xref: /openbmc/linux/net/core/dev.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 
149 #include "net-sysfs.h"
150 
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 	if (dev->flags & IFF_UP)
1184 		return -EBUSY;
1185 
1186 	write_seqcount_begin(&devnet_rename_seq);
1187 
1188 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return 0;
1191 	}
1192 
1193 	memcpy(oldname, dev->name, IFNAMSIZ);
1194 
1195 	err = dev_get_valid_name(net, dev, newname);
1196 	if (err < 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return err;
1199 	}
1200 
1201 	if (oldname[0] && !strchr(oldname, '%'))
1202 		netdev_info(dev, "renamed from %s\n", oldname);
1203 
1204 	old_assign_type = dev->name_assign_type;
1205 	dev->name_assign_type = NET_NAME_RENAMED;
1206 
1207 rollback:
1208 	ret = device_rename(&dev->dev, dev->name);
1209 	if (ret) {
1210 		memcpy(dev->name, oldname, IFNAMSIZ);
1211 		dev->name_assign_type = old_assign_type;
1212 		write_seqcount_end(&devnet_rename_seq);
1213 		return ret;
1214 	}
1215 
1216 	write_seqcount_end(&devnet_rename_seq);
1217 
1218 	netdev_adjacent_rename_links(dev, oldname);
1219 
1220 	write_lock_bh(&dev_base_lock);
1221 	hlist_del_rcu(&dev->name_hlist);
1222 	write_unlock_bh(&dev_base_lock);
1223 
1224 	synchronize_rcu();
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 	ret = notifier_to_errno(ret);
1232 
1233 	if (ret) {
1234 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1235 		if (err >= 0) {
1236 			err = ret;
1237 			write_seqcount_begin(&devnet_rename_seq);
1238 			memcpy(dev->name, oldname, IFNAMSIZ);
1239 			memcpy(oldname, newname, IFNAMSIZ);
1240 			dev->name_assign_type = old_assign_type;
1241 			old_assign_type = NET_NAME_RENAMED;
1242 			goto rollback;
1243 		} else {
1244 			pr_err("%s: name change rollback failed: %d\n",
1245 			       dev->name, ret);
1246 		}
1247 	}
1248 
1249 	return err;
1250 }
1251 
1252 /**
1253  *	dev_set_alias - change ifalias of a device
1254  *	@dev: device
1255  *	@alias: name up to IFALIASZ
1256  *	@len: limit of bytes to copy from info
1257  *
1258  *	Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262 	struct dev_ifalias *new_alias = NULL;
1263 
1264 	if (len >= IFALIASZ)
1265 		return -EINVAL;
1266 
1267 	if (len) {
1268 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 		if (!new_alias)
1270 			return -ENOMEM;
1271 
1272 		memcpy(new_alias->ifalias, alias, len);
1273 		new_alias->ifalias[len] = 0;
1274 	}
1275 
1276 	mutex_lock(&ifalias_mutex);
1277 	rcu_swap_protected(dev->ifalias, new_alias,
1278 			   mutex_is_locked(&ifalias_mutex));
1279 	mutex_unlock(&ifalias_mutex);
1280 
1281 	if (new_alias)
1282 		kfree_rcu(new_alias, rcuhead);
1283 
1284 	return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287 
1288 /**
1289  *	dev_get_alias - get ifalias of a device
1290  *	@dev: device
1291  *	@name: buffer to store name of ifalias
1292  *	@len: size of buffer
1293  *
1294  *	get ifalias for a device.  Caller must make sure dev cannot go
1295  *	away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299 	const struct dev_ifalias *alias;
1300 	int ret = 0;
1301 
1302 	rcu_read_lock();
1303 	alias = rcu_dereference(dev->ifalias);
1304 	if (alias)
1305 		ret = snprintf(name, len, "%s", alias->ifalias);
1306 	rcu_read_unlock();
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  *	netdev_features_change - device changes features
1313  *	@dev: device to cause notification
1314  *
1315  *	Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322 
1323 /**
1324  *	netdev_state_change - device changes state
1325  *	@dev: device to cause notification
1326  *
1327  *	Called to indicate a device has changed state. This function calls
1328  *	the notifier chains for netdev_chain and sends a NEWLINK message
1329  *	to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333 	if (dev->flags & IFF_UP) {
1334 		struct netdev_notifier_change_info change_info = {
1335 			.info.dev = dev,
1336 		};
1337 
1338 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 					      &change_info.info);
1340 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 	}
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 	rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363 
1364 static int __dev_open(struct net_device *dev)
1365 {
1366 	const struct net_device_ops *ops = dev->netdev_ops;
1367 	int ret;
1368 
1369 	ASSERT_RTNL();
1370 
1371 	if (!netif_device_present(dev))
1372 		return -ENODEV;
1373 
1374 	/* Block netpoll from trying to do any rx path servicing.
