6098 { 6099 if (unlikely(skb->pfmemalloc)) { 6100 consume_skb(skb); 6101 return; 6102 } 6103 __skb_pull(skb, skb_headlen(skb)); 6104 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6105 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6106 __vlan_hwaccel_clear_tag(skb); 6107 skb->dev = napi->dev; 6108 skb->skb_iif = 0; 6109 6110 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6111 skb->pkt_type = PACKET_HOST; 6112 6113 skb->encapsulation = 0; 6114 skb_shinfo(skb)->gso_type = 0; 6115 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6116 skb_ext_reset(skb); 6117 6118 napi->skb = skb; 6119 } 6120 6121 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6122 { 6123 struct sk_buff *skb = napi->skb; 6124 6125 if (!skb) { 6126 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6127 if (skb) { 6128 napi->skb = skb; 6129 skb_mark_napi_id(skb, napi); 6130 } 6131 } 6132 return skb; 6133 } 6134 EXPORT_SYMBOL(napi_get_frags); 6135 6136 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6137 struct sk_buff *skb, 6138 gro_result_t ret) 6139 { 6140 switch (ret) { 6141 case GRO_NORMAL: 6142 case GRO_HELD: 6143 __skb_push(skb, ETH_HLEN); 6144 skb->protocol = eth_type_trans(skb, skb->dev); 6145 if (ret == GRO_NORMAL) 6146 gro_normal_one(napi, skb); 6147 break; 6148 6149 case GRO_DROP: 6150 napi_reuse_skb(napi, skb); 6151 break; 6152 6153 case GRO_MERGED_FREE: 6154 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6155 napi_skb_free_stolen_head(skb); 6156 else 6157 napi_reuse_skb(napi, skb); 6158 break; 6159 6160 case GRO_MERGED: 6161 case GRO_CONSUMED: 6162 break; 6163 } 6164 6165 return ret; 6166 } 6167 6168 /* Upper GRO stack assumes network header starts at gro_offset=0 6169 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6170 * We copy ethernet header into skb->data to have a common layout. 6171 */ 6172 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6173 { 6174 struct sk_buff *skb = napi->skb; 6175 const struct ethhdr *eth; 6176 unsigned int hlen = sizeof(*eth); 6177 6178 napi->skb = NULL; 6179 6180 skb_reset_mac_header(skb); 6181 skb_gro_reset_offset(skb); 6182 6183 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6184 eth = skb_gro_header_slow(skb, hlen, 0); 6185 if (unlikely(!eth)) { 6186 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6187 __func__, napi->dev->name); 6188 napi_reuse_skb(napi, skb); 6189 return NULL; 6190 } 6191 } else { 6192 eth = (const struct ethhdr *)skb->data; 6193 gro_pull_from_frag0(skb, hlen); 6194 NAPI_GRO_CB(skb)->frag0 += hlen; 6195 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6196 } 6197 __skb_pull(skb, hlen); 6198 6199 /* 6200 * This works because the only protocols we care about don't require 6201 * special handling. 6202 * We'll fix it up properly in napi_frags_finish() 6203 */ 6204 skb->protocol = eth->h_proto; 6205 6206 return skb; 6207 } 6208 6209 gro_result_t napi_gro_frags(struct napi_struct *napi) 6210 { 6211 gro_result_t ret; 6212 struct sk_buff *skb = napi_frags_skb(napi); 6213 6214 if (!skb) 6215 return GRO_DROP; 6216 6217 trace_napi_gro_frags_entry(skb); 6218 6219 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6220 trace_napi_gro_frags_exit(ret); 6221 6222 return ret; 6223 } 6224 EXPORT_SYMBOL(napi_gro_frags); 6225 6226 /* Compute the checksum from gro_offset and return the folded value 6227 * after adding in any pseudo checksum. 6228 */ 6229 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6230 { 6231 __wsum wsum; 6232 __sum16 sum; 6233 6234 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6235 6236 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6237 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6238 /* See comments in __skb_checksum_complete(). */ 6239 if (likely(!sum)) { 6240 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6241 !skb->csum_complete_sw) 6242 netdev_rx_csum_fault(skb->dev, skb); 6243 } 6244 6245 NAPI_GRO_CB(skb)->csum = wsum; 6246 NAPI_GRO_CB(skb)->csum_valid = 1; 6247 6248 return sum; 6249 } 6250 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6251 6252 static void net_rps_send_ipi(struct softnet_data *remsd) 6253 { 6254 #ifdef CONFIG_RPS 6255 while (remsd) { 6256 struct softnet_data *next = remsd->rps_ipi_next; 6257 6258 if (cpu_online(remsd->cpu)) 6259 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6260 remsd = next; 6261 } 6262 #endif 6263 } 6264 6265 /* 6266 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6267 * Note: called with local irq disabled, but exits with local irq enabled. 6268 */ 6269 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6270 { 6271 #ifdef CONFIG_RPS 6272 struct softnet_data *remsd = sd->rps_ipi_list; 6273 6274 if (remsd) { 6275 sd->rps_ipi_list = NULL; 6276 6277 local_irq_enable(); 6278 6279 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6280 net_rps_send_ipi(remsd); 6281 } else 6282 #endif 6283 local_irq_enable(); 6284 } 6285 6286 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6287 { 6288 #ifdef CONFIG_RPS 6289 return sd->rps_ipi_list != NULL; 6290 #else 6291 return false; 6292 #endif 6293 } 6294 6295 static int process_backlog(struct napi_struct *napi, int quota) 6296 { 6297 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6298 bool again = true; 6299 int work = 0; 6300 6301 /* Check if we have pending ipi, its better to send them now, 6302 * not waiting net_rx_action() end. 6303 */ 6304 if (sd_has_rps_ipi_waiting(sd)) { 6305 local_irq_disable(); 6306 net_rps_action_and_irq_enable(sd); 6307 } 6308 6309 napi->weight = dev_rx_weight; 6310 while (again) { 6311 struct sk_buff *skb; 6312 6313 while ((skb = __skb_dequeue(&sd->process_queue))) { 6314 rcu_read_lock(); 6315 __netif_receive_skb(skb); 6316 rcu_read_unlock(); 6317 input_queue_head_incr(sd); 6318 if (++work >= quota) 6319 return work; 6320 6321 } 6322 6323 local_irq_disable(); 6324 rps_lock(sd); 6325 if (skb_queue_empty(&sd->input_pkt_queue)) { 6326 /* 6327 * Inline a custom version of __napi_complete(). 6328 * only current cpu owns and manipulates this napi, 6329 * and NAPI_STATE_SCHED is the only possible flag set 6330 * on backlog. 6331 * We can use a plain write instead of clear_bit(), 6332 * and we dont need an smp_mb() memory barrier. 6333 */ 6334 napi->state = 0; 6335 again = false; 6336 } else { 6337 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6338 &sd->process_queue); 6339 } 6340 rps_unlock(sd); 6341 local_irq_enable(); 6342 } 6343 6344 return work; 6345 } 6346 6347 /** 6348 * __napi_schedule - schedule for receive 6349 * @n: entry to schedule 6350 * 6351 * The entry's receive function will be scheduled to run. 6352 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6353 */ 6354 void __napi_schedule(struct napi_struct *n) 6355 { 6356 unsigned long flags; 6357 6358 local_irq_save(flags); 6359 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6360 local_irq_restore(flags); 6361 } 6362 EXPORT_SYMBOL(__napi_schedule); 6363 6364 /** 6365 * napi_schedule_prep - check if napi can be scheduled 6366 * @n: napi context 6367 * 6368 * Test if NAPI routine is already running, and if not mark 6369 * it as running. This is used as a condition variable to 6370 * insure only one NAPI poll instance runs. We also make 6371 * sure there is no pending NAPI disable. 6372 */ 6373 bool napi_schedule_prep(struct napi_struct *n) 6374 { 6375 unsigned long val, new; 6376 6377 do { 6378 val = READ_ONCE(n->state); 6379 if (unlikely(val & NAPIF_STATE_DISABLE)) 6380 return false; 6381 new = val | NAPIF_STATE_SCHED; 6382 6383 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6384 * This was suggested by Alexander Duyck, as compiler 6385 * emits better code than : 6386 * if (val & NAPIF_STATE_SCHED) 6387 * new |= NAPIF_STATE_MISSED; 6388 */ 6389 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6390 NAPIF_STATE_MISSED; 6391 } while (cmpxchg(&n->state, val, new) != val); 6392 6393 return !(val & NAPIF_STATE_SCHED); 6394 } 6395 EXPORT_SYMBOL(napi_schedule_prep); 6396 6397 /** 6398 * __napi_schedule_irqoff - schedule for receive 6399 * @n: entry to schedule 6400 * 6401 * Variant of __napi_schedule() assuming hard irqs are masked 6402 */ 6403 void __napi_schedule_irqoff(struct napi_struct *n) 6404 { 6405 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6406 } 6407 EXPORT_SYMBOL(__napi_schedule_irqoff); 6408 6409 bool napi_complete_done(struct napi_struct *n, int work_done) 6410 { 6411 unsigned long flags, val, new, timeout = 0; 6412 bool ret = true; 6413 6414 /* 6415 * 1) Don't let napi dequeue from the cpu poll list 6416 * just in case its running on a different cpu. 6417 * 2) If we are busy polling, do nothing here, we have 6418 * the guarantee we will be called later. 6419 */ 6420 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6421 NAPIF_STATE_IN_BUSY_POLL))) 6422 return false; 6423 6424 if (work_done) { 6425 if (n->gro_bitmask) 6426 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6427 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6428 } 6429 if (n->defer_hard_irqs_count > 0) { 6430 n->defer_hard_irqs_count--; 6431 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6432 if (timeout) 6433 ret = false; 6434 } 6435 if (n->gro_bitmask) { 6436 /* When the NAPI instance uses a timeout and keeps postponing 6437 * it, we need to bound somehow the time packets are kept in 6438 * the GRO layer 6439 */ 6440 napi_gro_flush(n, !!timeout); 6441 } 6442 6443 gro_normal_list(n); 6444 6445 if (unlikely(!list_empty(&n->poll_list))) { 6446 /* If n->poll_list is not empty, we need to mask irqs */ 6447 local_irq_save(flags); 6448 list_del_init(&n->poll_list); 6449 local_irq_restore(flags); 6450 } 6451 6452 do { 6453 val = READ_ONCE(n->state); 6454 6455 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6456 6457 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6458 6459 /* If STATE_MISSED was set, leave STATE_SCHED set, 6460 * because we will call napi->poll() one more time. 6461 * This C code was suggested by Alexander Duyck to help gcc. 6462 */ 6463 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6464 NAPIF_STATE_SCHED; 6465 } while (cmpxchg(&n->state, val, new) != val); 6466 6467 if (unlikely(val & NAPIF_STATE_MISSED)) { 6468 __napi_schedule(n); 6469 return false; 6470 } 6471 6472 if (timeout) 6473 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6474 HRTIMER_MODE_REL_PINNED); 6475 return ret; 6476 } 6477 EXPORT_SYMBOL(napi_complete_done); 6478 6479 /* must be called under rcu_read_lock(), as we dont take a reference */ 6480 static struct napi_struct *napi_by_id(unsigned int napi_id) 6481 { 6482 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6483 struct napi_struct *napi; 6484 6485 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6486 if (napi->napi_id == napi_id) 6487 return napi; 6488 6489 return NULL; 6490 } 6491 6492 #if defined(CONFIG_NET_RX_BUSY_POLL) 6493 6494 #define BUSY_POLL_BUDGET 8 6495 6496 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6497 { 6498 int rc; 6499 6500 /* Busy polling means there is a high chance device driver hard irq 6501 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6502 * set in napi_schedule_prep(). 6503 * Since we are about to call napi->poll() once more, we can safely 6504 * clear NAPI_STATE_MISSED. 6505 * 6506 * Note: x86 could use a single "lock and ..." instruction 6507 * to perform these two clear_bit() 6508 */ 6509 clear_bit(NAPI_STATE_MISSED, &napi->state); 6510 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6511 6512 local_bh_disable(); 6513 6514 /* All we really want here is to re-enable device interrupts. 6515 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6516 */ 6517 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6518 /* We can't gro_normal_list() here, because napi->poll() might have 6519 * rearmed the napi (napi_complete_done()) in which case it could 6520 * already be running on another CPU. 6521 */ 6522 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6523 netpoll_poll_unlock(have_poll_lock); 6524 if (rc == BUSY_POLL_BUDGET) { 6525 /* As the whole budget was spent, we still own the napi so can 6526 * safely handle the rx_list. 6527 */ 6528 gro_normal_list(napi); 6529 __napi_schedule(napi); 6530 } 6531 local_bh_enable(); 6532 } 6533 6534 void napi_busy_loop(unsigned int napi_id, 6535 bool (*loop_end)(void *, unsigned long), 6536 void *loop_end_arg) 6537 { 6538 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6539 int (*napi_poll)(struct napi_struct *napi, int budget); 6540 void *have_poll_lock = NULL; 6541 struct napi_struct *napi; 6542 6543 restart: 6544 napi_poll = NULL; 6545 6546 rcu_read_lock(); 6547 6548 napi = napi_by_id(napi_id); 6549 if (!napi) 6550 goto out; 6551 6552 preempt_disable(); 6553 for (;;) { 6554 int work = 0; 6555 6556 local_bh_disable(); 6557 if (!napi_poll) { 6558 unsigned long val = READ_ONCE(napi->state); 6559 6560 /* If multiple threads are competing for this napi, 6561 * we avoid dirtying napi->state as much as we can. 6562 */ 6563 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6564 NAPIF_STATE_IN_BUSY_POLL)) 6565 goto count; 6566 if (cmpxchg(&napi->state, val, 6567 val | NAPIF_STATE_IN_BUSY_POLL | 6568 NAPIF_STATE_SCHED) != val) 6569 goto count; 6570 have_poll_lock = netpoll_poll_lock(napi); 6571 napi_poll = napi->poll; 6572 } 6573 work = napi_poll(napi, BUSY_POLL_BUDGET); 6574 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6575 gro_normal_list(napi); 6576 count: 6577 if (work > 0) 6578 __NET_ADD_STATS(dev_net(napi->dev), 6579 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6580 local_bh_enable(); 6581 6582 if (!loop_end || loop_end(loop_end_arg, start_time)) 6583 break; 6584 6585 if (unlikely(need_resched())) { 6586 if (napi_poll) 6587 busy_poll_stop(napi, have_poll_lock); 6588 preempt_enable(); 6589 rcu_read_unlock(); 6590 cond_resched(); 6591 if (loop_end(loop_end_arg, start_time)) 6592 return; 6593 goto restart; 6594 } 6595 cpu_relax(); 6596 } 6597 if (napi_poll) 6598 busy_poll_stop(napi, have_poll_lock); 6599 preempt_enable(); 6600 out: 6601 rcu_read_unlock(); 6602 } 6603 EXPORT_SYMBOL(napi_busy_loop); 6604 6605 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6606 6607 static void napi_hash_add(struct napi_struct *napi) 6608 { 6609 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6610 return; 6611 6612 spin_lock(&napi_hash_lock); 6613 6614 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6615 do { 6616 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6617 napi_gen_id = MIN_NAPI_ID; 6618 } while (napi_by_id(napi_gen_id)); 6619 napi->napi_id = napi_gen_id; 6620 6621 hlist_add_head_rcu(&napi->napi_hash_node, 6622 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6623 6624 spin_unlock(&napi_hash_lock); 6625 } 6626 6627 /* Warning : caller is responsible to make sure rcu grace period 6628 * is respected before freeing memory containing @napi 6629 */ 6630 static void napi_hash_del(struct napi_struct *napi) 6631 { 6632 spin_lock(&napi_hash_lock); 6633 6634 hlist_del_init_rcu(&napi->napi_hash_node); 6635 6636 spin_unlock(&napi_hash_lock); 6637 } 6638 6639 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6640 { 6641 struct napi_struct *napi; 6642 6643 napi = container_of(timer, struct napi_struct, timer); 6644 6645 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6646 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6647 */ 6648 if (!napi_disable_pending(napi) && 6649 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6650 __napi_schedule_irqoff(napi); 6651 6652 return HRTIMER_NORESTART; 6653 } 6654 6655 static void init_gro_hash(struct napi_struct *napi) 6656 { 6657 int i; 6658 6659 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6660 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6661 napi->gro_hash[i].count = 0; 6662 } 6663 napi->gro_bitmask = 0; 6664 } 6665 6666 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6667 int (*poll)(struct napi_struct *, int), int weight) 6668 { 6669 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6670 return; 6671 6672 INIT_LIST_HEAD(&napi->poll_list); 6673 INIT_HLIST_NODE(&napi->napi_hash_node); 6674 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6675 napi->timer.function = napi_watchdog; 6676 init_gro_hash(napi); 6677 napi->skb = NULL; 6678 INIT_LIST_HEAD(&napi->rx_list); 6679 napi->rx_count = 0; 6680 napi->poll = poll; 6681 if (weight > NAPI_POLL_WEIGHT) 6682 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6683 weight); 6684 napi->weight = weight; 6685 napi->dev = dev; 6686 #ifdef CONFIG_NETPOLL 6687 napi->poll_owner = -1; 6688 #endif 6689 set_bit(NAPI_STATE_SCHED, &napi->state); 6690 set_bit(NAPI_STATE_NPSVC, &napi->state); 6691 list_add_rcu(&napi->dev_list, &dev->napi_list); 6692 napi_hash_add(napi); 6693 } 6694 EXPORT_SYMBOL(netif_napi_add); 6695 6696 void napi_disable(struct napi_struct *n) 6697 { 6698 might_sleep(); 6699 set_bit(NAPI_STATE_DISABLE, &n->state); 6700 6701 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6702 msleep(1); 6703 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6704 msleep(1); 6705 6706 hrtimer_cancel(&n->timer); 6707 6708 clear_bit(NAPI_STATE_DISABLE, &n->state); 6709 } 6710 EXPORT_SYMBOL(napi_disable); 6711 6712 static void flush_gro_hash(struct napi_struct *napi) 6713 { 6714 int i; 6715 6716 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6717 struct sk_buff *skb, *n; 6718 6719 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6720 kfree_skb(skb); 6721 napi->gro_hash[i].count = 0; 6722 } 6723 } 6724 6725 /* Must be called in process context */ 6726 void __netif_napi_del(struct napi_struct *napi) 6727 { 6728 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6729 return; 6730 6731 napi_hash_del(napi); 6732 list_del_rcu(&napi->dev_list); 6733 napi_free_frags(napi); 6734 6735 flush_gro_hash(napi); 6736 napi->gro_bitmask = 0; 6737 } 6738 EXPORT_SYMBOL(__netif_napi_del); 6739 6740 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6741 { 6742 void *have; 6743 int work, weight; 6744 6745 list_del_init(&n->poll_list); 6746 6747 have = netpoll_poll_lock(n); 6748 6749 weight = n->weight; 6750 6751 /* This NAPI_STATE_SCHED test is for avoiding a race 6752 * with netpoll's poll_napi(). Only the entity which 6753 * obtains the lock and sees NAPI_STATE_SCHED set will 6754 * actually make the ->poll() call. Therefore we avoid 6755 * accidentally calling ->poll() when NAPI is not scheduled. 