xref: /openbmc/linux/net/core/dev.c (revision 06701297)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
1072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev, *ret = NULL;
1075 
1076 	rcu_read_lock();
1077 	for_each_netdev_rcu(net, dev)
1078 		if (dev->type == type) {
1079 			dev_hold(dev);
1080 			ret = dev;
1081 			break;
1082 		}
1083 	rcu_read_unlock();
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087 
1088 /**
1089  *	__dev_get_by_flags - find any device with given flags
1090  *	@net: the applicable net namespace
1091  *	@if_flags: IFF_* values
1092  *	@mask: bitmask of bits in if_flags to check
1093  *
1094  *	Search for any interface with the given flags. Returns NULL if a device
1095  *	is not found or a pointer to the device. Must be called inside
1096  *	rtnl_lock(), and result refcount is unchanged.
1097  */
1098 
1099 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100 				      unsigned short mask)
1101 {
1102 	struct net_device *dev, *ret;
1103 
1104 	ASSERT_RTNL();
1105 
1106 	ret = NULL;
1107 	for_each_netdev(net, dev) {
1108 		if (((dev->flags ^ if_flags) & mask) == 0) {
1109 			ret = dev;
1110 			break;
1111 		}
1112 	}
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL(__dev_get_by_flags);
1116 
1117 /**
1118  *	dev_valid_name - check if name is okay for network device
1119  *	@name: name string
1120  *
1121  *	Network device names need to be valid file names to
1122  *	allow sysfs to work.  We also disallow any kind of
1123  *	whitespace.
1124  */
1125 bool dev_valid_name(const char *name)
1126 {
1127 	if (*name == '\0')
1128 		return false;
1129 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1130 		return false;
1131 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1132 		return false;
1133 
1134 	while (*name) {
1135 		if (*name == '/' || *name == ':' || isspace(*name))
1136 			return false;
1137 		name++;
1138 	}
1139 	return true;
1140 }
1141 EXPORT_SYMBOL(dev_valid_name);
1142 
1143 /**
1144  *	__dev_alloc_name - allocate a name for a device
1145  *	@net: network namespace to allocate the device name in
1146  *	@name: name format string
1147  *	@buf:  scratch buffer and result name string
1148  *
1149  *	Passed a format string - eg "lt%d" it will try and find a suitable
1150  *	id. It scans list of devices to build up a free map, then chooses
1151  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1152  *	while allocating the name and adding the device in order to avoid
1153  *	duplicates.
1154  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155  *	Returns the number of the unit assigned or a negative errno code.
1156  */
1157 
1158 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1159 {
1160 	int i = 0;
1161 	const char *p;
1162 	const int max_netdevices = 8*PAGE_SIZE;
1163 	unsigned long *inuse;
1164 	struct net_device *d;
1165 
1166 	if (!dev_valid_name(name))
1167 		return -EINVAL;
1168 
1169 	p = strchr(name, '%');
1170 	if (p) {
1171 		/*
1172 		 * Verify the string as this thing may have come from
1173 		 * the user.  There must be either one "%d" and no other "%"
1174 		 * characters.
1175 		 */
1176 		if (p[1] != 'd' || strchr(p + 2, '%'))
1177 			return -EINVAL;
1178 
1179 		/* Use one page as a bit array of possible slots */
1180 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1181 		if (!inuse)
1182 			return -ENOMEM;
1183 
1184 		for_each_netdev(net, d) {
1185 			if (!sscanf(d->name, name, &i))
1186 				continue;
1187 			if (i < 0 || i >= max_netdevices)
1188 				continue;
1189 
1190 			/*  avoid cases where sscanf is not exact inverse of printf */
1191 			snprintf(buf, IFNAMSIZ, name, i);
1192 			if (!strncmp(buf, d->name, IFNAMSIZ))
1193 				set_bit(i, inuse);
1194 		}
1195 
1196 		i = find_first_zero_bit(inuse, max_netdevices);
1197 		free_page((unsigned long) inuse);
1198 	}
1199 
1200 	snprintf(buf, IFNAMSIZ, name, i);
1201 	if (!__dev_get_by_name(net, buf))
1202 		return i;
1203 
1204 	/* It is possible to run out of possible slots
1205 	 * when the name is long and there isn't enough space left
1206 	 * for the digits, or if all bits are used.
1207 	 */
1208 	return -ENFILE;
1209 }
1210 
1211 static int dev_alloc_name_ns(struct net *net,
1212 			     struct net_device *dev,
1213 			     const char *name)
1214 {
1215 	char buf[IFNAMSIZ];
1216 	int ret;
1217 
1218 	BUG_ON(!net);
1219 	ret = __dev_alloc_name(net, name, buf);
1220 	if (ret >= 0)
1221 		strlcpy(dev->name, buf, IFNAMSIZ);
1222 	return ret;
1223 }
1224 
1225 /**
1226  *	dev_alloc_name - allocate a name for a device
1227  *	@dev: device
1228  *	@name: name format string
1229  *
1230  *	Passed a format string - eg "lt%d" it will try and find a suitable
1231  *	id. It scans list of devices to build up a free map, then chooses
1232  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1233  *	while allocating the name and adding the device in order to avoid
1234  *	duplicates.
1235  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236  *	Returns the number of the unit assigned or a negative errno code.
1237  */
1238 
1239 int dev_alloc_name(struct net_device *dev, const char *name)
1240 {
1241 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1242 }
1243 EXPORT_SYMBOL(dev_alloc_name);
1244 
1245 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246 			      const char *name)
1247 {
1248 	BUG_ON(!net);
1249 
1250 	if (!dev_valid_name(name))
1251 		return -EINVAL;
1252 
1253 	if (strchr(name, '%'))
1254 		return dev_alloc_name_ns(net, dev, name);
1255 	else if (__dev_get_by_name(net, name))
1256 		return -EEXIST;
1257 	else if (dev->name != name)
1258 		strlcpy(dev->name, name, IFNAMSIZ);
1259 
1260 	return 0;
1261 }
1262 
1263 /**
1264  *	dev_change_name - change name of a device
1265  *	@dev: device
1266  *	@newname: name (or format string) must be at least IFNAMSIZ
1267  *
1268  *	Change name of a device, can pass format strings "eth%d".
1269  *	for wildcarding.
1270  */
1271 int dev_change_name(struct net_device *dev, const char *newname)
1272 {
1273 	unsigned char old_assign_type;
1274 	char oldname[IFNAMSIZ];
1275 	int err = 0;
1276 	int ret;
1277 	struct net *net;
1278 
1279 	ASSERT_RTNL();
1280 	BUG_ON(!dev_net(dev));
1281 
1282 	net = dev_net(dev);
1283 
1284 	/* Some auto-enslaved devices e.g. failover slaves are
1285 	 * special, as userspace might rename the device after
1286 	 * the interface had been brought up and running since
1287 	 * the point kernel initiated auto-enslavement. Allow
1288 	 * live name change even when these slave devices are
1289 	 * up and running.
1290 	 *
1291 	 * Typically, users of these auto-enslaving devices
1292 	 * don't actually care about slave name change, as
1293 	 * they are supposed to operate on master interface
1294 	 * directly.
1295 	 */
1296 	if (dev->flags & IFF_UP &&
1297 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1298 		return -EBUSY;
1299 
1300 	down_write(&devnet_rename_sem);
1301 
1302 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1303 		up_write(&devnet_rename_sem);
1304 		return 0;
1305 	}
1306 
1307 	memcpy(oldname, dev->name, IFNAMSIZ);
1308 
1309 	err = dev_get_valid_name(net, dev, newname);
1310 	if (err < 0) {
1311 		up_write(&devnet_rename_sem);
1312 		return err;
1313 	}
1314 
1315 	if (oldname[0] && !strchr(oldname, '%'))
1316 		netdev_info(dev, "renamed from %s\n", oldname);
1317 
1318 	old_assign_type = dev->name_assign_type;
1319 	dev->name_assign_type = NET_NAME_RENAMED;
1320 
1321 rollback:
1322 	ret = device_rename(&dev->dev, dev->name);
1323 	if (ret) {
1324 		memcpy(dev->name, oldname, IFNAMSIZ);
1325 		dev->name_assign_type = old_assign_type;
1326 		up_write(&devnet_rename_sem);
1327 		return ret;
1328 	}
1329 
1330 	up_write(&devnet_rename_sem);
1331 
1332 	netdev_adjacent_rename_links(dev, oldname);
1333 
1334 	write_lock_bh(&dev_base_lock);
1335 	netdev_name_node_del(dev->name_node);
1336 	write_unlock_bh(&dev_base_lock);
1337 
1338 	synchronize_rcu();
1339 
1340 	write_lock_bh(&dev_base_lock);
1341 	netdev_name_node_add(net, dev->name_node);
1342 	write_unlock_bh(&dev_base_lock);
1343 
1344 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1345 	ret = notifier_to_errno(ret);
1346 
1347 	if (ret) {
1348 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1349 		if (err >= 0) {
1350 			err = ret;
1351 			down_write(&devnet_rename_sem);
1352 			memcpy(dev->name, oldname, IFNAMSIZ);
1353 			memcpy(oldname, newname, IFNAMSIZ);
1354 			dev->name_assign_type = old_assign_type;
1355 			old_assign_type = NET_NAME_RENAMED;
1356 			goto rollback;
1357 		} else {
1358 			pr_err("%s: name change rollback failed: %d\n",
1359 			       dev->name, ret);
1360 		}
1361 	}
1362 
1363 	return err;
1364 }
1365 
1366 /**
1367  *	dev_set_alias - change ifalias of a device
1368  *	@dev: device
1369  *	@alias: name up to IFALIASZ
1370  *	@len: limit of bytes to copy from info
1371  *
1372  *	Set ifalias for a device,
1373  */
1374 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375 {
1376 	struct dev_ifalias *new_alias = NULL;
1377 
1378 	if (len >= IFALIASZ)
1379 		return -EINVAL;
1380 
1381 	if (len) {
1382 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383 		if (!new_alias)
1384 			return -ENOMEM;
1385 
1386 		memcpy(new_alias->ifalias, alias, len);
1387 		new_alias->ifalias[len] = 0;
1388 	}
1389 
1390 	mutex_lock(&ifalias_mutex);
1391 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392 					mutex_is_locked(&ifalias_mutex));
1393 	mutex_unlock(&ifalias_mutex);
1394 
1395 	if (new_alias)
1396 		kfree_rcu(new_alias, rcuhead);
1397 
1398 	return len;
1399 }
1400 EXPORT_SYMBOL(dev_set_alias);
1401 
1402 /**
1403  *	dev_get_alias - get ifalias of a device
1404  *	@dev: device
1405  *	@name: buffer to store name of ifalias
1406  *	@len: size of buffer
1407  *
1408  *	get ifalias for a device.  Caller must make sure dev cannot go
1409  *	away,  e.g. rcu read lock or own a reference count to device.
1410  */
1411 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412 {
1413 	const struct dev_ifalias *alias;
1414 	int ret = 0;
1415 
1416 	rcu_read_lock();
1417 	alias = rcu_dereference(dev->ifalias);
1418 	if (alias)
1419 		ret = snprintf(name, len, "%s", alias->ifalias);
1420 	rcu_read_unlock();
1421 
1422 	return ret;
1423 }
1424 
1425 /**
1426  *	netdev_features_change - device changes features
1427  *	@dev: device to cause notification
1428  *
1429  *	Called to indicate a device has changed features.
1430  */
1431 void netdev_features_change(struct net_device *dev)
1432 {
1433 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1434 }
1435 EXPORT_SYMBOL(netdev_features_change);
1436 
1437 /**
1438  *	netdev_state_change - device changes state
1439  *	@dev: device to cause notification
1440  *
1441  *	Called to indicate a device has changed state. This function calls
1442  *	the notifier chains for netdev_chain and sends a NEWLINK message
1443  *	to the routing socket.
1444  */
1445 void netdev_state_change(struct net_device *dev)
1446 {
1447 	if (dev->flags & IFF_UP) {
1448 		struct netdev_notifier_change_info change_info = {
1449 			.info.dev = dev,
1450 		};
1451 
1452 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1453 					      &change_info.info);
1454 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1455 	}
1456 }
1457 EXPORT_SYMBOL(netdev_state_change);
1458 
1459 /**
1460  * __netdev_notify_peers - notify network peers about existence of @dev,
1461  * to be called when rtnl lock is already held.
1462  * @dev: network device
1463  *
1464  * Generate traffic such that interested network peers are aware of
1465  * @dev, such as by generating a gratuitous ARP. This may be used when
1466  * a device wants to inform the rest of the network about some sort of
1467  * reconfiguration such as a failover event or virtual machine
1468  * migration.
1469  */
1470 void __netdev_notify_peers(struct net_device *dev)
1471 {
1472 	ASSERT_RTNL();
1473 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1474 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1475 }
1476 EXPORT_SYMBOL(__netdev_notify_peers);
1477 
1478 /**
1479  * netdev_notify_peers - notify network peers about existence of @dev
1480  * @dev: network device
1481  *
1482  * Generate traffic such that interested network peers are aware of
1483  * @dev, such as by generating a gratuitous ARP. This may be used when
1484  * a device wants to inform the rest of the network about some sort of
1485  * reconfiguration such as a failover event or virtual machine
1486  * migration.
1487  */
1488 void netdev_notify_peers(struct net_device *dev)
1489 {
1490 	rtnl_lock();
1491 	__netdev_notify_peers(dev);
1492 	rtnl_unlock();
1493 }
1494 EXPORT_SYMBOL(netdev_notify_peers);
1495 
1496 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1497 {
1498 	const struct net_device_ops *ops = dev->netdev_ops;
1499 	int ret;
1500 
1501 	ASSERT_RTNL();
1502 
1503 	if (!netif_device_present(dev)) {
1504 		/* may be detached because parent is runtime-suspended */
1505 		if (dev->dev.parent)
1506 			pm_runtime_resume(dev->dev.parent);
1507 		if (!netif_device_present(dev))
1508 			return -ENODEV;
1509 	}
1510 
1511 	/* Block netpoll from trying to do any rx path servicing.
1512 	 * If we don't do this there is a chance ndo_poll_controller
1513 	 * or ndo_poll may be running while we open the device
1514 	 */
1515 	netpoll_poll_disable(dev);
1516 
1517 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1518 	ret = notifier_to_errno(ret);
1519 	if (ret)
1520 		return ret;
1521 
1522 	set_bit(__LINK_STATE_START, &dev->state);
1523 
1524 	if (ops->ndo_validate_addr)
1525 		ret = ops->ndo_validate_addr(dev);
1526 
1527 	if (!ret && ops->ndo_open)
1528 		ret = ops->ndo_open(dev);
1529 
1530 	netpoll_poll_enable(dev);
1531 
1532 	if (ret)
1533 		clear_bit(__LINK_STATE_START, &dev->state);
1534 	else {
1535 		dev->flags |= IFF_UP;
1536 		dev_set_rx_mode(dev);
1537 		dev_activate(dev);
1538 		add_device_randomness(dev->dev_addr, dev->addr_len);
1539 	}
1540 
1541 	return ret;
1542 }
1543 
1544 /**
1545  *	dev_open	- prepare an interface for use.
1546  *	@dev: device to open
1547  *	@extack: netlink extended ack
1548  *
1549  *	Takes a device from down to up state. The device's private open
1550  *	function is invoked and then the multicast lists are loaded. Finally
1551  *	the device is moved into the up state and a %NETDEV_UP message is
1552  *	sent to the netdev notifier chain.
1553  *
1554  *	Calling this function on an active interface is a nop. On a failure
1555  *	a negative errno code is returned.
1556  */
1557 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1558 {
1559 	int ret;
1560 
1561 	if (dev->flags & IFF_UP)
1562 		return 0;
1563 
1564 	ret = __dev_open(dev, extack);
1565 	if (ret < 0)
1566 		return ret;
1567 
1568 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1569 	call_netdevice_notifiers(NETDEV_UP, dev);
1570 
1571 	return ret;
1572 }
1573 EXPORT_SYMBOL(dev_open);
1574 
1575 static void __dev_close_many(struct list_head *head)
1576 {
1577 	struct net_device *dev;
1578 
1579 	ASSERT_RTNL();
1580 	might_sleep();
1581 
1582 	list_for_each_entry(dev, head, close_list) {
1583 		/* Temporarily disable netpoll until the interface is down */
1584 		netpoll_poll_disable(dev);
1585 
1586 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1587 
1588 		clear_bit(__LINK_STATE_START, &dev->state);
1589 
1590 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1591 		 * can be even on different cpu. So just clear netif_running().
1592 		 *
1593 		 * dev->stop() will invoke napi_disable() on all of it's
1594 		 * napi_struct instances on this device.
1595 		 */
1596 		smp_mb__after_atomic(); /* Commit netif_running(). */
1597 	}
1598 
1599 	dev_deactivate_many(head);
1600 
1601 	list_for_each_entry(dev, head, close_list) {
1602 		const struct net_device_ops *ops = dev->netdev_ops;
1603 
1604 		/*
1605 		 *	Call the device specific close. This cannot fail.
1606 		 *	Only if device is UP
1607 		 *
1608 		 *	We allow it to be called even after a DETACH hot-plug
1609 		 *	event.
1610 		 */
1611 		if (ops->ndo_stop)
1612 			ops->ndo_stop(dev);
1613 
1614 		dev->flags &= ~IFF_UP;
1615 		netpoll_poll_enable(dev);
1616 	}
1617 }
1618 
1619 static void __dev_close(struct net_device *dev)
1620 {
1621 	LIST_HEAD(single);
1622 
1623 	list_add(&dev->close_list, &single);
1624 	__dev_close_many(&single);
1625 	list_del(&single);
1626 }
1627 
1628 void dev_close_many(struct list_head *head, bool unlink)
1629 {
1630 	struct net_device *dev, *tmp;
1631 
1632 	/* Remove the devices that don't need to be closed */
1633 	list_for_each_entry_safe(dev, tmp, head, close_list)
1634 		if (!(dev->flags & IFF_UP))
1635 			list_del_init(&dev->close_list);
1636 
1637 	__dev_close_many(head);
1638 
1639 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1640 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1641 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1642 		if (unlink)
1643 			list_del_init(&dev->close_list);
1644 	}
1645 }
1646 EXPORT_SYMBOL(dev_close_many);
1647 
1648 /**
1649  *	dev_close - shutdown an interface.
1650  *	@dev: device to shutdown
1651  *
1652  *	This function moves an active device into down state. A
1653  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1654  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1655  *	chain.
1656  */
1657 void dev_close(struct net_device *dev)
1658 {
1659 	if (dev->flags & IFF_UP) {
1660 		LIST_HEAD(single);
1661 
1662 		list_add(&dev->close_list, &single);
1663 		dev_close_many(&single, true);
1664 		list_del(&single);
1665 	}
1666 }
1667 EXPORT_SYMBOL(dev_close);
1668 
1669 
1670 /**
1671  *	dev_disable_lro - disable Large Receive Offload on a device
1672  *	@dev: device
1673  *
1674  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1675  *	called under RTNL.  This is needed if received packets may be
1676  *	forwarded to another interface.
1677  */
1678 void dev_disable_lro(struct net_device *dev)
1679 {
1680 	struct net_device *lower_dev;
1681 	struct list_head *iter;
1682 
1683 	dev->wanted_features &= ~NETIF_F_LRO;
1684 	netdev_update_features(dev);
1685 
1686 	if (unlikely(dev->features & NETIF_F_LRO))
1687 		netdev_WARN(dev, "failed to disable LRO!\n");
1688 
1689 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1690 		dev_disable_lro(lower_dev);
1691 }
1692 EXPORT_SYMBOL(dev_disable_lro);
1693 
1694 /**
1695  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1696  *	@dev: device
1697  *
1698  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1699  *	called under RTNL.  This is needed if Generic XDP is installed on
1700  *	the device.
1701  */
1702 static void dev_disable_gro_hw(struct net_device *dev)
1703 {
1704 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1705 	netdev_update_features(dev);
1706 
1707 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1708 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1709 }
1710 
1711 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1712 {
1713 #define N(val) 						\
1714 	case NETDEV_##val:				\
1715 		return "NETDEV_" __stringify(val);
1716 	switch (cmd) {
1717 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1718 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1719 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1720 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1721 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1722 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1723 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1724 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1725 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1726 	N(PRE_CHANGEADDR)
1727 	}
1728 #undef N
1729 	return "UNKNOWN_NETDEV_EVENT";
1730 }
1731 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1732 
1733 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1734 				   struct net_device *dev)
1735 {
1736 	struct netdev_notifier_info info = {
1737 		.dev = dev,
1738 	};
1739 
1740 	return nb->notifier_call(nb, val, &info);
1741 }
1742 
1743 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1744 					     struct net_device *dev)
1745 {
1746 	int err;
1747 
1748 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1749 	err = notifier_to_errno(err);
1750 	if (err)
1751 		return err;
1752 
1753 	if (!(dev->flags & IFF_UP))
1754 		return 0;
1755 
1756 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1757 	return 0;
1758 }
1759 
1760 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1761 						struct net_device *dev)
1762 {
1763 	if (dev->flags & IFF_UP) {
1764 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1765 					dev);
1766 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1767 	}
1768 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1769 }
1770 
1771 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1772 						 struct net *net)
1773 {
1774 	struct net_device *dev;
1775 	int err;
1776 
1777 	for_each_netdev(net, dev) {
1778 		err = call_netdevice_register_notifiers(nb, dev);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 	return 0;
1783 
1784 rollback:
1785 	for_each_netdev_continue_reverse(net, dev)
1786 		call_netdevice_unregister_notifiers(nb, dev);
1787 	return err;
1788 }
1789 
1790 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1791 						    struct net *net)
1792 {
1793 	struct net_device *dev;
1794 
1795 	for_each_netdev(net, dev)
1796 		call_netdevice_unregister_notifiers(nb, dev);
1797 }
1798 
1799 static int dev_boot_phase = 1;
1800 
1801 /**
1802  * register_netdevice_notifier - register a network notifier block
1803  * @nb: notifier
1804  *
1805  * Register a notifier to be called when network device events occur.
1806  * The notifier passed is linked into the kernel structures and must
1807  * not be reused until it has been unregistered. A negative errno code
1808  * is returned on a failure.
1809  *
1810  * When registered all registration and up events are replayed
1811  * to the new notifier to allow device to have a race free
1812  * view of the network device list.
1813  */
1814 
1815 int register_netdevice_notifier(struct notifier_block *nb)
1816 {
1817 	struct net *net;
1818 	int err;
1819 
1820 	/* Close race with setup_net() and cleanup_net() */
1821 	down_write(&pernet_ops_rwsem);
1822 	rtnl_lock();
1823 	err = raw_notifier_chain_register(&netdev_chain, nb);
1824 	if (err)
1825 		goto unlock;
1826 	if (dev_boot_phase)
1827 		goto unlock;
1828 	for_each_net(net) {
1829 		err = call_netdevice_register_net_notifiers(nb, net);
1830 		if (err)
1831 			goto rollback;
1832 	}
1833 
1834 unlock:
1835 	rtnl_unlock();
1836 	up_write(&pernet_ops_rwsem);
1837 	return err;
1838 
1839 rollback:
1840 	for_each_net_continue_reverse(net)
1841 		call_netdevice_unregister_net_notifiers(nb, net);
1842 
1843 	raw_notifier_chain_unregister(&netdev_chain, nb);
1844 	goto unlock;
1845 }
1846 EXPORT_SYMBOL(register_netdevice_notifier);
1847 
1848 /**
1849  * unregister_netdevice_notifier - unregister a network notifier block
1850  * @nb: notifier
1851  *
1852  * Unregister a notifier previously registered by
1853  * register_netdevice_notifier(). The notifier is unlinked into the
1854  * kernel structures and may then be reused. A negative errno code
1855  * is returned on a failure.
1856  *
1857  * After unregistering unregister and down device events are synthesized
1858  * for all devices on the device list to the removed notifier to remove
1859  * the need for special case cleanup code.
1860  */
1861 
1862 int unregister_netdevice_notifier(struct notifier_block *nb)
1863 {
1864 	struct net *net;
1865 	int err;
1866 
1867 	/* Close race with setup_net() and cleanup_net() */
1868 	down_write(&pernet_ops_rwsem);
1869 	rtnl_lock();
1870 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1871 	if (err)
1872 		goto unlock;
1873 
1874 	for_each_net(net)
1875 		call_netdevice_unregister_net_notifiers(nb, net);
1876 
1877 unlock:
1878 	rtnl_unlock();
1879 	up_write(&pernet_ops_rwsem);
1880 	return err;
1881 }
1882 EXPORT_SYMBOL(unregister_netdevice_notifier);
1883 
1884 static int __register_netdevice_notifier_net(struct net *net,
1885 					     struct notifier_block *nb,
1886 					     bool ignore_call_fail)
1887 {
1888 	int err;
1889 
1890 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1891 	if (err)
1892 		return err;
1893 	if (dev_boot_phase)
1894 		return 0;
1895 
1896 	err = call_netdevice_register_net_notifiers(nb, net);
1897 	if (err && !ignore_call_fail)
1898 		goto chain_unregister;
1899 
1900 	return 0;
1901 
1902 chain_unregister:
1903 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1904 	return err;
1905 }
1906 
1907 static int __unregister_netdevice_notifier_net(struct net *net,
1908 					       struct notifier_block *nb)
1909 {
1910 	int err;
1911 
1912 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1913 	if (err)
1914 		return err;
1915 
1916 	call_netdevice_unregister_net_notifiers(nb, net);
1917 	return 0;
1918 }
1919 
1920 /**
1921  * register_netdevice_notifier_net - register a per-netns network notifier block
1922  * @net: network namespace
1923  * @nb: notifier
1924  *
1925  * Register a notifier to be called when network device events occur.
1926  * The notifier passed is linked into the kernel structures and must
1927  * not be reused until it has been unregistered. A negative errno code
1928  * is returned on a failure.
1929  *
1930  * When registered all registration and up events are replayed
1931  * to the new notifier to allow device to have a race free
1932  * view of the network device list.
1933  */
1934 
1935 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1936 {
1937 	int err;
1938 
1939 	rtnl_lock();
1940 	err = __register_netdevice_notifier_net(net, nb, false);
1941 	rtnl_unlock();
1942 	return err;
1943 }
1944 EXPORT_SYMBOL(register_netdevice_notifier_net);
1945 
1946 /**
1947  * unregister_netdevice_notifier_net - unregister a per-netns
1948  *                                     network notifier block
1949  * @net: network namespace
1950  * @nb: notifier
1951  *
1952  * Unregister a notifier previously registered by
1953  * register_netdevice_notifier(). The notifier is unlinked into the
1954  * kernel structures and may then be reused. A negative errno code
1955  * is returned on a failure.
1956  *
1957  * After unregistering unregister and down device events are synthesized
1958  * for all devices on the device list to the removed notifier to remove
1959  * the need for special case cleanup code.
1960  */
1961 
1962 int unregister_netdevice_notifier_net(struct net *net,
1963 				      struct notifier_block *nb)
1964 {
1965 	int err;
1966 
1967 	rtnl_lock();
1968 	err = __unregister_netdevice_notifier_net(net, nb);
1969 	rtnl_unlock();
1970 	return err;
1971 }
1972 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1973 
1974 int register_netdevice_notifier_dev_net(struct net_device *dev,
1975 					struct notifier_block *nb,
1976 					struct netdev_net_notifier *nn)
1977 {
1978 	int err;
1979 
1980 	rtnl_lock();
1981 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1982 	if (!err) {
1983 		nn->nb = nb;
1984 		list_add(&nn->list, &dev->net_notifier_list);
1985 	}
1986 	rtnl_unlock();
1987 	return err;
1988 }
1989 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1990 
1991 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1992 					  struct notifier_block *nb,
1993 					  struct netdev_net_notifier *nn)
1994 {
1995 	int err;
1996 
1997 	rtnl_lock();
1998 	list_del(&nn->list);
1999 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2000 	rtnl_unlock();
2001 	return err;
2002 }
2003 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2004 
2005 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2006 					     struct net *net)
2007 {
2008 	struct netdev_net_notifier *nn;
2009 
2010 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2011 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2012 		__register_netdevice_notifier_net(net, nn->nb, true);
2013 	}
2014 }
2015 
2016 /**
2017  *	call_netdevice_notifiers_info - call all network notifier blocks
2018  *	@val: value passed unmodified to notifier function
2019  *	@info: notifier information data
2020  *
2021  *	Call all network notifier blocks.  Parameters and return value
2022  *	are as for raw_notifier_call_chain().
2023  */
2024 
2025 static int call_netdevice_notifiers_info(unsigned long val,
2026 					 struct netdev_notifier_info *info)
2027 {
2028 	struct net *net = dev_net(info->dev);
2029 	int ret;
2030 
2031 	ASSERT_RTNL();
2032 
2033 	/* Run per-netns notifier block chain first, then run the global one.
2034 	 * Hopefully, one day, the global one is going to be removed after
2035 	 * all notifier block registrators get converted to be per-netns.
2036 	 */
2037 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2038 	if (ret & NOTIFY_STOP_MASK)
2039 		return ret;
2040 	return raw_notifier_call_chain(&netdev_chain, val, info);
2041 }
2042 
2043 static int call_netdevice_notifiers_extack(unsigned long val,
2044 					   struct net_device *dev,
2045 					   struct netlink_ext_ack *extack)
2046 {
2047 	struct netdev_notifier_info info = {
2048 		.dev = dev,
2049 		.extack = extack,
2050 	};
2051 
2052 	return call_netdevice_notifiers_info(val, &info);
2053 }
2054 
2055 /**
2056  *	call_netdevice_notifiers - call all network notifier blocks
2057  *      @val: value passed unmodified to notifier function
2058  *      @dev: net_device pointer passed unmodified to notifier function
2059  *
2060  *	Call all network notifier blocks.  Parameters and return value
2061  *	are as for raw_notifier_call_chain().
2062  */
2063 
2064 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2065 {
2066 	return call_netdevice_notifiers_extack(val, dev, NULL);
2067 }
2068 EXPORT_SYMBOL(call_netdevice_notifiers);
2069 
2070 /**
2071  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2072  *	@val: value passed unmodified to notifier function
2073  *	@dev: net_device pointer passed unmodified to notifier function
2074  *	@arg: additional u32 argument passed to the notifier function
2075  *
2076  *	Call all network notifier blocks.  Parameters and return value
2077  *	are as for raw_notifier_call_chain().
2078  */
2079 static int call_netdevice_notifiers_mtu(unsigned long val,
2080 					struct net_device *dev, u32 arg)
2081 {
2082 	struct netdev_notifier_info_ext info = {
2083 		.info.dev = dev,
2084 		.ext.mtu = arg,
2085 	};
2086 
2087 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2088 
2089 	return call_netdevice_notifiers_info(val, &info.info);
2090 }
2091 
2092 #ifdef CONFIG_NET_INGRESS
2093 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2094 
2095 void net_inc_ingress_queue(void)
2096 {
2097 	static_branch_inc(&ingress_needed_key);
2098 }
2099 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2100 
2101 void net_dec_ingress_queue(void)
2102 {
2103 	static_branch_dec(&ingress_needed_key);
2104 }
2105 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2106 #endif
2107 
2108 #ifdef CONFIG_NET_EGRESS
2109 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2110 
2111 void net_inc_egress_queue(void)
2112 {
2113 	static_branch_inc(&egress_needed_key);
2114 }
2115 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2116 
2117 void net_dec_egress_queue(void)
2118 {
2119 	static_branch_dec(&egress_needed_key);
2120 }
2121 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2122 #endif
2123 
2124 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2125 #ifdef CONFIG_JUMP_LABEL
2126 static atomic_t netstamp_needed_deferred;
2127 static atomic_t netstamp_wanted;
2128 static void netstamp_clear(struct work_struct *work)
2129 {
2130 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2131 	int wanted;
2132 
2133 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2134 	if (wanted > 0)
2135 		static_branch_enable(&netstamp_needed_key);
2136 	else
2137 		static_branch_disable(&netstamp_needed_key);
2138 }
2139 static DECLARE_WORK(netstamp_work, netstamp_clear);
2140 #endif
2141 
2142 void net_enable_timestamp(void)
2143 {
2144 #ifdef CONFIG_JUMP_LABEL
2145 	int wanted;
2146 
2147 	while (1) {
2148 		wanted = atomic_read(&netstamp_wanted);
2149 		if (wanted <= 0)
2150 			break;
2151 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2152 			return;
2153 	}
2154 	atomic_inc(&netstamp_needed_deferred);
2155 	schedule_work(&netstamp_work);
2156 #else
2157 	static_branch_inc(&netstamp_needed_key);
2158 #endif
2159 }
2160 EXPORT_SYMBOL(net_enable_timestamp);
2161 
2162 void net_disable_timestamp(void)
2163 {
2164 #ifdef CONFIG_JUMP_LABEL
2165 	int wanted;
2166 
2167 	while (1) {
2168 		wanted = atomic_read(&netstamp_wanted);
2169 		if (wanted <= 1)
2170 			break;
2171 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2172 			return;
2173 	}
2174 	atomic_dec(&netstamp_needed_deferred);
2175 	schedule_work(&netstamp_work);
2176 #else
2177 	static_branch_dec(&netstamp_needed_key);
2178 #endif
2179 }
2180 EXPORT_SYMBOL(net_disable_timestamp);
2181 
2182 static inline void net_timestamp_set(struct sk_buff *skb)
2183 {
2184 	skb->tstamp = 0;
2185 	if (static_branch_unlikely(&netstamp_needed_key))
2186 		__net_timestamp(skb);
2187 }
2188 
2189 #define net_timestamp_check(COND, SKB)				\
2190 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2191 		if ((COND) && !(SKB)->tstamp)			\
2192 			__net_timestamp(SKB);			\
2193 	}							\
2194 
2195 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2196 {
2197 	unsigned int len;
2198 
2199 	if (!(dev->flags & IFF_UP))
2200 		return false;
2201 
2202 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2203 	if (skb->len <= len)
2204 		return true;
2205 
2206 	/* if TSO is enabled, we don't care about the length as the packet
2207 	 * could be forwarded without being segmented before
2208 	 */
2209 	if (skb_is_gso(skb))
2210 		return true;
2211 
2212 	return false;
2213 }
2214 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2215 
2216 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2217 {
2218 	int ret = ____dev_forward_skb(dev, skb);
2219 
2220 	if (likely(!ret)) {
2221 		skb->protocol = eth_type_trans(skb, dev);
2222 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2223 	}
2224 
2225 	return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2228 
2229 /**
2230  * dev_forward_skb - loopback an skb to another netif
2231  *
2232  * @dev: destination network device
2233  * @skb: buffer to forward
2234  *
2235  * return values:
2236  *	NET_RX_SUCCESS	(no congestion)
2237  *	NET_RX_DROP     (packet was dropped, but freed)
2238  *
2239  * dev_forward_skb can be used for injecting an skb from the
2240  * start_xmit function of one device into the receive queue
2241  * of another device.
2242  *
2243  * The receiving device may be in another namespace, so
2244  * we have to clear all information in the skb that could
2245  * impact namespace isolation.
2246  */
2247 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2248 {
2249 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2250 }
2251 EXPORT_SYMBOL_GPL(dev_forward_skb);
2252 
2253 static inline int deliver_skb(struct sk_buff *skb,
2254 			      struct packet_type *pt_prev,
2255 			      struct net_device *orig_dev)
2256 {
2257 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2258 		return -ENOMEM;
2259 	refcount_inc(&skb->users);
2260 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2261 }
2262 
2263 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2264 					  struct packet_type **pt,
2265 					  struct net_device *orig_dev,
2266 					  __be16 type,
2267 					  struct list_head *ptype_list)
2268 {
2269 	struct packet_type *ptype, *pt_prev = *pt;
2270 
2271 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 		if (ptype->type != type)
2273 			continue;
2274 		if (pt_prev)
2275 			deliver_skb(skb, pt_prev, orig_dev);
2276 		pt_prev = ptype;
2277 	}
2278 	*pt = pt_prev;
2279 }
2280 
2281 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2282 {
2283 	if (!ptype->af_packet_priv || !skb->sk)
2284 		return false;
2285 
2286 	if (ptype->id_match)
2287 		return ptype->id_match(ptype, skb->sk);
2288 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2289 		return true;
2290 
2291 	return false;
2292 }
2293 
2294 /**
2295  * dev_nit_active - return true if any network interface taps are in use
2296  *
2297  * @dev: network device to check for the presence of taps
2298  */
2299 bool dev_nit_active(struct net_device *dev)
2300 {
2301 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2302 }
2303 EXPORT_SYMBOL_GPL(dev_nit_active);
2304 
2305 /*
2306  *	Support routine. Sends outgoing frames to any network
2307  *	taps currently in use.
2308  */
2309 
2310 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2311 {
2312 	struct packet_type *ptype;
2313 	struct sk_buff *skb2 = NULL;
2314 	struct packet_type *pt_prev = NULL;
2315 	struct list_head *ptype_list = &ptype_all;
2316 
2317 	rcu_read_lock();
2318 again:
2319 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2320 		if (ptype->ignore_outgoing)
2321 			continue;
2322 
2323 		/* Never send packets back to the socket
2324 		 * they originated from - MvS (miquels@drinkel.ow.org)
2325 		 */
2326 		if (skb_loop_sk(ptype, skb))
2327 			continue;
2328 
2329 		if (pt_prev) {
2330 			deliver_skb(skb2, pt_prev, skb->dev);
2331 			pt_prev = ptype;
2332 			continue;
2333 		}
2334 
2335 		/* need to clone skb, done only once */
2336 		skb2 = skb_clone(skb, GFP_ATOMIC);
2337 		if (!skb2)
2338 			goto out_unlock;
2339 
2340 		net_timestamp_set(skb2);
2341 
2342 		/* skb->nh should be correctly
2343 		 * set by sender, so that the second statement is
2344 		 * just protection against buggy protocols.