1375 	 * If we don't do this there is a chance ndo_poll_controller
1376 	 * or ndo_poll may be running while we open the device
1377 	 */
1378 	netpoll_poll_disable(dev);
1379 
1380 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 	ret = notifier_to_errno(ret);
1382 	if (ret)
1383 		return ret;
1384 
1385 	set_bit(__LINK_STATE_START, &dev->state);
1386 
1387 	if (ops->ndo_validate_addr)
1388 		ret = ops->ndo_validate_addr(dev);
1389 
1390 	if (!ret && ops->ndo_open)
1391 		ret = ops->ndo_open(dev);
1392 
1393 	netpoll_poll_enable(dev);
1394 
1395 	if (ret)
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 	else {
1398 		dev->flags |= IFF_UP;
1399 		dev_set_rx_mode(dev);
1400 		dev_activate(dev);
1401 		add_device_randomness(dev->dev_addr, dev->addr_len);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  *	dev_open	- prepare an interface for use.
1409  *	@dev:	device to open
1410  *
1411  *	Takes a device from down to up state. The device's private open
1412  *	function is invoked and then the multicast lists are loaded. Finally
1413  *	the device is moved into the up state and a %NETDEV_UP message is
1414  *	sent to the netdev notifier chain.
1415  *
1416  *	Calling this function on an active interface is a nop. On a failure
1417  *	a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421 	int ret;
1422 
1423 	if (dev->flags & IFF_UP)
1424 		return 0;
1425 
1426 	ret = __dev_open(dev);
1427 	if (ret < 0)
1428 		return ret;
1429 
1430 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 	call_netdevice_notifiers(NETDEV_UP, dev);
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436 
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439 	struct net_device *dev;
1440 
1441 	ASSERT_RTNL();
1442 	might_sleep();
1443 
1444 	list_for_each_entry(dev, head, close_list) {
1445 		/* Temporarily disable netpoll until the interface is down */
1446 		netpoll_poll_disable(dev);
1447 
1448 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449 
1450 		clear_bit(__LINK_STATE_START, &dev->state);
1451 
1452 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1453 		 * can be even on different cpu. So just clear netif_running().
1454 		 *
1455 		 * dev->stop() will invoke napi_disable() on all of it's
1456 		 * napi_struct instances on this device.
1457 		 */
1458 		smp_mb__after_atomic(); /* Commit netif_running(). */
1459 	}
1460 
1461 	dev_deactivate_many(head);
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		const struct net_device_ops *ops = dev->netdev_ops;
1465 
1466 		/*
1467 		 *	Call the device specific close. This cannot fail.
1468 		 *	Only if device is UP
1469 		 *
1470 		 *	We allow it to be called even after a DETACH hot-plug
1471 		 *	event.