6756 */ 6757 work = 0; 6758 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6759 work = n->poll(n, weight); 6760 trace_napi_poll(n, work, weight); 6761 } 6762 6763 if (unlikely(work > weight)) 6764 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6765 n->poll, work, weight); 6766 6767 if (likely(work < weight)) 6768 goto out_unlock; 6769 6770 /* Drivers must not modify the NAPI state if they 6771 * consume the entire weight. In such cases this code 6772 * still "owns" the NAPI instance and therefore can 6773 * move the instance around on the list at-will. 6774 */ 6775 if (unlikely(napi_disable_pending(n))) { 6776 napi_complete(n); 6777 goto out_unlock; 6778 } 6779 6780 if (n->gro_bitmask) { 6781 /* flush too old packets 6782 * If HZ < 1000, flush all packets. 6783 */ 6784 napi_gro_flush(n, HZ >= 1000); 6785 } 6786 6787 gro_normal_list(n); 6788 6789 /* Some drivers may have called napi_schedule 6790 * prior to exhausting their budget. 6791 */ 6792 if (unlikely(!list_empty(&n->poll_list))) { 6793 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6794 n->dev ? n->dev->name : "backlog"); 6795 goto out_unlock; 6796 } 6797 6798 list_add_tail(&n->poll_list, repoll); 6799 6800 out_unlock: 6801 netpoll_poll_unlock(have); 6802 6803 return work; 6804 } 6805 6806 static __latent_entropy void net_rx_action(struct softirq_action *h) 6807 { 6808 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6809 unsigned long time_limit = jiffies + 6810 usecs_to_jiffies(netdev_budget_usecs); 6811 int budget = netdev_budget; 6812 LIST_HEAD(list); 6813 LIST_HEAD(repoll); 6814 6815 local_irq_disable(); 6816 list_splice_init(&sd->poll_list, &list); 6817 local_irq_enable(); 6818 6819 for (;;) { 6820 struct napi_struct *n; 6821 6822 if (list_empty(&list)) { 6823 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6824 goto out; 6825 break; 6826 } 6827 6828 n = list_first_entry(&list, struct napi_struct, poll_list); 6829 budget -= napi_poll(n, &repoll); 6830 6831 /* If softirq window is exhausted then punt. 6832 * Allow this to run for 2 jiffies since which will allow 6833 * an average latency of 1.5/HZ. 6834 */ 6835 if (unlikely(budget <= 0 || 6836 time_after_eq(jiffies, time_limit))) { 6837 sd->time_squeeze++; 6838 break; 6839 } 6840 } 6841 6842 local_irq_disable(); 6843 6844 list_splice_tail_init(&sd->poll_list, &list); 6845 list_splice_tail(&repoll, &list); 6846 list_splice(&list, &sd->poll_list); 6847 if (!list_empty(&sd->poll_list)) 6848 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6849 6850 net_rps_action_and_irq_enable(sd); 6851 out: 6852 __kfree_skb_flush(); 6853 } 6854 6855 struct netdev_adjacent { 6856 struct net_device *dev; 6857 6858 /* upper master flag, there can only be one master device per list */ 6859 bool master; 6860 6861 /* lookup ignore flag */ 6862 bool ignore; 6863 6864 /* counter for the number of times this device was added to us */ 6865 u16 ref_nr; 6866 6867 /* private field for the users */ 6868 void *private; 6869 6870 struct list_head list; 6871 struct rcu_head rcu; 6872 }; 6873 6874 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6875 struct list_head *adj_list) 6876 { 6877 struct netdev_adjacent *adj; 6878 6879 list_for_each_entry(adj, adj_list, list) { 6880 if (adj->dev == adj_dev) 6881 return adj; 6882 } 6883 return NULL; 6884 } 6885 6886 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6887 struct netdev_nested_priv *priv) 6888 { 6889 struct net_device *dev = (struct net_device *)priv->data; 6890 6891 return upper_dev == dev; 6892 } 6893 6894 /** 6895 * netdev_has_upper_dev - Check if device is linked to an upper device 6896 * @dev: device 6897 * @upper_dev: upper device to check 6898 * 6899 * Find out if a device is linked to specified upper device and return true 6900 * in case it is. Note that this checks only immediate upper device, 6901 * not through a complete stack of devices. The caller must hold the RTNL lock. 6902 */ 6903 bool netdev_has_upper_dev(struct net_device *dev, 6904 struct net_device *upper_dev) 6905 { 6906 struct netdev_nested_priv priv = { 6907 .data = (void *)upper_dev, 6908 }; 6909 6910 ASSERT_RTNL(); 6911 6912 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6913 &priv); 6914 } 6915 EXPORT_SYMBOL(netdev_has_upper_dev); 6916 6917 /** 6918 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6919 * @dev: device 6920 * @upper_dev: upper device to check 6921 * 6922 * Find out if a device is linked to specified upper device and return true 6923 * in case it is. Note that this checks the entire upper device chain. 6924 * The caller must hold rcu lock. 6925 */ 6926 6927 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6928 struct net_device *upper_dev) 6929 { 6930 struct netdev_nested_priv priv = { 6931 .data = (void *)upper_dev, 6932 }; 6933 6934 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6935 &priv); 6936 } 6937 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6938 6939 /** 6940 * netdev_has_any_upper_dev - Check if device is linked to some device 6941 * @dev: device 6942 * 6943 * Find out if a device is linked to an upper device and return true in case 6944 * it is. The caller must hold the RTNL lock. 6945 */ 6946 bool netdev_has_any_upper_dev(struct net_device *dev) 6947 { 6948 ASSERT_RTNL(); 6949 6950 return !list_empty(&dev->adj_list.upper); 6951 } 6952 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6953 6954 /** 6955 * netdev_master_upper_dev_get - Get master upper device 6956 * @dev: device 6957 * 6958 * Find a master upper device and return pointer to it or NULL in case 6959 * it's not there. The caller must hold the RTNL lock. 6960 */ 6961 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6962 { 6963 struct netdev_adjacent *upper; 6964 6965 ASSERT_RTNL(); 6966 6967 if (list_empty(&dev->adj_list.upper)) 6968 return NULL; 6969 6970 upper = list_first_entry(&dev->adj_list.upper, 6971 struct netdev_adjacent, list); 6972 if (likely(upper->master)) 6973 return upper->dev; 6974 return NULL; 6975 } 6976 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6977 6978 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6979 { 6980 struct netdev_adjacent *upper; 6981 6982 ASSERT_RTNL(); 6983 6984 if (list_empty(&dev->adj_list.upper)) 6985 return NULL; 6986 6987 upper = list_first_entry(&dev->adj_list.upper, 6988 struct netdev_adjacent, list); 6989 if (likely(upper->master) && !upper->ignore) 6990 return upper->dev; 6991 return NULL; 6992 } 6993 6994 /** 6995 * netdev_has_any_lower_dev - Check if device is linked to some device 6996 * @dev: device 6997 * 6998 * Find out if a device is linked to a lower device and return true in case 6999 * it is. The caller must hold the RTNL lock. 7000 */ 7001 static bool netdev_has_any_lower_dev(struct net_device *dev) 7002 { 7003 ASSERT_RTNL(); 7004 7005 return !list_empty(&dev->adj_list.lower); 7006 } 7007 7008 void *netdev_adjacent_get_private(struct list_head *adj_list) 7009 { 7010 struct netdev_adjacent *adj; 7011 7012 adj = list_entry(adj_list, struct netdev_adjacent, list); 7013 7014 return adj->private; 7015 } 7016 EXPORT_SYMBOL(netdev_adjacent_get_private); 7017 7018 /** 7019 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7020 * @dev: device 7021 * @iter: list_head ** of the current position 7022 * 7023 * Gets the next device from the dev's upper list, starting from iter 7024 * position. The caller must hold RCU read lock. 7025 */ 7026 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7027 struct list_head **iter) 7028 { 7029 struct netdev_adjacent *upper; 7030 7031 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7032 7033 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7034 7035 if (&upper->list == &dev->adj_list.upper) 7036 return NULL; 7037 7038 *iter = &upper->list; 7039 7040 return upper->dev; 7041 } 7042 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7043 7044 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7045 struct list_head **iter, 7046 bool *ignore) 7047 { 7048 struct netdev_adjacent *upper; 7049 7050 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7051 7052 if (&upper->list == &dev->adj_list.upper) 7053 return NULL; 7054 7055 *iter = &upper->list; 7056 *ignore = upper->ignore; 7057 7058 return upper->dev; 7059 } 7060 7061 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7062 struct list_head **iter) 7063 { 7064 struct netdev_adjacent *upper; 7065 7066 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7067 7068 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7069 7070 if (&upper->list == &dev->adj_list.upper) 7071 return NULL; 7072 7073 *iter = &upper->list; 7074 7075 return upper->dev; 7076 } 7077 7078 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7079 int (*fn)(struct net_device *dev, 7080 struct netdev_nested_priv *priv), 7081 struct netdev_nested_priv *priv) 7082 { 7083 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7084 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7085 int ret, cur = 0; 7086 bool ignore; 7087 7088 now = dev; 7089 iter = &dev->adj_list.upper; 7090 7091 while (1) { 7092 if (now != dev) { 7093 ret = fn(now, priv); 7094 if (ret) 7095 return ret; 7096 } 7097 7098 next = NULL; 7099 while (1) { 7100 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7101 if (!udev) 7102 break; 7103 if (ignore) 7104 continue; 7105 7106 next = udev; 7107 niter = &udev->adj_list.upper; 7108 dev_stack[cur] = now; 7109 iter_stack[cur++] = iter; 7110 break; 7111 } 7112 7113 if (!next) { 7114 if (!cur) 7115 return 0; 7116 next = dev_stack[--cur]; 7117 niter = iter_stack[cur]; 7118 } 7119 7120 now = next; 7121 iter = niter; 7122 } 7123 7124 return 0; 7125 } 7126 7127 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7128 int (*fn)(struct net_device *dev, 7129 struct netdev_nested_priv *priv), 7130 struct netdev_nested_priv *priv) 7131 { 7132 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7133 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7134 int ret, cur = 0; 7135 7136 now = dev; 7137 iter = &dev->adj_list.upper; 7138 7139 while (1) { 7140 if (now != dev) { 7141 ret = fn(now, priv); 7142 if (ret) 7143 return ret; 7144 } 7145 7146 next = NULL; 7147 while (1) { 7148 udev = netdev_next_upper_dev_rcu(now, &iter); 7149 if (!udev) 7150 break; 7151 7152 next = udev; 7153 niter = &udev->adj_list.upper; 7154 dev_stack[cur] = now; 7155 iter_stack[cur++] = iter; 7156 break; 7157 } 7158 7159 if (!next) { 7160 if (!cur) 7161 return 0; 7162 next = dev_stack[--cur]; 7163 niter = iter_stack[cur]; 7164 } 7165 7166 now = next; 7167 iter = niter; 7168 } 7169 7170 return 0; 7171 } 7172 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7173 7174 static bool __netdev_has_upper_dev(struct net_device *dev, 7175 struct net_device *upper_dev) 7176 { 7177 struct netdev_nested_priv priv = { 7178 .flags = 0, 7179 .data = (void *)upper_dev, 7180 }; 7181 7182 ASSERT_RTNL(); 7183 7184 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7185 &priv); 7186 } 7187 7188 /** 7189 * netdev_lower_get_next_private - Get the next ->private from the 7190 * lower neighbour list 7191 * @dev: device 7192 * @iter: list_head ** of the current position 7193 * 7194 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7195 * list, starting from iter position. The caller must hold either hold the 7196 * RTNL lock or its own locking that guarantees that the neighbour lower 7197 * list will remain unchanged. 7198 */ 7199 void *netdev_lower_get_next_private(struct net_device *dev, 7200 struct list_head **iter) 7201 { 7202 struct netdev_adjacent *lower; 7203 7204 lower = list_entry(*iter, struct netdev_adjacent, list); 7205 7206 if (&lower->list == &dev->adj_list.lower) 7207 return NULL; 7208 7209 *iter = lower->list.next; 7210 7211 return lower->private; 7212 } 7213 EXPORT_SYMBOL(netdev_lower_get_next_private); 7214 7215 /** 7216 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7217 * lower neighbour list, RCU 7218 * variant 7219 * @dev: device 7220 * @iter: list_head ** of the current position 7221 * 7222 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7223 * list, starting from iter position. The caller must hold RCU read lock. 7224 */ 7225 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7226 struct list_head **iter) 7227 { 7228 struct netdev_adjacent *lower; 7229 7230 WARN_ON_ONCE(!rcu_read_lock_held()); 7231 7232 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7233 7234 if (&lower->list == &dev->adj_list.lower) 7235 return NULL; 7236 7237 *iter = &lower->list; 7238 7239 return lower->private; 7240 } 7241 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7242 7243 /** 7244 * netdev_lower_get_next - Get the next device from the lower neighbour 7245 * list 7246 * @dev: device 7247 * @iter: list_head ** of the current position 7248 * 7249 * Gets the next netdev_adjacent from the dev's lower neighbour 7250 * list, starting from iter position. The caller must hold RTNL lock or 7251 * its own locking that guarantees that the neighbour lower 7252 * list will remain unchanged. 7253 */ 7254 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7255 { 7256 struct netdev_adjacent *lower; 7257 7258 lower = list_entry(*iter, struct netdev_adjacent, list); 7259 7260 if (&lower->list == &dev->adj_list.lower) 7261 return NULL; 7262 7263 *iter = lower->list.next; 7264 7265 return lower->dev; 7266 } 7267 EXPORT_SYMBOL(netdev_lower_get_next); 7268 7269 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7270 struct list_head **iter) 7271 { 7272 struct netdev_adjacent *lower; 7273 7274 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7275 7276 if (&lower->list == &dev->adj_list.lower) 7277 return NULL; 7278 7279 *iter = &lower->list; 7280 7281 return lower->dev; 7282 } 7283 7284 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7285 struct list_head **iter, 7286 bool *ignore) 7287 { 7288 struct netdev_adjacent *lower; 7289 7290 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7291 7292 if (&lower->list == &dev->adj_list.lower) 7293 return NULL; 7294 7295 *iter = &lower->list; 7296 *ignore = lower->ignore; 7297 7298 return lower->dev; 7299 } 7300 7301 int netdev_walk_all_lower_dev(struct net_device *dev, 7302 int (*fn)(struct net_device *dev, 7303 struct netdev_nested_priv *priv), 7304 struct netdev_nested_priv *priv) 7305 { 7306 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7307 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7308 int ret, cur = 0; 7309 7310 now = dev; 7311 iter = &dev->adj_list.lower; 7312 7313 while (1) { 7314 if (now != dev) { 7315 ret = fn(now, priv); 7316 if (ret) 7317 return ret; 7318 } 7319 7320 next = NULL; 7321 while (1) { 7322 ldev = netdev_next_lower_dev(now, &iter); 7323 if (!ldev) 7324 break; 7325 7326 next = ldev; 7327 niter = &ldev->adj_list.lower; 7328 dev_stack[cur] = now; 7329 iter_stack[cur++] = iter; 7330 break; 7331 } 7332 7333 if (!next) { 7334 if (!cur) 7335 return 0; 7336 next = dev_stack[--cur]; 7337 niter = iter_stack[cur]; 7338 } 7339 7340 now = next; 7341 iter = niter; 7342 } 7343 7344 return 0; 7345 } 7346 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7347 7348 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7349 int (*fn)(struct net_device *dev, 7350 struct netdev_nested_priv *priv), 7351 struct netdev_nested_priv *priv) 7352 { 7353 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7354 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7355 int ret, cur = 0; 7356 bool ignore; 7357 7358 now = dev; 7359 iter = &dev->adj_list.lower; 7360 7361 while (1) { 7362 if (now != dev) { 7363 ret = fn(now, priv); 7364 if (ret) 7365 return ret; 7366 } 7367 7368 next = NULL; 7369 while (1) { 7370 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7371 if (!ldev) 7372 break; 7373 if (ignore) 7374 continue; 7375 7376 next = ldev; 7377 niter = &ldev->adj_list.lower; 7378 dev_stack[cur] = now; 7379 iter_stack[cur++] = iter; 7380 break; 7381 } 7382 7383 if (!next) { 7384 if (!cur) 7385 return 0; 7386 next = dev_stack[--cur]; 7387 niter = iter_stack[cur]; 7388 } 7389 7390 now = next; 7391 iter = niter; 7392 } 7393 7394 return 0; 7395 } 7396 7397 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7398 struct list_head **iter) 7399 { 7400 struct netdev_adjacent *lower; 7401 7402 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7403 if (&lower->list == &dev->adj_list.lower) 7404 return NULL; 7405 7406 *iter = &lower->list; 7407 7408 return lower->dev; 7409 } 7410 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7411 7412 static u8 __netdev_upper_depth(struct net_device *dev) 7413 { 7414 struct net_device *udev; 7415 struct list_head *iter; 7416 u8 max_depth = 0; 7417 bool ignore; 7418 7419 for (iter = &dev->adj_list.upper, 7420 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7421 udev; 7422 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7423 if (ignore) 7424 continue; 7425 if (max_depth < udev->upper_level) 7426 max_depth = udev->upper_level; 7427 } 7428 7429 return max_depth; 7430 } 7431 7432 static u8 __netdev_lower_depth(struct net_device *dev) 7433 { 7434 struct net_device *ldev; 7435 struct list_head *iter; 7436 u8 max_depth = 0; 7437 bool ignore; 7438 7439 for (iter = &dev->adj_list.lower, 7440 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7441 ldev; 7442 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7443 if (ignore) 7444 continue; 7445 if (max_depth < ldev->lower_level) 7446 max_depth = ldev->lower_level; 7447 } 7448 7449 return max_depth; 7450 } 7451 7452 static int __netdev_update_upper_level(struct net_device *dev, 7453 struct netdev_nested_priv *__unused) 7454 { 7455 dev->upper_level = __netdev_upper_depth(dev) + 1; 7456 return 0; 7457 } 7458 7459 static int __netdev_update_lower_level(struct net_device *dev, 7460 struct netdev_nested_priv *priv) 7461 { 7462 dev->lower_level = __netdev_lower_depth(dev) + 1; 7463 7464 #ifdef CONFIG_LOCKDEP 7465 if (!priv) 7466 return 0; 7467 7468 if (priv->flags & NESTED_SYNC_IMM) 7469 dev->nested_level = dev->lower_level - 1; 7470 if (priv->flags & NESTED_SYNC_TODO) 7471 net_unlink_todo(dev); 7472 #endif 7473 return 0; 7474 } 7475 7476 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7477 int (*fn)(struct net_device *dev, 7478 struct netdev_nested_priv *priv), 7479 struct netdev_nested_priv *priv) 7480 { 7481 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7482 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7483 int ret, cur = 0; 7484 7485 now = dev; 7486 iter = &dev->adj_list.lower; 7487 7488 while (1) { 7489 if (now != dev) { 7490 ret = fn(now, priv); 7491 if (ret) 7492 return ret; 7493 } 7494 7495 next = NULL; 7496 while (1) { 7497 ldev = netdev_next_lower_dev_rcu(now, &iter); 7498 if (!ldev) 7499 break; 7500 7501 next = ldev; 7502 niter = &ldev->adj_list.lower; 7503 dev_stack[cur] = now; 7504 iter_stack[cur++] = iter; 7505 break; 7506 } 7507 7508 if (!next) { 7509 if (!cur) 7510 return 0; 7511 next = dev_stack[--cur]; 7512 niter = iter_stack[cur]; 7513 } 7514 7515 now = next; 7516 iter = niter; 7517 } 7518 7519 return 0; 7520 } 7521 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7522 7523 /** 7524 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7525 * lower neighbour list, RCU 7526 * variant 7527 * @dev: device 7528 * 7529 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7530 * list. The caller must hold RCU read lock. 7531 */ 7532 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7533 { 7534 struct netdev_adjacent *lower; 7535 7536 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7537 struct netdev_adjacent, list); 7538 if (lower) 7539 return lower->private; 7540 return NULL; 7541 } 7542 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7543 7544 /** 7545 * netdev_master_upper_dev_get_rcu - Get master upper device 7546 * @dev: device 7547 * 7548 * Find a master upper device and return pointer to it or NULL in case 7549 * it's not there. The caller must hold the RCU read lock. 7550 */ 7551 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7552 { 7553 struct netdev_adjacent *upper; 7554 7555 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7556 struct netdev_adjacent, list); 7557 if (upper && likely(upper->master)) 7558 return upper->dev; 7559 return NULL; 7560 } 7561 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7562 7563 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7564 struct net_device *adj_dev, 7565 struct list_head *dev_list) 7566 { 7567 char linkname[IFNAMSIZ+7]; 7568 7569 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7570 "upper_%s" : "lower_%s", adj_dev->name); 7571 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7572 linkname); 7573 } 7574 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7575 char *name, 7576 struct list_head *dev_list) 7577 { 7578 char linkname[IFNAMSIZ+7]; 7579 7580 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7581 "upper_%s" : "lower_%s", name); 7582 sysfs_remove_link(&(dev->dev.kobj), linkname); 7583 } 7584 7585 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7586 struct net_device *adj_dev, 7587 struct list_head *dev_list) 7588 { 7589 return (dev_list == &dev->adj_list.upper || 7590 dev_list == &dev->adj_list.lower) && 7591 net_eq(dev_net(dev), dev_net(adj_dev)); 7592 } 7593 7594 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7595 struct net_device *adj_dev, 7596 struct list_head *dev_list, 7597 void *private, bool master) 7598 { 7599 struct netdev_adjacent *adj; 7600 int ret; 7601 7602 adj = __netdev_find_adj(adj_dev, dev_list); 7603 7604 if (adj) { 7605 adj->ref_nr += 1; 7606 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7607 dev->name, adj_dev->name, adj->ref_nr); 7608 7609 return 0; 7610 } 7611 7612 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7613 if (!adj) 7614 return -ENOMEM; 7615 7616 adj->dev = adj_dev; 7617 adj->master = master; 7618 adj->ref_nr = 1; 7619 adj->private = private; 7620 adj->ignore = false; 7621 dev_hold(adj_dev); 7622 7623 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7624 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7625 7626 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7627 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7628 if (ret) 7629 goto free_adj; 7630 } 7631 7632 /* Ensure that master link is always the first item in list. */ 7633 if (master) { 7634 ret = sysfs_create_link(&(dev->dev.kobj), 7635 &(adj_dev->dev.kobj), "master"); 7636 if (ret) 7637 goto remove_symlinks; 7638 7639 list_add_rcu(&adj->list, dev_list); 7640 } else { 7641 list_add_tail_rcu(&adj->list, dev_list); 7642 } 7643 7644 return 0; 7645 7646 remove_symlinks: 7647 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7648 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7649 free_adj: 7650 kfree(adj); 7651 dev_put(adj_dev); 7652 7653 return ret; 7654 } 7655 7656 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7657 struct net_device *adj_dev, 7658 u16 ref_nr, 7659 struct list_head *dev_list) 7660 { 7661 struct netdev_adjacent *adj; 7662 7663 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7664 dev->name, adj_dev->name, ref_nr); 7665 7666 adj = __netdev_find_adj(adj_dev, dev_list); 7667 7668 if (!adj) { 7669 pr_err("Adjacency does not exist for device %s from %s\n", 7670 dev->name, adj_dev->name); 7671 WARN_ON(1); 7672 return; 7673 } 7674 7675 if (adj->ref_nr > ref_nr) { 7676 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7677 dev->name, adj_dev->name, ref_nr, 7678 adj->ref_nr - ref_nr); 7679 adj->ref_nr -= ref_nr; 7680 return; 7681 } 7682 7683 if (adj->master) 7684 sysfs_remove_link(&(dev->dev.kobj), "master"); 7685 7686 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7687 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7688 7689 list_del_rcu(&adj->list); 7690 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7691 adj_dev->name, dev->name, adj_dev->name); 7692 dev_put(adj_dev); 7693 kfree_rcu(adj, rcu); 7694 } 7695 7696 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7697 struct net_device *upper_dev, 7698 struct list_head *up_list, 7699 struct list_head *down_list, 7700 void *private, bool master) 7701 { 7702 int ret; 7703 7704 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7705 private, master); 7706 if (ret) 7707 return ret; 7708 7709 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7710 private, false); 7711 if (ret) { 7712 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7713 return ret; 7714 } 7715 7716 return 0; 7717 } 7718 7719 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7720 struct net_device *upper_dev, 7721 u16 ref_nr, 7722 struct list_head *up_list, 7723 struct list_head *down_list) 7724 { 7725 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7726 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7727 } 7728 7729 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7730 struct net_device *upper_dev, 7731 void *private, bool master) 7732 { 7733 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7734 &dev->adj_list.upper, 7735 &upper_dev->adj_list.lower, 7736 private, master); 7737 } 7738 7739 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7740 struct net_device *upper_dev) 7741 { 7742 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7743 &dev->adj_list.upper, 7744 &upper_dev->adj_list.lower); 7745 } 7746 7747 static int __netdev_upper_dev_link(struct net_device *dev, 7748 struct net_device *upper_dev, bool master, 7749 void *upper_priv, void *upper_info, 7750 struct netdev_nested_priv *priv, 7751 struct netlink_ext_ack *extack) 7752 { 7753 struct netdev_notifier_changeupper_info changeupper_info = { 7754 .info = { 7755 .dev = dev, 7756 .extack = extack, 7757 }, 7758 .upper_dev = upper_dev, 7759 .master = master, 7760 .linking = true, 7761 .upper_info = upper_info, 7762 }; 7763 struct net_device *master_dev; 7764 int ret = 0; 7765 7766 ASSERT_RTNL(); 7767 7768 if (dev == upper_dev) 7769 return -EBUSY; 7770 7771 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7772 if (__netdev_has_upper_dev(upper_dev, dev)) 7773 return -EBUSY; 7774 7775 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7776 return -EMLINK; 7777 7778 if (!master) { 7779 if (__netdev_has_upper_dev(dev, upper_dev)) 7780 return -EEXIST; 7781 } else { 7782 master_dev = __netdev_master_upper_dev_get(dev); 7783 if (master_dev) 7784 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7785 } 7786 7787 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7788 &changeupper_info.info); 7789 ret = notifier_to_errno(ret); 7790 if (ret) 7791 return ret; 7792 7793 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7794 master); 7795 if (ret) 7796 return ret; 7797 7798 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7799 &changeupper_info.info); 7800 ret = notifier_to_errno(ret); 7801 if (ret) 7802 goto rollback; 7803 7804 __netdev_update_upper_level(dev, NULL); 7805 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7806 7807 __netdev_update_lower_level(upper_dev, priv); 7808 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7809 priv); 7810 7811 return 0; 7812 7813 rollback: 7814 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7815 7816 return ret; 7817 } 7818 7819 /** 7820 * netdev_upper_dev_link - Add a link to the upper device 7821 * @dev: device 7822 * @upper_dev: new upper device 7823 * @extack: netlink extended ack 7824 * 7825 * Adds a link to device which is upper to this one. The caller must hold 7826 * the RTNL lock. On a failure a negative errno code is returned. 7827 * On success the reference counts are adjusted and the function 7828 * returns zero. 7829 */ 7830 int netdev_upper_dev_link(struct net_device *dev, 7831 struct net_device *upper_dev, 7832 struct netlink_ext_ack *extack) 7833 { 7834 struct netdev_nested_priv priv = { 7835 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7836 .data = NULL, 7837 }; 7838 7839 return __netdev_upper_dev_link(dev, upper_dev, false, 7840 NULL, NULL, &priv, extack); 7841 } 7842 EXPORT_SYMBOL(netdev_upper_dev_link); 7843 7844 /** 7845 * netdev_master_upper_dev_link - Add a master link to the upper device 7846 * @dev: device 7847 * @upper_dev: new upper device 7848 * @upper_priv: upper device private 7849 * @upper_info: upper info to be passed down via notifier 7850 * @extack: netlink extended ack 7851 * 7852 * Adds a link to device which is upper to this one. In this case, only 7853 * one master upper device can be linked, although other non-master devices 7854 * might be linked as well. The caller must hold the RTNL lock. 7855 * On a failure a negative errno code is returned. On success the reference 7856 * counts are adjusted and the function returns zero. 7857 */ 7858 int netdev_master_upper_dev_link(struct net_device *dev, 7859 struct net_device *upper_dev, 7860 void *upper_priv, void *upper_info, 7861 struct netlink_ext_ack *extack) 7862 { 7863 struct netdev_nested_priv priv = { 7864 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7865 .data = NULL, 7866 }; 7867 7868 return __netdev_upper_dev_link(dev, upper_dev, true, 7869 upper_priv, upper_info, &priv, extack); 7870 } 7871 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7872 7873 static void __netdev_upper_dev_unlink(struct net_device *dev, 7874 struct net_device *upper_dev, 7875 struct netdev_nested_priv *priv) 7876 { 7877 struct netdev_notifier_changeupper_info changeupper_info = { 7878 .info = { 7879 .dev = dev, 7880 }, 7881 .upper_dev = upper_dev, 7882 .linking = false, 7883 }; 7884 7885 ASSERT_RTNL(); 7886 7887 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7888 7889 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7890 &changeupper_info.info); 7891 7892 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7893 7894 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7895 &changeupper_info.info); 7896 7897 __netdev_update_upper_level(dev, NULL); 7898 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7899 7900 __netdev_update_lower_level(upper_dev, priv); 7901 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7902 priv); 7903 } 7904 7905 /** 7906 * netdev_upper_dev_unlink - Removes a link to upper device 7907 * @dev: device 7908 * @upper_dev: new upper device 7909 * 7910 * Removes a link to device which is upper to this one. The caller must hold 7911 * the RTNL lock. 7912 */ 7913 void netdev_upper_dev_unlink(struct net_device *dev, 7914 struct net_device *upper_dev) 7915 { 7916 struct netdev_nested_priv priv = { 7917 .flags = NESTED_SYNC_TODO, 7918 .data = NULL, 7919 }; 7920 7921 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7922 } 7923 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7924 7925 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7926 struct net_device *lower_dev, 7927 bool val) 7928 { 7929 struct netdev_adjacent *adj; 7930 7931 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7932 if (adj) 7933 adj->ignore = val; 7934 7935 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7936 if (adj) 7937 adj->ignore = val; 7938 } 7939 7940 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7941 struct net_device *lower_dev) 7942 { 7943 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7944 } 7945 7946 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7947 struct net_device *lower_dev) 7948 { 7949 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7950 } 7951 7952 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7953 struct net_device *new_dev, 7954 struct net_device *dev, 7955 struct netlink_ext_ack *extack) 7956 { 7957 struct netdev_nested_priv priv = { 7958 .flags = 0, 7959 .data = NULL, 7960 }; 7961 int err; 7962 7963 if (!new_dev) 7964 return 0; 7965 7966 if (old_dev && new_dev != old_dev) 7967 netdev_adjacent_dev_disable(dev, old_dev); 7968 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7969 extack); 7970 if (err) { 7971 if (old_dev && new_dev != old_dev) 7972 netdev_adjacent_dev_enable(dev, old_dev); 7973 return err; 7974 } 7975 7976 return 0; 7977 } 7978 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7979 7980 void netdev_adjacent_change_commit(struct net_device *old_dev, 7981 struct net_device *new_dev, 7982 struct net_device *dev) 7983 { 7984 struct netdev_nested_priv priv = { 7985 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7986 .data = NULL, 7987 }; 7988 7989 if (!new_dev || !old_dev) 7990 return; 7991 7992 if (new_dev == old_dev) 7993 return; 7994 7995 netdev_adjacent_dev_enable(dev, old_dev); 7996 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7997 } 7998 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7999 8000 void netdev_adjacent_change_abort(struct net_device *old_dev, 8001 struct net_device *new_dev, 8002 struct net_device *dev) 8003 { 8004 struct netdev_nested_priv priv = { 8005 .flags = 0, 8006 .data = NULL, 8007 }; 8008 8009 if (!new_dev) 8010 return; 8011 8012 if (old_dev && new_dev != old_dev) 8013 netdev_adjacent_dev_enable(dev, old_dev); 8014 8015 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8016 } 8017 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8018 8019 /** 8020 * netdev_bonding_info_change - Dispatch event about slave change 8021 * @dev: device 8022 * @bonding_info: info to dispatch 8023 * 8024 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8025 * The caller must hold the RTNL lock. 8026 */ 8027 void netdev_bonding_info_change(struct net_device *dev, 8028 struct netdev_bonding_info *bonding_info) 8029 { 8030 struct netdev_notifier_bonding_info info = { 8031 .info.dev = dev, 8032 }; 8033 8034 memcpy(&info.bonding_info, bonding_info, 8035 sizeof(struct netdev_bonding_info)); 8036 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8037 &info.info); 8038 } 8039 EXPORT_SYMBOL(netdev_bonding_info_change); 8040 8041 /** 8042 * netdev_get_xmit_slave - Get the xmit slave of master device 8043 * @dev: device 8044 * @skb: The packet 8045 * @all_slaves: assume all the slaves are active 8046 * 8047 * The reference counters are not incremented so the caller must be 8048 * careful with locks. The caller must hold RCU lock. 8049 * %NULL is returned if no slave is found. 