1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 if (dev->flags & IFF_UP) 1184 return -EBUSY; 1185 1186 write_seqcount_begin(&devnet_rename_seq); 1187 1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1189 write_seqcount_end(&devnet_rename_seq); 1190 return 0; 1191 } 1192 1193 memcpy(oldname, dev->name, IFNAMSIZ); 1194 1195 err = dev_get_valid_name(net, dev, newname); 1196 if (err < 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return err; 1199 } 1200 1201 if (oldname[0] && !strchr(oldname, '%')) 1202 netdev_info(dev, "renamed from %s\n", oldname); 1203 1204 old_assign_type = dev->name_assign_type; 1205 dev->name_assign_type = NET_NAME_RENAMED; 1206 1207 rollback: 1208 ret = device_rename(&dev->dev, dev->name); 1209 if (ret) { 1210 memcpy(dev->name, oldname, IFNAMSIZ); 1211 dev->name_assign_type = old_assign_type; 1212 write_seqcount_end(&devnet_rename_seq); 1213 return ret; 1214 } 1215 1216 write_seqcount_end(&devnet_rename_seq); 1217 1218 netdev_adjacent_rename_links(dev, oldname); 1219 1220 write_lock_bh(&dev_base_lock); 1221 hlist_del_rcu(&dev->name_hlist); 1222 write_unlock_bh(&dev_base_lock); 1223 1224 synchronize_rcu(); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1231 ret = notifier_to_errno(ret); 1232 1233 if (ret) { 1234 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1235 if (err >= 0) { 1236 err = ret; 1237 write_seqcount_begin(&devnet_rename_seq); 1238 memcpy(dev->name, oldname, IFNAMSIZ); 1239 memcpy(oldname, newname, IFNAMSIZ); 1240 dev->name_assign_type = old_assign_type; 1241 old_assign_type = NET_NAME_RENAMED; 1242 goto rollback; 1243 } else { 1244 pr_err("%s: name change rollback failed: %d\n", 1245 dev->name, ret); 1246 } 1247 } 1248 1249 return err; 1250 } 1251 1252 /** 1253 * dev_set_alias - change ifalias of a device 1254 * @dev: device 1255 * @alias: name up to IFALIASZ 1256 * @len: limit of bytes to copy from info 1257 * 1258 * Set ifalias for a device, 1259 */ 1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1261 { 1262 struct dev_ifalias *new_alias = NULL; 1263 1264 if (len >= IFALIASZ) 1265 return -EINVAL; 1266 1267 if (len) { 1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1269 if (!new_alias) 1270 return -ENOMEM; 1271 1272 memcpy(new_alias->ifalias, alias, len); 1273 new_alias->ifalias[len] = 0; 1274 } 1275 1276 mutex_lock(&ifalias_mutex); 1277 rcu_swap_protected(dev->ifalias, new_alias, 1278 mutex_is_locked(&ifalias_mutex)); 1279 mutex_unlock(&ifalias_mutex); 1280 1281 if (new_alias) 1282 kfree_rcu(new_alias, rcuhead); 1283 1284 return len; 1285 } 1286 EXPORT_SYMBOL(dev_set_alias); 1287 1288 /** 1289 * dev_get_alias - get ifalias of a device 1290 * @dev: device 1291 * @name: buffer to store name of ifalias 1292 * @len: size of buffer 1293 * 1294 * get ifalias for a device. Caller must make sure dev cannot go 1295 * away, e.g. rcu read lock or own a reference count to device. 1296 */ 1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1298 { 1299 const struct dev_ifalias *alias; 1300 int ret = 0; 1301 1302 rcu_read_lock(); 1303 alias = rcu_dereference(dev->ifalias); 1304 if (alias) 1305 ret = snprintf(name, len, "%s", alias->ifalias); 1306 rcu_read_unlock(); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * netdev_features_change - device changes features 1313 * @dev: device to cause notification 1314 * 1315 * Called to indicate a device has changed features. 1316 */ 1317 void netdev_features_change(struct net_device *dev) 1318 { 1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1320 } 1321 EXPORT_SYMBOL(netdev_features_change); 1322 1323 /** 1324 * netdev_state_change - device changes state 1325 * @dev: device to cause notification 1326 * 1327 * Called to indicate a device has changed state. This function calls 1328 * the notifier chains for netdev_chain and sends a NEWLINK message 1329 * to the routing socket. 1330 */ 1331 void netdev_state_change(struct net_device *dev) 1332 { 1333 if (dev->flags & IFF_UP) { 1334 struct netdev_notifier_change_info change_info = { 1335 .info.dev = dev, 1336 }; 1337 1338 call_netdevice_notifiers_info(NETDEV_CHANGE, 1339 &change_info.info); 1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1341 } 1342 } 1343 EXPORT_SYMBOL(netdev_state_change); 1344 1345 /** 1346 * netdev_notify_peers - notify network peers about existence of @dev 1347 * @dev: network device 1348 * 1349 * Generate traffic such that interested network peers are aware of 1350 * @dev, such as by generating a gratuitous ARP. This may be used when 1351 * a device wants to inform the rest of the network about some sort of 1352 * reconfiguration such as a failover event or virtual machine 1353 * migration. 1354 */ 1355 void netdev_notify_peers(struct net_device *dev) 1356 { 1357 rtnl_lock(); 1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1360 rtnl_unlock(); 1361 } 1362 EXPORT_SYMBOL(netdev_notify_peers); 1363 1364 static int __dev_open(struct net_device *dev) 1365 { 1366 const struct net_device_ops *ops = dev->netdev_ops; 1367 int ret; 1368 1369 ASSERT_RTNL(); 1370 1371 if (!netif_device_present(dev)) 1372 return -ENODEV; 1373 1374 /* Block netpoll from trying to do any rx path servicing. 1375 * If we don't do this there is a chance ndo_poll_controller 1376 * or ndo_poll may be running while we open the device 1377 */ 1378 netpoll_poll_disable(dev); 1379 1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1381 ret = notifier_to_errno(ret); 1382 if (ret) 1383 return ret; 1384 1385 set_bit(__LINK_STATE_START, &dev->state); 1386 1387 if (ops->ndo_validate_addr) 1388 ret = ops->ndo_validate_addr(dev); 1389 1390 if (!ret && ops->ndo_open) 1391 ret = ops->ndo_open(dev); 1392 1393 netpoll_poll_enable(dev); 1394 1395 if (ret) 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 else { 1398 dev->flags |= IFF_UP; 1399 dev_set_rx_mode(dev); 1400 dev_activate(dev); 1401 add_device_randomness(dev->dev_addr, dev->addr_len); 1402 } 1403 1404 return ret; 1405 } 1406 1407 /** 1408 * dev_open - prepare an interface for use. 1409 * @dev: device to open 1410 * 1411 * Takes a device from down to up state. The device's private open 1412 * function is invoked and then the multicast lists are loaded. Finally 1413 * the device is moved into the up state and a %NETDEV_UP message is 1414 * sent to the netdev notifier chain. 1415 * 1416 * Calling this function on an active interface is a nop. On a failure 1417 * a negative errno code is returned. 1418 */ 1419 int dev_open(struct net_device *dev) 1420 { 1421 int ret; 1422 1423 if (dev->flags & IFF_UP) 1424 return 0; 1425 1426 ret = __dev_open(dev); 1427 if (ret < 0) 1428 return ret; 1429 1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1431 call_netdevice_notifiers(NETDEV_UP, dev); 1432 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(dev_open); 1436 1437 static void __dev_close_many(struct list_head *head) 1438 { 1439 struct net_device *dev; 1440 1441 ASSERT_RTNL(); 1442 might_sleep(); 1443 1444 list_for_each_entry(dev, head, close_list) { 1445 /* Temporarily disable netpoll until the interface is down */ 1446 netpoll_poll_disable(dev); 1447 1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1449 1450 clear_bit(__LINK_STATE_START, &dev->state); 1451 1452 /* Synchronize to scheduled poll. We cannot touch poll list, it 1453 * can be even on different cpu. So just clear netif_running(). 1454 * 1455 * dev->stop() will invoke napi_disable() on all of it's 1456 * napi_struct instances on this device. 1457 */ 1458 smp_mb__after_atomic(); /* Commit netif_running(). */ 1459 } 1460 1461 dev_deactivate_many(head); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 const struct net_device_ops *ops = dev->netdev_ops; 1465 1466 /* 1467 * Call the device specific close. This cannot fail. 1468 * Only if device is UP 1469 * 1470 * We allow it to be called even after a DETACH hot-plug 1471 * event. 1472 */ 1473 if (ops->ndo_stop) 1474 ops->ndo_stop(dev); 1475 1476 dev->flags &= ~IFF_UP; 1477 netpoll_poll_enable(dev); 1478 } 1479 } 1480 1481 static void __dev_close(struct net_device *dev) 1482 { 1483 LIST_HEAD(single); 1484 1485 list_add(&dev->close_list, &single); 1486 __dev_close_many(&single); 1487 list_del(&single); 1488 } 1489 1490 void dev_close_many(struct list_head *head, bool unlink) 1491 { 1492 struct net_device *dev, *tmp; 1493 1494 /* Remove the devices that don't need to be closed */ 1495 list_for_each_entry_safe(dev, tmp, head, close_list) 1496 if (!(dev->flags & IFF_UP)) 1497 list_del_init(&dev->close_list); 1498 1499 __dev_close_many(head); 1500 1501 list_for_each_entry_safe(dev, tmp, head, close_list) { 1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1503 call_netdevice_notifiers(NETDEV_DOWN, dev); 1504 if (unlink) 1505 list_del_init(&dev->close_list); 1506 } 1507 } 1508 EXPORT_SYMBOL(dev_close_many); 1509 1510 /** 1511 * dev_close - shutdown an interface. 1512 * @dev: device to shutdown 1513 * 1514 * This function moves an active device into down state. A 1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1517 * chain. 1518 */ 1519 void dev_close(struct net_device *dev) 1520 { 1521 if (dev->flags & IFF_UP) { 1522 LIST_HEAD(single); 1523 1524 list_add(&dev->close_list, &single); 1525 dev_close_many(&single, true); 1526 list_del(&single); 1527 } 1528 } 1529 EXPORT_SYMBOL(dev_close); 1530 1531 1532 /** 1533 * dev_disable_lro - disable Large Receive Offload on a device 1534 * @dev: device 1535 * 1536 * Disable Large Receive Offload (LRO) on a net device. Must be 1537 * called under RTNL. This is needed if received packets may be 1538 * forwarded to another interface. 1539 */ 1540 void dev_disable_lro(struct net_device *dev) 1541 { 1542 struct net_device *lower_dev; 1543 struct list_head *iter; 1544 1545 dev->wanted_features &= ~NETIF_F_LRO; 1546 netdev_update_features(dev); 1547 1548 if (unlikely(dev->features & NETIF_F_LRO)) 1549 netdev_WARN(dev, "failed to disable LRO!\n"); 1550 1551 netdev_for_each_lower_dev(dev, lower_dev, iter) 1552 dev_disable_lro(lower_dev); 1553 } 1554 EXPORT_SYMBOL(dev_disable_lro); 1555 1556 /** 1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1558 * @dev: device 1559 * 1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1561 * called under RTNL. This is needed if Generic XDP is installed on 1562 * the device. 1563 */ 1564 static void dev_disable_gro_hw(struct net_device *dev) 1565 { 1566 dev->wanted_features &= ~NETIF_F_GRO_HW; 1567 netdev_update_features(dev); 1568 1569 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1570 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1571 } 1572 1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1574 { 1575 #define N(val) \ 1576 case NETDEV_##val: \ 1577 return "NETDEV_" __stringify(val); 1578 switch (cmd) { 1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1588 } 1589 #undef N 1590 return "UNKNOWN_NETDEV_EVENT"; 1591 } 1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1593 1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1595 struct net_device *dev) 1596 { 1597 struct netdev_notifier_info info = { 1598 .dev = dev, 1599 }; 1600 1601 return nb->notifier_call(nb, val, &info); 1602 } 1603 1604 static int dev_boot_phase = 1; 1605 1606 /** 1607 * register_netdevice_notifier - register a network notifier block 1608 * @nb: notifier 1609 * 1610 * Register a notifier to be called when network device events occur. 1611 * The notifier passed is linked into the kernel structures and must 1612 * not be reused until it has been unregistered. A negative errno code 1613 * is returned on a failure. 1614 * 1615 * When registered all registration and up events are replayed 1616 * to the new notifier to allow device to have a race free 1617 * view of the network device list. 1618 */ 1619 1620 int register_netdevice_notifier(struct notifier_block *nb) 1621 { 1622 struct net_device *dev; 1623 struct net_device *last; 1624 struct net *net; 1625 int err; 1626 1627 /* Close race with setup_net() and cleanup_net() */ 1628 down_write(&pernet_ops_rwsem); 1629 rtnl_lock(); 1630 err = raw_notifier_chain_register(&netdev_chain, nb); 1631 if (err) 1632 goto unlock; 1633 if (dev_boot_phase) 1634 goto unlock; 1635 for_each_net(net) { 1636 for_each_netdev(net, dev) { 1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1638 err = notifier_to_errno(err); 1639 if (err) 1640 goto rollback; 1641 1642 if (!(dev->flags & IFF_UP)) 1643 continue; 1644 1645 call_netdevice_notifier(nb, NETDEV_UP, dev); 1646 } 1647 } 1648 1649 unlock: 1650 rtnl_unlock(); 1651 up_write(&pernet_ops_rwsem); 1652 return err; 1653 1654 rollback: 1655 last = dev; 1656 for_each_net(net) { 1657 for_each_netdev(net, dev) { 1658 if (dev == last) 1659 goto outroll; 1660 1661 if (dev->flags & IFF_UP) { 1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1663 dev); 1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1665 } 1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1667 } 1668 } 1669 1670 outroll: 1671 raw_notifier_chain_unregister(&netdev_chain, nb); 1672 goto unlock; 1673 } 1674 EXPORT_SYMBOL(register_netdevice_notifier); 1675 1676 /** 1677 * unregister_netdevice_notifier - unregister a network notifier block 1678 * @nb: notifier 1679 * 1680 * Unregister a notifier previously registered by 1681 * register_netdevice_notifier(). The notifier is unlinked into the 1682 * kernel structures and may then be reused. A negative errno code 1683 * is returned on a failure. 1684 * 1685 * After unregistering unregister and down device events are synthesized 1686 * for all devices on the device list to the removed notifier to remove 1687 * the need for special case cleanup code. 1688 */ 1689 1690 int unregister_netdevice_notifier(struct notifier_block *nb) 1691 { 1692 struct net_device *dev; 1693 struct net *net; 1694 int err; 1695 1696 /* Close race with setup_net() and cleanup_net() */ 1697 down_write(&pernet_ops_rwsem); 1698 rtnl_lock(); 1699 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1700 if (err) 1701 goto unlock; 1702 1703 for_each_net(net) { 1704 for_each_netdev(net, dev) { 1705 if (dev->flags & IFF_UP) { 1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1707 dev); 1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1709 } 1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1711 } 1712 } 1713 unlock: 1714 rtnl_unlock(); 1715 up_write(&pernet_ops_rwsem); 1716 return err; 1717 } 1718 EXPORT_SYMBOL(unregister_netdevice_notifier); 1719 1720 /** 1721 * call_netdevice_notifiers_info - call all network notifier blocks 1722 * @val: value passed unmodified to notifier function 1723 * @info: notifier information data 1724 * 1725 * Call all network notifier blocks. Parameters and return value 1726 * are as for raw_notifier_call_chain(). 1727 */ 1728 1729 static int call_netdevice_notifiers_info(unsigned long val, 1730 struct netdev_notifier_info *info) 1731 { 1732 ASSERT_RTNL(); 1733 return raw_notifier_call_chain(&netdev_chain, val, info); 1734 } 1735 1736 /** 1737 * call_netdevice_notifiers - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @dev: net_device pointer passed unmodified to notifier function 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1746 { 1747 struct netdev_notifier_info info = { 1748 .dev = dev, 1749 }; 1750 1751 return call_netdevice_notifiers_info(val, &info); 1752 } 1753 EXPORT_SYMBOL(call_netdevice_notifiers); 1754 1755 /** 1756 * call_netdevice_notifiers_mtu - call all network notifier blocks 1757 * @val: value passed unmodified to notifier function 1758 * @dev: net_device pointer passed unmodified to notifier function 1759 * @arg: additional u32 argument passed to the notifier function 1760 * 1761 * Call all network notifier blocks. Parameters and return value 1762 * are as for raw_notifier_call_chain(). 1763 */ 1764 static int call_netdevice_notifiers_mtu(unsigned long val, 1765 struct net_device *dev, u32 arg) 1766 { 1767 struct netdev_notifier_info_ext info = { 1768 .info.dev = dev, 1769 .ext.mtu = arg, 1770 }; 1771 1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1773 1774 return call_netdevice_notifiers_info(val, &info.info); 1775 } 1776 1777 #ifdef CONFIG_NET_INGRESS 1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1779 1780 void net_inc_ingress_queue(void) 1781 { 1782 static_branch_inc(&ingress_needed_key); 1783 } 1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1785 1786 void net_dec_ingress_queue(void) 1787 { 1788 static_branch_dec(&ingress_needed_key); 1789 } 1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1791 #endif 1792 1793 #ifdef CONFIG_NET_EGRESS 1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1795 1796 void net_inc_egress_queue(void) 1797 { 1798 static_branch_inc(&egress_needed_key); 1799 } 1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1801 1802 void net_dec_egress_queue(void) 1803 { 1804 static_branch_dec(&egress_needed_key); 1805 } 1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1807 #endif 1808 1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1810 #ifdef HAVE_JUMP_LABEL 1811 static atomic_t netstamp_needed_deferred; 1812 static atomic_t netstamp_wanted; 1813 static void netstamp_clear(struct work_struct *work) 1814 { 1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1816 int wanted; 1817 1818 wanted = atomic_add_return(deferred, &netstamp_wanted); 1819 if (wanted > 0) 1820 static_branch_enable(&netstamp_needed_key); 1821 else 1822 static_branch_disable(&netstamp_needed_key); 1823 } 1824 static DECLARE_WORK(netstamp_work, netstamp_clear); 1825 #endif 1826 1827 void net_enable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 0) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1837 return; 1838 } 1839 atomic_inc(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_branch_inc(&netstamp_needed_key); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_enable_timestamp); 1846 1847 void net_disable_timestamp(void) 1848 { 1849 #ifdef HAVE_JUMP_LABEL 1850 int wanted; 1851 1852 while (1) { 1853 wanted = atomic_read(&netstamp_wanted); 1854 if (wanted <= 1) 1855 break; 1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1857 return; 1858 } 1859 atomic_dec(&netstamp_needed_deferred); 1860 schedule_work(&netstamp_work); 1861 #else 1862 static_branch_dec(&netstamp_needed_key); 1863 #endif 1864 } 1865 EXPORT_SYMBOL(net_disable_timestamp); 1866 1867 static inline void net_timestamp_set(struct sk_buff *skb) 1868 { 1869 skb->tstamp = 0; 1870 if (static_branch_unlikely(&netstamp_needed_key)) 1871 __net_timestamp(skb); 1872 } 1873 1874 #define net_timestamp_check(COND, SKB) \ 1875 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1876 if ((COND) && !(SKB)->tstamp) \ 1877 __net_timestamp(SKB); \ 1878 } \ 1879 1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1881 { 1882 unsigned int len; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return false; 1886 1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1888 if (skb->len <= len) 1889 return true; 1890 1891 /* if TSO is enabled, we don't care about the length as the packet 1892 * could be forwarded without being segmented before 1893 */ 1894 if (skb_is_gso(skb)) 1895 return true; 1896 1897 return false; 1898 } 1899 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1900 1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1902 { 1903 int ret = ____dev_forward_skb(dev, skb); 1904 1905 if (likely(!ret)) { 1906 skb->protocol = eth_type_trans(skb, dev); 1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1908 } 1909 1910 return ret; 1911 } 1912 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1913 1914 /** 1915 * dev_forward_skb - loopback an skb to another netif 1916 * 1917 * @dev: destination network device 1918 * @skb: buffer to forward 1919 * 1920 * return values: 1921 * NET_RX_SUCCESS (no congestion) 1922 * NET_RX_DROP (packet was dropped, but freed) 1923 * 1924 * dev_forward_skb can be used for injecting an skb from the 1925 * start_xmit function of one device into the receive queue 1926 * of another device. 1927 * 1928 * The receiving device may be in another namespace, so 1929 * we have to clear all information in the skb that could 1930 * impact namespace isolation. 1931 */ 1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1933 { 1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1935 } 1936 EXPORT_SYMBOL_GPL(dev_forward_skb); 1937 1938 static inline int deliver_skb(struct sk_buff *skb, 1939 struct packet_type *pt_prev, 1940 struct net_device *orig_dev) 1941 { 1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1943 return -ENOMEM; 1944 refcount_inc(&skb->users); 1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1946 } 1947 1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1949 struct packet_type **pt, 1950 struct net_device *orig_dev, 1951 __be16 type, 1952 struct list_head *ptype_list) 1953 { 1954 struct packet_type *ptype, *pt_prev = *pt; 1955 1956 list_for_each_entry_rcu(ptype, ptype_list, list) { 1957 if (ptype->type != type) 1958 continue; 1959 if (pt_prev) 1960 deliver_skb(skb, pt_prev, orig_dev); 1961 pt_prev = ptype; 1962 } 1963 *pt = pt_prev; 1964 } 1965 1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1967 { 1968 if (!ptype->af_packet_priv || !skb->sk) 1969 return false; 1970 1971 if (ptype->id_match) 1972 return ptype->id_match(ptype, skb->sk); 1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1974 return true; 1975 1976 return false; 1977 } 1978 1979 /** 1980 * dev_nit_active - return true if any network interface taps are in use 1981 * 1982 * @dev: network device to check for the presence of taps 1983 */ 1984 bool dev_nit_active(struct net_device *dev) 1985 { 1986 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 1987 } 1988 EXPORT_SYMBOL_GPL(dev_nit_active); 1989 1990 /* 1991 * Support routine. Sends outgoing frames to any network 1992 * taps currently in use. 1993 */ 1994 1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1996 { 1997 struct packet_type *ptype; 1998 struct sk_buff *skb2 = NULL; 1999 struct packet_type *pt_prev = NULL; 2000 struct list_head *ptype_list = &ptype_all; 2001 2002 rcu_read_lock(); 2003 again: 2004 list_for_each_entry_rcu(ptype, ptype_list, list) { 2005 if (ptype->ignore_outgoing) 2006 continue; 2007 2008 /* Never send packets back to the socket 2009 * they originated from - MvS (miquels@drinkel.ow.org) 2010 */ 2011 if (skb_loop_sk(ptype, skb)) 2012 continue; 2013 2014 if (pt_prev) { 2015 deliver_skb(skb2, pt_prev, skb->dev); 2016 pt_prev = ptype; 2017 continue; 2018 } 2019 2020 /* need to clone skb, done only once */ 2021 skb2 = skb_clone(skb, GFP_ATOMIC); 2022 if (!skb2) 2023 goto out_unlock; 2024 2025 net_timestamp_set(skb2); 2026 2027 /* skb->nh should be correctly 2028 * set by sender, so that the second statement is 2029 * just protection against buggy protocols. 2030 */ 2031 skb_reset_mac_header(skb2); 2032 2033 if (skb_network_header(skb2) < skb2->data || 2034 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2035 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2036 ntohs(skb2->protocol), 2037 dev->name); 2038 skb_reset_network_header(skb2); 2039 } 2040 2041 skb2->transport_header = skb2->network_header; 2042 skb2->pkt_type = PACKET_OUTGOING; 2043 pt_prev = ptype; 2044 } 2045 2046 if (ptype_list == &ptype_all) { 2047 ptype_list = &dev->ptype_all; 2048 goto again; 2049 } 2050 out_unlock: 2051 if (pt_prev) { 2052 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2053 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2054 else 2055 kfree_skb(skb2); 2056 } 2057 rcu_read_unlock(); 2058 } 2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2060 2061 /** 2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2063 * @dev: Network device 2064 * @txq: number of queues available 2065 * 2066 * If real_num_tx_queues is changed the tc mappings may no longer be 2067 * valid. To resolve this verify the tc mapping remains valid and if 2068 * not NULL the mapping. With no priorities mapping to this 2069 * offset/count pair it will no longer be used. In the worst case TC0 2070 * is invalid nothing can be done so disable priority mappings. If is 2071 * expected that drivers will fix this mapping if they can before 2072 * calling netif_set_real_num_tx_queues. 2073 */ 2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2075 { 2076 int i; 2077 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2078 2079 /* If TC0 is invalidated disable TC mapping */ 2080 if (tc->offset + tc->count > txq) { 2081 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2082 dev->num_tc = 0; 2083 return; 2084 } 2085 2086 /* Invalidated prio to tc mappings set to TC0 */ 2087 for (i = 1; i < TC_BITMASK + 1; i++) { 2088 int q = netdev_get_prio_tc_map(dev, i); 2089 2090 tc = &dev->tc_to_txq[q]; 2091 if (tc->offset + tc->count > txq) { 2092 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2093 i, q); 2094 netdev_set_prio_tc_map(dev, i, 0); 2095 } 2096 } 2097 } 2098 2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2100 { 2101 if (dev->num_tc) { 2102 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2103 int i; 2104 2105 /* walk through the TCs and see if it falls into any of them */ 2106 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2107 if ((txq - tc->offset) < tc->count) 2108 return i; 2109 } 2110 2111 /* didn't find it, just return -1 to indicate no match */ 2112 return -1; 2113 } 2114 2115 return 0; 2116 } 2117 EXPORT_SYMBOL(netdev_txq_to_tc); 2118 2119 #ifdef CONFIG_XPS 2120 struct static_key xps_needed __read_mostly; 2121 EXPORT_SYMBOL(xps_needed); 2122 struct static_key xps_rxqs_needed __read_mostly; 2123 EXPORT_SYMBOL(xps_rxqs_needed); 2124 static DEFINE_MUTEX(xps_map_mutex); 2125 #define xmap_dereference(P) \ 2126 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2127 2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2129 int tci, u16 index) 2130 { 2131 struct xps_map *map = NULL; 2132 int pos; 2133 2134 if (dev_maps) 2135 map = xmap_dereference(dev_maps->attr_map[tci]); 2136 if (!map) 2137 return false; 2138 2139 for (pos = map->len; pos--;) { 2140 if (map->queues[pos] != index) 2141 continue; 2142 2143 if (map->len > 1) { 2144 map->queues[pos] = map->queues[--map->len]; 2145 break; 2146 } 2147 2148 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2149 kfree_rcu(map, rcu); 2150 return false; 2151 } 2152 2153 return true; 2154 } 2155 2156 static bool remove_xps_queue_cpu(struct net_device *dev, 2157 struct xps_dev_maps *dev_maps, 2158 int cpu, u16 offset, u16 count) 2159 { 2160 int num_tc = dev->num_tc ? : 1; 2161 bool active = false; 2162 int tci; 2163 2164 for (tci = cpu * num_tc; num_tc--; tci++) { 2165 int i, j; 2166 2167 for (i = count, j = offset; i--; j++) { 2168 if (!remove_xps_queue(dev_maps, tci, j)) 2169 break; 2170 } 2171 2172 active |= i < 0; 2173 } 2174 2175 return active; 2176 } 2177 2178 static void reset_xps_maps(struct net_device *dev, 2179 struct xps_dev_maps *dev_maps, 2180 bool is_rxqs_map) 2181 { 2182 if (is_rxqs_map) { 2183 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2184 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2185 } else { 2186 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2187 } 2188 static_key_slow_dec_cpuslocked(&xps_needed); 2189 kfree_rcu(dev_maps, rcu); 2190 } 2191 2192 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2193 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2194 u16 offset, u16 count, bool is_rxqs_map) 2195 { 2196 bool active = false; 2197 int i, j; 2198 2199 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2200 j < nr_ids;) 2201 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2202 count); 2203 if (!active) 2204 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2205 2206 if (!is_rxqs_map) { 2207 for (i = offset + (count - 1); count--; i--) { 2208 netdev_queue_numa_node_write( 2209 netdev_get_tx_queue(dev, i), 2210 NUMA_NO_NODE); 2211 } 2212 } 2213 } 2214 2215 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2216 u16 count) 2217 { 2218 const unsigned long *possible_mask = NULL; 2219 struct xps_dev_maps *dev_maps; 2220 unsigned int nr_ids; 2221 2222 if (!static_key_false(&xps_needed)) 2223 return; 2224 2225 cpus_read_lock(); 2226 mutex_lock(&xps_map_mutex); 2227 2228 if (static_key_false(&xps_rxqs_needed)) { 2229 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2230 if (dev_maps) { 2231 nr_ids = dev->num_rx_queues; 2232 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2233 offset, count, true); 2234 } 2235 } 2236 2237 dev_maps = xmap_dereference(dev->xps_cpus_map); 2238 if (!dev_maps) 2239 goto out_no_maps; 2240 2241 if (num_possible_cpus() > 1) 2242 possible_mask = cpumask_bits(cpu_possible_mask); 2243 nr_ids = nr_cpu_ids; 2244 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2245 false); 2246 2247 out_no_maps: 2248 mutex_unlock(&xps_map_mutex); 2249 cpus_read_unlock(); 2250 } 2251 2252 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2253 { 2254 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2255 } 2256 2257 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2258 u16 index, bool is_rxqs_map) 2259 { 2260 struct xps_map *new_map; 2261 int alloc_len = XPS_MIN_MAP_ALLOC; 2262 int i, pos; 2263 2264 for (pos = 0; map && pos < map->len; pos++) { 2265 if (map->queues[pos] != index) 2266 continue; 2267 return map; 2268 } 2269 2270 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2271 if (map) { 2272 if (pos < map->alloc_len) 2273 return map; 2274 2275 alloc_len = map->alloc_len * 2; 2276 } 2277 2278 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2279 * map 2280 */ 2281 if (is_rxqs_map) 2282 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2283 else 2284 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2285 cpu_to_node(attr_index)); 2286 if (!new_map) 2287 return NULL; 2288 2289 for (i = 0; i < pos; i++) 2290 new_map->queues[i] = map->queues[i]; 2291 new_map->alloc_len = alloc_len; 2292 new_map->len = pos; 2293 2294 return new_map; 2295 } 2296 2297 /* Must be called