2345 		 */
2346 		skb_reset_mac_header(skb2);
2347 
2348 		if (skb_network_header(skb2) < skb2->data ||
2349 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2350 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2351 					     ntohs(skb2->protocol),
2352 					     dev->name);
2353 			skb_reset_network_header(skb2);
2354 		}
2355 
2356 		skb2->transport_header = skb2->network_header;
2357 		skb2->pkt_type = PACKET_OUTGOING;
2358 		pt_prev = ptype;
2359 	}
2360 
2361 	if (ptype_list == &ptype_all) {
2362 		ptype_list = &dev->ptype_all;
2363 		goto again;
2364 	}
2365 out_unlock:
2366 	if (pt_prev) {
2367 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2368 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2369 		else
2370 			kfree_skb(skb2);
2371 	}
2372 	rcu_read_unlock();
2373 }
2374 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2375 
2376 /**
2377  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2378  * @dev: Network device
2379  * @txq: number of queues available
2380  *
2381  * If real_num_tx_queues is changed the tc mappings may no longer be
2382  * valid. To resolve this verify the tc mapping remains valid and if
2383  * not NULL the mapping. With no priorities mapping to this
2384  * offset/count pair it will no longer be used. In the worst case TC0
2385  * is invalid nothing can be done so disable priority mappings. If is
2386  * expected that drivers will fix this mapping if they can before
2387  * calling netif_set_real_num_tx_queues.
2388  */
2389 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2390 {
2391 	int i;
2392 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2393 
2394 	/* If TC0 is invalidated disable TC mapping */
2395 	if (tc->offset + tc->count > txq) {
2396 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2397 		dev->num_tc = 0;
2398 		return;
2399 	}
2400 
2401 	/* Invalidated prio to tc mappings set to TC0 */
2402 	for (i = 1; i < TC_BITMASK + 1; i++) {
2403 		int q = netdev_get_prio_tc_map(dev, i);
2404 
2405 		tc = &dev->tc_to_txq[q];
2406 		if (tc->offset + tc->count > txq) {
2407 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2408 				i, q);
2409 			netdev_set_prio_tc_map(dev, i, 0);
2410 		}
2411 	}
2412 }
2413 
2414 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2415 {
2416 	if (dev->num_tc) {
2417 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2418 		int i;
2419 
2420 		/* walk through the TCs and see if it falls into any of them */
2421 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2422 			if ((txq - tc->offset) < tc->count)
2423 				return i;
2424 		}
2425 
2426 		/* didn't find it, just return -1 to indicate no match */
2427 		return -1;
2428 	}
2429 
2430 	return 0;
2431 }
2432 EXPORT_SYMBOL(netdev_txq_to_tc);
2433 
2434 #ifdef CONFIG_XPS
2435 struct static_key xps_needed __read_mostly;
2436 EXPORT_SYMBOL(xps_needed);
2437 struct static_key xps_rxqs_needed __read_mostly;
2438 EXPORT_SYMBOL(xps_rxqs_needed);
2439 static DEFINE_MUTEX(xps_map_mutex);
2440 #define xmap_dereference(P)		\
2441 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2442 
2443 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2444 			     int tci, u16 index)
2445 {
2446 	struct xps_map *map = NULL;
2447 	int pos;
2448 
2449 	if (dev_maps)
2450 		map = xmap_dereference(dev_maps->attr_map[tci]);
2451 	if (!map)
2452 		return false;
2453 
2454 	for (pos = map->len; pos--;) {
2455 		if (map->queues[pos] != index)
2456 			continue;
2457 
2458 		if (map->len > 1) {
2459 			map->queues[pos] = map->queues[--map->len];
2460 			break;
2461 		}
2462 
2463 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2464 		kfree_rcu(map, rcu);
2465 		return false;
2466 	}
2467 
2468 	return true;
2469 }
2470 
2471 static bool remove_xps_queue_cpu(struct net_device *dev,
2472 				 struct xps_dev_maps *dev_maps,
2473 				 int cpu, u16 offset, u16 count)
2474 {
2475 	int num_tc = dev->num_tc ? : 1;
2476 	bool active = false;
2477 	int tci;
2478 
2479 	for (tci = cpu * num_tc; num_tc--; tci++) {
2480 		int i, j;
2481 
2482 		for (i = count, j = offset; i--; j++) {
2483 			if (!remove_xps_queue(dev_maps, tci, j))
2484 				break;
2485 		}
2486 
2487 		active |= i < 0;
2488 	}
2489 
2490 	return active;
2491 }
2492 
2493 static void reset_xps_maps(struct net_device *dev,
2494 			   struct xps_dev_maps *dev_maps,
2495 			   bool is_rxqs_map)
2496 {
2497 	if (is_rxqs_map) {
2498 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2499 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2500 	} else {
2501 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2502 	}
2503 	static_key_slow_dec_cpuslocked(&xps_needed);
2504 	kfree_rcu(dev_maps, rcu);
2505 }
2506 
2507 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2508 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2509 			   u16 offset, u16 count, bool is_rxqs_map)
2510 {
2511 	bool active = false;
2512 	int i, j;
2513 
2514 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2515 	     j < nr_ids;)
2516 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2517 					       count);
2518 	if (!active)
2519 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2520 
2521 	if (!is_rxqs_map) {
2522 		for (i = offset + (count - 1); count--; i--) {
2523 			netdev_queue_numa_node_write(
2524 				netdev_get_tx_queue(dev, i),
2525 				NUMA_NO_NODE);
2526 		}
2527 	}
2528 }
2529 
2530 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2531 				   u16 count)
2532 {
2533 	const unsigned long *possible_mask = NULL;
2534 	struct xps_dev_maps *dev_maps;
2535 	unsigned int nr_ids;
2536 
2537 	if (!static_key_false(&xps_needed))
2538 		return;
2539 
2540 	cpus_read_lock();
2541 	mutex_lock(&xps_map_mutex);
2542 
2543 	if (static_key_false(&xps_rxqs_needed)) {
2544 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545 		if (dev_maps) {
2546 			nr_ids = dev->num_rx_queues;
2547 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2548 				       offset, count, true);
2549 		}
2550 	}
2551 
2552 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2553 	if (!dev_maps)
2554 		goto out_no_maps;
2555 
2556 	if (num_possible_cpus() > 1)
2557 		possible_mask = cpumask_bits(cpu_possible_mask);
2558 	nr_ids = nr_cpu_ids;
2559 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2560 		       false);
2561 
2562 out_no_maps:
2563 	mutex_unlock(&xps_map_mutex);
2564 	cpus_read_unlock();
2565 }
2566 
2567 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2568 {
2569 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2570 }
2571 
2572 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2573 				      u16 index, bool is_rxqs_map)
2574 {
2575 	struct xps_map *new_map;
2576 	int alloc_len = XPS_MIN_MAP_ALLOC;
2577 	int i, pos;
2578 
2579 	for (pos = 0; map && pos < map->len; pos++) {
2580 		if (map->queues[pos] != index)
2581 			continue;
2582 		return map;
2583 	}
2584 
2585 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2586 	if (map) {
2587 		if (pos < map->alloc_len)
2588 			return map;
2589 
2590 		alloc_len = map->alloc_len * 2;
2591 	}
2592 
2593 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2594 	 *  map
2595 	 */
2596 	if (is_rxqs_map)
2597 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2598 	else
2599 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2600 				       cpu_to_node(attr_index));
2601 	if (!new_map)
2602 		return NULL;
2603 
2604 	for (i = 0; i < pos; i++)
2605 		new_map->queues[i] = map->queues[i];
2606 	new_map->alloc_len = alloc_len;
2607 	new_map->len = pos;
2608 
2609 	return new_map;
2610 }
2611 
2612 /* Must be called under cpus_read_lock */
2613 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2614 			  u16 index, bool is_rxqs_map)
2615 {
2616 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2617 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2618 	int i, j, tci, numa_node_id = -2;
2619 	int maps_sz, num_tc = 1, tc = 0;
2620 	struct xps_map *map, *new_map;
2621 	bool active = false;
2622 	unsigned int nr_ids;
2623 
2624 	if (dev->num_tc) {
2625 		/* Do not allow XPS on subordinate device directly */
2626 		num_tc = dev->num_tc;
2627 		if (num_tc < 0)
2628 			return -EINVAL;
2629 
2630 		/* If queue belongs to subordinate dev use its map */
2631 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2632 
2633 		tc = netdev_txq_to_tc(dev, index);
2634 		if (tc < 0)
2635 			return -EINVAL;
2636 	}
2637 
2638 	mutex_lock(&xps_map_mutex);
2639 	if (is_rxqs_map) {
2640 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2641 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2642 		nr_ids = dev->num_rx_queues;
2643 	} else {
2644 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2645 		if (num_possible_cpus() > 1) {
2646 			online_mask = cpumask_bits(cpu_online_mask);
2647 			possible_mask = cpumask_bits(cpu_possible_mask);
2648 		}
2649 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2650 		nr_ids = nr_cpu_ids;
2651 	}
2652 
2653 	if (maps_sz < L1_CACHE_BYTES)
2654 		maps_sz = L1_CACHE_BYTES;
2655 
2656 	/* allocate memory for queue storage */
2657 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2658 	     j < nr_ids;) {
2659 		if (!new_dev_maps)
2660 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2661 		if (!new_dev_maps) {
2662 			mutex_unlock(&xps_map_mutex);
2663 			return -ENOMEM;
2664 		}
2665 
2666 		tci = j * num_tc + tc;
2667 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2668 				 NULL;
2669 
2670 		map = expand_xps_map(map, j, index, is_rxqs_map);
2671 		if (!map)
2672 			goto error;
2673 
2674 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2675 	}
2676 
2677 	if (!new_dev_maps)
2678 		goto out_no_new_maps;
2679 
2680 	if (!dev_maps) {
2681 		/* Increment static keys at most once per type */
2682 		static_key_slow_inc_cpuslocked(&xps_needed);
2683 		if (is_rxqs_map)
2684 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2685 	}
2686 
2687 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2688 	     j < nr_ids;) {
2689 		/* copy maps belonging to foreign traffic classes */
2690 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2691 			/* fill in the new device map from the old device map */
2692 			map = xmap_dereference(dev_maps->attr_map[tci]);
2693 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694 		}
2695 
2696 		/* We need to explicitly update tci as prevous loop
2697 		 * could break out early if dev_maps is NULL.
2698 		 */
2699 		tci = j * num_tc + tc;
2700 
2701 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2702 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2703 			/* add tx-queue to CPU/rx-queue maps */
2704 			int pos = 0;
2705 
2706 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2707 			while ((pos < map->len) && (map->queues[pos] != index))
2708 				pos++;
2709 
2710 			if (pos == map->len)
2711 				map->queues[map->len++] = index;
2712 #ifdef CONFIG_NUMA
2713 			if (!is_rxqs_map) {
2714 				if (numa_node_id == -2)
2715 					numa_node_id = cpu_to_node(j);
2716 				else if (numa_node_id != cpu_to_node(j))
2717 					numa_node_id = -1;
2718 			}
2719 #endif
2720 		} else if (dev_maps) {
2721 			/* fill in the new device map from the old device map */
2722 			map = xmap_dereference(dev_maps->attr_map[tci]);
2723 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 		}
2725 
2726 		/* copy maps belonging to foreign traffic classes */
2727 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2728 			/* fill in the new device map from the old device map */
2729 			map = xmap_dereference(dev_maps->attr_map[tci]);
2730 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 		}
2732 	}
2733 
2734 	if (is_rxqs_map)
2735 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2736 	else
2737 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2738 
2739 	/* Cleanup old maps */
2740 	if (!dev_maps)
2741 		goto out_no_old_maps;
2742 
2743 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744 	     j < nr_ids;) {
2745 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2746 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747 			map = xmap_dereference(dev_maps->attr_map[tci]);
2748 			if (map && map != new_map)
2749 				kfree_rcu(map, rcu);
2750 		}
2751 	}
2752 
2753 	kfree_rcu(dev_maps, rcu);
2754 
2755 out_no_old_maps:
2756 	dev_maps = new_dev_maps;
2757 	active = true;
2758 
2759 out_no_new_maps:
2760 	if (!is_rxqs_map) {
2761 		/* update Tx queue numa node */
2762 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2763 					     (numa_node_id >= 0) ?
2764 					     numa_node_id : NUMA_NO_NODE);
2765 	}
2766 
2767 	if (!dev_maps)
2768 		goto out_no_maps;
2769 
2770 	/* removes tx-queue from unused CPUs/rx-queues */
2771 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2772 	     j < nr_ids;) {
2773 		for (i = tc, tci = j * num_tc; i--; tci++)
2774 			active |= remove_xps_queue(dev_maps, tci, index);
2775 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2776 		    !netif_attr_test_online(j, online_mask, nr_ids))
2777 			active |= remove_xps_queue(dev_maps, tci, index);
2778 		for (i = num_tc - tc, tci++; --i; tci++)
2779 			active |= remove_xps_queue(dev_maps, tci, index);
2780 	}
2781 
2782 	/* free map if not active */
2783 	if (!active)
2784 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2785 
2786 out_no_maps:
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	return 0;
2790 error:
2791 	/* remove any maps that we added */
2792 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2793 	     j < nr_ids;) {
2794 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2795 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2796 			map = dev_maps ?
2797 			      xmap_dereference(dev_maps->attr_map[tci]) :
2798 			      NULL;
2799 			if (new_map && new_map != map)
2800 				kfree(new_map);
2801 		}
2802 	}
2803 
2804 	mutex_unlock(&xps_map_mutex);
2805 
2806 	kfree(new_dev_maps);
2807 	return -ENOMEM;
2808 }
2809 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2810 
2811 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2812 			u16 index)
2813 {
2814 	int ret;
2815 
2816 	cpus_read_lock();
2817 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2818 	cpus_read_unlock();
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL(netif_set_xps_queue);
2823 
2824 #endif
2825 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2826 {
2827 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828 
2829 	/* Unbind any subordinate channels */
2830 	while (txq-- != &dev->_tx[0]) {
2831 		if (txq->sb_dev)
2832 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2833 	}
2834 }
2835 
2836 void netdev_reset_tc(struct net_device *dev)
2837 {
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues_gt(dev, 0);
2840 #endif
2841 	netdev_unbind_all_sb_channels(dev);
2842 
2843 	/* Reset TC configuration of device */
2844 	dev->num_tc = 0;
2845 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2846 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2847 }
2848 EXPORT_SYMBOL(netdev_reset_tc);
2849 
2850 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2851 {
2852 	if (tc >= dev->num_tc)
2853 		return -EINVAL;
2854 
2855 #ifdef CONFIG_XPS
2856 	netif_reset_xps_queues(dev, offset, count);
2857 #endif
2858 	dev->tc_to_txq[tc].count = count;
2859 	dev->tc_to_txq[tc].offset = offset;
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL(netdev_set_tc_queue);
2863 
2864 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2865 {
2866 	if (num_tc > TC_MAX_QUEUE)
2867 		return -EINVAL;
2868 
2869 #ifdef CONFIG_XPS
2870 	netif_reset_xps_queues_gt(dev, 0);
2871 #endif
2872 	netdev_unbind_all_sb_channels(dev);
2873 
2874 	dev->num_tc = num_tc;
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL(netdev_set_num_tc);
2878 
2879 void netdev_unbind_sb_channel(struct net_device *dev,
2880 			      struct net_device *sb_dev)
2881 {
2882 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2883 
2884 #ifdef CONFIG_XPS
2885 	netif_reset_xps_queues_gt(sb_dev, 0);
2886 #endif
2887 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2888 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2889 
2890 	while (txq-- != &dev->_tx[0]) {
2891 		if (txq->sb_dev == sb_dev)
2892 			txq->sb_dev = NULL;
2893 	}
2894 }
2895 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2896 
2897 int netdev_bind_sb_channel_queue(struct net_device *dev,
2898 				 struct net_device *sb_dev,
2899 				 u8 tc, u16 count, u16 offset)
2900 {
2901 	/* Make certain the sb_dev and dev are already configured */
2902 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2903 		return -EINVAL;
2904 
2905 	/* We cannot hand out queues we don't have */
2906 	if ((offset + count) > dev->real_num_tx_queues)
2907 		return -EINVAL;
2908 
2909 	/* Record the mapping */
2910 	sb_dev->tc_to_txq[tc].count = count;
2911 	sb_dev->tc_to_txq[tc].offset = offset;
2912 
2913 	/* Provide a way for Tx queue to find the tc_to_txq map or
2914 	 * XPS map for itself.
2915 	 */
2916 	while (count--)
2917 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2918 
2919 	return 0;
2920 }
2921 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2922 
2923 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2924 {
2925 	/* Do not use a multiqueue device to represent a subordinate channel */
2926 	if (netif_is_multiqueue(dev))
2927 		return -ENODEV;
2928 
2929 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2930 	 * Channel 0 is meant to be "native" mode and used only to represent
2931 	 * the main root device. We allow writing 0 to reset the device back
2932 	 * to normal mode after being used as a subordinate channel.
2933 	 */
2934 	if (channel > S16_MAX)
2935 		return -EINVAL;
2936 
2937 	dev->num_tc = -channel;
2938 
2939 	return 0;
2940 }
2941 EXPORT_SYMBOL(netdev_set_sb_channel);
2942 
2943 /*
2944  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2945  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2946  */
2947 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2948 {
2949 	bool disabling;
2950 	int rc;
2951 
2952 	disabling = txq < dev->real_num_tx_queues;
2953 
2954 	if (txq < 1 || txq > dev->num_tx_queues)
2955 		return -EINVAL;
2956 
2957 	if (dev->reg_state == NETREG_REGISTERED ||
2958 	    dev->reg_state == NETREG_UNREGISTERING) {
2959 		ASSERT_RTNL();
2960 
2961 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2962 						  txq);
2963 		if (rc)
2964 			return rc;
2965 
2966 		if (dev->num_tc)
2967 			netif_setup_tc(dev, txq);
2968 
2969 		dev->real_num_tx_queues = txq;
2970 
2971 		if (disabling) {
2972 			synchronize_net();
2973 			qdisc_reset_all_tx_gt(dev, txq);
2974 #ifdef CONFIG_XPS
2975 			netif_reset_xps_queues_gt(dev, txq);
2976 #endif
2977 		}
2978 	} else {
2979 		dev->real_num_tx_queues = txq;
2980 	}
2981 
2982 	return 0;
2983 }
2984 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2985 
2986 #ifdef CONFIG_SYSFS
2987 /**
2988  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2989  *	@dev: Network device
2990  *	@rxq: Actual number of RX queues
2991  *
2992  *	This must be called either with the rtnl_lock held or before
2993  *	registration of the net device.  Returns 0 on success, or a
2994  *	negative error code.  If called before registration, it always
2995  *	succeeds.
2996  */
2997 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2998 {
2999 	int rc;
3000 
3001 	if (rxq < 1 || rxq > dev->num_rx_queues)
3002 		return -EINVAL;
3003 
3004 	if (dev->reg_state == NETREG_REGISTERED) {
3005 		ASSERT_RTNL();
3006 
3007 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3008 						  rxq);
3009 		if (rc)
3010 			return rc;
3011 	}
3012 
3013 	dev->real_num_rx_queues = rxq;
3014 	return 0;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3017 #endif
3018 
3019 /**
3020  * netif_get_num_default_rss_queues - default number of RSS queues
3021  *
3022  * This routine should set an upper limit on the number of RSS queues
3023  * used by default by multiqueue devices.
3024  */
3025 int netif_get_num_default_rss_queues(void)
3026 {
3027 	return is_kdump_kernel() ?
3028 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3029 }
3030 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3031 
3032 static void __netif_reschedule(struct Qdisc *q)
3033 {
3034 	struct softnet_data *sd;
3035 	unsigned long flags;
3036 
3037 	local_irq_save(flags);
3038 	sd = this_cpu_ptr(&softnet_data);
3039 	q->next_sched = NULL;
3040 	*sd->output_queue_tailp = q;
3041 	sd->output_queue_tailp = &q->next_sched;
3042 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043 	local_irq_restore(flags);
3044 }
3045 
3046 void __netif_schedule(struct Qdisc *q)
3047 {
3048 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049 		__netif_reschedule(q);
3050 }
3051 EXPORT_SYMBOL(__netif_schedule);
3052 
3053 struct dev_kfree_skb_cb {
3054 	enum skb_free_reason reason;
3055 };
3056 
3057 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3058 {
3059 	return (struct dev_kfree_skb_cb *)skb->cb;
3060 }
3061 
3062 void netif_schedule_queue(struct netdev_queue *txq)
3063 {
3064 	rcu_read_lock();
3065 	if (!netif_xmit_stopped(txq)) {
3066 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3067 
3068 		__netif_schedule(q);
3069 	}
3070 	rcu_read_unlock();
3071 }
3072 EXPORT_SYMBOL(netif_schedule_queue);
3073 
3074 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3075 {
3076 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077 		struct Qdisc *q;
3078 
3079 		rcu_read_lock();
3080 		q = rcu_dereference(dev_queue->qdisc);
3081 		__netif_schedule(q);
3082 		rcu_read_unlock();
3083 	}
3084 }
3085 EXPORT_SYMBOL(netif_tx_wake_queue);
3086 
3087 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3088 {
3089 	unsigned long flags;
3090 
3091 	if (unlikely(!skb))
3092 		return;
3093 
3094 	if (likely(refcount_read(&skb->users) == 1)) {
3095 		smp_rmb();
3096 		refcount_set(&skb->users, 0);
3097 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3098 		return;
3099 	}
3100 	get_kfree_skb_cb(skb)->reason = reason;
3101 	local_irq_save(flags);
3102 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3103 	__this_cpu_write(softnet_data.completion_queue, skb);
3104 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 	local_irq_restore(flags);
3106 }
3107 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3108 
3109 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3110 {
3111 	if (in_irq() || irqs_disabled())
3112 		__dev_kfree_skb_irq(skb, reason);
3113 	else
3114 		dev_kfree_skb(skb);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_any);
3117 
3118 
3119 /**
3120  * netif_device_detach - mark device as removed
3121  * @dev: network device
3122  *
3123  * Mark device as removed from system and therefore no longer available.
3124  */
3125 void netif_device_detach(struct net_device *dev)
3126 {
3127 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128 	    netif_running(dev)) {
3129 		netif_tx_stop_all_queues(dev);
3130 	}
3131 }
3132 EXPORT_SYMBOL(netif_device_detach);
3133 
3134 /**
3135  * netif_device_attach - mark device as attached
3136  * @dev: network device
3137  *
3138  * Mark device as attached from system and restart if needed.
3139  */
3140 void netif_device_attach(struct net_device *dev)
3141 {
3142 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143 	    netif_running(dev)) {
3144 		netif_tx_wake_all_queues(dev);
3145 		__netdev_watchdog_up(dev);
3146 	}
3147 }
3148 EXPORT_SYMBOL(netif_device_attach);
3149 
3150 /*
3151  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152  * to be used as a distribution range.
3153  */
3154 static u16 skb_tx_hash(const struct net_device *dev,
3155 		       const struct net_device *sb_dev,
3156 		       struct sk_buff *skb)
3157 {
3158 	u32 hash;
3159 	u16 qoffset = 0;
3160 	u16 qcount = dev->real_num_tx_queues;
3161 
3162 	if (dev->num_tc) {
3163 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3164 
3165 		qoffset = sb_dev->tc_to_txq[tc].offset;
3166 		qcount = sb_dev->tc_to_txq[tc].count;
3167 	}
3168 
3169 	if (skb_rx_queue_recorded(skb)) {
3170 		hash = skb_get_rx_queue(skb);
3171 		if (hash >= qoffset)
3172 			hash -= qoffset;
3173 		while (unlikely(hash >= qcount))
3174 			hash -= qcount;
3175 		return hash + qoffset;
3176 	}
3177 
3178 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3179 }
3180 
3181 static void skb_warn_bad_offload(const struct sk_buff *skb)
3182 {
3183 	static const netdev_features_t null_features;
3184 	struct net_device *dev = skb->dev;
3185 	const char *name = "";
3186 
3187 	if (!net_ratelimit())
3188 		return;
3189 
3190 	if (dev) {
3191 		if (dev->dev.parent)
3192 			name = dev_driver_string(dev->dev.parent);
3193 		else
3194 			name = netdev_name(dev);
3195 	}
3196 	skb_dump(KERN_WARNING, skb, false);
3197 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3198 	     name, dev ? &dev->features : &null_features,
3199 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3200 }
3201 
3202 /*
3203  * Invalidate hardware checksum when packet is to be mangled, and
3204  * complete checksum manually on outgoing path.
3205  */
3206 int skb_checksum_help(struct sk_buff *skb)
3207 {
3208 	__wsum csum;
3209 	int ret = 0, offset;
3210 
3211 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3212 		goto out_set_summed;
3213 
3214 	if (unlikely(skb_is_gso(skb))) {
3215 		skb_warn_bad_offload(skb);
3216 		return -EINVAL;
3217 	}
3218 
3219 	/* Before computing a checksum, we should make sure no frag could
3220 	 * be modified by an external entity : checksum could be wrong.
3221 	 */
3222 	if (skb_has_shared_frag(skb)) {
3223 		ret = __skb_linearize(skb);
3224 		if (ret)
3225 			goto out;
3226 	}
3227 
3228 	offset = skb_checksum_start_offset(skb);
3229 	BUG_ON(offset >= skb_headlen(skb));
3230 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3231 
3232 	offset += skb->csum_offset;
3233 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3234 
3235 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3236 	if (ret)
3237 		goto out;
3238 
3239 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3240 out_set_summed:
3241 	skb->ip_summed = CHECKSUM_NONE;
3242 out:
3243 	return ret;
3244 }
3245 EXPORT_SYMBOL(skb_checksum_help);
3246 
3247 int skb_crc32c_csum_help(struct sk_buff *skb)
3248 {
3249 	__le32 crc32c_csum;
3250 	int ret = 0, offset, start;
3251 
3252 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3253 		goto out;
3254 
3255 	if (unlikely(skb_is_gso(skb)))
3256 		goto out;
3257 
3258 	/* Before computing a checksum, we should make sure no frag could
3259 	 * be modified by an external entity : checksum could be wrong.
3260 	 */
3261 	if (unlikely(skb_has_shared_frag(skb))) {
3262 		ret = __skb_linearize(skb);
3263 		if (ret)
3264 			goto out;
3265 	}
3266 	start = skb_checksum_start_offset(skb);
3267 	offset = start + offsetof(struct sctphdr, checksum);
3268 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3269 		ret = -EINVAL;
3270 		goto out;
3271 	}
3272 
3273 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3274 	if (ret)
3275 		goto out;
3276 
3277 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3278 						  skb->len - start, ~(__u32)0,
3279 						  crc32c_csum_stub));
3280 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3281 	skb->ip_summed = CHECKSUM_NONE;
3282 	skb->csum_not_inet = 0;
3283 out:
3284 	return ret;
3285 }
3286 
3287 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3288 {
3289 	__be16 type = skb->protocol;
3290 
3291 	/* Tunnel gso handlers can set protocol to ethernet. */
3292 	if (type == htons(ETH_P_TEB)) {
3293 		struct ethhdr *eth;
3294 
3295 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3296 			return 0;
3297 
3298 		eth = (struct ethhdr *)skb->data;
3299 		type = eth->h_proto;
3300 	}
3301 
3302 	return __vlan_get_protocol(skb, type, depth);
3303 }
3304 
3305 /**
3306  *	skb_mac_gso_segment - mac layer segmentation handler.
3307  *	@skb: buffer to segment
3308  *	@features: features for the output path (see dev->features)
3309  */
3310 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3311 				    netdev_features_t features)
3312 {
3313 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3314 	struct packet_offload *ptype;
3315 	int vlan_depth = skb->mac_len;
3316 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3317 
3318 	if (unlikely(!type))
3319 		return ERR_PTR(-EINVAL);
3320 
3321 	__skb_pull(skb, vlan_depth);
3322 
3323 	rcu_read_lock();
3324 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3325 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3326 			segs = ptype->callbacks.gso_segment(skb, features);
3327 			break;
3328 		}
3329 	}
3330 	rcu_read_unlock();
3331 
3332 	__skb_push(skb, skb->data - skb_mac_header(skb));
3333 
3334 	return segs;
3335 }
3336 EXPORT_SYMBOL(skb_mac_gso_segment);
3337 
3338 
3339 /* openvswitch calls this on rx path, so we need a different check.
3340  */
3341 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3342 {
3343 	if (tx_path)
3344 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3345 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3346 
3347 	return skb->ip_summed == CHECKSUM_NONE;
3348 }
3349 
3350 /**
3351  *	__skb_gso_segment - Perform segmentation on skb.
3352  *	@skb: buffer to segment
3353  *	@features: features for the output path (see dev->features)
3354  *	@tx_path: whether it is called in TX path
3355  *
3356  *	This function segments the given skb and returns a list of segments.
3357  *
3358  *	It may return NULL if the skb requires no segmentation.  This is
3359  *	only possible when GSO is used for verifying header integrity.
3360  *
3361  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3362  */
3363 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3364 				  netdev_features_t features, bool tx_path)
3365 {
3366 	struct sk_buff *segs;
3367 
3368 	if (unlikely(skb_needs_check(skb, tx_path))) {
3369 		int err;
3370 
3371 		/* We're going to init ->check field in TCP or UDP header */
3372 		err = skb_cow_head(skb, 0);
3373 		if (err < 0)
3374 			return ERR_PTR(err);
3375 	}
3376 
3377 	/* Only report GSO partial support if it will enable us to
3378 	 * support segmentation on this frame without needing additional
3379 	 * work.
3380 	 */
3381 	if (features & NETIF_F_GSO_PARTIAL) {
3382 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3383 		struct net_device *dev = skb->dev;
3384 
3385 		partial_features |= dev->features & dev->gso_partial_features;
3386 		if (!skb_gso_ok(skb, features | partial_features))
3387 			features &= ~NETIF_F_GSO_PARTIAL;
3388 	}
3389 
3390 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3391 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3392 
3393 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3394 	SKB_GSO_CB(skb)->encap_level = 0;
3395 
3396 	skb_reset_mac_header(skb);
3397 	skb_reset_mac_len(skb);
3398 
3399 	segs = skb_mac_gso_segment(skb, features);
3400 
3401 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3402 		skb_warn_bad_offload(skb);
3403 
3404 	return segs;
3405 }
3406 EXPORT_SYMBOL(__skb_gso_segment);
3407 
3408 /* Take action when hardware reception checksum errors are detected. */
3409 #ifdef CONFIG_BUG
3410 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3411 {
3412 	if (net_ratelimit()) {
3413 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3414 		skb_dump(KERN_ERR, skb, true);
3415 		dump_stack();
3416 	}
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420 
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 	int i;
3426 
3427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430 
3431 			if (PageHighMem(skb_frag_page(frag)))
3432 				return 1;
3433 		}
3434 	}
3435 #endif
3436 	return 0;
3437 }
3438 
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 					   netdev_features_t features,
3445 					   __be16 type)
3446 {
3447 	if (eth_p_mpls(type))
3448 		features &= skb->dev->mpls_features;
3449 
3450 	return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	return features;
3458 }
3459 #endif
3460 
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 	netdev_features_t features)
3463 {
3464 	__be16 type;
3465 
3466 	type = skb_network_protocol(skb, NULL);
3467 	features = net_mpls_features(skb, features, type);
3468 
3469 	if (skb->ip_summed != CHECKSUM_NONE &&
3470 	    !can_checksum_protocol(features, type)) {
3471 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 	}
3473 	if (illegal_highdma(skb->dev, skb))
3474 		features &= ~NETIF_F_SG;
3475 
3476 	return features;
3477 }
3478 
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 					  struct net_device *dev,
3481 					  netdev_features_t features)
3482 {
3483 	return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486 
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 					     struct net_device *dev,
3489 					     netdev_features_t features)
3490 {
3491 	return vlan_features_check(skb, features);
3492 }
3493 
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 					    struct net_device *dev,
3496 					    netdev_features_t features)
3497 {
3498 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499 
3500 	if (gso_segs > dev->gso_max_segs)
3501 		return features & ~NETIF_F_GSO_MASK;
3502 
3503 	if (!skb_shinfo(skb)->gso_type) {
3504 		skb_warn_bad_offload(skb);
3505 		return features & ~NETIF_F_GSO_MASK;
3506 	}
3507 
3508 	/* Support for GSO partial features requires software
3509 	 * intervention before we can actually process the packets
3510 	 * so we need to strip support for any partial features now
3511 	 * and we can pull them back in after we have partially
3512 	 * segmented the frame.
3513 	 */
3514 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 		features &= ~dev->gso_partial_features;
3516 
3517 	/* Make sure to clear the IPv4 ID mangling feature if the
3518 	 * IPv4 header has the potential to be fragmented.
3519 	 */
3520 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 		struct iphdr *iph = skb->encapsulation ?
3522 				    inner_ip_hdr(skb) : ip_hdr(skb);
3523 
3524 		if (!(iph->frag_off & htons(IP_DF)))
3525 			features &= ~NETIF_F_TSO_MANGLEID;
3526 	}
3527 
3528 	return features;
3529 }
3530 
3531 netdev_features_t netif_skb_features(struct sk_buff *skb)
3532 {
3533 	struct net_device *dev = skb->dev;
3534 	netdev_features_t features = dev->features;
3535 
3536 	if (skb_is_gso(skb))
3537 		features = gso_features_check(skb, dev, features);
3538 
3539 	/* If encapsulation offload request, verify we are testing
3540 	 * hardware encapsulation features instead of standard
3541 	 * features for the netdev
3542 	 */
3543 	if (skb->encapsulation)
3544 		features &= dev->hw_enc_features;
3545 
3546 	if (skb_vlan_tagged(skb))
3547 		features = netdev_intersect_features(features,
3548 						     dev->vlan_features |
3549 						     NETIF_F_HW_VLAN_CTAG_TX |
3550 						     NETIF_F_HW_VLAN_STAG_TX);
3551 
3552 	if (dev->netdev_ops->ndo_features_check)
3553 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 								features);
3555 	else
3556 		features &= dflt_features_check(skb, dev, features);
3557 
3558 	return harmonize_features(skb, features);
3559 }
3560 EXPORT_SYMBOL(netif_skb_features);
3561 
3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563 		    struct netdev_queue *txq, bool more)
3564 {
3565 	unsigned int len;
3566 	int rc;
3567 
3568 	if (dev_nit_active(dev))
3569 		dev_queue_xmit_nit(skb, dev);
3570 
3571 	len = skb->len;
3572 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3573 	trace_net_dev_start_xmit(skb, dev);
3574 	rc = netdev_start_xmit(skb, dev, txq, more);
3575 	trace_net_dev_xmit(skb, rc, dev, len);
3576 
3577 	return rc;
3578 }
3579 
3580 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3581 				    struct netdev_queue *txq, int *ret)
3582 {
3583 	struct sk_buff *skb = first;
3584 	int rc = NETDEV_TX_OK;
3585 
3586 	while (skb) {
3587 		struct sk_buff *next = skb->next;
3588 
3589 		skb_mark_not_on_list(skb);
3590 		rc = xmit_one(skb, dev, txq, next != NULL);
3591 		if (unlikely(!dev_xmit_complete(rc))) {
3592 			skb->next = next;
3593 			goto out;
3594 		}
3595 
3596 		skb = next;
3597 		if (netif_tx_queue_stopped(txq) && skb) {
3598 			rc = NETDEV_TX_BUSY;
3599 			break;
3600 		}
3601 	}
3602 
3603 out:
3604 	*ret = rc;
3605 	return skb;
3606 }
3607 
3608 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3609 					  netdev_features_t features)
3610 {
3611 	if (skb_vlan_tag_present(skb) &&
3612 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3613 		skb = __vlan_hwaccel_push_inside(skb);
3614 	return skb;
3615 }
3616 
3617 int skb_csum_hwoffload_help(struct sk_buff *skb,
3618 			    const netdev_features_t features)
3619 {
3620 	if (unlikely(skb->csum_not_inet))
3621 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3622 			skb_crc32c_csum_help(skb);
3623 
3624 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3625 }
3626 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3627 
3628 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3629 {
3630 	netdev_features_t features;
3631 
3632 	features = netif_skb_features(skb);
3633 	skb = validate_xmit_vlan(skb, features);
3634 	if (unlikely(!skb))
3635 		goto out_null;
3636 
3637 	skb = sk_validate_xmit_skb(skb, dev);
3638 	if (unlikely(!skb))
3639 		goto out_null;
3640 
3641 	if (netif_needs_gso(skb, features)) {
3642 		struct sk_buff *segs;
3643 
3644 		segs = skb_gso_segment(skb, features);
3645 		if (IS_ERR(segs)) {
3646 			goto out_kfree_skb;
3647 		} else if (segs) {
3648 			consume_skb(skb);
3649 			skb = segs;
3650 		}
3651 	} else {
3652 		if (skb_needs_linearize(skb, features) &&
3653 		    __skb_linearize(skb))
3654 			goto out_kfree_skb;
3655 
3656 		/* If packet is not checksummed and device does not
3657 		 * support checksumming for this protocol, complete
3658 		 * checksumming here.
3659 		 */
3660 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661 			if (skb->encapsulation)
3662 				skb_set_inner_transport_header(skb,
3663 							       skb_checksum_start_offset(skb));
3664 			else
3665 				skb_set_transport_header(skb,
3666 							 skb_checksum_start_offset(skb));
3667 			if (skb_csum_hwoffload_help(skb, features))
3668 				goto out_kfree_skb;
3669 		}
3670 	}
3671 
3672 	skb = validate_xmit_xfrm(skb, features, again);
3673 
3674 	return skb;
3675 
3676 out_kfree_skb:
3677 	kfree_skb(skb);
3678 out_null:
3679 	atomic_long_inc(&dev->tx_dropped);
3680 	return NULL;
3681 }
3682 
3683 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3684 {
3685 	struct sk_buff *next, *head = NULL, *tail;
3686 
3687 	for (; skb != NULL; skb = next) {
3688 		next = skb->next;
3689 		skb_mark_not_on_list(skb);
3690 
3691 		/* in case skb wont be segmented, point to itself */
3692 		skb->prev = skb;
3693 
3694 		skb = validate_xmit_skb(skb, dev, again);
3695 		if (!skb)
3696 			continue;
3697 
3698 		if (!head)
3699 			head = skb;
3700 		else
3701 			tail->next = skb;
3702 		/* If skb was segmented, skb->prev points to
3703 		 * the last segment. If not, it still contains skb.