8050 */ 8051 8052 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8053 struct sk_buff *skb, 8054 bool all_slaves) 8055 { 8056 const struct net_device_ops *ops = dev->netdev_ops; 8057 8058 if (!ops->ndo_get_xmit_slave) 8059 return NULL; 8060 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8061 } 8062 EXPORT_SYMBOL(netdev_get_xmit_slave); 8063 8064 static void netdev_adjacent_add_links(struct net_device *dev) 8065 { 8066 struct netdev_adjacent *iter; 8067 8068 struct net *net = dev_net(dev); 8069 8070 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8071 if (!net_eq(net, dev_net(iter->dev))) 8072 continue; 8073 netdev_adjacent_sysfs_add(iter->dev, dev, 8074 &iter->dev->adj_list.lower); 8075 netdev_adjacent_sysfs_add(dev, iter->dev, 8076 &dev->adj_list.upper); 8077 } 8078 8079 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8080 if (!net_eq(net, dev_net(iter->dev))) 8081 continue; 8082 netdev_adjacent_sysfs_add(iter->dev, dev, 8083 &iter->dev->adj_list.upper); 8084 netdev_adjacent_sysfs_add(dev, iter->dev, 8085 &dev->adj_list.lower); 8086 } 8087 } 8088 8089 static void netdev_adjacent_del_links(struct net_device *dev) 8090 { 8091 struct netdev_adjacent *iter; 8092 8093 struct net *net = dev_net(dev); 8094 8095 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8096 if (!net_eq(net, dev_net(iter->dev))) 8097 continue; 8098 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8099 &iter->dev->adj_list.lower); 8100 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8101 &dev->adj_list.upper); 8102 } 8103 8104 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8105 if (!net_eq(net, dev_net(iter->dev))) 8106 continue; 8107 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8108 &iter->dev->adj_list.upper); 8109 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8110 &dev->adj_list.lower); 8111 } 8112 } 8113 8114 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8115 { 8116 struct netdev_adjacent *iter; 8117 8118 struct net *net = dev_net(dev); 8119 8120 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8121 if (!net_eq(net, dev_net(iter->dev))) 8122 continue; 8123 netdev_adjacent_sysfs_del(iter->dev, oldname, 8124 &iter->dev->adj_list.lower); 8125 netdev_adjacent_sysfs_add(iter->dev, dev, 8126 &iter->dev->adj_list.lower); 8127 } 8128 8129 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8130 if (!net_eq(net, dev_net(iter->dev))) 8131 continue; 8132 netdev_adjacent_sysfs_del(iter->dev, oldname, 8133 &iter->dev->adj_list.upper); 8134 netdev_adjacent_sysfs_add(iter->dev, dev, 8135 &iter->dev->adj_list.upper); 8136 } 8137 } 8138 8139 void *netdev_lower_dev_get_private(struct net_device *dev, 8140 struct net_device *lower_dev) 8141 { 8142 struct netdev_adjacent *lower; 8143 8144 if (!lower_dev) 8145 return NULL; 8146 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8147 if (!lower) 8148 return NULL; 8149 8150 return lower->private; 8151 } 8152 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8153 8154 8155 /** 8156 * netdev_lower_change - Dispatch event about lower device state change 8157 * @lower_dev: device 8158 * @lower_state_info: state to dispatch 8159 * 8160 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8161 * The caller must hold the RTNL lock. 8162 */ 8163 void netdev_lower_state_changed(struct net_device *lower_dev, 8164 void *lower_state_info) 8165 { 8166 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8167 .info.dev = lower_dev, 8168 }; 8169 8170 ASSERT_RTNL(); 8171 changelowerstate_info.lower_state_info = lower_state_info; 8172 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8173 &changelowerstate_info.info); 8174 } 8175 EXPORT_SYMBOL(netdev_lower_state_changed); 8176 8177 static void dev_change_rx_flags(struct net_device *dev, int flags) 8178 { 8179 const struct net_device_ops *ops = dev->netdev_ops; 8180 8181 if (ops->ndo_change_rx_flags) 8182 ops->ndo_change_rx_flags(dev, flags); 8183 } 8184 8185 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8186 { 8187 unsigned int old_flags = dev->flags; 8188 kuid_t uid; 8189 kgid_t gid; 8190 8191 ASSERT_RTNL(); 8192 8193 dev->flags |= IFF_PROMISC; 8194 dev->promiscuity += inc; 8195 if (dev->promiscuity == 0) { 8196 /* 8197 * Avoid overflow. 8198 * If inc causes overflow, untouch promisc and return error. 8199 */ 8200 if (inc < 0) 8201 dev->flags &= ~IFF_PROMISC; 8202 else { 8203 dev->promiscuity -= inc; 8204 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8205 dev->name); 8206 return -EOVERFLOW; 8207 } 8208 } 8209 if (dev->flags != old_flags) { 8210 pr_info("device %s %s promiscuous mode\n", 8211 dev->name, 8212 dev->flags & IFF_PROMISC ? "entered" : "left"); 8213 if (audit_enabled) { 8214 current_uid_gid(&uid, &gid); 8215 audit_log(audit_context(), GFP_ATOMIC, 8216 AUDIT_ANOM_PROMISCUOUS, 8217 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8218 dev->name, (dev->flags & IFF_PROMISC), 8219 (old_flags & IFF_PROMISC), 8220 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8221 from_kuid(&init_user_ns, uid), 8222 from_kgid(&init_user_ns, gid), 8223 audit_get_sessionid(current)); 8224 } 8225 8226 dev_change_rx_flags(dev, IFF_PROMISC); 8227 } 8228 if (notify) 8229 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8230 return 0; 8231 } 8232 8233 /** 8234 * dev_set_promiscuity - update promiscuity count on a device 8235 * @dev: device 8236 * @inc: modifier 8237 * 8238 * Add or remove promiscuity from a device. While the count in the device 8239 * remains above zero the interface remains promiscuous. Once it hits zero 8240 * the device reverts back to normal filtering operation. A negative inc 8241 * value is used to drop promiscuity on the device. 8242 * Return 0 if successful or a negative errno code on error. 8243 */ 8244 int dev_set_promiscuity(struct net_device *dev, int inc) 8245 { 8246 unsigned int old_flags = dev->flags; 8247 int err; 8248 8249 err = __dev_set_promiscuity(dev, inc, true); 8250 if (err < 0) 8251 return err; 8252 if (dev->flags != old_flags) 8253 dev_set_rx_mode(dev); 8254 return err; 8255 } 8256 EXPORT_SYMBOL(dev_set_promiscuity); 8257 8258 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8259 { 8260 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8261 8262 ASSERT_RTNL(); 8263 8264 dev->flags |= IFF_ALLMULTI; 8265 dev->allmulti += inc; 8266 if (dev->allmulti == 0) { 8267 /* 8268 * Avoid overflow. 8269 * If inc causes overflow, untouch allmulti and return error. 8270 */ 8271 if (inc < 0) 8272 dev->flags &= ~IFF_ALLMULTI; 8273 else { 8274 dev->allmulti -= inc; 8275 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8276 dev->name); 8277 return -EOVERFLOW; 8278 } 8279 } 8280 if (dev->flags ^ old_flags) { 8281 dev_change_rx_flags(dev, IFF_ALLMULTI); 8282 dev_set_rx_mode(dev); 8283 if (notify) 8284 __dev_notify_flags(dev, old_flags, 8285 dev->gflags ^ old_gflags); 8286 } 8287 return 0; 8288 } 8289 8290 /** 8291 * dev_set_allmulti - update allmulti count on a device 8292 * @dev: device 8293 * @inc: modifier 8294 * 8295 * Add or remove reception of all multicast frames to a device. While the 8296 * count in the device remains above zero the interface remains listening 8297 * to all interfaces. Once it hits zero the device reverts back to normal 8298 * filtering operation. A negative @inc value is used to drop the counter 8299 * when releasing a resource needing all multicasts. 8300 * Return 0 if successful or a negative errno code on error. 8301 */ 8302 8303 int dev_set_allmulti(struct net_device *dev, int inc) 8304 { 8305 return __dev_set_allmulti(dev, inc, true); 8306 } 8307 EXPORT_SYMBOL(dev_set_allmulti); 8308 8309 /* 8310 * Upload unicast and multicast address lists to device and 8311 * configure RX filtering. When the device doesn't support unicast 8312 * filtering it is put in promiscuous mode while unicast addresses 8313 * are present. 8314 */ 8315 void __dev_set_rx_mode(struct net_device *dev) 8316 { 8317 const struct net_device_ops *ops = dev->netdev_ops; 8318 8319 /* dev_open will call this function so the list will stay sane. */ 8320 if (!(dev->flags&IFF_UP)) 8321 return; 8322 8323 if (!netif_device_present(dev)) 8324 return; 8325 8326 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8327 /* Unicast addresses changes may only happen under the rtnl, 8328 * therefore calling __dev_set_promiscuity here is safe. 8329 */ 8330 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8331 __dev_set_promiscuity(dev, 1, false); 8332 dev->uc_promisc = true; 8333 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8334 __dev_set_promiscuity(dev, -1, false); 8335 dev->uc_promisc = false; 8336 } 8337 } 8338 8339 if (ops->ndo_set_rx_mode) 8340 ops->ndo_set_rx_mode(dev); 8341 } 8342 8343 void dev_set_rx_mode(struct net_device *dev) 8344 { 8345 netif_addr_lock_bh(dev); 8346 __dev_set_rx_mode(dev); 8347 netif_addr_unlock_bh(dev); 8348 } 8349 8350 /** 8351 * dev_get_flags - get flags reported to userspace 8352 * @dev: device 8353 * 8354 * Get the combination of flag bits exported through APIs to userspace. 8355 */ 8356 unsigned int dev_get_flags(const struct net_device *dev) 8357 { 8358 unsigned int flags; 8359 8360 flags = (dev->flags & ~(IFF_PROMISC | 8361 IFF_ALLMULTI | 8362 IFF_RUNNING | 8363 IFF_LOWER_UP | 8364 IFF_DORMANT)) | 8365 (dev->gflags & (IFF_PROMISC | 8366 IFF_ALLMULTI)); 8367 8368 if (netif_running(dev)) { 8369 if (netif_oper_up(dev)) 8370 flags |= IFF_RUNNING; 8371 if (netif_carrier_ok(dev)) 8372 flags |= IFF_LOWER_UP; 8373 if (netif_dormant(dev)) 8374 flags |= IFF_DORMANT; 8375 } 8376 8377 return flags; 8378 } 8379 EXPORT_SYMBOL(dev_get_flags); 8380 8381 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8382 struct netlink_ext_ack *extack) 8383 { 8384 unsigned int old_flags = dev->flags; 8385 int ret; 8386 8387 ASSERT_RTNL(); 8388 8389 /* 8390 * Set the flags on our device. 8391 */ 8392 8393 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8394 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8395 IFF_AUTOMEDIA)) | 8396 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8397 IFF_ALLMULTI)); 8398 8399 /* 8400 * Load in the correct multicast list now the flags have changed. 8401 */ 8402 8403 if ((old_flags ^ flags) & IFF_MULTICAST) 8404 dev_change_rx_flags(dev, IFF_MULTICAST); 8405 8406 dev_set_rx_mode(dev); 8407 8408 /* 8409 * Have we downed the interface. We handle IFF_UP ourselves 8410 * according to user attempts to set it, rather than blindly 8411 * setting it. 8412 */ 8413 8414 ret = 0; 8415 if ((old_flags ^ flags) & IFF_UP) { 8416 if (old_flags & IFF_UP) 8417 __dev_close(dev); 8418 else 8419 ret = __dev_open(dev, extack); 8420 } 8421 8422 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8423 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8424 unsigned int old_flags = dev->flags; 8425 8426 dev->gflags ^= IFF_PROMISC; 8427 8428 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8429 if (dev->flags != old_flags) 8430 dev_set_rx_mode(dev); 8431 } 8432 8433 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8434 * is important. Some (broken) drivers set IFF_PROMISC, when 8435 * IFF_ALLMULTI is requested not asking us and not reporting. 8436 */ 8437 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8438 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8439 8440 dev->gflags ^= IFF_ALLMULTI; 8441 __dev_set_allmulti(dev, inc, false); 8442 } 8443 8444 return ret; 8445 } 8446 8447 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8448 unsigned int gchanges) 8449 { 8450 unsigned int changes = dev->flags ^ old_flags; 8451 8452 if (gchanges) 8453 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8454 8455 if (changes & IFF_UP) { 8456 if (dev->flags & IFF_UP) 8457 call_netdevice_notifiers(NETDEV_UP, dev); 8458 else 8459 call_netdevice_notifiers(NETDEV_DOWN, dev); 8460 } 8461 8462 if (dev->flags & IFF_UP && 8463 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8464 struct netdev_notifier_change_info change_info = { 8465 .info = { 8466 .dev = dev, 8467 }, 8468 .flags_changed = changes, 8469 }; 8470 8471 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8472 } 8473 } 8474 8475 /** 8476 * dev_change_flags - change device settings 8477 * @dev: device 8478 * @flags: device state flags 8479 * @extack: netlink extended ack 8480 * 8481 * Change settings on device based state flags. The flags are 8482 * in the userspace exported format. 8483 */ 8484 int dev_change_flags(struct net_device *dev, unsigned int flags, 8485 struct netlink_ext_ack *extack) 8486 { 8487 int ret; 8488 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8489 8490 ret = __dev_change_flags(dev, flags, extack); 8491 if (ret < 0) 8492 return ret; 8493 8494 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8495 __dev_notify_flags(dev, old_flags, changes); 8496 return ret; 8497 } 8498 EXPORT_SYMBOL(dev_change_flags); 8499 8500 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8501 { 8502 const struct net_device_ops *ops = dev->netdev_ops; 8503 8504 if (ops->ndo_change_mtu) 8505 return ops->ndo_change_mtu(dev, new_mtu); 8506 8507 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8508 WRITE_ONCE(dev->mtu, new_mtu); 8509 return 0; 8510 } 8511 EXPORT_SYMBOL(__dev_set_mtu); 8512 8513 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8514 struct netlink_ext_ack *extack) 8515 { 8516 /* MTU must be positive, and in range */ 8517 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8518 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8519 return -EINVAL; 8520 } 8521 8522 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8523 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8524 return -EINVAL; 8525 } 8526 return 0; 8527 } 8528 8529 /** 8530 * dev_set_mtu_ext - Change maximum transfer unit 8531 * @dev: device 8532 * @new_mtu: new transfer unit 8533 * @extack: netlink extended ack 8534 * 8535 * Change the maximum transfer size of the network device. 8536 */ 8537 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8538 struct netlink_ext_ack *extack) 8539 { 8540 int err, orig_mtu; 8541 8542 if (new_mtu == dev->mtu) 8543 return 0; 8544 8545 err = dev_validate_mtu(dev, new_mtu, extack); 8546 if (err) 8547 return err; 8548 8549 if (!netif_device_present(dev)) 8550 return -ENODEV; 8551 8552 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8553 err = notifier_to_errno(err); 8554 if (err) 8555 return err; 8556 8557 orig_mtu = dev->mtu; 8558 err = __dev_set_mtu(dev, new_mtu); 8559 8560 if (!err) { 8561 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8562 orig_mtu); 8563 err = notifier_to_errno(err); 8564 if (err) { 8565 /* setting mtu back and notifying everyone again, 8566 * so that they have a chance to revert changes. 8567 */ 8568 __dev_set_mtu(dev, orig_mtu); 8569 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8570 new_mtu); 8571 } 8572 } 8573 return err; 8574 } 8575 8576 int dev_set_mtu(struct net_device *dev, int new_mtu) 8577 { 8578 struct netlink_ext_ack extack; 8579 int err; 8580 8581 memset(&extack, 0, sizeof(extack)); 8582 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8583 if (err && extack._msg) 8584 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8585 return err; 8586 } 8587 EXPORT_SYMBOL(dev_set_mtu); 8588 8589 /** 8590 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8591 * @dev: device 8592 * @new_len: new tx queue length 8593 */ 8594 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8595 { 8596 unsigned int orig_len = dev->tx_queue_len; 8597 int res; 8598 8599 if (new_len != (unsigned int)new_len) 8600 return -ERANGE; 8601 8602 if (new_len != orig_len) { 8603 dev->tx_queue_len = new_len; 8604 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8605 res = notifier_to_errno(res); 8606 if (res) 8607 goto err_rollback; 8608 res = dev_qdisc_change_tx_queue_len(dev); 8609 if (res) 8610 goto err_rollback; 8611 } 8612 8613 return 0; 8614 8615 err_rollback: 8616 netdev_err(dev, "refused to change device tx_queue_len\n"); 8617 dev->tx_queue_len = orig_len; 8618 return res; 8619 } 8620 8621 /** 8622 * dev_set_group - Change group this device belongs to 8623 * @dev: device 8624 * @new_group: group this device should belong to 8625 */ 8626 void dev_set_group(struct net_device *dev, int new_group) 8627 { 8628 dev->group = new_group; 8629 } 8630 EXPORT_SYMBOL(dev_set_group); 8631 8632 /** 8633 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8634 * @dev: device 8635 * @addr: new address 8636 * @extack: netlink extended ack 8637 */ 8638 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8639 struct netlink_ext_ack *extack) 8640 { 8641 struct netdev_notifier_pre_changeaddr_info info = { 8642 .info.dev = dev, 8643 .info.extack = extack, 8644 .dev_addr = addr, 8645 }; 8646 int rc; 8647 8648 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8649 return notifier_to_errno(rc); 8650 } 8651 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8652 8653 /** 8654 * dev_set_mac_address - Change Media Access Control Address 8655 * @dev: device 8656 * @sa: new address 8657 * @extack: netlink extended ack 8658 * 8659 * Change the hardware (MAC) address of the device 8660 */ 8661 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8662 struct netlink_ext_ack *extack) 8663 { 8664 const struct net_device_ops *ops = dev->netdev_ops; 8665 int err; 8666 8667 if (!ops->ndo_set_mac_address) 8668 return -EOPNOTSUPP; 8669 if (sa->sa_family != dev->type) 8670 return -EINVAL; 8671 if (!netif_device_present(dev)) 8672 return -ENODEV; 8673 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8674 if (err) 8675 return err; 8676 err = ops->ndo_set_mac_address(dev, sa); 8677 if (err) 8678 return err; 8679 dev->addr_assign_type = NET_ADDR_SET; 8680 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8681 add_device_randomness(dev->dev_addr, dev->addr_len); 8682 return 0; 8683 } 8684 EXPORT_SYMBOL(dev_set_mac_address); 8685 8686 /** 8687 * dev_change_carrier - Change device carrier 8688 * @dev: device 8689 * @new_carrier: new value 8690 * 8691 * Change device carrier 8692 */ 8693 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8694 { 8695 const struct net_device_ops *ops = dev->netdev_ops; 8696 8697 if (!ops->ndo_change_carrier) 8698 return -EOPNOTSUPP; 8699 if (!netif_device_present(dev)) 8700 return -ENODEV; 8701 return ops->ndo_change_carrier(dev, new_carrier); 8702 } 8703 EXPORT_SYMBOL(dev_change_carrier); 8704 8705 /** 8706 * dev_get_phys_port_id - Get device physical port ID 8707 * @dev: device 8708 * @ppid: port ID 8709 * 8710 * Get device physical port ID 8711 */ 8712 int dev_get_phys_port_id(struct net_device *dev, 8713 struct netdev_phys_item_id *ppid) 8714 { 8715 const struct net_device_ops *ops = dev->netdev_ops; 8716 8717 if (!ops->ndo_get_phys_port_id) 8718 return -EOPNOTSUPP; 8719 return ops->ndo_get_phys_port_id(dev, ppid); 8720 } 8721 EXPORT_SYMBOL(dev_get_phys_port_id); 8722 8723 /** 8724 * dev_get_phys_port_name - Get device physical port name 8725 * @dev: device 8726 * @name: port name 8727 * @len: limit of bytes to copy to name 8728 * 8729 * Get device physical port name 8730 */ 8731 int dev_get_phys_port_name(struct net_device *dev, 8732 char *name, size_t len) 8733 { 8734 const struct net_device_ops *ops = dev->netdev_ops; 8735 int err; 8736 8737 if (ops->ndo_get_phys_port_name) { 8738 err = ops->ndo_get_phys_port_name(dev, name, len); 8739 if (err != -EOPNOTSUPP) 8740 return err; 8741 } 8742 return devlink_compat_phys_port_name_get(dev, name, len); 8743 } 8744 EXPORT_SYMBOL(dev_get_phys_port_name); 8745 8746 /** 8747 * dev_get_port_parent_id - Get the device's port parent identifier 8748 * @dev: network device 8749 * @ppid: pointer to a storage for the port's parent identifier 8750 * @recurse: allow/disallow recursion to lower devices 8751 * 8752 * Get the devices's port parent identifier 8753 */ 8754 int dev_get_port_parent_id(struct net_device *dev, 8755 struct netdev_phys_item_id *ppid, 8756 bool recurse) 8757 { 8758 const struct net_device_ops *ops = dev->netdev_ops; 8759 struct netdev_phys_item_id first = { }; 8760 struct net_device *lower_dev; 8761 struct list_head *iter; 8762 int err; 8763 8764 if (ops->ndo_get_port_parent_id) { 8765 err = ops->ndo_get_port_parent_id(dev, ppid); 8766 if (err != -EOPNOTSUPP) 8767 return err; 8768 } 8769 8770 err = devlink_compat_switch_id_get(dev, ppid); 8771 if (!err || err != -EOPNOTSUPP) 8772 return err; 8773 8774 if (!recurse) 8775 return -EOPNOTSUPP; 8776 8777 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8778 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8779 if (err) 8780 break; 8781 if (!first.id_len) 8782 first = *ppid; 8783 else if (memcmp(&first, ppid, sizeof(*ppid))) 8784 return -EOPNOTSUPP; 8785 } 8786 8787 return err; 8788 } 8789 EXPORT_SYMBOL(dev_get_port_parent_id); 8790 8791 /** 8792 * netdev_port_same_parent_id - Indicate if two network devices have 8793 * the same port parent identifier 8794 * @a: first network device 8795 * @b: second network device 8796 */ 8797 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8798 { 8799 struct netdev_phys_item_id a_id = { }; 8800 struct netdev_phys_item_id b_id = { }; 8801 8802 if (dev_get_port_parent_id(a, &a_id, true) || 8803 dev_get_port_parent_id(b, &b_id, true)) 8804 return false; 8805 8806 return netdev_phys_item_id_same(&a_id, &b_id); 8807 } 8808 EXPORT_SYMBOL(netdev_port_same_parent_id); 8809 8810 /** 8811 * dev_change_proto_down - update protocol port state information 8812 * @dev: device 8813 * @proto_down: new value 8814 * 8815 * This info can be used by switch drivers to set the phys state of the 8816 * port. 8817 */ 8818 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8819 { 8820 const struct net_device_ops *ops = dev->netdev_ops; 8821 8822 if (!ops->ndo_change_proto_down) 8823 return -EOPNOTSUPP; 8824 if (!netif_device_present(dev)) 8825 return -ENODEV; 8826 return ops->ndo_change_proto_down(dev, proto_down); 8827 } 8828 EXPORT_SYMBOL(dev_change_proto_down); 8829 8830 /** 8831 * dev_change_proto_down_generic - generic implementation for 8832 * ndo_change_proto_down that sets carrier according to 8833 * proto_down. 8834 * 8835 * @dev: device 8836 * @proto_down: new value 8837 */ 8838 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8839 { 8840 if (proto_down) 8841 netif_carrier_off(dev); 8842 else 8843 netif_carrier_on(dev); 8844 dev->proto_down = proto_down; 8845 return 0; 8846 } 8847 EXPORT_SYMBOL(dev_change_proto_down_generic); 8848 8849 /** 8850 * dev_change_proto_down_reason - proto down reason 8851 * 8852 * @dev: device 8853 * @mask: proto down mask 8854 * @value: proto down value 8855 */ 8856 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8857 u32 value) 8858 { 8859 int b; 8860 8861 if (!mask) { 8862 dev->proto_down_reason = value; 8863 } else { 8864 for_each_set_bit(b, &mask, 32) { 8865 if (value & (1 << b)) 8866 dev->proto_down_reason |= BIT(b); 8867 else 8868 dev->proto_down_reason &= ~BIT(b); 8869 } 8870 } 8871 } 8872 EXPORT_SYMBOL(dev_change_proto_down_reason); 8873 8874 struct bpf_xdp_link { 8875 struct bpf_link link; 8876 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 8877 int flags; 8878 }; 8879 8880 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 8881 { 8882 if (flags & XDP_FLAGS_HW_MODE) 8883 return XDP_MODE_HW; 8884 if (flags & XDP_FLAGS_DRV_MODE) 8885 return XDP_MODE_DRV; 8886 if (flags & XDP_FLAGS_SKB_MODE) 8887 return XDP_MODE_SKB; 8888 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 8889 } 8890 8891 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 8892 { 8893 switch (mode) { 8894 case XDP_MODE_SKB: 8895 return generic_xdp_install; 8896 case XDP_MODE_DRV: 8897 case XDP_MODE_HW: 8898 return dev->netdev_ops->ndo_bpf; 8899 default: 8900 return NULL; 8901 }; 8902 } 8903 8904 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 8905 enum bpf_xdp_mode mode) 8906 { 8907 return dev->xdp_state[mode].link; 8908 } 8909 8910 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 8911 enum bpf_xdp_mode mode) 8912 { 8913 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 8914 8915 if (link) 8916 return link->link.prog; 8917 return dev->xdp_state[mode].prog; 8918 } 8919 8920 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 8921 { 8922 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 8923 8924 return prog ? prog->aux->id : 0; 8925 } 8926 8927 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 8928 struct bpf_xdp_link *link) 8929 { 8930 dev->xdp_state[mode].link = link; 8931 dev->xdp_state[mode].prog = NULL; 8932 } 8933 8934 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 8935 struct bpf_prog *prog) 8936 { 8937 dev->xdp_state[mode].link = NULL; 8938 dev->xdp_state[mode].prog = prog; 8939 } 8940 8941 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 8942 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 8943 u32 flags, struct bpf_prog *prog) 8944 { 8945 struct netdev_bpf xdp; 8946 int err; 8947 8948 memset(&xdp, 0, sizeof(xdp)); 8949 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 8950 xdp.extack = extack; 8951 xdp.flags = flags; 8952 xdp.prog = prog; 8953 8954 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 8955 * "moved" into driver), so they don't increment it on their own, but 8956 * they do decrement refcnt when program is detached or replaced. 8957 * Given net_device also owns link/prog, we need to bump refcnt here 8958 * to prevent drivers from underflowing it. 8959 */ 8960 if (prog) 8961 bpf_prog_inc(prog); 8962 err = bpf_op(dev, &xdp); 8963 if (err) { 8964 if (prog) 8965 bpf_prog_put(prog); 8966 return err; 8967 } 8968 8969 if (mode != XDP_MODE_HW) 8970 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 8971 8972 return 0; 8973 } 8974 8975 static void dev_xdp_uninstall(struct net_device *dev) 8976 { 8977 struct bpf_xdp_link *link; 8978 struct bpf_prog *prog; 8979 enum bpf_xdp_mode mode; 8980 bpf_op_t bpf_op; 8981 8982 ASSERT_RTNL(); 8983 8984 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 8985 prog = dev_xdp_prog(dev, mode); 8986 if (!prog) 8987 continue; 8988 8989 bpf_op = dev_xdp_bpf_op(dev, mode); 8990 if (!bpf_op) 8991 continue; 8992 8993 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 8994 8995 /* auto-detach link from net device */ 8996 link = dev_xdp_link(dev, mode); 8997 if (link) 8998 link->dev = NULL; 8999 else 9000 bpf_prog_put(prog); 9001 9002 dev_xdp_set_link(dev, mode, NULL); 9003 } 9004 } 9005 9006 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9007 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9008 struct bpf_prog *old_prog, u32 flags) 9009 { 9010 struct bpf_prog *cur_prog; 9011 enum bpf_xdp_mode mode; 9012 bpf_op_t bpf_op; 9013 int err; 9014 9015 ASSERT_RTNL(); 9016 9017 /* either link or prog attachment, never both */ 9018 if (link && (new_prog || old_prog)) 9019 return -EINVAL; 9020 /* link supports only XDP mode flags */ 9021 if (link && (flags & ~XDP_FLAGS_MODES)) { 9022 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9023 return -EINVAL; 9024 } 9025 /* just one XDP mode bit should be set, zero defaults to SKB mode */ 9026 if (hweight32(flags & XDP_FLAGS_MODES) > 1) { 9027 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9028 return -EINVAL; 9029 } 9030 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9031 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9032 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9033 return -EINVAL; 9034 } 9035 9036 mode = dev_xdp_mode(dev, flags); 9037 /* can't replace attached link */ 9038 if (dev_xdp_link(dev, mode)) { 9039 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9040 return -EBUSY; 9041 } 9042 9043 cur_prog = dev_xdp_prog(dev, mode); 9044 /* can't replace attached prog with link */ 9045 if (link && cur_prog) { 9046 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9047 return -EBUSY; 9048 } 9049 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9050 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9051 return -EEXIST; 9052 } 9053 9054 /* put effective new program into new_prog */ 9055 if (link) 9056 new_prog = link->link.prog; 9057 9058 if (new_prog) { 9059 bool offload = mode == XDP_MODE_HW; 9060 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9061 ? XDP_MODE_DRV : XDP_MODE_SKB; 9062 9063 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9064 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9065 return -EBUSY; 9066 } 9067 if (!offload && dev_xdp_prog(dev, other_mode)) { 9068 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9069 return -EEXIST; 9070 } 9071 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9072 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9073 return -EINVAL; 9074 } 9075 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9076 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9077 return -EINVAL; 9078 } 9079 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9080 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9081 return -EINVAL; 9082 } 9083 } 9084 9085 /* don't call drivers if the effective program didn't change */ 9086 if (new_prog != cur_prog) { 9087 bpf_op = dev_xdp_bpf_op(dev, mode); 9088 if (!bpf_op) { 9089 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9090 return -EOPNOTSUPP; 9091 } 9092 9093 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9094 if (err) 9095 return err; 9096 } 9097 9098 if (link) 9099 dev_xdp_set_link(dev, mode, link); 9100 else 9101 dev_xdp_set_prog(dev, mode, new_prog); 9102 if (cur_prog) 9103 bpf_prog_put(cur_prog); 9104 9105 return 0; 9106 } 9107 9108 static int dev_xdp_attach_link(struct net_device *dev, 9109 struct netlink_ext_ack *extack, 9110 struct bpf_xdp_link *link) 9111 { 9112 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9113 } 9114 9115 static int dev_xdp_detach_link(struct net_device *dev, 9116 struct netlink_ext_ack *extack, 9117 struct bpf_xdp_link *link) 9118 { 9119 enum bpf_xdp_mode mode; 9120 bpf_op_t bpf_op; 9121 9122 ASSERT_RTNL(); 9123 9124 mode = dev_xdp_mode(dev, link->flags); 9125 if (dev_xdp_link(dev, mode) != link) 9126 return -EINVAL; 9127 9128 bpf_op = dev_xdp_bpf_op(dev, mode); 9129 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9130 dev_xdp_set_link(dev, mode, NULL); 9131 return 0; 9132 } 9133 9134 static void bpf_xdp_link_release(struct bpf_link *link) 9135 { 9136 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9137 9138 rtnl_lock(); 9139 9140 /* if racing with net_device's tear down, xdp_link->dev might be 9141 * already NULL, in which case link was already auto-detached 9142 */ 9143 if (xdp_link->dev) { 9144 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9145 xdp_link->dev = NULL; 9146 } 9147 9148 rtnl_unlock(); 9149 } 9150 9151 static int bpf_xdp_link_detach(struct bpf_link *link) 9152 { 9153 bpf_xdp_link_release(link); 9154 return 0; 9155 } 9156 9157 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9158 { 9159 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9160 9161 kfree(xdp_link); 9162 } 9163 9164 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9165 struct seq_file *seq) 9166 { 9167 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9168 u32 ifindex = 0; 9169 9170 rtnl_lock(); 9171 if (xdp_link->dev) 9172 ifindex = xdp_link->dev->ifindex; 9173 rtnl_unlock(); 9174 9175 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9176 } 9177 9178 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9179 struct bpf_link_info *info) 9180 { 9181 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9182 u32 ifindex = 0; 9183 9184 rtnl_lock(); 9185 if (xdp_link->dev) 9186 ifindex = xdp_link->dev->ifindex; 9187 rtnl_unlock(); 9188 9189 info->xdp.ifindex = ifindex; 9190 return 0; 9191 } 9192 9193 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9194 struct bpf_prog *old_prog) 9195 { 9196 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9197 enum bpf_xdp_mode mode; 9198 bpf_op_t bpf_op; 9199 int err = 0; 9200 9201 rtnl_lock(); 9202 9203 /* link might have been auto-released already, so fail */ 9204 if (!xdp_link->dev) { 9205 err = -ENOLINK; 9206 goto out_unlock; 9207 } 9208 9209 if (old_prog && link->prog != old_prog) { 9210 err = -EPERM; 9211 goto out_unlock; 9212 } 9213 old_prog = link->prog; 9214 if (old_prog == new_prog) { 9215 /* no-op, don't disturb drivers */ 9216 bpf_prog_put(new_prog); 9217 goto out_unlock; 9218 } 9219 9220 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9221 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9222 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9223 xdp_link->flags, new_prog); 9224 if (err) 9225 goto out_unlock; 9226 9227 old_prog = xchg(&link->prog, new_prog); 9228 bpf_prog_put(old_prog); 9229 9230 out_unlock: 9231 rtnl_unlock(); 9232 return err; 9233 } 9234 9235 static const struct bpf_link_ops bpf_xdp_link_lops = { 9236 .release = bpf_xdp_link_release, 9237 .dealloc = bpf_xdp_link_dealloc, 9238 .detach = bpf_xdp_link_detach, 9239 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9240 .fill_link_info = bpf_xdp_link_fill_link_info, 9241 .update_prog = bpf_xdp_link_update, 9242 }; 9243 9244 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9245 { 9246 struct net *net = current->nsproxy->net_ns; 9247 struct bpf_link_primer link_primer; 9248 struct bpf_xdp_link *link; 9249 struct net_device *dev; 9250 int err, fd; 9251 9252 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9253 if (!dev) 9254 return -EINVAL; 9255 9256 link = kzalloc(sizeof(*link), GFP_USER); 9257 if (!link) { 9258 err = -ENOMEM; 9259 goto out_put_dev; 9260 } 9261 9262 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9263 link->dev = dev; 9264 link->flags = attr->link_create.flags; 9265 9266 err = bpf_link_prime(&link->link, &link_primer); 9267 if (err) { 9268 kfree(link); 9269 goto out_put_dev; 9270 } 9271 9272 rtnl_lock(); 9273 err = dev_xdp_attach_link(dev, NULL, link); 9274 rtnl_unlock(); 9275 9276 if (err) { 9277 bpf_link_cleanup(&link_primer); 9278 goto out_put_dev; 9279 } 9280 9281 fd = bpf_link_settle(&link_primer); 9282 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9283 dev_put(dev); 9284 return fd; 9285 9286 out_put_dev: 9287 dev_put(dev); 9288 return err; 9289 } 9290 9291 /** 9292 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9293 * @dev: device 9294 * @extack: netlink extended ack 9295 * @fd: new program fd or negative value to clear 9296 * @expected_fd: old program fd that userspace expects to replace or clear 9297 * @flags: xdp-related flags 9298 * 9299 * Set or clear a bpf program for a device 9300 */ 9301 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9302 int fd, int expected_fd, u32 flags) 9303 { 9304 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9305 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9306 int err; 9307 9308 ASSERT_RTNL(); 9309 9310 if (fd >= 0) { 9311 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9312 mode != XDP_MODE_SKB); 9313 if (IS_ERR(new_prog)) 9314 return PTR_ERR(new_prog); 9315 } 9316 9317 if (expected_fd >= 0) { 9318 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9319 mode != XDP_MODE_SKB); 9320 if (IS_ERR(old_prog)) { 9321 err = PTR_ERR(old_prog); 9322 old_prog = NULL; 9323 goto err_out; 9324 } 9325 } 9326 9327 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9328 9329 err_out: 9330 if (err && new_prog) 9331 bpf_prog_put(new_prog); 9332 if (old_prog) 9333 bpf_prog_put(old_prog); 9334 return err; 9335 } 9336 9337 /** 9338 * dev_new_index - allocate an ifindex 9339 * @net: the applicable net namespace 9340 * 9341 * Returns a suitable unique value for a new device interface 9342 * number. The caller must hold the rtnl semaphore or the 9343 * dev_base_lock to be sure it remains unique. 9344 */ 9345 static int dev_new_index(struct net *net) 9346 { 9347 int ifindex = net->ifindex; 9348 9349 for (;;) { 9350 if (++ifindex <= 0) 9351 ifindex = 1; 9352 if (!__dev_get_by_index(net, ifindex)) 9353 return net->ifindex = ifindex; 9354 } 9355 } 9356 9357 /* Delayed registration/unregisteration */ 9358 static LIST_HEAD(net_todo_list); 9359 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9360 9361 static void net_set_todo(struct net_device *dev) 9362 { 9363 list_add_tail(&dev->todo_list, &net_todo_list); 9364 dev_net(dev)->dev_unreg_count++; 9365 } 9366 9367 static void rollback_registered_many(struct list_head *head) 9368 { 9369 struct net_device *dev, *tmp; 9370 LIST_HEAD(close_head); 9371 9372 BUG_ON(dev_boot_phase); 9373 ASSERT_RTNL(); 9374 9375 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 9376 /* Some devices call without registering 9377 * for initialization unwind. Remove those 9378 * devices and proceed with the remaining. 9379 */ 9380 if (dev->reg_state == NETREG_UNINITIALIZED) { 9381 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 9382 dev->name, dev); 9383 9384 WARN_ON(1); 9385 list_del(&dev->unreg_list); 9386 continue; 9387 } 9388 dev->dismantle = true; 9389 BUG_ON(dev->reg_state != NETREG_REGISTERED); 9390 } 9391 9392 /* If device is running, close it first. */ 9393 list_for_each_entry(dev, head, unreg_list) 9394 list_add_tail(&dev->close_list, &close_head); 9395 dev_close_many(&close_head, true); 9396 9397 list_for_each_entry(dev, head, unreg_list) { 9398 /* And unlink it from device chain. */ 9399 unlist_netdevice(dev); 9400 9401 dev->reg_state = NETREG_UNREGISTERING; 9402 } 9403 flush_all_backlogs(); 9404 9405 synchronize_net(); 9406 9407 list_for_each_entry(dev, head, unreg_list) { 9408 struct sk_buff *skb = NULL; 9409 9410 /* Shutdown queueing discipline. */ 9411 dev_shutdown(dev); 9412 9413 dev_xdp_uninstall(dev); 9414 9415 /* Notify protocols, that we are about to destroy 9416 * this device. They should clean all the things. 