under cpus_read_lock */ 2298 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2299 u16 index, bool is_rxqs_map) 2300 { 2301 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2302 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2303 int i, j, tci, numa_node_id = -2; 2304 int maps_sz, num_tc = 1, tc = 0; 2305 struct xps_map *map, *new_map; 2306 bool active = false; 2307 unsigned int nr_ids; 2308 2309 if (dev->num_tc) { 2310 /* Do not allow XPS on subordinate device directly */ 2311 num_tc = dev->num_tc; 2312 if (num_tc < 0) 2313 return -EINVAL; 2314 2315 /* If queue belongs to subordinate dev use its map */ 2316 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2317 2318 tc = netdev_txq_to_tc(dev, index); 2319 if (tc < 0) 2320 return -EINVAL; 2321 } 2322 2323 mutex_lock(&xps_map_mutex); 2324 if (is_rxqs_map) { 2325 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2326 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2327 nr_ids = dev->num_rx_queues; 2328 } else { 2329 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2330 if (num_possible_cpus() > 1) { 2331 online_mask = cpumask_bits(cpu_online_mask); 2332 possible_mask = cpumask_bits(cpu_possible_mask); 2333 } 2334 dev_maps = xmap_dereference(dev->xps_cpus_map); 2335 nr_ids = nr_cpu_ids; 2336 } 2337 2338 if (maps_sz < L1_CACHE_BYTES) 2339 maps_sz = L1_CACHE_BYTES; 2340 2341 /* allocate memory for queue storage */ 2342 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2343 j < nr_ids;) { 2344 if (!new_dev_maps) 2345 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2346 if (!new_dev_maps) { 2347 mutex_unlock(&xps_map_mutex); 2348 return -ENOMEM; 2349 } 2350 2351 tci = j * num_tc + tc; 2352 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2353 NULL; 2354 2355 map = expand_xps_map(map, j, index, is_rxqs_map); 2356 if (!map) 2357 goto error; 2358 2359 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2360 } 2361 2362 if (!new_dev_maps) 2363 goto out_no_new_maps; 2364 2365 if (!dev_maps) { 2366 /* Increment static keys at most once per type */ 2367 static_key_slow_inc_cpuslocked(&xps_needed); 2368 if (is_rxqs_map) 2369 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2370 } 2371 2372 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2373 j < nr_ids;) { 2374 /* copy maps belonging to foreign traffic classes */ 2375 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2376 /* fill in the new device map from the old device map */ 2377 map = xmap_dereference(dev_maps->attr_map[tci]); 2378 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2379 } 2380 2381 /* We need to explicitly update tci as prevous loop 2382 * could break out early if dev_maps is NULL. 2383 */ 2384 tci = j * num_tc + tc; 2385 2386 if (netif_attr_test_mask(j, mask, nr_ids) && 2387 netif_attr_test_online(j, online_mask, nr_ids)) { 2388 /* add tx-queue to CPU/rx-queue maps */ 2389 int pos = 0; 2390 2391 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2392 while ((pos < map->len) && (map->queues[pos] != index)) 2393 pos++; 2394 2395 if (pos == map->len) 2396 map->queues[map->len++] = index; 2397 #ifdef CONFIG_NUMA 2398 if (!is_rxqs_map) { 2399 if (numa_node_id == -2) 2400 numa_node_id = cpu_to_node(j); 2401 else if (numa_node_id != cpu_to_node(j)) 2402 numa_node_id = -1; 2403 } 2404 #endif 2405 } else if (dev_maps) { 2406 /* fill in the new device map from the old device map */ 2407 map = xmap_dereference(dev_maps->attr_map[tci]); 2408 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2409 } 2410 2411 /* copy maps belonging to foreign traffic classes */ 2412 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2413 /* fill in the new device map from the old device map */ 2414 map = xmap_dereference(dev_maps->attr_map[tci]); 2415 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2416 } 2417 } 2418 2419 if (is_rxqs_map) 2420 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2421 else 2422 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2423 2424 /* Cleanup old maps */ 2425 if (!dev_maps) 2426 goto out_no_old_maps; 2427 2428 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2429 j < nr_ids;) { 2430 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2431 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2432 map = xmap_dereference(dev_maps->attr_map[tci]); 2433 if (map && map != new_map) 2434 kfree_rcu(map, rcu); 2435 } 2436 } 2437 2438 kfree_rcu(dev_maps, rcu); 2439 2440 out_no_old_maps: 2441 dev_maps = new_dev_maps; 2442 active = true; 2443 2444 out_no_new_maps: 2445 if (!is_rxqs_map) { 2446 /* update Tx queue numa node */ 2447 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2448 (numa_node_id >= 0) ? 2449 numa_node_id : NUMA_NO_NODE); 2450 } 2451 2452 if (!dev_maps) 2453 goto out_no_maps; 2454 2455 /* removes tx-queue from unused CPUs/rx-queues */ 2456 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2457 j < nr_ids;) { 2458 for (i = tc, tci = j * num_tc; i--; tci++) 2459 active |= remove_xps_queue(dev_maps, tci, index); 2460 if (!netif_attr_test_mask(j, mask, nr_ids) || 2461 !netif_attr_test_online(j, online_mask, nr_ids)) 2462 active |= remove_xps_queue(dev_maps, tci, index); 2463 for (i = num_tc - tc, tci++; --i; tci++) 2464 active |= remove_xps_queue(dev_maps, tci, index); 2465 } 2466 2467 /* free map if not active */ 2468 if (!active) 2469 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2470 2471 out_no_maps: 2472 mutex_unlock(&xps_map_mutex); 2473 2474 return 0; 2475 error: 2476 /* remove any maps that we added */ 2477 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2478 j < nr_ids;) { 2479 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2480 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2481 map = dev_maps ? 2482 xmap_dereference(dev_maps->attr_map[tci]) : 2483 NULL; 2484 if (new_map && new_map != map) 2485 kfree(new_map); 2486 } 2487 } 2488 2489 mutex_unlock(&xps_map_mutex); 2490 2491 kfree(new_dev_maps); 2492 return -ENOMEM; 2493 } 2494 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2495 2496 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2497 u16 index) 2498 { 2499 int ret; 2500 2501 cpus_read_lock(); 2502 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2503 cpus_read_unlock(); 2504 2505 return ret; 2506 } 2507 EXPORT_SYMBOL(netif_set_xps_queue); 2508 2509 #endif 2510 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2511 { 2512 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2513 2514 /* Unbind any subordinate channels */ 2515 while (txq-- != &dev->_tx[0]) { 2516 if (txq->sb_dev) 2517 netdev_unbind_sb_channel(dev, txq->sb_dev); 2518 } 2519 } 2520 2521 void netdev_reset_tc(struct net_device *dev) 2522 { 2523 #ifdef CONFIG_XPS 2524 netif_reset_xps_queues_gt(dev, 0); 2525 #endif 2526 netdev_unbind_all_sb_channels(dev); 2527 2528 /* Reset TC configuration of device */ 2529 dev->num_tc = 0; 2530 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2531 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2532 } 2533 EXPORT_SYMBOL(netdev_reset_tc); 2534 2535 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2536 { 2537 if (tc >= dev->num_tc) 2538 return -EINVAL; 2539 2540 #ifdef CONFIG_XPS 2541 netif_reset_xps_queues(dev, offset, count); 2542 #endif 2543 dev->tc_to_txq[tc].count = count; 2544 dev->tc_to_txq[tc].offset = offset; 2545 return 0; 2546 } 2547 EXPORT_SYMBOL(netdev_set_tc_queue); 2548 2549 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2550 { 2551 if (num_tc > TC_MAX_QUEUE) 2552 return -EINVAL; 2553 2554 #ifdef CONFIG_XPS 2555 netif_reset_xps_queues_gt(dev, 0); 2556 #endif 2557 netdev_unbind_all_sb_channels(dev); 2558 2559 dev->num_tc = num_tc; 2560 return 0; 2561 } 2562 EXPORT_SYMBOL(netdev_set_num_tc); 2563 2564 void netdev_unbind_sb_channel(struct net_device *dev, 2565 struct net_device *sb_dev) 2566 { 2567 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2568 2569 #ifdef CONFIG_XPS 2570 netif_reset_xps_queues_gt(sb_dev, 0); 2571 #endif 2572 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2573 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2574 2575 while (txq-- != &dev->_tx[0]) { 2576 if (txq->sb_dev == sb_dev) 2577 txq->sb_dev = NULL; 2578 } 2579 } 2580 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2581 2582 int netdev_bind_sb_channel_queue(struct net_device *dev, 2583 struct net_device *sb_dev, 2584 u8 tc, u16 count, u16 offset) 2585 { 2586 /* Make certain the sb_dev and dev are already configured */ 2587 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2588 return -EINVAL; 2589 2590 /* We cannot hand out queues we don't have */ 2591 if ((offset + count) > dev->real_num_tx_queues) 2592 return -EINVAL; 2593 2594 /* Record the mapping */ 2595 sb_dev->tc_to_txq[tc].count = count; 2596 sb_dev->tc_to_txq[tc].offset = offset; 2597 2598 /* Provide a way for Tx queue to find the tc_to_txq map or 2599 * XPS map for itself. 2600 */ 2601 while (count--) 2602 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2603 2604 return 0; 2605 } 2606 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2607 2608 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2609 { 2610 /* Do not use a multiqueue device to represent a subordinate channel */ 2611 if (netif_is_multiqueue(dev)) 2612 return -ENODEV; 2613 2614 /* We allow channels 1 - 32767 to be used for subordinate channels. 2615 * Channel 0 is meant to be "native" mode and used only to represent 2616 * the main root device. We allow writing 0 to reset the device back 2617 * to normal mode after being used as a subordinate channel. 2618 */ 2619 if (channel > S16_MAX) 2620 return -EINVAL; 2621 2622 dev->num_tc = -channel; 2623 2624 return 0; 2625 } 2626 EXPORT_SYMBOL(netdev_set_sb_channel); 2627 2628 /* 2629 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2630 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2631 */ 2632 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2633 { 2634 bool disabling; 2635 int rc; 2636 2637 disabling = txq < dev->real_num_tx_queues; 2638 2639 if (txq < 1 || txq > dev->num_tx_queues) 2640 return -EINVAL; 2641 2642 if (dev->reg_state == NETREG_REGISTERED || 2643 dev->reg_state == NETREG_UNREGISTERING) { 2644 ASSERT_RTNL(); 2645 2646 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2647 txq); 2648 if (rc) 2649 return rc; 2650 2651 if (dev->num_tc) 2652 netif_setup_tc(dev, txq); 2653 2654 dev->real_num_tx_queues = txq; 2655 2656 if (disabling) { 2657 synchronize_net(); 2658 qdisc_reset_all_tx_gt(dev, txq); 2659 #ifdef CONFIG_XPS 2660 netif_reset_xps_queues_gt(dev, txq); 2661 #endif 2662 } 2663 } else { 2664 dev->real_num_tx_queues = txq; 2665 } 2666 2667 return 0; 2668 } 2669 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2670 2671 #ifdef CONFIG_SYSFS 2672 /** 2673 * netif_set_real_num_rx_queues - set actual number of RX queues used 2674 * @dev: Network device 2675 * @rxq: Actual number of RX queues 2676 * 2677 * This must be called either with the rtnl_lock held or before 2678 * registration of the net device. Returns 0 on success, or a 2679 * negative error code. If called before registration, it always 2680 * succeeds. 2681 */ 2682 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2683 { 2684 int rc; 2685 2686 if (rxq < 1 || rxq > dev->num_rx_queues) 2687 return -EINVAL; 2688 2689 if (dev->reg_state == NETREG_REGISTERED) { 2690 ASSERT_RTNL(); 2691 2692 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2693 rxq); 2694 if (rc) 2695 return rc; 2696 } 2697 2698 dev->real_num_rx_queues = rxq; 2699 return 0; 2700 } 2701 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2702 #endif 2703 2704 /** 2705 * netif_get_num_default_rss_queues - default number of RSS queues 2706 * 2707 * This routine should set an upper limit on the number of RSS queues 2708 * used by default by multiqueue devices. 2709 */ 2710 int netif_get_num_default_rss_queues(void) 2711 { 2712 return is_kdump_kernel() ? 2713 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2714 } 2715 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2716 2717 static void __netif_reschedule(struct Qdisc *q) 2718 { 2719 struct softnet_data *sd; 2720 unsigned long flags; 2721 2722 local_irq_save(flags); 2723 sd = this_cpu_ptr(&softnet_data); 2724 q->next_sched = NULL; 2725 *sd->output_queue_tailp = q; 2726 sd->output_queue_tailp = &q->next_sched; 2727 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2728 local_irq_restore(flags); 2729 } 2730 2731 void __netif_schedule(struct Qdisc *q) 2732 { 2733 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2734 __netif_reschedule(q); 2735 } 2736 EXPORT_SYMBOL(__netif_schedule); 2737 2738 struct dev_kfree_skb_cb { 2739 enum skb_free_reason reason; 2740 }; 2741 2742 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2743 { 2744 return (struct dev_kfree_skb_cb *)skb->cb; 2745 } 2746 2747 void netif_schedule_queue(struct netdev_queue *txq) 2748 { 2749 rcu_read_lock(); 2750 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2751 struct Qdisc *q = rcu_dereference(txq->qdisc); 2752 2753 __netif_schedule(q); 2754 } 2755 rcu_read_unlock(); 2756 } 2757 EXPORT_SYMBOL(netif_schedule_queue); 2758 2759 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2760 { 2761 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2762 struct Qdisc *q; 2763 2764 rcu_read_lock(); 2765 q = rcu_dereference(dev_queue->qdisc); 2766 __netif_schedule(q); 2767 rcu_read_unlock(); 2768 } 2769 } 2770 EXPORT_SYMBOL(netif_tx_wake_queue); 2771 2772 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2773 { 2774 unsigned long flags; 2775 2776 if (unlikely(!skb)) 2777 return; 2778 2779 if (likely(refcount_read(&skb->users) == 1)) { 2780 smp_rmb(); 2781 refcount_set(&skb->users, 0); 2782 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2783 return; 2784 } 2785 get_kfree_skb_cb(skb)->reason = reason; 2786 local_irq_save(flags); 2787 skb->next = __this_cpu_read(softnet_data.completion_queue); 2788 __this_cpu_write(softnet_data.completion_queue, skb); 2789 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2790 local_irq_restore(flags); 2791 } 2792 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2793 2794 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2795 { 2796 if (in_irq() || irqs_disabled()) 2797 __dev_kfree_skb_irq(skb, reason); 2798 else 2799 dev_kfree_skb(skb); 2800 } 2801 EXPORT_SYMBOL(__dev_kfree_skb_any); 2802 2803 2804 /** 2805 * netif_device_detach - mark device as removed 2806 * @dev: network device 2807 * 2808 * Mark device as removed from system and therefore no longer available. 2809 */ 2810 void netif_device_detach(struct net_device *dev) 2811 { 2812 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2813 netif_running(dev)) { 2814 netif_tx_stop_all_queues(dev); 2815 } 2816 } 2817 EXPORT_SYMBOL(netif_device_detach); 2818 2819 /** 2820 * netif_device_attach - mark device as attached 2821 * @dev: network device 2822 * 2823 * Mark device as attached from system and restart if needed. 2824 */ 2825 void netif_device_attach(struct net_device *dev) 2826 { 2827 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2828 netif_running(dev)) { 2829 netif_tx_wake_all_queues(dev); 2830 __netdev_watchdog_up(dev); 2831 } 2832 } 2833 EXPORT_SYMBOL(netif_device_attach); 2834 2835 /* 2836 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2837 * to be used as a distribution range. 2838 */ 2839 static u16 skb_tx_hash(const struct net_device *dev, 2840 const struct net_device *sb_dev, 2841 struct sk_buff *skb) 2842 { 2843 u32 hash; 2844 u16 qoffset = 0; 2845 u16 qcount = dev->real_num_tx_queues; 2846 2847 if (dev->num_tc) { 2848 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2849 2850 qoffset = sb_dev->tc_to_txq[tc].offset; 2851 qcount = sb_dev->tc_to_txq[tc].count; 2852 } 2853 2854 if (skb_rx_queue_recorded(skb)) { 2855 hash = skb_get_rx_queue(skb); 2856 while (unlikely(hash >= qcount)) 2857 hash -= qcount; 2858 return hash + qoffset; 2859 } 2860 2861 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2862 } 2863 2864 static void skb_warn_bad_offload(const struct sk_buff *skb) 2865 { 2866 static const netdev_features_t null_features; 2867 struct net_device *dev = skb->dev; 2868 const char *name = ""; 2869 2870 if (!net_ratelimit()) 2871 return; 2872 2873 if (dev) { 2874 if (dev->dev.parent) 2875 name = dev_driver_string(dev->dev.parent); 2876 else 2877 name = netdev_name(dev); 2878 } 2879 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2880 "gso_type=%d ip_summed=%d\n", 2881 name, dev ? &dev->features : &null_features, 2882 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2883 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2884 skb_shinfo(skb)->gso_type, skb->ip_summed); 2885 } 2886 2887 /* 2888 * Invalidate hardware checksum when packet is to be mangled, and 2889 * complete checksum manually on outgoing path. 2890 */ 2891 int skb_checksum_help(struct sk_buff *skb) 2892 { 2893 __wsum csum; 2894 int ret = 0, offset; 2895 2896 if (skb->ip_summed == CHECKSUM_COMPLETE) 2897 goto out_set_summed; 2898 2899 if (unlikely(skb_shinfo(skb)->gso_size)) { 2900 skb_warn_bad_offload(skb); 2901 return -EINVAL; 2902 } 2903 2904 /* Before computing a checksum, we should make sure no frag could 2905 * be modified by an external entity : checksum could be wrong. 2906 */ 2907 if (skb_has_shared_frag(skb)) { 2908 ret = __skb_linearize(skb); 2909 if (ret) 2910 goto out; 2911 } 2912 2913 offset = skb_checksum_start_offset(skb); 2914 BUG_ON(offset >= skb_headlen(skb)); 2915 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2916 2917 offset += skb->csum_offset; 2918 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2919 2920 if (skb_cloned(skb) && 2921 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2922 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2923 if (ret) 2924 goto out; 2925 } 2926 2927 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2928 out_set_summed: 2929 skb->ip_summed = CHECKSUM_NONE; 2930 out: 2931 return ret; 2932 } 2933 EXPORT_SYMBOL(skb_checksum_help); 2934 2935 int skb_crc32c_csum_help(struct sk_buff *skb) 2936 { 2937 __le32 crc32c_csum; 2938 int ret = 0, offset, start; 2939 2940 if (skb->ip_summed != CHECKSUM_PARTIAL) 2941 goto out; 2942 2943 if (unlikely(skb_is_gso(skb))) 2944 goto out; 2945 2946 /* Before computing a checksum, we should make sure no frag could 2947 * be modified by an external entity : checksum could be wrong. 2948 */ 2949 if (unlikely(skb_has_shared_frag(skb))) { 2950 ret = __skb_linearize(skb); 2951 if (ret) 2952 goto out; 2953 } 2954 start = skb_checksum_start_offset(skb); 2955 offset = start + offsetof(struct sctphdr, checksum); 2956 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2957 ret = -EINVAL; 2958 goto out; 2959 } 2960 if (skb_cloned(skb) && 2961 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2962 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2963 if (ret) 2964 goto out; 2965 } 2966 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2967 skb->len - start, ~(__u32)0, 2968 crc32c_csum_stub)); 2969 *(__le32 *)(skb->data + offset) = crc32c_csum; 2970 skb->ip_summed = CHECKSUM_NONE; 2971 skb->csum_not_inet = 0; 2972 out: 2973 return ret; 2974 } 2975 2976 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2977 { 2978 __be16 type = skb->protocol; 2979 2980 /* Tunnel gso handlers can set protocol to ethernet. */ 2981 if (type == htons(ETH_P_TEB)) { 2982 struct ethhdr *eth; 2983 2984 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2985 return 0; 2986 2987 eth = (struct ethhdr *)skb->data; 2988 type = eth->h_proto; 2989 } 2990 2991 return __vlan_get_protocol(skb, type, depth); 2992 } 2993 2994 /** 2995 * skb_mac_gso_segment - mac layer segmentation handler. 2996 * @skb: buffer to segment 2997 * @features: features for the output path (see dev->features) 2998 */ 2999 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3000 netdev_features_t features) 3001 { 3002 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3003 struct packet_offload *ptype; 3004 int vlan_depth = skb->mac_len; 3005 __be16 type = skb_network_protocol(skb, &vlan_depth); 3006 3007 if (unlikely(!type)) 3008 return ERR_PTR(-EINVAL); 3009 3010 __skb_pull(skb, vlan_depth); 3011 3012 rcu_read_lock(); 3013 list_for_each_entry_rcu(ptype, &offload_base, list) { 3014 if (ptype->type == type && ptype->callbacks.gso_segment) { 3015 segs = ptype->callbacks.gso_segment(skb, features); 3016 break; 3017 } 3018 } 3019 rcu_read_unlock(); 3020 3021 __skb_push(skb, skb->data - skb_mac_header(skb)); 3022 3023 return segs; 3024 } 3025 EXPORT_SYMBOL(skb_mac_gso_segment); 3026 3027 3028 /* openvswitch calls this on rx path, so we need a different check. 3029 */ 3030 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3031 { 3032 if (tx_path) 3033 return skb->ip_summed != CHECKSUM_PARTIAL && 3034 skb->ip_summed != CHECKSUM_UNNECESSARY; 3035 3036 return skb->ip_summed == CHECKSUM_NONE; 3037 } 3038 3039 /** 3040 * __skb_gso_segment - Perform segmentation on skb. 3041 * @skb: buffer to segment 3042 * @features: features for the output path (see dev->features) 3043 * @tx_path: whether it is called in TX path 3044 * 3045 * This function segments the given skb and returns a list of segments. 3046 * 3047 * It may return NULL if the skb requires no segmentation. This is 3048 * only possible when GSO is used for verifying header integrity. 3049 * 3050 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3051 */ 3052 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3053 netdev_features_t features, bool tx_path) 3054 { 3055 struct sk_buff *segs; 3056 3057 if (unlikely(skb_needs_check(skb, tx_path))) { 3058 int err; 3059 3060 /* We're going to init ->check field in TCP or UDP header */ 3061 err = skb_cow_head(skb, 0); 3062 if (err < 0) 3063 return ERR_PTR(err); 3064 } 3065 3066 /* Only report GSO partial support if it will enable us to 3067 * support segmentation on this frame without needing additional 3068 * work. 3069 */ 3070 if (features & NETIF_F_GSO_PARTIAL) { 3071 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3072 struct net_device *dev = skb->dev; 3073 3074 partial_features |= dev->features & dev->gso_partial_features; 3075 if (!skb_gso_ok(skb, features | partial_features)) 3076 features &= ~NETIF_F_GSO_PARTIAL; 3077 } 3078 3079 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3080 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3081 3082 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3083 SKB_GSO_CB(skb)->encap_level = 0; 3084 3085 skb_reset_mac_header(skb); 3086 skb_reset_mac_len(skb); 3087 3088 segs = skb_mac_gso_segment(skb, features); 3089 3090 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3091 skb_warn_bad_offload(skb); 3092 3093 return segs; 3094 } 3095 EXPORT_SYMBOL(__skb_gso_segment); 3096 3097 /* Take action when hardware reception checksum errors are detected. */ 3098 #ifdef CONFIG_BUG 3099 void netdev_rx_csum_fault(struct net_device *dev) 3100 { 3101 if (net_ratelimit()) { 3102 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3103 dump_stack(); 3104 } 3105 } 3106 EXPORT_SYMBOL(netdev_rx_csum_fault); 3107 #endif 3108 3109 /* XXX: check that highmem exists at all on the given machine. */ 3110 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3111 { 3112 #ifdef CONFIG_HIGHMEM 3113 int i; 3114 3115 if (!(dev->features & NETIF_F_HIGHDMA)) { 3116 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3117 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3118 3119 if (PageHighMem(skb_frag_page(frag))) 3120 return 1; 3121 } 3122 } 3123 #endif 3124 return 0; 3125 } 3126 3127 /* If MPLS offload request, verify we are testing hardware MPLS features 3128 * instead of standard features for the netdev. 3129 */ 3130 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3131 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3132 netdev_features_t features, 3133 __be16 type) 3134 { 3135 if (eth_p_mpls(type)) 3136 features &= skb->dev->mpls_features; 3137 3138 return features; 3139 } 3140 #else 3141 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3142 netdev_features_t features, 3143 __be16 type) 3144 { 3145 return features; 3146 } 3147 #endif 3148 3149 static netdev_features_t harmonize_features(struct sk_buff *skb, 3150 netdev_features_t features) 3151 { 3152 int tmp; 3153 __be16 type; 3154 3155 type = skb_network_protocol(skb, &tmp); 3156 features = net_mpls_features(skb, features, type); 3157 3158 if (skb->ip_summed != CHECKSUM_NONE && 3159 !can_checksum_protocol(features, type)) { 3160 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3161 } 3162 if (illegal_highdma(skb->dev, skb)) 3163 features &= ~NETIF_F_SG; 3164 3165 return features; 3166 } 3167 3168 netdev_features_t passthru_features_check(struct sk_buff *skb, 3169 struct net_device *dev, 3170 netdev_features_t features) 3171 { 3172 return features; 3173 } 3174 EXPORT_SYMBOL(passthru_features_check); 3175 3176 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3177 struct net_device *dev, 3178 netdev_features_t features) 3179 { 3180 return vlan_features_check(skb, features); 3181 } 3182 3183 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3184 struct net_device *dev, 3185 netdev_features_t features) 3186 { 3187 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3188 3189 if (gso_segs > dev->gso_max_segs) 3190 return features & ~NETIF_F_GSO_MASK; 3191 3192 /* Support for GSO partial features requires software 3193 * intervention before we can actually process the packets 3194 * so we need to strip support for any partial features now 3195 * and we can pull them back in after we have partially 3196 * segmented the frame. 3197 */ 3198 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3199 features &= ~dev->gso_partial_features; 3200 3201 /* Make sure to clear the IPv4 ID mangling feature if the 3202 * IPv4 header has the potential to be fragmented. 3203 */ 3204 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3205 struct iphdr *iph = skb->encapsulation ? 3206 inner_ip_hdr(skb) : ip_hdr(skb); 3207 3208 if (!(iph->frag_off & htons(IP_DF))) 3209 features &= ~NETIF_F_TSO_MANGLEID; 3210 } 3211 3212 return features; 3213 } 3214 3215 netdev_features_t netif_skb_features(struct sk_buff *skb) 3216 { 3217 struct net_device *dev = skb->dev; 3218 netdev_features_t features = dev->features; 3219 3220 if (skb_is_gso(skb)) 3221 features = gso_features_check(skb, dev, features); 3222 3223 /* If encapsulation offload request, verify we are testing 3224 * hardware encapsulation features instead of standard 3225 * features for the netdev 3226 */ 3227 if (skb->encapsulation) 3228 features &= dev->hw_enc_features; 3229 3230 if (skb_vlan_tagged(skb)) 3231 features = netdev_intersect_features(features, 3232 dev->vlan_features | 3233 NETIF_F_HW_VLAN_CTAG_TX | 3234 NETIF_F_HW_VLAN_STAG_TX); 3235 3236 if (dev->netdev_ops->ndo_features_check) 3237 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3238 features); 3239 else 3240 features &= dflt_features_check(skb, dev, features); 3241 3242 return harmonize_features(skb, features); 3243 } 3244 EXPORT_SYMBOL(netif_skb_features); 3245 3246 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3247 struct netdev_queue *txq, bool more) 3248 { 3249 unsigned int len; 3250 int rc; 3251 3252 if (dev_nit_active(dev)) 3253 dev_queue_xmit_nit(skb, dev); 3254 3255 len = skb->len; 3256 trace_net_dev_start_xmit(skb, dev); 3257 rc = netdev_start_xmit(skb, dev, txq, more); 3258 trace_net_dev_xmit(skb, rc, dev, len); 3259 3260 return rc; 3261 } 3262 3263 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3264 struct netdev_queue *txq, int *ret) 3265 { 3266 struct sk_buff *skb = first; 3267 int rc = NETDEV_TX_OK; 3268 3269 while (skb) { 3270 struct sk_buff *next = skb->next; 3271 3272 skb_mark_not_on_list(skb); 3273 rc = xmit_one(skb, dev, txq, next != NULL); 3274 if (unlikely(!dev_xmit_complete(rc))) { 3275 skb->next = next; 3276 goto out; 3277 } 3278 3279 skb = next; 3280 if (netif_tx_queue_stopped(txq) && skb) { 3281 rc = NETDEV_TX_BUSY; 3282 break; 3283 } 3284 } 3285 3286 out: 3287 *ret = rc; 3288 return skb; 3289 } 3290 3291 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3292 netdev_features_t features) 3293 { 3294 if (skb_vlan_tag_present(skb) && 3295 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3296 skb = __vlan_hwaccel_push_inside(skb); 3297 return skb; 3298 } 3299 3300 int skb_csum_hwoffload_help(struct sk_buff *skb, 3301 const netdev_features_t features) 3302 { 3303 if (unlikely(skb->csum_not_inet)) 3304 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3305 skb_crc32c_csum_help(skb); 3306 3307 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3308 } 3309 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3310 3311 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3312 { 3313 netdev_features_t features; 3314 3315 features = netif_skb_features(skb); 3316 skb = validate_xmit_vlan(skb, features); 3317 if (unlikely(!skb)) 3318 goto out_null; 3319 3320 skb = sk_validate_xmit_skb(skb, dev); 3321 if (unlikely(!skb)) 3322 goto out_null; 3323 3324 if (netif_needs_gso(skb, features)) { 3325 struct sk_buff *segs; 3326 3327 segs = skb_gso_segment(skb, features); 3328 if (IS_ERR(segs)) { 3329 goto out_kfree_skb; 3330 } else if (segs) { 3331 consume_skb(skb); 3332 skb = segs; 3333 } 3334 } else { 3335 if (skb_needs_linearize(skb, features) && 3336 __skb_linearize(skb)) 3337 goto out_kfree_skb; 3338 3339 /* If packet is not checksummed and device does not 3340 * support checksumming for this protocol, complete 3341 * checksumming here. 3342 */ 3343 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3344 if (skb->encapsulation) 3345 skb_set_inner_transport_header(skb, 3346 skb_checksum_start_offset(skb)); 3347 else 3348 skb_set_transport_header(skb, 3349 skb_checksum_start_offset(skb)); 3350 if (skb_csum_hwoffload_help(skb, features)) 3351 goto out_kfree_skb; 3352 } 3353 } 3354 3355 skb = validate_xmit_xfrm(skb, features, again); 3356 3357 return skb; 3358 3359 out_kfree_skb: 3360 kfree_skb(skb); 3361 out_null: 3362 atomic_long_inc(&dev->tx_dropped); 3363 return NULL; 3364 } 3365 3366 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3367 { 3368 struct sk_buff *next, *head = NULL, *tail; 3369 3370 for (; skb != NULL; skb = next) { 3371 next = skb->next; 3372 skb_mark_not_on_list(skb); 3373 3374 /* in case skb wont be segmented, point to itself */ 3375 skb->prev = skb; 3376 3377 skb = validate_xmit_skb(skb, dev, again); 3378 if (!skb) 3379 continue; 3380 3381 if (!head) 3382 head = skb; 3383 else 3384 tail->next = skb; 3385 /* If skb was segmented, skb->prev points to 3386 * the last segment. If not, it still contains skb. 3387 */ 3388 tail = skb->prev; 3389 } 3390 return head; 3391 } 3392 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3393 3394 static void qdisc_pkt_len_init(struct sk_buff *skb) 3395 { 3396 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3397 3398 qdisc_skb_cb(skb)->pkt_len = skb->len; 3399 3400 /* To get more precise estimation of bytes sent on wire, 3401 * we add to pkt_len the headers size of all segments 3402 */ 3403 if (shinfo->gso_size) { 3404 unsigned int hdr_len; 3405 u16 gso_segs = shinfo->gso_segs; 3406 3407 /* mac layer + network layer */ 3408 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3409 3410 /* + transport layer */ 3411 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3412 const struct tcphdr *th; 3413 struct tcphdr _tcphdr; 3414 3415 th = skb_header_pointer(skb, skb_transport_offset(skb), 3416 sizeof(_tcphdr), &_tcphdr); 3417 if (likely(th)) 3418 hdr_len += __tcp_hdrlen(th); 3419 } else { 3420 struct udphdr _udphdr; 3421 3422 if (skb_header_pointer(skb, skb_transport_offset(skb), 3423 sizeof(_udphdr), &_udphdr)) 3424 hdr_len += sizeof(struct udphdr); 3425 } 3426 3427 if (shinfo->gso_type & SKB_GSO_DODGY) 3428 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3429 shinfo->gso_size); 3430 3431 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3432 } 3433 } 3434 3435 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3436 struct net_device *dev, 3437 struct netdev_queue *txq) 3438 { 3439 spinlock_t *root_lock = qdisc_lock(q); 3440 struct sk_buff *to_free = NULL; 3441 bool contended; 3442 int rc; 3443 3444 qdisc_calculate_pkt_len(skb, q); 3445 3446 if (q->flags & TCQ_F_NOLOCK) { 3447 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3448 __qdisc_drop(skb, &to_free); 3449 rc = NET_XMIT_DROP; 3450 } else { 3451 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3452 qdisc_run(q); 3453 } 3454 3455 if (unlikely(to_free)) 3456 kfree_skb_list(to_free); 3457 return rc; 3458 } 3459 3460 /* 3461 * Heuristic to force contended enqueues to serialize on a 3462 * separate lock before trying to get qdisc main lock. 3463 * This permits qdisc->running owner to get the lock more 3464 * often and dequeue packets faster. 