3704 		 */
3705 		tail = skb->prev;
3706 	}
3707 	return head;
3708 }
3709 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3710 
3711 static void qdisc_pkt_len_init(struct sk_buff *skb)
3712 {
3713 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3714 
3715 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3716 
3717 	/* To get more precise estimation of bytes sent on wire,
3718 	 * we add to pkt_len the headers size of all segments
3719 	 */
3720 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3721 		unsigned int hdr_len;
3722 		u16 gso_segs = shinfo->gso_segs;
3723 
3724 		/* mac layer + network layer */
3725 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3726 
3727 		/* + transport layer */
3728 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729 			const struct tcphdr *th;
3730 			struct tcphdr _tcphdr;
3731 
3732 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3733 						sizeof(_tcphdr), &_tcphdr);
3734 			if (likely(th))
3735 				hdr_len += __tcp_hdrlen(th);
3736 		} else {
3737 			struct udphdr _udphdr;
3738 
3739 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3740 					       sizeof(_udphdr), &_udphdr))
3741 				hdr_len += sizeof(struct udphdr);
3742 		}
3743 
3744 		if (shinfo->gso_type & SKB_GSO_DODGY)
3745 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3746 						shinfo->gso_size);
3747 
3748 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3749 	}
3750 }
3751 
3752 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3753 				 struct net_device *dev,
3754 				 struct netdev_queue *txq)
3755 {
3756 	spinlock_t *root_lock = qdisc_lock(q);
3757 	struct sk_buff *to_free = NULL;
3758 	bool contended;
3759 	int rc;
3760 
3761 	qdisc_calculate_pkt_len(skb, q);
3762 
3763 	if (q->flags & TCQ_F_NOLOCK) {
3764 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3765 		qdisc_run(q);
3766 
3767 		if (unlikely(to_free))
3768 			kfree_skb_list(to_free);
3769 		return rc;
3770 	}
3771 
3772 	/*
3773 	 * Heuristic to force contended enqueues to serialize on a
3774 	 * separate lock before trying to get qdisc main lock.
3775 	 * This permits qdisc->running owner to get the lock more
3776 	 * often and dequeue packets faster.
3777 	 */
3778 	contended = qdisc_is_running(q);
3779 	if (unlikely(contended))
3780 		spin_lock(&q->busylock);
3781 
3782 	spin_lock(root_lock);
3783 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3784 		__qdisc_drop(skb, &to_free);
3785 		rc = NET_XMIT_DROP;
3786 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3787 		   qdisc_run_begin(q)) {
3788 		/*
3789 		 * This is a work-conserving queue; there are no old skbs
3790 		 * waiting to be sent out; and the qdisc is not running -
3791 		 * xmit the skb directly.
3792 		 */
3793 
3794 		qdisc_bstats_update(q, skb);
3795 
3796 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3797 			if (unlikely(contended)) {
3798 				spin_unlock(&q->busylock);
3799 				contended = false;
3800 			}
3801 			__qdisc_run(q);
3802 		}
3803 
3804 		qdisc_run_end(q);
3805 		rc = NET_XMIT_SUCCESS;
3806 	} else {
3807 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3808 		if (qdisc_run_begin(q)) {
3809 			if (unlikely(contended)) {
3810 				spin_unlock(&q->busylock);
3811 				contended = false;
3812 			}
3813 			__qdisc_run(q);
3814 			qdisc_run_end(q);
3815 		}
3816 	}
3817 	spin_unlock(root_lock);
3818 	if (unlikely(to_free))
3819 		kfree_skb_list(to_free);
3820 	if (unlikely(contended))
3821 		spin_unlock(&q->busylock);
3822 	return rc;
3823 }
3824 
3825 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3826 static void skb_update_prio(struct sk_buff *skb)
3827 {
3828 	const struct netprio_map *map;
3829 	const struct sock *sk;
3830 	unsigned int prioidx;
3831 
3832 	if (skb->priority)
3833 		return;
3834 	map = rcu_dereference_bh(skb->dev->priomap);
3835 	if (!map)
3836 		return;
3837 	sk = skb_to_full_sk(skb);
3838 	if (!sk)
3839 		return;
3840 
3841 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3842 
3843 	if (prioidx < map->priomap_len)
3844 		skb->priority = map->priomap[prioidx];
3845 }
3846 #else
3847 #define skb_update_prio(skb)
3848 #endif
3849 
3850 /**
3851  *	dev_loopback_xmit - loop back @skb
3852  *	@net: network namespace this loopback is happening in
3853  *	@sk:  sk needed to be a netfilter okfn
3854  *	@skb: buffer to transmit
3855  */
3856 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3857 {
3858 	skb_reset_mac_header(skb);
3859 	__skb_pull(skb, skb_network_offset(skb));
3860 	skb->pkt_type = PACKET_LOOPBACK;
3861 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3862 	WARN_ON(!skb_dst(skb));
3863 	skb_dst_force(skb);
3864 	netif_rx_ni(skb);
3865 	return 0;
3866 }
3867 EXPORT_SYMBOL(dev_loopback_xmit);
3868 
3869 #ifdef CONFIG_NET_EGRESS
3870 static struct sk_buff *
3871 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3872 {
3873 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3874 	struct tcf_result cl_res;
3875 
3876 	if (!miniq)
3877 		return skb;
3878 
3879 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3880 	qdisc_skb_cb(skb)->mru = 0;
3881 	mini_qdisc_bstats_cpu_update(miniq, skb);
3882 
3883 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3884 	case TC_ACT_OK:
3885 	case TC_ACT_RECLASSIFY:
3886 		skb->tc_index = TC_H_MIN(cl_res.classid);
3887 		break;
3888 	case TC_ACT_SHOT:
3889 		mini_qdisc_qstats_cpu_drop(miniq);
3890 		*ret = NET_XMIT_DROP;
3891 		kfree_skb(skb);
3892 		return NULL;
3893 	case TC_ACT_STOLEN:
3894 	case TC_ACT_QUEUED:
3895 	case TC_ACT_TRAP:
3896 		*ret = NET_XMIT_SUCCESS;
3897 		consume_skb(skb);
3898 		return NULL;
3899 	case TC_ACT_REDIRECT:
3900 		/* No need to push/pop skb's mac_header here on egress! */
3901 		skb_do_redirect(skb);
3902 		*ret = NET_XMIT_SUCCESS;
3903 		return NULL;
3904 	default:
3905 		break;
3906 	}
3907 
3908 	return skb;
3909 }
3910 #endif /* CONFIG_NET_EGRESS */
3911 
3912 #ifdef CONFIG_XPS
3913 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3914 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3915 {
3916 	struct xps_map *map;
3917 	int queue_index = -1;
3918 
3919 	if (dev->num_tc) {
3920 		tci *= dev->num_tc;
3921 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3922 	}
3923 
3924 	map = rcu_dereference(dev_maps->attr_map[tci]);
3925 	if (map) {
3926 		if (map->len == 1)
3927 			queue_index = map->queues[0];
3928 		else
3929 			queue_index = map->queues[reciprocal_scale(
3930 						skb_get_hash(skb), map->len)];
3931 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3932 			queue_index = -1;
3933 	}
3934 	return queue_index;
3935 }
3936 #endif
3937 
3938 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3939 			 struct sk_buff *skb)
3940 {
3941 #ifdef CONFIG_XPS
3942 	struct xps_dev_maps *dev_maps;
3943 	struct sock *sk = skb->sk;
3944 	int queue_index = -1;
3945 
3946 	if (!static_key_false(&xps_needed))
3947 		return -1;
3948 
3949 	rcu_read_lock();
3950 	if (!static_key_false(&xps_rxqs_needed))
3951 		goto get_cpus_map;
3952 
3953 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3954 	if (dev_maps) {
3955 		int tci = sk_rx_queue_get(sk);
3956 
3957 		if (tci >= 0 && tci < dev->num_rx_queues)
3958 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3959 							  tci);
3960 	}
3961 
3962 get_cpus_map:
3963 	if (queue_index < 0) {
3964 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3965 		if (dev_maps) {
3966 			unsigned int tci = skb->sender_cpu - 1;
3967 
3968 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3969 							  tci);
3970 		}
3971 	}
3972 	rcu_read_unlock();
3973 
3974 	return queue_index;
3975 #else
3976 	return -1;
3977 #endif
3978 }
3979 
3980 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3981 		     struct net_device *sb_dev)
3982 {
3983 	return 0;
3984 }
3985 EXPORT_SYMBOL(dev_pick_tx_zero);
3986 
3987 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3988 		       struct net_device *sb_dev)
3989 {
3990 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3991 }
3992 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3993 
3994 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3995 		     struct net_device *sb_dev)
3996 {
3997 	struct sock *sk = skb->sk;
3998 	int queue_index = sk_tx_queue_get(sk);
3999 
4000 	sb_dev = sb_dev ? : dev;
4001 
4002 	if (queue_index < 0 || skb->ooo_okay ||
4003 	    queue_index >= dev->real_num_tx_queues) {
4004 		int new_index = get_xps_queue(dev, sb_dev, skb);
4005 
4006 		if (new_index < 0)
4007 			new_index = skb_tx_hash(dev, sb_dev, skb);
4008 
4009 		if (queue_index != new_index && sk &&
4010 		    sk_fullsock(sk) &&
4011 		    rcu_access_pointer(sk->sk_dst_cache))
4012 			sk_tx_queue_set(sk, new_index);
4013 
4014 		queue_index = new_index;
4015 	}
4016 
4017 	return queue_index;
4018 }
4019 EXPORT_SYMBOL(netdev_pick_tx);
4020 
4021 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4022 					 struct sk_buff *skb,
4023 					 struct net_device *sb_dev)
4024 {
4025 	int queue_index = 0;
4026 
4027 #ifdef CONFIG_XPS
4028 	u32 sender_cpu = skb->sender_cpu - 1;
4029 
4030 	if (sender_cpu >= (u32)NR_CPUS)
4031 		skb->sender_cpu = raw_smp_processor_id() + 1;
4032 #endif
4033 
4034 	if (dev->real_num_tx_queues != 1) {
4035 		const struct net_device_ops *ops = dev->netdev_ops;
4036 
4037 		if (ops->ndo_select_queue)
4038 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4039 		else
4040 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4041 
4042 		queue_index = netdev_cap_txqueue(dev, queue_index);
4043 	}
4044 
4045 	skb_set_queue_mapping(skb, queue_index);
4046 	return netdev_get_tx_queue(dev, queue_index);
4047 }
4048 
4049 /**
4050  *	__dev_queue_xmit - transmit a buffer
4051  *	@skb: buffer to transmit
4052  *	@sb_dev: suboordinate device used for L2 forwarding offload
4053  *
4054  *	Queue a buffer for transmission to a network device. The caller must
4055  *	have set the device and priority and built the buffer before calling
4056  *	this function. The function can be called from an interrupt.
4057  *
4058  *	A negative errno code is returned on a failure. A success does not
4059  *	guarantee the frame will be transmitted as it may be dropped due
4060  *	to congestion or traffic shaping.
4061  *
4062  * -----------------------------------------------------------------------------------
4063  *      I notice this method can also return errors from the queue disciplines,
4064  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4065  *      be positive.
4066  *
4067  *      Regardless of the return value, the skb is consumed, so it is currently
4068  *      difficult to retry a send to this method.  (You can bump the ref count
4069  *      before sending to hold a reference for retry if you are careful.)
4070  *
4071  *      When calling this method, interrupts MUST be enabled.  This is because
4072  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4073  *          --BLG
4074  */
4075 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4076 {
4077 	struct net_device *dev = skb->dev;
4078 	struct netdev_queue *txq;
4079 	struct Qdisc *q;
4080 	int rc = -ENOMEM;
4081 	bool again = false;
4082 
4083 	skb_reset_mac_header(skb);
4084 
4085 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4086 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4087 
4088 	/* Disable soft irqs for various locks below. Also
4089 	 * stops preemption for RCU.
4090 	 */
4091 	rcu_read_lock_bh();
4092 
4093 	skb_update_prio(skb);
4094 
4095 	qdisc_pkt_len_init(skb);
4096 #ifdef CONFIG_NET_CLS_ACT
4097 	skb->tc_at_ingress = 0;
4098 # ifdef CONFIG_NET_EGRESS
4099 	if (static_branch_unlikely(&egress_needed_key)) {
4100 		skb = sch_handle_egress(skb, &rc, dev);
4101 		if (!skb)
4102 			goto out;
4103 	}
4104 # endif
4105 #endif
4106 	/* If device/qdisc don't need skb->dst, release it right now while
4107 	 * its hot in this cpu cache.
4108 	 */
4109 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4110 		skb_dst_drop(skb);
4111 	else
4112 		skb_dst_force(skb);
4113 
4114 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4115 	q = rcu_dereference_bh(txq->qdisc);
4116 
4117 	trace_net_dev_queue(skb);
4118 	if (q->enqueue) {
4119 		rc = __dev_xmit_skb(skb, q, dev, txq);
4120 		goto out;
4121 	}
4122 
4123 	/* The device has no queue. Common case for software devices:
4124 	 * loopback, all the sorts of tunnels...
4125 
4126 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4127 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4128 	 * counters.)
4129 	 * However, it is possible, that they rely on protection
4130 	 * made by us here.
4131 
4132 	 * Check this and shot the lock. It is not prone from deadlocks.
4133 	 *Either shot noqueue qdisc, it is even simpler 8)
4134 	 */
4135 	if (dev->flags & IFF_UP) {
4136 		int cpu = smp_processor_id(); /* ok because BHs are off */
4137 
4138 		if (txq->xmit_lock_owner != cpu) {
4139 			if (dev_xmit_recursion())
4140 				goto recursion_alert;
4141 
4142 			skb = validate_xmit_skb(skb, dev, &again);
4143 			if (!skb)
4144 				goto out;
4145 
4146 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4147 			HARD_TX_LOCK(dev, txq, cpu);
4148 
4149 			if (!netif_xmit_stopped(txq)) {
4150 				dev_xmit_recursion_inc();
4151 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4152 				dev_xmit_recursion_dec();
4153 				if (dev_xmit_complete(rc)) {
4154 					HARD_TX_UNLOCK(dev, txq);
4155 					goto out;
4156 				}
4157 			}
4158 			HARD_TX_UNLOCK(dev, txq);
4159 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4160 					     dev->name);
4161 		} else {
4162 			/* Recursion is detected! It is possible,
4163 			 * unfortunately
4164 			 */
4165 recursion_alert:
4166 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4167 					     dev->name);
4168 		}
4169 	}
4170 
4171 	rc = -ENETDOWN;
4172 	rcu_read_unlock_bh();
4173 
4174 	atomic_long_inc(&dev->tx_dropped);
4175 	kfree_skb_list(skb);
4176 	return rc;
4177 out:
4178 	rcu_read_unlock_bh();
4179 	return rc;
4180 }
4181 
4182 int dev_queue_xmit(struct sk_buff *skb)
4183 {
4184 	return __dev_queue_xmit(skb, NULL);
4185 }
4186 EXPORT_SYMBOL(dev_queue_xmit);
4187 
4188 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4189 {
4190 	return __dev_queue_xmit(skb, sb_dev);
4191 }
4192 EXPORT_SYMBOL(dev_queue_xmit_accel);
4193 
4194 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4195 {
4196 	struct net_device *dev = skb->dev;
4197 	struct sk_buff *orig_skb = skb;
4198 	struct netdev_queue *txq;
4199 	int ret = NETDEV_TX_BUSY;
4200 	bool again = false;
4201 
4202 	if (unlikely(!netif_running(dev) ||
4203 		     !netif_carrier_ok(dev)))
4204 		goto drop;
4205 
4206 	skb = validate_xmit_skb_list(skb, dev, &again);
4207 	if (skb != orig_skb)
4208 		goto drop;
4209 
4210 	skb_set_queue_mapping(skb, queue_id);
4211 	txq = skb_get_tx_queue(dev, skb);
4212 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4213 
4214 	local_bh_disable();
4215 
4216 	dev_xmit_recursion_inc();
4217 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4218 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4219 		ret = netdev_start_xmit(skb, dev, txq, false);
4220 	HARD_TX_UNLOCK(dev, txq);
4221 	dev_xmit_recursion_dec();
4222 
4223 	local_bh_enable();
4224 	return ret;
4225 drop:
4226 	atomic_long_inc(&dev->tx_dropped);
4227 	kfree_skb_list(skb);
4228 	return NET_XMIT_DROP;
4229 }
4230 EXPORT_SYMBOL(__dev_direct_xmit);
4231 
4232 /*************************************************************************
4233  *			Receiver routines
4234  *************************************************************************/
4235 
4236 int netdev_max_backlog __read_mostly = 1000;
4237 EXPORT_SYMBOL(netdev_max_backlog);
4238 
4239 int netdev_tstamp_prequeue __read_mostly = 1;
4240 int netdev_budget __read_mostly = 300;
4241 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4242 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4243 int weight_p __read_mostly = 64;           /* old backlog weight */
4244 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4245 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4246 int dev_rx_weight __read_mostly = 64;
4247 int dev_tx_weight __read_mostly = 64;
4248 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4249 int gro_normal_batch __read_mostly = 8;
4250 
4251 /* Called with irq disabled */
4252 static inline void ____napi_schedule(struct softnet_data *sd,
4253 				     struct napi_struct *napi)
4254 {
4255 	list_add_tail(&napi->poll_list, &sd->poll_list);
4256 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4257 }
4258 
4259 #ifdef CONFIG_RPS
4260 
4261 /* One global table that all flow-based protocols share. */
4262 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4263 EXPORT_SYMBOL(rps_sock_flow_table);
4264 u32 rps_cpu_mask __read_mostly;
4265 EXPORT_SYMBOL(rps_cpu_mask);
4266 
4267 struct static_key_false rps_needed __read_mostly;
4268 EXPORT_SYMBOL(rps_needed);
4269 struct static_key_false rfs_needed __read_mostly;
4270 EXPORT_SYMBOL(rfs_needed);
4271 
4272 static struct rps_dev_flow *
4273 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4274 	    struct rps_dev_flow *rflow, u16 next_cpu)
4275 {
4276 	if (next_cpu < nr_cpu_ids) {
4277 #ifdef CONFIG_RFS_ACCEL
4278 		struct netdev_rx_queue *rxqueue;
4279 		struct rps_dev_flow_table *flow_table;
4280 		struct rps_dev_flow *old_rflow;
4281 		u32 flow_id;
4282 		u16 rxq_index;
4283 		int rc;
4284 
4285 		/* Should we steer this flow to a different hardware queue? */
4286 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4287 		    !(dev->features & NETIF_F_NTUPLE))
4288 			goto out;
4289 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4290 		if (rxq_index == skb_get_rx_queue(skb))
4291 			goto out;
4292 
4293 		rxqueue = dev->_rx + rxq_index;
4294 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4295 		if (!flow_table)
4296 			goto out;
4297 		flow_id = skb_get_hash(skb) & flow_table->mask;
4298 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4299 							rxq_index, flow_id);
4300 		if (rc < 0)
4301 			goto out;
4302 		old_rflow = rflow;
4303 		rflow = &flow_table->flows[flow_id];
4304 		rflow->filter = rc;
4305 		if (old_rflow->filter == rflow->filter)
4306 			old_rflow->filter = RPS_NO_FILTER;
4307 	out:
4308 #endif
4309 		rflow->last_qtail =
4310 			per_cpu(softnet_data, next_cpu).input_queue_head;
4311 	}
4312 
4313 	rflow->cpu = next_cpu;
4314 	return rflow;
4315 }
4316 
4317 /*
4318  * get_rps_cpu is called from netif_receive_skb and returns the target
4319  * CPU from the RPS map of the receiving queue for a given skb.
4320  * rcu_read_lock must be held on entry.
4321  */
4322 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4323 		       struct rps_dev_flow **rflowp)
4324 {
4325 	const struct rps_sock_flow_table *sock_flow_table;
4326 	struct netdev_rx_queue *rxqueue = dev->_rx;
4327 	struct rps_dev_flow_table *flow_table;
4328 	struct rps_map *map;
4329 	int cpu = -1;
4330 	u32 tcpu;
4331 	u32 hash;
4332 
4333 	if (skb_rx_queue_recorded(skb)) {
4334 		u16 index = skb_get_rx_queue(skb);
4335 
4336 		if (unlikely(index >= dev->real_num_rx_queues)) {
4337 			WARN_ONCE(dev->real_num_rx_queues > 1,
4338 				  "%s received packet on queue %u, but number "
4339 				  "of RX queues is %u\n",
4340 				  dev->name, index, dev->real_num_rx_queues);
4341 			goto done;
4342 		}
4343 		rxqueue += index;
4344 	}
4345 
4346 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4347 
4348 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4349 	map = rcu_dereference(rxqueue->rps_map);
4350 	if (!flow_table && !map)
4351 		goto done;
4352 
4353 	skb_reset_network_header(skb);
4354 	hash = skb_get_hash(skb);
4355 	if (!hash)
4356 		goto done;
4357 
4358 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4359 	if (flow_table && sock_flow_table) {
4360 		struct rps_dev_flow *rflow;
4361 		u32 next_cpu;
4362 		u32 ident;
4363 
4364 		/* First check into global flow table if there is a match */
4365 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4366 		if ((ident ^ hash) & ~rps_cpu_mask)
4367 			goto try_rps;
4368 
4369 		next_cpu = ident & rps_cpu_mask;
4370 
4371 		/* OK, now we know there is a match,
4372 		 * we can look at the local (per receive queue) flow table
4373 		 */
4374 		rflow = &flow_table->flows[hash & flow_table->mask];
4375 		tcpu = rflow->cpu;
4376 
4377 		/*
4378 		 * If the desired CPU (where last recvmsg was done) is
4379 		 * different from current CPU (one in the rx-queue flow
4380 		 * table entry), switch if one of the following holds:
4381 		 *   - Current CPU is unset (>= nr_cpu_ids).
4382 		 *   - Current CPU is offline.
4383 		 *   - The current CPU's queue tail has advanced beyond the
4384 		 *     last packet that was enqueued using this table entry.
4385 		 *     This guarantees that all previous packets for the flow
4386 		 *     have been dequeued, thus preserving in order delivery.
4387 		 */
4388 		if (unlikely(tcpu != next_cpu) &&
4389 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4390 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4391 		      rflow->last_qtail)) >= 0)) {
4392 			tcpu = next_cpu;
4393 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4394 		}
4395 
4396 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4397 			*rflowp = rflow;
4398 			cpu = tcpu;
4399 			goto done;
4400 		}
4401 	}
4402 
4403 try_rps:
4404 
4405 	if (map) {
4406 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4407 		if (cpu_online(tcpu)) {
4408 			cpu = tcpu;
4409 			goto done;
4410 		}
4411 	}
4412 
4413 done:
4414 	return cpu;
4415 }
4416 
4417 #ifdef CONFIG_RFS_ACCEL
4418 
4419 /**
4420  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4421  * @dev: Device on which the filter was set
4422  * @rxq_index: RX queue index
4423  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4424  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4425  *
4426  * Drivers that implement ndo_rx_flow_steer() should periodically call
4427  * this function for each installed filter and remove the filters for
4428  * which it returns %true.
4429  */
4430 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4431 			 u32 flow_id, u16 filter_id)
4432 {
4433 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4434 	struct rps_dev_flow_table *flow_table;
4435 	struct rps_dev_flow *rflow;
4436 	bool expire = true;
4437 	unsigned int cpu;
4438 
4439 	rcu_read_lock();
4440 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441 	if (flow_table && flow_id <= flow_table->mask) {
4442 		rflow = &flow_table->flows[flow_id];
4443 		cpu = READ_ONCE(rflow->cpu);
4444 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4445 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4446 			   rflow->last_qtail) <
4447 		     (int)(10 * flow_table->mask)))
4448 			expire = false;
4449 	}
4450 	rcu_read_unlock();
4451 	return expire;
4452 }
4453 EXPORT_SYMBOL(rps_may_expire_flow);
4454 
4455 #endif /* CONFIG_RFS_ACCEL */
4456 
4457 /* Called from hardirq (IPI) context */
4458 static void rps_trigger_softirq(void *data)
4459 {
4460 	struct softnet_data *sd = data;
4461 
4462 	____napi_schedule(sd, &sd->backlog);
4463 	sd->received_rps++;
4464 }
4465 
4466 #endif /* CONFIG_RPS */
4467 
4468 /*
4469  * Check if this softnet_data structure is another cpu one
4470  * If yes, queue it to our IPI list and return 1
4471  * If no, return 0
4472  */
4473 static int rps_ipi_queued(struct softnet_data *sd)
4474 {
4475 #ifdef CONFIG_RPS
4476 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4477 
4478 	if (sd != mysd) {
4479 		sd->rps_ipi_next = mysd->rps_ipi_list;
4480 		mysd->rps_ipi_list = sd;
4481 
4482 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4483 		return 1;
4484 	}
4485 #endif /* CONFIG_RPS */
4486 	return 0;
4487 }
4488 
4489 #ifdef CONFIG_NET_FLOW_LIMIT
4490 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4491 #endif
4492 
4493 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4494 {
4495 #ifdef CONFIG_NET_FLOW_LIMIT
4496 	struct sd_flow_limit *fl;
4497 	struct softnet_data *sd;
4498 	unsigned int old_flow, new_flow;
4499 
4500 	if (qlen < (netdev_max_backlog >> 1))
4501 		return false;
4502 
4503 	sd = this_cpu_ptr(&softnet_data);
4504 
4505 	rcu_read_lock();
4506 	fl = rcu_dereference(sd->flow_limit);
4507 	if (fl) {
4508 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4509 		old_flow = fl->history[fl->history_head];
4510 		fl->history[fl->history_head] = new_flow;
4511 
4512 		fl->history_head++;
4513 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4514 
4515 		if (likely(fl->buckets[old_flow]))
4516 			fl->buckets[old_flow]--;
4517 
4518 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4519 			fl->count++;
4520 			rcu_read_unlock();
4521 			return true;
4522 		}
4523 	}
4524 	rcu_read_unlock();
4525 #endif
4526 	return false;
4527 }
4528 
4529 /*
4530  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4531  * queue (may be a remote CPU queue).
4532  */
4533 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4534 			      unsigned int *qtail)
4535 {
4536 	struct softnet_data *sd;
4537 	unsigned long flags;
4538 	unsigned int qlen;
4539 
4540 	sd = &per_cpu(softnet_data, cpu);
4541 
4542 	local_irq_save(flags);
4543 
4544 	rps_lock(sd);
4545 	if (!netif_running(skb->dev))
4546 		goto drop;
4547 	qlen = skb_queue_len(&sd->input_pkt_queue);
4548 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4549 		if (qlen) {
4550 enqueue:
4551 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4552 			input_queue_tail_incr_save(sd, qtail);
4553 			rps_unlock(sd);
4554 			local_irq_restore(flags);
4555 			return NET_RX_SUCCESS;
4556 		}
4557 
4558 		/* Schedule NAPI for backlog device
4559 		 * We can use non atomic operation since we own the queue lock
4560 		 */
4561 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4562 			if (!rps_ipi_queued(sd))
4563 				____napi_schedule(sd, &sd->backlog);
4564 		}
4565 		goto enqueue;
4566 	}
4567 
4568 drop:
4569 	sd->dropped++;
4570 	rps_unlock(sd);
4571 
4572 	local_irq_restore(flags);
4573 
4574 	atomic_long_inc(&skb->dev->rx_dropped);
4575 	kfree_skb(skb);
4576 	return NET_RX_DROP;
4577 }
4578 
4579 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4580 {
4581 	struct net_device *dev = skb->dev;
4582 	struct netdev_rx_queue *rxqueue;
4583 
4584 	rxqueue = dev->_rx;
4585 
4586 	if (skb_rx_queue_recorded(skb)) {
4587 		u16 index = skb_get_rx_queue(skb);
4588 
4589 		if (unlikely(index >= dev->real_num_rx_queues)) {
4590 			WARN_ONCE(dev->real_num_rx_queues > 1,
4591 				  "%s received packet on queue %u, but number "
4592 				  "of RX queues is %u\n",
4593 				  dev->name, index, dev->real_num_rx_queues);
4594 
4595 			return rxqueue; /* Return first rxqueue */
4596 		}
4597 		rxqueue += index;
4598 	}
4599 	return rxqueue;
4600 }
4601 
4602 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4603 				     struct xdp_buff *xdp,
4604 				     struct bpf_prog *xdp_prog)
4605 {
4606 	struct netdev_rx_queue *rxqueue;
4607 	void *orig_data, *orig_data_end;
4608 	u32 metalen, act = XDP_DROP;
4609 	__be16 orig_eth_type;
4610 	struct ethhdr *eth;
4611 	bool orig_bcast;
4612 	int hlen, off;
4613 	u32 mac_len;
4614 
4615 	/* Reinjected packets coming from act_mirred or similar should
4616 	 * not get XDP generic processing.
4617 	 */
4618 	if (skb_is_redirected(skb))
4619 		return XDP_PASS;
4620 
4621 	/* XDP packets must be linear and must have sufficient headroom
4622 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4623 	 * native XDP provides, thus we need to do it here as well.
4624 	 */
4625 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4626 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4627 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4628 		int troom = skb->tail + skb->data_len - skb->end;
4629 
4630 		/* In case we have to go down the path and also linearize,
4631 		 * then lets do the pskb_expand_head() work just once here.
4632 		 */
4633 		if (pskb_expand_head(skb,
4634 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4635 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4636 			goto do_drop;
4637 		if (skb_linearize(skb))
4638 			goto do_drop;
4639 	}
4640 
4641 	/* The XDP program wants to see the packet starting at the MAC
4642 	 * header.
4643 	 */
4644 	mac_len = skb->data - skb_mac_header(skb);
4645 	hlen = skb_headlen(skb) + mac_len;
4646 	xdp->data = skb->data - mac_len;
4647 	xdp->data_meta = xdp->data;
4648 	xdp->data_end = xdp->data + hlen;
4649 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4650 
4651 	/* SKB "head" area always have tailroom for skb_shared_info */
4652 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4653 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4654 
4655 	orig_data_end = xdp->data_end;
4656 	orig_data = xdp->data;
4657 	eth = (struct ethhdr *)xdp->data;
4658 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4659 	orig_eth_type = eth->h_proto;
4660 
4661 	rxqueue = netif_get_rxqueue(skb);
4662 	xdp->rxq = &rxqueue->xdp_rxq;
4663 
4664 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4665 
4666 	/* check if bpf_xdp_adjust_head was used */
4667 	off = xdp->data - orig_data;
4668 	if (off) {
4669 		if (off > 0)
4670 			__skb_pull(skb, off);
4671 		else if (off < 0)
4672 			__skb_push(skb, -off);
4673 
4674 		skb->mac_header += off;
4675 		skb_reset_network_header(skb);
4676 	}
4677 
4678 	/* check if bpf_xdp_adjust_tail was used */
4679 	off = xdp->data_end - orig_data_end;
4680 	if (off != 0) {
4681 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4682 		skb->len += off; /* positive on grow, negative on shrink */
4683 	}
4684 
4685 	/* check if XDP changed eth hdr such SKB needs update */
4686 	eth = (struct ethhdr *)xdp->data;
4687 	if ((orig_eth_type != eth->h_proto) ||
4688 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4689 		__skb_push(skb, ETH_HLEN);
4690 		skb->protocol = eth_type_trans(skb, skb->dev);
4691 	}
4692 
4693 	switch (act) {
4694 	case XDP_REDIRECT:
4695 	case XDP_TX:
4696 		__skb_push(skb, mac_len);
4697 		break;
4698 	case XDP_PASS:
4699 		metalen = xdp->data - xdp->data_meta;
4700 		if (metalen)
4701 			skb_metadata_set(skb, metalen);
4702 		break;
4703 	default:
4704 		bpf_warn_invalid_xdp_action(act);
4705 		fallthrough;
4706 	case XDP_ABORTED:
4707 		trace_xdp_exception(skb->dev, xdp_prog, act);
4708 		fallthrough;
4709 	case XDP_DROP:
4710 	do_drop:
4711 		kfree_skb(skb);
4712 		break;
4713 	}
4714 
4715 	return act;
4716 }
4717 
4718 /* When doing generic XDP we have to bypass the qdisc layer and the
4719  * network taps in order to match in-driver-XDP behavior.
4720  */
4721 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4722 {
4723 	struct net_device *dev = skb->dev;
4724 	struct netdev_queue *txq;
4725 	bool free_skb = true;
4726 	int cpu, rc;
4727 
4728 	txq = netdev_core_pick_tx(dev, skb, NULL);
4729 	cpu = smp_processor_id();
4730 	HARD_TX_LOCK(dev, txq, cpu);
4731 	if (!netif_xmit_stopped(txq)) {
4732 		rc = netdev_start_xmit(skb, dev, txq, 0);
4733 		if (dev_xmit_complete(rc))
4734 			free_skb = false;
4735 	}
4736 	HARD_TX_UNLOCK(dev, txq);
4737 	if (free_skb) {
4738 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4739 		kfree_skb(skb);
4740 	}
4741 }
4742 
4743 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4744 
4745 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4746 {
4747 	if (xdp_prog) {
4748 		struct xdp_buff xdp;
4749 		u32 act;
4750 		int err;
4751 
4752 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4753 		if (act != XDP_PASS) {
4754 			switch (act) {
4755 			case XDP_REDIRECT:
4756 				err = xdp_do_generic_redirect(skb->dev, skb,
4757 							      &xdp, xdp_prog);
4758 				if (err)
4759 					goto out_redir;
4760 				break;
4761 			case XDP_TX:
4762 				generic_xdp_tx(skb, xdp_prog);
4763 				break;
4764 			}
4765 			return XDP_DROP;
4766 		}
4767 	}
4768 	return XDP_PASS;
4769 out_redir:
4770 	kfree_skb(skb);
4771 	return XDP_DROP;
4772 }
4773 EXPORT_SYMBOL_GPL(do_xdp_generic);
4774 
4775 static int netif_rx_internal(struct sk_buff *skb)
4776 {
4777 	int ret;
4778 
4779 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4780 
4781 	trace_netif_rx(skb);
4782 
4783 #ifdef CONFIG_RPS
4784 	if (static_branch_unlikely(&rps_needed)) {
4785 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4786 		int cpu;
4787 
4788 		preempt_disable();
4789 		rcu_read_lock();
4790 
4791 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4792 		if (cpu < 0)
4793 			cpu = smp_processor_id();
4794 
4795 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4796 
4797 		rcu_read_unlock();
4798 		preempt_enable();
4799 	} else
4800 #endif
4801 	{
4802 		unsigned int qtail;
4803 
4804 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4805 		put_cpu();
4806 	}
4807 	return ret;
4808 }
4809 
4810 /**
4811  *	netif_rx	-	post buffer to the network code
4812  *	@skb: buffer to post
4813  *
4814  *	This function receives a packet from a device driver and queues it for
4815  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4816  *	may be dropped during processing for congestion control or by the
4817  *	protocol layers.
4818  *
4819  *	return values:
4820  *	NET_RX_SUCCESS	(no congestion)
4821  *	NET_RX_DROP     (packet was dropped)
4822  *
4823  */
4824 
4825 int netif_rx(struct sk_buff *skb)
4826 {
4827 	int ret;
4828 
4829 	trace_netif_rx_entry(skb);
4830 
4831 	ret = netif_rx_internal(skb);
4832 	trace_netif_rx_exit(ret);
4833 
4834 	return ret;
4835 }
4836 EXPORT_SYMBOL(netif_rx);
4837 
4838 int netif_rx_ni(struct sk_buff *skb)
4839 {
4840 	int err;
4841 
4842 	trace_netif_rx_ni_entry(skb);
4843 
4844 	preempt_disable();
4845 	err = netif_rx_internal(skb);
4846 	if (local_softirq_pending())
4847 		do_softirq();
4848 	preempt_enable();
4849 	trace_netif_rx_ni_exit(err);
4850 
4851 	return err;
4852 }
4853 EXPORT_SYMBOL(netif_rx_ni);
4854 
4855 int netif_rx_any_context(struct sk_buff *skb)
4856 {
4857 	/*
4858 	 * If invoked from contexts which do not invoke bottom half
4859 	 * processing either at return from interrupt or when softrqs are
4860 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4861 	 * directly.
4862 	 */
4863 	if (in_interrupt())
4864 		return netif_rx(skb);
4865 	else
4866 		return netif_rx_ni(skb);
4867 }
4868 EXPORT_SYMBOL(netif_rx_any_context);
4869 
4870 static __latent_entropy void net_tx_action(struct softirq_action *h)
4871 {
4872 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4873 
4874 	if (sd->completion_queue) {
4875 		struct sk_buff *clist;
4876 
4877 		local_irq_disable();
4878 		clist = sd->completion_queue;
4879 		sd->completion_queue = NULL;
4880 		local_irq_enable();
4881 
4882 		while (clist) {
4883 			struct sk_buff *skb = clist;
4884 
4885 			clist = clist->next;
4886 
4887 			WARN_ON(refcount_read(&skb->users));
4888 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4889 				trace_consume_skb(skb);
4890 			else
4891 				trace_kfree_skb(skb, net_tx_action);
4892 
4893 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4894 				__kfree_skb(skb);
4895 			else
4896 				__kfree_skb_defer(skb);
4897 		}
4898 
4899 		__kfree_skb_flush();
4900 	}
4901 
4902 	if (sd->output_queue) {
4903 		struct Qdisc *head;
4904 
4905 		local_irq_disable();
4906 		head = sd->output_queue;
4907 		sd->output_queue = NULL;
4908 		sd->output_queue_tailp = &sd->output_queue;
4909 		local_irq_enable();
4910 
4911 		while (head) {
4912 			struct Qdisc *q = head;
4913 			spinlock_t *root_lock = NULL;
4914 
4915 			head = head->next_sched;
4916 
4917 			if (!(q->flags & TCQ_F_NOLOCK)) {
4918 				root_lock = qdisc_lock(q);
4919 				spin_lock(root_lock);
4920 			}
4921 			/* We need to make sure head->next_sched is read
4922 			 * before clearing __QDISC_STATE_SCHED
4923 			 */
4924 			smp_mb__before_atomic();
4925 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4926 			qdisc_run(q);
4927 			if (root_lock)
4928 				spin_unlock(root_lock);
4929 		}
4930 	}
4931 
4932 	xfrm_dev_backlog(sd);
4933 }
4934 
4935 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4936 /* This hook is defined here for ATM LANE */
4937 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4938 			     unsigned char *addr) __read_mostly;
4939 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4940 #endif
4941 
4942 static inline struct sk_buff *
4943 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4944 		   struct net_device *orig_dev, bool *another)
4945 {
4946 #ifdef CONFIG_NET_CLS_ACT
4947 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4948 	struct tcf_result cl_res;
4949 
4950 	/* If there's at least one ingress present somewhere (so
4951 	 * we get here via enabled static key), remaining devices
4952 	 * that are not configured with an ingress qdisc will bail
4953 	 * out here.