9417 */ 9418 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9419 9420 if (!dev->rtnl_link_ops || 9421 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9422 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 9423 GFP_KERNEL, NULL, 0); 9424 9425 /* 9426 * Flush the unicast and multicast chains 9427 */ 9428 dev_uc_flush(dev); 9429 dev_mc_flush(dev); 9430 9431 netdev_name_node_alt_flush(dev); 9432 netdev_name_node_free(dev->name_node); 9433 9434 if (dev->netdev_ops->ndo_uninit) 9435 dev->netdev_ops->ndo_uninit(dev); 9436 9437 if (skb) 9438 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 9439 9440 /* Notifier chain MUST detach us all upper devices. */ 9441 WARN_ON(netdev_has_any_upper_dev(dev)); 9442 WARN_ON(netdev_has_any_lower_dev(dev)); 9443 9444 /* Remove entries from kobject tree */ 9445 netdev_unregister_kobject(dev); 9446 #ifdef CONFIG_XPS 9447 /* Remove XPS queueing entries */ 9448 netif_reset_xps_queues_gt(dev, 0); 9449 #endif 9450 } 9451 9452 synchronize_net(); 9453 9454 list_for_each_entry(dev, head, unreg_list) 9455 dev_put(dev); 9456 } 9457 9458 static void rollback_registered(struct net_device *dev) 9459 { 9460 LIST_HEAD(single); 9461 9462 list_add(&dev->unreg_list, &single); 9463 rollback_registered_many(&single); 9464 list_del(&single); 9465 } 9466 9467 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9468 struct net_device *upper, netdev_features_t features) 9469 { 9470 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9471 netdev_features_t feature; 9472 int feature_bit; 9473 9474 for_each_netdev_feature(upper_disables, feature_bit) { 9475 feature = __NETIF_F_BIT(feature_bit); 9476 if (!(upper->wanted_features & feature) 9477 && (features & feature)) { 9478 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9479 &feature, upper->name); 9480 features &= ~feature; 9481 } 9482 } 9483 9484 return features; 9485 } 9486 9487 static void netdev_sync_lower_features(struct net_device *upper, 9488 struct net_device *lower, netdev_features_t features) 9489 { 9490 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9491 netdev_features_t feature; 9492 int feature_bit; 9493 9494 for_each_netdev_feature(upper_disables, feature_bit) { 9495 feature = __NETIF_F_BIT(feature_bit); 9496 if (!(features & feature) && (lower->features & feature)) { 9497 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9498 &feature, lower->name); 9499 lower->wanted_features &= ~feature; 9500 __netdev_update_features(lower); 9501 9502 if (unlikely(lower->features & feature)) 9503 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9504 &feature, lower->name); 9505 else 9506 netdev_features_change(lower); 9507 } 9508 } 9509 } 9510 9511 static netdev_features_t netdev_fix_features(struct net_device *dev, 9512 netdev_features_t features) 9513 { 9514 /* Fix illegal checksum combinations */ 9515 if ((features & NETIF_F_HW_CSUM) && 9516 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9517 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9518 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9519 } 9520 9521 /* TSO requires that SG is present as well. */ 9522 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9523 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9524 features &= ~NETIF_F_ALL_TSO; 9525 } 9526 9527 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9528 !(features & NETIF_F_IP_CSUM)) { 9529 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9530 features &= ~NETIF_F_TSO; 9531 features &= ~NETIF_F_TSO_ECN; 9532 } 9533 9534 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9535 !(features & NETIF_F_IPV6_CSUM)) { 9536 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9537 features &= ~NETIF_F_TSO6; 9538 } 9539 9540 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9541 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9542 features &= ~NETIF_F_TSO_MANGLEID; 9543 9544 /* TSO ECN requires that TSO is present as well. */ 9545 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9546 features &= ~NETIF_F_TSO_ECN; 9547 9548 /* Software GSO depends on SG. */ 9549 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9550 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9551 features &= ~NETIF_F_GSO; 9552 } 9553 9554 /* GSO partial features require GSO partial be set */ 9555 if ((features & dev->gso_partial_features) && 9556 !(features & NETIF_F_GSO_PARTIAL)) { 9557 netdev_dbg(dev, 9558 "Dropping partially supported GSO features since no GSO partial.\n"); 9559 features &= ~dev->gso_partial_features; 9560 } 9561 9562 if (!(features & NETIF_F_RXCSUM)) { 9563 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9564 * successfully merged by hardware must also have the 9565 * checksum verified by hardware. If the user does not 9566 * want to enable RXCSUM, logically, we should disable GRO_HW. 9567 */ 9568 if (features & NETIF_F_GRO_HW) { 9569 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9570 features &= ~NETIF_F_GRO_HW; 9571 } 9572 } 9573 9574 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9575 if (features & NETIF_F_RXFCS) { 9576 if (features & NETIF_F_LRO) { 9577 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9578 features &= ~NETIF_F_LRO; 9579 } 9580 9581 if (features & NETIF_F_GRO_HW) { 9582 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9583 features &= ~NETIF_F_GRO_HW; 9584 } 9585 } 9586 9587 return features; 9588 } 9589 9590 int __netdev_update_features(struct net_device *dev) 9591 { 9592 struct net_device *upper, *lower; 9593 netdev_features_t features; 9594 struct list_head *iter; 9595 int err = -1; 9596 9597 ASSERT_RTNL(); 9598 9599 features = netdev_get_wanted_features(dev); 9600 9601 if (dev->netdev_ops->ndo_fix_features) 9602 features = dev->netdev_ops->ndo_fix_features(dev, features); 9603 9604 /* driver might be less strict about feature dependencies */ 9605 features = netdev_fix_features(dev, features); 9606 9607 /* some features can't be enabled if they're off on an upper device */ 9608 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9609 features = netdev_sync_upper_features(dev, upper, features); 9610 9611 if (dev->features == features) 9612 goto sync_lower; 9613 9614 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9615 &dev->features, &features); 9616 9617 if (dev->netdev_ops->ndo_set_features) 9618 err = dev->netdev_ops->ndo_set_features(dev, features); 9619 else 9620 err = 0; 9621 9622 if (unlikely(err < 0)) { 9623 netdev_err(dev, 9624 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9625 err, &features, &dev->features); 9626 /* return non-0 since some features might have changed and 9627 * it's better to fire a spurious notification than miss it 9628 */ 9629 return -1; 9630 } 9631 9632 sync_lower: 9633 /* some features must be disabled on lower devices when disabled 9634 * on an upper device (think: bonding master or bridge) 9635 */ 9636 netdev_for_each_lower_dev(dev, lower, iter) 9637 netdev_sync_lower_features(dev, lower, features); 9638 9639 if (!err) { 9640 netdev_features_t diff = features ^ dev->features; 9641 9642 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9643 /* udp_tunnel_{get,drop}_rx_info both need 9644 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9645 * device, or they won't do anything. 9646 * Thus we need to update dev->features 9647 * *before* calling udp_tunnel_get_rx_info, 9648 * but *after* calling udp_tunnel_drop_rx_info. 9649 */ 9650 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9651 dev->features = features; 9652 udp_tunnel_get_rx_info(dev); 9653 } else { 9654 udp_tunnel_drop_rx_info(dev); 9655 } 9656 } 9657 9658 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9659 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9660 dev->features = features; 9661 err |= vlan_get_rx_ctag_filter_info(dev); 9662 } else { 9663 vlan_drop_rx_ctag_filter_info(dev); 9664 } 9665 } 9666 9667 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9668 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9669 dev->features = features; 9670 err |= vlan_get_rx_stag_filter_info(dev); 9671 } else { 9672 vlan_drop_rx_stag_filter_info(dev); 9673 } 9674 } 9675 9676 dev->features = features; 9677 } 9678 9679 return err < 0 ? 0 : 1; 9680 } 9681 9682 /** 9683 * netdev_update_features - recalculate device features 9684 * @dev: the device to check 9685 * 9686 * Recalculate dev->features set and send notifications if it 9687 * has changed. Should be called after driver or hardware dependent 9688 * conditions might have changed that influence the features. 9689 */ 9690 void netdev_update_features(struct net_device *dev) 9691 { 9692 if (__netdev_update_features(dev)) 9693 netdev_features_change(dev); 9694 } 9695 EXPORT_SYMBOL(netdev_update_features); 9696 9697 /** 9698 * netdev_change_features - recalculate device features 9699 * @dev: the device to check 9700 * 9701 * Recalculate dev->features set and send notifications even 9702 * if they have not changed. Should be called instead of 9703 * netdev_update_features() if also dev->vlan_features might 9704 * have changed to allow the changes to be propagated to stacked 9705 * VLAN devices. 9706 */ 9707 void netdev_change_features(struct net_device *dev) 9708 { 9709 __netdev_update_features(dev); 9710 netdev_features_change(dev); 9711 } 9712 EXPORT_SYMBOL(netdev_change_features); 9713 9714 /** 9715 * netif_stacked_transfer_operstate - transfer operstate 9716 * @rootdev: the root or lower level device to transfer state from 9717 * @dev: the device to transfer operstate to 9718 * 9719 * Transfer operational state from root to device. This is normally 9720 * called when a stacking relationship exists between the root 9721 * device and the device(a leaf device). 9722 */ 9723 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9724 struct net_device *dev) 9725 { 9726 if (rootdev->operstate == IF_OPER_DORMANT) 9727 netif_dormant_on(dev); 9728 else 9729 netif_dormant_off(dev); 9730 9731 if (rootdev->operstate == IF_OPER_TESTING) 9732 netif_testing_on(dev); 9733 else 9734 netif_testing_off(dev); 9735 9736 if (netif_carrier_ok(rootdev)) 9737 netif_carrier_on(dev); 9738 else 9739 netif_carrier_off(dev); 9740 } 9741 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9742 9743 static int netif_alloc_rx_queues(struct net_device *dev) 9744 { 9745 unsigned int i, count = dev->num_rx_queues; 9746 struct netdev_rx_queue *rx; 9747 size_t sz = count * sizeof(*rx); 9748 int err = 0; 9749 9750 BUG_ON(count < 1); 9751 9752 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9753 if (!rx) 9754 return -ENOMEM; 9755 9756 dev->_rx = rx; 9757 9758 for (i = 0; i < count; i++) { 9759 rx[i].dev = dev; 9760 9761 /* XDP RX-queue setup */ 9762 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9763 if (err < 0) 9764 goto err_rxq_info; 9765 } 9766 return 0; 9767 9768 err_rxq_info: 9769 /* Rollback successful reg's and free other resources */ 9770 while (i--) 9771 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9772 kvfree(dev->_rx); 9773 dev->_rx = NULL; 9774 return err; 9775 } 9776 9777 static void netif_free_rx_queues(struct net_device *dev) 9778 { 9779 unsigned int i, count = dev->num_rx_queues; 9780 9781 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9782 if (!dev->_rx) 9783 return; 9784 9785 for (i = 0; i < count; i++) 9786 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9787 9788 kvfree(dev->_rx); 9789 } 9790 9791 static void netdev_init_one_queue(struct net_device *dev, 9792 struct netdev_queue *queue, void *_unused) 9793 { 9794 /* Initialize queue lock */ 9795 spin_lock_init(&queue->_xmit_lock); 9796 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9797 queue->xmit_lock_owner = -1; 9798 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9799 queue->dev = dev; 9800 #ifdef CONFIG_BQL 9801 dql_init(&queue->dql, HZ); 9802 #endif 9803 } 9804 9805 static void netif_free_tx_queues(struct net_device *dev) 9806 { 9807 kvfree(dev->_tx); 9808 } 9809 9810 static int netif_alloc_netdev_queues(struct net_device *dev) 9811 { 9812 unsigned int count = dev->num_tx_queues; 9813 struct netdev_queue *tx; 9814 size_t sz = count * sizeof(*tx); 9815 9816 if (count < 1 || count > 0xffff) 9817 return -EINVAL; 9818 9819 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9820 if (!tx) 9821 return -ENOMEM; 9822 9823 dev->_tx = tx; 9824 9825 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9826 spin_lock_init(&dev->tx_global_lock); 9827 9828 return 0; 9829 } 9830 9831 void netif_tx_stop_all_queues(struct net_device *dev) 9832 { 9833 unsigned int i; 9834 9835 for (i = 0; i < dev->num_tx_queues; i++) { 9836 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9837 9838 netif_tx_stop_queue(txq); 9839 } 9840 } 9841 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9842 9843 /** 9844 * register_netdevice - register a network device 9845 * @dev: device to register 9846 * 9847 * Take a completed network device structure and add it to the kernel 9848 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9849 * chain. 0 is returned on success. A negative errno code is returned 9850 * on a failure to set up the device, or if the name is a duplicate. 9851 * 9852 * Callers must hold the rtnl semaphore. You may want 9853 * register_netdev() instead of this. 9854 * 9855 * BUGS: 9856 * The locking appears insufficient to guarantee two parallel registers 9857 * will not get the same name. 9858 */ 9859 9860 int register_netdevice(struct net_device *dev) 9861 { 9862 int ret; 9863 struct net *net = dev_net(dev); 9864 9865 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9866 NETDEV_FEATURE_COUNT); 9867 BUG_ON(dev_boot_phase); 9868 ASSERT_RTNL(); 9869 9870 might_sleep(); 9871 9872 /* When net_device's are persistent, this will be fatal. */ 9873 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9874 BUG_ON(!net); 9875 9876 ret = ethtool_check_ops(dev->ethtool_ops); 9877 if (ret) 9878 return ret; 9879 9880 spin_lock_init(&dev->addr_list_lock); 9881 netdev_set_addr_lockdep_class(dev); 9882 9883 ret = dev_get_valid_name(net, dev, dev->name); 9884 if (ret < 0) 9885 goto out; 9886 9887 ret = -ENOMEM; 9888 dev->name_node = netdev_name_node_head_alloc(dev); 9889 if (!dev->name_node) 9890 goto out; 9891 9892 /* Init, if this function is available */ 9893 if (dev->netdev_ops->ndo_init) { 9894 ret = dev->netdev_ops->ndo_init(dev); 9895 if (ret) { 9896 if (ret > 0) 9897 ret = -EIO; 9898 goto err_free_name; 9899 } 9900 } 9901 9902 if (((dev->hw_features | dev->features) & 9903 NETIF_F_HW_VLAN_CTAG_FILTER) && 9904 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9905 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9906 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9907 ret = -EINVAL; 9908 goto err_uninit; 9909 } 9910 9911 ret = -EBUSY; 9912 if (!dev->ifindex) 9913 dev->ifindex = dev_new_index(net); 9914 else if (__dev_get_by_index(net, dev->ifindex)) 9915 goto err_uninit; 9916 9917 /* Transfer changeable features to wanted_features and enable 9918 * software offloads (GSO and GRO). 9919 */ 9920 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9921 dev->features |= NETIF_F_SOFT_FEATURES; 9922 9923 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9924 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9925 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9926 } 9927 9928 dev->wanted_features = dev->features & dev->hw_features; 9929 9930 if (!(dev->flags & IFF_LOOPBACK)) 9931 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9932 9933 /* If IPv4 TCP segmentation offload is supported we should also 9934 * allow the device to enable segmenting the frame with the option 9935 * of ignoring a static IP ID value. This doesn't enable the 9936 * feature itself but allows the user to enable it later. 9937 */ 9938 if (dev->hw_features & NETIF_F_TSO) 9939 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9940 if (dev->vlan_features & NETIF_F_TSO) 9941 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9942 if (dev->mpls_features & NETIF_F_TSO) 9943 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9944 if (dev->hw_enc_features & NETIF_F_TSO) 9945 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9946 9947 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9948 */ 9949 dev->vlan_features |= NETIF_F_HIGHDMA; 9950 9951 /* Make NETIF_F_SG inheritable to tunnel devices. 9952 */ 9953 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9954 9955 /* Make NETIF_F_SG inheritable to MPLS. 9956 */ 9957 dev->mpls_features |= NETIF_F_SG; 9958 9959 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9960 ret = notifier_to_errno(ret); 9961 if (ret) 9962 goto err_uninit; 9963 9964 ret = netdev_register_kobject(dev); 9965 if (ret) { 9966 dev->reg_state = NETREG_UNREGISTERED; 9967 goto err_uninit; 9968 } 9969 dev->reg_state = NETREG_REGISTERED; 9970 9971 __netdev_update_features(dev); 9972 9973 /* 9974 * Default initial state at registry is that the 9975 * device is present. 9976 */ 9977 9978 set_bit(__LINK_STATE_PRESENT, &dev->state); 9979 9980 linkwatch_init_dev(dev); 9981 9982 dev_init_scheduler(dev); 9983 dev_hold(dev); 9984 list_netdevice(dev); 9985 add_device_randomness(dev->dev_addr, dev->addr_len); 9986 9987 /* If the device has permanent device address, driver should 9988 * set dev_addr and also addr_assign_type should be set to 9989 * NET_ADDR_PERM (default value). 9990 */ 9991 if (dev->addr_assign_type == NET_ADDR_PERM) 9992 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9993 9994 /* Notify protocols, that a new device appeared. */ 9995 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9996 ret = notifier_to_errno(ret); 9997 if (ret) { 9998 rollback_registered(dev); 9999 rcu_barrier(); 10000 10001 dev->reg_state = NETREG_UNREGISTERED; 10002 /* We should put the kobject that hold in 10003 * netdev_unregister_kobject(), otherwise 10004 * the net device cannot be freed when 10005 * driver calls free_netdev(), because the 10006 * kobject is being hold. 10007 */ 10008 kobject_put(&dev->dev.kobj); 10009 } 10010 /* 10011 * Prevent userspace races by waiting until the network 10012 * device is fully setup before sending notifications. 