3465 */ 3466 contended = qdisc_is_running(q); 3467 if (unlikely(contended)) 3468 spin_lock(&q->busylock); 3469 3470 spin_lock(root_lock); 3471 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3472 __qdisc_drop(skb, &to_free); 3473 rc = NET_XMIT_DROP; 3474 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3475 qdisc_run_begin(q)) { 3476 /* 3477 * This is a work-conserving queue; there are no old skbs 3478 * waiting to be sent out; and the qdisc is not running - 3479 * xmit the skb directly. 3480 */ 3481 3482 qdisc_bstats_update(q, skb); 3483 3484 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3485 if (unlikely(contended)) { 3486 spin_unlock(&q->busylock); 3487 contended = false; 3488 } 3489 __qdisc_run(q); 3490 } 3491 3492 qdisc_run_end(q); 3493 rc = NET_XMIT_SUCCESS; 3494 } else { 3495 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3496 if (qdisc_run_begin(q)) { 3497 if (unlikely(contended)) { 3498 spin_unlock(&q->busylock); 3499 contended = false; 3500 } 3501 __qdisc_run(q); 3502 qdisc_run_end(q); 3503 } 3504 } 3505 spin_unlock(root_lock); 3506 if (unlikely(to_free)) 3507 kfree_skb_list(to_free); 3508 if (unlikely(contended)) 3509 spin_unlock(&q->busylock); 3510 return rc; 3511 } 3512 3513 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3514 static void skb_update_prio(struct sk_buff *skb) 3515 { 3516 const struct netprio_map *map; 3517 const struct sock *sk; 3518 unsigned int prioidx; 3519 3520 if (skb->priority) 3521 return; 3522 map = rcu_dereference_bh(skb->dev->priomap); 3523 if (!map) 3524 return; 3525 sk = skb_to_full_sk(skb); 3526 if (!sk) 3527 return; 3528 3529 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3530 3531 if (prioidx < map->priomap_len) 3532 skb->priority = map->priomap[prioidx]; 3533 } 3534 #else 3535 #define skb_update_prio(skb) 3536 #endif 3537 3538 DEFINE_PER_CPU(int, xmit_recursion); 3539 EXPORT_SYMBOL(xmit_recursion); 3540 3541 /** 3542 * dev_loopback_xmit - loop back @skb 3543 * @net: network namespace this loopback is happening in 3544 * @sk: sk needed to be a netfilter okfn 3545 * @skb: buffer to transmit 3546 */ 3547 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3548 { 3549 skb_reset_mac_header(skb); 3550 __skb_pull(skb, skb_network_offset(skb)); 3551 skb->pkt_type = PACKET_LOOPBACK; 3552 skb->ip_summed = CHECKSUM_UNNECESSARY; 3553 WARN_ON(!skb_dst(skb)); 3554 skb_dst_force(skb); 3555 netif_rx_ni(skb); 3556 return 0; 3557 } 3558 EXPORT_SYMBOL(dev_loopback_xmit); 3559 3560 #ifdef CONFIG_NET_EGRESS 3561 static struct sk_buff * 3562 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3563 { 3564 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3565 struct tcf_result cl_res; 3566 3567 if (!miniq) 3568 return skb; 3569 3570 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3571 mini_qdisc_bstats_cpu_update(miniq, skb); 3572 3573 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3574 case TC_ACT_OK: 3575 case TC_ACT_RECLASSIFY: 3576 skb->tc_index = TC_H_MIN(cl_res.classid); 3577 break; 3578 case TC_ACT_SHOT: 3579 mini_qdisc_qstats_cpu_drop(miniq); 3580 *ret = NET_XMIT_DROP; 3581 kfree_skb(skb); 3582 return NULL; 3583 case TC_ACT_STOLEN: 3584 case TC_ACT_QUEUED: 3585 case TC_ACT_TRAP: 3586 *ret = NET_XMIT_SUCCESS; 3587 consume_skb(skb); 3588 return NULL; 3589 case TC_ACT_REDIRECT: 3590 /* No need to push/pop skb's mac_header here on egress! */ 3591 skb_do_redirect(skb); 3592 *ret = NET_XMIT_SUCCESS; 3593 return NULL; 3594 default: 3595 break; 3596 } 3597 3598 return skb; 3599 } 3600 #endif /* CONFIG_NET_EGRESS */ 3601 3602 #ifdef CONFIG_XPS 3603 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3604 struct xps_dev_maps *dev_maps, unsigned int tci) 3605 { 3606 struct xps_map *map; 3607 int queue_index = -1; 3608 3609 if (dev->num_tc) { 3610 tci *= dev->num_tc; 3611 tci += netdev_get_prio_tc_map(dev, skb->priority); 3612 } 3613 3614 map = rcu_dereference(dev_maps->attr_map[tci]); 3615 if (map) { 3616 if (map->len == 1) 3617 queue_index = map->queues[0]; 3618 else 3619 queue_index = map->queues[reciprocal_scale( 3620 skb_get_hash(skb), map->len)]; 3621 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3622 queue_index = -1; 3623 } 3624 return queue_index; 3625 } 3626 #endif 3627 3628 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3629 struct sk_buff *skb) 3630 { 3631 #ifdef CONFIG_XPS 3632 struct xps_dev_maps *dev_maps; 3633 struct sock *sk = skb->sk; 3634 int queue_index = -1; 3635 3636 if (!static_key_false(&xps_needed)) 3637 return -1; 3638 3639 rcu_read_lock(); 3640 if (!static_key_false(&xps_rxqs_needed)) 3641 goto get_cpus_map; 3642 3643 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3644 if (dev_maps) { 3645 int tci = sk_rx_queue_get(sk); 3646 3647 if (tci >= 0 && tci < dev->num_rx_queues) 3648 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3649 tci); 3650 } 3651 3652 get_cpus_map: 3653 if (queue_index < 0) { 3654 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3655 if (dev_maps) { 3656 unsigned int tci = skb->sender_cpu - 1; 3657 3658 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3659 tci); 3660 } 3661 } 3662 rcu_read_unlock(); 3663 3664 return queue_index; 3665 #else 3666 return -1; 3667 #endif 3668 } 3669 3670 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3671 struct net_device *sb_dev, 3672 select_queue_fallback_t fallback) 3673 { 3674 return 0; 3675 } 3676 EXPORT_SYMBOL(dev_pick_tx_zero); 3677 3678 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3679 struct net_device *sb_dev, 3680 select_queue_fallback_t fallback) 3681 { 3682 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3683 } 3684 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3685 3686 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3687 struct net_device *sb_dev) 3688 { 3689 struct sock *sk = skb->sk; 3690 int queue_index = sk_tx_queue_get(sk); 3691 3692 sb_dev = sb_dev ? : dev; 3693 3694 if (queue_index < 0 || skb->ooo_okay || 3695 queue_index >= dev->real_num_tx_queues) { 3696 int new_index = get_xps_queue(dev, sb_dev, skb); 3697 3698 if (new_index < 0) 3699 new_index = skb_tx_hash(dev, sb_dev, skb); 3700 3701 if (queue_index != new_index && sk && 3702 sk_fullsock(sk) && 3703 rcu_access_pointer(sk->sk_dst_cache)) 3704 sk_tx_queue_set(sk, new_index); 3705 3706 queue_index = new_index; 3707 } 3708 3709 return queue_index; 3710 } 3711 3712 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3713 struct sk_buff *skb, 3714 struct net_device *sb_dev) 3715 { 3716 int queue_index = 0; 3717 3718 #ifdef CONFIG_XPS 3719 u32 sender_cpu = skb->sender_cpu - 1; 3720 3721 if (sender_cpu >= (u32)NR_CPUS) 3722 skb->sender_cpu = raw_smp_processor_id() + 1; 3723 #endif 3724 3725 if (dev->real_num_tx_queues != 1) { 3726 const struct net_device_ops *ops = dev->netdev_ops; 3727 3728 if (ops->ndo_select_queue) 3729 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3730 __netdev_pick_tx); 3731 else 3732 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3733 3734 queue_index = netdev_cap_txqueue(dev, queue_index); 3735 } 3736 3737 skb_set_queue_mapping(skb, queue_index); 3738 return netdev_get_tx_queue(dev, queue_index); 3739 } 3740 3741 /** 3742 * __dev_queue_xmit - transmit a buffer 3743 * @skb: buffer to transmit 3744 * @sb_dev: suboordinate device used for L2 forwarding offload 3745 * 3746 * Queue a buffer for transmission to a network device. The caller must 3747 * have set the device and priority and built the buffer before calling 3748 * this function. The function can be called from an interrupt. 3749 * 3750 * A negative errno code is returned on a failure. A success does not 3751 * guarantee the frame will be transmitted as it may be dropped due 3752 * to congestion or traffic shaping. 3753 * 3754 * ----------------------------------------------------------------------------------- 3755 * I notice this method can also return errors from the queue disciplines, 3756 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3757 * be positive. 3758 * 3759 * Regardless of the return value, the skb is consumed, so it is currently 3760 * difficult to retry a send to this method. (You can bump the ref count 3761 * before sending to hold a reference for retry if you are careful.) 3762 * 3763 * When calling this method, interrupts MUST be enabled. This is because 3764 * the BH enable code must have IRQs enabled so that it will not deadlock. 3765 * --BLG 3766 */ 3767 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3768 { 3769 struct net_device *dev = skb->dev; 3770 struct netdev_queue *txq; 3771 struct Qdisc *q; 3772 int rc = -ENOMEM; 3773 bool again = false; 3774 3775 skb_reset_mac_header(skb); 3776 3777 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3778 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3779 3780 /* Disable soft irqs for various locks below. Also 3781 * stops preemption for RCU. 3782 */ 3783 rcu_read_lock_bh(); 3784 3785 skb_update_prio(skb); 3786 3787 qdisc_pkt_len_init(skb); 3788 #ifdef CONFIG_NET_CLS_ACT 3789 skb->tc_at_ingress = 0; 3790 # ifdef CONFIG_NET_EGRESS 3791 if (static_branch_unlikely(&egress_needed_key)) { 3792 skb = sch_handle_egress(skb, &rc, dev); 3793 if (!skb) 3794 goto out; 3795 } 3796 # endif 3797 #endif 3798 /* If device/qdisc don't need skb->dst, release it right now while 3799 * its hot in this cpu cache. 3800 */ 3801 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3802 skb_dst_drop(skb); 3803 else 3804 skb_dst_force(skb); 3805 3806 txq = netdev_pick_tx(dev, skb, sb_dev); 3807 q = rcu_dereference_bh(txq->qdisc); 3808 3809 trace_net_dev_queue(skb); 3810 if (q->enqueue) { 3811 rc = __dev_xmit_skb(skb, q, dev, txq); 3812 goto out; 3813 } 3814 3815 /* The device has no queue. Common case for software devices: 3816 * loopback, all the sorts of tunnels... 3817 3818 * Really, it is unlikely that netif_tx_lock protection is necessary 3819 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3820 * counters.) 3821 * However, it is possible, that they rely on protection 3822 * made by us here. 3823 3824 * Check this and shot the lock. It is not prone from deadlocks. 3825 *Either shot noqueue qdisc, it is even simpler 8) 3826 */ 3827 if (dev->flags & IFF_UP) { 3828 int cpu = smp_processor_id(); /* ok because BHs are off */ 3829 3830 if (txq->xmit_lock_owner != cpu) { 3831 if (unlikely(__this_cpu_read(xmit_recursion) > 3832 XMIT_RECURSION_LIMIT)) 3833 goto recursion_alert; 3834 3835 skb = validate_xmit_skb(skb, dev, &again); 3836 if (!skb) 3837 goto out; 3838 3839 HARD_TX_LOCK(dev, txq, cpu); 3840 3841 if (!netif_xmit_stopped(txq)) { 3842 __this_cpu_inc(xmit_recursion); 3843 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3844 __this_cpu_dec(xmit_recursion); 3845 if (dev_xmit_complete(rc)) { 3846 HARD_TX_UNLOCK(dev, txq); 3847 goto out; 3848 } 3849 } 3850 HARD_TX_UNLOCK(dev, txq); 3851 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3852 dev->name); 3853 } else { 3854 /* Recursion is detected! It is possible, 3855 * unfortunately 3856 */ 3857 recursion_alert: 3858 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3859 dev->name); 3860 } 3861 } 3862 3863 rc = -ENETDOWN; 3864 rcu_read_unlock_bh(); 3865 3866 atomic_long_inc(&dev->tx_dropped); 3867 kfree_skb_list(skb); 3868 return rc; 3869 out: 3870 rcu_read_unlock_bh(); 3871 return rc; 3872 } 3873 3874 int dev_queue_xmit(struct sk_buff *skb) 3875 { 3876 return __dev_queue_xmit(skb, NULL); 3877 } 3878 EXPORT_SYMBOL(dev_queue_xmit); 3879 3880 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3881 { 3882 return __dev_queue_xmit(skb, sb_dev); 3883 } 3884 EXPORT_SYMBOL(dev_queue_xmit_accel); 3885 3886 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3887 { 3888 struct net_device *dev = skb->dev; 3889 struct sk_buff *orig_skb = skb; 3890 struct netdev_queue *txq; 3891 int ret = NETDEV_TX_BUSY; 3892 bool again = false; 3893 3894 if (unlikely(!netif_running(dev) || 3895 !netif_carrier_ok(dev))) 3896 goto drop; 3897 3898 skb = validate_xmit_skb_list(skb, dev, &again); 3899 if (skb != orig_skb) 3900 goto drop; 3901 3902 skb_set_queue_mapping(skb, queue_id); 3903 txq = skb_get_tx_queue(dev, skb); 3904 3905 local_bh_disable(); 3906 3907 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3908 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3909 ret = netdev_start_xmit(skb, dev, txq, false); 3910 HARD_TX_UNLOCK(dev, txq); 3911 3912 local_bh_enable(); 3913 3914 if (!dev_xmit_complete(ret)) 3915 kfree_skb(skb); 3916 3917 return ret; 3918 drop: 3919 atomic_long_inc(&dev->tx_dropped); 3920 kfree_skb_list(skb); 3921 return NET_XMIT_DROP; 3922 } 3923 EXPORT_SYMBOL(dev_direct_xmit); 3924 3925 /************************************************************************* 3926 * Receiver routines 3927 *************************************************************************/ 3928 3929 int netdev_max_backlog __read_mostly = 1000; 3930 EXPORT_SYMBOL(netdev_max_backlog); 3931 3932 int netdev_tstamp_prequeue __read_mostly = 1; 3933 int netdev_budget __read_mostly = 300; 3934 unsigned int __read_mostly netdev_budget_usecs = 2000; 3935 int weight_p __read_mostly = 64; /* old backlog weight */ 3936 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3937 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3938 int dev_rx_weight __read_mostly = 64; 3939 int dev_tx_weight __read_mostly = 64; 3940 3941 /* Called with irq disabled */ 3942 static inline void ____napi_schedule(struct softnet_data *sd, 3943 struct napi_struct *napi) 3944 { 3945 list_add_tail(&napi->poll_list, &sd->poll_list); 3946 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3947 } 3948 3949 #ifdef CONFIG_RPS 3950 3951 /* One global table that all flow-based protocols share. */ 3952 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3953 EXPORT_SYMBOL(rps_sock_flow_table); 3954 u32 rps_cpu_mask __read_mostly; 3955 EXPORT_SYMBOL(rps_cpu_mask); 3956 3957 struct static_key rps_needed __read_mostly; 3958 EXPORT_SYMBOL(rps_needed); 3959 struct static_key rfs_needed __read_mostly; 3960 EXPORT_SYMBOL(rfs_needed); 3961 3962 static struct rps_dev_flow * 3963 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3964 struct rps_dev_flow *rflow, u16 next_cpu) 3965 { 3966 if (next_cpu < nr_cpu_ids) { 3967 #ifdef CONFIG_RFS_ACCEL 3968 struct netdev_rx_queue *rxqueue; 3969 struct rps_dev_flow_table *flow_table; 3970 struct rps_dev_flow *old_rflow; 3971 u32 flow_id; 3972 u16 rxq_index; 3973 int rc; 3974 3975 /* Should we steer this flow to a different hardware queue? */ 3976 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3977 !(dev->features & NETIF_F_NTUPLE)) 3978 goto out; 3979 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3980 if (rxq_index == skb_get_rx_queue(skb)) 3981 goto out; 3982 3983 rxqueue = dev->_rx + rxq_index; 3984 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3985 if (!flow_table) 3986 goto out; 3987 flow_id = skb_get_hash(skb) & flow_table->mask; 3988 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3989 rxq_index, flow_id); 3990 if (rc < 0) 3991 goto out; 3992 old_rflow = rflow; 3993 rflow = &flow_table->flows[flow_id]; 3994 rflow->filter = rc; 3995 if (old_rflow->filter == rflow->filter) 3996 old_rflow->filter = RPS_NO_FILTER; 3997 out: 3998 #endif 3999 rflow->last_qtail = 4000 per_cpu(softnet_data, next_cpu).input_queue_head; 4001 } 4002 4003 rflow->cpu = next_cpu; 4004 return rflow; 4005 } 4006 4007 /* 4008 * get_rps_cpu is called from netif_receive_skb and returns the target 4009 * CPU from the RPS map of the receiving queue for a given skb. 4010 * rcu_read_lock must be held on entry. 4011 */ 4012 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4013 struct rps_dev_flow **rflowp) 4014 { 4015 const struct rps_sock_flow_table *sock_flow_table; 4016 struct netdev_rx_queue *rxqueue = dev->_rx; 4017 struct rps_dev_flow_table *flow_table; 4018 struct rps_map *map; 4019 int cpu = -1; 4020 u32 tcpu; 4021 u32 hash; 4022 4023 if (skb_rx_queue_recorded(skb)) { 4024 u16 index = skb_get_rx_queue(skb); 4025 4026 if (unlikely(index >= dev->real_num_rx_queues)) { 4027 WARN_ONCE(dev->real_num_rx_queues > 1, 4028 "%s received packet on queue %u, but number " 4029 "of RX queues is %u\n", 4030 dev->name, index, dev->real_num_rx_queues); 4031 goto done; 4032 } 4033 rxqueue += index; 4034 } 4035 4036 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4037 4038 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4039 map = rcu_dereference(rxqueue->rps_map); 4040 if (!flow_table && !map) 4041 goto done; 4042 4043 skb_reset_network_header(skb); 4044 hash = skb_get_hash(skb); 4045 if (!hash) 4046 goto done; 4047 4048 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4049 if (flow_table && sock_flow_table) { 4050 struct rps_dev_flow *rflow; 4051 u32 next_cpu; 4052 u32 ident; 4053 4054 /* First check into global flow table if there is a match */ 4055 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4056 if ((ident ^ hash) & ~rps_cpu_mask) 4057 goto try_rps; 4058 4059 next_cpu = ident & rps_cpu_mask; 4060 4061 /* OK, now we know there is a match, 4062 * we can look at the local (per receive queue) flow table 4063 */ 4064 rflow = &flow_table->flows[hash & flow_table->mask]; 4065 tcpu = rflow->cpu; 4066 4067 /* 4068 * If the desired CPU (where last recvmsg was done) is 4069 * different from current CPU (one in the rx-queue flow 4070 * table entry), switch if one of the following holds: 4071 * - Current CPU is unset (>= nr_cpu_ids). 4072 * - Current CPU is offline. 4073 * - The current CPU's queue tail has advanced beyond the 4074 * last packet that was enqueued using this table entry. 4075 * This guarantees that all previous packets for the flow 4076 * have been dequeued, thus preserving in order delivery. 4077 */ 4078 if (unlikely(tcpu != next_cpu) && 4079 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4080 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4081 rflow->last_qtail)) >= 0)) { 4082 tcpu = next_cpu; 4083 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4084 } 4085 4086 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4087 *rflowp = rflow; 4088 cpu = tcpu; 4089 goto done; 4090 } 4091 } 4092 4093 try_rps: 4094 4095 if (map) { 4096 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4097 if (cpu_online(tcpu)) { 4098 cpu = tcpu; 4099 goto done; 4100 } 4101 } 4102 4103 done: 4104 return cpu; 4105 } 4106 4107 #ifdef CONFIG_RFS_ACCEL 4108 4109 /** 4110 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4111 * @dev: Device on which the filter was set 4112 * @rxq_index: RX queue index 4113 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4114 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4115 * 4116 * Drivers that implement ndo_rx_flow_steer() should periodically call 4117 * this function for each installed filter and remove the filters for 4118 * which it returns %true. 4119 */ 4120 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4121 u32 flow_id, u16 filter_id) 4122 { 4123 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4124 struct rps_dev_flow_table *flow_table; 4125 struct rps_dev_flow *rflow; 4126 bool expire = true; 4127 unsigned int cpu; 4128 4129 rcu_read_lock(); 4130 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4131 if (flow_table && flow_id <= flow_table->mask) { 4132 rflow = &flow_table->flows[flow_id]; 4133 cpu = READ_ONCE(rflow->cpu); 4134 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4135 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4136 rflow->last_qtail) < 4137 (int)(10 * flow_table->mask))) 4138 expire = false; 4139 } 4140 rcu_read_unlock(); 4141 return expire; 4142 } 4143 EXPORT_SYMBOL(rps_may_expire_flow); 4144 4145 #endif /* CONFIG_RFS_ACCEL */ 4146 4147 /* Called from hardirq (IPI) context */ 4148 static void rps_trigger_softirq(void *data) 4149 { 4150 struct softnet_data *sd = data; 4151 4152 ____napi_schedule(sd, &sd->backlog); 4153 sd->received_rps++; 4154 } 4155 4156 #endif /* CONFIG_RPS */ 4157 4158 /* 4159 * Check if this softnet_data structure is another cpu one 4160 * If yes, queue it to our IPI list and return 1 4161 * If no, return 0 4162 */ 4163 static int rps_ipi_queued(struct softnet_data *sd) 4164 { 4165 #ifdef CONFIG_RPS 4166 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4167 4168 if (sd != mysd) { 4169 sd->rps_ipi_next = mysd->rps_ipi_list; 4170 mysd->rps_ipi_list = sd; 4171 4172 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4173 return 1; 4174 } 4175 #endif /* CONFIG_RPS */ 4176 return 0; 4177 } 4178 4179 #ifdef CONFIG_NET_FLOW_LIMIT 4180 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4181 #endif 4182 4183 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4184 { 4185 #ifdef CONFIG_NET_FLOW_LIMIT 4186 struct sd_flow_limit *fl; 4187 struct softnet_data *sd; 4188 unsigned int old_flow, new_flow; 4189 4190 if (qlen < (netdev_max_backlog >> 1)) 4191 return false; 4192 4193 sd = this_cpu_ptr(&softnet_data); 4194 4195 rcu_read_lock(); 4196 fl = rcu_dereference(sd->flow_limit); 4197 if (fl) { 4198 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4199 old_flow = fl->history[fl->history_head]; 4200 fl->history[fl->history_head] = new_flow; 4201 4202 fl->history_head++; 4203 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4204 4205 if (likely(fl->buckets[old_flow])) 4206 fl->buckets[old_flow]--; 4207 4208 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4209 fl->count++; 4210 rcu_read_unlock(); 4211 return true; 4212 } 4213 } 4214 rcu_read_unlock(); 4215 #endif 4216 return false; 4217 } 4218 4219 /* 4220 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4221 * queue (may be a remote CPU queue). 4222 */ 4223 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4224 unsigned int *qtail) 4225 { 4226 struct softnet_data *sd; 4227 unsigned long flags; 4228 unsigned int qlen; 4229 4230 sd = &per_cpu(softnet_data, cpu); 4231 4232 local_irq_save(flags); 4233 4234 rps_lock(sd); 4235 if (!netif_running(skb->dev)) 4236 goto drop; 4237 qlen = skb_queue_len(&sd->input_pkt_queue); 4238 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4239 if (qlen) { 4240 enqueue: 4241 __skb_queue_tail(&sd->input_pkt_queue, skb); 4242 input_queue_tail_incr_save(sd, qtail); 4243 rps_unlock(sd); 4244 local_irq_restore(flags); 4245 return NET_RX_SUCCESS; 4246 } 4247 4248 /* Schedule NAPI for backlog device 4249 * We can use non atomic operation since we own the queue lock 4250 */ 4251 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4252 if (!rps_ipi_queued(sd)) 4253 ____napi_schedule(sd, &sd->backlog); 4254 } 4255 goto enqueue; 4256 } 4257 4258 drop: 4259 sd->dropped++; 4260 rps_unlock(sd); 4261 4262 local_irq_restore(flags); 4263 4264 atomic_long_inc(&skb->dev->rx_dropped); 4265 kfree_skb(skb); 4266 return NET_RX_DROP; 4267 } 4268 4269 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4270 { 4271 struct net_device *dev = skb->dev; 4272 struct netdev_rx_queue *rxqueue; 4273 4274 rxqueue = dev->_rx; 4275 4276 if (skb_rx_queue_recorded(skb)) { 4277 u16 index = skb_get_rx_queue(skb); 4278 4279 if (unlikely(index >= dev->real_num_rx_queues)) { 4280 WARN_ONCE(dev->real_num_rx_queues > 1, 4281 "%s received packet on queue %u, but number " 4282 "of RX queues is %u\n", 4283 dev->name, index, dev->real_num_rx_queues); 4284 4285 return rxqueue; /* Return first rxqueue */ 4286 } 4287 rxqueue += index; 4288 } 4289 return rxqueue; 4290 } 4291 4292 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4293 struct xdp_buff *xdp, 4294 struct bpf_prog *xdp_prog) 4295 { 4296 struct netdev_rx_queue *rxqueue; 4297 void *orig_data, *orig_data_end; 4298 u32 metalen, act = XDP_DROP; 4299 __be16 orig_eth_type; 4300 struct ethhdr *eth; 4301 bool orig_bcast; 4302 int hlen, off; 4303 u32 mac_len; 4304 4305 /* Reinjected packets coming from act_mirred or similar should 4306 * not get XDP generic processing. 4307 */ 4308 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4309 return XDP_PASS; 4310 4311 /* XDP packets must be linear and must have sufficient headroom 4312 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4313 * native XDP provides, thus we need to do it here as well. 4314 */ 4315 if (skb_is_nonlinear(skb) || 4316 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4317 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4318 int troom = skb->tail + skb->data_len - skb->end; 4319 4320 /* In case we have to go down the path and also linearize, 4321 * then lets do the pskb_expand_head() work just once here. 4322 */ 4323 if (pskb_expand_head(skb, 4324 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4325 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4326 goto do_drop; 4327 if (skb_linearize(skb)) 4328 goto do_drop; 4329 } 4330 4331 /* The XDP program wants to see the packet starting at the MAC 4332 * header. 4333 */ 4334 mac_len = skb->data - skb_mac_header(skb); 4335 hlen = skb_headlen(skb) + mac_len; 4336 xdp->data = skb->data - mac_len; 4337 xdp->data_meta = xdp->data; 4338 xdp->data_end = xdp->data + hlen; 4339 xdp->data_hard_start = skb->data - skb_headroom(skb); 4340 orig_data_end = xdp->data_end; 4341 orig_data = xdp->data; 4342 eth = (struct ethhdr *)xdp->data; 4343 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4344 orig_eth_type = eth->h_proto; 4345 4346 rxqueue = netif_get_rxqueue(skb); 4347 xdp->rxq = &rxqueue->xdp_rxq; 4348 4349 act = bpf_prog_run_xdp(xdp_prog, xdp); 4350 4351 off = xdp->data - orig_data; 4352 if (off > 0) 4353 __skb_pull(skb, off); 4354 else if (off < 0) 4355 __skb_push(skb, -off); 4356 skb->mac_header += off; 4357 4358 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4359 * pckt. 4360 */ 4361 off = orig_data_end - xdp->data_end; 4362 if (off != 0) { 4363 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4364 skb->len -= off; 4365 4366 } 4367 4368 /* check if XDP changed eth hdr such SKB needs update */ 4369 eth = (struct ethhdr *)xdp->data; 4370 if ((orig_eth_type != eth->h_proto) || 4371 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4372 __skb_push(skb, ETH_HLEN); 4373 skb->protocol = eth_type_trans(skb, skb->dev); 4374 } 4375 4376 switch (act) { 4377 case XDP_REDIRECT: 4378 case XDP_TX: 4379 __skb_push(skb, mac_len); 4380 break; 4381 case XDP_PASS: 4382 metalen = xdp->data - xdp->data_meta; 4383 if (metalen) 4384 skb_metadata_set(skb, metalen); 4385 break; 4386 default: 4387 bpf_warn_invalid_xdp_action(act); 4388 /* fall through */ 4389 case XDP_ABORTED: 4390 trace_xdp_exception(skb->dev, xdp_prog, act); 4391 /* fall through */ 4392 case XDP_DROP: 4393 do_drop: 4394 kfree_skb(skb); 4395 break; 4396 } 4397 4398 return act; 4399 } 4400 4401 /* When doing generic XDP we have to bypass the qdisc layer and the 4402 * network taps in order to match in-driver-XDP behavior. 