4954 	 */
4955 	if (!miniq)
4956 		return skb;
4957 
4958 	if (*pt_prev) {
4959 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4960 		*pt_prev = NULL;
4961 	}
4962 
4963 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4964 	qdisc_skb_cb(skb)->mru = 0;
4965 	skb->tc_at_ingress = 1;
4966 	mini_qdisc_bstats_cpu_update(miniq, skb);
4967 
4968 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4969 				     &cl_res, false)) {
4970 	case TC_ACT_OK:
4971 	case TC_ACT_RECLASSIFY:
4972 		skb->tc_index = TC_H_MIN(cl_res.classid);
4973 		break;
4974 	case TC_ACT_SHOT:
4975 		mini_qdisc_qstats_cpu_drop(miniq);
4976 		kfree_skb(skb);
4977 		return NULL;
4978 	case TC_ACT_STOLEN:
4979 	case TC_ACT_QUEUED:
4980 	case TC_ACT_TRAP:
4981 		consume_skb(skb);
4982 		return NULL;
4983 	case TC_ACT_REDIRECT:
4984 		/* skb_mac_header check was done by cls/act_bpf, so
4985 		 * we can safely push the L2 header back before
4986 		 * redirecting to another netdev
4987 		 */
4988 		__skb_push(skb, skb->mac_len);
4989 		if (skb_do_redirect(skb) == -EAGAIN) {
4990 			__skb_pull(skb, skb->mac_len);
4991 			*another = true;
4992 			break;
4993 		}
4994 		return NULL;
4995 	case TC_ACT_CONSUMED:
4996 		return NULL;
4997 	default:
4998 		break;
4999 	}
5000 #endif /* CONFIG_NET_CLS_ACT */
5001 	return skb;
5002 }
5003 
5004 /**
5005  *	netdev_is_rx_handler_busy - check if receive handler is registered
5006  *	@dev: device to check
5007  *
5008  *	Check if a receive handler is already registered for a given device.
5009  *	Return true if there one.
5010  *
5011  *	The caller must hold the rtnl_mutex.
5012  */
5013 bool netdev_is_rx_handler_busy(struct net_device *dev)
5014 {
5015 	ASSERT_RTNL();
5016 	return dev && rtnl_dereference(dev->rx_handler);
5017 }
5018 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5019 
5020 /**
5021  *	netdev_rx_handler_register - register receive handler
5022  *	@dev: device to register a handler for
5023  *	@rx_handler: receive handler to register
5024  *	@rx_handler_data: data pointer that is used by rx handler
5025  *
5026  *	Register a receive handler for a device. This handler will then be
5027  *	called from __netif_receive_skb. A negative errno code is returned
5028  *	on a failure.
5029  *
5030  *	The caller must hold the rtnl_mutex.
5031  *
5032  *	For a general description of rx_handler, see enum rx_handler_result.
5033  */
5034 int netdev_rx_handler_register(struct net_device *dev,
5035 			       rx_handler_func_t *rx_handler,
5036 			       void *rx_handler_data)
5037 {
5038 	if (netdev_is_rx_handler_busy(dev))
5039 		return -EBUSY;
5040 
5041 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5042 		return -EINVAL;
5043 
5044 	/* Note: rx_handler_data must be set before rx_handler */
5045 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5046 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5047 
5048 	return 0;
5049 }
5050 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5051 
5052 /**
5053  *	netdev_rx_handler_unregister - unregister receive handler
5054  *	@dev: device to unregister a handler from
5055  *
5056  *	Unregister a receive handler from a device.
5057  *
5058  *	The caller must hold the rtnl_mutex.
5059  */
5060 void netdev_rx_handler_unregister(struct net_device *dev)
5061 {
5062 
5063 	ASSERT_RTNL();
5064 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5065 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5066 	 * section has a guarantee to see a non NULL rx_handler_data
5067 	 * as well.
5068 	 */
5069 	synchronize_net();
5070 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5071 }
5072 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5073 
5074 /*
5075  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5076  * the special handling of PFMEMALLOC skbs.
5077  */
5078 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5079 {
5080 	switch (skb->protocol) {
5081 	case htons(ETH_P_ARP):
5082 	case htons(ETH_P_IP):
5083 	case htons(ETH_P_IPV6):
5084 	case htons(ETH_P_8021Q):
5085 	case htons(ETH_P_8021AD):
5086 		return true;
5087 	default:
5088 		return false;
5089 	}
5090 }
5091 
5092 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5093 			     int *ret, struct net_device *orig_dev)
5094 {
5095 	if (nf_hook_ingress_active(skb)) {
5096 		int ingress_retval;
5097 
5098 		if (*pt_prev) {
5099 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5100 			*pt_prev = NULL;
5101 		}
5102 
5103 		rcu_read_lock();
5104 		ingress_retval = nf_hook_ingress(skb);
5105 		rcu_read_unlock();
5106 		return ingress_retval;
5107 	}
5108 	return 0;
5109 }
5110 
5111 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5112 				    struct packet_type **ppt_prev)
5113 {
5114 	struct packet_type *ptype, *pt_prev;
5115 	rx_handler_func_t *rx_handler;
5116 	struct sk_buff *skb = *pskb;
5117 	struct net_device *orig_dev;
5118 	bool deliver_exact = false;
5119 	int ret = NET_RX_DROP;
5120 	__be16 type;
5121 
5122 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5123 
5124 	trace_netif_receive_skb(skb);
5125 
5126 	orig_dev = skb->dev;
5127 
5128 	skb_reset_network_header(skb);
5129 	if (!skb_transport_header_was_set(skb))
5130 		skb_reset_transport_header(skb);
5131 	skb_reset_mac_len(skb);
5132 
5133 	pt_prev = NULL;
5134 
5135 another_round:
5136 	skb->skb_iif = skb->dev->ifindex;
5137 
5138 	__this_cpu_inc(softnet_data.processed);
5139 
5140 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5141 		int ret2;
5142 
5143 		preempt_disable();
5144 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5145 		preempt_enable();
5146 
5147 		if (ret2 != XDP_PASS) {
5148 			ret = NET_RX_DROP;
5149 			goto out;
5150 		}
5151 		skb_reset_mac_len(skb);
5152 	}
5153 
5154 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5155 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5156 		skb = skb_vlan_untag(skb);
5157 		if (unlikely(!skb))
5158 			goto out;
5159 	}
5160 
5161 	if (skb_skip_tc_classify(skb))
5162 		goto skip_classify;
5163 
5164 	if (pfmemalloc)
5165 		goto skip_taps;
5166 
5167 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5168 		if (pt_prev)
5169 			ret = deliver_skb(skb, pt_prev, orig_dev);
5170 		pt_prev = ptype;
5171 	}
5172 
5173 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5174 		if (pt_prev)
5175 			ret = deliver_skb(skb, pt_prev, orig_dev);
5176 		pt_prev = ptype;
5177 	}
5178 
5179 skip_taps:
5180 #ifdef CONFIG_NET_INGRESS
5181 	if (static_branch_unlikely(&ingress_needed_key)) {
5182 		bool another = false;
5183 
5184 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5185 					 &another);
5186 		if (another)
5187 			goto another_round;
5188 		if (!skb)
5189 			goto out;
5190 
5191 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5192 			goto out;
5193 	}
5194 #endif
5195 	skb_reset_redirect(skb);
5196 skip_classify:
5197 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5198 		goto drop;
5199 
5200 	if (skb_vlan_tag_present(skb)) {
5201 		if (pt_prev) {
5202 			ret = deliver_skb(skb, pt_prev, orig_dev);
5203 			pt_prev = NULL;
5204 		}
5205 		if (vlan_do_receive(&skb))
5206 			goto another_round;
5207 		else if (unlikely(!skb))
5208 			goto out;
5209 	}
5210 
5211 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5212 	if (rx_handler) {
5213 		if (pt_prev) {
5214 			ret = deliver_skb(skb, pt_prev, orig_dev);
5215 			pt_prev = NULL;
5216 		}
5217 		switch (rx_handler(&skb)) {
5218 		case RX_HANDLER_CONSUMED:
5219 			ret = NET_RX_SUCCESS;
5220 			goto out;
5221 		case RX_HANDLER_ANOTHER:
5222 			goto another_round;
5223 		case RX_HANDLER_EXACT:
5224 			deliver_exact = true;
5225 		case RX_HANDLER_PASS:
5226 			break;
5227 		default:
5228 			BUG();
5229 		}
5230 	}
5231 
5232 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5233 check_vlan_id:
5234 		if (skb_vlan_tag_get_id(skb)) {
5235 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5236 			 * find vlan device.
5237 			 */
5238 			skb->pkt_type = PACKET_OTHERHOST;
5239 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5240 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5241 			/* Outer header is 802.1P with vlan 0, inner header is
5242 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5243 			 * not find vlan dev for vlan id 0.
5244 			 */
5245 			__vlan_hwaccel_clear_tag(skb);
5246 			skb = skb_vlan_untag(skb);
5247 			if (unlikely(!skb))
5248 				goto out;
5249 			if (vlan_do_receive(&skb))
5250 				/* After stripping off 802.1P header with vlan 0
5251 				 * vlan dev is found for inner header.
5252 				 */
5253 				goto another_round;
5254 			else if (unlikely(!skb))
5255 				goto out;
5256 			else
5257 				/* We have stripped outer 802.1P vlan 0 header.
5258 				 * But could not find vlan dev.
5259 				 * check again for vlan id to set OTHERHOST.
5260 				 */
5261 				goto check_vlan_id;
5262 		}
5263 		/* Note: we might in the future use prio bits
5264 		 * and set skb->priority like in vlan_do_receive()
5265 		 * For the time being, just ignore Priority Code Point
5266 		 */
5267 		__vlan_hwaccel_clear_tag(skb);
5268 	}
5269 
5270 	type = skb->protocol;
5271 
5272 	/* deliver only exact match when indicated */
5273 	if (likely(!deliver_exact)) {
5274 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5275 				       &ptype_base[ntohs(type) &
5276 						   PTYPE_HASH_MASK]);
5277 	}
5278 
5279 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5280 			       &orig_dev->ptype_specific);
5281 
5282 	if (unlikely(skb->dev != orig_dev)) {
5283 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5284 				       &skb->dev->ptype_specific);
5285 	}
5286 
5287 	if (pt_prev) {
5288 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5289 			goto drop;
5290 		*ppt_prev = pt_prev;
5291 	} else {
5292 drop:
5293 		if (!deliver_exact)
5294 			atomic_long_inc(&skb->dev->rx_dropped);
5295 		else
5296 			atomic_long_inc(&skb->dev->rx_nohandler);
5297 		kfree_skb(skb);
5298 		/* Jamal, now you will not able to escape explaining
5299 		 * me how you were going to use this. :-)
5300 		 */
5301 		ret = NET_RX_DROP;
5302 	}
5303 
5304 out:
5305 	/* The invariant here is that if *ppt_prev is not NULL
5306 	 * then skb should also be non-NULL.
5307 	 *
5308 	 * Apparently *ppt_prev assignment above holds this invariant due to
5309 	 * skb dereferencing near it.
5310 	 */
5311 	*pskb = skb;
5312 	return ret;
5313 }
5314 
5315 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5316 {
5317 	struct net_device *orig_dev = skb->dev;
5318 	struct packet_type *pt_prev = NULL;
5319 	int ret;
5320 
5321 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5322 	if (pt_prev)
5323 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5324 					 skb->dev, pt_prev, orig_dev);
5325 	return ret;
5326 }
5327 
5328 /**
5329  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5330  *	@skb: buffer to process
5331  *
5332  *	More direct receive version of netif_receive_skb().  It should
5333  *	only be used by callers that have a need to skip RPS and Generic XDP.
5334  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5335  *
5336  *	This function may only be called from softirq context and interrupts
5337  *	should be enabled.
5338  *
5339  *	Return values (usually ignored):
5340  *	NET_RX_SUCCESS: no congestion
5341  *	NET_RX_DROP: packet was dropped
5342  */
5343 int netif_receive_skb_core(struct sk_buff *skb)
5344 {
5345 	int ret;
5346 
5347 	rcu_read_lock();
5348 	ret = __netif_receive_skb_one_core(skb, false);
5349 	rcu_read_unlock();
5350 
5351 	return ret;
5352 }
5353 EXPORT_SYMBOL(netif_receive_skb_core);
5354 
5355 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5356 						  struct packet_type *pt_prev,
5357 						  struct net_device *orig_dev)
5358 {
5359 	struct sk_buff *skb, *next;
5360 
5361 	if (!pt_prev)
5362 		return;
5363 	if (list_empty(head))
5364 		return;
5365 	if (pt_prev->list_func != NULL)
5366 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5367 				   ip_list_rcv, head, pt_prev, orig_dev);
5368 	else
5369 		list_for_each_entry_safe(skb, next, head, list) {
5370 			skb_list_del_init(skb);
5371 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5372 		}
5373 }
5374 
5375 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5376 {
5377 	/* Fast-path assumptions:
5378 	 * - There is no RX handler.
5379 	 * - Only one packet_type matches.
5380 	 * If either of these fails, we will end up doing some per-packet
5381 	 * processing in-line, then handling the 'last ptype' for the whole
5382 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5383 	 * because the 'last ptype' must be constant across the sublist, and all
5384 	 * other ptypes are handled per-packet.
5385 	 */
5386 	/* Current (common) ptype of sublist */
5387 	struct packet_type *pt_curr = NULL;
5388 	/* Current (common) orig_dev of sublist */
5389 	struct net_device *od_curr = NULL;
5390 	struct list_head sublist;
5391 	struct sk_buff *skb, *next;
5392 
5393 	INIT_LIST_HEAD(&sublist);
5394 	list_for_each_entry_safe(skb, next, head, list) {
5395 		struct net_device *orig_dev = skb->dev;
5396 		struct packet_type *pt_prev = NULL;
5397 
5398 		skb_list_del_init(skb);
5399 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5400 		if (!pt_prev)
5401 			continue;
5402 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5403 			/* dispatch old sublist */
5404 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5405 			/* start new sublist */
5406 			INIT_LIST_HEAD(&sublist);
5407 			pt_curr = pt_prev;
5408 			od_curr = orig_dev;
5409 		}
5410 		list_add_tail(&skb->list, &sublist);
5411 	}
5412 
5413 	/* dispatch final sublist */
5414 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5415 }
5416 
5417 static int __netif_receive_skb(struct sk_buff *skb)
5418 {
5419 	int ret;
5420 
5421 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5422 		unsigned int noreclaim_flag;
5423 
5424 		/*
5425 		 * PFMEMALLOC skbs are special, they should
5426 		 * - be delivered to SOCK_MEMALLOC sockets only
5427 		 * - stay away from userspace
5428 		 * - have bounded memory usage
5429 		 *
5430 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5431 		 * context down to all allocation sites.
5432 		 */
5433 		noreclaim_flag = memalloc_noreclaim_save();
5434 		ret = __netif_receive_skb_one_core(skb, true);
5435 		memalloc_noreclaim_restore(noreclaim_flag);
5436 	} else
5437 		ret = __netif_receive_skb_one_core(skb, false);
5438 
5439 	return ret;
5440 }
5441 
5442 static void __netif_receive_skb_list(struct list_head *head)
5443 {
5444 	unsigned long noreclaim_flag = 0;
5445 	struct sk_buff *skb, *next;
5446 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5447 
5448 	list_for_each_entry_safe(skb, next, head, list) {
5449 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5450 			struct list_head sublist;
5451 
5452 			/* Handle the previous sublist */
5453 			list_cut_before(&sublist, head, &skb->list);
5454 			if (!list_empty(&sublist))
5455 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5456 			pfmemalloc = !pfmemalloc;
5457 			/* See comments in __netif_receive_skb */
5458 			if (pfmemalloc)
5459 				noreclaim_flag = memalloc_noreclaim_save();
5460 			else
5461 				memalloc_noreclaim_restore(noreclaim_flag);
5462 		}
5463 	}
5464 	/* Handle the remaining sublist */
5465 	if (!list_empty(head))
5466 		__netif_receive_skb_list_core(head, pfmemalloc);
5467 	/* Restore pflags */
5468 	if (pfmemalloc)
5469 		memalloc_noreclaim_restore(noreclaim_flag);
5470 }
5471 
5472 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5473 {
5474 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5475 	struct bpf_prog *new = xdp->prog;
5476 	int ret = 0;
5477 
5478 	if (new) {
5479 		u32 i;
5480 
5481 		mutex_lock(&new->aux->used_maps_mutex);
5482 
5483 		/* generic XDP does not work with DEVMAPs that can
5484 		 * have a bpf_prog installed on an entry
5485 		 */
5486 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5487 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5488 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5489 				mutex_unlock(&new->aux->used_maps_mutex);
5490 				return -EINVAL;
5491 			}
5492 		}
5493 
5494 		mutex_unlock(&new->aux->used_maps_mutex);
5495 	}
5496 
5497 	switch (xdp->command) {
5498 	case XDP_SETUP_PROG:
5499 		rcu_assign_pointer(dev->xdp_prog, new);
5500 		if (old)
5501 			bpf_prog_put(old);
5502 
5503 		if (old && !new) {
5504 			static_branch_dec(&generic_xdp_needed_key);
5505 		} else if (new && !old) {
5506 			static_branch_inc(&generic_xdp_needed_key);
5507 			dev_disable_lro(dev);
5508 			dev_disable_gro_hw(dev);
5509 		}
5510 		break;
5511 
5512 	default:
5513 		ret = -EINVAL;
5514 		break;
5515 	}
5516 
5517 	return ret;
5518 }
5519 
5520 static int netif_receive_skb_internal(struct sk_buff *skb)
5521 {
5522 	int ret;
5523 
5524 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5525 
5526 	if (skb_defer_rx_timestamp(skb))
5527 		return NET_RX_SUCCESS;
5528 
5529 	rcu_read_lock();
5530 #ifdef CONFIG_RPS
5531 	if (static_branch_unlikely(&rps_needed)) {
5532 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5533 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5534 
5535 		if (cpu >= 0) {
5536 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5537 			rcu_read_unlock();
5538 			return ret;
5539 		}
5540 	}
5541 #endif
5542 	ret = __netif_receive_skb(skb);
5543 	rcu_read_unlock();
5544 	return ret;
5545 }
5546 
5547 static void netif_receive_skb_list_internal(struct list_head *head)
5548 {
5549 	struct sk_buff *skb, *next;
5550 	struct list_head sublist;
5551 
5552 	INIT_LIST_HEAD(&sublist);
5553 	list_for_each_entry_safe(skb, next, head, list) {
5554 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5555 		skb_list_del_init(skb);
5556 		if (!skb_defer_rx_timestamp(skb))
5557 			list_add_tail(&skb->list, &sublist);
5558 	}
5559 	list_splice_init(&sublist, head);
5560 
5561 	rcu_read_lock();
5562 #ifdef CONFIG_RPS
5563 	if (static_branch_unlikely(&rps_needed)) {
5564 		list_for_each_entry_safe(skb, next, head, list) {
5565 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5566 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567 
5568 			if (cpu >= 0) {
5569 				/* Will be handled, remove from list */
5570 				skb_list_del_init(skb);
5571 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5572 			}
5573 		}
5574 	}
5575 #endif
5576 	__netif_receive_skb_list(head);
5577 	rcu_read_unlock();
5578 }
5579 
5580 /**
5581  *	netif_receive_skb - process receive buffer from network
5582  *	@skb: buffer to process
5583  *
5584  *	netif_receive_skb() is the main receive data processing function.
5585  *	It always succeeds. The buffer may be dropped during processing
5586  *	for congestion control or by the protocol layers.
5587  *
5588  *	This function may only be called from softirq context and interrupts
5589  *	should be enabled.
5590  *
5591  *	Return values (usually ignored):
5592  *	NET_RX_SUCCESS: no congestion
5593  *	NET_RX_DROP: packet was dropped
5594  */
5595 int netif_receive_skb(struct sk_buff *skb)
5596 {
5597 	int ret;
5598 
5599 	trace_netif_receive_skb_entry(skb);
5600 
5601 	ret = netif_receive_skb_internal(skb);
5602 	trace_netif_receive_skb_exit(ret);
5603 
5604 	return ret;
5605 }
5606 EXPORT_SYMBOL(netif_receive_skb);
5607 
5608 /**
5609  *	netif_receive_skb_list - process many receive buffers from network
5610  *	@head: list of skbs to process.
5611  *
5612  *	Since return value of netif_receive_skb() is normally ignored, and
5613  *	wouldn't be meaningful for a list, this function returns void.
5614  *
5615  *	This function may only be called from softirq context and interrupts
5616  *	should be enabled.
5617  */
5618 void netif_receive_skb_list(struct list_head *head)
5619 {
5620 	struct sk_buff *skb;
5621 
5622 	if (list_empty(head))
5623 		return;
5624 	if (trace_netif_receive_skb_list_entry_enabled()) {
5625 		list_for_each_entry(skb, head, list)
5626 			trace_netif_receive_skb_list_entry(skb);
5627 	}
5628 	netif_receive_skb_list_internal(head);
5629 	trace_netif_receive_skb_list_exit(0);
5630 }
5631 EXPORT_SYMBOL(netif_receive_skb_list);
5632 
5633 static DEFINE_PER_CPU(struct work_struct, flush_works);
5634 
5635 /* Network device is going away, flush any packets still pending */
5636 static void flush_backlog(struct work_struct *work)
5637 {
5638 	struct sk_buff *skb, *tmp;
5639 	struct softnet_data *sd;
5640 
5641 	local_bh_disable();
5642 	sd = this_cpu_ptr(&softnet_data);
5643 
5644 	local_irq_disable();
5645 	rps_lock(sd);
5646 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5647 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5648 			__skb_unlink(skb, &sd->input_pkt_queue);
5649 			dev_kfree_skb_irq(skb);
5650 			input_queue_head_incr(sd);
5651 		}
5652 	}
5653 	rps_unlock(sd);
5654 	local_irq_enable();
5655 
5656 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5657 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5658 			__skb_unlink(skb, &sd->process_queue);
5659 			kfree_skb(skb);
5660 			input_queue_head_incr(sd);
5661 		}
5662 	}
5663 	local_bh_enable();
5664 }
5665 
5666 static bool flush_required(int cpu)
5667 {
5668 #if IS_ENABLED(CONFIG_RPS)
5669 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5670 	bool do_flush;
5671 
5672 	local_irq_disable();
5673 	rps_lock(sd);
5674 
5675 	/* as insertion into process_queue happens with the rps lock held,
5676 	 * process_queue access may race only with dequeue
5677 	 */
5678 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5679 		   !skb_queue_empty_lockless(&sd->process_queue);
5680 	rps_unlock(sd);
5681 	local_irq_enable();
5682 
5683 	return do_flush;
5684 #endif
5685 	/* without RPS we can't safely check input_pkt_queue: during a
5686 	 * concurrent remote skb_queue_splice() we can detect as empty both
5687 	 * input_pkt_queue and process_queue even if the latter could end-up
5688 	 * containing a lot of packets.
5689 	 */
5690 	return true;
5691 }
5692 
5693 static void flush_all_backlogs(void)
5694 {
5695 	static cpumask_t flush_cpus;
5696 	unsigned int cpu;
5697 
5698 	/* since we are under rtnl lock protection we can use static data
5699 	 * for the cpumask and avoid allocating on stack the possibly
5700 	 * large mask
5701 	 */
5702 	ASSERT_RTNL();
5703 
5704 	get_online_cpus();
5705 
5706 	cpumask_clear(&flush_cpus);
5707 	for_each_online_cpu(cpu) {
5708 		if (flush_required(cpu)) {
5709 			queue_work_on(cpu, system_highpri_wq,
5710 				      per_cpu_ptr(&flush_works, cpu));
5711 			cpumask_set_cpu(cpu, &flush_cpus);
5712 		}
5713 	}
5714 
5715 	/* we can have in flight packet[s] on the cpus we are not flushing,
5716 	 * synchronize_net() in rollback_registered_many() will take care of
5717 	 * them
5718 	 */
5719 	for_each_cpu(cpu, &flush_cpus)
5720 		flush_work(per_cpu_ptr(&flush_works, cpu));
5721 
5722 	put_online_cpus();
5723 }
5724 
5725 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5726 static void gro_normal_list(struct napi_struct *napi)
5727 {
5728 	if (!napi->rx_count)
5729 		return;
5730 	netif_receive_skb_list_internal(&napi->rx_list);
5731 	INIT_LIST_HEAD(&napi->rx_list);
5732 	napi->rx_count = 0;
5733 }
5734 
5735 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5736  * pass the whole batch up to the stack.
5737  */
5738 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5739 {
5740 	list_add_tail(&skb->list, &napi->rx_list);
5741 	napi->rx_count += segs;
5742 	if (napi->rx_count >= gro_normal_batch)
5743 		gro_normal_list(napi);
5744 }
5745 
5746 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5747 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5748 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5749 {
5750 	struct packet_offload *ptype;
5751 	__be16 type = skb->protocol;
5752 	struct list_head *head = &offload_base;
5753 	int err = -ENOENT;
5754 
5755 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5756 
5757 	if (NAPI_GRO_CB(skb)->count == 1) {
5758 		skb_shinfo(skb)->gso_size = 0;
5759 		goto out;
5760 	}
5761 
5762 	rcu_read_lock();
5763 	list_for_each_entry_rcu(ptype, head, list) {
5764 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5765 			continue;
5766 
5767 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5768 					 ipv6_gro_complete, inet_gro_complete,
5769 					 skb, 0);
5770 		break;
5771 	}
5772 	rcu_read_unlock();
5773 
5774 	if (err) {
5775 		WARN_ON(&ptype->list == head);
5776 		kfree_skb(skb);
5777 		return NET_RX_SUCCESS;
5778 	}
5779 
5780 out:
5781 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5782 	return NET_RX_SUCCESS;
5783 }
5784 
5785 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5786 				   bool flush_old)
5787 {
5788 	struct list_head *head = &napi->gro_hash[index].list;
5789 	struct sk_buff *skb, *p;
5790 
5791 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5792 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5793 			return;
5794 		skb_list_del_init(skb);
5795 		napi_gro_complete(napi, skb);
5796 		napi->gro_hash[index].count--;
5797 	}
5798 
5799 	if (!napi->gro_hash[index].count)
5800 		__clear_bit(index, &napi->gro_bitmask);
5801 }
5802 
5803 /* napi->gro_hash[].list contains packets ordered by age.
5804  * youngest packets at the head of it.
5805  * Complete skbs in reverse order to reduce latencies.
5806  */
5807 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5808 {
5809 	unsigned long bitmask = napi->gro_bitmask;
5810 	unsigned int i, base = ~0U;
5811 
5812 	while ((i = ffs(bitmask)) != 0) {
5813 		bitmask >>= i;
5814 		base += i;
5815 		__napi_gro_flush_chain(napi, base, flush_old);
5816 	}
5817 }
5818 EXPORT_SYMBOL(napi_gro_flush);
5819 
5820 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5821 					  struct sk_buff *skb)
5822 {
5823 	unsigned int maclen = skb->dev->hard_header_len;
5824 	u32 hash = skb_get_hash_raw(skb);
5825 	struct list_head *head;
5826 	struct sk_buff *p;
5827 
5828 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5829 	list_for_each_entry(p, head, list) {
5830 		unsigned long diffs;
5831 
5832 		NAPI_GRO_CB(p)->flush = 0;
5833 
5834 		if (hash != skb_get_hash_raw(p)) {
5835 			NAPI_GRO_CB(p)->same_flow = 0;
5836 			continue;
5837 		}
5838 
5839 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5840 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5841 		if (skb_vlan_tag_present(p))
5842 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5843 		diffs |= skb_metadata_dst_cmp(p, skb);
5844 		diffs |= skb_metadata_differs(p, skb);
5845 		if (maclen == ETH_HLEN)
5846 			diffs |= compare_ether_header(skb_mac_header(p),
5847 						      skb_mac_header(skb));
5848 		else if (!diffs)
5849 			diffs = memcmp(skb_mac_header(p),
5850 				       skb_mac_header(skb),
5851 				       maclen);
5852 		NAPI_GRO_CB(p)->same_flow = !diffs;
5853 	}
5854 
5855 	return head;
5856 }
5857 
5858 static void skb_gro_reset_offset(struct sk_buff *skb)
5859 {
5860 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5861 	const skb_frag_t *frag0 = &pinfo->frags[0];
5862 
5863 	NAPI_GRO_CB(skb)->data_offset = 0;
5864 	NAPI_GRO_CB(skb)->frag0 = NULL;
5865 	NAPI_GRO_CB(skb)->frag0_len = 0;
5866 
5867 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5868 	    !PageHighMem(skb_frag_page(frag0))) {
5869 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5870 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5871 						    skb_frag_size(frag0),
5872 						    skb->end - skb->tail);
5873 	}
5874 }
5875 
5876 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5877 {
5878 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5879 
5880 	BUG_ON(skb->end - skb->tail < grow);
5881 
5882 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5883 
5884 	skb->data_len -= grow;
5885 	skb->tail += grow;
5886 
5887 	skb_frag_off_add(&pinfo->frags[0], grow);
5888 	skb_frag_size_sub(&pinfo->frags[0], grow);
5889 
5890 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5891 		skb_frag_unref(skb, 0);
5892 		memmove(pinfo->frags, pinfo->frags + 1,
5893 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5894 	}
5895 }
5896 
5897 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5898 {
5899 	struct sk_buff *oldest;
5900 
5901 	oldest = list_last_entry(head, struct sk_buff, list);
5902 
5903 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5904 	 * impossible.
5905 	 */
5906 	if (WARN_ON_ONCE(!oldest))
5907 		return;
5908 
5909 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5910 	 * SKB to the chain.
5911 	 */
5912 	skb_list_del_init(oldest);
5913 	napi_gro_complete(napi, oldest);
5914 }
5915 
5916 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5917 							   struct sk_buff *));
5918 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5919 							   struct sk_buff *));
5920 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5921 {
5922 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5923 	struct list_head *head = &offload_base;
5924 	struct packet_offload *ptype;
5925 	__be16 type = skb->protocol;
5926 	struct list_head *gro_head;
5927 	struct sk_buff *pp = NULL;
5928 	enum gro_result ret;
5929 	int same_flow;
5930 	int grow;
5931 
5932 	if (netif_elide_gro(skb->dev))
5933 		goto normal;
5934 
5935 	gro_head = gro_list_prepare(napi, skb);
5936 
5937 	rcu_read_lock();
5938 	list_for_each_entry_rcu(ptype, head, list) {
5939 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5940 			continue;
5941 
5942 		skb_set_network_header(skb, skb_gro_offset(skb));
5943 		skb_reset_mac_len(skb);
5944 		NAPI_GRO_CB(skb)->same_flow = 0;
5945 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5946 		NAPI_GRO_CB(skb)->free = 0;
5947 		NAPI_GRO_CB(skb)->encap_mark = 0;
5948 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5949 		NAPI_GRO_CB(skb)->is_fou = 0;
5950 		NAPI_GRO_CB(skb)->is_atomic = 1;
5951 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5952 
5953 		/* Setup for GRO checksum validation */
5954 		switch (skb->ip_summed) {
5955 		case CHECKSUM_COMPLETE:
5956 			NAPI_GRO_CB(skb)->csum = skb->csum;
5957 			NAPI_GRO_CB(skb)->csum_valid = 1;
5958 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5959 			break;
5960 		case CHECKSUM_UNNECESSARY:
5961 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5962 			NAPI_GRO_CB(skb)->csum_valid = 0;
5963 			break;
5964 		default:
5965 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5966 			NAPI_GRO_CB(skb)->csum_valid = 0;
5967 		}
5968 
5969 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5970 					ipv6_gro_receive, inet_gro_receive,
5971 					gro_head, skb);
5972 		break;
5973 	}
5974 	rcu_read_unlock();
5975 
5976 	if (&ptype->list == head)
5977 		goto normal;
5978 
5979 	if (PTR_ERR(pp) == -EINPROGRESS) {
5980 		ret = GRO_CONSUMED;
5981 		goto ok;
5982 	}
5983 
5984 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5985 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5986 
5987 	if (pp) {
5988 		skb_list_del_init(pp);
5989 		napi_gro_complete(napi, pp);
5990 		napi->gro_hash[hash].count--;
5991 	}
5992 
5993 	if (same_flow)
5994 		goto ok;
5995 
5996 	if (NAPI_GRO_CB(skb)->flush)
5997 		goto normal;
5998 
5999 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6000 		gro_flush_oldest(napi, gro_head);
6001 	} else {
6002 		napi->gro_hash[hash].count++;
6003 	}
6004 	NAPI_GRO_CB(skb)->count = 1;
6005 	NAPI_GRO_CB(skb)->age = jiffies;
6006 	NAPI_GRO_CB(skb)->last = skb;
6007 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6008 	list_add(&skb->list, gro_head);
6009 	ret = GRO_HELD;
6010 
6011 pull:
6012 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6013 	if (grow > 0)
6014 		gro_pull_from_frag0(skb, grow);
6015 ok:
6016 	if (napi->gro_hash[hash].count) {
6017 		if (!test_bit(hash, &napi->gro_bitmask))
6018 			__set_bit(hash, &napi->gro_bitmask);
6019 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6020 		__clear_bit(hash, &napi->gro_bitmask);
6021 	}
6022 
6023 	return ret;
6024 
6025 normal:
6026 	ret = GRO_NORMAL;
6027 	goto pull;
6028 }
6029 
6030 struct packet_offload *gro_find_receive_by_type(__be16 type)
6031 {
6032 	struct list_head *offload_head = &offload_base;
6033 	struct packet_offload *ptype;
6034 
6035 	list_for_each_entry_rcu(ptype, offload_head, list) {
6036 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6037 			continue;
6038 		return ptype;
6039 	}
6040 	return NULL;
6041 }
6042 EXPORT_SYMBOL(gro_find_receive_by_type);
6043 
6044 struct packet_offload *gro_find_complete_by_type(__be16 type)
6045 {
6046 	struct list_head *offload_head = &offload_base;
6047 	struct packet_offload *ptype;
6048 
6049 	list_for_each_entry_rcu(ptype, offload_head, list) {
6050 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6051 			continue;
6052 		return ptype;
6053 	}
6054 	return NULL;
6055 }
6056 EXPORT_SYMBOL(gro_find_complete_by_type);
6057 
6058 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6059 {
6060 	skb_dst_drop(skb);
6061 	skb_ext_put(skb);
6062 	kmem_cache_free(skbuff_head_cache, skb);
6063 }
6064 
6065 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6066 				    struct sk_buff *skb,
6067 				    gro_result_t ret)
6068 {
6069 	switch (ret) {
6070 	case GRO_NORMAL:
6071 		gro_normal_one(napi, skb, 1);
6072 		break;
6073 
6074 	case GRO_DROP:
6075 		kfree_skb(skb);
6076 		break;
6077 
6078 	case GRO_MERGED_FREE:
6079 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6080 			napi_skb_free_stolen_head(skb);
6081 		else
6082 			__kfree_skb(skb);
6083 		break;
6084 
6085 	case GRO_HELD:
6086 	case GRO_MERGED:
6087 	case GRO_CONSUMED:
6088 		break;
6089 	}
6090 
6091 	return ret;
6092 }
6093 
6094 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6095 {
6096 	gro_result_t ret;
6097 
6098 	skb_mark_napi_id(skb, napi);
6099 	trace_napi_gro_receive_entry(skb);
6100 
6101 	skb_gro_reset_offset(skb);
6102 
6103 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6104 	trace_napi_gro_receive_exit(ret);
6105 
6106 	return ret;
6107 }
6108 EXPORT_SYMBOL(napi_gro_receive);
6109 
6110 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6111 {
6112 	if (unlikely(skb->pfmemalloc)) {
6113 		consume_skb(skb);
6114 		return;
6115 	}
6116 	__skb_pull(skb, skb_headlen(skb));
6117 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6118 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6119 	__vlan_hwaccel_clear_tag(skb);
6120 	skb->dev = napi->dev;
6121 	skb->skb_iif = 0;
6122 
6123 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6124 	skb->pkt_type = PACKET_HOST;
6125 
6126 	skb->encapsulation = 0;
6127 	skb_shinfo(skb)->gso_type = 0;
6128 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6129 	skb_ext_reset(skb);
6130 
6131 	napi->skb = skb;
6132 }
6133 
6134 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6135 {
6136 	struct sk_buff *skb = napi->skb;
6137 
6138 	if (!skb) {
6139 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6140 		if (skb) {
6141 			napi->skb = skb;
6142 			skb_mark_napi_id(skb, napi);
6143 		}
6144 	}
6145 	return skb;
6146 }
6147 EXPORT_SYMBOL(napi_get_frags);
6148 
6149 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6150 				      struct sk_buff *skb,
6151 				      gro_result_t ret)
6152 {
6153 	switch (ret) {
6154 	case GRO_NORMAL:
6155 	case GRO_HELD:
6156 		__skb_push(skb, ETH_HLEN);
6157 		skb->protocol = eth_type_trans(skb, skb->dev);
6158 		if (ret == GRO_NORMAL)
6159 			gro_normal_one(napi, skb, 1);
6160 		break;
6161 
6162 	case GRO_DROP:
6163 		napi_reuse_skb(napi, skb);
6164 		break;
6165 
6166 	case GRO_MERGED_FREE:
6167 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6168 			napi_skb_free_stolen_head(skb);
6169 		else
6170 			napi_reuse_skb(napi, skb);
6171 		break;
6172 
6173 	case GRO_MERGED:
6174 	case GRO_CONSUMED:
6175 		break;
6176 	}
6177 
6178 	return ret;
6179 }
6180 
6181 /* Upper GRO stack assumes network header starts at gro_offset=0
6182  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6183  * We copy ethernet header into skb->data to have a common layout.