10013 */ 10014 if (!dev->rtnl_link_ops || 10015 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10016 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10017 10018 out: 10019 return ret; 10020 10021 err_uninit: 10022 if (dev->netdev_ops->ndo_uninit) 10023 dev->netdev_ops->ndo_uninit(dev); 10024 if (dev->priv_destructor) 10025 dev->priv_destructor(dev); 10026 err_free_name: 10027 netdev_name_node_free(dev->name_node); 10028 goto out; 10029 } 10030 EXPORT_SYMBOL(register_netdevice); 10031 10032 /** 10033 * init_dummy_netdev - init a dummy network device for NAPI 10034 * @dev: device to init 10035 * 10036 * This takes a network device structure and initialize the minimum 10037 * amount of fields so it can be used to schedule NAPI polls without 10038 * registering a full blown interface. This is to be used by drivers 10039 * that need to tie several hardware interfaces to a single NAPI 10040 * poll scheduler due to HW limitations. 10041 */ 10042 int init_dummy_netdev(struct net_device *dev) 10043 { 10044 /* Clear everything. Note we don't initialize spinlocks 10045 * are they aren't supposed to be taken by any of the 10046 * NAPI code and this dummy netdev is supposed to be 10047 * only ever used for NAPI polls 10048 */ 10049 memset(dev, 0, sizeof(struct net_device)); 10050 10051 /* make sure we BUG if trying to hit standard 10052 * register/unregister code path 10053 */ 10054 dev->reg_state = NETREG_DUMMY; 10055 10056 /* NAPI wants this */ 10057 INIT_LIST_HEAD(&dev->napi_list); 10058 10059 /* a dummy interface is started by default */ 10060 set_bit(__LINK_STATE_PRESENT, &dev->state); 10061 set_bit(__LINK_STATE_START, &dev->state); 10062 10063 /* napi_busy_loop stats accounting wants this */ 10064 dev_net_set(dev, &init_net); 10065 10066 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10067 * because users of this 'device' dont need to change 10068 * its refcount. 10069 */ 10070 10071 return 0; 10072 } 10073 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10074 10075 10076 /** 10077 * register_netdev - register a network device 10078 * @dev: device to register 10079 * 10080 * Take a completed network device structure and add it to the kernel 10081 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10082 * chain. 0 is returned on success. A negative errno code is returned 10083 * on a failure to set up the device, or if the name is a duplicate. 10084 * 10085 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10086 * and expands the device name if you passed a format string to 10087 * alloc_netdev. 10088 */ 10089 int register_netdev(struct net_device *dev) 10090 { 10091 int err; 10092 10093 if (rtnl_lock_killable()) 10094 return -EINTR; 10095 err = register_netdevice(dev); 10096 rtnl_unlock(); 10097 return err; 10098 } 10099 EXPORT_SYMBOL(register_netdev); 10100 10101 int netdev_refcnt_read(const struct net_device *dev) 10102 { 10103 int i, refcnt = 0; 10104 10105 for_each_possible_cpu(i) 10106 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10107 return refcnt; 10108 } 10109 EXPORT_SYMBOL(netdev_refcnt_read); 10110 10111 #define WAIT_REFS_MIN_MSECS 1 10112 #define WAIT_REFS_MAX_MSECS 250 10113 /** 10114 * netdev_wait_allrefs - wait until all references are gone. 10115 * @dev: target net_device 10116 * 10117 * This is called when unregistering network devices. 10118 * 10119 * Any protocol or device that holds a reference should register 10120 * for netdevice notification, and cleanup and put back the 10121 * reference if they receive an UNREGISTER event. 10122 * We can get stuck here if buggy protocols don't correctly 10123 * call dev_put. 10124 */ 10125 static void netdev_wait_allrefs(struct net_device *dev) 10126 { 10127 unsigned long rebroadcast_time, warning_time; 10128 int wait = 0, refcnt; 10129 10130 linkwatch_forget_dev(dev); 10131 10132 rebroadcast_time = warning_time = jiffies; 10133 refcnt = netdev_refcnt_read(dev); 10134 10135 while (refcnt != 0) { 10136 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10137 rtnl_lock(); 10138 10139 /* Rebroadcast unregister notification */ 10140 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10141 10142 __rtnl_unlock(); 10143 rcu_barrier(); 10144 rtnl_lock(); 10145 10146 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10147 &dev->state)) { 10148 /* We must not have linkwatch events 10149 * pending on unregister. If this 10150 * happens, we simply run the queue 10151 * unscheduled, resulting in a noop 10152 * for this device. 10153 */ 10154 linkwatch_run_queue(); 10155 } 10156 10157 __rtnl_unlock(); 10158 10159 rebroadcast_time = jiffies; 10160 } 10161 10162 if (!wait) { 10163 rcu_barrier(); 10164 wait = WAIT_REFS_MIN_MSECS; 10165 } else { 10166 msleep(wait); 10167 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10168 } 10169 10170 refcnt = netdev_refcnt_read(dev); 10171 10172 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10173 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10174 dev->name, refcnt); 10175 warning_time = jiffies; 10176 } 10177 } 10178 } 10179 10180 /* The sequence is: 10181 * 10182 * rtnl_lock(); 10183 * ... 10184 * register_netdevice(x1); 10185 * register_netdevice(x2); 10186 * ... 10187 * unregister_netdevice(y1); 10188 * unregister_netdevice(y2); 10189 * ... 10190 * rtnl_unlock(); 10191 * free_netdev(y1); 10192 * free_netdev(y2); 10193 * 10194 * We are invoked by rtnl_unlock(). 10195 * This allows us to deal with problems: 10196 * 1) We can delete sysfs objects which invoke hotplug 10197 * without deadlocking with linkwatch via keventd. 10198 * 2) Since we run with the RTNL semaphore not held, we can sleep 10199 * safely in order to wait for the netdev refcnt to drop to zero. 10200 * 10201 * We must not return until all unregister events added during 10202 * the interval the lock was held have been completed. 10203 */ 10204 void netdev_run_todo(void) 10205 { 10206 struct list_head list; 10207 #ifdef CONFIG_LOCKDEP 10208 struct list_head unlink_list; 10209 10210 list_replace_init(&net_unlink_list, &unlink_list); 10211 10212 while (!list_empty(&unlink_list)) { 10213 struct net_device *dev = list_first_entry(&unlink_list, 10214 struct net_device, 10215 unlink_list); 10216 list_del_init(&dev->unlink_list); 10217 dev->nested_level = dev->lower_level - 1; 10218 } 10219 #endif 10220 10221 /* Snapshot list, allow later requests */ 10222 list_replace_init(&net_todo_list, &list); 10223 10224 __rtnl_unlock(); 10225 10226 10227 /* Wait for rcu callbacks to finish before next phase */ 10228 if (!list_empty(&list)) 10229 rcu_barrier(); 10230 10231 while (!list_empty(&list)) { 10232 struct net_device *dev 10233 = list_first_entry(&list, struct net_device, todo_list); 10234 list_del(&dev->todo_list); 10235 10236 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10237 pr_err("network todo '%s' but state %d\n", 10238 dev->name, dev->reg_state); 10239 dump_stack(); 10240 continue; 10241 } 10242 10243 dev->reg_state = NETREG_UNREGISTERED; 10244 10245 netdev_wait_allrefs(dev); 10246 10247 /* paranoia */ 10248 BUG_ON(netdev_refcnt_read(dev)); 10249 BUG_ON(!list_empty(&dev->ptype_all)); 10250 BUG_ON(!list_empty(&dev->ptype_specific)); 10251 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10252 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10253 #if IS_ENABLED(CONFIG_DECNET) 10254 WARN_ON(dev->dn_ptr); 10255 #endif 10256 if (dev->priv_destructor) 10257 dev->priv_destructor(dev); 10258 if (dev->needs_free_netdev) 10259 free_netdev(dev); 10260 10261 /* Report a network device has been unregistered */ 10262 rtnl_lock(); 10263 dev_net(dev)->dev_unreg_count--; 10264 __rtnl_unlock(); 10265 wake_up(&netdev_unregistering_wq); 10266 10267 /* Free network device */ 10268 kobject_put(&dev->dev.kobj); 10269 } 10270 } 10271 10272 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10273 * all the same fields in the same order as net_device_stats, with only 10274 * the type differing, but rtnl_link_stats64 may have additional fields 10275 * at the end for newer counters. 10276 */ 10277 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10278 const struct net_device_stats *netdev_stats) 10279 { 10280 #if BITS_PER_LONG == 64 10281 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10282 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10283 /* zero out counters that only exist in rtnl_link_stats64 */ 10284 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10285 sizeof(*stats64) - sizeof(*netdev_stats)); 10286 #else 10287 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10288 const unsigned long *src = (const unsigned long *)netdev_stats; 10289 u64 *dst = (u64 *)stats64; 10290 10291 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10292 for (i = 0; i < n; i++) 10293 dst[i] = src[i]; 10294 /* zero out counters that only exist in rtnl_link_stats64 */ 10295 memset((char *)stats64 + n * sizeof(u64), 0, 10296 sizeof(*stats64) - n * sizeof(u64)); 10297 #endif 10298 } 10299 EXPORT_SYMBOL(netdev_stats_to_stats64); 10300 10301 /** 10302 * dev_get_stats - get network device statistics 10303 * @dev: device to get statistics from 10304 * @storage: place to store stats 10305 * 10306 * Get network statistics from device. Return @storage. 10307 * The device driver may provide its own method by setting 10308 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10309 * otherwise the internal statistics structure is used. 10310 */ 10311 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10312 struct rtnl_link_stats64 *storage) 10313 { 10314 const struct net_device_ops *ops = dev->netdev_ops; 10315 10316 if (ops->ndo_get_stats64) { 10317 memset(storage, 0, sizeof(*storage)); 10318 ops->ndo_get_stats64(dev, storage); 10319 } else if (ops->ndo_get_stats) { 10320 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10321 } else { 10322 netdev_stats_to_stats64(storage, &dev->stats); 10323 } 10324 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10325 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10326 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10327 return storage; 10328 } 10329 EXPORT_SYMBOL(dev_get_stats); 10330 10331 /** 10332 * dev_fetch_sw_netstats - get per-cpu network device statistics 10333 * @s: place to store stats 10334 * @netstats: per-cpu network stats to read from 10335 * 10336 * Read per-cpu network statistics and populate the related fields in @s. 10337 */ 10338 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10339 const struct pcpu_sw_netstats __percpu *netstats) 10340 { 10341 int cpu; 10342 10343 for_each_possible_cpu(cpu) { 10344 const struct pcpu_sw_netstats *stats; 10345 struct pcpu_sw_netstats tmp; 10346 unsigned int start; 10347 10348 stats = per_cpu_ptr(netstats, cpu); 10349 do { 10350 start = u64_stats_fetch_begin_irq(&stats->syncp); 10351 tmp.rx_packets = stats->rx_packets; 10352 tmp.rx_bytes = stats->rx_bytes; 10353 tmp.tx_packets = stats->tx_packets; 10354 tmp.tx_bytes = stats->tx_bytes; 10355 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10356 10357 s->rx_packets += tmp.rx_packets; 10358 s->rx_bytes += tmp.rx_bytes; 10359 s->tx_packets += tmp.tx_packets; 10360 s->tx_bytes += tmp.tx_bytes; 10361 } 10362 } 10363 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10364 10365 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10366 { 10367 struct netdev_queue *queue = dev_ingress_queue(dev); 10368 10369 #ifdef CONFIG_NET_CLS_ACT 10370 if (queue) 10371 return queue; 10372 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10373 if (!queue) 10374 return NULL; 10375 netdev_init_one_queue(dev, queue, NULL); 10376 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10377 queue->qdisc_sleeping = &noop_qdisc; 10378 rcu_assign_pointer(dev->ingress_queue, queue); 10379 #endif 10380 return queue; 10381 } 10382 10383 static const struct ethtool_ops default_ethtool_ops; 10384 10385 void netdev_set_default_ethtool_ops(struct net_device *dev, 10386 const struct ethtool_ops *ops) 10387 { 10388 if (dev->ethtool_ops == &default_ethtool_ops) 10389 dev->ethtool_ops = ops; 10390 } 10391 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10392 10393 void netdev_freemem(struct net_device *dev) 10394 { 10395 char *addr = (char *)dev - dev->padded; 10396 10397 kvfree(addr); 10398 } 10399 10400 /** 10401 * alloc_netdev_mqs - allocate network device 10402 * @sizeof_priv: size of private data to allocate space for 10403 * @name: device name format string 10404 * @name_assign_type: origin of device name 10405 * @setup: callback to initialize device 10406 * @txqs: the number of TX subqueues to allocate 10407 * @rxqs: the number of RX subqueues to allocate 10408 * 10409 * Allocates a struct net_device with private data area for driver use 10410 * and performs basic initialization. Also allocates subqueue structs 10411 * for each queue on the device. 10412 */ 10413 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10414 unsigned char name_assign_type, 10415 void (*setup)(struct net_device *), 10416 unsigned int txqs, unsigned int rxqs) 10417 { 10418 struct net_device *dev; 10419 unsigned int alloc_size; 10420 struct net_device *p; 10421 10422 BUG_ON(strlen(name) >= sizeof(dev->name)); 10423 10424 if (txqs < 1) { 10425 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10426 return NULL; 10427 } 10428 10429 if (rxqs < 1) { 10430 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10431 return NULL; 10432 } 10433 10434 alloc_size = sizeof(struct net_device); 10435 if (sizeof_priv) { 10436 /* ensure 32-byte alignment of private area */ 10437 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10438 alloc_size += sizeof_priv; 10439 } 10440 /* ensure 32-byte alignment of whole construct */ 10441 alloc_size += NETDEV_ALIGN - 1; 10442 10443 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10444 if (!p) 10445 return NULL; 10446 10447 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10448 dev->padded = (char *)dev - (char *)p; 10449 10450 dev->pcpu_refcnt = alloc_percpu(int); 10451 if (!dev->pcpu_refcnt) 10452 goto free_dev; 10453 10454 if (dev_addr_init(dev)) 10455 goto free_pcpu; 10456 10457 dev_mc_init(dev); 10458 dev_uc_init(dev); 10459 10460 dev_net_set(dev, &init_net); 10461 10462 dev->gso_max_size = GSO_MAX_SIZE; 10463 dev->gso_max_segs = GSO_MAX_SEGS; 10464 dev->upper_level = 1; 10465 dev->lower_level = 1; 10466 #ifdef CONFIG_LOCKDEP 10467 dev->nested_level = 0; 10468 INIT_LIST_HEAD(&dev->unlink_list); 10469 #endif 10470 10471 INIT_LIST_HEAD(&dev->napi_list); 10472 INIT_LIST_HEAD(&dev->unreg_list); 10473 INIT_LIST_HEAD(&dev->close_list); 10474 INIT_LIST_HEAD(&dev->link_watch_list); 10475 INIT_LIST_HEAD(&dev->adj_list.upper); 10476 INIT_LIST_HEAD(&dev->adj_list.lower); 10477 INIT_LIST_HEAD(&dev->ptype_all); 10478 INIT_LIST_HEAD(&dev->ptype_specific); 10479 INIT_LIST_HEAD(&dev->net_notifier_list); 10480 #ifdef CONFIG_NET_SCHED 10481 hash_init(dev->qdisc_hash); 10482 #endif 10483 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10484 setup(dev); 10485 10486 if (!dev->tx_queue_len) { 10487 dev->priv_flags |= IFF_NO_QUEUE; 10488 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10489 } 10490 10491 dev->num_tx_queues = txqs; 10492 dev->real_num_tx_queues = txqs; 10493 if (netif_alloc_netdev_queues(dev)) 10494 goto free_all; 10495 10496 dev->num_rx_queues = rxqs; 10497 dev->real_num_rx_queues = rxqs; 10498 if (netif_alloc_rx_queues(dev)) 10499 goto free_all; 10500 10501 strcpy(dev->name, name); 10502 dev->name_assign_type = name_assign_type; 10503 dev->group = INIT_NETDEV_GROUP; 10504 if (!dev->ethtool_ops) 10505 dev->ethtool_ops = &default_ethtool_ops; 10506 10507 nf_hook_ingress_init(dev); 10508 10509 return dev; 10510 10511 free_all: 10512 free_netdev(dev); 10513 return NULL; 10514 10515 free_pcpu: 10516 free_percpu(dev->pcpu_refcnt); 10517 free_dev: 10518 netdev_freemem(dev); 10519 return NULL; 10520 } 10521 EXPORT_SYMBOL(alloc_netdev_mqs); 10522 10523 /** 10524 * free_netdev - free network device 10525 * @dev: device 10526 * 10527 * This function does the last stage of destroying an allocated device 10528 * interface. The reference to the device object is released. If this 10529 * is the last reference then it will be freed.Must be called in process 10530 * context. 10531 */ 10532 void free_netdev(struct net_device *dev) 10533 { 10534 struct napi_struct *p, *n; 10535 10536 might_sleep(); 10537 netif_free_tx_queues(dev); 10538 netif_free_rx_queues(dev); 10539 10540 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10541 10542 /* Flush device addresses */ 10543 dev_addr_flush(dev); 10544 10545 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10546 netif_napi_del(p); 10547 10548 free_percpu(dev->pcpu_refcnt); 10549 dev->pcpu_refcnt = NULL; 10550 free_percpu(dev->xdp_bulkq); 10551 dev->xdp_bulkq = NULL; 10552 10553 /* Compatibility with error handling in drivers */ 10554 if (dev->reg_state == NETREG_UNINITIALIZED) { 10555 netdev_freemem(dev); 10556 return; 10557 } 10558 10559 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10560 dev->reg_state = NETREG_RELEASED; 10561 10562 /* will free via device release */ 10563 put_device(&dev->dev); 10564 } 10565 EXPORT_SYMBOL(free_netdev); 10566 10567 /** 10568 * synchronize_net - Synchronize with packet receive processing 10569 * 10570 * Wait for packets currently being received to be done. 10571 * Does not block later packets from starting. 10572 */ 10573 void synchronize_net(void) 10574 { 10575 might_sleep(); 10576 if (rtnl_is_locked()) 10577 synchronize_rcu_expedited(); 10578 else 10579 synchronize_rcu(); 10580 } 10581 EXPORT_SYMBOL(synchronize_net); 10582 10583 /** 10584 * unregister_netdevice_queue - remove device from the kernel 10585 * @dev: device 10586 * @head: list 10587 * 10588 * This function shuts down a device interface and removes it 10589 * from the kernel tables. 10590 * If head not NULL, device is queued to be unregistered later. 10591 * 10592 * Callers must hold the rtnl semaphore. You may want 10593 * unregister_netdev() instead of this. 10594 */ 10595 10596 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10597 { 10598 ASSERT_RTNL(); 10599 10600 if (head) { 10601 list_move_tail(&dev->unreg_list, head); 10602 } else { 10603 rollback_registered(dev); 10604 /* Finish processing unregister after unlock */ 10605 net_set_todo(dev); 10606 } 10607 } 10608 EXPORT_SYMBOL(unregister_netdevice_queue); 10609 10610 /** 10611 * unregister_netdevice_many - unregister many devices 10612 * @head: list of devices 10613 * 10614 * Note: As most callers use a stack allocated list_head, 10615 * we force a list_del() to make sure stack wont be corrupted later. 