4403 */ 4404 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4405 { 4406 struct net_device *dev = skb->dev; 4407 struct netdev_queue *txq; 4408 bool free_skb = true; 4409 int cpu, rc; 4410 4411 txq = netdev_pick_tx(dev, skb, NULL); 4412 cpu = smp_processor_id(); 4413 HARD_TX_LOCK(dev, txq, cpu); 4414 if (!netif_xmit_stopped(txq)) { 4415 rc = netdev_start_xmit(skb, dev, txq, 0); 4416 if (dev_xmit_complete(rc)) 4417 free_skb = false; 4418 } 4419 HARD_TX_UNLOCK(dev, txq); 4420 if (free_skb) { 4421 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4422 kfree_skb(skb); 4423 } 4424 } 4425 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4426 4427 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4428 4429 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4430 { 4431 if (xdp_prog) { 4432 struct xdp_buff xdp; 4433 u32 act; 4434 int err; 4435 4436 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4437 if (act != XDP_PASS) { 4438 switch (act) { 4439 case XDP_REDIRECT: 4440 err = xdp_do_generic_redirect(skb->dev, skb, 4441 &xdp, xdp_prog); 4442 if (err) 4443 goto out_redir; 4444 break; 4445 case XDP_TX: 4446 generic_xdp_tx(skb, xdp_prog); 4447 break; 4448 } 4449 return XDP_DROP; 4450 } 4451 } 4452 return XDP_PASS; 4453 out_redir: 4454 kfree_skb(skb); 4455 return XDP_DROP; 4456 } 4457 EXPORT_SYMBOL_GPL(do_xdp_generic); 4458 4459 static int netif_rx_internal(struct sk_buff *skb) 4460 { 4461 int ret; 4462 4463 net_timestamp_check(netdev_tstamp_prequeue, skb); 4464 4465 trace_netif_rx(skb); 4466 4467 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4468 int ret; 4469 4470 preempt_disable(); 4471 rcu_read_lock(); 4472 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4473 rcu_read_unlock(); 4474 preempt_enable(); 4475 4476 /* Consider XDP consuming the packet a success from 4477 * the netdev point of view we do not want to count 4478 * this as an error. 4479 */ 4480 if (ret != XDP_PASS) 4481 return NET_RX_SUCCESS; 4482 } 4483 4484 #ifdef CONFIG_RPS 4485 if (static_key_false(&rps_needed)) { 4486 struct rps_dev_flow voidflow, *rflow = &voidflow; 4487 int cpu; 4488 4489 preempt_disable(); 4490 rcu_read_lock(); 4491 4492 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4493 if (cpu < 0) 4494 cpu = smp_processor_id(); 4495 4496 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4497 4498 rcu_read_unlock(); 4499 preempt_enable(); 4500 } else 4501 #endif 4502 { 4503 unsigned int qtail; 4504 4505 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4506 put_cpu(); 4507 } 4508 return ret; 4509 } 4510 4511 /** 4512 * netif_rx - post buffer to the network code 4513 * @skb: buffer to post 4514 * 4515 * This function receives a packet from a device driver and queues it for 4516 * the upper (protocol) levels to process. It always succeeds. The buffer 4517 * may be dropped during processing for congestion control or by the 4518 * protocol layers. 4519 * 4520 * return values: 4521 * NET_RX_SUCCESS (no congestion) 4522 * NET_RX_DROP (packet was dropped) 4523 * 4524 */ 4525 4526 int netif_rx(struct sk_buff *skb) 4527 { 4528 trace_netif_rx_entry(skb); 4529 4530 return netif_rx_internal(skb); 4531 } 4532 EXPORT_SYMBOL(netif_rx); 4533 4534 int netif_rx_ni(struct sk_buff *skb) 4535 { 4536 int err; 4537 4538 trace_netif_rx_ni_entry(skb); 4539 4540 preempt_disable(); 4541 err = netif_rx_internal(skb); 4542 if (local_softirq_pending()) 4543 do_softirq(); 4544 preempt_enable(); 4545 4546 return err; 4547 } 4548 EXPORT_SYMBOL(netif_rx_ni); 4549 4550 static __latent_entropy void net_tx_action(struct softirq_action *h) 4551 { 4552 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4553 4554 if (sd->completion_queue) { 4555 struct sk_buff *clist; 4556 4557 local_irq_disable(); 4558 clist = sd->completion_queue; 4559 sd->completion_queue = NULL; 4560 local_irq_enable(); 4561 4562 while (clist) { 4563 struct sk_buff *skb = clist; 4564 4565 clist = clist->next; 4566 4567 WARN_ON(refcount_read(&skb->users)); 4568 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4569 trace_consume_skb(skb); 4570 else 4571 trace_kfree_skb(skb, net_tx_action); 4572 4573 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4574 __kfree_skb(skb); 4575 else 4576 __kfree_skb_defer(skb); 4577 } 4578 4579 __kfree_skb_flush(); 4580 } 4581 4582 if (sd->output_queue) { 4583 struct Qdisc *head; 4584 4585 local_irq_disable(); 4586 head = sd->output_queue; 4587 sd->output_queue = NULL; 4588 sd->output_queue_tailp = &sd->output_queue; 4589 local_irq_enable(); 4590 4591 while (head) { 4592 struct Qdisc *q = head; 4593 spinlock_t *root_lock = NULL; 4594 4595 head = head->next_sched; 4596 4597 if (!(q->flags & TCQ_F_NOLOCK)) { 4598 root_lock = qdisc_lock(q); 4599 spin_lock(root_lock); 4600 } 4601 /* We need to make sure head->next_sched is read 4602 * before clearing __QDISC_STATE_SCHED 4603 */ 4604 smp_mb__before_atomic(); 4605 clear_bit(__QDISC_STATE_SCHED, &q->state); 4606 qdisc_run(q); 4607 if (root_lock) 4608 spin_unlock(root_lock); 4609 } 4610 } 4611 4612 xfrm_dev_backlog(sd); 4613 } 4614 4615 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4616 /* This hook is defined here for ATM LANE */ 4617 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4618 unsigned char *addr) __read_mostly; 4619 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4620 #endif 4621 4622 static inline struct sk_buff * 4623 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4624 struct net_device *orig_dev) 4625 { 4626 #ifdef CONFIG_NET_CLS_ACT 4627 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4628 struct tcf_result cl_res; 4629 4630 /* If there's at least one ingress present somewhere (so 4631 * we get here via enabled static key), remaining devices 4632 * that are not configured with an ingress qdisc will bail 4633 * out here. 4634 */ 4635 if (!miniq) 4636 return skb; 4637 4638 if (*pt_prev) { 4639 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4640 *pt_prev = NULL; 4641 } 4642 4643 qdisc_skb_cb(skb)->pkt_len = skb->len; 4644 skb->tc_at_ingress = 1; 4645 mini_qdisc_bstats_cpu_update(miniq, skb); 4646 4647 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4648 case TC_ACT_OK: 4649 case TC_ACT_RECLASSIFY: 4650 skb->tc_index = TC_H_MIN(cl_res.classid); 4651 break; 4652 case TC_ACT_SHOT: 4653 mini_qdisc_qstats_cpu_drop(miniq); 4654 kfree_skb(skb); 4655 return NULL; 4656 case TC_ACT_STOLEN: 4657 case TC_ACT_QUEUED: 4658 case TC_ACT_TRAP: 4659 consume_skb(skb); 4660 return NULL; 4661 case TC_ACT_REDIRECT: 4662 /* skb_mac_header check was done by cls/act_bpf, so 4663 * we can safely push the L2 header back before 4664 * redirecting to another netdev 4665 */ 4666 __skb_push(skb, skb->mac_len); 4667 skb_do_redirect(skb); 4668 return NULL; 4669 case TC_ACT_REINSERT: 4670 /* this does not scrub the packet, and updates stats on error */ 4671 skb_tc_reinsert(skb, &cl_res); 4672 return NULL; 4673 default: 4674 break; 4675 } 4676 #endif /* CONFIG_NET_CLS_ACT */ 4677 return skb; 4678 } 4679 4680 /** 4681 * netdev_is_rx_handler_busy - check if receive handler is registered 4682 * @dev: device to check 4683 * 4684 * Check if a receive handler is already registered for a given device. 4685 * Return true if there one. 4686 * 4687 * The caller must hold the rtnl_mutex. 4688 */ 4689 bool netdev_is_rx_handler_busy(struct net_device *dev) 4690 { 4691 ASSERT_RTNL(); 4692 return dev && rtnl_dereference(dev->rx_handler); 4693 } 4694 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4695 4696 /** 4697 * netdev_rx_handler_register - register receive handler 4698 * @dev: device to register a handler for 4699 * @rx_handler: receive handler to register 4700 * @rx_handler_data: data pointer that is used by rx handler 4701 * 4702 * Register a receive handler for a device. This handler will then be 4703 * called from __netif_receive_skb. A negative errno code is returned 4704 * on a failure. 4705 * 4706 * The caller must hold the rtnl_mutex. 4707 * 4708 * For a general description of rx_handler, see enum rx_handler_result. 4709 */ 4710 int netdev_rx_handler_register(struct net_device *dev, 4711 rx_handler_func_t *rx_handler, 4712 void *rx_handler_data) 4713 { 4714 if (netdev_is_rx_handler_busy(dev)) 4715 return -EBUSY; 4716 4717 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4718 return -EINVAL; 4719 4720 /* Note: rx_handler_data must be set before rx_handler */ 4721 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4722 rcu_assign_pointer(dev->rx_handler, rx_handler); 4723 4724 return 0; 4725 } 4726 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4727 4728 /** 4729 * netdev_rx_handler_unregister - unregister receive handler 4730 * @dev: device to unregister a handler from 4731 * 4732 * Unregister a receive handler from a device. 4733 * 4734 * The caller must hold the rtnl_mutex. 4735 */ 4736 void netdev_rx_handler_unregister(struct net_device *dev) 4737 { 4738 4739 ASSERT_RTNL(); 4740 RCU_INIT_POINTER(dev->rx_handler, NULL); 4741 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4742 * section has a guarantee to see a non NULL rx_handler_data 4743 * as well. 4744 */ 4745 synchronize_net(); 4746 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4747 } 4748 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4749 4750 /* 4751 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4752 * the special handling of PFMEMALLOC skbs. 4753 */ 4754 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4755 { 4756 switch (skb->protocol) { 4757 case htons(ETH_P_ARP): 4758 case htons(ETH_P_IP): 4759 case htons(ETH_P_IPV6): 4760 case htons(ETH_P_8021Q): 4761 case htons(ETH_P_8021AD): 4762 return true; 4763 default: 4764 return false; 4765 } 4766 } 4767 4768 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4769 int *ret, struct net_device *orig_dev) 4770 { 4771 #ifdef CONFIG_NETFILTER_INGRESS 4772 if (nf_hook_ingress_active(skb)) { 4773 int ingress_retval; 4774 4775 if (*pt_prev) { 4776 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4777 *pt_prev = NULL; 4778 } 4779 4780 rcu_read_lock(); 4781 ingress_retval = nf_hook_ingress(skb); 4782 rcu_read_unlock(); 4783 return ingress_retval; 4784 } 4785 #endif /* CONFIG_NETFILTER_INGRESS */ 4786 return 0; 4787 } 4788 4789 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4790 struct packet_type **ppt_prev) 4791 { 4792 struct packet_type *ptype, *pt_prev; 4793 rx_handler_func_t *rx_handler; 4794 struct net_device *orig_dev; 4795 bool deliver_exact = false; 4796 int ret = NET_RX_DROP; 4797 __be16 type; 4798 4799 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4800 4801 trace_netif_receive_skb(skb); 4802 4803 orig_dev = skb->dev; 4804 4805 skb_reset_network_header(skb); 4806 if (!skb_transport_header_was_set(skb)) 4807 skb_reset_transport_header(skb); 4808 skb_reset_mac_len(skb); 4809 4810 pt_prev = NULL; 4811 4812 another_round: 4813 skb->skb_iif = skb->dev->ifindex; 4814 4815 __this_cpu_inc(softnet_data.processed); 4816 4817 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4818 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4819 skb = skb_vlan_untag(skb); 4820 if (unlikely(!skb)) 4821 goto out; 4822 } 4823 4824 if (skb_skip_tc_classify(skb)) 4825 goto skip_classify; 4826 4827 if (pfmemalloc) 4828 goto skip_taps; 4829 4830 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4831 if (pt_prev) 4832 ret = deliver_skb(skb, pt_prev, orig_dev); 4833 pt_prev = ptype; 4834 } 4835 4836 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4837 if (pt_prev) 4838 ret = deliver_skb(skb, pt_prev, orig_dev); 4839 pt_prev = ptype; 4840 } 4841 4842 skip_taps: 4843 #ifdef CONFIG_NET_INGRESS 4844 if (static_branch_unlikely(&ingress_needed_key)) { 4845 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4846 if (!skb) 4847 goto out; 4848 4849 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4850 goto out; 4851 } 4852 #endif 4853 skb_reset_tc(skb); 4854 skip_classify: 4855 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4856 goto drop; 4857 4858 if (skb_vlan_tag_present(skb)) { 4859 if (pt_prev) { 4860 ret = deliver_skb(skb, pt_prev, orig_dev); 4861 pt_prev = NULL; 4862 } 4863 if (vlan_do_receive(&skb)) 4864 goto another_round; 4865 else if (unlikely(!skb)) 4866 goto out; 4867 } 4868 4869 rx_handler = rcu_dereference(skb->dev->rx_handler); 4870 if (rx_handler) { 4871 if (pt_prev) { 4872 ret = deliver_skb(skb, pt_prev, orig_dev); 4873 pt_prev = NULL; 4874 } 4875 switch (rx_handler(&skb)) { 4876 case RX_HANDLER_CONSUMED: 4877 ret = NET_RX_SUCCESS; 4878 goto out; 4879 case RX_HANDLER_ANOTHER: 4880 goto another_round; 4881 case RX_HANDLER_EXACT: 4882 deliver_exact = true; 4883 case RX_HANDLER_PASS: 4884 break; 4885 default: 4886 BUG(); 4887 } 4888 } 4889 4890 if (unlikely(skb_vlan_tag_present(skb))) { 4891 if (skb_vlan_tag_get_id(skb)) 4892 skb->pkt_type = PACKET_OTHERHOST; 4893 /* Note: we might in the future use prio bits 4894 * and set skb->priority like in vlan_do_receive() 4895 * For the time being, just ignore Priority Code Point 4896 */ 4897 skb->vlan_tci = 0; 4898 } 4899 4900 type = skb->protocol; 4901 4902 /* deliver only exact match when indicated */ 4903 if (likely(!deliver_exact)) { 4904 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4905 &ptype_base[ntohs(type) & 4906 PTYPE_HASH_MASK]); 4907 } 4908 4909 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4910 &orig_dev->ptype_specific); 4911 4912 if (unlikely(skb->dev != orig_dev)) { 4913 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4914 &skb->dev->ptype_specific); 4915 } 4916 4917 if (pt_prev) { 4918 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4919 goto drop; 4920 *ppt_prev = pt_prev; 4921 } else { 4922 drop: 4923 if (!deliver_exact) 4924 atomic_long_inc(&skb->dev->rx_dropped); 4925 else 4926 atomic_long_inc(&skb->dev->rx_nohandler); 4927 kfree_skb(skb); 4928 /* Jamal, now you will not able to escape explaining 4929 * me how you were going to use this. :-) 4930 */ 4931 ret = NET_RX_DROP; 4932 } 4933 4934 out: 4935 return ret; 4936 } 4937 4938 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4939 { 4940 struct net_device *orig_dev = skb->dev; 4941 struct packet_type *pt_prev = NULL; 4942 int ret; 4943 4944 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4945 if (pt_prev) 4946 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4947 return ret; 4948 } 4949 4950 /** 4951 * netif_receive_skb_core - special purpose version of netif_receive_skb 4952 * @skb: buffer to process 4953 * 4954 * More direct receive version of netif_receive_skb(). It should 4955 * only be used by callers that have a need to skip RPS and Generic XDP. 4956 * Caller must also take care of handling if (page_is_)pfmemalloc. 4957 * 4958 * This function may only be called from softirq context and interrupts 4959 * should be enabled. 4960 * 4961 * Return values (usually ignored): 4962 * NET_RX_SUCCESS: no congestion 4963 * NET_RX_DROP: packet was dropped 4964 */ 4965 int netif_receive_skb_core(struct sk_buff *skb) 4966 { 4967 int ret; 4968 4969 rcu_read_lock(); 4970 ret = __netif_receive_skb_one_core(skb, false); 4971 rcu_read_unlock(); 4972 4973 return ret; 4974 } 4975 EXPORT_SYMBOL(netif_receive_skb_core); 4976 4977 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4978 struct packet_type *pt_prev, 4979 struct net_device *orig_dev) 4980 { 4981 struct sk_buff *skb, *next; 4982 4983 if (!pt_prev) 4984 return; 4985 if (list_empty(head)) 4986 return; 4987 if (pt_prev->list_func != NULL) 4988 pt_prev->list_func(head, pt_prev, orig_dev); 4989 else 4990 list_for_each_entry_safe(skb, next, head, list) 4991 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4992 } 4993 4994 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 4995 { 4996 /* Fast-path assumptions: 4997 * - There is no RX handler. 4998 * - Only one packet_type matches. 4999 * If either of these fails, we will end up doing some per-packet 5000 * processing in-line, then handling the 'last ptype' for the whole 5001 * sublist. This can't cause out-of-order delivery to any single ptype, 5002 * because the 'last ptype' must be constant across the sublist, and all 5003 * other ptypes are handled per-packet. 5004 */ 5005 /* Current (common) ptype of sublist */ 5006 struct packet_type *pt_curr = NULL; 5007 /* Current (common) orig_dev of sublist */ 5008 struct net_device *od_curr = NULL; 5009 struct list_head sublist; 5010 struct sk_buff *skb, *next; 5011 5012 INIT_LIST_HEAD(&sublist); 5013 list_for_each_entry_safe(skb, next, head, list) { 5014 struct net_device *orig_dev = skb->dev; 5015 struct packet_type *pt_prev = NULL; 5016 5017 skb_list_del_init(skb); 5018 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5019 if (!pt_prev) 5020 continue; 5021 if (pt_curr != pt_prev || od_curr != orig_dev) { 5022 /* dispatch old sublist */ 5023 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5024 /* start new sublist */ 5025 INIT_LIST_HEAD(&sublist); 5026 pt_curr = pt_prev; 5027 od_curr = orig_dev; 5028 } 5029 list_add_tail(&skb->list, &sublist); 5030 } 5031 5032 /* dispatch final sublist */ 5033 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5034 } 5035 5036 static int __netif_receive_skb(struct sk_buff *skb) 5037 { 5038 int ret; 5039 5040 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5041 unsigned int noreclaim_flag; 5042 5043 /* 5044 * PFMEMALLOC skbs are special, they should 5045 * - be delivered to SOCK_MEMALLOC sockets only 5046 * - stay away from userspace 5047 * - have bounded memory usage 5048 * 5049 * Use PF_MEMALLOC as this saves us from propagating the allocation 5050 * context down to all allocation sites. 5051 */ 5052 noreclaim_flag = memalloc_noreclaim_save(); 5053 ret = __netif_receive_skb_one_core(skb, true); 5054 memalloc_noreclaim_restore(noreclaim_flag); 5055 } else 5056 ret = __netif_receive_skb_one_core(skb, false); 5057 5058 return ret; 5059 } 5060 5061 static void __netif_receive_skb_list(struct list_head *head) 5062 { 5063 unsigned long noreclaim_flag = 0; 5064 struct sk_buff *skb, *next; 5065 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5066 5067 list_for_each_entry_safe(skb, next, head, list) { 5068 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5069 struct list_head sublist; 5070 5071 /* Handle the previous sublist */ 5072 list_cut_before(&sublist, head, &skb->list); 5073 if (!list_empty(&sublist)) 5074 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5075 pfmemalloc = !pfmemalloc; 5076 /* See comments in __netif_receive_skb */ 5077 if (pfmemalloc) 5078 noreclaim_flag = memalloc_noreclaim_save(); 5079 else 5080 memalloc_noreclaim_restore(noreclaim_flag); 5081 } 5082 } 5083 /* Handle the remaining sublist */ 5084 if (!list_empty(head)) 5085 __netif_receive_skb_list_core(head, pfmemalloc); 5086 /* Restore pflags */ 5087 if (pfmemalloc) 5088 memalloc_noreclaim_restore(noreclaim_flag); 5089 } 5090 5091 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5092 { 5093 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5094 struct bpf_prog *new = xdp->prog; 5095 int ret = 0; 5096 5097 switch (xdp->command) { 5098 case XDP_SETUP_PROG: 5099 rcu_assign_pointer(dev->xdp_prog, new); 5100 if (old) 5101 bpf_prog_put(old); 5102 5103 if (old && !new) { 5104 static_branch_dec(&generic_xdp_needed_key); 5105 } else if (new && !old) { 5106 static_branch_inc(&generic_xdp_needed_key); 5107 dev_disable_lro(dev); 5108 dev_disable_gro_hw(dev); 5109 } 5110 break; 5111 5112 case XDP_QUERY_PROG: 5113 xdp->prog_id = old ? old->aux->id : 0; 5114 break; 5115 5116 default: 5117 ret = -EINVAL; 5118 break; 5119 } 5120 5121 return ret; 5122 } 5123 5124 static int netif_receive_skb_internal(struct sk_buff *skb) 5125 { 5126 int ret; 5127 5128 net_timestamp_check(netdev_tstamp_prequeue, skb); 5129 5130 if (skb_defer_rx_timestamp(skb)) 5131 return NET_RX_SUCCESS; 5132 5133 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5134 int ret; 5135 5136 preempt_disable(); 5137 rcu_read_lock(); 5138 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5139 rcu_read_unlock(); 5140 preempt_enable(); 5141 5142 if (ret != XDP_PASS) 5143 return NET_RX_DROP; 5144 } 5145 5146 rcu_read_lock(); 5147 #ifdef CONFIG_RPS 5148 if (static_key_false(&rps_needed)) { 5149 struct rps_dev_flow voidflow, *rflow = &voidflow; 5150 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5151 5152 if (cpu >= 0) { 5153 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5154 rcu_read_unlock(); 5155 return ret; 5156 } 5157 } 5158 #endif 5159 ret = __netif_receive_skb(skb); 5160 rcu_read_unlock(); 5161 return ret; 5162 } 5163 5164 static void netif_receive_skb_list_internal(struct list_head *head) 5165 { 5166 struct bpf_prog *xdp_prog = NULL; 5167 struct sk_buff *skb, *next; 5168 struct list_head sublist; 5169 5170 INIT_LIST_HEAD(&sublist); 5171 list_for_each_entry_safe(skb, next, head, list) { 5172 net_timestamp_check(netdev_tstamp_prequeue, skb); 5173 skb_list_del_init(skb); 5174 if (!skb_defer_rx_timestamp(skb)) 5175 list_add_tail(&skb->list, &sublist); 5176 } 5177 list_splice_init(&sublist, head); 5178 5179 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5180 preempt_disable(); 5181 rcu_read_lock(); 5182 list_for_each_entry_safe(skb, next, head, list) { 5183 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5184 skb_list_del_init(skb); 5185 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5186 list_add_tail(&skb->list, &sublist); 5187 } 5188 rcu_read_unlock(); 5189 preempt_enable(); 5190 /* Put passed packets back on main list */ 5191 list_splice_init(&sublist, head); 5192 } 5193 5194 rcu_read_lock(); 5195 #ifdef CONFIG_RPS 5196 if (static_key_false(&rps_needed)) { 5197 list_for_each_entry_safe(skb, next, head, list) { 5198 struct rps_dev_flow voidflow, *rflow = &voidflow; 5199 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5200 5201 if (cpu >= 0) { 5202 /* Will be handled, remove from list */ 5203 skb_list_del_init(skb); 5204 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5205 } 5206 } 5207 } 5208 #endif 5209 __netif_receive_skb_list(head); 5210 rcu_read_unlock(); 5211 } 5212 5213 /** 5214 * netif_receive_skb - process receive buffer from network 5215 * @skb: buffer to process 5216 * 5217 * netif_receive_skb() is the main receive data processing function. 5218 * It always succeeds. The buffer may be dropped during processing 5219 * for congestion control or by the protocol layers. 5220 * 5221 * This function may only be called from softirq context and interrupts 5222 * should be enabled. 5223 * 5224 * Return values (usually ignored): 5225 * NET_RX_SUCCESS: no congestion 5226 * NET_RX_DROP: packet was dropped 5227 */ 5228 int netif_receive_skb(struct sk_buff *skb) 5229 { 5230 trace_netif_receive_skb_entry(skb); 5231 5232 return netif_receive_skb_internal(skb); 5233 } 5234 EXPORT_SYMBOL(netif_receive_skb); 5235 5236 /** 5237 * netif_receive_skb_list - process many receive buffers from network 5238 * @head: list of skbs to process. 5239 * 5240 * Since return value of netif_receive_skb() is normally ignored, and 5241 * wouldn't be meaningful for a list, this function returns void. 5242 * 5243 * This function may only be called from softirq context and interrupts 5244 * should be enabled. 5245 */ 5246 void netif_receive_skb_list(struct list_head *head) 5247 { 5248 struct sk_buff *skb; 5249 5250 if (list_empty(head)) 5251 return; 5252 list_for_each_entry(skb, head, list) 5253 trace_netif_receive_skb_list_entry(skb); 5254 netif_receive_skb_list_internal(head); 5255 } 5256 EXPORT_SYMBOL(netif_receive_skb_list); 5257 5258 DEFINE_PER_CPU(struct work_struct, flush_works); 5259 5260 /* Network device is going away, flush any packets still pending */ 5261 static void flush_backlog(struct work_struct *work) 5262 { 5263 struct sk_buff *skb, *tmp; 5264 struct softnet_data *sd; 5265 5266 local_bh_disable(); 5267 sd = this_cpu_ptr(&softnet_data); 5268 5269 local_irq_disable(); 5270 rps_lock(sd); 5271 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5272 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5273 __skb_unlink(skb, &sd->input_pkt_queue); 5274 kfree_skb(skb); 5275 input_queue_head_incr(sd); 5276 } 5277 } 5278 rps_unlock(sd); 5279 local_irq_enable(); 5280 5281 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5282 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5283 __skb_unlink(skb, &sd->process_queue); 5284 kfree_skb(skb); 5285 input_queue_head_incr(sd); 5286 } 5287 } 5288 local_bh_enable(); 5289 } 5290 5291 static void flush_all_backlogs(void) 5292 { 5293 unsigned int cpu; 5294 5295 get_online_cpus(); 5296 5297 for_each_online_cpu(cpu) 5298 queue_work_on(cpu, system_highpri_wq, 5299 per_cpu_ptr(&flush_works, cpu)); 5300 5301 for_each_online_cpu(cpu) 5302 flush_work(per_cpu_ptr(&flush_works, cpu)); 5303 5304 put_online_cpus(); 5305 } 5306 5307 static int napi_gro_complete(struct sk_buff *skb) 5308 { 5309 struct packet_offload *ptype; 5310 __be16 type = skb->protocol; 5311 struct list_head *head = &offload_base; 5312 int err = -ENOENT; 5313 5314 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5315 5316 if (NAPI_GRO_CB(skb)->count == 1) { 5317 skb_shinfo(skb)->gso_size = 0; 5318 goto out; 5319 } 5320 5321 rcu_read_lock(); 5322 list_for_each_entry_rcu(ptype, head, list) { 5323 if (ptype->type != type || !ptype->callbacks.gro_complete) 5324 continue; 5325 5326 err = ptype->callbacks.gro_complete(skb, 0); 5327 break; 5328 } 5329 rcu_read_unlock(); 5330 5331 if (err) { 5332 WARN_ON(&ptype->list == head); 5333 kfree_skb(skb); 5334 return NET_RX_SUCCESS; 5335 } 5336 5337 out: 5338 return netif_receive_skb_internal(skb); 5339 } 5340 5341 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5342 bool flush_old) 5343 { 5344 struct list_head *head = &napi->gro_hash[index].list; 5345 struct sk_buff *skb, *p; 5346 5347 list_for_each_entry_safe_reverse(skb, p, head, list) { 5348 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5349 return; 5350 skb_list_del_init(skb); 5351 napi_gro_complete(skb); 5352 napi->gro_hash[index].count--; 5353 } 5354 5355 if (!napi->gro_hash[index].count) 5356 __clear_bit(index, &napi->gro_bitmask); 5357 } 5358 5359 /* napi->gro_hash[].list contains packets ordered by age. 5360 * youngest packets at the head of it. 5361 * Complete skbs in reverse order to reduce latencies. 5362 */ 5363 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5364 { 5365 u32 i; 5366 5367 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 5368 if (test_bit(i, &napi->gro_bitmask)) 5369 __napi_gro_flush_chain(napi, i, flush_old); 5370 } 5371 } 5372 EXPORT_SYMBOL(napi_gro_flush); 5373 5374 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5375 struct sk_buff *skb) 5376 { 5377 unsigned int maclen = skb->dev->hard_header_len; 5378 u32 hash = skb_get_hash_raw(skb); 5379 struct list_head *head; 5380 struct sk_buff *p; 5381 5382 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5383 list_for_each_entry(p, head, list) { 5384 unsigned long diffs; 5385 5386 NAPI_GRO_CB(p)->flush = 0; 5387 5388 if (hash != skb_get_hash_raw(p)) { 5389 NAPI_GRO_CB(p)->same_flow = 0; 5390 continue; 5391 } 5392 5393 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5394 diffs |= p->vlan_tci ^ skb->vlan_tci; 5395 diffs |= skb_metadata_dst_cmp(p, skb); 5396 diffs |= skb_metadata_differs(p, skb); 5397 if (maclen == ETH_HLEN) 5398 diffs |= compare_ether_header(skb_mac_header(p), 5399 skb_mac_header(skb)); 5400 else if (!diffs) 5401 diffs = memcmp(skb_mac_header(p), 5402 skb_mac_header(skb), 5403 maclen); 5404 NAPI_GRO_CB(p)->same_flow = !diffs; 5405 } 5406 5407 return head; 5408 } 5409 5410 static void skb_gro_reset_offset(struct sk_buff *skb) 5411 { 5412 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5413 const skb_frag_t *frag0 = &pinfo->frags[0]; 5414 5415 NAPI_GRO_CB(skb)->data_offset = 0; 5416 NAPI_GRO_CB(skb)->frag0 = NULL; 5417 NAPI_GRO_CB(skb)->frag0_len = 0; 5418 5419 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5420 pinfo->nr_frags && 5421 !PageHighMem(skb_frag_page(frag0))) { 5422 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5423 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5424 skb_frag_size(frag0), 5425 skb->end - skb->tail); 5426 } 5427 } 5428 5429 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5430 { 5431 struct skb_shared_info *pinfo = skb_shinfo(skb); 5432 5433 BUG_ON(skb->end - skb->tail < grow); 5434 5435 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5436 5437 skb->data_len -= grow; 5438 skb->tail += grow; 5439 5440 pinfo->frags[0].page_offset += grow; 5441 skb_frag_size_sub(&pinfo->frags[0], grow); 5442 5443 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5444 skb_frag_unref(skb, 0); 5445 memmove(pinfo->frags, pinfo->frags + 1, 5446 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5447 } 5448 } 5449 5450 static void gro_flush_oldest(struct list_head *head) 5451 { 5452 struct sk_buff *oldest; 5453 5454 oldest = list_last_entry(head, struct sk_buff, list); 5455 5456 /* We are called with head length >= MAX_GRO_SKBS, so this is 5457 * impossible. 5458 */ 5459 if (WARN_ON_ONCE(!oldest)) 5460 return; 5461 5462 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5463 * SKB to the chain. 