6184  */
6185 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6186 {
6187 	struct sk_buff *skb = napi->skb;
6188 	const struct ethhdr *eth;
6189 	unsigned int hlen = sizeof(*eth);
6190 
6191 	napi->skb = NULL;
6192 
6193 	skb_reset_mac_header(skb);
6194 	skb_gro_reset_offset(skb);
6195 
6196 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6197 		eth = skb_gro_header_slow(skb, hlen, 0);
6198 		if (unlikely(!eth)) {
6199 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6200 					     __func__, napi->dev->name);
6201 			napi_reuse_skb(napi, skb);
6202 			return NULL;
6203 		}
6204 	} else {
6205 		eth = (const struct ethhdr *)skb->data;
6206 		gro_pull_from_frag0(skb, hlen);
6207 		NAPI_GRO_CB(skb)->frag0 += hlen;
6208 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6209 	}
6210 	__skb_pull(skb, hlen);
6211 
6212 	/*
6213 	 * This works because the only protocols we care about don't require
6214 	 * special handling.
6215 	 * We'll fix it up properly in napi_frags_finish()
6216 	 */
6217 	skb->protocol = eth->h_proto;
6218 
6219 	return skb;
6220 }
6221 
6222 gro_result_t napi_gro_frags(struct napi_struct *napi)
6223 {
6224 	gro_result_t ret;
6225 	struct sk_buff *skb = napi_frags_skb(napi);
6226 
6227 	if (!skb)
6228 		return GRO_DROP;
6229 
6230 	trace_napi_gro_frags_entry(skb);
6231 
6232 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6233 	trace_napi_gro_frags_exit(ret);
6234 
6235 	return ret;
6236 }
6237 EXPORT_SYMBOL(napi_gro_frags);
6238 
6239 /* Compute the checksum from gro_offset and return the folded value
6240  * after adding in any pseudo checksum.
6241  */
6242 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6243 {
6244 	__wsum wsum;
6245 	__sum16 sum;
6246 
6247 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6248 
6249 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6250 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6251 	/* See comments in __skb_checksum_complete(). */
6252 	if (likely(!sum)) {
6253 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6254 		    !skb->csum_complete_sw)
6255 			netdev_rx_csum_fault(skb->dev, skb);
6256 	}
6257 
6258 	NAPI_GRO_CB(skb)->csum = wsum;
6259 	NAPI_GRO_CB(skb)->csum_valid = 1;
6260 
6261 	return sum;
6262 }
6263 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6264 
6265 static void net_rps_send_ipi(struct softnet_data *remsd)
6266 {
6267 #ifdef CONFIG_RPS
6268 	while (remsd) {
6269 		struct softnet_data *next = remsd->rps_ipi_next;
6270 
6271 		if (cpu_online(remsd->cpu))
6272 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6273 		remsd = next;
6274 	}
6275 #endif
6276 }
6277 
6278 /*
6279  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6280  * Note: called with local irq disabled, but exits with local irq enabled.
6281  */
6282 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6283 {
6284 #ifdef CONFIG_RPS
6285 	struct softnet_data *remsd = sd->rps_ipi_list;
6286 
6287 	if (remsd) {
6288 		sd->rps_ipi_list = NULL;
6289 
6290 		local_irq_enable();
6291 
6292 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6293 		net_rps_send_ipi(remsd);
6294 	} else
6295 #endif
6296 		local_irq_enable();
6297 }
6298 
6299 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6300 {
6301 #ifdef CONFIG_RPS
6302 	return sd->rps_ipi_list != NULL;
6303 #else
6304 	return false;
6305 #endif
6306 }
6307 
6308 static int process_backlog(struct napi_struct *napi, int quota)
6309 {
6310 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6311 	bool again = true;
6312 	int work = 0;
6313 
6314 	/* Check if we have pending ipi, its better to send them now,
6315 	 * not waiting net_rx_action() end.
6316 	 */
6317 	if (sd_has_rps_ipi_waiting(sd)) {
6318 		local_irq_disable();
6319 		net_rps_action_and_irq_enable(sd);
6320 	}
6321 
6322 	napi->weight = dev_rx_weight;
6323 	while (again) {
6324 		struct sk_buff *skb;
6325 
6326 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6327 			rcu_read_lock();
6328 			__netif_receive_skb(skb);
6329 			rcu_read_unlock();
6330 			input_queue_head_incr(sd);
6331 			if (++work >= quota)
6332 				return work;
6333 
6334 		}
6335 
6336 		local_irq_disable();
6337 		rps_lock(sd);
6338 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6339 			/*
6340 			 * Inline a custom version of __napi_complete().
6341 			 * only current cpu owns and manipulates this napi,
6342 			 * and NAPI_STATE_SCHED is the only possible flag set
6343 			 * on backlog.
6344 			 * We can use a plain write instead of clear_bit(),
6345 			 * and we dont need an smp_mb() memory barrier.
6346 			 */
6347 			napi->state = 0;
6348 			again = false;
6349 		} else {
6350 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6351 						   &sd->process_queue);
6352 		}
6353 		rps_unlock(sd);
6354 		local_irq_enable();
6355 	}
6356 
6357 	return work;
6358 }
6359 
6360 /**
6361  * __napi_schedule - schedule for receive
6362  * @n: entry to schedule
6363  *
6364  * The entry's receive function will be scheduled to run.
6365  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6366  */
6367 void __napi_schedule(struct napi_struct *n)
6368 {
6369 	unsigned long flags;
6370 
6371 	local_irq_save(flags);
6372 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6373 	local_irq_restore(flags);
6374 }
6375 EXPORT_SYMBOL(__napi_schedule);
6376 
6377 /**
6378  *	napi_schedule_prep - check if napi can be scheduled
6379  *	@n: napi context
6380  *
6381  * Test if NAPI routine is already running, and if not mark
6382  * it as running.  This is used as a condition variable to
6383  * insure only one NAPI poll instance runs.  We also make
6384  * sure there is no pending NAPI disable.
6385  */
6386 bool napi_schedule_prep(struct napi_struct *n)
6387 {
6388 	unsigned long val, new;
6389 
6390 	do {
6391 		val = READ_ONCE(n->state);
6392 		if (unlikely(val & NAPIF_STATE_DISABLE))
6393 			return false;
6394 		new = val | NAPIF_STATE_SCHED;
6395 
6396 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6397 		 * This was suggested by Alexander Duyck, as compiler
6398 		 * emits better code than :
6399 		 * if (val & NAPIF_STATE_SCHED)
6400 		 *     new |= NAPIF_STATE_MISSED;
6401 		 */
6402 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6403 						   NAPIF_STATE_MISSED;
6404 	} while (cmpxchg(&n->state, val, new) != val);
6405 
6406 	return !(val & NAPIF_STATE_SCHED);
6407 }
6408 EXPORT_SYMBOL(napi_schedule_prep);
6409 
6410 /**
6411  * __napi_schedule_irqoff - schedule for receive
6412  * @n: entry to schedule
6413  *
6414  * Variant of __napi_schedule() assuming hard irqs are masked
6415  */
6416 void __napi_schedule_irqoff(struct napi_struct *n)
6417 {
6418 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6419 }
6420 EXPORT_SYMBOL(__napi_schedule_irqoff);
6421 
6422 bool napi_complete_done(struct napi_struct *n, int work_done)
6423 {
6424 	unsigned long flags, val, new, timeout = 0;
6425 	bool ret = true;
6426 
6427 	/*
6428 	 * 1) Don't let napi dequeue from the cpu poll list
6429 	 *    just in case its running on a different cpu.
6430 	 * 2) If we are busy polling, do nothing here, we have
6431 	 *    the guarantee we will be called later.
6432 	 */
6433 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6434 				 NAPIF_STATE_IN_BUSY_POLL)))
6435 		return false;
6436 
6437 	if (work_done) {
6438 		if (n->gro_bitmask)
6439 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6440 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6441 	}
6442 	if (n->defer_hard_irqs_count > 0) {
6443 		n->defer_hard_irqs_count--;
6444 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6445 		if (timeout)
6446 			ret = false;
6447 	}
6448 	if (n->gro_bitmask) {
6449 		/* When the NAPI instance uses a timeout and keeps postponing
6450 		 * it, we need to bound somehow the time packets are kept in
6451 		 * the GRO layer
6452 		 */
6453 		napi_gro_flush(n, !!timeout);
6454 	}
6455 
6456 	gro_normal_list(n);
6457 
6458 	if (unlikely(!list_empty(&n->poll_list))) {
6459 		/* If n->poll_list is not empty, we need to mask irqs */
6460 		local_irq_save(flags);
6461 		list_del_init(&n->poll_list);
6462 		local_irq_restore(flags);
6463 	}
6464 
6465 	do {
6466 		val = READ_ONCE(n->state);
6467 
6468 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6469 
6470 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6471 			      NAPIF_STATE_PREFER_BUSY_POLL);
6472 
6473 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6474 		 * because we will call napi->poll() one more time.
6475 		 * This C code was suggested by Alexander Duyck to help gcc.
6476 		 */
6477 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6478 						    NAPIF_STATE_SCHED;
6479 	} while (cmpxchg(&n->state, val, new) != val);
6480 
6481 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6482 		__napi_schedule(n);
6483 		return false;
6484 	}
6485 
6486 	if (timeout)
6487 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6488 			      HRTIMER_MODE_REL_PINNED);
6489 	return ret;
6490 }
6491 EXPORT_SYMBOL(napi_complete_done);
6492 
6493 /* must be called under rcu_read_lock(), as we dont take a reference */
6494 static struct napi_struct *napi_by_id(unsigned int napi_id)
6495 {
6496 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6497 	struct napi_struct *napi;
6498 
6499 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6500 		if (napi->napi_id == napi_id)
6501 			return napi;
6502 
6503 	return NULL;
6504 }
6505 
6506 #if defined(CONFIG_NET_RX_BUSY_POLL)
6507 
6508 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6509 {
6510 	if (!skip_schedule) {
6511 		gro_normal_list(napi);
6512 		__napi_schedule(napi);
6513 		return;
6514 	}
6515 
6516 	if (napi->gro_bitmask) {
6517 		/* flush too old packets
6518 		 * If HZ < 1000, flush all packets.
6519 		 */
6520 		napi_gro_flush(napi, HZ >= 1000);
6521 	}
6522 
6523 	gro_normal_list(napi);
6524 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6525 }
6526 
6527 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6528 			   u16 budget)
6529 {
6530 	bool skip_schedule = false;
6531 	unsigned long timeout;
6532 	int rc;
6533 
6534 	/* Busy polling means there is a high chance device driver hard irq
6535 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6536 	 * set in napi_schedule_prep().
6537 	 * Since we are about to call napi->poll() once more, we can safely
6538 	 * clear NAPI_STATE_MISSED.
6539 	 *
6540 	 * Note: x86 could use a single "lock and ..." instruction
6541 	 * to perform these two clear_bit()
6542 	 */
6543 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6544 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6545 
6546 	local_bh_disable();
6547 
6548 	if (prefer_busy_poll) {
6549 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6550 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6551 		if (napi->defer_hard_irqs_count && timeout) {
6552 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6553 			skip_schedule = true;
6554 		}
6555 	}
6556 
6557 	/* All we really want here is to re-enable device interrupts.
6558 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6559 	 */
6560 	rc = napi->poll(napi, budget);
6561 	/* We can't gro_normal_list() here, because napi->poll() might have
6562 	 * rearmed the napi (napi_complete_done()) in which case it could
6563 	 * already be running on another CPU.
6564 	 */
6565 	trace_napi_poll(napi, rc, budget);
6566 	netpoll_poll_unlock(have_poll_lock);
6567 	if (rc == budget)
6568 		__busy_poll_stop(napi, skip_schedule);
6569 	local_bh_enable();
6570 }
6571 
6572 void napi_busy_loop(unsigned int napi_id,
6573 		    bool (*loop_end)(void *, unsigned long),
6574 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6575 {
6576 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6577 	int (*napi_poll)(struct napi_struct *napi, int budget);
6578 	void *have_poll_lock = NULL;
6579 	struct napi_struct *napi;
6580 
6581 restart:
6582 	napi_poll = NULL;
6583 
6584 	rcu_read_lock();
6585 
6586 	napi = napi_by_id(napi_id);
6587 	if (!napi)
6588 		goto out;
6589 
6590 	preempt_disable();
6591 	for (;;) {
6592 		int work = 0;
6593 
6594 		local_bh_disable();
6595 		if (!napi_poll) {
6596 			unsigned long val = READ_ONCE(napi->state);
6597 
6598 			/* If multiple threads are competing for this napi,
6599 			 * we avoid dirtying napi->state as much as we can.
6600 			 */
6601 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6602 				   NAPIF_STATE_IN_BUSY_POLL)) {
6603 				if (prefer_busy_poll)
6604 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6605 				goto count;
6606 			}
6607 			if (cmpxchg(&napi->state, val,
6608 				    val | NAPIF_STATE_IN_BUSY_POLL |
6609 					  NAPIF_STATE_SCHED) != val) {
6610 				if (prefer_busy_poll)
6611 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6612 				goto count;
6613 			}
6614 			have_poll_lock = netpoll_poll_lock(napi);
6615 			napi_poll = napi->poll;
6616 		}
6617 		work = napi_poll(napi, budget);
6618 		trace_napi_poll(napi, work, budget);
6619 		gro_normal_list(napi);
6620 count:
6621 		if (work > 0)
6622 			__NET_ADD_STATS(dev_net(napi->dev),
6623 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6624 		local_bh_enable();
6625 
6626 		if (!loop_end || loop_end(loop_end_arg, start_time))
6627 			break;
6628 
6629 		if (unlikely(need_resched())) {
6630 			if (napi_poll)
6631 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6632 			preempt_enable();
6633 			rcu_read_unlock();
6634 			cond_resched();
6635 			if (loop_end(loop_end_arg, start_time))
6636 				return;
6637 			goto restart;
6638 		}
6639 		cpu_relax();
6640 	}
6641 	if (napi_poll)
6642 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6643 	preempt_enable();
6644 out:
6645 	rcu_read_unlock();
6646 }
6647 EXPORT_SYMBOL(napi_busy_loop);
6648 
6649 #endif /* CONFIG_NET_RX_BUSY_POLL */
6650 
6651 static void napi_hash_add(struct napi_struct *napi)
6652 {
6653 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6654 		return;
6655 
6656 	spin_lock(&napi_hash_lock);
6657 
6658 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6659 	do {
6660 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6661 			napi_gen_id = MIN_NAPI_ID;
6662 	} while (napi_by_id(napi_gen_id));
6663 	napi->napi_id = napi_gen_id;
6664 
6665 	hlist_add_head_rcu(&napi->napi_hash_node,
6666 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6667 
6668 	spin_unlock(&napi_hash_lock);
6669 }
6670 
6671 /* Warning : caller is responsible to make sure rcu grace period
6672  * is respected before freeing memory containing @napi
6673  */
6674 static void napi_hash_del(struct napi_struct *napi)
6675 {
6676 	spin_lock(&napi_hash_lock);
6677 
6678 	hlist_del_init_rcu(&napi->napi_hash_node);
6679 
6680 	spin_unlock(&napi_hash_lock);
6681 }
6682 
6683 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6684 {
6685 	struct napi_struct *napi;
6686 
6687 	napi = container_of(timer, struct napi_struct, timer);
6688 
6689 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6690 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6691 	 */
6692 	if (!napi_disable_pending(napi) &&
6693 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6694 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6695 		__napi_schedule_irqoff(napi);
6696 	}
6697 
6698 	return HRTIMER_NORESTART;
6699 }
6700 
6701 static void init_gro_hash(struct napi_struct *napi)
6702 {
6703 	int i;
6704 
6705 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6706 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6707 		napi->gro_hash[i].count = 0;
6708 	}
6709 	napi->gro_bitmask = 0;
6710 }
6711 
6712 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6713 		    int (*poll)(struct napi_struct *, int), int weight)
6714 {
6715 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6716 		return;
6717 
6718 	INIT_LIST_HEAD(&napi->poll_list);
6719 	INIT_HLIST_NODE(&napi->napi_hash_node);
6720 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6721 	napi->timer.function = napi_watchdog;
6722 	init_gro_hash(napi);
6723 	napi->skb = NULL;
6724 	INIT_LIST_HEAD(&napi->rx_list);
6725 	napi->rx_count = 0;
6726 	napi->poll = poll;
6727 	if (weight > NAPI_POLL_WEIGHT)
6728 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6729 				weight);
6730 	napi->weight = weight;
6731 	napi->dev = dev;
6732 #ifdef CONFIG_NETPOLL
6733 	napi->poll_owner = -1;
6734 #endif
6735 	set_bit(NAPI_STATE_SCHED, &napi->state);
6736 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6737 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6738 	napi_hash_add(napi);
6739 }
6740 EXPORT_SYMBOL(netif_napi_add);
6741 
6742 void napi_disable(struct napi_struct *n)
6743 {
6744 	might_sleep();
6745 	set_bit(NAPI_STATE_DISABLE, &n->state);
6746 
6747 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6748 		msleep(1);
6749 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6750 		msleep(1);
6751 
6752 	hrtimer_cancel(&n->timer);
6753 
6754 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6755 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6756 }
6757 EXPORT_SYMBOL(napi_disable);
6758 
6759 static void flush_gro_hash(struct napi_struct *napi)
6760 {
6761 	int i;
6762 
6763 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6764 		struct sk_buff *skb, *n;
6765 
6766 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6767 			kfree_skb(skb);
6768 		napi->gro_hash[i].count = 0;
6769 	}
6770 }
6771 
6772 /* Must be called in process context */
6773 void __netif_napi_del(struct napi_struct *napi)
6774 {
6775 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6776 		return;
6777 
6778 	napi_hash_del(napi);
6779 	list_del_rcu(&napi->dev_list);
6780 	napi_free_frags(napi);
6781 
6782 	flush_gro_hash(napi);
6783 	napi->gro_bitmask = 0;
6784 }
6785 EXPORT_SYMBOL(__netif_napi_del);
6786 
6787 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6788 {
6789 	void *have;
6790 	int work, weight;
6791 
6792 	list_del_init(&n->poll_list);
6793 
6794 	have = netpoll_poll_lock(n);
6795 
6796 	weight = n->weight;
6797 
6798 	/* This NAPI_STATE_SCHED test is for avoiding a race
6799 	 * with netpoll's poll_napi().  Only the entity which
6800 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6801 	 * actually make the ->poll() call.  Therefore we avoid
6802 	 * accidentally calling ->poll() when NAPI is not scheduled.
6803 	 */
6804 	work = 0;
6805 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6806 		work = n->poll(n, weight);
6807 		trace_napi_poll(n, work, weight);
6808 	}
6809 
6810 	if (unlikely(work > weight))
6811 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6812 			    n->poll, work, weight);
6813 
6814 	if (likely(work < weight))
6815 		goto out_unlock;
6816 
6817 	/* Drivers must not modify the NAPI state if they
6818 	 * consume the entire weight.  In such cases this code
6819 	 * still "owns" the NAPI instance and therefore can
6820 	 * move the instance around on the list at-will.
6821 	 */
6822 	if (unlikely(napi_disable_pending(n))) {
6823 		napi_complete(n);
6824 		goto out_unlock;
6825 	}
6826 
6827 	/* The NAPI context has more processing work, but busy-polling
6828 	 * is preferred. Exit early.
6829 	 */
6830 	if (napi_prefer_busy_poll(n)) {
6831 		if (napi_complete_done(n, work)) {
6832 			/* If timeout is not set, we need to make sure
6833 			 * that the NAPI is re-scheduled.
6834 			 */
6835 			napi_schedule(n);
6836 		}
6837 		goto out_unlock;
6838 	}
6839 
6840 	if (n->gro_bitmask) {
6841 		/* flush too old packets
6842 		 * If HZ < 1000, flush all packets.
6843 		 */
6844 		napi_gro_flush(n, HZ >= 1000);
6845 	}
6846 
6847 	gro_normal_list(n);
6848 
6849 	/* Some drivers may have called napi_schedule
6850 	 * prior to exhausting their budget.
6851 	 */
6852 	if (unlikely(!list_empty(&n->poll_list))) {
6853 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6854 			     n->dev ? n->dev->name : "backlog");
6855 		goto out_unlock;
6856 	}
6857 
6858 	list_add_tail(&n->poll_list, repoll);
6859 
6860 out_unlock:
6861 	netpoll_poll_unlock(have);
6862 
6863 	return work;
6864 }
6865 
6866 static __latent_entropy void net_rx_action(struct softirq_action *h)
6867 {
6868 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6869 	unsigned long time_limit = jiffies +
6870 		usecs_to_jiffies(netdev_budget_usecs);
6871 	int budget = netdev_budget;
6872 	LIST_HEAD(list);
6873 	LIST_HEAD(repoll);
6874 
6875 	local_irq_disable();
6876 	list_splice_init(&sd->poll_list, &list);
6877 	local_irq_enable();
6878 
6879 	for (;;) {
6880 		struct napi_struct *n;
6881 
6882 		if (list_empty(&list)) {
6883 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6884 				goto out;
6885 			break;
6886 		}
6887 
6888 		n = list_first_entry(&list, struct napi_struct, poll_list);
6889 		budget -= napi_poll(n, &repoll);
6890 
6891 		/* If softirq window is exhausted then punt.
6892 		 * Allow this to run for 2 jiffies since which will allow
6893 		 * an average latency of 1.5/HZ.
6894 		 */
6895 		if (unlikely(budget <= 0 ||
6896 			     time_after_eq(jiffies, time_limit))) {
6897 			sd->time_squeeze++;
6898 			break;
6899 		}
6900 	}
6901 
6902 	local_irq_disable();
6903 
6904 	list_splice_tail_init(&sd->poll_list, &list);
6905 	list_splice_tail(&repoll, &list);
6906 	list_splice(&list, &sd->poll_list);
6907 	if (!list_empty(&sd->poll_list))
6908 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6909 
6910 	net_rps_action_and_irq_enable(sd);
6911 out:
6912 	__kfree_skb_flush();
6913 }
6914 
6915 struct netdev_adjacent {
6916 	struct net_device *dev;
6917 
6918 	/* upper master flag, there can only be one master device per list */
6919 	bool master;
6920 
6921 	/* lookup ignore flag */
6922 	bool ignore;
6923 
6924 	/* counter for the number of times this device was added to us */
6925 	u16 ref_nr;
6926 
6927 	/* private field for the users */
6928 	void *private;
6929 
6930 	struct list_head list;
6931 	struct rcu_head rcu;
6932 };
6933 
6934 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6935 						 struct list_head *adj_list)
6936 {
6937 	struct netdev_adjacent *adj;
6938 
6939 	list_for_each_entry(adj, adj_list, list) {
6940 		if (adj->dev == adj_dev)
6941 			return adj;
6942 	}
6943 	return NULL;
6944 }
6945 
6946 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6947 				    struct netdev_nested_priv *priv)
6948 {
6949 	struct net_device *dev = (struct net_device *)priv->data;
6950 
6951 	return upper_dev == dev;
6952 }
6953 
6954 /**
6955  * netdev_has_upper_dev - Check if device is linked to an upper device
6956  * @dev: device
6957  * @upper_dev: upper device to check
6958  *
6959  * Find out if a device is linked to specified upper device and return true
6960  * in case it is. Note that this checks only immediate upper device,
6961  * not through a complete stack of devices. The caller must hold the RTNL lock.
6962  */
6963 bool netdev_has_upper_dev(struct net_device *dev,
6964 			  struct net_device *upper_dev)
6965 {
6966 	struct netdev_nested_priv priv = {
6967 		.data = (void *)upper_dev,
6968 	};
6969 
6970 	ASSERT_RTNL();
6971 
6972 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6973 					     &priv);
6974 }
6975 EXPORT_SYMBOL(netdev_has_upper_dev);
6976 
6977 /**
6978  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6979  * @dev: device
6980  * @upper_dev: upper device to check
6981  *
6982  * Find out if a device is linked to specified upper device and return true
6983  * in case it is. Note that this checks the entire upper device chain.
6984  * The caller must hold rcu lock.
6985  */
6986 
6987 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6988 				  struct net_device *upper_dev)
6989 {
6990 	struct netdev_nested_priv priv = {
6991 		.data = (void *)upper_dev,
6992 	};
6993 
6994 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6995 					       &priv);
6996 }
6997 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6998 
6999 /**
7000  * netdev_has_any_upper_dev - Check if device is linked to some device
7001  * @dev: device
7002  *
7003  * Find out if a device is linked to an upper device and return true in case
7004  * it is. The caller must hold the RTNL lock.
7005  */
7006 bool netdev_has_any_upper_dev(struct net_device *dev)
7007 {
7008 	ASSERT_RTNL();
7009 
7010 	return !list_empty(&dev->adj_list.upper);
7011 }
7012 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7013 
7014 /**
7015  * netdev_master_upper_dev_get - Get master upper device
7016  * @dev: device
7017  *
7018  * Find a master upper device and return pointer to it or NULL in case
7019  * it's not there. The caller must hold the RTNL lock.
7020  */
7021 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7022 {
7023 	struct netdev_adjacent *upper;
7024 
7025 	ASSERT_RTNL();
7026 
7027 	if (list_empty(&dev->adj_list.upper))
7028 		return NULL;
7029 
7030 	upper = list_first_entry(&dev->adj_list.upper,
7031 				 struct netdev_adjacent, list);
7032 	if (likely(upper->master))
7033 		return upper->dev;
7034 	return NULL;
7035 }
7036 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7037 
7038 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7039 {
7040 	struct netdev_adjacent *upper;
7041 
7042 	ASSERT_RTNL();
7043 
7044 	if (list_empty(&dev->adj_list.upper))
7045 		return NULL;
7046 
7047 	upper = list_first_entry(&dev->adj_list.upper,
7048 				 struct netdev_adjacent, list);
7049 	if (likely(upper->master) && !upper->ignore)
7050 		return upper->dev;
7051 	return NULL;
7052 }
7053 
7054 /**
7055  * netdev_has_any_lower_dev - Check if device is linked to some device
7056  * @dev: device
7057  *
7058  * Find out if a device is linked to a lower device and return true in case
7059  * it is. The caller must hold the RTNL lock.
7060  */
7061 static bool netdev_has_any_lower_dev(struct net_device *dev)
7062 {
7063 	ASSERT_RTNL();
7064 
7065 	return !list_empty(&dev->adj_list.lower);
7066 }
7067 
7068 void *netdev_adjacent_get_private(struct list_head *adj_list)
7069 {
7070 	struct netdev_adjacent *adj;
7071 
7072 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7073 
7074 	return adj->private;
7075 }
7076 EXPORT_SYMBOL(netdev_adjacent_get_private);
7077 
7078 /**
7079  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7080  * @dev: device
7081  * @iter: list_head ** of the current position
7082  *
7083  * Gets the next device from the dev's upper list, starting from iter
7084  * position. The caller must hold RCU read lock.
7085  */
7086 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7087 						 struct list_head **iter)
7088 {
7089 	struct netdev_adjacent *upper;
7090 
7091 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7092 
7093 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7094 
7095 	if (&upper->list == &dev->adj_list.upper)
7096 		return NULL;
7097 
7098 	*iter = &upper->list;
7099 
7100 	return upper->dev;
7101 }
7102 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7103 
7104 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7105 						  struct list_head **iter,
7106 						  bool *ignore)
7107 {
7108 	struct netdev_adjacent *upper;
7109 
7110 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7111 
7112 	if (&upper->list == &dev->adj_list.upper)
7113 		return NULL;
7114 
7115 	*iter = &upper->list;
7116 	*ignore = upper->ignore;
7117 
7118 	return upper->dev;
7119 }
7120 
7121 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7122 						    struct list_head **iter)
7123 {
7124 	struct netdev_adjacent *upper;
7125 
7126 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7127 
7128 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7129 
7130 	if (&upper->list == &dev->adj_list.upper)
7131 		return NULL;
7132 
7133 	*iter = &upper->list;
7134 
7135 	return upper->dev;
7136 }
7137 
7138 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7139 				       int (*fn)(struct net_device *dev,
7140 					 struct netdev_nested_priv *priv),
7141 				       struct netdev_nested_priv *priv)
7142 {
7143 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7144 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7145 	int ret, cur = 0;
7146 	bool ignore;
7147 
7148 	now = dev;
7149 	iter = &dev->adj_list.upper;
7150 
7151 	while (1) {
7152 		if (now != dev) {
7153 			ret = fn(now, priv);
7154 			if (ret)
7155 				return ret;
7156 		}
7157 
7158 		next = NULL;
7159 		while (1) {
7160 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7161 			if (!udev)
7162 				break;
7163 			if (ignore)
7164 				continue;
7165 
7166 			next = udev;
7167 			niter = &udev->adj_list.upper;
7168 			dev_stack[cur] = now;
7169 			iter_stack[cur++] = iter;
7170 			break;
7171 		}
7172 
7173 		if (!next) {
7174 			if (!cur)
7175 				return 0;
7176 			next = dev_stack[--cur];
7177 			niter = iter_stack[cur];
7178 		}
7179 
7180 		now = next;
7181 		iter = niter;
7182 	}
7183 
7184 	return 0;
7185 }
7186 
7187 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7188 				  int (*fn)(struct net_device *dev,
7189 					    struct netdev_nested_priv *priv),
7190 				  struct netdev_nested_priv *priv)
7191 {
7192 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7193 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7194 	int ret, cur = 0;
7195 
7196 	now = dev;
7197 	iter = &dev->adj_list.upper;
7198 
7199 	while (1) {
7200 		if (now != dev) {
7201 			ret = fn(now, priv);
7202 			if (ret)
7203 				return ret;
7204 		}
7205 
7206 		next = NULL;
7207 		while (1) {
7208 			udev = netdev_next_upper_dev_rcu(now, &iter);
7209 			if (!udev)
7210 				break;
7211 
7212 			next = udev;
7213 			niter = &udev->adj_list.upper;
7214 			dev_stack[cur] = now;
7215 			iter_stack[cur++] = iter;
7216 			break;
7217 		}
7218 
7219 		if (!next) {
7220 			if (!cur)
7221 				return 0;
7222 			next = dev_stack[--cur];
7223 			niter = iter_stack[cur];
7224 		}
7225 
7226 		now = next;
7227 		iter = niter;
7228 	}
7229 
7230 	return 0;
7231 }
7232 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7233 
7234 static bool __netdev_has_upper_dev(struct net_device *dev,
7235 				   struct net_device *upper_dev)
7236 {
7237 	struct netdev_nested_priv priv = {
7238 		.flags = 0,
7239 		.data = (void *)upper_dev,
7240 	};
7241 
7242 	ASSERT_RTNL();
7243 
7244 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7245 					   &priv);
7246 }
7247 
7248 /**
7249  * netdev_lower_get_next_private - Get the next ->private from the
7250  *				   lower neighbour list
7251  * @dev: device
7252  * @iter: list_head ** of the current position
7253  *
7254  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7255  * list, starting from iter position. The caller must hold either hold the
7256  * RTNL lock or its own locking that guarantees that the neighbour lower
7257  * list will remain unchanged.
7258  */
7259 void *netdev_lower_get_next_private(struct net_device *dev,
7260 				    struct list_head **iter)
7261 {
7262 	struct netdev_adjacent *lower;
7263 
7264 	lower = list_entry(*iter, struct netdev_adjacent, list);
7265 
7266 	if (&lower->list == &dev->adj_list.lower)
7267 		return NULL;
7268 
7269 	*iter = lower->list.next;
7270 
7271 	return lower->private;
7272 }
7273 EXPORT_SYMBOL(netdev_lower_get_next_private);
7274 
7275 /**
7276  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7277  *				       lower neighbour list, RCU
7278  *				       variant
7279  * @dev: device
7280  * @iter: list_head ** of the current position
7281  *
7282  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7283  * list, starting from iter position. The caller must hold RCU read lock.
7284  */
7285 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7286 					struct list_head **iter)
7287 {
7288 	struct netdev_adjacent *lower;
7289 
7290 	WARN_ON_ONCE(!rcu_read_lock_held());
7291 
7292 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7293 
7294 	if (&lower->list == &dev->adj_list.lower)
7295 		return NULL;
7296 
7297 	*iter = &lower->list;
7298 
7299 	return lower->private;
7300 }
7301 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7302 
7303 /**
7304  * netdev_lower_get_next - Get the next device from the lower neighbour
7305  *                         list
7306  * @dev: device
7307  * @iter: list_head ** of the current position
7308  *
7309  * Gets the next netdev_adjacent from the dev's lower neighbour
7310  * list, starting from iter position. The caller must hold RTNL lock or
7311  * its own locking that guarantees that the neighbour lower
7312  * list will remain unchanged.
7313  */
7314 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7315 {
7316 	struct netdev_adjacent *lower;
7317 
7318 	lower = list_entry(*iter, struct netdev_adjacent, list);
7319 
7320 	if (&lower->list == &dev->adj_list.lower)
7321 		return NULL;
7322 
7323 	*iter = lower->list.next;
7324 
7325 	return lower->dev;
7326 }
7327 EXPORT_SYMBOL(netdev_lower_get_next);
7328 
7329 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7330 						struct list_head **iter)
7331 {
7332 	struct netdev_adjacent *lower;
7333 
7334 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7335 
7336 	if (&lower->list == &dev->adj_list.lower)
7337 		return NULL;
7338 
7339 	*iter = &lower->list;
7340 
7341 	return lower->dev;
7342 }
7343 
7344 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7345 						  struct list_head **iter,
7346 						  bool *ignore)
7347 {
7348 	struct netdev_adjacent *lower;
7349 
7350 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7351 
7352 	if (&lower->list == &dev->adj_list.lower)
7353 		return NULL;
7354 
7355 	*iter = &lower->list;
7356 	*ignore = lower->ignore;
7357 
7358 	return lower->dev;
7359 }
7360 
7361 int netdev_walk_all_lower_dev(struct net_device *dev,
7362 			      int (*fn)(struct net_device *dev,
7363 					struct netdev_nested_priv *priv),
7364 			      struct netdev_nested_priv *priv)
7365 {
7366 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7367 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7368 	int ret, cur = 0;
7369 
7370 	now = dev;
7371 	iter = &dev->adj_list.lower;
7372 
7373 	while (1) {
7374 		if (now != dev) {
7375 			ret = fn(now, priv);
7376 			if (ret)
7377 				return ret;
7378 		}
7379 
7380 		next = NULL;
7381 		while (1) {
7382 			ldev = netdev_next_lower_dev(now, &iter);
7383 			if (!ldev)
7384 				break;
7385 
7386 			next = ldev;
7387 			niter = &ldev->adj_list.lower;
7388 			dev_stack[cur] = now;
7389 			iter_stack[cur++] = iter;
7390 			break;
7391 		}
7392 
7393 		if (!next) {
7394 			if (!cur)
7395 				return 0;
7396 			next = dev_stack[--cur];
7397 			niter = iter_stack[cur];
7398 		}
7399 
7400 		now = next;
7401 		iter = niter;
7402 	}
7403 
7404 	return 0;
7405 }
7406 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7407 
7408 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7409 				       int (*fn)(struct net_device *dev,
7410 					 struct netdev_nested_priv *priv),
7411 				       struct netdev_nested_priv *priv)
7412 {
7413 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7414 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7415 	int ret, cur = 0;
7416 	bool ignore;
7417 
7418 	now = dev;
7419 	iter = &dev->adj_list.lower;
7420 
7421 	while (1) {
7422 		if (now != dev) {
7423 			ret = fn(now, priv);
7424 			if (ret)
7425 				return ret;
7426 		}
7427 
7428 		next = NULL;
7429 		while (1) {
7430 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7431 			if (!ldev)
7432 				break;
7433 			if (ignore)
7434 				continue;
7435 
7436 			next = ldev;
7437 			niter = &ldev->adj_list.lower;
7438 			dev_stack[cur] = now;
7439 			iter_stack[cur++] = iter;
7440 			break;
7441 		}
7442 
7443 		if (!next) {
7444 			if (!cur)
7445 				return 0;
7446 			next = dev_stack[--cur];
7447 			niter = iter_stack[cur];
7448 		}
7449 
7450 		now = next;
7451 		iter = niter;
7452 	}
7453 
7454 	return 0;
7455 }
7456 
7457 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7458 					     struct list_head **iter)
7459 {
7460 	struct netdev_adjacent *lower;
7461 
7462 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7463 	if (&lower->list == &dev->adj_list.lower)
7464 		return NULL;
7465 
7466 	*iter = &lower->list;
7467 
7468 	return lower->dev;
7469 }
7470 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7471 
7472 static u8 __netdev_upper_depth(struct net_device *dev)
7473 {
7474 	struct net_device *udev;
7475 	struct list_head *iter;
7476 	u8 max_depth = 0;
7477 	bool ignore;
7478 
7479 	for (iter = &dev->adj_list.upper,
7480 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7481 	     udev;
7482 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7483 		if (ignore)
7484 			continue;
7485 		if (max_depth < udev->upper_level)
7486 			max_depth = udev->upper_level;
7487 	}
7488 
7489 	return max_depth;
7490 }
7491 
7492 static u8 __netdev_lower_depth(struct net_device *dev)
7493 {
7494 	struct net_device *ldev;
7495 	struct list_head *iter;
7496 	u8 max_depth = 0;
7497 	bool ignore;
7498 
7499 	for (iter = &dev->adj_list.lower,
7500 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7501 	     ldev;
7502 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7503 		if (ignore)
7504 			continue;
7505 		if (max_depth < ldev->lower_level)
7506 			max_depth = ldev->lower_level;
7507 	}
7508 
7509 	return max_depth;
7510 }
7511 
7512 static int __netdev_update_upper_level(struct net_device *dev,
7513 				       struct netdev_nested_priv *__unused)
7514 {
7515 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7516 	return 0;
7517 }
7518 
7519 static int __netdev_update_lower_level(struct net_device *dev,
7520 				       struct netdev_nested_priv *priv)
7521 {
7522 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7523 
7524 #ifdef CONFIG_LOCKDEP
7525 	if (!priv)
7526 		return 0;
7527 
7528 	if (priv->flags & NESTED_SYNC_IMM)
7529 		dev->nested_level = dev->lower_level - 1;
7530 	if (priv->flags & NESTED_SYNC_TODO)
7531 		net_unlink_todo(dev);
7532 #endif
7533 	return 0;
7534 }
7535 
7536 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7537 				  int (*fn)(struct net_device *dev,
7538 					    struct netdev_nested_priv *priv),
7539 				  struct netdev_nested_priv *priv)
7540 {
7541 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7542 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7543 	int ret, cur = 0;
7544 
7545 	now = dev;
7546 	iter = &dev->adj_list.lower;
7547 
7548 	while (1) {
7549 		if (now != dev) {
7550 			ret = fn(now, priv);
7551 			if (ret)
7552 				return ret;
7553 		}
7554 
7555 		next = NULL;
7556 		while (1) {
7557 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7558 			if (!ldev)
7559 				break;
7560 
7561 			next = ldev;
7562 			niter = &ldev->adj_list.lower;
7563 			dev_stack[cur] = now;
7564 			iter_stack[cur++] = iter;
7565 			break;
7566 		}
7567 
7568 		if (!next) {
7569 			if (!cur)
7570 				return 0;
7571 			next = dev_stack[--cur];
7572 			niter = iter_stack[cur];
7573 		}
7574 
7575 		now = next;
7576 		iter = niter;
7577 	}
7578 
7579 	return 0;
7580 }
7581 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7582 
7583 /**
7584  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7585  *				       lower neighbour list, RCU
7586  *				       variant
7587  * @dev: device
7588  *
7589  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7590  * list. The caller must hold RCU read lock.