1472 		 */
1473 		if (ops->ndo_stop)
1474 			ops->ndo_stop(dev);
1475 
1476 		dev->flags &= ~IFF_UP;
1477 		netpoll_poll_enable(dev);
1478 	}
1479 }
1480 
1481 static void __dev_close(struct net_device *dev)
1482 {
1483 	LIST_HEAD(single);
1484 
1485 	list_add(&dev->close_list, &single);
1486 	__dev_close_many(&single);
1487 	list_del(&single);
1488 }
1489 
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492 	struct net_device *dev, *tmp;
1493 
1494 	/* Remove the devices that don't need to be closed */
1495 	list_for_each_entry_safe(dev, tmp, head, close_list)
1496 		if (!(dev->flags & IFF_UP))
1497 			list_del_init(&dev->close_list);
1498 
1499 	__dev_close_many(head);
1500 
1501 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 		if (unlink)
1505 			list_del_init(&dev->close_list);
1506 	}
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509 
1510 /**
1511  *	dev_close - shutdown an interface.
1512  *	@dev: device to shutdown
1513  *
1514  *	This function moves an active device into down state. A
1515  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *	chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521 	if (dev->flags & IFF_UP) {
1522 		LIST_HEAD(single);
1523 
1524 		list_add(&dev->close_list, &single);
1525 		dev_close_many(&single, true);
1526 		list_del(&single);
1527 	}
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530 
1531 
1532 /**
1533  *	dev_disable_lro - disable Large Receive Offload on a device
1534  *	@dev: device
1535  *
1536  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *	called under RTNL.  This is needed if received packets may be
1538  *	forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542 	struct net_device *lower_dev;
1543 	struct list_head *iter;
1544 
1545 	dev->wanted_features &= ~NETIF_F_LRO;
1546 	netdev_update_features(dev);
1547 
1548 	if (unlikely(dev->features & NETIF_F_LRO))
1549 		netdev_WARN(dev, "failed to disable LRO!\n");
1550 
1551 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 		dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555 
1556 /**
1557  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *	@dev: device
1559  *
1560  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *	called under RTNL.  This is needed if Generic XDP is installed on
1562  *	the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 	netdev_update_features(dev);
1568 
1569 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572 
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val) 						\
1576 	case NETDEV_##val:				\
1577 		return "NETDEV_" __stringify(val);
1578 	switch (cmd) {
1579 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 	}
1589 #undef N
1590 	return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593 
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 				   struct net_device *dev)
1596 {
1597 	struct netdev_notifier_info info = {
1598 		.dev = dev,
1599 	};
1600 
1601 	return nb->notifier_call(nb, val, &info);
1602 }
1603 
1604 static int dev_boot_phase = 1;
1605 
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619 
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 	struct net_device *dev;
1623 	struct net_device *last;
1624 	struct net *net;
1625 	int err;
1626 
1627 	/* Close race with setup_net() and cleanup_net() */
1628 	down_write(&pernet_ops_rwsem);
1629 	rtnl_lock();
1630 	err = raw_notifier_chain_register(&netdev_chain, nb);
1631 	if (err)
1632 		goto unlock;
1633 	if (dev_boot_phase)
1634 		goto unlock;
1635 	for_each_net(net) {
1636 		for_each_netdev(net, dev) {
1637 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 			err = notifier_to_errno(err);
1639 			if (err)
1640 				goto rollback;
1641 
1642 			if (!(dev->flags & IFF_UP))
1643 				continue;
1644 
1645 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 		}
1647 	}
1648 
1649 unlock:
1650 	rtnl_unlock();
1651 	up_write(&pernet_ops_rwsem);
1652 	return err;
1653 
1654 rollback:
1655 	last = dev;
1656 	for_each_net(net) {
1657 		for_each_netdev(net, dev) {
1658 			if (dev == last)
1659 				goto outroll;
1660 
1661 			if (dev->flags & IFF_UP) {
1662 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 							dev);
1664 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 			}
1666 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 		}
1668 	}
1669 
1670 outroll:
1671 	raw_notifier_chain_unregister(&netdev_chain, nb);
1672 	goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675 
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689 
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692 	struct net_device *dev;
1693 	struct net *net;
1694 	int err;
1695 
1696 	/* Close race with setup_net() and cleanup_net() */
1697 	down_write(&pernet_ops_rwsem);
1698 	rtnl_lock();
1699 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 	if (err)
1701 		goto unlock;
1702 
1703 	for_each_net(net) {
1704 		for_each_netdev(net, dev) {
1705 			if (dev->flags & IFF_UP) {
1706 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 							dev);
1708 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 			}
1710 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 		}
1712 	}
1713 unlock:
1714 	rtnl_unlock();
1715 	up_write(&pernet_ops_rwsem);
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719 
1720 /**
1721  *	call_netdevice_notifiers_info - call all network notifier blocks
1722  *	@val: value passed unmodified to notifier function
1723  *	@info: notifier information data
1724  *
1725  *	Call all network notifier blocks.  Parameters and return value
1726  *	are as for raw_notifier_call_chain().