5464 */ 5465 skb_list_del_init(oldest); 5466 napi_gro_complete(oldest); 5467 } 5468 5469 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5470 { 5471 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5472 struct list_head *head = &offload_base; 5473 struct packet_offload *ptype; 5474 __be16 type = skb->protocol; 5475 struct list_head *gro_head; 5476 struct sk_buff *pp = NULL; 5477 enum gro_result ret; 5478 int same_flow; 5479 int grow; 5480 5481 if (netif_elide_gro(skb->dev)) 5482 goto normal; 5483 5484 gro_head = gro_list_prepare(napi, skb); 5485 5486 rcu_read_lock(); 5487 list_for_each_entry_rcu(ptype, head, list) { 5488 if (ptype->type != type || !ptype->callbacks.gro_receive) 5489 continue; 5490 5491 skb_set_network_header(skb, skb_gro_offset(skb)); 5492 skb_reset_mac_len(skb); 5493 NAPI_GRO_CB(skb)->same_flow = 0; 5494 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5495 NAPI_GRO_CB(skb)->free = 0; 5496 NAPI_GRO_CB(skb)->encap_mark = 0; 5497 NAPI_GRO_CB(skb)->recursion_counter = 0; 5498 NAPI_GRO_CB(skb)->is_fou = 0; 5499 NAPI_GRO_CB(skb)->is_atomic = 1; 5500 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5501 5502 /* Setup for GRO checksum validation */ 5503 switch (skb->ip_summed) { 5504 case CHECKSUM_COMPLETE: 5505 NAPI_GRO_CB(skb)->csum = skb->csum; 5506 NAPI_GRO_CB(skb)->csum_valid = 1; 5507 NAPI_GRO_CB(skb)->csum_cnt = 0; 5508 break; 5509 case CHECKSUM_UNNECESSARY: 5510 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5511 NAPI_GRO_CB(skb)->csum_valid = 0; 5512 break; 5513 default: 5514 NAPI_GRO_CB(skb)->csum_cnt = 0; 5515 NAPI_GRO_CB(skb)->csum_valid = 0; 5516 } 5517 5518 pp = ptype->callbacks.gro_receive(gro_head, skb); 5519 break; 5520 } 5521 rcu_read_unlock(); 5522 5523 if (&ptype->list == head) 5524 goto normal; 5525 5526 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5527 ret = GRO_CONSUMED; 5528 goto ok; 5529 } 5530 5531 same_flow = NAPI_GRO_CB(skb)->same_flow; 5532 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5533 5534 if (pp) { 5535 skb_list_del_init(pp); 5536 napi_gro_complete(pp); 5537 napi->gro_hash[hash].count--; 5538 } 5539 5540 if (same_flow) 5541 goto ok; 5542 5543 if (NAPI_GRO_CB(skb)->flush) 5544 goto normal; 5545 5546 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5547 gro_flush_oldest(gro_head); 5548 } else { 5549 napi->gro_hash[hash].count++; 5550 } 5551 NAPI_GRO_CB(skb)->count = 1; 5552 NAPI_GRO_CB(skb)->age = jiffies; 5553 NAPI_GRO_CB(skb)->last = skb; 5554 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5555 list_add(&skb->list, gro_head); 5556 ret = GRO_HELD; 5557 5558 pull: 5559 grow = skb_gro_offset(skb) - skb_headlen(skb); 5560 if (grow > 0) 5561 gro_pull_from_frag0(skb, grow); 5562 ok: 5563 if (napi->gro_hash[hash].count) { 5564 if (!test_bit(hash, &napi->gro_bitmask)) 5565 __set_bit(hash, &napi->gro_bitmask); 5566 } else if (test_bit(hash, &napi->gro_bitmask)) { 5567 __clear_bit(hash, &napi->gro_bitmask); 5568 } 5569 5570 return ret; 5571 5572 normal: 5573 ret = GRO_NORMAL; 5574 goto pull; 5575 } 5576 5577 struct packet_offload *gro_find_receive_by_type(__be16 type) 5578 { 5579 struct list_head *offload_head = &offload_base; 5580 struct packet_offload *ptype; 5581 5582 list_for_each_entry_rcu(ptype, offload_head, list) { 5583 if (ptype->type != type || !ptype->callbacks.gro_receive) 5584 continue; 5585 return ptype; 5586 } 5587 return NULL; 5588 } 5589 EXPORT_SYMBOL(gro_find_receive_by_type); 5590 5591 struct packet_offload *gro_find_complete_by_type(__be16 type) 5592 { 5593 struct list_head *offload_head = &offload_base; 5594 struct packet_offload *ptype; 5595 5596 list_for_each_entry_rcu(ptype, offload_head, list) { 5597 if (ptype->type != type || !ptype->callbacks.gro_complete) 5598 continue; 5599 return ptype; 5600 } 5601 return NULL; 5602 } 5603 EXPORT_SYMBOL(gro_find_complete_by_type); 5604 5605 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5606 { 5607 skb_dst_drop(skb); 5608 secpath_reset(skb); 5609 kmem_cache_free(skbuff_head_cache, skb); 5610 } 5611 5612 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5613 { 5614 switch (ret) { 5615 case GRO_NORMAL: 5616 if (netif_receive_skb_internal(skb)) 5617 ret = GRO_DROP; 5618 break; 5619 5620 case GRO_DROP: 5621 kfree_skb(skb); 5622 break; 5623 5624 case GRO_MERGED_FREE: 5625 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5626 napi_skb_free_stolen_head(skb); 5627 else 5628 __kfree_skb(skb); 5629 break; 5630 5631 case GRO_HELD: 5632 case GRO_MERGED: 5633 case GRO_CONSUMED: 5634 break; 5635 } 5636 5637 return ret; 5638 } 5639 5640 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5641 { 5642 skb_mark_napi_id(skb, napi); 5643 trace_napi_gro_receive_entry(skb); 5644 5645 skb_gro_reset_offset(skb); 5646 5647 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5648 } 5649 EXPORT_SYMBOL(napi_gro_receive); 5650 5651 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5652 { 5653 if (unlikely(skb->pfmemalloc)) { 5654 consume_skb(skb); 5655 return; 5656 } 5657 __skb_pull(skb, skb_headlen(skb)); 5658 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5659 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5660 skb->vlan_tci = 0; 5661 skb->dev = napi->dev; 5662 skb->skb_iif = 0; 5663 5664 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5665 skb->pkt_type = PACKET_HOST; 5666 5667 skb->encapsulation = 0; 5668 skb_shinfo(skb)->gso_type = 0; 5669 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5670 secpath_reset(skb); 5671 5672 napi->skb = skb; 5673 } 5674 5675 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5676 { 5677 struct sk_buff *skb = napi->skb; 5678 5679 if (!skb) { 5680 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5681 if (skb) { 5682 napi->skb = skb; 5683 skb_mark_napi_id(skb, napi); 5684 } 5685 } 5686 return skb; 5687 } 5688 EXPORT_SYMBOL(napi_get_frags); 5689 5690 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5691 struct sk_buff *skb, 5692 gro_result_t ret) 5693 { 5694 switch (ret) { 5695 case GRO_NORMAL: 5696 case GRO_HELD: 5697 __skb_push(skb, ETH_HLEN); 5698 skb->protocol = eth_type_trans(skb, skb->dev); 5699 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5700 ret = GRO_DROP; 5701 break; 5702 5703 case GRO_DROP: 5704 napi_reuse_skb(napi, skb); 5705 break; 5706 5707 case GRO_MERGED_FREE: 5708 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5709 napi_skb_free_stolen_head(skb); 5710 else 5711 napi_reuse_skb(napi, skb); 5712 break; 5713 5714 case GRO_MERGED: 5715 case GRO_CONSUMED: 5716 break; 5717 } 5718 5719 return ret; 5720 } 5721 5722 /* Upper GRO stack assumes network header starts at gro_offset=0 5723 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5724 * We copy ethernet header into skb->data to have a common layout. 5725 */ 5726 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5727 { 5728 struct sk_buff *skb = napi->skb; 5729 const struct ethhdr *eth; 5730 unsigned int hlen = sizeof(*eth); 5731 5732 napi->skb = NULL; 5733 5734 skb_reset_mac_header(skb); 5735 skb_gro_reset_offset(skb); 5736 5737 eth = skb_gro_header_fast(skb, 0); 5738 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5739 eth = skb_gro_header_slow(skb, hlen, 0); 5740 if (unlikely(!eth)) { 5741 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5742 __func__, napi->dev->name); 5743 napi_reuse_skb(napi, skb); 5744 return NULL; 5745 } 5746 } else { 5747 gro_pull_from_frag0(skb, hlen); 5748 NAPI_GRO_CB(skb)->frag0 += hlen; 5749 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5750 } 5751 __skb_pull(skb, hlen); 5752 5753 /* 5754 * This works because the only protocols we care about don't require 5755 * special handling. 5756 * We'll fix it up properly in napi_frags_finish() 5757 */ 5758 skb->protocol = eth->h_proto; 5759 5760 return skb; 5761 } 5762 5763 gro_result_t napi_gro_frags(struct napi_struct *napi) 5764 { 5765 struct sk_buff *skb = napi_frags_skb(napi); 5766 5767 if (!skb) 5768 return GRO_DROP; 5769 5770 trace_napi_gro_frags_entry(skb); 5771 5772 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5773 } 5774 EXPORT_SYMBOL(napi_gro_frags); 5775 5776 /* Compute the checksum from gro_offset and return the folded value 5777 * after adding in any pseudo checksum. 5778 */ 5779 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5780 { 5781 __wsum wsum; 5782 __sum16 sum; 5783 5784 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5785 5786 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5787 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5788 if (likely(!sum)) { 5789 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5790 !skb->csum_complete_sw) 5791 netdev_rx_csum_fault(skb->dev); 5792 } 5793 5794 NAPI_GRO_CB(skb)->csum = wsum; 5795 NAPI_GRO_CB(skb)->csum_valid = 1; 5796 5797 return sum; 5798 } 5799 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5800 5801 static void net_rps_send_ipi(struct softnet_data *remsd) 5802 { 5803 #ifdef CONFIG_RPS 5804 while (remsd) { 5805 struct softnet_data *next = remsd->rps_ipi_next; 5806 5807 if (cpu_online(remsd->cpu)) 5808 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5809 remsd = next; 5810 } 5811 #endif 5812 } 5813 5814 /* 5815 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5816 * Note: called with local irq disabled, but exits with local irq enabled. 5817 */ 5818 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5819 { 5820 #ifdef CONFIG_RPS 5821 struct softnet_data *remsd = sd->rps_ipi_list; 5822 5823 if (remsd) { 5824 sd->rps_ipi_list = NULL; 5825 5826 local_irq_enable(); 5827 5828 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5829 net_rps_send_ipi(remsd); 5830 } else 5831 #endif 5832 local_irq_enable(); 5833 } 5834 5835 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5836 { 5837 #ifdef CONFIG_RPS 5838 return sd->rps_ipi_list != NULL; 5839 #else 5840 return false; 5841 #endif 5842 } 5843 5844 static int process_backlog(struct napi_struct *napi, int quota) 5845 { 5846 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5847 bool again = true; 5848 int work = 0; 5849 5850 /* Check if we have pending ipi, its better to send them now, 5851 * not waiting net_rx_action() end. 5852 */ 5853 if (sd_has_rps_ipi_waiting(sd)) { 5854 local_irq_disable(); 5855 net_rps_action_and_irq_enable(sd); 5856 } 5857 5858 napi->weight = dev_rx_weight; 5859 while (again) { 5860 struct sk_buff *skb; 5861 5862 while ((skb = __skb_dequeue(&sd->process_queue))) { 5863 rcu_read_lock(); 5864 __netif_receive_skb(skb); 5865 rcu_read_unlock(); 5866 input_queue_head_incr(sd); 5867 if (++work >= quota) 5868 return work; 5869 5870 } 5871 5872 local_irq_disable(); 5873 rps_lock(sd); 5874 if (skb_queue_empty(&sd->input_pkt_queue)) { 5875 /* 5876 * Inline a custom version of __napi_complete(). 5877 * only current cpu owns and manipulates this napi, 5878 * and NAPI_STATE_SCHED is the only possible flag set 5879 * on backlog. 5880 * We can use a plain write instead of clear_bit(), 5881 * and we dont need an smp_mb() memory barrier. 5882 */ 5883 napi->state = 0; 5884 again = false; 5885 } else { 5886 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5887 &sd->process_queue); 5888 } 5889 rps_unlock(sd); 5890 local_irq_enable(); 5891 } 5892 5893 return work; 5894 } 5895 5896 /** 5897 * __napi_schedule - schedule for receive 5898 * @n: entry to schedule 5899 * 5900 * The entry's receive function will be scheduled to run. 5901 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5902 */ 5903 void __napi_schedule(struct napi_struct *n) 5904 { 5905 unsigned long flags; 5906 5907 local_irq_save(flags); 5908 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5909 local_irq_restore(flags); 5910 } 5911 EXPORT_SYMBOL(__napi_schedule); 5912 5913 /** 5914 * napi_schedule_prep - check if napi can be scheduled 5915 * @n: napi context 5916 * 5917 * Test if NAPI routine is already running, and if not mark 5918 * it as running. This is used as a condition variable 5919 * insure only one NAPI poll instance runs. We also make 5920 * sure there is no pending NAPI disable. 5921 */ 5922 bool napi_schedule_prep(struct napi_struct *n) 5923 { 5924 unsigned long val, new; 5925 5926 do { 5927 val = READ_ONCE(n->state); 5928 if (unlikely(val & NAPIF_STATE_DISABLE)) 5929 return false; 5930 new = val | NAPIF_STATE_SCHED; 5931 5932 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5933 * This was suggested by Alexander Duyck, as compiler 5934 * emits better code than : 5935 * if (val & NAPIF_STATE_SCHED) 5936 * new |= NAPIF_STATE_MISSED; 5937 */ 5938 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5939 NAPIF_STATE_MISSED; 5940 } while (cmpxchg(&n->state, val, new) != val); 5941 5942 return !(val & NAPIF_STATE_SCHED); 5943 } 5944 EXPORT_SYMBOL(napi_schedule_prep); 5945 5946 /** 5947 * __napi_schedule_irqoff - schedule for receive 5948 * @n: entry to schedule 5949 * 5950 * Variant of __napi_schedule() assuming hard irqs are masked 5951 */ 5952 void __napi_schedule_irqoff(struct napi_struct *n) 5953 { 5954 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5955 } 5956 EXPORT_SYMBOL(__napi_schedule_irqoff); 5957 5958 bool napi_complete_done(struct napi_struct *n, int work_done) 5959 { 5960 unsigned long flags, val, new; 5961 5962 /* 5963 * 1) Don't let napi dequeue from the cpu poll list 5964 * just in case its running on a different cpu. 5965 * 2) If we are busy polling, do nothing here, we have 5966 * the guarantee we will be called later. 5967 */ 5968 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5969 NAPIF_STATE_IN_BUSY_POLL))) 5970 return false; 5971 5972 if (n->gro_bitmask) { 5973 unsigned long timeout = 0; 5974 5975 if (work_done) 5976 timeout = n->dev->gro_flush_timeout; 5977 5978 /* When the NAPI instance uses a timeout and keeps postponing 5979 * it, we need to bound somehow the time packets are kept in 5980 * the GRO layer 5981 */ 5982 napi_gro_flush(n, !!timeout); 5983 if (timeout) 5984 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5985 HRTIMER_MODE_REL_PINNED); 5986 } 5987 if (unlikely(!list_empty(&n->poll_list))) { 5988 /* If n->poll_list is not empty, we need to mask irqs */ 5989 local_irq_save(flags); 5990 list_del_init(&n->poll_list); 5991 local_irq_restore(flags); 5992 } 5993 5994 do { 5995 val = READ_ONCE(n->state); 5996 5997 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5998 5999 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6000 6001 /* If STATE_MISSED was set, leave STATE_SCHED set, 6002 * because we will call napi->poll() one more time. 6003 * This C code was suggested by Alexander Duyck to help gcc. 6004 */ 6005 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6006 NAPIF_STATE_SCHED; 6007 } while (cmpxchg(&n->state, val, new) != val); 6008 6009 if (unlikely(val & NAPIF_STATE_MISSED)) { 6010 __napi_schedule(n); 6011 return false; 6012 } 6013 6014 return true; 6015 } 6016 EXPORT_SYMBOL(napi_complete_done); 6017 6018 /* must be called under rcu_read_lock(), as we dont take a reference */ 6019 static struct napi_struct *napi_by_id(unsigned int napi_id) 6020 { 6021 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6022 struct napi_struct *napi; 6023 6024 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6025 if (napi->napi_id == napi_id) 6026 return napi; 6027 6028 return NULL; 6029 } 6030 6031 #if defined(CONFIG_NET_RX_BUSY_POLL) 6032 6033 #define BUSY_POLL_BUDGET 8 6034 6035 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6036 { 6037 int rc; 6038 6039 /* Busy polling means there is a high chance device driver hard irq 6040 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6041 * set in napi_schedule_prep(). 6042 * Since we are about to call napi->poll() once more, we can safely 6043 * clear NAPI_STATE_MISSED. 6044 * 6045 * Note: x86 could use a single "lock and ..." instruction 6046 * to perform these two clear_bit() 6047 */ 6048 clear_bit(NAPI_STATE_MISSED, &napi->state); 6049 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6050 6051 local_bh_disable(); 6052 6053 /* All we really want here is to re-enable device interrupts. 6054 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6055 */ 6056 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6057 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6058 netpoll_poll_unlock(have_poll_lock); 6059 if (rc == BUSY_POLL_BUDGET) 6060 __napi_schedule(napi); 6061 local_bh_enable(); 6062 } 6063 6064 void napi_busy_loop(unsigned int napi_id, 6065 bool (*loop_end)(void *, unsigned long), 6066 void *loop_end_arg) 6067 { 6068 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6069 int (*napi_poll)(struct napi_struct *napi, int budget); 6070 void *have_poll_lock = NULL; 6071 struct napi_struct *napi; 6072 6073 restart: 6074 napi_poll = NULL; 6075 6076 rcu_read_lock(); 6077 6078 napi = napi_by_id(napi_id); 6079 if (!napi) 6080 goto out; 6081 6082 preempt_disable(); 6083 for (;;) { 6084 int work = 0; 6085 6086 local_bh_disable(); 6087 if (!napi_poll) { 6088 unsigned long val = READ_ONCE(napi->state); 6089 6090 /* If multiple threads are competing for this napi, 6091 * we avoid dirtying napi->state as much as we can. 6092 */ 6093 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6094 NAPIF_STATE_IN_BUSY_POLL)) 6095 goto count; 6096 if (cmpxchg(&napi->state, val, 6097 val | NAPIF_STATE_IN_BUSY_POLL | 6098 NAPIF_STATE_SCHED) != val) 6099 goto count; 6100 have_poll_lock = netpoll_poll_lock(napi); 6101 napi_poll = napi->poll; 6102 } 6103 work = napi_poll(napi, BUSY_POLL_BUDGET); 6104 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6105 count: 6106 if (work > 0) 6107 __NET_ADD_STATS(dev_net(napi->dev), 6108 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6109 local_bh_enable(); 6110 6111 if (!loop_end || loop_end(loop_end_arg, start_time)) 6112 break; 6113 6114 if (unlikely(need_resched())) { 6115 if (napi_poll) 6116 busy_poll_stop(napi, have_poll_lock); 6117 preempt_enable(); 6118 rcu_read_unlock(); 6119 cond_resched(); 6120 if (loop_end(loop_end_arg, start_time)) 6121 return; 6122 goto restart; 6123 } 6124 cpu_relax(); 6125 } 6126 if (napi_poll) 6127 busy_poll_stop(napi, have_poll_lock); 6128 preempt_enable(); 6129 out: 6130 rcu_read_unlock(); 6131 } 6132 EXPORT_SYMBOL(napi_busy_loop); 6133 6134 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6135 6136 static void napi_hash_add(struct napi_struct *napi) 6137 { 6138 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6139 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6140 return; 6141 6142 spin_lock(&napi_hash_lock); 6143 6144 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6145 do { 6146 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6147 napi_gen_id = MIN_NAPI_ID; 6148 } while (napi_by_id(napi_gen_id)); 6149 napi->napi_id = napi_gen_id; 6150 6151 hlist_add_head_rcu(&napi->napi_hash_node, 6152 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6153 6154 spin_unlock(&napi_hash_lock); 6155 } 6156 6157 /* Warning : caller is responsible to make sure rcu grace period 6158 * is respected before freeing memory containing @napi 6159 */ 6160 bool napi_hash_del(struct napi_struct *napi) 6161 { 6162 bool rcu_sync_needed = false; 6163 6164 spin_lock(&napi_hash_lock); 6165 6166 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6167 rcu_sync_needed = true; 6168 hlist_del_rcu(&napi->napi_hash_node); 6169 } 6170 spin_unlock(&napi_hash_lock); 6171 return rcu_sync_needed; 6172 } 6173 EXPORT_SYMBOL_GPL(napi_hash_del); 6174 6175 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6176 { 6177 struct napi_struct *napi; 6178 6179 napi = container_of(timer, struct napi_struct, timer); 6180 6181 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6182 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6183 */ 6184 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6185 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6186 __napi_schedule_irqoff(napi); 6187 6188 return HRTIMER_NORESTART; 6189 } 6190 6191 static void init_gro_hash(struct napi_struct *napi) 6192 { 6193 int i; 6194 6195 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6196 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6197 napi->gro_hash[i].count = 0; 6198 } 6199 napi->gro_bitmask = 0; 6200 } 6201 6202 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6203 int (*poll)(struct napi_struct *, int), int weight) 6204 { 6205 INIT_LIST_HEAD(&napi->poll_list); 6206 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6207 napi->timer.function = napi_watchdog; 6208 init_gro_hash(napi); 6209 napi->skb = NULL; 6210 napi->poll = poll; 6211 if (weight > NAPI_POLL_WEIGHT) 6212 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6213 weight); 6214 napi->weight = weight; 6215 list_add(&napi->dev_list, &dev->napi_list); 6216 napi->dev = dev; 6217 #ifdef CONFIG_NETPOLL 6218 napi->poll_owner = -1; 6219 #endif 6220 set_bit(NAPI_STATE_SCHED, &napi->state); 6221 napi_hash_add(napi); 6222 } 6223 EXPORT_SYMBOL(netif_napi_add); 6224 6225 void napi_disable(struct napi_struct *n) 6226 { 6227 might_sleep(); 6228 set_bit(NAPI_STATE_DISABLE, &n->state); 6229 6230 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6231 msleep(1); 6232 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6233 msleep(1); 6234 6235 hrtimer_cancel(&n->timer); 6236 6237 clear_bit(NAPI_STATE_DISABLE, &n->state); 6238 } 6239 EXPORT_SYMBOL(napi_disable); 6240 6241 static void flush_gro_hash(struct napi_struct *napi) 6242 { 6243 int i; 6244 6245 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6246 struct sk_buff *skb, *n; 6247 6248 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6249 kfree_skb(skb); 6250 napi->gro_hash[i].count = 0; 6251 } 6252 } 6253 6254 /* Must be called in process context */ 6255 void netif_napi_del(struct napi_struct *napi) 6256 { 6257 might_sleep(); 6258 if (napi_hash_del(napi)) 6259 synchronize_net(); 6260 list_del_init(&napi->dev_list); 6261 napi_free_frags(napi); 6262 6263 flush_gro_hash(napi); 6264 napi->gro_bitmask = 0; 6265 } 6266 EXPORT_SYMBOL(netif_napi_del); 6267 6268 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6269 { 6270 void *have; 6271 int work, weight; 6272 6273 list_del_init(&n->poll_list); 6274 6275 have = netpoll_poll_lock(n); 6276 6277 weight = n->weight; 6278 6279 /* This NAPI_STATE_SCHED test is for avoiding a race 6280 * with netpoll's poll_napi(). Only the entity which 6281 * obtains the lock and sees NAPI_STATE_SCHED set will 6282 * actually make the ->poll() call. Therefore we avoid 6283 * accidentally calling ->poll() when NAPI is not scheduled. 6284 */ 6285 work = 0; 6286 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6287 work = n->poll(n, weight); 6288 trace_napi_poll(n, work, weight); 6289 } 6290 6291 WARN_ON_ONCE(work > weight); 6292 6293 if (likely(work < weight)) 6294 goto out_unlock; 6295 6296 /* Drivers must not modify the NAPI state if they 6297 * consume the entire weight. In such cases this code 6298 * still "owns" the NAPI instance and therefore can 6299 * move the instance around on the list at-will. 6300 */ 6301 if (unlikely(napi_disable_pending(n))) { 6302 napi_complete(n); 6303 goto out_unlock; 6304 } 6305 6306 if (n->gro_bitmask) { 6307 /* flush too old packets 6308 * If HZ < 1000, flush all packets. 6309 */ 6310 napi_gro_flush(n, HZ >= 1000); 6311 } 6312 6313 /* Some drivers may have called napi_schedule 6314 * prior to exhausting their budget. 6315 */ 6316 if (unlikely(!list_empty(&n->poll_list))) { 6317 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6318 n->dev ? n->dev->name : "backlog"); 6319 goto out_unlock; 6320 } 6321 6322 list_add_tail(&n->poll_list, repoll); 6323 6324 out_unlock: 6325 netpoll_poll_unlock(have); 6326 6327 return work; 6328 } 6329 6330 static __latent_entropy void net_rx_action(struct softirq_action *h) 6331 { 6332 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6333 unsigned long time_limit = jiffies + 6334 usecs_to_jiffies(netdev_budget_usecs); 6335 int budget = netdev_budget; 6336 LIST_HEAD(list); 6337 LIST_HEAD(repoll); 6338 6339 local_irq_disable(); 6340 list_splice_init(&sd->poll_list, &list); 6341 local_irq_enable(); 6342 6343 for (;;) { 6344 struct napi_struct *n; 6345 6346 if (list_empty(&list)) { 6347 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6348 goto out; 6349 break; 6350 } 6351 6352 n = list_first_entry(&list, struct napi_struct, poll_list); 6353 budget -= napi_poll(n, &repoll); 6354 6355 /* If softirq window is exhausted then punt. 6356 * Allow this to run for 2 jiffies since which will allow 6357 * an average latency of 1.5/HZ. 6358 */ 6359 if (unlikely(budget <= 0 || 6360 time_after_eq(jiffies, time_limit))) { 6361 sd->time_squeeze++; 6362 break; 6363 } 6364 } 6365 6366 local_irq_disable(); 6367 6368 list_splice_tail_init(&sd->poll_list, &list); 6369 list_splice_tail(&repoll, &list); 6370 list_splice(&list, &sd->poll_list); 6371 if (!list_empty(&sd->poll_list)) 6372 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6373 6374 net_rps_action_and_irq_enable(sd); 6375 out: 6376 __kfree_skb_flush(); 6377 } 6378 6379 struct netdev_adjacent { 6380 struct net_device *dev; 6381 6382 /* upper master flag, there can only be one master device per list */ 6383 bool master; 6384 6385 /* counter for the number of times this device was added to us */ 6386 u16 ref_nr; 6387 6388 /* private field for the users */ 6389 void *private; 6390 6391 struct list_head list; 6392 struct rcu_head rcu; 6393 }; 6394 6395 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6396 struct list_head *adj_list) 6397 { 6398 struct netdev_adjacent *adj; 6399 6400 list_for_each_entry(adj, adj_list, list) { 6401 if (adj->dev == adj_dev) 6402 return adj; 6403 } 6404 return NULL; 6405 } 6406 6407 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6408 { 6409 struct net_device *dev = data; 6410 6411 return upper_dev == dev; 6412 } 6413 6414 /** 6415 * netdev_has_upper_dev - Check if device is linked to an upper device 6416 * @dev: device 6417 * @upper_dev: upper device to check 6418 * 6419 * Find out if a device is linked to specified upper device and return true 6420 * in case it is. Note that this checks only immediate upper device, 6421 * not through a complete stack of devices. The caller must hold the RTNL lock. 6422 */ 6423 bool netdev_has_upper_dev(struct net_device *dev, 6424 struct net_device *upper_dev) 6425 { 6426 ASSERT_RTNL(); 6427 6428 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6429 upper_dev); 6430 } 6431 EXPORT_SYMBOL(netdev_has_upper_dev); 6432 6433 /** 6434 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6435 * @dev: device 6436 * @upper_dev: upper device to check 6437 * 6438 * Find out if a device is linked to specified upper device and return true 6439 * in case it is. Note that this checks the entire upper device chain. 6440 * The caller must hold rcu lock. 6441 */ 6442 6443 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6444 struct net_device *upper_dev) 6445 { 6446 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6447 upper_dev); 6448 } 6449 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6450 6451 /** 6452 * netdev_has_any_upper_dev - Check if device is linked to some device 6453 * @dev: device 6454 * 6455 * Find out if a device is linked to an upper device and return true in case 6456 * it is. The caller must hold the RTNL lock. 6457 */ 6458 bool netdev_has_any_upper_dev(struct net_device *dev) 6459 { 6460 ASSERT_RTNL(); 6461 6462 return !list_empty(&dev->adj_list.upper); 6463 } 6464 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6465 6466 /** 6467 * netdev_master_upper_dev_get - Get master upper device 6468 * @dev: device 6469 * 6470 * Find a master upper device and return pointer to it or NULL in case 6471 * it's not there. The caller must hold the RTNL lock. 6472 */ 6473 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6474 { 6475 struct netdev_adjacent *upper; 6476 6477 ASSERT_RTNL(); 6478 6479 if (list_empty(&dev->adj_list.upper)) 6480 return NULL; 6481 6482 upper = list_first_entry(&dev->adj_list.upper, 6483 struct netdev_adjacent, list); 6484 if (likely(upper->master)) 6485 return upper->dev; 6486 return NULL; 6487 } 6488 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6489 6490 /** 6491 * netdev_has_any_lower_dev - Check if device is linked to some device 6492 * @dev: device 6493 * 6494 * Find out if a device is linked to a lower device and return true in case 6495 * it is. The caller must hold the RTNL lock. 6496 */ 6497 static bool netdev_has_any_lower_dev(struct net_device *dev) 6498 { 6499 ASSERT_RTNL(); 6500 6501 return !list_empty(&dev->adj_list.lower); 6502 } 6503 6504 void *netdev_adjacent_get_private(struct list_head *adj_list) 6505 { 6506 struct netdev_adjacent *adj; 6507 6508 adj = list_entry(adj_list, struct netdev_adjacent, list); 6509 6510 return adj->private; 6511 } 6512 EXPORT_SYMBOL(netdev_adjacent_get_private); 6513 6514 /** 6515 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6516 * @dev: device 6517 * @iter: list_head ** of the current position 6518 * 6519 * Gets the next device from the dev's upper list, starting from iter 6520 * position. The caller must hold RCU read lock. 6521 */ 6522 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6523 struct list_head **iter) 6524 { 6525 struct netdev_adjacent *upper; 6526 6527 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6528 6529 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6530 6531 if (&upper->list == &dev->adj_list.upper) 6532 return NULL; 6533 6534 *iter = &upper->list; 6535 6536 return upper->dev; 6537 } 6538 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6539 6540 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6541 struct list_head **iter) 6542 { 6543 struct netdev_adjacent *upper; 6544 6545 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6546 6547 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6548 6549 if (&upper->list == &dev->adj_list.upper) 6550 return NULL; 6551 6552 *iter = &upper->list; 6553 6554 return upper->dev; 6555 } 6556 6557 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6558 int (*fn)(struct net_device *dev, 6559 void *data), 6560 void *data) 6561 { 6562 struct net_device *udev; 6563 struct list_head *iter; 6564 int ret; 6565 6566 for (iter = &dev->adj_list.upper, 6567 udev = netdev_next_upper_dev_rcu(dev, &iter); 6568 udev; 6569 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6570 /* first is the upper device itself */ 6571 ret = fn(udev, data); 6572 if (ret) 6573 return ret; 6574 6575 /* then look at all of its upper devices */ 6576 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6577 if (ret) 6578 return ret; 6579 } 6580 6581 return 0; 6582 } 6583 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6584 6585 /** 6586 * netdev_lower_get_next_private - Get the next ->private from the 6587 * lower neighbour list 6588 * @dev: device 6589 * @iter: list_head ** of the current position 6590 * 6591 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6592 * list, starting from iter position. The caller must hold either hold the 6593 * RTNL lock or its own locking that guarantees that the neighbour lower 6594 * list will remain unchanged. 