7591  */
7592 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7593 {
7594 	struct netdev_adjacent *lower;
7595 
7596 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7597 			struct netdev_adjacent, list);
7598 	if (lower)
7599 		return lower->private;
7600 	return NULL;
7601 }
7602 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7603 
7604 /**
7605  * netdev_master_upper_dev_get_rcu - Get master upper device
7606  * @dev: device
7607  *
7608  * Find a master upper device and return pointer to it or NULL in case
7609  * it's not there. The caller must hold the RCU read lock.
7610  */
7611 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7612 {
7613 	struct netdev_adjacent *upper;
7614 
7615 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7616 				       struct netdev_adjacent, list);
7617 	if (upper && likely(upper->master))
7618 		return upper->dev;
7619 	return NULL;
7620 }
7621 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7622 
7623 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7624 			      struct net_device *adj_dev,
7625 			      struct list_head *dev_list)
7626 {
7627 	char linkname[IFNAMSIZ+7];
7628 
7629 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7630 		"upper_%s" : "lower_%s", adj_dev->name);
7631 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7632 				 linkname);
7633 }
7634 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7635 			       char *name,
7636 			       struct list_head *dev_list)
7637 {
7638 	char linkname[IFNAMSIZ+7];
7639 
7640 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7641 		"upper_%s" : "lower_%s", name);
7642 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7643 }
7644 
7645 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7646 						 struct net_device *adj_dev,
7647 						 struct list_head *dev_list)
7648 {
7649 	return (dev_list == &dev->adj_list.upper ||
7650 		dev_list == &dev->adj_list.lower) &&
7651 		net_eq(dev_net(dev), dev_net(adj_dev));
7652 }
7653 
7654 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7655 					struct net_device *adj_dev,
7656 					struct list_head *dev_list,
7657 					void *private, bool master)
7658 {
7659 	struct netdev_adjacent *adj;
7660 	int ret;
7661 
7662 	adj = __netdev_find_adj(adj_dev, dev_list);
7663 
7664 	if (adj) {
7665 		adj->ref_nr += 1;
7666 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7667 			 dev->name, adj_dev->name, adj->ref_nr);
7668 
7669 		return 0;
7670 	}
7671 
7672 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7673 	if (!adj)
7674 		return -ENOMEM;
7675 
7676 	adj->dev = adj_dev;
7677 	adj->master = master;
7678 	adj->ref_nr = 1;
7679 	adj->private = private;
7680 	adj->ignore = false;
7681 	dev_hold(adj_dev);
7682 
7683 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7684 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7685 
7686 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7687 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7688 		if (ret)
7689 			goto free_adj;
7690 	}
7691 
7692 	/* Ensure that master link is always the first item in list. */
7693 	if (master) {
7694 		ret = sysfs_create_link(&(dev->dev.kobj),
7695 					&(adj_dev->dev.kobj), "master");
7696 		if (ret)
7697 			goto remove_symlinks;
7698 
7699 		list_add_rcu(&adj->list, dev_list);
7700 	} else {
7701 		list_add_tail_rcu(&adj->list, dev_list);
7702 	}
7703 
7704 	return 0;
7705 
7706 remove_symlinks:
7707 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7708 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7709 free_adj:
7710 	kfree(adj);
7711 	dev_put(adj_dev);
7712 
7713 	return ret;
7714 }
7715 
7716 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7717 					 struct net_device *adj_dev,
7718 					 u16 ref_nr,
7719 					 struct list_head *dev_list)
7720 {
7721 	struct netdev_adjacent *adj;
7722 
7723 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7724 		 dev->name, adj_dev->name, ref_nr);
7725 
7726 	adj = __netdev_find_adj(adj_dev, dev_list);
7727 
7728 	if (!adj) {
7729 		pr_err("Adjacency does not exist for device %s from %s\n",
7730 		       dev->name, adj_dev->name);
7731 		WARN_ON(1);
7732 		return;
7733 	}
7734 
7735 	if (adj->ref_nr > ref_nr) {
7736 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7737 			 dev->name, adj_dev->name, ref_nr,
7738 			 adj->ref_nr - ref_nr);
7739 		adj->ref_nr -= ref_nr;
7740 		return;
7741 	}
7742 
7743 	if (adj->master)
7744 		sysfs_remove_link(&(dev->dev.kobj), "master");
7745 
7746 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7747 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7748 
7749 	list_del_rcu(&adj->list);
7750 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7751 		 adj_dev->name, dev->name, adj_dev->name);
7752 	dev_put(adj_dev);
7753 	kfree_rcu(adj, rcu);
7754 }
7755 
7756 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7757 					    struct net_device *upper_dev,
7758 					    struct list_head *up_list,
7759 					    struct list_head *down_list,
7760 					    void *private, bool master)
7761 {
7762 	int ret;
7763 
7764 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7765 					   private, master);
7766 	if (ret)
7767 		return ret;
7768 
7769 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7770 					   private, false);
7771 	if (ret) {
7772 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7773 		return ret;
7774 	}
7775 
7776 	return 0;
7777 }
7778 
7779 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7780 					       struct net_device *upper_dev,
7781 					       u16 ref_nr,
7782 					       struct list_head *up_list,
7783 					       struct list_head *down_list)
7784 {
7785 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7786 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7787 }
7788 
7789 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7790 						struct net_device *upper_dev,
7791 						void *private, bool master)
7792 {
7793 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7794 						&dev->adj_list.upper,
7795 						&upper_dev->adj_list.lower,
7796 						private, master);
7797 }
7798 
7799 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7800 						   struct net_device *upper_dev)
7801 {
7802 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7803 					   &dev->adj_list.upper,
7804 					   &upper_dev->adj_list.lower);
7805 }
7806 
7807 static int __netdev_upper_dev_link(struct net_device *dev,
7808 				   struct net_device *upper_dev, bool master,
7809 				   void *upper_priv, void *upper_info,
7810 				   struct netdev_nested_priv *priv,
7811 				   struct netlink_ext_ack *extack)
7812 {
7813 	struct netdev_notifier_changeupper_info changeupper_info = {
7814 		.info = {
7815 			.dev = dev,
7816 			.extack = extack,
7817 		},
7818 		.upper_dev = upper_dev,
7819 		.master = master,
7820 		.linking = true,
7821 		.upper_info = upper_info,
7822 	};
7823 	struct net_device *master_dev;
7824 	int ret = 0;
7825 
7826 	ASSERT_RTNL();
7827 
7828 	if (dev == upper_dev)
7829 		return -EBUSY;
7830 
7831 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7832 	if (__netdev_has_upper_dev(upper_dev, dev))
7833 		return -EBUSY;
7834 
7835 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7836 		return -EMLINK;
7837 
7838 	if (!master) {
7839 		if (__netdev_has_upper_dev(dev, upper_dev))
7840 			return -EEXIST;
7841 	} else {
7842 		master_dev = __netdev_master_upper_dev_get(dev);
7843 		if (master_dev)
7844 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7845 	}
7846 
7847 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7848 					    &changeupper_info.info);
7849 	ret = notifier_to_errno(ret);
7850 	if (ret)
7851 		return ret;
7852 
7853 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7854 						   master);
7855 	if (ret)
7856 		return ret;
7857 
7858 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7859 					    &changeupper_info.info);
7860 	ret = notifier_to_errno(ret);
7861 	if (ret)
7862 		goto rollback;
7863 
7864 	__netdev_update_upper_level(dev, NULL);
7865 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7866 
7867 	__netdev_update_lower_level(upper_dev, priv);
7868 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7869 				    priv);
7870 
7871 	return 0;
7872 
7873 rollback:
7874 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7875 
7876 	return ret;
7877 }
7878 
7879 /**
7880  * netdev_upper_dev_link - Add a link to the upper device
7881  * @dev: device
7882  * @upper_dev: new upper device
7883  * @extack: netlink extended ack
7884  *
7885  * Adds a link to device which is upper to this one. The caller must hold
7886  * the RTNL lock. On a failure a negative errno code is returned.
7887  * On success the reference counts are adjusted and the function
7888  * returns zero.
7889  */
7890 int netdev_upper_dev_link(struct net_device *dev,
7891 			  struct net_device *upper_dev,
7892 			  struct netlink_ext_ack *extack)
7893 {
7894 	struct netdev_nested_priv priv = {
7895 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7896 		.data = NULL,
7897 	};
7898 
7899 	return __netdev_upper_dev_link(dev, upper_dev, false,
7900 				       NULL, NULL, &priv, extack);
7901 }
7902 EXPORT_SYMBOL(netdev_upper_dev_link);
7903 
7904 /**
7905  * netdev_master_upper_dev_link - Add a master link to the upper device
7906  * @dev: device
7907  * @upper_dev: new upper device
7908  * @upper_priv: upper device private
7909  * @upper_info: upper info to be passed down via notifier
7910  * @extack: netlink extended ack
7911  *
7912  * Adds a link to device which is upper to this one. In this case, only
7913  * one master upper device can be linked, although other non-master devices
7914  * might be linked as well. The caller must hold the RTNL lock.
7915  * On a failure a negative errno code is returned. On success the reference
7916  * counts are adjusted and the function returns zero.
7917  */
7918 int netdev_master_upper_dev_link(struct net_device *dev,
7919 				 struct net_device *upper_dev,
7920 				 void *upper_priv, void *upper_info,
7921 				 struct netlink_ext_ack *extack)
7922 {
7923 	struct netdev_nested_priv priv = {
7924 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7925 		.data = NULL,
7926 	};
7927 
7928 	return __netdev_upper_dev_link(dev, upper_dev, true,
7929 				       upper_priv, upper_info, &priv, extack);
7930 }
7931 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7932 
7933 static void __netdev_upper_dev_unlink(struct net_device *dev,
7934 				      struct net_device *upper_dev,
7935 				      struct netdev_nested_priv *priv)
7936 {
7937 	struct netdev_notifier_changeupper_info changeupper_info = {
7938 		.info = {
7939 			.dev = dev,
7940 		},
7941 		.upper_dev = upper_dev,
7942 		.linking = false,
7943 	};
7944 
7945 	ASSERT_RTNL();
7946 
7947 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7948 
7949 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7950 				      &changeupper_info.info);
7951 
7952 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7953 
7954 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7955 				      &changeupper_info.info);
7956 
7957 	__netdev_update_upper_level(dev, NULL);
7958 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7959 
7960 	__netdev_update_lower_level(upper_dev, priv);
7961 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7962 				    priv);
7963 }
7964 
7965 /**
7966  * netdev_upper_dev_unlink - Removes a link to upper device
7967  * @dev: device
7968  * @upper_dev: new upper device
7969  *
7970  * Removes a link to device which is upper to this one. The caller must hold
7971  * the RTNL lock.
7972  */
7973 void netdev_upper_dev_unlink(struct net_device *dev,
7974 			     struct net_device *upper_dev)
7975 {
7976 	struct netdev_nested_priv priv = {
7977 		.flags = NESTED_SYNC_TODO,
7978 		.data = NULL,
7979 	};
7980 
7981 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7982 }
7983 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7984 
7985 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7986 				      struct net_device *lower_dev,
7987 				      bool val)
7988 {
7989 	struct netdev_adjacent *adj;
7990 
7991 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7992 	if (adj)
7993 		adj->ignore = val;
7994 
7995 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7996 	if (adj)
7997 		adj->ignore = val;
7998 }
7999 
8000 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8001 					struct net_device *lower_dev)
8002 {
8003 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8004 }
8005 
8006 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8007 				       struct net_device *lower_dev)
8008 {
8009 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8010 }
8011 
8012 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8013 				   struct net_device *new_dev,
8014 				   struct net_device *dev,
8015 				   struct netlink_ext_ack *extack)
8016 {
8017 	struct netdev_nested_priv priv = {
8018 		.flags = 0,
8019 		.data = NULL,
8020 	};
8021 	int err;
8022 
8023 	if (!new_dev)
8024 		return 0;
8025 
8026 	if (old_dev && new_dev != old_dev)
8027 		netdev_adjacent_dev_disable(dev, old_dev);
8028 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8029 				      extack);
8030 	if (err) {
8031 		if (old_dev && new_dev != old_dev)
8032 			netdev_adjacent_dev_enable(dev, old_dev);
8033 		return err;
8034 	}
8035 
8036 	return 0;
8037 }
8038 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8039 
8040 void netdev_adjacent_change_commit(struct net_device *old_dev,
8041 				   struct net_device *new_dev,
8042 				   struct net_device *dev)
8043 {
8044 	struct netdev_nested_priv priv = {
8045 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8046 		.data = NULL,
8047 	};
8048 
8049 	if (!new_dev || !old_dev)
8050 		return;
8051 
8052 	if (new_dev == old_dev)
8053 		return;
8054 
8055 	netdev_adjacent_dev_enable(dev, old_dev);
8056 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8057 }
8058 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8059 
8060 void netdev_adjacent_change_abort(struct net_device *old_dev,
8061 				  struct net_device *new_dev,
8062 				  struct net_device *dev)
8063 {
8064 	struct netdev_nested_priv priv = {
8065 		.flags = 0,
8066 		.data = NULL,
8067 	};
8068 
8069 	if (!new_dev)
8070 		return;
8071 
8072 	if (old_dev && new_dev != old_dev)
8073 		netdev_adjacent_dev_enable(dev, old_dev);
8074 
8075 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8076 }
8077 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8078 
8079 /**
8080  * netdev_bonding_info_change - Dispatch event about slave change
8081  * @dev: device
8082  * @bonding_info: info to dispatch
8083  *
8084  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8085  * The caller must hold the RTNL lock.
8086  */
8087 void netdev_bonding_info_change(struct net_device *dev,
8088 				struct netdev_bonding_info *bonding_info)
8089 {
8090 	struct netdev_notifier_bonding_info info = {
8091 		.info.dev = dev,
8092 	};
8093 
8094 	memcpy(&info.bonding_info, bonding_info,
8095 	       sizeof(struct netdev_bonding_info));
8096 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8097 				      &info.info);
8098 }
8099 EXPORT_SYMBOL(netdev_bonding_info_change);
8100 
8101 /**
8102  * netdev_get_xmit_slave - Get the xmit slave of master device
8103  * @dev: device
8104  * @skb: The packet
8105  * @all_slaves: assume all the slaves are active
8106  *
8107  * The reference counters are not incremented so the caller must be
8108  * careful with locks. The caller must hold RCU lock.
8109  * %NULL is returned if no slave is found.
8110  */
8111 
8112 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8113 					 struct sk_buff *skb,
8114 					 bool all_slaves)
8115 {
8116 	const struct net_device_ops *ops = dev->netdev_ops;
8117 
8118 	if (!ops->ndo_get_xmit_slave)
8119 		return NULL;
8120 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8121 }
8122 EXPORT_SYMBOL(netdev_get_xmit_slave);
8123 
8124 static void netdev_adjacent_add_links(struct net_device *dev)
8125 {
8126 	struct netdev_adjacent *iter;
8127 
8128 	struct net *net = dev_net(dev);
8129 
8130 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8131 		if (!net_eq(net, dev_net(iter->dev)))
8132 			continue;
8133 		netdev_adjacent_sysfs_add(iter->dev, dev,
8134 					  &iter->dev->adj_list.lower);
8135 		netdev_adjacent_sysfs_add(dev, iter->dev,
8136 					  &dev->adj_list.upper);
8137 	}
8138 
8139 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8140 		if (!net_eq(net, dev_net(iter->dev)))
8141 			continue;
8142 		netdev_adjacent_sysfs_add(iter->dev, dev,
8143 					  &iter->dev->adj_list.upper);
8144 		netdev_adjacent_sysfs_add(dev, iter->dev,
8145 					  &dev->adj_list.lower);
8146 	}
8147 }
8148 
8149 static void netdev_adjacent_del_links(struct net_device *dev)
8150 {
8151 	struct netdev_adjacent *iter;
8152 
8153 	struct net *net = dev_net(dev);
8154 
8155 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8156 		if (!net_eq(net, dev_net(iter->dev)))
8157 			continue;
8158 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8159 					  &iter->dev->adj_list.lower);
8160 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8161 					  &dev->adj_list.upper);
8162 	}
8163 
8164 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8165 		if (!net_eq(net, dev_net(iter->dev)))
8166 			continue;
8167 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8168 					  &iter->dev->adj_list.upper);
8169 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8170 					  &dev->adj_list.lower);
8171 	}
8172 }
8173 
8174 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8175 {
8176 	struct netdev_adjacent *iter;
8177 
8178 	struct net *net = dev_net(dev);
8179 
8180 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8181 		if (!net_eq(net, dev_net(iter->dev)))
8182 			continue;
8183 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8184 					  &iter->dev->adj_list.lower);
8185 		netdev_adjacent_sysfs_add(iter->dev, dev,
8186 					  &iter->dev->adj_list.lower);
8187 	}
8188 
8189 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8190 		if (!net_eq(net, dev_net(iter->dev)))
8191 			continue;
8192 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8193 					  &iter->dev->adj_list.upper);
8194 		netdev_adjacent_sysfs_add(iter->dev, dev,
8195 					  &iter->dev->adj_list.upper);
8196 	}
8197 }
8198 
8199 void *netdev_lower_dev_get_private(struct net_device *dev,
8200 				   struct net_device *lower_dev)
8201 {
8202 	struct netdev_adjacent *lower;
8203 
8204 	if (!lower_dev)
8205 		return NULL;
8206 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8207 	if (!lower)
8208 		return NULL;
8209 
8210 	return lower->private;
8211 }
8212 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8213 
8214 
8215 /**
8216  * netdev_lower_state_changed - Dispatch event about lower device state change
8217  * @lower_dev: device
8218  * @lower_state_info: state to dispatch
8219  *
8220  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8221  * The caller must hold the RTNL lock.
8222  */
8223 void netdev_lower_state_changed(struct net_device *lower_dev,
8224 				void *lower_state_info)
8225 {
8226 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8227 		.info.dev = lower_dev,
8228 	};
8229 
8230 	ASSERT_RTNL();
8231 	changelowerstate_info.lower_state_info = lower_state_info;
8232 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8233 				      &changelowerstate_info.info);
8234 }
8235 EXPORT_SYMBOL(netdev_lower_state_changed);
8236 
8237 static void dev_change_rx_flags(struct net_device *dev, int flags)
8238 {
8239 	const struct net_device_ops *ops = dev->netdev_ops;
8240 
8241 	if (ops->ndo_change_rx_flags)
8242 		ops->ndo_change_rx_flags(dev, flags);
8243 }
8244 
8245 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8246 {
8247 	unsigned int old_flags = dev->flags;
8248 	kuid_t uid;
8249 	kgid_t gid;
8250 
8251 	ASSERT_RTNL();
8252 
8253 	dev->flags |= IFF_PROMISC;
8254 	dev->promiscuity += inc;
8255 	if (dev->promiscuity == 0) {
8256 		/*
8257 		 * Avoid overflow.
8258 		 * If inc causes overflow, untouch promisc and return error.
8259 		 */
8260 		if (inc < 0)
8261 			dev->flags &= ~IFF_PROMISC;
8262 		else {
8263 			dev->promiscuity -= inc;
8264 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8265 				dev->name);
8266 			return -EOVERFLOW;
8267 		}
8268 	}
8269 	if (dev->flags != old_flags) {
8270 		pr_info("device %s %s promiscuous mode\n",
8271 			dev->name,
8272 			dev->flags & IFF_PROMISC ? "entered" : "left");
8273 		if (audit_enabled) {
8274 			current_uid_gid(&uid, &gid);
8275 			audit_log(audit_context(), GFP_ATOMIC,
8276 				  AUDIT_ANOM_PROMISCUOUS,
8277 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8278 				  dev->name, (dev->flags & IFF_PROMISC),
8279 				  (old_flags & IFF_PROMISC),
8280 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8281 				  from_kuid(&init_user_ns, uid),
8282 				  from_kgid(&init_user_ns, gid),
8283 				  audit_get_sessionid(current));
8284 		}
8285 
8286 		dev_change_rx_flags(dev, IFF_PROMISC);
8287 	}
8288 	if (notify)
8289 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8290 	return 0;
8291 }
8292 
8293 /**
8294  *	dev_set_promiscuity	- update promiscuity count on a device
8295  *	@dev: device
8296  *	@inc: modifier
8297  *
8298  *	Add or remove promiscuity from a device. While the count in the device
8299  *	remains above zero the interface remains promiscuous. Once it hits zero
8300  *	the device reverts back to normal filtering operation. A negative inc
8301  *	value is used to drop promiscuity on the device.
8302  *	Return 0 if successful or a negative errno code on error.
8303  */
8304 int dev_set_promiscuity(struct net_device *dev, int inc)
8305 {
8306 	unsigned int old_flags = dev->flags;
8307 	int err;
8308 
8309 	err = __dev_set_promiscuity(dev, inc, true);
8310 	if (err < 0)
8311 		return err;
8312 	if (dev->flags != old_flags)
8313 		dev_set_rx_mode(dev);
8314 	return err;
8315 }
8316 EXPORT_SYMBOL(dev_set_promiscuity);
8317 
8318 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8319 {
8320 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8321 
8322 	ASSERT_RTNL();
8323 
8324 	dev->flags |= IFF_ALLMULTI;
8325 	dev->allmulti += inc;
8326 	if (dev->allmulti == 0) {
8327 		/*
8328 		 * Avoid overflow.
8329 		 * If inc causes overflow, untouch allmulti and return error.
8330 		 */
8331 		if (inc < 0)
8332 			dev->flags &= ~IFF_ALLMULTI;
8333 		else {
8334 			dev->allmulti -= inc;
8335 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8336 				dev->name);
8337 			return -EOVERFLOW;
8338 		}
8339 	}
8340 	if (dev->flags ^ old_flags) {
8341 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8342 		dev_set_rx_mode(dev);
8343 		if (notify)
8344 			__dev_notify_flags(dev, old_flags,
8345 					   dev->gflags ^ old_gflags);
8346 	}
8347 	return 0;
8348 }
8349 
8350 /**
8351  *	dev_set_allmulti	- update allmulti count on a device
8352  *	@dev: device
8353  *	@inc: modifier
8354  *
8355  *	Add or remove reception of all multicast frames to a device. While the
8356  *	count in the device remains above zero the interface remains listening
8357  *	to all interfaces. Once it hits zero the device reverts back to normal
8358  *	filtering operation. A negative @inc value is used to drop the counter
8359  *	when releasing a resource needing all multicasts.
8360  *	Return 0 if successful or a negative errno code on error.
8361  */
8362 
8363 int dev_set_allmulti(struct net_device *dev, int inc)
8364 {
8365 	return __dev_set_allmulti(dev, inc, true);
8366 }
8367 EXPORT_SYMBOL(dev_set_allmulti);
8368 
8369 /*
8370  *	Upload unicast and multicast address lists to device and
8371  *	configure RX filtering. When the device doesn't support unicast
8372  *	filtering it is put in promiscuous mode while unicast addresses
8373  *	are present.
8374  */
8375 void __dev_set_rx_mode(struct net_device *dev)
8376 {
8377 	const struct net_device_ops *ops = dev->netdev_ops;
8378 
8379 	/* dev_open will call this function so the list will stay sane. */
8380 	if (!(dev->flags&IFF_UP))
8381 		return;
8382 
8383 	if (!netif_device_present(dev))
8384 		return;
8385 
8386 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8387 		/* Unicast addresses changes may only happen under the rtnl,
8388 		 * therefore calling __dev_set_promiscuity here is safe.
8389 		 */
8390 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8391 			__dev_set_promiscuity(dev, 1, false);
8392 			dev->uc_promisc = true;
8393 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8394 			__dev_set_promiscuity(dev, -1, false);
8395 			dev->uc_promisc = false;
8396 		}
8397 	}
8398 
8399 	if (ops->ndo_set_rx_mode)
8400 		ops->ndo_set_rx_mode(dev);
8401 }
8402 
8403 void dev_set_rx_mode(struct net_device *dev)
8404 {
8405 	netif_addr_lock_bh(dev);
8406 	__dev_set_rx_mode(dev);
8407 	netif_addr_unlock_bh(dev);
8408 }
8409 
8410 /**
8411  *	dev_get_flags - get flags reported to userspace
8412  *	@dev: device
8413  *
8414  *	Get the combination of flag bits exported through APIs to userspace.
8415  */
8416 unsigned int dev_get_flags(const struct net_device *dev)
8417 {
8418 	unsigned int flags;
8419 
8420 	flags = (dev->flags & ~(IFF_PROMISC |
8421 				IFF_ALLMULTI |
8422 				IFF_RUNNING |
8423 				IFF_LOWER_UP |
8424 				IFF_DORMANT)) |
8425 		(dev->gflags & (IFF_PROMISC |
8426 				IFF_ALLMULTI));
8427 
8428 	if (netif_running(dev)) {
8429 		if (netif_oper_up(dev))
8430 			flags |= IFF_RUNNING;
8431 		if (netif_carrier_ok(dev))
8432 			flags |= IFF_LOWER_UP;
8433 		if (netif_dormant(dev))
8434 			flags |= IFF_DORMANT;
8435 	}
8436 
8437 	return flags;
8438 }
8439 EXPORT_SYMBOL(dev_get_flags);
8440 
8441 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8442 		       struct netlink_ext_ack *extack)
8443 {
8444 	unsigned int old_flags = dev->flags;
8445 	int ret;
8446 
8447 	ASSERT_RTNL();
8448 
8449 	/*
8450 	 *	Set the flags on our device.
8451 	 */
8452 
8453 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8454 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8455 			       IFF_AUTOMEDIA)) |
8456 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8457 				    IFF_ALLMULTI));
8458 
8459 	/*
8460 	 *	Load in the correct multicast list now the flags have changed.
8461 	 */
8462 
8463 	if ((old_flags ^ flags) & IFF_MULTICAST)
8464 		dev_change_rx_flags(dev, IFF_MULTICAST);
8465 
8466 	dev_set_rx_mode(dev);
8467 
8468 	/*
8469 	 *	Have we downed the interface. We handle IFF_UP ourselves
8470 	 *	according to user attempts to set it, rather than blindly
8471 	 *	setting it.
8472 	 */
8473 
8474 	ret = 0;
8475 	if ((old_flags ^ flags) & IFF_UP) {
8476 		if (old_flags & IFF_UP)
8477 			__dev_close(dev);
8478 		else
8479 			ret = __dev_open(dev, extack);
8480 	}
8481 
8482 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8483 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8484 		unsigned int old_flags = dev->flags;
8485 
8486 		dev->gflags ^= IFF_PROMISC;
8487 
8488 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8489 			if (dev->flags != old_flags)
8490 				dev_set_rx_mode(dev);
8491 	}
8492 
8493 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8494 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8495 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8496 	 */
8497 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8498 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8499 
8500 		dev->gflags ^= IFF_ALLMULTI;
8501 		__dev_set_allmulti(dev, inc, false);
8502 	}
8503 
8504 	return ret;
8505 }
8506 
8507 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8508 			unsigned int gchanges)
8509 {
8510 	unsigned int changes = dev->flags ^ old_flags;
8511 
8512 	if (gchanges)
8513 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8514 
8515 	if (changes & IFF_UP) {
8516 		if (dev->flags & IFF_UP)
8517 			call_netdevice_notifiers(NETDEV_UP, dev);
8518 		else
8519 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8520 	}
8521 
8522 	if (dev->flags & IFF_UP &&
8523 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8524 		struct netdev_notifier_change_info change_info = {
8525 			.info = {
8526 				.dev = dev,
8527 			},
8528 			.flags_changed = changes,
8529 		};
8530 
8531 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8532 	}
8533 }
8534 
8535 /**
8536  *	dev_change_flags - change device settings
8537  *	@dev: device
8538  *	@flags: device state flags
8539  *	@extack: netlink extended ack
8540  *
8541  *	Change settings on device based state flags. The flags are
8542  *	in the userspace exported format.
8543  */
8544 int dev_change_flags(struct net_device *dev, unsigned int flags,
8545 		     struct netlink_ext_ack *extack)
8546 {
8547 	int ret;
8548 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8549 
8550 	ret = __dev_change_flags(dev, flags, extack);
8551 	if (ret < 0)
8552 		return ret;
8553 
8554 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8555 	__dev_notify_flags(dev, old_flags, changes);
8556 	return ret;
8557 }
8558 EXPORT_SYMBOL(dev_change_flags);
8559 
8560 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8561 {
8562 	const struct net_device_ops *ops = dev->netdev_ops;
8563 
8564 	if (ops->ndo_change_mtu)
8565 		return ops->ndo_change_mtu(dev, new_mtu);
8566 
8567 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8568 	WRITE_ONCE(dev->mtu, new_mtu);
8569 	return 0;
8570 }
8571 EXPORT_SYMBOL(__dev_set_mtu);
8572 
8573 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8574 		     struct netlink_ext_ack *extack)
8575 {
8576 	/* MTU must be positive, and in range */
8577 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8578 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8579 		return -EINVAL;
8580 	}
8581 
8582 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8583 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8584 		return -EINVAL;
8585 	}
8586 	return 0;
8587 }
8588 
8589 /**
8590  *	dev_set_mtu_ext - Change maximum transfer unit
8591  *	@dev: device
8592  *	@new_mtu: new transfer unit
8593  *	@extack: netlink extended ack
8594  *
8595  *	Change the maximum transfer size of the network device.
8596  */
8597 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8598 		    struct netlink_ext_ack *extack)
8599 {
8600 	int err, orig_mtu;
8601 
8602 	if (new_mtu == dev->mtu)
8603 		return 0;
8604 
8605 	err = dev_validate_mtu(dev, new_mtu, extack);
8606 	if (err)
8607 		return err;
8608 
8609 	if (!netif_device_present(dev))
8610 		return -ENODEV;
8611 
8612 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8613 	err = notifier_to_errno(err);
8614 	if (err)
8615 		return err;
8616 
8617 	orig_mtu = dev->mtu;
8618 	err = __dev_set_mtu(dev, new_mtu);
8619 
8620 	if (!err) {
8621 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8622 						   orig_mtu);
8623 		err = notifier_to_errno(err);
8624 		if (err) {
8625 			/* setting mtu back and notifying everyone again,
8626 			 * so that they have a chance to revert changes.
8627 			 */
8628 			__dev_set_mtu(dev, orig_mtu);
8629 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8630 						     new_mtu);
8631 		}
8632 	}
8633 	return err;
8634 }
8635 
8636 int dev_set_mtu(struct net_device *dev, int new_mtu)
8637 {
8638 	struct netlink_ext_ack extack;
8639 	int err;
8640 
8641 	memset(&extack, 0, sizeof(extack));
8642 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8643 	if (err && extack._msg)
8644 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8645 	return err;
8646 }
8647 EXPORT_SYMBOL(dev_set_mtu);
8648 
8649 /**
8650  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8651  *	@dev: device
8652  *	@new_len: new tx queue length
8653  */
8654 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8655 {
8656 	unsigned int orig_len = dev->tx_queue_len;
8657 	int res;
8658 
8659 	if (new_len != (unsigned int)new_len)
8660 		return -ERANGE;
8661 
8662 	if (new_len != orig_len) {
8663 		dev->tx_queue_len = new_len;
8664 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8665 		res = notifier_to_errno(res);
8666 		if (res)
8667 			goto err_rollback;
8668 		res = dev_qdisc_change_tx_queue_len(dev);
8669 		if (res)
8670 			goto err_rollback;
8671 	}
8672 
8673 	return 0;
8674 
8675 err_rollback:
8676 	netdev_err(dev, "refused to change device tx_queue_len\n");
8677 	dev->tx_queue_len = orig_len;
8678 	return res;
8679 }
8680 
8681 /**
8682  *	dev_set_group - Change group this device belongs to
8683  *	@dev: device
8684  *	@new_group: group this device should belong to
8685  */
8686 void dev_set_group(struct net_device *dev, int new_group)
8687 {
8688 	dev->group = new_group;
8689 }
8690 EXPORT_SYMBOL(dev_set_group);
8691 
8692 /**
8693  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8694  *	@dev: device
8695  *	@addr: new address
8696  *	@extack: netlink extended ack
8697  */
8698 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8699 			      struct netlink_ext_ack *extack)
8700 {
8701 	struct netdev_notifier_pre_changeaddr_info info = {
8702 		.info.dev = dev,
8703 		.info.extack = extack,
8704 		.dev_addr = addr,
8705 	};
8706 	int rc;
8707 
8708 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8709 	return notifier_to_errno(rc);
8710 }
8711 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8712 
8713 /**
8714  *	dev_set_mac_address - Change Media Access Control Address
8715  *	@dev: device
8716  *	@sa: new address
8717  *	@extack: netlink extended ack
8718  *
8719  *	Change the hardware (MAC) address of the device
8720  */
8721 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8722 			struct netlink_ext_ack *extack)
8723 {
8724 	const struct net_device_ops *ops = dev->netdev_ops;
8725 	int err;
8726 
8727 	if (!ops->ndo_set_mac_address)
8728 		return -EOPNOTSUPP;
8729 	if (sa->sa_family != dev->type)
8730 		return -EINVAL;
8731 	if (!netif_device_present(dev))
8732 		return -ENODEV;
8733 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8734 	if (err)
8735 		return err;
8736 	err = ops->ndo_set_mac_address(dev, sa);
8737 	if (err)
8738 		return err;
8739 	dev->addr_assign_type = NET_ADDR_SET;
8740 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8741 	add_device_randomness(dev->dev_addr, dev->addr_len);
8742 	return 0;
8743 }
8744 EXPORT_SYMBOL(dev_set_mac_address);
8745 
8746 /**
8747  *	dev_change_carrier - Change device carrier
8748  *	@dev: device
8749  *	@new_carrier: new value
8750  *
8751  *	Change device carrier
8752  */
8753 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8754 {
8755 	const struct net_device_ops *ops = dev->netdev_ops;
8756 
8757 	if (!ops->ndo_change_carrier)
8758 		return -EOPNOTSUPP;
8759 	if (!netif_device_present(dev))
8760 		return -ENODEV;
8761 	return ops->ndo_change_carrier(dev, new_carrier);
8762 }
8763 EXPORT_SYMBOL(dev_change_carrier);
8764 
8765 /**
8766  *	dev_get_phys_port_id - Get device physical port ID
8767  *	@dev: device
8768  *	@ppid: port ID
8769  *
8770  *	Get device physical port ID
8771  */
8772 int dev_get_phys_port_id(struct net_device *dev,
8773 			 struct netdev_phys_item_id *ppid)
8774 {
8775 	const struct net_device_ops *ops = dev->netdev_ops;
8776 
8777 	if (!ops->ndo_get_phys_port_id)
8778 		return -EOPNOTSUPP;
8779 	return ops->ndo_get_phys_port_id(dev, ppid);
8780 }
8781 EXPORT_SYMBOL(dev_get_phys_port_id);
8782 
8783 /**
8784  *	dev_get_phys_port_name - Get device physical port name
8785  *	@dev: device
8786  *	@name: port name
8787  *	@len: limit of bytes to copy to name
8788  *
8789  *	Get device physical port name
8790  */
8791 int dev_get_phys_port_name(struct net_device *dev,
8792 			   char *name, size_t len)
8793 {
8794 	const struct net_device_ops *ops = dev->netdev_ops;
8795 	int err;
8796 
8797 	if (ops->ndo_get_phys_port_name) {
8798 		err = ops->ndo_get_phys_port_name(dev, name, len);
8799 		if (err != -EOPNOTSUPP)
8800 			return err;
8801 	}
8802 	return devlink_compat_phys_port_name_get(dev, name, len);
8803 }
8804 EXPORT_SYMBOL(dev_get_phys_port_name);
8805 
8806 /**
8807  *	dev_get_port_parent_id - Get the device's port parent identifier
8808  *	@dev: network device
8809  *	@ppid: pointer to a storage for the port's parent identifier
8810  *	@recurse: allow/disallow recursion to lower devices
8811  *
8812  *	Get the devices's port parent identifier
8813  */
8814 int dev_get_port_parent_id(struct net_device *dev,
8815 			   struct netdev_phys_item_id *ppid,
8816 			   bool recurse)
8817 {
8818 	const struct net_device_ops *ops = dev->netdev_ops;
8819 	struct netdev_phys_item_id first = { };
8820 	struct net_device *lower_dev;
8821 	struct list_head *iter;
8822 	int err;
8823 
8824 	if (ops->ndo_get_port_parent_id) {
8825 		err = ops->ndo_get_port_parent_id(dev, ppid);
8826 		if (err != -EOPNOTSUPP)
8827 			return err;
8828 	}
8829 
8830 	err = devlink_compat_switch_id_get(dev, ppid);
8831 	if (!err || err != -EOPNOTSUPP)
8832 		return err;
8833 
8834 	if (!recurse)
8835 		return -EOPNOTSUPP;
8836 
8837 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8838 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8839 		if (err)
8840 			break;
8841 		if (!first.id_len)
8842 			first = *ppid;
8843 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8844 			return -EOPNOTSUPP;
8845 	}
8846 
8847 	return err;
8848 }
8849 EXPORT_SYMBOL(dev_get_port_parent_id);
8850 
8851 /**
8852  *	netdev_port_same_parent_id - Indicate if two network devices have
8853  *	the same port parent identifier
8854  *	@a: first network device
8855  *	@b: second network device
8856  */
8857 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8858 {
8859 	struct netdev_phys_item_id a_id = { };
8860 	struct netdev_phys_item_id b_id = { };
8861 
8862 	if (dev_get_port_parent_id(a, &a_id, true) ||
8863 	    dev_get_port_parent_id(b, &b_id, true))
8864 		return false;
8865 
8866 	return netdev_phys_item_id_same(&a_id, &b_id);
8867 }
8868 EXPORT_SYMBOL(netdev_port_same_parent_id);
8869 
8870 /**
8871  *	dev_change_proto_down - update protocol port state information
8872  *	@dev: device
8873  *	@proto_down: new value
8874  *
8875  *	This info can be used by switch drivers to set the phys state of the
8876  *	port.