10616 */ 10617 void unregister_netdevice_many(struct list_head *head) 10618 { 10619 struct net_device *dev; 10620 10621 if (!list_empty(head)) { 10622 rollback_registered_many(head); 10623 list_for_each_entry(dev, head, unreg_list) 10624 net_set_todo(dev); 10625 list_del(head); 10626 } 10627 } 10628 EXPORT_SYMBOL(unregister_netdevice_many); 10629 10630 /** 10631 * unregister_netdev - remove device from the kernel 10632 * @dev: device 10633 * 10634 * This function shuts down a device interface and removes it 10635 * from the kernel tables. 10636 * 10637 * This is just a wrapper for unregister_netdevice that takes 10638 * the rtnl semaphore. In general you want to use this and not 10639 * unregister_netdevice. 10640 */ 10641 void unregister_netdev(struct net_device *dev) 10642 { 10643 rtnl_lock(); 10644 unregister_netdevice(dev); 10645 rtnl_unlock(); 10646 } 10647 EXPORT_SYMBOL(unregister_netdev); 10648 10649 /** 10650 * dev_change_net_namespace - move device to different nethost namespace 10651 * @dev: device 10652 * @net: network namespace 10653 * @pat: If not NULL name pattern to try if the current device name 10654 * is already taken in the destination network namespace. 10655 * 10656 * This function shuts down a device interface and moves it 10657 * to a new network namespace. On success 0 is returned, on 10658 * a failure a netagive errno code is returned. 10659 * 10660 * Callers must hold the rtnl semaphore. 10661 */ 10662 10663 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10664 { 10665 struct net *net_old = dev_net(dev); 10666 int err, new_nsid, new_ifindex; 10667 10668 ASSERT_RTNL(); 10669 10670 /* Don't allow namespace local devices to be moved. */ 10671 err = -EINVAL; 10672 if (dev->features & NETIF_F_NETNS_LOCAL) 10673 goto out; 10674 10675 /* Ensure the device has been registrered */ 10676 if (dev->reg_state != NETREG_REGISTERED) 10677 goto out; 10678 10679 /* Get out if there is nothing todo */ 10680 err = 0; 10681 if (net_eq(net_old, net)) 10682 goto out; 10683 10684 /* Pick the destination device name, and ensure 10685 * we can use it in the destination network namespace. 10686 */ 10687 err = -EEXIST; 10688 if (__dev_get_by_name(net, dev->name)) { 10689 /* We get here if we can't use the current device name */ 10690 if (!pat) 10691 goto out; 10692 err = dev_get_valid_name(net, dev, pat); 10693 if (err < 0) 10694 goto out; 10695 } 10696 10697 /* 10698 * And now a mini version of register_netdevice unregister_netdevice. 10699 */ 10700 10701 /* If device is running close it first. */ 10702 dev_close(dev); 10703 10704 /* And unlink it from device chain */ 10705 unlist_netdevice(dev); 10706 10707 synchronize_net(); 10708 10709 /* Shutdown queueing discipline. */ 10710 dev_shutdown(dev); 10711 10712 /* Notify protocols, that we are about to destroy 10713 * this device. They should clean all the things. 10714 * 10715 * Note that dev->reg_state stays at NETREG_REGISTERED. 10716 * This is wanted because this way 8021q and macvlan know 10717 * the device is just moving and can keep their slaves up. 10718 */ 10719 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10720 rcu_barrier(); 10721 10722 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10723 /* If there is an ifindex conflict assign a new one */ 10724 if (__dev_get_by_index(net, dev->ifindex)) 10725 new_ifindex = dev_new_index(net); 10726 else 10727 new_ifindex = dev->ifindex; 10728 10729 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10730 new_ifindex); 10731 10732 /* 10733 * Flush the unicast and multicast chains 10734 */ 10735 dev_uc_flush(dev); 10736 dev_mc_flush(dev); 10737 10738 /* Send a netdev-removed uevent to the old namespace */ 10739 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10740 netdev_adjacent_del_links(dev); 10741 10742 /* Move per-net netdevice notifiers that are following the netdevice */ 10743 move_netdevice_notifiers_dev_net(dev, net); 10744 10745 /* Actually switch the network namespace */ 10746 dev_net_set(dev, net); 10747 dev->ifindex = new_ifindex; 10748 10749 /* Send a netdev-add uevent to the new namespace */ 10750 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10751 netdev_adjacent_add_links(dev); 10752 10753 /* Fixup kobjects */ 10754 err = device_rename(&dev->dev, dev->name); 10755 WARN_ON(err); 10756 10757 /* Adapt owner in case owning user namespace of target network 10758 * namespace is different from the original one. 10759 */ 10760 err = netdev_change_owner(dev, net_old, net); 10761 WARN_ON(err); 10762 10763 /* Add the device back in the hashes */ 10764 list_netdevice(dev); 10765 10766 /* Notify protocols, that a new device appeared. */ 10767 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10768 10769 /* 10770 * Prevent userspace races by waiting until the network 10771 * device is fully setup before sending notifications. 10772 */ 10773 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10774 10775 synchronize_net(); 10776 err = 0; 10777 out: 10778 return err; 10779 } 10780 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10781 10782 static int dev_cpu_dead(unsigned int oldcpu) 10783 { 10784 struct sk_buff **list_skb; 10785 struct sk_buff *skb; 10786 unsigned int cpu; 10787 struct softnet_data *sd, *oldsd, *remsd = NULL; 10788 10789 local_irq_disable(); 10790 cpu = smp_processor_id(); 10791 sd = &per_cpu(softnet_data, cpu); 10792 oldsd = &per_cpu(softnet_data, oldcpu); 10793 10794 /* Find end of our completion_queue. */ 10795 list_skb = &sd->completion_queue; 10796 while (*list_skb) 10797 list_skb = &(*list_skb)->next; 10798 /* Append completion queue from offline CPU. */ 10799 *list_skb = oldsd->completion_queue; 10800 oldsd->completion_queue = NULL; 10801 10802 /* Append output queue from offline CPU. */ 10803 if (oldsd->output_queue) { 10804 *sd->output_queue_tailp = oldsd->output_queue; 10805 sd->output_queue_tailp = oldsd->output_queue_tailp; 10806 oldsd->output_queue = NULL; 10807 oldsd->output_queue_tailp = &oldsd->output_queue; 10808 } 10809 /* Append NAPI poll list from offline CPU, with one exception : 10810 * process_backlog() must be called by cpu owning percpu backlog. 10811 * We properly handle process_queue & input_pkt_queue later. 10812 */ 10813 while (!list_empty(&oldsd->poll_list)) { 10814 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10815 struct napi_struct, 10816 poll_list); 10817 10818 list_del_init(&napi->poll_list); 10819 if (napi->poll == process_backlog) 10820 napi->state = 0; 10821 else 10822 ____napi_schedule(sd, napi); 10823 } 10824 10825 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10826 local_irq_enable(); 10827 10828 #ifdef CONFIG_RPS 10829 remsd = oldsd->rps_ipi_list; 10830 oldsd->rps_ipi_list = NULL; 10831 #endif 10832 /* send out pending IPI's on offline CPU */ 10833 net_rps_send_ipi(remsd); 10834 10835 /* Process offline CPU's input_pkt_queue */ 10836 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10837 netif_rx_ni(skb); 10838 input_queue_head_incr(oldsd); 10839 } 10840 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10841 netif_rx_ni(skb); 10842 input_queue_head_incr(oldsd); 10843 } 10844 10845 return 0; 10846 } 10847 10848 /** 10849 * netdev_increment_features - increment feature set by one 10850 * @all: current feature set 10851 * @one: new feature set 10852 * @mask: mask feature set 10853 * 10854 * Computes a new feature set after adding a device with feature set 10855 * @one to the master device with current feature set @all. Will not 10856 * enable anything that is off in @mask. Returns the new feature set. 10857 */ 10858 netdev_features_t netdev_increment_features(netdev_features_t all, 10859 netdev_features_t one, netdev_features_t mask) 10860 { 10861 if (mask & NETIF_F_HW_CSUM) 10862 mask |= NETIF_F_CSUM_MASK; 10863 mask |= NETIF_F_VLAN_CHALLENGED; 10864 10865 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10866 all &= one | ~NETIF_F_ALL_FOR_ALL; 10867 10868 /* If one device supports hw checksumming, set for all. */ 10869 if (all & NETIF_F_HW_CSUM) 10870 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10871 10872 return all; 10873 } 10874 EXPORT_SYMBOL(netdev_increment_features); 10875 10876 static struct hlist_head * __net_init netdev_create_hash(void) 10877 { 10878 int i; 10879 struct hlist_head *hash; 10880 10881 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10882 if (hash != NULL) 10883 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10884 INIT_HLIST_HEAD(&hash[i]); 10885 10886 return hash; 10887 } 10888 10889 /* Initialize per network namespace state */ 10890 static int __net_init netdev_init(struct net *net) 10891 { 10892 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10893 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10894 10895 if (net != &init_net) 10896 INIT_LIST_HEAD(&net->dev_base_head); 10897 10898 net->dev_name_head = netdev_create_hash(); 10899 if (net->dev_name_head == NULL) 10900 goto err_name; 10901 10902 net->dev_index_head = netdev_create_hash(); 10903 if (net->dev_index_head == NULL) 10904 goto err_idx; 10905 10906 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10907 10908 return 0; 10909 10910 err_idx: 10911 kfree(net->dev_name_head); 10912 err_name: 10913 return -ENOMEM; 10914 } 10915 10916 /** 10917 * netdev_drivername - network driver for the device 10918 * @dev: network device 10919 * 10920 * Determine network driver for device. 10921 */ 10922 const char *netdev_drivername(const struct net_device *dev) 10923 { 10924 const struct device_driver *driver; 10925 const struct device *parent; 10926 const char *empty = ""; 10927 10928 parent = dev->dev.parent; 10929 if (!parent) 10930 return empty; 10931 10932 driver = parent->driver; 10933 if (driver && driver->name) 10934 return driver->name; 10935 return empty; 10936 } 10937 10938 static void __netdev_printk(const char *level, const struct net_device *dev, 10939 struct va_format *vaf) 10940 { 10941 if (dev && dev->dev.parent) { 10942 dev_printk_emit(level[1] - '0', 10943 dev->dev.parent, 10944 "%s %s %s%s: %pV", 10945 dev_driver_string(dev->dev.parent), 10946 dev_name(dev->dev.parent), 10947 netdev_name(dev), netdev_reg_state(dev), 10948 vaf); 10949 } else if (dev) { 10950 printk("%s%s%s: %pV", 10951 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10952 } else { 10953 printk("%s(NULL net_device): %pV", level, vaf); 10954 } 10955 } 10956 10957 void netdev_printk(const char *level, const struct net_device *dev, 10958 const char *format, ...) 10959 { 10960 struct va_format vaf; 10961 va_list args; 10962 10963 va_start(args, format); 10964 10965 vaf.fmt = format; 10966 vaf.va = &args; 10967 10968 __netdev_printk(level, dev, &vaf); 10969 10970 va_end(args); 10971 } 10972 EXPORT_SYMBOL(netdev_printk); 10973 10974 #define define_netdev_printk_level(func, level) \ 10975 void func(const struct net_device *dev, const char *fmt, ...) \ 10976 { \ 10977 struct va_format vaf; \ 10978 va_list args; \ 10979 \ 10980 va_start(args, fmt); \ 10981 \ 10982 vaf.fmt = fmt; \ 10983 vaf.va = &args; \ 10984 \ 10985 __netdev_printk(level, dev, &vaf); \ 10986 \ 10987 va_end(args); \ 10988 } \ 10989 EXPORT_SYMBOL(func); 10990 10991 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10992 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10993 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10994 define_netdev_printk_level(netdev_err, KERN_ERR); 10995 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10996 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10997 define_netdev_printk_level(netdev_info, KERN_INFO); 10998 10999 static void __net_exit netdev_exit(struct net *net) 11000 { 11001 kfree(net->dev_name_head); 11002 kfree(net->dev_index_head); 11003 if (net != &init_net) 11004 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11005 } 11006 11007 static struct pernet_operations __net_initdata netdev_net_ops = { 11008 .init = netdev_init, 11009 .exit = netdev_exit, 11010 }; 11011 11012 static void __net_exit default_device_exit(struct net *net) 11013 { 11014 struct net_device *dev, *aux; 11015 /* 11016 * Push all migratable network devices back to the 11017 * initial network namespace 11018 */ 11019 rtnl_lock(); 11020 for_each_netdev_safe(net, dev, aux) { 11021 int err; 11022 char fb_name[IFNAMSIZ]; 11023 11024 /* Ignore unmoveable devices (i.e. loopback) */ 11025 if (dev->features & NETIF_F_NETNS_LOCAL) 11026 continue; 11027 11028 /* Leave virtual devices for the generic cleanup */ 11029 if (dev->rtnl_link_ops) 11030 continue; 11031 11032 /* Push remaining network devices to init_net */ 11033 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11034 if (__dev_get_by_name(&init_net, fb_name)) 11035 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11036 err = dev_change_net_namespace(dev, &init_net, fb_name); 11037 if (err) { 11038 pr_emerg("%s: failed to move %s to init_net: %d\n", 11039 __func__, dev->name, err); 11040 BUG(); 11041 } 11042 } 11043 rtnl_unlock(); 11044 } 11045 11046 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11047 { 11048 /* Return with the rtnl_lock held when there are no network 11049 * devices unregistering in any network namespace in net_list. 11050 */ 11051 struct net *net; 11052 bool unregistering; 11053 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11054 11055 add_wait_queue(&netdev_unregistering_wq, &wait); 11056 for (;;) { 11057 unregistering = false; 11058 rtnl_lock(); 11059 list_for_each_entry(net, net_list, exit_list) { 11060 if (net->dev_unreg_count > 0) { 11061 unregistering = true; 11062 break; 11063 } 11064 } 11065 if (!unregistering) 11066 break; 11067 __rtnl_unlock(); 11068 11069 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11070 } 11071 remove_wait_queue(&netdev_unregistering_wq, &wait); 11072 } 11073 11074 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11075 { 11076 /* At exit all network devices most be removed from a network 11077 * namespace. Do this in the reverse order of registration. 11078 * Do this across as many network namespaces as possible to 11079 * improve batching efficiency. 11080 */ 11081 struct net_device *dev; 11082 struct net *net; 11083 LIST_HEAD(dev_kill_list); 11084 11085 /* To prevent network device cleanup code from dereferencing 11086 * loopback devices or network devices that have been freed 11087 * wait here for all pending unregistrations to complete, 11088 * before unregistring the loopback device and allowing the 11089 * network namespace be freed. 11090 * 11091 * The netdev todo list containing all network devices 11092 * unregistrations that happen in default_device_exit_batch 11093 * will run in the rtnl_unlock() at the end of 11094 * default_device_exit_batch. 11095 */ 11096 rtnl_lock_unregistering(net_list); 11097 list_for_each_entry(net, net_list, exit_list) { 11098 for_each_netdev_reverse(net, dev) { 11099 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11100 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11101 else 11102 unregister_netdevice_queue(dev, &dev_kill_list); 11103 } 11104 } 11105 unregister_netdevice_many(&dev_kill_list); 11106 rtnl_unlock(); 11107 } 11108 11109 static struct pernet_operations __net_initdata default_device_ops = { 11110 .exit = default_device_exit, 11111 .exit_batch = default_device_exit_batch, 11112 }; 11113 11114 /* 11115 * Initialize the DEV module. At boot time this walks the device list and 11116 * unhooks any devices that fail to initialise (normally hardware not 11117 * present) and leaves us with a valid list of present and active devices. 11118 * 11119 */ 11120 11121 /* 11122 * This is called single threaded during boot, so no need 11123 * to take the rtnl semaphore. 11124 */ 11125 static int __init net_dev_init(void) 11126 { 11127 int i, rc = -ENOMEM; 11128 11129 BUG_ON(!dev_boot_phase); 11130 11131 if (dev_proc_init()) 11132 goto out; 11133 11134 if (netdev_kobject_init()) 11135 goto out; 11136 11137 INIT_LIST_HEAD(&ptype_all); 11138 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11139 INIT_LIST_HEAD(&ptype_base[i]); 11140 11141 INIT_LIST_HEAD(&offload_base); 11142 11143 if (register_pernet_subsys(&netdev_net_ops)) 11144 goto out; 11145 11146 /* 11147 * Initialise the packet receive queues. 11148 */ 11149 11150 for_each_possible_cpu(i) { 11151 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11152 struct softnet_data *sd = &per_cpu(softnet_data, i); 11153 11154 INIT_WORK(flush, flush_backlog); 11155 11156 skb_queue_head_init(&sd->input_pkt_queue); 11157 skb_queue_head_init(&sd->process_queue); 11158 #ifdef CONFIG_XFRM_OFFLOAD 11159 skb_queue_head_init(&sd->xfrm_backlog); 11160 #endif 11161 INIT_LIST_HEAD(&sd->poll_list); 11162 sd->output_queue_tailp = &sd->output_queue; 11163 #ifdef CONFIG_RPS 11164 sd->csd.func = rps_trigger_softirq; 11165 sd->csd.info = sd; 11166 sd->cpu = i; 11167 #endif 11168 11169 init_gro_hash(&sd->backlog); 11170 sd->backlog.poll = process_backlog; 11171 sd->backlog.weight = weight_p; 11172 } 11173 11174 dev_boot_phase = 0; 11175 11176 /* The loopback device is special if any other network devices 11177 * is present in a network namespace the loopback device must 11178 * be present. Since we now dynamically allocate and free the 11179 * loopback device ensure this invariant is maintained by 11180 * keeping the loopback device as the first device on the 11181 * list of network devices. Ensuring the loopback devices 11182 * is the first device that appears and the last network device 11183 * that disappears. 11184 */ 11185 if (register_pernet_device(&loopback_net_ops)) 11186 goto out; 11187 11188 if (register_pernet_device(&default_device_ops)) 11189 goto out; 11190 11191 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11192 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11193 11194 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11195 NULL, dev_cpu_dead); 11196 WARN_ON(rc < 0); 11197 rc = 0; 11198 out: 11199 return rc; 11200 } 11201 11202 subsys_initcall(net_dev_init); 11203