6595 */ 6596 void *netdev_lower_get_next_private(struct net_device *dev, 6597 struct list_head **iter) 6598 { 6599 struct netdev_adjacent *lower; 6600 6601 lower = list_entry(*iter, struct netdev_adjacent, list); 6602 6603 if (&lower->list == &dev->adj_list.lower) 6604 return NULL; 6605 6606 *iter = lower->list.next; 6607 6608 return lower->private; 6609 } 6610 EXPORT_SYMBOL(netdev_lower_get_next_private); 6611 6612 /** 6613 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6614 * lower neighbour list, RCU 6615 * variant 6616 * @dev: device 6617 * @iter: list_head ** of the current position 6618 * 6619 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6620 * list, starting from iter position. The caller must hold RCU read lock. 6621 */ 6622 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6623 struct list_head **iter) 6624 { 6625 struct netdev_adjacent *lower; 6626 6627 WARN_ON_ONCE(!rcu_read_lock_held()); 6628 6629 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6630 6631 if (&lower->list == &dev->adj_list.lower) 6632 return NULL; 6633 6634 *iter = &lower->list; 6635 6636 return lower->private; 6637 } 6638 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6639 6640 /** 6641 * netdev_lower_get_next - Get the next device from the lower neighbour 6642 * list 6643 * @dev: device 6644 * @iter: list_head ** of the current position 6645 * 6646 * Gets the next netdev_adjacent from the dev's lower neighbour 6647 * list, starting from iter position. The caller must hold RTNL lock or 6648 * its own locking that guarantees that the neighbour lower 6649 * list will remain unchanged. 6650 */ 6651 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6652 { 6653 struct netdev_adjacent *lower; 6654 6655 lower = list_entry(*iter, struct netdev_adjacent, list); 6656 6657 if (&lower->list == &dev->adj_list.lower) 6658 return NULL; 6659 6660 *iter = lower->list.next; 6661 6662 return lower->dev; 6663 } 6664 EXPORT_SYMBOL(netdev_lower_get_next); 6665 6666 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6667 struct list_head **iter) 6668 { 6669 struct netdev_adjacent *lower; 6670 6671 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6672 6673 if (&lower->list == &dev->adj_list.lower) 6674 return NULL; 6675 6676 *iter = &lower->list; 6677 6678 return lower->dev; 6679 } 6680 6681 int netdev_walk_all_lower_dev(struct net_device *dev, 6682 int (*fn)(struct net_device *dev, 6683 void *data), 6684 void *data) 6685 { 6686 struct net_device *ldev; 6687 struct list_head *iter; 6688 int ret; 6689 6690 for (iter = &dev->adj_list.lower, 6691 ldev = netdev_next_lower_dev(dev, &iter); 6692 ldev; 6693 ldev = netdev_next_lower_dev(dev, &iter)) { 6694 /* first is the lower device itself */ 6695 ret = fn(ldev, data); 6696 if (ret) 6697 return ret; 6698 6699 /* then look at all of its lower devices */ 6700 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6701 if (ret) 6702 return ret; 6703 } 6704 6705 return 0; 6706 } 6707 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6708 6709 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6710 struct list_head **iter) 6711 { 6712 struct netdev_adjacent *lower; 6713 6714 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6715 if (&lower->list == &dev->adj_list.lower) 6716 return NULL; 6717 6718 *iter = &lower->list; 6719 6720 return lower->dev; 6721 } 6722 6723 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6724 int (*fn)(struct net_device *dev, 6725 void *data), 6726 void *data) 6727 { 6728 struct net_device *ldev; 6729 struct list_head *iter; 6730 int ret; 6731 6732 for (iter = &dev->adj_list.lower, 6733 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6734 ldev; 6735 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6736 /* first is the lower device itself */ 6737 ret = fn(ldev, data); 6738 if (ret) 6739 return ret; 6740 6741 /* then look at all of its lower devices */ 6742 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6743 if (ret) 6744 return ret; 6745 } 6746 6747 return 0; 6748 } 6749 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6750 6751 /** 6752 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6753 * lower neighbour list, RCU 6754 * variant 6755 * @dev: device 6756 * 6757 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6758 * list. The caller must hold RCU read lock. 6759 */ 6760 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6761 { 6762 struct netdev_adjacent *lower; 6763 6764 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6765 struct netdev_adjacent, list); 6766 if (lower) 6767 return lower->private; 6768 return NULL; 6769 } 6770 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6771 6772 /** 6773 * netdev_master_upper_dev_get_rcu - Get master upper device 6774 * @dev: device 6775 * 6776 * Find a master upper device and return pointer to it or NULL in case 6777 * it's not there. The caller must hold the RCU read lock. 6778 */ 6779 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6780 { 6781 struct netdev_adjacent *upper; 6782 6783 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6784 struct netdev_adjacent, list); 6785 if (upper && likely(upper->master)) 6786 return upper->dev; 6787 return NULL; 6788 } 6789 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6790 6791 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6792 struct net_device *adj_dev, 6793 struct list_head *dev_list) 6794 { 6795 char linkname[IFNAMSIZ+7]; 6796 6797 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6798 "upper_%s" : "lower_%s", adj_dev->name); 6799 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6800 linkname); 6801 } 6802 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6803 char *name, 6804 struct list_head *dev_list) 6805 { 6806 char linkname[IFNAMSIZ+7]; 6807 6808 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6809 "upper_%s" : "lower_%s", name); 6810 sysfs_remove_link(&(dev->dev.kobj), linkname); 6811 } 6812 6813 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6814 struct net_device *adj_dev, 6815 struct list_head *dev_list) 6816 { 6817 return (dev_list == &dev->adj_list.upper || 6818 dev_list == &dev->adj_list.lower) && 6819 net_eq(dev_net(dev), dev_net(adj_dev)); 6820 } 6821 6822 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6823 struct net_device *adj_dev, 6824 struct list_head *dev_list, 6825 void *private, bool master) 6826 { 6827 struct netdev_adjacent *adj; 6828 int ret; 6829 6830 adj = __netdev_find_adj(adj_dev, dev_list); 6831 6832 if (adj) { 6833 adj->ref_nr += 1; 6834 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6835 dev->name, adj_dev->name, adj->ref_nr); 6836 6837 return 0; 6838 } 6839 6840 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6841 if (!adj) 6842 return -ENOMEM; 6843 6844 adj->dev = adj_dev; 6845 adj->master = master; 6846 adj->ref_nr = 1; 6847 adj->private = private; 6848 dev_hold(adj_dev); 6849 6850 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6851 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6852 6853 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6854 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6855 if (ret) 6856 goto free_adj; 6857 } 6858 6859 /* Ensure that master link is always the first item in list. */ 6860 if (master) { 6861 ret = sysfs_create_link(&(dev->dev.kobj), 6862 &(adj_dev->dev.kobj), "master"); 6863 if (ret) 6864 goto remove_symlinks; 6865 6866 list_add_rcu(&adj->list, dev_list); 6867 } else { 6868 list_add_tail_rcu(&adj->list, dev_list); 6869 } 6870 6871 return 0; 6872 6873 remove_symlinks: 6874 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6875 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6876 free_adj: 6877 kfree(adj); 6878 dev_put(adj_dev); 6879 6880 return ret; 6881 } 6882 6883 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6884 struct net_device *adj_dev, 6885 u16 ref_nr, 6886 struct list_head *dev_list) 6887 { 6888 struct netdev_adjacent *adj; 6889 6890 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6891 dev->name, adj_dev->name, ref_nr); 6892 6893 adj = __netdev_find_adj(adj_dev, dev_list); 6894 6895 if (!adj) { 6896 pr_err("Adjacency does not exist for device %s from %s\n", 6897 dev->name, adj_dev->name); 6898 WARN_ON(1); 6899 return; 6900 } 6901 6902 if (adj->ref_nr > ref_nr) { 6903 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6904 dev->name, adj_dev->name, ref_nr, 6905 adj->ref_nr - ref_nr); 6906 adj->ref_nr -= ref_nr; 6907 return; 6908 } 6909 6910 if (adj->master) 6911 sysfs_remove_link(&(dev->dev.kobj), "master"); 6912 6913 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6914 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6915 6916 list_del_rcu(&adj->list); 6917 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6918 adj_dev->name, dev->name, adj_dev->name); 6919 dev_put(adj_dev); 6920 kfree_rcu(adj, rcu); 6921 } 6922 6923 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6924 struct net_device *upper_dev, 6925 struct list_head *up_list, 6926 struct list_head *down_list, 6927 void *private, bool master) 6928 { 6929 int ret; 6930 6931 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6932 private, master); 6933 if (ret) 6934 return ret; 6935 6936 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6937 private, false); 6938 if (ret) { 6939 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6940 return ret; 6941 } 6942 6943 return 0; 6944 } 6945 6946 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6947 struct net_device *upper_dev, 6948 u16 ref_nr, 6949 struct list_head *up_list, 6950 struct list_head *down_list) 6951 { 6952 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6953 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6954 } 6955 6956 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6957 struct net_device *upper_dev, 6958 void *private, bool master) 6959 { 6960 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6961 &dev->adj_list.upper, 6962 &upper_dev->adj_list.lower, 6963 private, master); 6964 } 6965 6966 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6967 struct net_device *upper_dev) 6968 { 6969 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6970 &dev->adj_list.upper, 6971 &upper_dev->adj_list.lower); 6972 } 6973 6974 static int __netdev_upper_dev_link(struct net_device *dev, 6975 struct net_device *upper_dev, bool master, 6976 void *upper_priv, void *upper_info, 6977 struct netlink_ext_ack *extack) 6978 { 6979 struct netdev_notifier_changeupper_info changeupper_info = { 6980 .info = { 6981 .dev = dev, 6982 .extack = extack, 6983 }, 6984 .upper_dev = upper_dev, 6985 .master = master, 6986 .linking = true, 6987 .upper_info = upper_info, 6988 }; 6989 struct net_device *master_dev; 6990 int ret = 0; 6991 6992 ASSERT_RTNL(); 6993 6994 if (dev == upper_dev) 6995 return -EBUSY; 6996 6997 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6998 if (netdev_has_upper_dev(upper_dev, dev)) 6999 return -EBUSY; 7000 7001 if (!master) { 7002 if (netdev_has_upper_dev(dev, upper_dev)) 7003 return -EEXIST; 7004 } else { 7005 master_dev = netdev_master_upper_dev_get(dev); 7006 if (master_dev) 7007 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7008 } 7009 7010 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7011 &changeupper_info.info); 7012 ret = notifier_to_errno(ret); 7013 if (ret) 7014 return ret; 7015 7016 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7017 master); 7018 if (ret) 7019 return ret; 7020 7021 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7022 &changeupper_info.info); 7023 ret = notifier_to_errno(ret); 7024 if (ret) 7025 goto rollback; 7026 7027 return 0; 7028 7029 rollback: 7030 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7031 7032 return ret; 7033 } 7034 7035 /** 7036 * netdev_upper_dev_link - Add a link to the upper device 7037 * @dev: device 7038 * @upper_dev: new upper device 7039 * @extack: netlink extended ack 7040 * 7041 * Adds a link to device which is upper to this one. The caller must hold 7042 * the RTNL lock. On a failure a negative errno code is returned. 7043 * On success the reference counts are adjusted and the function 7044 * returns zero. 7045 */ 7046 int netdev_upper_dev_link(struct net_device *dev, 7047 struct net_device *upper_dev, 7048 struct netlink_ext_ack *extack) 7049 { 7050 return __netdev_upper_dev_link(dev, upper_dev, false, 7051 NULL, NULL, extack); 7052 } 7053 EXPORT_SYMBOL(netdev_upper_dev_link); 7054 7055 /** 7056 * netdev_master_upper_dev_link - Add a master link to the upper device 7057 * @dev: device 7058 * @upper_dev: new upper device 7059 * @upper_priv: upper device private 7060 * @upper_info: upper info to be passed down via notifier 7061 * @extack: netlink extended ack 7062 * 7063 * Adds a link to device which is upper to this one. In this case, only 7064 * one master upper device can be linked, although other non-master devices 7065 * might be linked as well. The caller must hold the RTNL lock. 7066 * On a failure a negative errno code is returned. On success the reference 7067 * counts are adjusted and the function returns zero. 7068 */ 7069 int netdev_master_upper_dev_link(struct net_device *dev, 7070 struct net_device *upper_dev, 7071 void *upper_priv, void *upper_info, 7072 struct netlink_ext_ack *extack) 7073 { 7074 return __netdev_upper_dev_link(dev, upper_dev, true, 7075 upper_priv, upper_info, extack); 7076 } 7077 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7078 7079 /** 7080 * netdev_upper_dev_unlink - Removes a link to upper device 7081 * @dev: device 7082 * @upper_dev: new upper device 7083 * 7084 * Removes a link to device which is upper to this one. The caller must hold 7085 * the RTNL lock. 7086 */ 7087 void netdev_upper_dev_unlink(struct net_device *dev, 7088 struct net_device *upper_dev) 7089 { 7090 struct netdev_notifier_changeupper_info changeupper_info = { 7091 .info = { 7092 .dev = dev, 7093 }, 7094 .upper_dev = upper_dev, 7095 .linking = false, 7096 }; 7097 7098 ASSERT_RTNL(); 7099 7100 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7101 7102 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7103 &changeupper_info.info); 7104 7105 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7106 7107 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7108 &changeupper_info.info); 7109 } 7110 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7111 7112 /** 7113 * netdev_bonding_info_change - Dispatch event about slave change 7114 * @dev: device 7115 * @bonding_info: info to dispatch 7116 * 7117 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7118 * The caller must hold the RTNL lock. 7119 */ 7120 void netdev_bonding_info_change(struct net_device *dev, 7121 struct netdev_bonding_info *bonding_info) 7122 { 7123 struct netdev_notifier_bonding_info info = { 7124 .info.dev = dev, 7125 }; 7126 7127 memcpy(&info.bonding_info, bonding_info, 7128 sizeof(struct netdev_bonding_info)); 7129 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7130 &info.info); 7131 } 7132 EXPORT_SYMBOL(netdev_bonding_info_change); 7133 7134 static void netdev_adjacent_add_links(struct net_device *dev) 7135 { 7136 struct netdev_adjacent *iter; 7137 7138 struct net *net = dev_net(dev); 7139 7140 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7141 if (!net_eq(net, dev_net(iter->dev))) 7142 continue; 7143 netdev_adjacent_sysfs_add(iter->dev, dev, 7144 &iter->dev->adj_list.lower); 7145 netdev_adjacent_sysfs_add(dev, iter->dev, 7146 &dev->adj_list.upper); 7147 } 7148 7149 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7150 if (!net_eq(net, dev_net(iter->dev))) 7151 continue; 7152 netdev_adjacent_sysfs_add(iter->dev, dev, 7153 &iter->dev->adj_list.upper); 7154 netdev_adjacent_sysfs_add(dev, iter->dev, 7155 &dev->adj_list.lower); 7156 } 7157 } 7158 7159 static void netdev_adjacent_del_links(struct net_device *dev) 7160 { 7161 struct netdev_adjacent *iter; 7162 7163 struct net *net = dev_net(dev); 7164 7165 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7166 if (!net_eq(net, dev_net(iter->dev))) 7167 continue; 7168 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7169 &iter->dev->adj_list.lower); 7170 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7171 &dev->adj_list.upper); 7172 } 7173 7174 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7175 if (!net_eq(net, dev_net(iter->dev))) 7176 continue; 7177 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7178 &iter->dev->adj_list.upper); 7179 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7180 &dev->adj_list.lower); 7181 } 7182 } 7183 7184 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7185 { 7186 struct netdev_adjacent *iter; 7187 7188 struct net *net = dev_net(dev); 7189 7190 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7191 if (!net_eq(net, dev_net(iter->dev))) 7192 continue; 7193 netdev_adjacent_sysfs_del(iter->dev, oldname, 7194 &iter->dev->adj_list.lower); 7195 netdev_adjacent_sysfs_add(iter->dev, dev, 7196 &iter->dev->adj_list.lower); 7197 } 7198 7199 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7200 if (!net_eq(net, dev_net(iter->dev))) 7201 continue; 7202 netdev_adjacent_sysfs_del(iter->dev, oldname, 7203 &iter->dev->adj_list.upper); 7204 netdev_adjacent_sysfs_add(iter->dev, dev, 7205 &iter->dev->adj_list.upper); 7206 } 7207 } 7208 7209 void *netdev_lower_dev_get_private(struct net_device *dev, 7210 struct net_device *lower_dev) 7211 { 7212 struct netdev_adjacent *lower; 7213 7214 if (!lower_dev) 7215 return NULL; 7216 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7217 if (!lower) 7218 return NULL; 7219 7220 return lower->private; 7221 } 7222 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7223 7224 7225 int dev_get_nest_level(struct net_device *dev) 7226 { 7227 struct net_device *lower = NULL; 7228 struct list_head *iter; 7229 int max_nest = -1; 7230 int nest; 7231 7232 ASSERT_RTNL(); 7233 7234 netdev_for_each_lower_dev(dev, lower, iter) { 7235 nest = dev_get_nest_level(lower); 7236 if (max_nest < nest) 7237 max_nest = nest; 7238 } 7239 7240 return max_nest + 1; 7241 } 7242 EXPORT_SYMBOL(dev_get_nest_level); 7243 7244 /** 7245 * netdev_lower_change - Dispatch event about lower device state change 7246 * @lower_dev: device 7247 * @lower_state_info: state to dispatch 7248 * 7249 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7250 * The caller must hold the RTNL lock. 7251 */ 7252 void netdev_lower_state_changed(struct net_device *lower_dev, 7253 void *lower_state_info) 7254 { 7255 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7256 .info.dev = lower_dev, 7257 }; 7258 7259 ASSERT_RTNL(); 7260 changelowerstate_info.lower_state_info = lower_state_info; 7261 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7262 &changelowerstate_info.info); 7263 } 7264 EXPORT_SYMBOL(netdev_lower_state_changed); 7265 7266 static void dev_change_rx_flags(struct net_device *dev, int flags) 7267 { 7268 const struct net_device_ops *ops = dev->netdev_ops; 7269 7270 if (ops->ndo_change_rx_flags) 7271 ops->ndo_change_rx_flags(dev, flags); 7272 } 7273 7274 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7275 { 7276 unsigned int old_flags = dev->flags; 7277 kuid_t uid; 7278 kgid_t gid; 7279 7280 ASSERT_RTNL(); 7281 7282 dev->flags |= IFF_PROMISC; 7283 dev->promiscuity += inc; 7284 if (dev->promiscuity == 0) { 7285 /* 7286 * Avoid overflow. 7287 * If inc causes overflow, untouch promisc and return error. 7288 */ 7289 if (inc < 0) 7290 dev->flags &= ~IFF_PROMISC; 7291 else { 7292 dev->promiscuity -= inc; 7293 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7294 dev->name); 7295 return -EOVERFLOW; 7296 } 7297 } 7298 if (dev->flags != old_flags) { 7299 pr_info("device %s %s promiscuous mode\n", 7300 dev->name, 7301 dev->flags & IFF_PROMISC ? "entered" : "left"); 7302 if (audit_enabled) { 7303 current_uid_gid(&uid, &gid); 7304 audit_log(audit_context(), GFP_ATOMIC, 7305 AUDIT_ANOM_PROMISCUOUS, 7306 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7307 dev->name, (dev->flags & IFF_PROMISC), 7308 (old_flags & IFF_PROMISC), 7309 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7310 from_kuid(&init_user_ns, uid), 7311 from_kgid(&init_user_ns, gid), 7312 audit_get_sessionid(current)); 7313 } 7314 7315 dev_change_rx_flags(dev, IFF_PROMISC); 7316 } 7317 if (notify) 7318 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7319 return 0; 7320 } 7321 7322 /** 7323 * dev_set_promiscuity - update promiscuity count on a device 7324 * @dev: device 7325 * @inc: modifier 7326 * 7327 * Add or remove promiscuity from a device. While the count in the device 7328 * remains above zero the interface remains promiscuous. Once it hits zero 7329 * the device reverts back to normal filtering operation. A negative inc 7330 * value is used to drop promiscuity on the device. 7331 * Return 0 if successful or a negative errno code on error. 7332 */ 7333 int dev_set_promiscuity(struct net_device *dev, int inc) 7334 { 7335 unsigned int old_flags = dev->flags; 7336 int err; 7337 7338 err = __dev_set_promiscuity(dev, inc, true); 7339 if (err < 0) 7340 return err; 7341 if (dev->flags != old_flags) 7342 dev_set_rx_mode(dev); 7343 return err; 7344 } 7345 EXPORT_SYMBOL(dev_set_promiscuity); 7346 7347 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7348 { 7349 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7350 7351 ASSERT_RTNL(); 7352 7353 dev->flags |= IFF_ALLMULTI; 7354 dev->allmulti += inc; 7355 if (dev->allmulti == 0) { 7356 /* 7357 * Avoid overflow. 7358 * If inc causes overflow, untouch allmulti and return error. 7359 */ 7360 if (inc < 0) 7361 dev->flags &= ~IFF_ALLMULTI; 7362 else { 7363 dev->allmulti -= inc; 7364 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7365 dev->name); 7366 return -EOVERFLOW; 7367 } 7368 } 7369 if (dev->flags ^ old_flags) { 7370 dev_change_rx_flags(dev, IFF_ALLMULTI); 7371 dev_set_rx_mode(dev); 7372 if (notify) 7373 __dev_notify_flags(dev, old_flags, 7374 dev->gflags ^ old_gflags); 7375 } 7376 return 0; 7377 } 7378 7379 /** 7380 * dev_set_allmulti - update allmulti count on a device 7381 * @dev: device 7382 * @inc: modifier 7383 * 7384 * Add or remove reception of all multicast frames to a device. While the 7385 * count in the device remains above zero the interface remains listening 7386 * to all interfaces. Once it hits zero the device reverts back to normal 7387 * filtering operation. A negative @inc value is used to drop the counter 7388 * when releasing a resource needing all multicasts. 7389 * Return 0 if successful or a negative errno code on error. 7390 */ 7391 7392 int dev_set_allmulti(struct net_device *dev, int inc) 7393 { 7394 return __dev_set_allmulti(dev, inc, true); 7395 } 7396 EXPORT_SYMBOL(dev_set_allmulti); 7397 7398 /* 7399 * Upload unicast and multicast address lists to device and 7400 * configure RX filtering. When the device doesn't support unicast 7401 * filtering it is put in promiscuous mode while unicast addresses 7402 * are present. 7403 */ 7404 void __dev_set_rx_mode(struct net_device *dev) 7405 { 7406 const struct net_device_ops *ops = dev->netdev_ops; 7407 7408 /* dev_open will call this function so the list will stay sane. */ 7409 if (!(dev->flags&IFF_UP)) 7410 return; 7411 7412 if (!netif_device_present(dev)) 7413 return; 7414 7415 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7416 /* Unicast addresses changes may only happen under the rtnl, 7417 * therefore calling __dev_set_promiscuity here is safe. 7418 */ 7419 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7420 __dev_set_promiscuity(dev, 1, false); 7421 dev->uc_promisc = true; 7422 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7423 __dev_set_promiscuity(dev, -1, false); 7424 dev->uc_promisc = false; 7425 } 7426 } 7427 7428 if (ops->ndo_set_rx_mode) 7429 ops->ndo_set_rx_mode(dev); 7430 } 7431 7432 void dev_set_rx_mode(struct net_device *dev) 7433 { 7434 netif_addr_lock_bh(dev); 7435 __dev_set_rx_mode(dev); 7436 netif_addr_unlock_bh(dev); 7437 } 7438 7439 /** 7440 * dev_get_flags - get flags reported to userspace 7441 * @dev: device 7442 * 7443 * Get the combination of flag bits exported through APIs to userspace. 7444 */ 7445 unsigned int dev_get_flags(const struct net_device *dev) 7446 { 7447 unsigned int flags; 7448 7449 flags = (dev->flags & ~(IFF_PROMISC | 7450 IFF_ALLMULTI | 7451 IFF_RUNNING | 7452 IFF_LOWER_UP | 7453 IFF_DORMANT)) | 7454 (dev->gflags & (IFF_PROMISC | 7455 IFF_ALLMULTI)); 7456 7457 if (netif_running(dev)) { 7458 if (netif_oper_up(dev)) 7459 flags |= IFF_RUNNING; 7460 if (netif_carrier_ok(dev)) 7461 flags |= IFF_LOWER_UP; 7462 if (netif_dormant(dev)) 7463 flags |= IFF_DORMANT; 7464 } 7465 7466 return flags; 7467 } 7468 EXPORT_SYMBOL(dev_get_flags); 7469 7470 int __dev_change_flags(struct net_device *dev, unsigned int flags) 7471 { 7472 unsigned int old_flags = dev->flags; 7473 int ret; 7474 7475 ASSERT_RTNL(); 7476 7477 /* 7478 * Set the flags on our device. 7479 */ 7480 7481 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7482 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7483 IFF_AUTOMEDIA)) | 7484 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7485 IFF_ALLMULTI)); 7486 7487 /* 7488 * Load in the correct multicast list now the flags have changed. 7489 */ 7490 7491 if ((old_flags ^ flags) & IFF_MULTICAST) 7492 dev_change_rx_flags(dev, IFF_MULTICAST); 7493 7494 dev_set_rx_mode(dev); 7495 7496 /* 7497 * Have we downed the interface. We handle IFF_UP ourselves 7498 * according to user attempts to set it, rather than blindly 7499 * setting it. 7500 */ 7501 7502 ret = 0; 7503 if ((old_flags ^ flags) & IFF_UP) { 7504 if (old_flags & IFF_UP) 7505 __dev_close(dev); 7506 else 7507 ret = __dev_open(dev); 7508 } 7509 7510 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7511 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7512 unsigned int old_flags = dev->flags; 7513 7514 dev->gflags ^= IFF_PROMISC; 7515 7516 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7517 if (dev->flags != old_flags) 7518 dev_set_rx_mode(dev); 7519 } 7520 7521 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7522 * is important. Some (broken) drivers set IFF_PROMISC, when 7523 * IFF_ALLMULTI is requested not asking us and not reporting. 7524 */ 7525 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7526 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7527 7528 dev->gflags ^= IFF_ALLMULTI; 7529 __dev_set_allmulti(dev, inc, false); 7530 } 7531 7532 return ret; 7533 } 7534 7535 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7536 unsigned int gchanges) 7537 { 7538 unsigned int changes = dev->flags ^ old_flags; 7539 7540 if (gchanges) 7541 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7542 7543 if (changes & IFF_UP) { 7544 if (dev->flags & IFF_UP) 7545 call_netdevice_notifiers(NETDEV_UP, dev); 7546 else 7547 call_netdevice_notifiers(NETDEV_DOWN, dev); 7548 } 7549 7550 if (dev->flags & IFF_UP && 7551 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7552 struct netdev_notifier_change_info change_info = { 7553 .info = { 7554 .dev = dev, 7555 }, 7556 .flags_changed = changes, 7557 }; 7558 7559 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7560 } 7561 } 7562 7563 /** 7564 * dev_change_flags - change device settings 7565 * @dev: device 7566 * @flags: device state flags 7567 * 7568 * Change settings on device based state flags. The flags are 7569 * in the userspace exported format. 7570 */ 7571 int dev_change_flags(struct net_device *dev, unsigned int flags) 7572 { 7573 int ret; 7574 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7575 7576 ret = __dev_change_flags(dev, flags); 7577 if (ret < 0) 7578 return ret; 7579 7580 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7581 __dev_notify_flags(dev, old_flags, changes); 7582 return ret; 7583 } 7584 EXPORT_SYMBOL(dev_change_flags); 7585 7586 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7587 { 7588 const struct net_device_ops *ops = dev->netdev_ops; 7589 7590 if (ops->ndo_change_mtu) 7591 return ops->ndo_change_mtu(dev, new_mtu); 7592 7593 dev->mtu = new_mtu; 7594 return 0; 7595 } 7596 EXPORT_SYMBOL(__dev_set_mtu); 7597 7598 /** 7599 * dev_set_mtu_ext - Change maximum transfer unit 7600 * @dev: device 7601 * @new_mtu: new transfer unit 7602 * @extack: netlink extended ack 7603 * 7604 * Change the maximum transfer size of the network device. 7605 */ 7606 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7607 struct netlink_ext_ack *extack) 7608 { 7609 int err, orig_mtu; 7610 7611 if (new_mtu == dev->mtu) 7612 return 0; 7613 7614 /* MTU must be positive, and in range */ 7615 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7616 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7617 return -EINVAL; 7618 } 7619 7620 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7621 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7622 return -EINVAL; 7623 } 7624 7625 if (!netif_device_present(dev)) 7626 return -ENODEV; 7627 7628 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7629 err = notifier_to_errno(err); 7630 if (err) 7631 return err; 7632 7633 orig_mtu = dev->mtu; 7634 err = __dev_set_mtu(dev, new_mtu); 7635 7636 if (!err) { 7637 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7638 orig_mtu); 7639 err = notifier_to_errno(err); 7640 if (err) { 7641 /* setting mtu back and notifying everyone again, 7642 * so that they have a chance to revert changes. 