8877  */
8878 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8879 {
8880 	const struct net_device_ops *ops = dev->netdev_ops;
8881 
8882 	if (!ops->ndo_change_proto_down)
8883 		return -EOPNOTSUPP;
8884 	if (!netif_device_present(dev))
8885 		return -ENODEV;
8886 	return ops->ndo_change_proto_down(dev, proto_down);
8887 }
8888 EXPORT_SYMBOL(dev_change_proto_down);
8889 
8890 /**
8891  *	dev_change_proto_down_generic - generic implementation for
8892  * 	ndo_change_proto_down that sets carrier according to
8893  * 	proto_down.
8894  *
8895  *	@dev: device
8896  *	@proto_down: new value
8897  */
8898 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8899 {
8900 	if (proto_down)
8901 		netif_carrier_off(dev);
8902 	else
8903 		netif_carrier_on(dev);
8904 	dev->proto_down = proto_down;
8905 	return 0;
8906 }
8907 EXPORT_SYMBOL(dev_change_proto_down_generic);
8908 
8909 /**
8910  *	dev_change_proto_down_reason - proto down reason
8911  *
8912  *	@dev: device
8913  *	@mask: proto down mask
8914  *	@value: proto down value
8915  */
8916 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8917 				  u32 value)
8918 {
8919 	int b;
8920 
8921 	if (!mask) {
8922 		dev->proto_down_reason = value;
8923 	} else {
8924 		for_each_set_bit(b, &mask, 32) {
8925 			if (value & (1 << b))
8926 				dev->proto_down_reason |= BIT(b);
8927 			else
8928 				dev->proto_down_reason &= ~BIT(b);
8929 		}
8930 	}
8931 }
8932 EXPORT_SYMBOL(dev_change_proto_down_reason);
8933 
8934 struct bpf_xdp_link {
8935 	struct bpf_link link;
8936 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8937 	int flags;
8938 };
8939 
8940 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8941 {
8942 	if (flags & XDP_FLAGS_HW_MODE)
8943 		return XDP_MODE_HW;
8944 	if (flags & XDP_FLAGS_DRV_MODE)
8945 		return XDP_MODE_DRV;
8946 	if (flags & XDP_FLAGS_SKB_MODE)
8947 		return XDP_MODE_SKB;
8948 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8949 }
8950 
8951 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8952 {
8953 	switch (mode) {
8954 	case XDP_MODE_SKB:
8955 		return generic_xdp_install;
8956 	case XDP_MODE_DRV:
8957 	case XDP_MODE_HW:
8958 		return dev->netdev_ops->ndo_bpf;
8959 	default:
8960 		return NULL;
8961 	}
8962 }
8963 
8964 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8965 					 enum bpf_xdp_mode mode)
8966 {
8967 	return dev->xdp_state[mode].link;
8968 }
8969 
8970 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8971 				     enum bpf_xdp_mode mode)
8972 {
8973 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8974 
8975 	if (link)
8976 		return link->link.prog;
8977 	return dev->xdp_state[mode].prog;
8978 }
8979 
8980 static u8 dev_xdp_prog_count(struct net_device *dev)
8981 {
8982 	u8 count = 0;
8983 	int i;
8984 
8985 	for (i = 0; i < __MAX_XDP_MODE; i++)
8986 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8987 			count++;
8988 	return count;
8989 }
8990 
8991 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8992 {
8993 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8994 
8995 	return prog ? prog->aux->id : 0;
8996 }
8997 
8998 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8999 			     struct bpf_xdp_link *link)
9000 {
9001 	dev->xdp_state[mode].link = link;
9002 	dev->xdp_state[mode].prog = NULL;
9003 }
9004 
9005 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9006 			     struct bpf_prog *prog)
9007 {
9008 	dev->xdp_state[mode].link = NULL;
9009 	dev->xdp_state[mode].prog = prog;
9010 }
9011 
9012 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9013 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9014 			   u32 flags, struct bpf_prog *prog)
9015 {
9016 	struct netdev_bpf xdp;
9017 	int err;
9018 
9019 	memset(&xdp, 0, sizeof(xdp));
9020 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9021 	xdp.extack = extack;
9022 	xdp.flags = flags;
9023 	xdp.prog = prog;
9024 
9025 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9026 	 * "moved" into driver), so they don't increment it on their own, but
9027 	 * they do decrement refcnt when program is detached or replaced.
9028 	 * Given net_device also owns link/prog, we need to bump refcnt here
9029 	 * to prevent drivers from underflowing it.
9030 	 */
9031 	if (prog)
9032 		bpf_prog_inc(prog);
9033 	err = bpf_op(dev, &xdp);
9034 	if (err) {
9035 		if (prog)
9036 			bpf_prog_put(prog);
9037 		return err;
9038 	}
9039 
9040 	if (mode != XDP_MODE_HW)
9041 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9042 
9043 	return 0;
9044 }
9045 
9046 static void dev_xdp_uninstall(struct net_device *dev)
9047 {
9048 	struct bpf_xdp_link *link;
9049 	struct bpf_prog *prog;
9050 	enum bpf_xdp_mode mode;
9051 	bpf_op_t bpf_op;
9052 
9053 	ASSERT_RTNL();
9054 
9055 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9056 		prog = dev_xdp_prog(dev, mode);
9057 		if (!prog)
9058 			continue;
9059 
9060 		bpf_op = dev_xdp_bpf_op(dev, mode);
9061 		if (!bpf_op)
9062 			continue;
9063 
9064 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9065 
9066 		/* auto-detach link from net device */
9067 		link = dev_xdp_link(dev, mode);
9068 		if (link)
9069 			link->dev = NULL;
9070 		else
9071 			bpf_prog_put(prog);
9072 
9073 		dev_xdp_set_link(dev, mode, NULL);
9074 	}
9075 }
9076 
9077 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9078 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9079 			  struct bpf_prog *old_prog, u32 flags)
9080 {
9081 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9082 	struct bpf_prog *cur_prog;
9083 	enum bpf_xdp_mode mode;
9084 	bpf_op_t bpf_op;
9085 	int err;
9086 
9087 	ASSERT_RTNL();
9088 
9089 	/* either link or prog attachment, never both */
9090 	if (link && (new_prog || old_prog))
9091 		return -EINVAL;
9092 	/* link supports only XDP mode flags */
9093 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9094 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9095 		return -EINVAL;
9096 	}
9097 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9098 	if (num_modes > 1) {
9099 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9100 		return -EINVAL;
9101 	}
9102 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9103 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9104 		NL_SET_ERR_MSG(extack,
9105 			       "More than one program loaded, unset mode is ambiguous");
9106 		return -EINVAL;
9107 	}
9108 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9109 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9110 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9111 		return -EINVAL;
9112 	}
9113 
9114 	mode = dev_xdp_mode(dev, flags);
9115 	/* can't replace attached link */
9116 	if (dev_xdp_link(dev, mode)) {
9117 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9118 		return -EBUSY;
9119 	}
9120 
9121 	cur_prog = dev_xdp_prog(dev, mode);
9122 	/* can't replace attached prog with link */
9123 	if (link && cur_prog) {
9124 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9125 		return -EBUSY;
9126 	}
9127 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9128 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9129 		return -EEXIST;
9130 	}
9131 
9132 	/* put effective new program into new_prog */
9133 	if (link)
9134 		new_prog = link->link.prog;
9135 
9136 	if (new_prog) {
9137 		bool offload = mode == XDP_MODE_HW;
9138 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9139 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9140 
9141 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9142 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9143 			return -EBUSY;
9144 		}
9145 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9146 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9147 			return -EEXIST;
9148 		}
9149 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9150 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9151 			return -EINVAL;
9152 		}
9153 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9154 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9155 			return -EINVAL;
9156 		}
9157 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9158 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9159 			return -EINVAL;
9160 		}
9161 	}
9162 
9163 	/* don't call drivers if the effective program didn't change */
9164 	if (new_prog != cur_prog) {
9165 		bpf_op = dev_xdp_bpf_op(dev, mode);
9166 		if (!bpf_op) {
9167 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9168 			return -EOPNOTSUPP;
9169 		}
9170 
9171 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9172 		if (err)
9173 			return err;
9174 	}
9175 
9176 	if (link)
9177 		dev_xdp_set_link(dev, mode, link);
9178 	else
9179 		dev_xdp_set_prog(dev, mode, new_prog);
9180 	if (cur_prog)
9181 		bpf_prog_put(cur_prog);
9182 
9183 	return 0;
9184 }
9185 
9186 static int dev_xdp_attach_link(struct net_device *dev,
9187 			       struct netlink_ext_ack *extack,
9188 			       struct bpf_xdp_link *link)
9189 {
9190 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9191 }
9192 
9193 static int dev_xdp_detach_link(struct net_device *dev,
9194 			       struct netlink_ext_ack *extack,
9195 			       struct bpf_xdp_link *link)
9196 {
9197 	enum bpf_xdp_mode mode;
9198 	bpf_op_t bpf_op;
9199 
9200 	ASSERT_RTNL();
9201 
9202 	mode = dev_xdp_mode(dev, link->flags);
9203 	if (dev_xdp_link(dev, mode) != link)
9204 		return -EINVAL;
9205 
9206 	bpf_op = dev_xdp_bpf_op(dev, mode);
9207 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9208 	dev_xdp_set_link(dev, mode, NULL);
9209 	return 0;
9210 }
9211 
9212 static void bpf_xdp_link_release(struct bpf_link *link)
9213 {
9214 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9215 
9216 	rtnl_lock();
9217 
9218 	/* if racing with net_device's tear down, xdp_link->dev might be
9219 	 * already NULL, in which case link was already auto-detached
9220 	 */
9221 	if (xdp_link->dev) {
9222 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9223 		xdp_link->dev = NULL;
9224 	}
9225 
9226 	rtnl_unlock();
9227 }
9228 
9229 static int bpf_xdp_link_detach(struct bpf_link *link)
9230 {
9231 	bpf_xdp_link_release(link);
9232 	return 0;
9233 }
9234 
9235 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9236 {
9237 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9238 
9239 	kfree(xdp_link);
9240 }
9241 
9242 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9243 				     struct seq_file *seq)
9244 {
9245 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9246 	u32 ifindex = 0;
9247 
9248 	rtnl_lock();
9249 	if (xdp_link->dev)
9250 		ifindex = xdp_link->dev->ifindex;
9251 	rtnl_unlock();
9252 
9253 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9254 }
9255 
9256 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9257 				       struct bpf_link_info *info)
9258 {
9259 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9260 	u32 ifindex = 0;
9261 
9262 	rtnl_lock();
9263 	if (xdp_link->dev)
9264 		ifindex = xdp_link->dev->ifindex;
9265 	rtnl_unlock();
9266 
9267 	info->xdp.ifindex = ifindex;
9268 	return 0;
9269 }
9270 
9271 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9272 			       struct bpf_prog *old_prog)
9273 {
9274 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9275 	enum bpf_xdp_mode mode;
9276 	bpf_op_t bpf_op;
9277 	int err = 0;
9278 
9279 	rtnl_lock();
9280 
9281 	/* link might have been auto-released already, so fail */
9282 	if (!xdp_link->dev) {
9283 		err = -ENOLINK;
9284 		goto out_unlock;
9285 	}
9286 
9287 	if (old_prog && link->prog != old_prog) {
9288 		err = -EPERM;
9289 		goto out_unlock;
9290 	}
9291 	old_prog = link->prog;
9292 	if (old_prog == new_prog) {
9293 		/* no-op, don't disturb drivers */
9294 		bpf_prog_put(new_prog);
9295 		goto out_unlock;
9296 	}
9297 
9298 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9299 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9300 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9301 			      xdp_link->flags, new_prog);
9302 	if (err)
9303 		goto out_unlock;
9304 
9305 	old_prog = xchg(&link->prog, new_prog);
9306 	bpf_prog_put(old_prog);
9307 
9308 out_unlock:
9309 	rtnl_unlock();
9310 	return err;
9311 }
9312 
9313 static const struct bpf_link_ops bpf_xdp_link_lops = {
9314 	.release = bpf_xdp_link_release,
9315 	.dealloc = bpf_xdp_link_dealloc,
9316 	.detach = bpf_xdp_link_detach,
9317 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9318 	.fill_link_info = bpf_xdp_link_fill_link_info,
9319 	.update_prog = bpf_xdp_link_update,
9320 };
9321 
9322 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9323 {
9324 	struct net *net = current->nsproxy->net_ns;
9325 	struct bpf_link_primer link_primer;
9326 	struct bpf_xdp_link *link;
9327 	struct net_device *dev;
9328 	int err, fd;
9329 
9330 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9331 	if (!dev)
9332 		return -EINVAL;
9333 
9334 	link = kzalloc(sizeof(*link), GFP_USER);
9335 	if (!link) {
9336 		err = -ENOMEM;
9337 		goto out_put_dev;
9338 	}
9339 
9340 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9341 	link->dev = dev;
9342 	link->flags = attr->link_create.flags;
9343 
9344 	err = bpf_link_prime(&link->link, &link_primer);
9345 	if (err) {
9346 		kfree(link);
9347 		goto out_put_dev;
9348 	}
9349 
9350 	rtnl_lock();
9351 	err = dev_xdp_attach_link(dev, NULL, link);
9352 	rtnl_unlock();
9353 
9354 	if (err) {
9355 		bpf_link_cleanup(&link_primer);
9356 		goto out_put_dev;
9357 	}
9358 
9359 	fd = bpf_link_settle(&link_primer);
9360 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9361 	dev_put(dev);
9362 	return fd;
9363 
9364 out_put_dev:
9365 	dev_put(dev);
9366 	return err;
9367 }
9368 
9369 /**
9370  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9371  *	@dev: device
9372  *	@extack: netlink extended ack
9373  *	@fd: new program fd or negative value to clear
9374  *	@expected_fd: old program fd that userspace expects to replace or clear
9375  *	@flags: xdp-related flags
9376  *
9377  *	Set or clear a bpf program for a device
9378  */
9379 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9380 		      int fd, int expected_fd, u32 flags)
9381 {
9382 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9383 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9384 	int err;
9385 
9386 	ASSERT_RTNL();
9387 
9388 	if (fd >= 0) {
9389 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9390 						 mode != XDP_MODE_SKB);
9391 		if (IS_ERR(new_prog))
9392 			return PTR_ERR(new_prog);
9393 	}
9394 
9395 	if (expected_fd >= 0) {
9396 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9397 						 mode != XDP_MODE_SKB);
9398 		if (IS_ERR(old_prog)) {
9399 			err = PTR_ERR(old_prog);
9400 			old_prog = NULL;
9401 			goto err_out;
9402 		}
9403 	}
9404 
9405 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9406 
9407 err_out:
9408 	if (err && new_prog)
9409 		bpf_prog_put(new_prog);
9410 	if (old_prog)
9411 		bpf_prog_put(old_prog);
9412 	return err;
9413 }
9414 
9415 /**
9416  *	dev_new_index	-	allocate an ifindex
9417  *	@net: the applicable net namespace
9418  *
9419  *	Returns a suitable unique value for a new device interface
9420  *	number.  The caller must hold the rtnl semaphore or the
9421  *	dev_base_lock to be sure it remains unique.
9422  */
9423 static int dev_new_index(struct net *net)
9424 {
9425 	int ifindex = net->ifindex;
9426 
9427 	for (;;) {
9428 		if (++ifindex <= 0)
9429 			ifindex = 1;
9430 		if (!__dev_get_by_index(net, ifindex))
9431 			return net->ifindex = ifindex;
9432 	}
9433 }
9434 
9435 /* Delayed registration/unregisteration */
9436 static LIST_HEAD(net_todo_list);
9437 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9438 
9439 static void net_set_todo(struct net_device *dev)
9440 {
9441 	list_add_tail(&dev->todo_list, &net_todo_list);
9442 	dev_net(dev)->dev_unreg_count++;
9443 }
9444 
9445 static void rollback_registered_many(struct list_head *head)
9446 {
9447 	struct net_device *dev, *tmp;
9448 	LIST_HEAD(close_head);
9449 
9450 	BUG_ON(dev_boot_phase);
9451 	ASSERT_RTNL();
9452 
9453 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9454 		/* Some devices call without registering
9455 		 * for initialization unwind. Remove those
9456 		 * devices and proceed with the remaining.
9457 		 */
9458 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9459 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9460 				 dev->name, dev);
9461 
9462 			WARN_ON(1);
9463 			list_del(&dev->unreg_list);
9464 			continue;
9465 		}
9466 		dev->dismantle = true;
9467 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9468 	}
9469 
9470 	/* If device is running, close it first. */
9471 	list_for_each_entry(dev, head, unreg_list)
9472 		list_add_tail(&dev->close_list, &close_head);
9473 	dev_close_many(&close_head, true);
9474 
9475 	list_for_each_entry(dev, head, unreg_list) {
9476 		/* And unlink it from device chain. */
9477 		unlist_netdevice(dev);
9478 
9479 		dev->reg_state = NETREG_UNREGISTERING;
9480 	}
9481 	flush_all_backlogs();
9482 
9483 	synchronize_net();
9484 
9485 	list_for_each_entry(dev, head, unreg_list) {
9486 		struct sk_buff *skb = NULL;
9487 
9488 		/* Shutdown queueing discipline. */
9489 		dev_shutdown(dev);
9490 
9491 		dev_xdp_uninstall(dev);
9492 
9493 		/* Notify protocols, that we are about to destroy
9494 		 * this device. They should clean all the things.
9495 		 */
9496 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9497 
9498 		if (!dev->rtnl_link_ops ||
9499 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9500 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9501 						     GFP_KERNEL, NULL, 0);
9502 
9503 		/*
9504 		 *	Flush the unicast and multicast chains
9505 		 */
9506 		dev_uc_flush(dev);
9507 		dev_mc_flush(dev);
9508 
9509 		netdev_name_node_alt_flush(dev);
9510 		netdev_name_node_free(dev->name_node);
9511 
9512 		if (dev->netdev_ops->ndo_uninit)
9513 			dev->netdev_ops->ndo_uninit(dev);
9514 
9515 		if (skb)
9516 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9517 
9518 		/* Notifier chain MUST detach us all upper devices. */
9519 		WARN_ON(netdev_has_any_upper_dev(dev));
9520 		WARN_ON(netdev_has_any_lower_dev(dev));
9521 
9522 		/* Remove entries from kobject tree */
9523 		netdev_unregister_kobject(dev);
9524 #ifdef CONFIG_XPS
9525 		/* Remove XPS queueing entries */
9526 		netif_reset_xps_queues_gt(dev, 0);
9527 #endif
9528 	}
9529 
9530 	synchronize_net();
9531 
9532 	list_for_each_entry(dev, head, unreg_list)
9533 		dev_put(dev);
9534 }
9535 
9536 static void rollback_registered(struct net_device *dev)
9537 {
9538 	LIST_HEAD(single);
9539 
9540 	list_add(&dev->unreg_list, &single);
9541 	rollback_registered_many(&single);
9542 	list_del(&single);
9543 }
9544 
9545 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9546 	struct net_device *upper, netdev_features_t features)
9547 {
9548 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9549 	netdev_features_t feature;
9550 	int feature_bit;
9551 
9552 	for_each_netdev_feature(upper_disables, feature_bit) {
9553 		feature = __NETIF_F_BIT(feature_bit);
9554 		if (!(upper->wanted_features & feature)
9555 		    && (features & feature)) {
9556 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9557 				   &feature, upper->name);
9558 			features &= ~feature;
9559 		}
9560 	}
9561 
9562 	return features;
9563 }
9564 
9565 static void netdev_sync_lower_features(struct net_device *upper,
9566 	struct net_device *lower, netdev_features_t features)
9567 {
9568 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9569 	netdev_features_t feature;
9570 	int feature_bit;
9571 
9572 	for_each_netdev_feature(upper_disables, feature_bit) {
9573 		feature = __NETIF_F_BIT(feature_bit);
9574 		if (!(features & feature) && (lower->features & feature)) {
9575 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9576 				   &feature, lower->name);
9577 			lower->wanted_features &= ~feature;
9578 			__netdev_update_features(lower);
9579 
9580 			if (unlikely(lower->features & feature))
9581 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9582 					    &feature, lower->name);
9583 			else
9584 				netdev_features_change(lower);
9585 		}
9586 	}
9587 }
9588 
9589 static netdev_features_t netdev_fix_features(struct net_device *dev,
9590 	netdev_features_t features)
9591 {
9592 	/* Fix illegal checksum combinations */
9593 	if ((features & NETIF_F_HW_CSUM) &&
9594 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9595 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9596 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9597 	}
9598 
9599 	/* TSO requires that SG is present as well. */
9600 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9601 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9602 		features &= ~NETIF_F_ALL_TSO;
9603 	}
9604 
9605 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9606 					!(features & NETIF_F_IP_CSUM)) {
9607 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9608 		features &= ~NETIF_F_TSO;
9609 		features &= ~NETIF_F_TSO_ECN;
9610 	}
9611 
9612 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9613 					 !(features & NETIF_F_IPV6_CSUM)) {
9614 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9615 		features &= ~NETIF_F_TSO6;
9616 	}
9617 
9618 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9619 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9620 		features &= ~NETIF_F_TSO_MANGLEID;
9621 
9622 	/* TSO ECN requires that TSO is present as well. */
9623 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9624 		features &= ~NETIF_F_TSO_ECN;
9625 
9626 	/* Software GSO depends on SG. */
9627 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9628 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9629 		features &= ~NETIF_F_GSO;
9630 	}
9631 
9632 	/* GSO partial features require GSO partial be set */
9633 	if ((features & dev->gso_partial_features) &&
9634 	    !(features & NETIF_F_GSO_PARTIAL)) {
9635 		netdev_dbg(dev,
9636 			   "Dropping partially supported GSO features since no GSO partial.\n");
9637 		features &= ~dev->gso_partial_features;
9638 	}
9639 
9640 	if (!(features & NETIF_F_RXCSUM)) {
9641 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9642 		 * successfully merged by hardware must also have the
9643 		 * checksum verified by hardware.  If the user does not
9644 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9645 		 */
9646 		if (features & NETIF_F_GRO_HW) {
9647 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9648 			features &= ~NETIF_F_GRO_HW;
9649 		}
9650 	}
9651 
9652 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9653 	if (features & NETIF_F_RXFCS) {
9654 		if (features & NETIF_F_LRO) {
9655 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9656 			features &= ~NETIF_F_LRO;
9657 		}
9658 
9659 		if (features & NETIF_F_GRO_HW) {
9660 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9661 			features &= ~NETIF_F_GRO_HW;
9662 		}
9663 	}
9664 
9665 	if (features & NETIF_F_HW_TLS_TX) {
9666 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9667 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9668 		bool hw_csum = features & NETIF_F_HW_CSUM;
9669 
9670 		if (!ip_csum && !hw_csum) {
9671 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9672 			features &= ~NETIF_F_HW_TLS_TX;
9673 		}
9674 	}
9675 
9676 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9677 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9678 		features &= ~NETIF_F_HW_TLS_RX;
9679 	}
9680 
9681 	return features;
9682 }
9683 
9684 int __netdev_update_features(struct net_device *dev)
9685 {
9686 	struct net_device *upper, *lower;
9687 	netdev_features_t features;
9688 	struct list_head *iter;
9689 	int err = -1;
9690 
9691 	ASSERT_RTNL();
9692 
9693 	features = netdev_get_wanted_features(dev);
9694 
9695 	if (dev->netdev_ops->ndo_fix_features)
9696 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9697 
9698 	/* driver might be less strict about feature dependencies */
9699 	features = netdev_fix_features(dev, features);
9700 
9701 	/* some features can't be enabled if they're off on an upper device */
9702 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9703 		features = netdev_sync_upper_features(dev, upper, features);
9704 
9705 	if (dev->features == features)
9706 		goto sync_lower;
9707 
9708 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9709 		&dev->features, &features);
9710 
9711 	if (dev->netdev_ops->ndo_set_features)
9712 		err = dev->netdev_ops->ndo_set_features(dev, features);
9713 	else
9714 		err = 0;
9715 
9716 	if (unlikely(err < 0)) {
9717 		netdev_err(dev,
9718 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9719 			err, &features, &dev->features);
9720 		/* return non-0 since some features might have changed and
9721 		 * it's better to fire a spurious notification than miss it
9722 		 */
9723 		return -1;
9724 	}
9725 
9726 sync_lower:
9727 	/* some features must be disabled on lower devices when disabled
9728 	 * on an upper device (think: bonding master or bridge)
9729 	 */
9730 	netdev_for_each_lower_dev(dev, lower, iter)
9731 		netdev_sync_lower_features(dev, lower, features);
9732 
9733 	if (!err) {
9734 		netdev_features_t diff = features ^ dev->features;
9735 
9736 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9737 			/* udp_tunnel_{get,drop}_rx_info both need
9738 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9739 			 * device, or they won't do anything.
9740 			 * Thus we need to update dev->features
9741 			 * *before* calling udp_tunnel_get_rx_info,
9742 			 * but *after* calling udp_tunnel_drop_rx_info.
9743 			 */
9744 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9745 				dev->features = features;
9746 				udp_tunnel_get_rx_info(dev);
9747 			} else {
9748 				udp_tunnel_drop_rx_info(dev);
9749 			}
9750 		}
9751 
9752 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9753 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9754 				dev->features = features;
9755 				err |= vlan_get_rx_ctag_filter_info(dev);
9756 			} else {
9757 				vlan_drop_rx_ctag_filter_info(dev);
9758 			}
9759 		}
9760 
9761 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9762 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9763 				dev->features = features;
9764 				err |= vlan_get_rx_stag_filter_info(dev);
9765 			} else {
9766 				vlan_drop_rx_stag_filter_info(dev);
9767 			}
9768 		}
9769 
9770 		dev->features = features;
9771 	}
9772 
9773 	return err < 0 ? 0 : 1;
9774 }
9775 
9776 /**
9777  *	netdev_update_features - recalculate device features
9778  *	@dev: the device to check
9779  *
9780  *	Recalculate dev->features set and send notifications if it
9781  *	has changed. Should be called after driver or hardware dependent
9782  *	conditions might have changed that influence the features.
9783  */
9784 void netdev_update_features(struct net_device *dev)
9785 {
9786 	if (__netdev_update_features(dev))
9787 		netdev_features_change(dev);
9788 }
9789 EXPORT_SYMBOL(netdev_update_features);
9790 
9791 /**
9792  *	netdev_change_features - recalculate device features
9793  *	@dev: the device to check
9794  *
9795  *	Recalculate dev->features set and send notifications even
9796  *	if they have not changed. Should be called instead of
9797  *	netdev_update_features() if also dev->vlan_features might
9798  *	have changed to allow the changes to be propagated to stacked
9799  *	VLAN devices.
9800  */
9801 void netdev_change_features(struct net_device *dev)
9802 {
9803 	__netdev_update_features(dev);
9804 	netdev_features_change(dev);
9805 }
9806 EXPORT_SYMBOL(netdev_change_features);
9807 
9808 /**
9809  *	netif_stacked_transfer_operstate -	transfer operstate
9810  *	@rootdev: the root or lower level device to transfer state from
9811  *	@dev: the device to transfer operstate to
9812  *
9813  *	Transfer operational state from root to device. This is normally
9814  *	called when a stacking relationship exists between the root
9815  *	device and the device(a leaf device).
9816  */
9817 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9818 					struct net_device *dev)
9819 {
9820 	if (rootdev->operstate == IF_OPER_DORMANT)
9821 		netif_dormant_on(dev);
9822 	else
9823 		netif_dormant_off(dev);
9824 
9825 	if (rootdev->operstate == IF_OPER_TESTING)
9826 		netif_testing_on(dev);
9827 	else
9828 		netif_testing_off(dev);
9829 
9830 	if (netif_carrier_ok(rootdev))
9831 		netif_carrier_on(dev);
9832 	else
9833 		netif_carrier_off(dev);
9834 }
9835 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9836 
9837 static int netif_alloc_rx_queues(struct net_device *dev)
9838 {
9839 	unsigned int i, count = dev->num_rx_queues;
9840 	struct netdev_rx_queue *rx;
9841 	size_t sz = count * sizeof(*rx);
9842 	int err = 0;
9843 
9844 	BUG_ON(count < 1);
9845 
9846 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9847 	if (!rx)
9848 		return -ENOMEM;
9849 
9850 	dev->_rx = rx;
9851 
9852 	for (i = 0; i < count; i++) {
9853 		rx[i].dev = dev;
9854 
9855 		/* XDP RX-queue setup */
9856 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9857 		if (err < 0)
9858 			goto err_rxq_info;
9859 	}
9860 	return 0;
9861 
9862 err_rxq_info:
9863 	/* Rollback successful reg's and free other resources */
9864 	while (i--)
9865 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9866 	kvfree(dev->_rx);
9867 	dev->_rx = NULL;
9868 	return err;
9869 }
9870 
9871 static void netif_free_rx_queues(struct net_device *dev)
9872 {
9873 	unsigned int i, count = dev->num_rx_queues;
9874 
9875 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9876 	if (!dev->_rx)
9877 		return;
9878 
9879 	for (i = 0; i < count; i++)
9880 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9881 
9882 	kvfree(dev->_rx);
9883 }
9884 
9885 static void netdev_init_one_queue(struct net_device *dev,
9886 				  struct netdev_queue *queue, void *_unused)
9887 {
9888 	/* Initialize queue lock */
9889 	spin_lock_init(&queue->_xmit_lock);
9890 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9891 	queue->xmit_lock_owner = -1;
9892 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9893 	queue->dev = dev;
9894 #ifdef CONFIG_BQL
9895 	dql_init(&queue->dql, HZ);
9896 #endif
9897 }
9898 
9899 static void netif_free_tx_queues(struct net_device *dev)
9900 {
9901 	kvfree(dev->_tx);
9902 }
9903 
9904 static int netif_alloc_netdev_queues(struct net_device *dev)
9905 {
9906 	unsigned int count = dev->num_tx_queues;
9907 	struct netdev_queue *tx;
9908 	size_t sz = count * sizeof(*tx);
9909 
9910 	if (count < 1 || count > 0xffff)
9911 		return -EINVAL;
9912 
9913 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9914 	if (!tx)
9915 		return -ENOMEM;
9916 
9917 	dev->_tx = tx;
9918 
9919 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9920 	spin_lock_init(&dev->tx_global_lock);
9921 
9922 	return 0;
9923 }
9924 
9925 void netif_tx_stop_all_queues(struct net_device *dev)
9926 {
9927 	unsigned int i;
9928 
9929 	for (i = 0; i < dev->num_tx_queues; i++) {
9930 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9931 
9932 		netif_tx_stop_queue(txq);
9933 	}
9934 }
9935 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9936 
9937 /**
9938  *	register_netdevice	- register a network device
9939  *	@dev: device to register
9940  *
9941  *	Take a completed network device structure and add it to the kernel
9942  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9943  *	chain. 0 is returned on success. A negative errno code is returned
9944  *	on a failure to set up the device, or if the name is a duplicate.
9945  *
9946  *	Callers must hold the rtnl semaphore. You may want
9947  *	register_netdev() instead of this.
9948  *
9949  *	BUGS:
9950  *	The locking appears insufficient to guarantee two parallel registers
9951  *	will not get the same name.
9952  */
9953 
9954 int register_netdevice(struct net_device *dev)
9955 {
9956 	int ret;
9957 	struct net *net = dev_net(dev);
9958 
9959 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9960 		     NETDEV_FEATURE_COUNT);
9961 	BUG_ON(dev_boot_phase);
9962 	ASSERT_RTNL();
9963 
9964 	might_sleep();
9965 
9966 	/* When net_device's are persistent, this will be fatal. */
9967 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9968 	BUG_ON(!net);
9969 
9970 	ret = ethtool_check_ops(dev->ethtool_ops);
9971 	if (ret)
9972 		return ret;
9973 
9974 	spin_lock_init(&dev->addr_list_lock);
9975 	netdev_set_addr_lockdep_class(dev);
9976 
9977 	ret = dev_get_valid_name(net, dev, dev->name);
9978 	if (ret < 0)
9979 		goto out;
9980 
9981 	ret = -ENOMEM;
9982 	dev->name_node = netdev_name_node_head_alloc(dev);
9983 	if (!dev->name_node)
9984 		goto out;
9985 
9986 	/* Init, if this function is available */
9987 	if (dev->netdev_ops->ndo_init) {
9988 		ret = dev->netdev_ops->ndo_init(dev);
9989 		if (ret) {
9990 			if (ret > 0)
9991 				ret = -EIO;
9992 			goto err_free_name;
9993 		}
9994 	}
9995 
9996 	if (((dev->hw_features | dev->features) &
9997 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9998 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9999 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10000 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10001 		ret = -EINVAL;
10002 		goto err_uninit;
10003 	}
10004 
10005 	ret = -EBUSY;
10006 	if (!dev->ifindex)
10007 		dev->ifindex = dev_new_index(net);
10008 	else if (__dev_get_by_index(net, dev->ifindex))
10009 		goto err_uninit;
10010 
10011 	/* Transfer changeable features to wanted_features and enable
10012 	 * software offloads (GSO and GRO).
10013 	 */
10014 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10015 	dev->features |= NETIF_F_SOFT_FEATURES;
10016 
10017 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
10018 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10019 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10020 	}
10021 
10022 	dev->wanted_features = dev->features & dev->hw_features;
10023 
10024 	if (!(dev->flags & IFF_LOOPBACK))
10025 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10026 
10027 	/* If IPv4 TCP segmentation offload is supported we should also
10028 	 * allow the device to enable segmenting the frame with the option
10029 	 * of ignoring a static IP ID value.  This doesn't enable the
10030 	 * feature itself but allows the user to enable it later.
10031 	 */
10032 	if (dev->hw_features & NETIF_F_TSO)
10033 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10034 	if (dev->vlan_features & NETIF_F_TSO)
10035 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10036 	if (dev->mpls_features & NETIF_F_TSO)
10037 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10038 	if (dev->hw_enc_features & NETIF_F_TSO)
10039 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10040 
10041 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10042 	 */
10043 	dev->vlan_features |= NETIF_F_HIGHDMA;
10044 
10045 	/* Make NETIF_F_SG inheritable to tunnel devices.
10046 	 */
10047 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10048 
10049 	/* Make NETIF_F_SG inheritable to MPLS.
10050 	 */
10051 	dev->mpls_features |= NETIF_F_SG;
10052 
10053 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10054 	ret = notifier_to_errno(ret);
10055 	if (ret)
10056 		goto err_uninit;
10057 
10058 	ret = netdev_register_kobject(dev);
10059 	if (ret) {
10060 		dev->reg_state = NETREG_UNREGISTERED;
10061 		goto err_uninit;
10062 	}
10063 	dev->reg_state = NETREG_REGISTERED;
10064 
10065 	__netdev_update_features(dev);
10066 
10067 	/*
10068 	 *	Default initial state at registry is that the
10069 	 *	device is present.
10070 	 */
10071 
10072 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10073 
10074 	linkwatch_init_dev(dev);
10075 
10076 	dev_init_scheduler(dev);
10077 	dev_hold(dev);
10078 	list_netdevice(dev);
10079 	add_device_randomness(dev->dev_addr, dev->addr_len);
10080 
10081 	/* If the device has permanent device address, driver should
10082 	 * set dev_addr and also addr_assign_type should be set to
10083 	 * NET_ADDR_PERM (default value).
10084 	 */
10085 	if (dev->addr_assign_type == NET_ADDR_PERM)
10086 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10087 
10088 	/* Notify protocols, that a new device appeared. */
10089 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10090 	ret = notifier_to_errno(ret);
10091 	if (ret) {
10092 		/* Expect explicit free_netdev() on failure */
10093 		dev->needs_free_netdev = false;
10094 		rollback_registered(dev);
10095 		net_set_todo(dev);
10096 		goto out;
10097 	}
10098 	/*
10099 	 *	Prevent userspace races by waiting until the network
10100 	 *	device is fully setup before sending notifications.
10101 	 */
10102 	if (!dev->rtnl_link_ops ||
10103 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10104 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10105 
10106 out:
10107 	return ret;
10108 
10109 err_uninit:
10110 	if (dev->netdev_ops->ndo_uninit)
10111 		dev->netdev_ops->ndo_uninit(dev);
10112 	if (dev->priv_destructor)
10113 		dev->priv_destructor(dev);
10114 err_free_name:
10115 	netdev_name_node_free(dev->name_node);
10116 	goto out;
10117 }
10118 EXPORT_SYMBOL(register_netdevice);
10119 
10120 /**
10121  *	init_dummy_netdev	- init a dummy network device for NAPI
10122  *	@dev: device to init
10123  *
10124  *	This takes a network device structure and initialize the minimum
10125  *	amount of fields so it can be used to schedule NAPI polls without
10126  *	registering a full blown interface. This is to be used by drivers
10127  *	that need to tie several hardware interfaces to a single NAPI
10128  *	poll scheduler due to HW limitations.