7643 */ 7644 __dev_set_mtu(dev, orig_mtu); 7645 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7646 new_mtu); 7647 } 7648 } 7649 return err; 7650 } 7651 7652 int dev_set_mtu(struct net_device *dev, int new_mtu) 7653 { 7654 struct netlink_ext_ack extack; 7655 int err; 7656 7657 memset(&extack, 0, sizeof(extack)); 7658 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7659 if (err && extack._msg) 7660 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7661 return err; 7662 } 7663 EXPORT_SYMBOL(dev_set_mtu); 7664 7665 /** 7666 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7667 * @dev: device 7668 * @new_len: new tx queue length 7669 */ 7670 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7671 { 7672 unsigned int orig_len = dev->tx_queue_len; 7673 int res; 7674 7675 if (new_len != (unsigned int)new_len) 7676 return -ERANGE; 7677 7678 if (new_len != orig_len) { 7679 dev->tx_queue_len = new_len; 7680 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7681 res = notifier_to_errno(res); 7682 if (res) 7683 goto err_rollback; 7684 res = dev_qdisc_change_tx_queue_len(dev); 7685 if (res) 7686 goto err_rollback; 7687 } 7688 7689 return 0; 7690 7691 err_rollback: 7692 netdev_err(dev, "refused to change device tx_queue_len\n"); 7693 dev->tx_queue_len = orig_len; 7694 return res; 7695 } 7696 7697 /** 7698 * dev_set_group - Change group this device belongs to 7699 * @dev: device 7700 * @new_group: group this device should belong to 7701 */ 7702 void dev_set_group(struct net_device *dev, int new_group) 7703 { 7704 dev->group = new_group; 7705 } 7706 EXPORT_SYMBOL(dev_set_group); 7707 7708 /** 7709 * dev_set_mac_address - Change Media Access Control Address 7710 * @dev: device 7711 * @sa: new address 7712 * 7713 * Change the hardware (MAC) address of the device 7714 */ 7715 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7716 { 7717 const struct net_device_ops *ops = dev->netdev_ops; 7718 int err; 7719 7720 if (!ops->ndo_set_mac_address) 7721 return -EOPNOTSUPP; 7722 if (sa->sa_family != dev->type) 7723 return -EINVAL; 7724 if (!netif_device_present(dev)) 7725 return -ENODEV; 7726 err = ops->ndo_set_mac_address(dev, sa); 7727 if (err) 7728 return err; 7729 dev->addr_assign_type = NET_ADDR_SET; 7730 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7731 add_device_randomness(dev->dev_addr, dev->addr_len); 7732 return 0; 7733 } 7734 EXPORT_SYMBOL(dev_set_mac_address); 7735 7736 /** 7737 * dev_change_carrier - Change device carrier 7738 * @dev: device 7739 * @new_carrier: new value 7740 * 7741 * Change device carrier 7742 */ 7743 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7744 { 7745 const struct net_device_ops *ops = dev->netdev_ops; 7746 7747 if (!ops->ndo_change_carrier) 7748 return -EOPNOTSUPP; 7749 if (!netif_device_present(dev)) 7750 return -ENODEV; 7751 return ops->ndo_change_carrier(dev, new_carrier); 7752 } 7753 EXPORT_SYMBOL(dev_change_carrier); 7754 7755 /** 7756 * dev_get_phys_port_id - Get device physical port ID 7757 * @dev: device 7758 * @ppid: port ID 7759 * 7760 * Get device physical port ID 7761 */ 7762 int dev_get_phys_port_id(struct net_device *dev, 7763 struct netdev_phys_item_id *ppid) 7764 { 7765 const struct net_device_ops *ops = dev->netdev_ops; 7766 7767 if (!ops->ndo_get_phys_port_id) 7768 return -EOPNOTSUPP; 7769 return ops->ndo_get_phys_port_id(dev, ppid); 7770 } 7771 EXPORT_SYMBOL(dev_get_phys_port_id); 7772 7773 /** 7774 * dev_get_phys_port_name - Get device physical port name 7775 * @dev: device 7776 * @name: port name 7777 * @len: limit of bytes to copy to name 7778 * 7779 * Get device physical port name 7780 */ 7781 int dev_get_phys_port_name(struct net_device *dev, 7782 char *name, size_t len) 7783 { 7784 const struct net_device_ops *ops = dev->netdev_ops; 7785 7786 if (!ops->ndo_get_phys_port_name) 7787 return -EOPNOTSUPP; 7788 return ops->ndo_get_phys_port_name(dev, name, len); 7789 } 7790 EXPORT_SYMBOL(dev_get_phys_port_name); 7791 7792 /** 7793 * dev_change_proto_down - update protocol port state information 7794 * @dev: device 7795 * @proto_down: new value 7796 * 7797 * This info can be used by switch drivers to set the phys state of the 7798 * port. 7799 */ 7800 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7801 { 7802 const struct net_device_ops *ops = dev->netdev_ops; 7803 7804 if (!ops->ndo_change_proto_down) 7805 return -EOPNOTSUPP; 7806 if (!netif_device_present(dev)) 7807 return -ENODEV; 7808 return ops->ndo_change_proto_down(dev, proto_down); 7809 } 7810 EXPORT_SYMBOL(dev_change_proto_down); 7811 7812 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7813 enum bpf_netdev_command cmd) 7814 { 7815 struct netdev_bpf xdp; 7816 7817 if (!bpf_op) 7818 return 0; 7819 7820 memset(&xdp, 0, sizeof(xdp)); 7821 xdp.command = cmd; 7822 7823 /* Query must always succeed. */ 7824 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7825 7826 return xdp.prog_id; 7827 } 7828 7829 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7830 struct netlink_ext_ack *extack, u32 flags, 7831 struct bpf_prog *prog) 7832 { 7833 struct netdev_bpf xdp; 7834 7835 memset(&xdp, 0, sizeof(xdp)); 7836 if (flags & XDP_FLAGS_HW_MODE) 7837 xdp.command = XDP_SETUP_PROG_HW; 7838 else 7839 xdp.command = XDP_SETUP_PROG; 7840 xdp.extack = extack; 7841 xdp.flags = flags; 7842 xdp.prog = prog; 7843 7844 return bpf_op(dev, &xdp); 7845 } 7846 7847 static void dev_xdp_uninstall(struct net_device *dev) 7848 { 7849 struct netdev_bpf xdp; 7850 bpf_op_t ndo_bpf; 7851 7852 /* Remove generic XDP */ 7853 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7854 7855 /* Remove from the driver */ 7856 ndo_bpf = dev->netdev_ops->ndo_bpf; 7857 if (!ndo_bpf) 7858 return; 7859 7860 memset(&xdp, 0, sizeof(xdp)); 7861 xdp.command = XDP_QUERY_PROG; 7862 WARN_ON(ndo_bpf(dev, &xdp)); 7863 if (xdp.prog_id) 7864 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7865 NULL)); 7866 7867 /* Remove HW offload */ 7868 memset(&xdp, 0, sizeof(xdp)); 7869 xdp.command = XDP_QUERY_PROG_HW; 7870 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 7871 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7872 NULL)); 7873 } 7874 7875 /** 7876 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7877 * @dev: device 7878 * @extack: netlink extended ack 7879 * @fd: new program fd or negative value to clear 7880 * @flags: xdp-related flags 7881 * 7882 * Set or clear a bpf program for a device 7883 */ 7884 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7885 int fd, u32 flags) 7886 { 7887 const struct net_device_ops *ops = dev->netdev_ops; 7888 enum bpf_netdev_command query; 7889 struct bpf_prog *prog = NULL; 7890 bpf_op_t bpf_op, bpf_chk; 7891 int err; 7892 7893 ASSERT_RTNL(); 7894 7895 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 7896 7897 bpf_op = bpf_chk = ops->ndo_bpf; 7898 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7899 return -EOPNOTSUPP; 7900 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7901 bpf_op = generic_xdp_install; 7902 if (bpf_op == bpf_chk) 7903 bpf_chk = generic_xdp_install; 7904 7905 if (fd >= 0) { 7906 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) || 7907 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW)) 7908 return -EEXIST; 7909 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7910 __dev_xdp_query(dev, bpf_op, query)) 7911 return -EBUSY; 7912 7913 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7914 bpf_op == ops->ndo_bpf); 7915 if (IS_ERR(prog)) 7916 return PTR_ERR(prog); 7917 7918 if (!(flags & XDP_FLAGS_HW_MODE) && 7919 bpf_prog_is_dev_bound(prog->aux)) { 7920 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7921 bpf_prog_put(prog); 7922 return -EINVAL; 7923 } 7924 } 7925 7926 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7927 if (err < 0 && prog) 7928 bpf_prog_put(prog); 7929 7930 return err; 7931 } 7932 7933 /** 7934 * dev_new_index - allocate an ifindex 7935 * @net: the applicable net namespace 7936 * 7937 * Returns a suitable unique value for a new device interface 7938 * number. The caller must hold the rtnl semaphore or the 7939 * dev_base_lock to be sure it remains unique. 7940 */ 7941 static int dev_new_index(struct net *net) 7942 { 7943 int ifindex = net->ifindex; 7944 7945 for (;;) { 7946 if (++ifindex <= 0) 7947 ifindex = 1; 7948 if (!__dev_get_by_index(net, ifindex)) 7949 return net->ifindex = ifindex; 7950 } 7951 } 7952 7953 /* Delayed registration/unregisteration */ 7954 static LIST_HEAD(net_todo_list); 7955 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7956 7957 static void net_set_todo(struct net_device *dev) 7958 { 7959 list_add_tail(&dev->todo_list, &net_todo_list); 7960 dev_net(dev)->dev_unreg_count++; 7961 } 7962 7963 static void rollback_registered_many(struct list_head *head) 7964 { 7965 struct net_device *dev, *tmp; 7966 LIST_HEAD(close_head); 7967 7968 BUG_ON(dev_boot_phase); 7969 ASSERT_RTNL(); 7970 7971 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7972 /* Some devices call without registering 7973 * for initialization unwind. Remove those 7974 * devices and proceed with the remaining. 7975 */ 7976 if (dev->reg_state == NETREG_UNINITIALIZED) { 7977 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7978 dev->name, dev); 7979 7980 WARN_ON(1); 7981 list_del(&dev->unreg_list); 7982 continue; 7983 } 7984 dev->dismantle = true; 7985 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7986 } 7987 7988 /* If device is running, close it first. */ 7989 list_for_each_entry(dev, head, unreg_list) 7990 list_add_tail(&dev->close_list, &close_head); 7991 dev_close_many(&close_head, true); 7992 7993 list_for_each_entry(dev, head, unreg_list) { 7994 /* And unlink it from device chain. */ 7995 unlist_netdevice(dev); 7996 7997 dev->reg_state = NETREG_UNREGISTERING; 7998 } 7999 flush_all_backlogs(); 8000 8001 synchronize_net(); 8002 8003 list_for_each_entry(dev, head, unreg_list) { 8004 struct sk_buff *skb = NULL; 8005 8006 /* Shutdown queueing discipline. */ 8007 dev_shutdown(dev); 8008 8009 dev_xdp_uninstall(dev); 8010 8011 /* Notify protocols, that we are about to destroy 8012 * this device. They should clean all the things. 8013 */ 8014 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8015 8016 if (!dev->rtnl_link_ops || 8017 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8018 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8019 GFP_KERNEL, NULL, 0); 8020 8021 /* 8022 * Flush the unicast and multicast chains 8023 */ 8024 dev_uc_flush(dev); 8025 dev_mc_flush(dev); 8026 8027 if (dev->netdev_ops->ndo_uninit) 8028 dev->netdev_ops->ndo_uninit(dev); 8029 8030 if (skb) 8031 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8032 8033 /* Notifier chain MUST detach us all upper devices. */ 8034 WARN_ON(netdev_has_any_upper_dev(dev)); 8035 WARN_ON(netdev_has_any_lower_dev(dev)); 8036 8037 /* Remove entries from kobject tree */ 8038 netdev_unregister_kobject(dev); 8039 #ifdef CONFIG_XPS 8040 /* Remove XPS queueing entries */ 8041 netif_reset_xps_queues_gt(dev, 0); 8042 #endif 8043 } 8044 8045 synchronize_net(); 8046 8047 list_for_each_entry(dev, head, unreg_list) 8048 dev_put(dev); 8049 } 8050 8051 static void rollback_registered(struct net_device *dev) 8052 { 8053 LIST_HEAD(single); 8054 8055 list_add(&dev->unreg_list, &single); 8056 rollback_registered_many(&single); 8057 list_del(&single); 8058 } 8059 8060 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8061 struct net_device *upper, netdev_features_t features) 8062 { 8063 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8064 netdev_features_t feature; 8065 int feature_bit; 8066 8067 for_each_netdev_feature(&upper_disables, feature_bit) { 8068 feature = __NETIF_F_BIT(feature_bit); 8069 if (!(upper->wanted_features & feature) 8070 && (features & feature)) { 8071 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8072 &feature, upper->name); 8073 features &= ~feature; 8074 } 8075 } 8076 8077 return features; 8078 } 8079 8080 static void netdev_sync_lower_features(struct net_device *upper, 8081 struct net_device *lower, netdev_features_t features) 8082 { 8083 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8084 netdev_features_t feature; 8085 int feature_bit; 8086 8087 for_each_netdev_feature(&upper_disables, feature_bit) { 8088 feature = __NETIF_F_BIT(feature_bit); 8089 if (!(features & feature) && (lower->features & feature)) { 8090 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8091 &feature, lower->name); 8092 lower->wanted_features &= ~feature; 8093 netdev_update_features(lower); 8094 8095 if (unlikely(lower->features & feature)) 8096 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8097 &feature, lower->name); 8098 } 8099 } 8100 } 8101 8102 static netdev_features_t netdev_fix_features(struct net_device *dev, 8103 netdev_features_t features) 8104 { 8105 /* Fix illegal checksum combinations */ 8106 if ((features & NETIF_F_HW_CSUM) && 8107 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8108 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8109 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8110 } 8111 8112 /* TSO requires that SG is present as well. */ 8113 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8114 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8115 features &= ~NETIF_F_ALL_TSO; 8116 } 8117 8118 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8119 !(features & NETIF_F_IP_CSUM)) { 8120 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8121 features &= ~NETIF_F_TSO; 8122 features &= ~NETIF_F_TSO_ECN; 8123 } 8124 8125 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8126 !(features & NETIF_F_IPV6_CSUM)) { 8127 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8128 features &= ~NETIF_F_TSO6; 8129 } 8130 8131 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8132 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8133 features &= ~NETIF_F_TSO_MANGLEID; 8134 8135 /* TSO ECN requires that TSO is present as well. */ 8136 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8137 features &= ~NETIF_F_TSO_ECN; 8138 8139 /* Software GSO depends on SG. */ 8140 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8141 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8142 features &= ~NETIF_F_GSO; 8143 } 8144 8145 /* GSO partial features require GSO partial be set */ 8146 if ((features & dev->gso_partial_features) && 8147 !(features & NETIF_F_GSO_PARTIAL)) { 8148 netdev_dbg(dev, 8149 "Dropping partially supported GSO features since no GSO partial.\n"); 8150 features &= ~dev->gso_partial_features; 8151 } 8152 8153 if (!(features & NETIF_F_RXCSUM)) { 8154 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8155 * successfully merged by hardware must also have the 8156 * checksum verified by hardware. If the user does not 8157 * want to enable RXCSUM, logically, we should disable GRO_HW. 8158 */ 8159 if (features & NETIF_F_GRO_HW) { 8160 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8161 features &= ~NETIF_F_GRO_HW; 8162 } 8163 } 8164 8165 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8166 if (features & NETIF_F_RXFCS) { 8167 if (features & NETIF_F_LRO) { 8168 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8169 features &= ~NETIF_F_LRO; 8170 } 8171 8172 if (features & NETIF_F_GRO_HW) { 8173 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8174 features &= ~NETIF_F_GRO_HW; 8175 } 8176 } 8177 8178 return features; 8179 } 8180 8181 int __netdev_update_features(struct net_device *dev) 8182 { 8183 struct net_device *upper, *lower; 8184 netdev_features_t features; 8185 struct list_head *iter; 8186 int err = -1; 8187 8188 ASSERT_RTNL(); 8189 8190 features = netdev_get_wanted_features(dev); 8191 8192 if (dev->netdev_ops->ndo_fix_features) 8193 features = dev->netdev_ops->ndo_fix_features(dev, features); 8194 8195 /* driver might be less strict about feature dependencies */ 8196 features = netdev_fix_features(dev, features); 8197 8198 /* some features can't be enabled if they're off an an upper device */ 8199 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8200 features = netdev_sync_upper_features(dev, upper, features); 8201 8202 if (dev->features == features) 8203 goto sync_lower; 8204 8205 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8206 &dev->features, &features); 8207 8208 if (dev->netdev_ops->ndo_set_features) 8209 err = dev->netdev_ops->ndo_set_features(dev, features); 8210 else 8211 err = 0; 8212 8213 if (unlikely(err < 0)) { 8214 netdev_err(dev, 8215 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8216 err, &features, &dev->features); 8217 /* return non-0 since some features might have changed and 8218 * it's better to fire a spurious notification than miss it 8219 */ 8220 return -1; 8221 } 8222 8223 sync_lower: 8224 /* some features must be disabled on lower devices when disabled 8225 * on an upper device (think: bonding master or bridge) 8226 */ 8227 netdev_for_each_lower_dev(dev, lower, iter) 8228 netdev_sync_lower_features(dev, lower, features); 8229 8230 if (!err) { 8231 netdev_features_t diff = features ^ dev->features; 8232 8233 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8234 /* udp_tunnel_{get,drop}_rx_info both need 8235 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8236 * device, or they won't do anything. 8237 * Thus we need to update dev->features 8238 * *before* calling udp_tunnel_get_rx_info, 8239 * but *after* calling udp_tunnel_drop_rx_info. 8240 */ 8241 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8242 dev->features = features; 8243 udp_tunnel_get_rx_info(dev); 8244 } else { 8245 udp_tunnel_drop_rx_info(dev); 8246 } 8247 } 8248 8249 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8250 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8251 dev->features = features; 8252 err |= vlan_get_rx_ctag_filter_info(dev); 8253 } else { 8254 vlan_drop_rx_ctag_filter_info(dev); 8255 } 8256 } 8257 8258 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8259 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8260 dev->features = features; 8261 err |= vlan_get_rx_stag_filter_info(dev); 8262 } else { 8263 vlan_drop_rx_stag_filter_info(dev); 8264 } 8265 } 8266 8267 dev->features = features; 8268 } 8269 8270 return err < 0 ? 0 : 1; 8271 } 8272 8273 /** 8274 * netdev_update_features - recalculate device features 8275 * @dev: the device to check 8276 * 8277 * Recalculate dev->features set and send notifications if it 8278 * has changed. Should be called after driver or hardware dependent 8279 * conditions might have changed that influence the features. 8280 */ 8281 void netdev_update_features(struct net_device *dev) 8282 { 8283 if (__netdev_update_features(dev)) 8284 netdev_features_change(dev); 8285 } 8286 EXPORT_SYMBOL(netdev_update_features); 8287 8288 /** 8289 * netdev_change_features - recalculate device features 8290 * @dev: the device to check 8291 * 8292 * Recalculate dev->features set and send notifications even 8293 * if they have not changed. Should be called instead of 8294 * netdev_update_features() if also dev->vlan_features might 8295 * have changed to allow the changes to be propagated to stacked 8296 * VLAN devices. 8297 */ 8298 void netdev_change_features(struct net_device *dev) 8299 { 8300 __netdev_update_features(dev); 8301 netdev_features_change(dev); 8302 } 8303 EXPORT_SYMBOL(netdev_change_features); 8304 8305 /** 8306 * netif_stacked_transfer_operstate - transfer operstate 8307 * @rootdev: the root or lower level device to transfer state from 8308 * @dev: the device to transfer operstate to 8309 * 8310 * Transfer operational state from root to device. This is normally 8311 * called when a stacking relationship exists between the root 8312 * device and the device(a leaf device). 8313 */ 8314 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8315 struct net_device *dev) 8316 { 8317 if (rootdev->operstate == IF_OPER_DORMANT) 8318 netif_dormant_on(dev); 8319 else 8320 netif_dormant_off(dev); 8321 8322 if (netif_carrier_ok(rootdev)) 8323 netif_carrier_on(dev); 8324 else 8325 netif_carrier_off(dev); 8326 } 8327 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8328 8329 static int netif_alloc_rx_queues(struct net_device *dev) 8330 { 8331 unsigned int i, count = dev->num_rx_queues; 8332 struct netdev_rx_queue *rx; 8333 size_t sz = count * sizeof(*rx); 8334 int err = 0; 8335 8336 BUG_ON(count < 1); 8337 8338 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8339 if (!rx) 8340 return -ENOMEM; 8341 8342 dev->_rx = rx; 8343 8344 for (i = 0; i < count; i++) { 8345 rx[i].dev = dev; 8346 8347 /* XDP RX-queue setup */ 8348 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8349 if (err < 0) 8350 goto err_rxq_info; 8351 } 8352 return 0; 8353 8354 err_rxq_info: 8355 /* Rollback successful reg's and free other resources */ 8356 while (i--) 8357 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8358 kvfree(dev->_rx); 8359 dev->_rx = NULL; 8360 return err; 8361 } 8362 8363 static void netif_free_rx_queues(struct net_device *dev) 8364 { 8365 unsigned int i, count = dev->num_rx_queues; 8366 8367 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8368 if (!dev->_rx) 8369 return; 8370 8371 for (i = 0; i < count; i++) 8372 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8373 8374 kvfree(dev->_rx); 8375 } 8376 8377 static void netdev_init_one_queue(struct net_device *dev, 8378 struct netdev_queue *queue, void *_unused) 8379 { 8380 /* Initialize queue lock */ 8381 spin_lock_init(&queue->_xmit_lock); 8382 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8383 queue->xmit_lock_owner = -1; 8384 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8385 queue->dev = dev; 8386 #ifdef CONFIG_BQL 8387 dql_init(&queue->dql, HZ); 8388 #endif 8389 } 8390 8391 static void netif_free_tx_queues(struct net_device *dev) 8392 { 8393 kvfree(dev->_tx); 8394 } 8395 8396 static int netif_alloc_netdev_queues(struct net_device *dev) 8397 { 8398 unsigned int count = dev->num_tx_queues; 8399 struct netdev_queue *tx; 8400 size_t sz = count * sizeof(*tx); 8401 8402 if (count < 1 || count > 0xffff) 8403 return -EINVAL; 8404 8405 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8406 if (!tx) 8407 return -ENOMEM; 8408 8409 dev->_tx = tx; 8410 8411 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8412 spin_lock_init(&dev->tx_global_lock); 8413 8414 return 0; 8415 } 8416 8417 void netif_tx_stop_all_queues(struct net_device *dev) 8418 { 8419 unsigned int i; 8420 8421 for (i = 0; i < dev->num_tx_queues; i++) { 8422 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8423 8424 netif_tx_stop_queue(txq); 8425 } 8426 } 8427 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8428 8429 /** 8430 * register_netdevice - register a network device 8431 * @dev: device to register 8432 * 8433 * Take a completed network device structure and add it to the kernel 8434 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8435 * chain. 0 is returned on success. A negative errno code is returned 8436 * on a failure to set up the device, or if the name is a duplicate. 8437 * 8438 * Callers must hold the rtnl semaphore. You may want 8439 * register_netdev() instead of this. 8440 * 8441 * BUGS: 8442 * The locking appears insufficient to guarantee two parallel registers 8443 * will not get the same name. 8444 */ 8445 8446 int register_netdevice(struct net_device *dev) 8447 { 8448 int ret; 8449 struct net *net = dev_net(dev); 8450 8451 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8452 NETDEV_FEATURE_COUNT); 8453 BUG_ON(dev_boot_phase); 8454 ASSERT_RTNL(); 8455 8456 might_sleep(); 8457 8458 /* When net_device's are persistent, this will be fatal. */ 8459 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8460 BUG_ON(!net); 8461 8462 spin_lock_init(&dev->addr_list_lock); 8463 netdev_set_addr_lockdep_class(dev); 8464 8465 ret = dev_get_valid_name(net, dev, dev->name); 8466 if (ret < 0) 8467 goto out; 8468 8469 /* Init, if this function is available */ 8470 if (dev->netdev_ops->ndo_init) { 8471 ret = dev->netdev_ops->ndo_init(dev); 8472 if (ret) { 8473 if (ret > 0) 8474 ret = -EIO; 8475 goto out; 8476 } 8477 } 8478 8479 if (((dev->hw_features | dev->features) & 8480 NETIF_F_HW_VLAN_CTAG_FILTER) && 8481 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8482 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8483 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8484 ret = -EINVAL; 8485 goto err_uninit; 8486 } 8487 8488 ret = -EBUSY; 8489 if (!dev->ifindex) 8490 dev->ifindex = dev_new_index(net); 8491 else if (__dev_get_by_index(net, dev->ifindex)) 8492 goto err_uninit; 8493 8494 /* Transfer changeable features to wanted_features and enable 8495 * software offloads (GSO and GRO). 8496 */ 8497 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8498 dev->features |= NETIF_F_SOFT_FEATURES; 8499 8500 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8501 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8502 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8503 } 8504 8505 dev->wanted_features = dev->features & dev->hw_features; 8506 8507 if (!(dev->flags & IFF_LOOPBACK)) 8508 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8509 8510 /* If IPv4 TCP segmentation offload is supported we should also 8511 * allow the device to enable segmenting the frame with the option 8512 * of ignoring a static IP ID value. This doesn't enable the 8513 * feature itself but allows the user to enable it later. 8514 */ 8515 if (dev->hw_features & NETIF_F_TSO) 8516 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8517 if (dev->vlan_features & NETIF_F_TSO) 8518 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8519 if (dev->mpls_features & NETIF_F_TSO) 8520 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8521 if (dev->hw_enc_features & NETIF_F_TSO) 8522 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8523 8524 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8525 */ 8526 dev->vlan_features |= NETIF_F_HIGHDMA; 8527 8528 /* Make NETIF_F_SG inheritable to tunnel devices. 8529 */ 8530 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8531 8532 /* Make NETIF_F_SG inheritable to MPLS. 8533 */ 8534 dev->mpls_features |= NETIF_F_SG; 8535 8536 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8537 ret = notifier_to_errno(ret); 8538 if (ret) 8539 goto err_uninit; 8540 8541 ret = netdev_register_kobject(dev); 8542 if (ret) 8543 goto err_uninit; 8544 dev->reg_state = NETREG_REGISTERED; 8545 8546 __netdev_update_features(dev); 8547 8548 /* 8549 * Default initial state at registry is that the 8550 * device is present. 8551 */ 8552 8553 set_bit(__LINK_STATE_PRESENT, &dev->state); 8554 8555 linkwatch_init_dev(dev); 8556 8557 dev_init_scheduler(dev); 8558 dev_hold(dev); 8559 list_netdevice(dev); 8560 add_device_randomness(dev->dev_addr, dev->addr_len); 8561 8562 /* If the device has permanent device address, driver should 8563 * set dev_addr and also addr_assign_type should be set to 8564 * NET_ADDR_PERM (default value). 8565 */ 8566 if (dev->addr_assign_type == NET_ADDR_PERM) 8567 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8568 8569 /* Notify protocols, that a new device appeared. */ 8570 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8571 ret = notifier_to_errno(ret); 8572 if (ret) { 8573 rollback_registered(dev); 8574 dev->reg_state = NETREG_UNREGISTERED; 8575 } 8576 /* 8577 * Prevent userspace races by waiting until the network 8578 * device is fully setup before sending notifications. 8579 */ 8580 if (!dev->rtnl_link_ops || 8581 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8582 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8583 8584 out: 8585 return ret; 8586 8587 err_uninit: 8588 if (dev->netdev_ops->ndo_uninit) 8589 dev->netdev_ops->ndo_uninit(dev); 8590 if (dev->priv_destructor) 8591 dev->priv_destructor(dev); 8592 goto out; 8593 } 8594 EXPORT_SYMBOL(register_netdevice); 8595 8596 /** 8597 * init_dummy_netdev - init a dummy network device for NAPI 8598 * @dev: device to init 8599 * 8600 * This takes a network device structure and initialize the minimum 8601 * amount of fields so it can be used to schedule NAPI polls without 8602 * registering a full blown interface. This is to be used by drivers 8603 * that need to tie several hardware interfaces to a single NAPI 8604 * poll scheduler due to HW limitations. 8605 */ 8606 int init_dummy_netdev(struct net_device *dev) 8607 { 8608 /* Clear everything. Note we don't initialize spinlocks 8609 * are they aren't supposed to be taken by any of the 8610 * NAPI code and this dummy netdev is supposed to be 8611 * only ever used for NAPI polls 8612 */ 8613 memset(dev, 0, sizeof(struct net_device)); 8614 8615 /* make sure we BUG if trying to hit standard 8616 * register/unregister code path 8617 */ 8618 dev->reg_state = NETREG_DUMMY; 8619 8620 /* NAPI wants this */ 8621 INIT_LIST_HEAD(&dev->napi_list); 8622 8623 /* a dummy interface is started by default */ 8624 set_bit(__LINK_STATE_PRESENT, &dev->state); 8625 set_bit(__LINK_STATE_START, &dev->state); 8626 8627 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8628 * because users of this 'device' dont need to change 8629 * its refcount. 8630 */ 8631 8632 return 0; 8633 } 8634 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8635 8636 8637 /** 8638 * register_netdev - register a network device 8639 * @dev: device to register 8640 * 8641 * Take a completed network device structure and add it to the kernel 8642 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8643 * chain. 0 is returned on success. A negative errno code is returned 8644 * on a failure to set up the device, or if the name is a duplicate. 8645 * 8646 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8647 * and expands the device name if you passed a format string to 8648 * alloc_netdev. 8649 */ 8650 int register_netdev(struct net_device *dev) 8651 { 8652 int err; 8653 8654 if (rtnl_lock_killable()) 8655 return -EINTR; 8656 err = register_netdevice(dev); 8657 rtnl_unlock(); 8658 return err; 8659 } 8660 EXPORT_SYMBOL(register_netdev); 8661 8662 int netdev_refcnt_read(const struct net_device *dev) 8663 { 8664 int i, refcnt = 0; 8665 8666 for_each_possible_cpu(i) 8667 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8668 return refcnt; 8669 } 8670 EXPORT_SYMBOL(netdev_refcnt_read); 8671 8672 /** 8673 * netdev_wait_allrefs - wait until all references are gone. 8674 * @dev: target net_device 8675 * 8676 * This is called when unregistering network devices. 8677 * 8678 * Any protocol or device that holds a reference should register 8679 * for netdevice notification, and cleanup and put back the 8680 * reference if they receive an UNREGISTER event. 8681 * We can get stuck here if buggy protocols don't correctly 8682 * call dev_put. 8683 */ 8684 static void netdev_wait_allrefs(struct net_device *dev) 8685 { 8686 unsigned long rebroadcast_time, warning_time; 8687 int refcnt; 8688 8689 linkwatch_forget_dev(dev); 8690 8691 rebroadcast_time = warning_time = jiffies; 8692 refcnt = netdev_refcnt_read(dev); 8693 8694 while (refcnt != 0) { 8695 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8696 rtnl_lock(); 8697 8698 /* Rebroadcast unregister notification */ 8699 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8700 8701 __rtnl_unlock(); 8702 rcu_barrier(); 8703 rtnl_lock(); 8704 8705 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8706 &dev->state)) { 8707 /* We must not have linkwatch events 8708 * pending on unregister. If this 8709 * happens, we simply run the queue 8710 * unscheduled, resulting in a noop 8711 * for this device. 8712 */ 8713 linkwatch_run_queue(); 8714 } 8715 8716 __rtnl_unlock(); 8717 8718 rebroadcast_time = jiffies; 8719 } 8720 8721 msleep(250); 8722 8723 refcnt = netdev_refcnt_read(dev); 8724 8725 if (time_after(jiffies, warning_time + 10 * HZ)) { 8726 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8727 dev->name, refcnt); 8728 warning_time = jiffies; 8729 } 8730 } 8731 } 8732 8733 /* The sequence is: 8734 * 8735 * rtnl_lock(); 8736 * ... 8737 * register_netdevice(x1); 8738 * register_netdevice(x2); 8739 * ... 8740 * unregister_netdevice(y1); 8741 * unregister_netdevice(y2); 8742 * ... 8743 * rtnl_unlock(); 8744 * free_netdev(y1); 8745 * free_netdev(y2); 8746 * 8747 * We are invoked by rtnl_unlock(). 8748 * This allows us to deal with problems: 8749 * 1) We can delete sysfs objects which invoke hotplug 8750 * without deadlocking with linkwatch via keventd. 8751 * 2) Since we run with the RTNL semaphore not held, we can sleep 8752 * safely in order to wait for the netdev refcnt to drop to zero. 8753 * 8754 * We must not return until all unregister events added during 8755 * the interval the lock was held have been completed. 8756 */ 8757 void netdev_run_todo(void) 8758 { 8759 struct list_head list; 8760 8761 /* Snapshot list, allow later requests */ 8762 list_replace_init(&net_todo_list, &list); 8763 8764 __rtnl_unlock(); 8765 8766 8767 /* Wait for rcu callbacks to finish before next phase */ 8768 if (!list_empty(&list)) 8769 rcu_barrier(); 8770 8771 while (!list_empty(&list)) { 8772 struct net_device *dev 8773 = list_first_entry(&list, struct net_device, todo_list); 8774 list_del(&dev->todo_list); 8775 8776 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8777 pr_err("network todo '%s' but state %d\n", 8778 dev->name, dev->reg_state); 8779 dump_stack(); 8780 continue; 8781 } 8782 8783 dev->reg_state = NETREG_UNREGISTERED; 8784 8785 netdev_wait_allrefs(dev); 8786 8787 /* paranoia */ 8788 BUG_ON(netdev_refcnt_read(dev)); 8789 BUG_ON(!list_empty(&dev->ptype_all)); 8790 BUG_ON(!list_empty(&dev->ptype_specific)); 8791 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8792 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8793 #if IS_ENABLED(CONFIG_DECNET) 8794 WARN_ON(dev->dn_ptr); 8795 #endif 8796 if (dev->priv_destructor) 8797 dev->priv_destructor(dev); 8798 if (dev->needs_free_netdev) 8799 free_netdev(dev); 8800 8801 /* Report a network device has been unregistered */ 8802 rtnl_lock(); 8803 dev_net(dev)->dev_unreg_count--; 8804 __rtnl_unlock(); 8805 wake_up(&netdev_unregistering_wq); 8806 8807 /* Free network device */ 8808 kobject_put(&dev->dev.kobj); 8809 } 8810 } 8811 8812 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8813 * all the same fields in the same order as net_device_stats, with only 8814 * the type differing, but rtnl_link_stats64 may have additional fields 8815 * at the end for newer counters. 8816 */ 8817 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8818 const struct net_device_stats *netdev_stats) 8819 { 8820 #if BITS_PER_LONG == 64 8821 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8822 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8823 /* zero out counters that only exist in rtnl_link_stats64 */ 8824 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8825 sizeof(*stats64) - sizeof(*netdev_stats)); 8826 #else 8827 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8828 const unsigned long *src = (const unsigned long *)netdev_stats; 8829 u64 *dst = (u64 *)stats64; 8830 8831 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8832 for (i = 0; i < n; i++) 8833 dst[i] = src[i]; 8834 /* zero out counters that only exist in rtnl_link_stats64 */ 8835 memset((char *)stats64 + n * sizeof(u64), 0, 8836 sizeof(*stats64) - n * sizeof(u64)); 8837 #endif 8838 } 8839 EXPORT_SYMBOL(netdev_stats_to_stats64); 8840 8841 /** 8842 * dev_get_stats - get network device statistics 8843 * @dev: device to get statistics from 8844 * @storage: place to store stats 8845 * 8846 * Get network statistics from device. Return @storage. 8847 * The device driver may provide its own method by setting 8848 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8849 * otherwise the internal statistics structure is used. 8850 */ 8851 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8852 struct rtnl_link_stats64 *storage) 8853 { 8854 const struct net_device_ops *ops = dev->netdev_ops; 8855 8856 if (ops->ndo_get_stats64) { 8857 memset(storage, 0, sizeof(*storage)); 8858 ops->ndo_get_stats64(dev, storage); 8859 } else if (ops->ndo_get_stats) { 8860 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8861 } else { 8862 netdev_stats_to_stats64(storage, &dev->stats); 8863 } 8864 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8865 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8866 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8867 return storage; 8868 } 8869 EXPORT_SYMBOL(dev_get_stats); 8870 8871 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8872 { 8873 struct netdev_queue *queue = dev_ingress_queue(dev); 8874 8875 #ifdef CONFIG_NET_CLS_ACT 8876 if (queue) 8877 return queue; 8878 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8879 if (!queue) 8880 return NULL; 8881 netdev_init_one_queue(dev, queue, NULL); 8882 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8883 queue->qdisc_sleeping = &noop_qdisc; 8884 rcu_assign_pointer(dev->ingress_queue, queue); 8885 #endif 8886 return queue; 8887 } 8888 8889 static const struct ethtool_ops default_ethtool_ops; 8890 8891 void netdev_set_default_ethtool_ops(struct net_device *dev, 8892 const struct ethtool_ops *ops) 8893 { 8894 if (dev->ethtool_ops == &default_ethtool_ops) 8895 dev->ethtool_ops = ops; 8896 } 8897 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8898 8899 void netdev_freemem(struct net_device *dev) 8900 { 8901 char *addr = (char *)dev - dev->padded; 8902 8903 kvfree(addr); 8904 } 8905 8906 /** 8907 * alloc_netdev_mqs - allocate network device 8908 * @sizeof_priv: size of private data to allocate space for 8909 * @name: device name format string 8910 * @name_assign_type: origin of device name 8911 * @setup: callback to initialize device 8912 * @txqs: the number of TX subqueues to allocate 8913 * @rxqs: the number of RX subqueues to allocate 8914 * 8915 * Allocates a struct net_device with private data area for driver use 8916 * and performs basic initialization. Also allocates subqueue structs 8917 * for each queue on the device. 8918 */ 8919 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8920 unsigned char name_assign_type, 8921 void (*setup)(struct net_device *), 8922 unsigned int txqs, unsigned int rxqs) 8923 { 8924 struct net_device *dev; 8925 unsigned int alloc_size; 8926 struct net_device *p; 8927 8928 BUG_ON(strlen(name) >= sizeof(dev->name)); 8929 8930 if (txqs < 1) { 8931 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8932 return NULL; 8933 } 8934 8935 if (rxqs < 1) { 8936 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8937 return NULL; 8938 } 8939 8940 alloc_size = sizeof(struct net_device); 8941 if (sizeof_priv) { 8942 /* ensure 32-byte alignment of private area */ 8943 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8944 alloc_size += sizeof_priv; 8945 } 8946 /* ensure 32-byte alignment of whole construct */ 8947 alloc_size += NETDEV_ALIGN - 1; 8948 8949 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8950 if (!p) 8951 return NULL; 8952 8953 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8954 dev->padded = (char *)dev - (char *)p; 8955 8956 dev->pcpu_refcnt = alloc_percpu(int); 8957 if (!dev->pcpu_refcnt) 8958 goto free_dev; 8959 8960 if (dev_addr_init(dev)) 8961 goto free_pcpu; 8962 8963 dev_mc_init(dev); 8964 dev_uc_init(dev); 8965 8966 dev_net_set(dev, &init_net); 8967 8968 dev->gso_max_size = GSO_MAX_SIZE; 8969 dev->gso_max_segs = GSO_MAX_SEGS; 8970 8971 INIT_LIST_HEAD(&dev->napi_list); 8972 INIT_LIST_HEAD(&dev->unreg_list); 8973 INIT_LIST_HEAD(&dev->close_list); 8974 INIT_LIST_HEAD(&dev->link_watch_list); 8975 INIT_LIST_HEAD(&dev->adj_list.upper); 8976 INIT_LIST_HEAD(&dev->adj_list.lower); 8977 INIT_LIST_HEAD(&dev->ptype_all); 8978 INIT_LIST_HEAD(&dev->ptype_specific); 8979 #ifdef CONFIG_NET_SCHED 8980 hash_init(dev->qdisc_hash); 8981 #endif 8982 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8983 setup(dev); 8984 8985 if (!dev->tx_queue_len) { 8986 dev->priv_flags |= IFF_NO_QUEUE; 8987 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8988 } 8989 8990 dev->num_tx_queues = txqs; 8991 dev->real_num_tx_queues = txqs; 8992 if (netif_alloc_netdev_queues(dev)) 8993 goto free_all; 8994 8995 dev->num_rx_queues = rxqs; 8996 dev->real_num_rx_queues = rxqs; 8997 if (netif_alloc_rx_queues(dev)) 8998 goto free_all; 8999 9000 strcpy(dev->name, name); 9001 dev->name_assign_type = name_assign_type; 9002 dev->group = INIT_NETDEV_GROUP; 9003 if (!dev->ethtool_ops) 9004 dev->ethtool_ops = &default_ethtool_ops; 9005 9006 nf_hook_ingress_init(dev); 9007 9008 return dev; 9009 9010 free_all: 9011 free_netdev(dev); 9012 return NULL; 9013 9014 free_pcpu: 9015 free_percpu(dev->pcpu_refcnt); 9016 free_dev: 9017 netdev_freemem(dev); 9018 return NULL; 9019 } 9020 EXPORT_SYMBOL(alloc_netdev_mqs); 9021 9022 /** 9023 * free_netdev - free network device 9024 * @dev: device 9025 * 9026 * This function does the last stage of destroying an allocated device 9027 * interface. The reference to the device object is released. If this 9028 * is the last reference then it will be freed.Must be called in process 9029 * context. 9030 */ 9031 void free_netdev(struct net_device *dev) 9032 { 9033 struct napi_struct *p, *n; 9034 9035 might_sleep(); 9036 netif_free_tx_queues(dev); 9037 netif_free_rx_queues(dev); 9038 9039 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9040 9041 /* Flush device addresses */ 9042 dev_addr_flush(dev); 9043 9044 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9045 netif_napi_del(p); 9046 9047 free_percpu(dev->pcpu_refcnt); 9048 dev->pcpu_refcnt = NULL; 9049 9050 /* Compatibility with error handling in drivers */ 9051 if (dev->reg_state == NETREG_UNINITIALIZED) { 9052 netdev_freemem(dev); 9053 return; 9054 } 9055 9056 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9057 dev->reg_state = NETREG_RELEASED; 9058 9059 /* will free via device release */ 9060 put_device(&dev->dev); 9061 } 9062 EXPORT_SYMBOL(free_netdev); 9063 9064 /** 9065 * synchronize_net - Synchronize with packet receive processing 9066 * 9067 * Wait for packets currently being received to be done. 9068 * Does not block later packets from starting. 9069 */ 9070 void synchronize_net(void) 9071 { 9072 might_sleep(); 9073 if (rtnl_is_locked()) 9074 synchronize_rcu_expedited(); 9075 else 9076 synchronize_rcu(); 9077 } 9078 EXPORT_SYMBOL(synchronize_net); 9079 9080 /** 9081 * unregister_netdevice_queue - remove device from the kernel 9082 * @dev: device 9083 * @head: list 9084 * 9085 * This function shuts down a device interface and removes it 9086 * from the kernel tables. 9087 * If head not NULL, device is queued to be unregistered later. 9088 * 9089 * Callers must hold the rtnl semaphore. You may want 9090 * unregister_netdev() instead of this. 9091 */ 9092 9093 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9094 { 9095 ASSERT_RTNL(); 9096 9097 if (head) { 9098 list_move_tail(&dev->unreg_list, head); 9099 } else { 9100 rollback_registered(dev); 9101 /* Finish processing unregister after unlock */ 9102 net_set_todo(dev); 9103 } 9104 } 9105 EXPORT_SYMBOL(unregister_netdevice_queue); 9106 9107 /** 9108 * unregister_netdevice_many - unregister many devices 9109 * @head: list of devices 9110 * 9111 * Note: As most callers use a stack allocated list_head, 9112 * we force a list_del() to make sure stack wont be corrupted later. 9113 */ 9114 void unregister_netdevice_many(struct list_head *head) 9115 { 9116 struct net_device *dev; 9117 9118 if (!list_empty(head)) { 9119 rollback_registered_many(head); 9120 list_for_each_entry(dev, head, unreg_list) 9121 net_set_todo(dev); 9122 list_del(head); 9123 } 9124 } 9125 EXPORT_SYMBOL(unregister_netdevice_many); 9126 9127 /** 9128 * unregister_netdev - remove device from the kernel 9129 * @dev: device 9130 * 9131 * This function shuts down a device interface and removes it 9132 * from the kernel tables. 9133 * 9134 * This is just a wrapper for unregister_netdevice that takes 9135 * the rtnl semaphore. In general you want to use this and not 9136 * unregister_netdevice. 9137 */ 9138 void unregister_netdev(struct net_device *dev) 9139 { 9140 rtnl_lock(); 9141 unregister_netdevice(dev); 9142 rtnl_unlock(); 9143 } 9144 EXPORT_SYMBOL(unregister_netdev); 9145 9146 /** 9147 * dev_change_net_namespace - move device to different nethost namespace 9148 * @dev: device 9149 * @net: network namespace 9150 * @pat: If not NULL name pattern to try if the current device name 9151 * is already taken in the destination network namespace. 9152 * 9153 * This function shuts down a device interface and moves it 9154 * to a new network namespace. On success 0 is returned, on 9155 * a failure a netagive errno code is returned. 9156 * 9157 * Callers must hold the rtnl semaphore. 9158 */ 9159 9160 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9161 { 9162 int err, new_nsid, new_ifindex; 9163 9164 ASSERT_RTNL(); 9165 9166 /* Don't allow namespace local devices to be moved. */ 9167 err = -EINVAL; 9168 if (dev->features & NETIF_F_NETNS_LOCAL) 9169 goto out; 9170 9171 /* Ensure the device has been registrered */ 9172 if (dev->reg_state != NETREG_REGISTERED) 9173 goto out; 9174 9175 /* Get out if there is nothing todo */ 9176 err = 0; 9177 if (net_eq(dev_net(dev), net)) 9178 goto out; 9179 9180 /* Pick the destination device name, and ensure 9181 * we can use it in the destination network namespace. 9182 */ 9183 err = -EEXIST; 9184 if (__dev_get_by_name(net, dev->name)) { 9185 /* We get here if we can't use the current device name */ 9186 if (!pat) 9187 goto out; 9188 err = dev_get_valid_name(net, dev, pat); 9189 if (err < 0) 9190 goto out; 9191 } 9192 9193 /* 9194 * And now a mini version of register_netdevice unregister_netdevice. 9195 */ 9196 9197 /* If device is running close it first. */ 9198 dev_close(dev); 9199 9200 /* And unlink it from device chain */ 9201 unlist_netdevice(dev); 9202 9203 synchronize_net(); 9204 9205 /* Shutdown queueing discipline. */ 9206 dev_shutdown(dev); 9207 9208 /* Notify protocols, that we are about to destroy 9209 * this device. They should clean all the things. 9210 * 9211 * Note that dev->reg_state stays at NETREG_REGISTERED. 9212 * This is wanted because this way 8021q and macvlan know 9213 * the device is just moving and can keep their slaves up. 9214 */ 9215 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9216 rcu_barrier(); 9217 9218 new_nsid = peernet2id_alloc(dev_net(dev), net); 9219 /* If there is an ifindex conflict assign a new one */ 9220 if (__dev_get_by_index(net, dev->ifindex)) 9221 new_ifindex = dev_new_index(net); 9222 else 9223 new_ifindex = dev->ifindex; 9224 9225 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9226 new_ifindex); 9227 9228 /* 9229 * Flush the unicast and multicast chains 9230 */ 9231 dev_uc_flush(dev); 9232 dev_mc_flush(dev); 9233 9234 /* Send a netdev-removed uevent to the old namespace */ 9235 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9236 netdev_adjacent_del_links(dev); 9237 9238 /* Actually switch the network namespace */ 9239 dev_net_set(dev, net); 9240 dev->ifindex = new_ifindex; 9241 9242 /* Send a netdev-add uevent to the new namespace */ 9243 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9244 netdev_adjacent_add_links(dev); 9245 9246 /* Fixup kobjects */ 9247 err = device_rename(&dev->dev, dev->name); 9248 WARN_ON(err); 9249 9250 /* Add the device back in the hashes */ 9251 list_netdevice(dev); 9252 9253 /* Notify protocols, that a new device appeared. */ 9254 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9255 9256 /* 9257 * Prevent userspace races by waiting until the network 9258 * device is fully setup before sending notifications. 9259 */ 9260 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9261 9262 synchronize_net(); 9263 err = 0; 9264 out: 9265 return err; 9266 } 9267 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9268 9269 static int dev_cpu_dead(unsigned int oldcpu) 9270 { 9271 struct sk_buff **list_skb; 9272 struct sk_buff *skb; 9273 unsigned int cpu; 9274 struct softnet_data *sd, *oldsd, *remsd = NULL; 9275 9276 local_irq_disable(); 9277 cpu = smp_processor_id(); 9278 sd = &per_cpu(softnet_data, cpu); 9279 oldsd = &per_cpu(softnet_data, oldcpu); 9280 9281 /* Find end of our completion_queue. */ 9282 list_skb = &sd->completion_queue; 9283 while (*list_skb) 9284 list_skb = &(*list_skb)->next; 9285 /* Append completion queue from offline CPU. */ 9286 *list_skb = oldsd->completion_queue; 9287 oldsd->completion_queue = NULL; 9288 9289 /* Append output queue from offline CPU. */ 9290 if (oldsd->output_queue) { 9291 *sd->output_queue_tailp = oldsd->output_queue; 9292 sd->output_queue_tailp = oldsd->output_queue_tailp; 9293 oldsd->output_queue = NULL; 9294 oldsd->output_queue_tailp = &oldsd->output_queue; 9295 } 9296 /* Append NAPI poll list from offline CPU, with one exception : 9297 * process_backlog() must be called by cpu owning percpu backlog. 9298 * We properly handle process_queue & input_pkt_queue later. 9299 */ 9300 while (!list_empty(&oldsd->poll_list)) { 9301 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9302 struct napi_struct, 9303 poll_list); 9304 9305 list_del_init(&napi->poll_list); 9306 if (napi->poll == process_backlog) 9307 napi->state = 0; 9308 else 9309 ____napi_schedule(sd, napi); 9310 } 9311 9312 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9313 local_irq_enable(); 9314 9315 #ifdef CONFIG_RPS 9316 remsd = oldsd->rps_ipi_list; 9317 oldsd->rps_ipi_list = NULL; 9318 #endif 9319 /* send out pending IPI's on offline CPU */ 9320 net_rps_send_ipi(remsd); 9321 9322 /* Process offline CPU's input_pkt_queue */ 9323 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9324 netif_rx_ni(skb); 9325 input_queue_head_incr(oldsd); 9326 } 9327 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9328 netif_rx_ni(skb); 9329 input_queue_head_incr(oldsd); 9330 } 9331 9332 return 0; 9333 } 9334 9335 /** 9336 * netdev_increment_features - increment feature set by one 9337 * @all: current feature set 9338 * @one: new feature set 9339 * @mask: mask feature set 9340 * 9341 * Computes a new feature set after adding a device with feature set 9342 * @one to the master device with current feature set @all. Will not 9343 * enable anything that is off in @mask. Returns the new feature set. 9344 */ 9345 netdev_features_t netdev_increment_features(netdev_features_t all, 9346 netdev_features_t one, netdev_features_t mask) 9347 { 9348 if (mask & NETIF_F_HW_CSUM) 9349 mask |= NETIF_F_CSUM_MASK; 9350 mask |= NETIF_F_VLAN_CHALLENGED; 9351 9352 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9353 all &= one | ~NETIF_F_ALL_FOR_ALL; 9354 9355 /* If one device supports hw checksumming, set for all. */ 9356 if (all & NETIF_F_HW_CSUM) 9357 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9358 9359 return all; 9360 } 9361 EXPORT_SYMBOL(netdev_increment_features); 9362 9363 static struct hlist_head * __net_init netdev_create_hash(void) 9364 { 9365 int i; 9366 struct hlist_head *hash; 9367 9368 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9369 if (hash != NULL) 9370 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9371 INIT_HLIST_HEAD(&hash[i]); 9372 9373 return hash; 9374 } 9375 9376 /* Initialize per network namespace state */ 9377 static int __net_init netdev_init(struct net *net) 9378 { 9379 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9380 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9381 9382 if (net != &init_net) 9383 INIT_LIST_HEAD(&net->dev_base_head); 9384 9385 net->dev_name_head = netdev_create_hash(); 9386 if (net->dev_name_head == NULL) 9387 goto err_name; 9388 9389 net->dev_index_head = netdev_create_hash(); 9390 if (net->dev_index_head == NULL) 9391 goto err_idx; 9392 9393 return 0; 9394 9395 err_idx: 9396 kfree(net->dev_name_head); 9397 err_name: 9398 return -ENOMEM; 9399 } 9400 9401 /** 9402 * netdev_drivername - network driver for the device 9403 * @dev: network device 9404 * 9405 * Determine network driver for device. 9406 */ 9407 const char *netdev_drivername(const struct net_device *dev) 9408 { 9409 const struct device_driver *driver; 9410 const struct device *parent; 9411 const char *empty = ""; 9412 9413 parent = dev->dev.parent; 9414 if (!parent) 9415 return empty; 9416 9417 driver = parent->driver; 9418 if (driver && driver->name) 9419 return driver->name; 9420 return empty; 9421 } 9422 9423 static void __netdev_printk(const char *level, const struct net_device *dev, 9424 struct va_format *vaf) 9425 { 9426 if (dev && dev->dev.parent) { 9427 dev_printk_emit(level[1] - '0', 9428 dev->dev.parent, 9429 "%s %s %s%s: %pV", 9430 dev_driver_string(dev->dev.parent), 9431 dev_name(dev->dev.parent), 9432 netdev_name(dev), netdev_reg_state(dev), 9433 vaf); 9434 } else if (dev) { 9435 printk("%s%s%s: %pV", 9436 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9437 } else { 9438 printk("%s(NULL net_device): %pV", level, vaf); 9439 } 9440 } 9441 9442 void netdev_printk(const char *level, const struct net_device *dev, 9443 const char *format, ...) 9444 { 9445 struct va_format vaf; 9446 va_list args; 9447 9448 va_start(args, format); 9449 9450 vaf.fmt = format; 9451 vaf.va = &args; 9452 9453 __netdev_printk(level, dev, &vaf); 9454 9455 va_end(args); 9456 } 9457 EXPORT_SYMBOL(netdev_printk); 9458 9459 #define define_netdev_printk_level(func, level) \ 9460 void func(const struct net_device *dev, const char *fmt, ...) \ 9461 { \ 9462 struct va_format vaf; \ 9463 va_list args; \ 9464 \ 9465 va_start(args, fmt); \ 9466 \ 9467 vaf.fmt = fmt; \ 9468 vaf.va = &args; \ 9469 \ 9470 __netdev_printk(level, dev, &vaf); \ 9471 \ 9472 va_end(args); \ 9473 } \ 9474 EXPORT_SYMBOL(func); 9475 9476 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9477 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9478 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9479 define_netdev_printk_level(netdev_err, KERN_ERR); 9480 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9481 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9482 define_netdev_printk_level(netdev_info, KERN_INFO); 9483 9484 static void __net_exit netdev_exit(struct net *net) 9485 { 9486 kfree(net->dev_name_head); 9487 kfree(net->dev_index_head); 9488 if (net != &init_net) 9489 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9490 } 9491 9492 static struct pernet_operations __net_initdata netdev_net_ops = { 9493 .init = netdev_init, 9494 .exit = netdev_exit, 9495 }; 9496 9497 static void __net_exit default_device_exit(struct net *net) 9498 { 9499 struct net_device *dev, *aux; 9500 /* 9501 * Push all migratable network devices back to the 9502 * initial network namespace 9503 */ 9504 rtnl_lock(); 9505 for_each_netdev_safe(net, dev, aux) { 9506 int err; 9507 char fb_name[IFNAMSIZ]; 9508 9509 /* Ignore unmoveable devices (i.e. loopback) */ 9510 if (dev->features & NETIF_F_NETNS_LOCAL) 9511 continue; 9512 9513 /* Leave virtual devices for the generic cleanup */ 9514 if (dev->rtnl_link_ops) 9515 continue; 9516 9517 /* Push remaining network devices to init_net */ 9518 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9519 err = dev_change_net_namespace(dev, &init_net, fb_name); 9520 if (err) { 9521 pr_emerg("%s: failed to move %s to init_net: %d\n", 9522 __func__, dev->name, err); 9523 BUG(); 9524 } 9525 } 9526 rtnl_unlock(); 9527 } 9528 9529 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9530 { 9531 /* Return with the rtnl_lock held when there are no network 9532 * devices unregistering in any network namespace in net_list. 9533 */ 9534 struct net *net; 9535 bool unregistering; 9536 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9537 9538 add_wait_queue(&netdev_unregistering_wq, &wait); 9539 for (;;) { 9540 unregistering = false; 9541 rtnl_lock(); 9542 list_for_each_entry(net, net_list, exit_list) { 9543 if (net->dev_unreg_count > 0) { 9544 unregistering = true; 9545 break; 9546 } 9547 } 9548 if (!unregistering) 9549 break; 9550 __rtnl_unlock(); 9551 9552 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9553 } 9554 remove_wait_queue(&netdev_unregistering_wq, &wait); 9555 } 9556 9557 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9558 { 9559 /* At exit all network devices most be removed from a network 9560 * namespace. Do this in the reverse order of registration. 9561 * Do this across as many network namespaces as possible to 9562 * improve batching efficiency. 9563 */ 9564 struct net_device *dev; 9565 struct net *net; 9566 LIST_HEAD(dev_kill_list); 9567 9568 /* To prevent network device cleanup code from dereferencing 9569 * loopback devices or network devices that have been freed 9570 * wait here for all pending unregistrations to complete, 9571 * before unregistring the loopback device and allowing the 9572 * network namespace be freed. 9573 * 9574 * The netdev todo list containing all network devices 9575 * unregistrations that happen in default_device_exit_batch 9576 * will run in the rtnl_unlock() at the end of 9577 * default_device_exit_batch. 9578 */ 9579 rtnl_lock_unregistering(net_list); 9580 list_for_each_entry(net, net_list, exit_list) { 9581 for_each_netdev_reverse(net, dev) { 9582 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9583 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9584 else 9585 unregister_netdevice_queue(dev, &dev_kill_list); 9586 } 9587 } 9588 unregister_netdevice_many(&dev_kill_list); 9589 rtnl_unlock(); 9590 } 9591 9592 static struct pernet_operations __net_initdata default_device_ops = { 9593 .exit = default_device_exit, 9594 .exit_batch = default_device_exit_batch, 9595 }; 9596 9597 /* 9598 * Initialize the DEV module. At boot time this walks the device list and 9599 * unhooks any devices that fail to initialise (normally hardware not 9600 * present) and leaves us with a valid list of present and active devices. 9601 * 9602 */ 9603 9604 /* 9605 * This is called single threaded during boot, so no need 9606 * to take the rtnl semaphore. 9607 */ 9608 static int __init net_dev_init(void) 9609 { 9610 int i, rc = -ENOMEM; 9611 9612 BUG_ON(!dev_boot_phase); 9613 9614 if (dev_proc_init()) 9615 goto out; 9616 9617 if (netdev_kobject_init()) 9618 goto out; 9619 9620 INIT_LIST_HEAD(&ptype_all); 9621 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9622 INIT_LIST_HEAD(&ptype_base[i]); 9623 9624 INIT_LIST_HEAD(&offload_base); 9625 9626 if (register_pernet_subsys(&netdev_net_ops)) 9627 goto out; 9628 9629 /* 9630 * Initialise the packet receive queues. 9631 */ 9632 9633 for_each_possible_cpu(i) { 9634 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9635 struct softnet_data *sd = &per_cpu(softnet_data, i); 9636 9637 INIT_WORK(flush, flush_backlog); 9638 9639 skb_queue_head_init(&sd->input_pkt_queue); 9640 skb_queue_head_init(&sd->process_queue); 9641 #ifdef CONFIG_XFRM_OFFLOAD 9642 skb_queue_head_init(&sd->xfrm_backlog); 9643 #endif 9644 INIT_LIST_HEAD(&sd->poll_list); 9645 sd->output_queue_tailp = &sd->output_queue; 9646 #ifdef CONFIG_RPS 9647 sd->csd.func = rps_trigger_softirq; 9648 sd->csd.info = sd; 9649 sd->cpu = i; 9650 #endif 9651 9652 init_gro_hash(&sd->backlog); 9653 sd->backlog.poll = process_backlog; 9654 sd->backlog.weight = weight_p; 9655 } 9656 9657 dev_boot_phase = 0; 9658 9659 /* The loopback device is special if any other network devices 9660 * is present in a network namespace the loopback device must 9661 * be present. Since we now dynamically allocate and free the 9662 * loopback device ensure this invariant is maintained by 9663 * keeping the loopback device as the first device on the 9664 * list of network devices. Ensuring the loopback devices 9665 * is the first device that appears and the last network device 9666 * that disappears. 9667 */ 9668 if (register_pernet_device(&loopback_net_ops)) 9669 goto out; 9670 9671 if (register_pernet_device(&default_device_ops)) 9672 goto out; 9673 9674 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9675 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9676 9677 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9678 NULL, dev_cpu_dead); 9679 WARN_ON(rc < 0); 9680 rc = 0; 9681 out: 9682 return rc; 9683 } 9684 9685 subsys_initcall(net_dev_init); 9686