10129  */
10130 int init_dummy_netdev(struct net_device *dev)
10131 {
10132 	/* Clear everything. Note we don't initialize spinlocks
10133 	 * are they aren't supposed to be taken by any of the
10134 	 * NAPI code and this dummy netdev is supposed to be
10135 	 * only ever used for NAPI polls
10136 	 */
10137 	memset(dev, 0, sizeof(struct net_device));
10138 
10139 	/* make sure we BUG if trying to hit standard
10140 	 * register/unregister code path
10141 	 */
10142 	dev->reg_state = NETREG_DUMMY;
10143 
10144 	/* NAPI wants this */
10145 	INIT_LIST_HEAD(&dev->napi_list);
10146 
10147 	/* a dummy interface is started by default */
10148 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10149 	set_bit(__LINK_STATE_START, &dev->state);
10150 
10151 	/* napi_busy_loop stats accounting wants this */
10152 	dev_net_set(dev, &init_net);
10153 
10154 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10155 	 * because users of this 'device' dont need to change
10156 	 * its refcount.
10157 	 */
10158 
10159 	return 0;
10160 }
10161 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10162 
10163 
10164 /**
10165  *	register_netdev	- register a network device
10166  *	@dev: device to register
10167  *
10168  *	Take a completed network device structure and add it to the kernel
10169  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10170  *	chain. 0 is returned on success. A negative errno code is returned
10171  *	on a failure to set up the device, or if the name is a duplicate.
10172  *
10173  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10174  *	and expands the device name if you passed a format string to
10175  *	alloc_netdev.
10176  */
10177 int register_netdev(struct net_device *dev)
10178 {
10179 	int err;
10180 
10181 	if (rtnl_lock_killable())
10182 		return -EINTR;
10183 	err = register_netdevice(dev);
10184 	rtnl_unlock();
10185 	return err;
10186 }
10187 EXPORT_SYMBOL(register_netdev);
10188 
10189 int netdev_refcnt_read(const struct net_device *dev)
10190 {
10191 	int i, refcnt = 0;
10192 
10193 	for_each_possible_cpu(i)
10194 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10195 	return refcnt;
10196 }
10197 EXPORT_SYMBOL(netdev_refcnt_read);
10198 
10199 #define WAIT_REFS_MIN_MSECS 1
10200 #define WAIT_REFS_MAX_MSECS 250
10201 /**
10202  * netdev_wait_allrefs - wait until all references are gone.
10203  * @dev: target net_device
10204  *
10205  * This is called when unregistering network devices.
10206  *
10207  * Any protocol or device that holds a reference should register
10208  * for netdevice notification, and cleanup and put back the
10209  * reference if they receive an UNREGISTER event.
10210  * We can get stuck here if buggy protocols don't correctly
10211  * call dev_put.
10212  */
10213 static void netdev_wait_allrefs(struct net_device *dev)
10214 {
10215 	unsigned long rebroadcast_time, warning_time;
10216 	int wait = 0, refcnt;
10217 
10218 	linkwatch_forget_dev(dev);
10219 
10220 	rebroadcast_time = warning_time = jiffies;
10221 	refcnt = netdev_refcnt_read(dev);
10222 
10223 	while (refcnt != 0) {
10224 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10225 			rtnl_lock();
10226 
10227 			/* Rebroadcast unregister notification */
10228 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10229 
10230 			__rtnl_unlock();
10231 			rcu_barrier();
10232 			rtnl_lock();
10233 
10234 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10235 				     &dev->state)) {
10236 				/* We must not have linkwatch events
10237 				 * pending on unregister. If this
10238 				 * happens, we simply run the queue
10239 				 * unscheduled, resulting in a noop
10240 				 * for this device.
10241 				 */
10242 				linkwatch_run_queue();
10243 			}
10244 
10245 			__rtnl_unlock();
10246 
10247 			rebroadcast_time = jiffies;
10248 		}
10249 
10250 		if (!wait) {
10251 			rcu_barrier();
10252 			wait = WAIT_REFS_MIN_MSECS;
10253 		} else {
10254 			msleep(wait);
10255 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10256 		}
10257 
10258 		refcnt = netdev_refcnt_read(dev);
10259 
10260 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10261 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10262 				 dev->name, refcnt);
10263 			warning_time = jiffies;
10264 		}
10265 	}
10266 }
10267 
10268 /* The sequence is:
10269  *
10270  *	rtnl_lock();
10271  *	...
10272  *	register_netdevice(x1);
10273  *	register_netdevice(x2);
10274  *	...
10275  *	unregister_netdevice(y1);
10276  *	unregister_netdevice(y2);
10277  *      ...
10278  *	rtnl_unlock();
10279  *	free_netdev(y1);
10280  *	free_netdev(y2);
10281  *
10282  * We are invoked by rtnl_unlock().
10283  * This allows us to deal with problems:
10284  * 1) We can delete sysfs objects which invoke hotplug
10285  *    without deadlocking with linkwatch via keventd.
10286  * 2) Since we run with the RTNL semaphore not held, we can sleep
10287  *    safely in order to wait for the netdev refcnt to drop to zero.
10288  *
10289  * We must not return until all unregister events added during
10290  * the interval the lock was held have been completed.
10291  */
10292 void netdev_run_todo(void)
10293 {
10294 	struct list_head list;
10295 #ifdef CONFIG_LOCKDEP
10296 	struct list_head unlink_list;
10297 
10298 	list_replace_init(&net_unlink_list, &unlink_list);
10299 
10300 	while (!list_empty(&unlink_list)) {
10301 		struct net_device *dev = list_first_entry(&unlink_list,
10302 							  struct net_device,
10303 							  unlink_list);
10304 		list_del_init(&dev->unlink_list);
10305 		dev->nested_level = dev->lower_level - 1;
10306 	}
10307 #endif
10308 
10309 	/* Snapshot list, allow later requests */
10310 	list_replace_init(&net_todo_list, &list);
10311 
10312 	__rtnl_unlock();
10313 
10314 
10315 	/* Wait for rcu callbacks to finish before next phase */
10316 	if (!list_empty(&list))
10317 		rcu_barrier();
10318 
10319 	while (!list_empty(&list)) {
10320 		struct net_device *dev
10321 			= list_first_entry(&list, struct net_device, todo_list);
10322 		list_del(&dev->todo_list);
10323 
10324 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10325 			pr_err("network todo '%s' but state %d\n",
10326 			       dev->name, dev->reg_state);
10327 			dump_stack();
10328 			continue;
10329 		}
10330 
10331 		dev->reg_state = NETREG_UNREGISTERED;
10332 
10333 		netdev_wait_allrefs(dev);
10334 
10335 		/* paranoia */
10336 		BUG_ON(netdev_refcnt_read(dev));
10337 		BUG_ON(!list_empty(&dev->ptype_all));
10338 		BUG_ON(!list_empty(&dev->ptype_specific));
10339 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10340 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10341 #if IS_ENABLED(CONFIG_DECNET)
10342 		WARN_ON(dev->dn_ptr);
10343 #endif
10344 		if (dev->priv_destructor)
10345 			dev->priv_destructor(dev);
10346 		if (dev->needs_free_netdev)
10347 			free_netdev(dev);
10348 
10349 		/* Report a network device has been unregistered */
10350 		rtnl_lock();
10351 		dev_net(dev)->dev_unreg_count--;
10352 		__rtnl_unlock();
10353 		wake_up(&netdev_unregistering_wq);
10354 
10355 		/* Free network device */
10356 		kobject_put(&dev->dev.kobj);
10357 	}
10358 }
10359 
10360 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10361  * all the same fields in the same order as net_device_stats, with only
10362  * the type differing, but rtnl_link_stats64 may have additional fields
10363  * at the end for newer counters.
10364  */
10365 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10366 			     const struct net_device_stats *netdev_stats)
10367 {
10368 #if BITS_PER_LONG == 64
10369 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10370 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10371 	/* zero out counters that only exist in rtnl_link_stats64 */
10372 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10373 	       sizeof(*stats64) - sizeof(*netdev_stats));
10374 #else
10375 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10376 	const unsigned long *src = (const unsigned long *)netdev_stats;
10377 	u64 *dst = (u64 *)stats64;
10378 
10379 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10380 	for (i = 0; i < n; i++)
10381 		dst[i] = src[i];
10382 	/* zero out counters that only exist in rtnl_link_stats64 */
10383 	memset((char *)stats64 + n * sizeof(u64), 0,
10384 	       sizeof(*stats64) - n * sizeof(u64));
10385 #endif
10386 }
10387 EXPORT_SYMBOL(netdev_stats_to_stats64);
10388 
10389 /**
10390  *	dev_get_stats	- get network device statistics
10391  *	@dev: device to get statistics from
10392  *	@storage: place to store stats
10393  *
10394  *	Get network statistics from device. Return @storage.
10395  *	The device driver may provide its own method by setting
10396  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10397  *	otherwise the internal statistics structure is used.
10398  */
10399 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10400 					struct rtnl_link_stats64 *storage)
10401 {
10402 	const struct net_device_ops *ops = dev->netdev_ops;
10403 
10404 	if (ops->ndo_get_stats64) {
10405 		memset(storage, 0, sizeof(*storage));
10406 		ops->ndo_get_stats64(dev, storage);
10407 	} else if (ops->ndo_get_stats) {
10408 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10409 	} else {
10410 		netdev_stats_to_stats64(storage, &dev->stats);
10411 	}
10412 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10413 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10414 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10415 	return storage;
10416 }
10417 EXPORT_SYMBOL(dev_get_stats);
10418 
10419 /**
10420  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10421  *	@s: place to store stats
10422  *	@netstats: per-cpu network stats to read from
10423  *
10424  *	Read per-cpu network statistics and populate the related fields in @s.
10425  */
10426 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10427 			   const struct pcpu_sw_netstats __percpu *netstats)
10428 {
10429 	int cpu;
10430 
10431 	for_each_possible_cpu(cpu) {
10432 		const struct pcpu_sw_netstats *stats;
10433 		struct pcpu_sw_netstats tmp;
10434 		unsigned int start;
10435 
10436 		stats = per_cpu_ptr(netstats, cpu);
10437 		do {
10438 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10439 			tmp.rx_packets = stats->rx_packets;
10440 			tmp.rx_bytes   = stats->rx_bytes;
10441 			tmp.tx_packets = stats->tx_packets;
10442 			tmp.tx_bytes   = stats->tx_bytes;
10443 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10444 
10445 		s->rx_packets += tmp.rx_packets;
10446 		s->rx_bytes   += tmp.rx_bytes;
10447 		s->tx_packets += tmp.tx_packets;
10448 		s->tx_bytes   += tmp.tx_bytes;
10449 	}
10450 }
10451 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10452 
10453 /**
10454  *	dev_get_tstats64 - ndo_get_stats64 implementation
10455  *	@dev: device to get statistics from
10456  *	@s: place to store stats
10457  *
10458  *	Populate @s from dev->stats and dev->tstats. Can be used as
10459  *	ndo_get_stats64() callback.
10460  */
10461 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10462 {
10463 	netdev_stats_to_stats64(s, &dev->stats);
10464 	dev_fetch_sw_netstats(s, dev->tstats);
10465 }
10466 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10467 
10468 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10469 {
10470 	struct netdev_queue *queue = dev_ingress_queue(dev);
10471 
10472 #ifdef CONFIG_NET_CLS_ACT
10473 	if (queue)
10474 		return queue;
10475 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10476 	if (!queue)
10477 		return NULL;
10478 	netdev_init_one_queue(dev, queue, NULL);
10479 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10480 	queue->qdisc_sleeping = &noop_qdisc;
10481 	rcu_assign_pointer(dev->ingress_queue, queue);
10482 #endif
10483 	return queue;
10484 }
10485 
10486 static const struct ethtool_ops default_ethtool_ops;
10487 
10488 void netdev_set_default_ethtool_ops(struct net_device *dev,
10489 				    const struct ethtool_ops *ops)
10490 {
10491 	if (dev->ethtool_ops == &default_ethtool_ops)
10492 		dev->ethtool_ops = ops;
10493 }
10494 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10495 
10496 void netdev_freemem(struct net_device *dev)
10497 {
10498 	char *addr = (char *)dev - dev->padded;
10499 
10500 	kvfree(addr);
10501 }
10502 
10503 /**
10504  * alloc_netdev_mqs - allocate network device
10505  * @sizeof_priv: size of private data to allocate space for
10506  * @name: device name format string
10507  * @name_assign_type: origin of device name
10508  * @setup: callback to initialize device
10509  * @txqs: the number of TX subqueues to allocate
10510  * @rxqs: the number of RX subqueues to allocate
10511  *
10512  * Allocates a struct net_device with private data area for driver use
10513  * and performs basic initialization.  Also allocates subqueue structs
10514  * for each queue on the device.
10515  */
10516 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10517 		unsigned char name_assign_type,
10518 		void (*setup)(struct net_device *),
10519 		unsigned int txqs, unsigned int rxqs)
10520 {
10521 	struct net_device *dev;
10522 	unsigned int alloc_size;
10523 	struct net_device *p;
10524 
10525 	BUG_ON(strlen(name) >= sizeof(dev->name));
10526 
10527 	if (txqs < 1) {
10528 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10529 		return NULL;
10530 	}
10531 
10532 	if (rxqs < 1) {
10533 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10534 		return NULL;
10535 	}
10536 
10537 	alloc_size = sizeof(struct net_device);
10538 	if (sizeof_priv) {
10539 		/* ensure 32-byte alignment of private area */
10540 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10541 		alloc_size += sizeof_priv;
10542 	}
10543 	/* ensure 32-byte alignment of whole construct */
10544 	alloc_size += NETDEV_ALIGN - 1;
10545 
10546 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10547 	if (!p)
10548 		return NULL;
10549 
10550 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10551 	dev->padded = (char *)dev - (char *)p;
10552 
10553 	dev->pcpu_refcnt = alloc_percpu(int);
10554 	if (!dev->pcpu_refcnt)
10555 		goto free_dev;
10556 
10557 	if (dev_addr_init(dev))
10558 		goto free_pcpu;
10559 
10560 	dev_mc_init(dev);
10561 	dev_uc_init(dev);
10562 
10563 	dev_net_set(dev, &init_net);
10564 
10565 	dev->gso_max_size = GSO_MAX_SIZE;
10566 	dev->gso_max_segs = GSO_MAX_SEGS;
10567 	dev->upper_level = 1;
10568 	dev->lower_level = 1;
10569 #ifdef CONFIG_LOCKDEP
10570 	dev->nested_level = 0;
10571 	INIT_LIST_HEAD(&dev->unlink_list);
10572 #endif
10573 
10574 	INIT_LIST_HEAD(&dev->napi_list);
10575 	INIT_LIST_HEAD(&dev->unreg_list);
10576 	INIT_LIST_HEAD(&dev->close_list);
10577 	INIT_LIST_HEAD(&dev->link_watch_list);
10578 	INIT_LIST_HEAD(&dev->adj_list.upper);
10579 	INIT_LIST_HEAD(&dev->adj_list.lower);
10580 	INIT_LIST_HEAD(&dev->ptype_all);
10581 	INIT_LIST_HEAD(&dev->ptype_specific);
10582 	INIT_LIST_HEAD(&dev->net_notifier_list);
10583 #ifdef CONFIG_NET_SCHED
10584 	hash_init(dev->qdisc_hash);
10585 #endif
10586 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10587 	setup(dev);
10588 
10589 	if (!dev->tx_queue_len) {
10590 		dev->priv_flags |= IFF_NO_QUEUE;
10591 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10592 	}
10593 
10594 	dev->num_tx_queues = txqs;
10595 	dev->real_num_tx_queues = txqs;
10596 	if (netif_alloc_netdev_queues(dev))
10597 		goto free_all;
10598 
10599 	dev->num_rx_queues = rxqs;
10600 	dev->real_num_rx_queues = rxqs;
10601 	if (netif_alloc_rx_queues(dev))
10602 		goto free_all;
10603 
10604 	strcpy(dev->name, name);
10605 	dev->name_assign_type = name_assign_type;
10606 	dev->group = INIT_NETDEV_GROUP;
10607 	if (!dev->ethtool_ops)
10608 		dev->ethtool_ops = &default_ethtool_ops;
10609 
10610 	nf_hook_ingress_init(dev);
10611 
10612 	return dev;
10613 
10614 free_all:
10615 	free_netdev(dev);
10616 	return NULL;
10617 
10618 free_pcpu:
10619 	free_percpu(dev->pcpu_refcnt);
10620 free_dev:
10621 	netdev_freemem(dev);
10622 	return NULL;
10623 }
10624 EXPORT_SYMBOL(alloc_netdev_mqs);
10625 
10626 /**
10627  * free_netdev - free network device
10628  * @dev: device
10629  *
10630  * This function does the last stage of destroying an allocated device
10631  * interface. The reference to the device object is released. If this
10632  * is the last reference then it will be freed.Must be called in process
10633  * context.
10634  */
10635 void free_netdev(struct net_device *dev)
10636 {
10637 	struct napi_struct *p, *n;
10638 
10639 	might_sleep();
10640 
10641 	/* When called immediately after register_netdevice() failed the unwind
10642 	 * handling may still be dismantling the device. Handle that case by
10643 	 * deferring the free.
10644 	 */
10645 	if (dev->reg_state == NETREG_UNREGISTERING) {
10646 		ASSERT_RTNL();
10647 		dev->needs_free_netdev = true;
10648 		return;
10649 	}
10650 
10651 	netif_free_tx_queues(dev);
10652 	netif_free_rx_queues(dev);
10653 
10654 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10655 
10656 	/* Flush device addresses */
10657 	dev_addr_flush(dev);
10658 
10659 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10660 		netif_napi_del(p);
10661 
10662 	free_percpu(dev->pcpu_refcnt);
10663 	dev->pcpu_refcnt = NULL;
10664 	free_percpu(dev->xdp_bulkq);
10665 	dev->xdp_bulkq = NULL;
10666 
10667 	/*  Compatibility with error handling in drivers */
10668 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10669 		netdev_freemem(dev);
10670 		return;
10671 	}
10672 
10673 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10674 	dev->reg_state = NETREG_RELEASED;
10675 
10676 	/* will free via device release */
10677 	put_device(&dev->dev);
10678 }
10679 EXPORT_SYMBOL(free_netdev);
10680 
10681 /**
10682  *	synchronize_net -  Synchronize with packet receive processing
10683  *
10684  *	Wait for packets currently being received to be done.
10685  *	Does not block later packets from starting.
10686  */
10687 void synchronize_net(void)
10688 {
10689 	might_sleep();
10690 	if (rtnl_is_locked())
10691 		synchronize_rcu_expedited();
10692 	else
10693 		synchronize_rcu();
10694 }
10695 EXPORT_SYMBOL(synchronize_net);
10696 
10697 /**
10698  *	unregister_netdevice_queue - remove device from the kernel
10699  *	@dev: device
10700  *	@head: list
10701  *
10702  *	This function shuts down a device interface and removes it
10703  *	from the kernel tables.
10704  *	If head not NULL, device is queued to be unregistered later.
10705  *
10706  *	Callers must hold the rtnl semaphore.  You may want
10707  *	unregister_netdev() instead of this.
10708  */
10709 
10710 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10711 {
10712 	ASSERT_RTNL();
10713 
10714 	if (head) {
10715 		list_move_tail(&dev->unreg_list, head);
10716 	} else {
10717 		rollback_registered(dev);
10718 		/* Finish processing unregister after unlock */
10719 		net_set_todo(dev);
10720 	}
10721 }
10722 EXPORT_SYMBOL(unregister_netdevice_queue);
10723 
10724 /**
10725  *	unregister_netdevice_many - unregister many devices
10726  *	@head: list of devices
10727  *
10728  *  Note: As most callers use a stack allocated list_head,
10729  *  we force a list_del() to make sure stack wont be corrupted later.
10730  */
10731 void unregister_netdevice_many(struct list_head *head)
10732 {
10733 	struct net_device *dev;
10734 
10735 	if (!list_empty(head)) {
10736 		rollback_registered_many(head);
10737 		list_for_each_entry(dev, head, unreg_list)
10738 			net_set_todo(dev);
10739 		list_del(head);
10740 	}
10741 }
10742 EXPORT_SYMBOL(unregister_netdevice_many);
10743 
10744 /**
10745  *	unregister_netdev - remove device from the kernel
10746  *	@dev: device
10747  *
10748  *	This function shuts down a device interface and removes it
10749  *	from the kernel tables.
10750  *
10751  *	This is just a wrapper for unregister_netdevice that takes
10752  *	the rtnl semaphore.  In general you want to use this and not
10753  *	unregister_netdevice.
10754  */
10755 void unregister_netdev(struct net_device *dev)
10756 {
10757 	rtnl_lock();
10758 	unregister_netdevice(dev);
10759 	rtnl_unlock();
10760 }
10761 EXPORT_SYMBOL(unregister_netdev);
10762 
10763 /**
10764  *	dev_change_net_namespace - move device to different nethost namespace
10765  *	@dev: device
10766  *	@net: network namespace
10767  *	@pat: If not NULL name pattern to try if the current device name
10768  *	      is already taken in the destination network namespace.
10769  *
10770  *	This function shuts down a device interface and moves it
10771  *	to a new network namespace. On success 0 is returned, on
10772  *	a failure a netagive errno code is returned.
10773  *
10774  *	Callers must hold the rtnl semaphore.
10775  */
10776 
10777 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10778 {
10779 	struct net *net_old = dev_net(dev);
10780 	int err, new_nsid, new_ifindex;
10781 
10782 	ASSERT_RTNL();
10783 
10784 	/* Don't allow namespace local devices to be moved. */
10785 	err = -EINVAL;
10786 	if (dev->features & NETIF_F_NETNS_LOCAL)
10787 		goto out;
10788 
10789 	/* Ensure the device has been registrered */
10790 	if (dev->reg_state != NETREG_REGISTERED)
10791 		goto out;
10792 
10793 	/* Get out if there is nothing todo */
10794 	err = 0;
10795 	if (net_eq(net_old, net))
10796 		goto out;
10797 
10798 	/* Pick the destination device name, and ensure
10799 	 * we can use it in the destination network namespace.
10800 	 */
10801 	err = -EEXIST;
10802 	if (__dev_get_by_name(net, dev->name)) {
10803 		/* We get here if we can't use the current device name */
10804 		if (!pat)
10805 			goto out;
10806 		err = dev_get_valid_name(net, dev, pat);
10807 		if (err < 0)
10808 			goto out;
10809 	}
10810 
10811 	/*
10812 	 * And now a mini version of register_netdevice unregister_netdevice.
10813 	 */
10814 
10815 	/* If device is running close it first. */
10816 	dev_close(dev);
10817 
10818 	/* And unlink it from device chain */
10819 	unlist_netdevice(dev);
10820 
10821 	synchronize_net();
10822 
10823 	/* Shutdown queueing discipline. */
10824 	dev_shutdown(dev);
10825 
10826 	/* Notify protocols, that we are about to destroy
10827 	 * this device. They should clean all the things.
10828 	 *
10829 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10830 	 * This is wanted because this way 8021q and macvlan know
10831 	 * the device is just moving and can keep their slaves up.
10832 	 */
10833 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10834 	rcu_barrier();
10835 
10836 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10837 	/* If there is an ifindex conflict assign a new one */
10838 	if (__dev_get_by_index(net, dev->ifindex))
10839 		new_ifindex = dev_new_index(net);
10840 	else
10841 		new_ifindex = dev->ifindex;
10842 
10843 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10844 			    new_ifindex);
10845 
10846 	/*
10847 	 *	Flush the unicast and multicast chains
10848 	 */
10849 	dev_uc_flush(dev);
10850 	dev_mc_flush(dev);
10851 
10852 	/* Send a netdev-removed uevent to the old namespace */
10853 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10854 	netdev_adjacent_del_links(dev);
10855 
10856 	/* Move per-net netdevice notifiers that are following the netdevice */
10857 	move_netdevice_notifiers_dev_net(dev, net);
10858 
10859 	/* Actually switch the network namespace */
10860 	dev_net_set(dev, net);
10861 	dev->ifindex = new_ifindex;
10862 
10863 	/* Send a netdev-add uevent to the new namespace */
10864 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10865 	netdev_adjacent_add_links(dev);
10866 
10867 	/* Fixup kobjects */
10868 	err = device_rename(&dev->dev, dev->name);
10869 	WARN_ON(err);
10870 
10871 	/* Adapt owner in case owning user namespace of target network
10872 	 * namespace is different from the original one.
10873 	 */
10874 	err = netdev_change_owner(dev, net_old, net);
10875 	WARN_ON(err);
10876 
10877 	/* Add the device back in the hashes */
10878 	list_netdevice(dev);
10879 
10880 	/* Notify protocols, that a new device appeared. */
10881 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10882 
10883 	/*
10884 	 *	Prevent userspace races by waiting until the network
10885 	 *	device is fully setup before sending notifications.
10886 	 */
10887 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10888 
10889 	synchronize_net();
10890 	err = 0;
10891 out:
10892 	return err;
10893 }
10894 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10895 
10896 static int dev_cpu_dead(unsigned int oldcpu)
10897 {
10898 	struct sk_buff **list_skb;
10899 	struct sk_buff *skb;
10900 	unsigned int cpu;
10901 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10902 
10903 	local_irq_disable();
10904 	cpu = smp_processor_id();
10905 	sd = &per_cpu(softnet_data, cpu);
10906 	oldsd = &per_cpu(softnet_data, oldcpu);
10907 
10908 	/* Find end of our completion_queue. */
10909 	list_skb = &sd->completion_queue;
10910 	while (*list_skb)
10911 		list_skb = &(*list_skb)->next;
10912 	/* Append completion queue from offline CPU. */
10913 	*list_skb = oldsd->completion_queue;
10914 	oldsd->completion_queue = NULL;
10915 
10916 	/* Append output queue from offline CPU. */
10917 	if (oldsd->output_queue) {
10918 		*sd->output_queue_tailp = oldsd->output_queue;
10919 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10920 		oldsd->output_queue = NULL;
10921 		oldsd->output_queue_tailp = &oldsd->output_queue;
10922 	}
10923 	/* Append NAPI poll list from offline CPU, with one exception :
10924 	 * process_backlog() must be called by cpu owning percpu backlog.
10925 	 * We properly handle process_queue & input_pkt_queue later.
10926 	 */
10927 	while (!list_empty(&oldsd->poll_list)) {
10928 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10929 							    struct napi_struct,
10930 							    poll_list);
10931 
10932 		list_del_init(&napi->poll_list);
10933 		if (napi->poll == process_backlog)
10934 			napi->state = 0;
10935 		else
10936 			____napi_schedule(sd, napi);
10937 	}
10938 
10939 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10940 	local_irq_enable();
10941 
10942 #ifdef CONFIG_RPS
10943 	remsd = oldsd->rps_ipi_list;
10944 	oldsd->rps_ipi_list = NULL;
10945 #endif
10946 	/* send out pending IPI's on offline CPU */
10947 	net_rps_send_ipi(remsd);
10948 
10949 	/* Process offline CPU's input_pkt_queue */
10950 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10951 		netif_rx_ni(skb);
10952 		input_queue_head_incr(oldsd);
10953 	}
10954 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10955 		netif_rx_ni(skb);
10956 		input_queue_head_incr(oldsd);
10957 	}
10958 
10959 	return 0;
10960 }
10961 
10962 /**
10963  *	netdev_increment_features - increment feature set by one
10964  *	@all: current feature set
10965  *	@one: new feature set
10966  *	@mask: mask feature set
10967  *
10968  *	Computes a new feature set after adding a device with feature set
10969  *	@one to the master device with current feature set @all.  Will not
10970  *	enable anything that is off in @mask. Returns the new feature set.
10971  */
10972 netdev_features_t netdev_increment_features(netdev_features_t all,
10973 	netdev_features_t one, netdev_features_t mask)
10974 {
10975 	if (mask & NETIF_F_HW_CSUM)
10976 		mask |= NETIF_F_CSUM_MASK;
10977 	mask |= NETIF_F_VLAN_CHALLENGED;
10978 
10979 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10980 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10981 
10982 	/* If one device supports hw checksumming, set for all. */
10983 	if (all & NETIF_F_HW_CSUM)
10984 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10985 
10986 	return all;
10987 }
10988 EXPORT_SYMBOL(netdev_increment_features);
10989 
10990 static struct hlist_head * __net_init netdev_create_hash(void)
10991 {
10992 	int i;
10993 	struct hlist_head *hash;
10994 
10995 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10996 	if (hash != NULL)
10997 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10998 			INIT_HLIST_HEAD(&hash[i]);
10999 
11000 	return hash;
11001 }
11002 
11003 /* Initialize per network namespace state */
11004 static int __net_init netdev_init(struct net *net)
11005 {
11006 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11007 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11008 
11009 	if (net != &init_net)
11010 		INIT_LIST_HEAD(&net->dev_base_head);
11011 
11012 	net->dev_name_head = netdev_create_hash();
11013 	if (net->dev_name_head == NULL)
11014 		goto err_name;
11015 
11016 	net->dev_index_head = netdev_create_hash();
11017 	if (net->dev_index_head == NULL)
11018 		goto err_idx;
11019 
11020 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11021 
11022 	return 0;
11023 
11024 err_idx:
11025 	kfree(net->dev_name_head);
11026 err_name:
11027 	return -ENOMEM;
11028 }
11029 
11030 /**
11031  *	netdev_drivername - network driver for the device
11032  *	@dev: network device
11033  *
11034  *	Determine network driver for device.
11035  */
11036 const char *netdev_drivername(const struct net_device *dev)
11037 {
11038 	const struct device_driver *driver;
11039 	const struct device *parent;
11040 	const char *empty = "";
11041 
11042 	parent = dev->dev.parent;
11043 	if (!parent)
11044 		return empty;
11045 
11046 	driver = parent->driver;
11047 	if (driver && driver->name)
11048 		return driver->name;
11049 	return empty;
11050 }
11051 
11052 static void __netdev_printk(const char *level, const struct net_device *dev,
11053 			    struct va_format *vaf)
11054 {
11055 	if (dev && dev->dev.parent) {
11056 		dev_printk_emit(level[1] - '0',
11057 				dev->dev.parent,
11058 				"%s %s %s%s: %pV",
11059 				dev_driver_string(dev->dev.parent),
11060 				dev_name(dev->dev.parent),
11061 				netdev_name(dev), netdev_reg_state(dev),
11062 				vaf);
11063 	} else if (dev) {
11064 		printk("%s%s%s: %pV",
11065 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11066 	} else {
11067 		printk("%s(NULL net_device): %pV", level, vaf);
11068 	}
11069 }
11070 
11071 void netdev_printk(const char *level, const struct net_device *dev,
11072 		   const char *format, ...)
11073 {
11074 	struct va_format vaf;
11075 	va_list args;
11076 
11077 	va_start(args, format);
11078 
11079 	vaf.fmt = format;
11080 	vaf.va = &args;
11081 
11082 	__netdev_printk(level, dev, &vaf);
11083 
11084 	va_end(args);
11085 }
11086 EXPORT_SYMBOL(netdev_printk);
11087 
11088 #define define_netdev_printk_level(func, level)			\
11089 void func(const struct net_device *dev, const char *fmt, ...)	\
11090 {								\
11091 	struct va_format vaf;					\
11092 	va_list args;						\
11093 								\
11094 	va_start(args, fmt);					\
11095 								\
11096 	vaf.fmt = fmt;						\
11097 	vaf.va = &args;						\
11098 								\
11099 	__netdev_printk(level, dev, &vaf);			\
11100 								\
11101 	va_end(args);						\
11102 }								\
11103 EXPORT_SYMBOL(func);
11104 
11105 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11106 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11107 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11108 define_netdev_printk_level(netdev_err, KERN_ERR);
11109 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11110 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11111 define_netdev_printk_level(netdev_info, KERN_INFO);
11112 
11113 static void __net_exit netdev_exit(struct net *net)
11114 {
11115 	kfree(net->dev_name_head);
11116 	kfree(net->dev_index_head);
11117 	if (net != &init_net)
11118 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11119 }
11120 
11121 static struct pernet_operations __net_initdata netdev_net_ops = {
11122 	.init = netdev_init,
11123 	.exit = netdev_exit,
11124 };
11125 
11126 static void __net_exit default_device_exit(struct net *net)
11127 {
11128 	struct net_device *dev, *aux;
11129 	/*
11130 	 * Push all migratable network devices back to the
11131 	 * initial network namespace
11132 	 */
11133 	rtnl_lock();
11134 	for_each_netdev_safe(net, dev, aux) {
11135 		int err;
11136 		char fb_name[IFNAMSIZ];
11137 
11138 		/* Ignore unmoveable devices (i.e. loopback) */
11139 		if (dev->features & NETIF_F_NETNS_LOCAL)
11140 			continue;
11141 
11142 		/* Leave virtual devices for the generic cleanup */
11143 		if (dev->rtnl_link_ops)
11144 			continue;
11145 
11146 		/* Push remaining network devices to init_net */
11147 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11148 		if (__dev_get_by_name(&init_net, fb_name))
11149 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11150 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11151 		if (err) {
11152 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11153 				 __func__, dev->name, err);
11154 			BUG();
11155 		}
11156 	}
11157 	rtnl_unlock();
11158 }
11159 
11160 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11161 {
11162 	/* Return with the rtnl_lock held when there are no network
11163 	 * devices unregistering in any network namespace in net_list.
11164 	 */
11165 	struct net *net;
11166 	bool unregistering;
11167 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11168 
11169 	add_wait_queue(&netdev_unregistering_wq, &wait);
11170 	for (;;) {
11171 		unregistering = false;
11172 		rtnl_lock();
11173 		list_for_each_entry(net, net_list, exit_list) {
11174 			if (net->dev_unreg_count > 0) {
11175 				unregistering = true;
11176 				break;
11177 			}
11178 		}
11179 		if (!unregistering)
11180 			break;
11181 		__rtnl_unlock();
11182 
11183 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11184 	}
11185 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11186 }
11187 
11188 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11189 {
11190 	/* At exit all network devices most be removed from a network
11191 	 * namespace.  Do this in the reverse order of registration.
11192 	 * Do this across as many network namespaces as possible to
11193 	 * improve batching efficiency.
11194 	 */
11195 	struct net_device *dev;
11196 	struct net *net;
11197 	LIST_HEAD(dev_kill_list);
11198 
11199 	/* To prevent network device cleanup code from dereferencing
11200 	 * loopback devices or network devices that have been freed
11201 	 * wait here for all pending unregistrations to complete,
11202 	 * before unregistring the loopback device and allowing the
11203 	 * network namespace be freed.
11204 	 *
11205 	 * The netdev todo list containing all network devices
11206 	 * unregistrations that happen in default_device_exit_batch
11207 	 * will run in the rtnl_unlock() at the end of
11208 	 * default_device_exit_batch.
11209 	 */
11210 	rtnl_lock_unregistering(net_list);
11211 	list_for_each_entry(net, net_list, exit_list) {
11212 		for_each_netdev_reverse(net, dev) {
11213 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11214 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11215 			else
11216 				unregister_netdevice_queue(dev, &dev_kill_list);
11217 		}
11218 	}
11219 	unregister_netdevice_many(&dev_kill_list);
11220 	rtnl_unlock();
11221 }
11222 
11223 static struct pernet_operations __net_initdata default_device_ops = {
11224 	.exit = default_device_exit,
11225 	.exit_batch = default_device_exit_batch,
11226 };
11227 
11228 /*
11229  *	Initialize the DEV module. At boot time this walks the device list and
11230  *	unhooks any devices that fail to initialise (normally hardware not
11231  *	present) and leaves us with a valid list of present and active devices.
11232  *
11233  */
11234 
11235 /*
11236  *       This is called single threaded during boot, so no need
11237  *       to take the rtnl semaphore.
11238  */
11239 static int __init net_dev_init(void)
11240 {
11241 	int i, rc = -ENOMEM;
11242 
11243 	BUG_ON(!dev_boot_phase);
11244 
11245 	if (dev_proc_init())
11246 		goto out;
11247 
11248 	if (netdev_kobject_init())
11249 		goto out;
11250 
11251 	INIT_LIST_HEAD(&ptype_all);
11252 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11253 		INIT_LIST_HEAD(&ptype_base[i]);
11254 
11255 	INIT_LIST_HEAD(&offload_base);
11256 
11257 	if (register_pernet_subsys(&netdev_net_ops))
11258 		goto out;
11259 
11260 	/*
11261 	 *	Initialise the packet receive queues.
11262 	 */
11263 
11264 	for_each_possible_cpu(i) {
11265 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11266 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11267 
11268 		INIT_WORK(flush, flush_backlog);
11269 
11270 		skb_queue_head_init(&sd->input_pkt_queue);
11271 		skb_queue_head_init(&sd->process_queue);
11272 #ifdef CONFIG_XFRM_OFFLOAD
11273 		skb_queue_head_init(&sd->xfrm_backlog);
11274 #endif
11275 		INIT_LIST_HEAD(&sd->poll_list);
11276 		sd->output_queue_tailp = &sd->output_queue;
11277 #ifdef CONFIG_RPS
11278 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11279 		sd->cpu = i;
11280 #endif
11281 
11282 		init_gro_hash(&sd->backlog);
11283 		sd->backlog.poll = process_backlog;
11284 		sd->backlog.weight = weight_p;
11285 	}
11286 
11287 	dev_boot_phase = 0;
11288 
11289 	/* The loopback device is special if any other network devices
11290 	 * is present in a network namespace the loopback device must
11291 	 * be present. Since we now dynamically allocate and free the
11292 	 * loopback device ensure this invariant is maintained by
11293 	 * keeping the loopback device as the first device on the
11294 	 * list of network devices.  Ensuring the loopback devices
11295 	 * is the first device that appears and the last network device
11296 	 * that disappears.
11297 	 */
11298 	if (register_pernet_device(&loopback_net_ops))
11299 		goto out;
11300 
11301 	if (register_pernet_device(&default_device_ops))
11302 		goto out;
11303 
11304 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11305 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11306 
11307 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11308 				       NULL, dev_cpu_dead);
11309 	WARN_ON(rc < 0);
11310 	rc = 0;
11311 out:
11312 	return rc;
11313 }
11314 
11315 subsys_initcall(net_dev_init);
11316