1727  */
1728 
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 					 struct netdev_notifier_info *info)
1731 {
1732 	ASSERT_RTNL();
1733 	return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735 
1736 /**
1737  *	call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747 	struct netdev_notifier_info info = {
1748 		.dev = dev,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754 
1755 /**
1756  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1757  *	@val: value passed unmodified to notifier function
1758  *	@dev: net_device pointer passed unmodified to notifier function
1759  *	@arg: additional u32 argument passed to the notifier function
1760  *
1761  *	Call all network notifier blocks.  Parameters and return value
1762  *	are as for raw_notifier_call_chain().
1763  */
1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765 					struct net_device *dev, u32 arg)
1766 {
1767 	struct netdev_notifier_info_ext info = {
1768 		.info.dev = dev,
1769 		.ext.mtu = arg,
1770 	};
1771 
1772 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773 
1774 	return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776 
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779 
1780 void net_inc_ingress_queue(void)
1781 {
1782 	static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785 
1786 void net_dec_ingress_queue(void)
1787 {
1788 	static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792 
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795 
1796 void net_inc_egress_queue(void)
1797 {
1798 	static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801 
1802 void net_dec_egress_queue(void)
1803 {
1804 	static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808 
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816 	int wanted;
1817 
1818 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1819 	if (wanted > 0)
1820 		static_branch_enable(&netstamp_needed_key);
1821 	else
1822 		static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826 
1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 	int wanted;
1831 
1832 	while (1) {
1833 		wanted = atomic_read(&netstamp_wanted);
1834 		if (wanted <= 0)
1835 			break;
1836 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837 			return;
1838 	}
1839 	atomic_inc(&netstamp_needed_deferred);
1840 	schedule_work(&netstamp_work);
1841 #else
1842 	static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846 
1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850 	int wanted;
1851 
1852 	while (1) {
1853 		wanted = atomic_read(&netstamp_wanted);
1854 		if (wanted <= 1)
1855 			break;
1856 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857 			return;
1858 	}
1859 	atomic_dec(&netstamp_needed_deferred);
1860 	schedule_work(&netstamp_work);
1861 #else
1862 	static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866 
1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869 	skb->tstamp = 0;
1870 	if (static_branch_unlikely(&netstamp_needed_key))
1871 		__net_timestamp(skb);
1872 }
1873 
1874 #define net_timestamp_check(COND, SKB)				\
1875 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1876 		if ((COND) && !(SKB)->tstamp)			\
1877 			__net_timestamp(SKB);			\
1878 	}							\
1879 
1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882 	unsigned int len;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return false;
1886 
1887 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888 	if (skb->len <= len)
1889 		return true;
1890 
1891 	/* if TSO is enabled, we don't care about the length as the packet
1892 	 * could be forwarded without being segmented before
1893 	 */
1894 	if (skb_is_gso(skb))
1895 		return true;
1896 
1897 	return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900 
1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903 	int ret = ____dev_forward_skb(dev, skb);
1904 
1905 	if (likely(!ret)) {
1906 		skb->protocol = eth_type_trans(skb, dev);
1907 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908 	}
1909 
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913 
1914 /**
1915  * dev_forward_skb - loopback an skb to another netif
1916  *
1917  * @dev: destination network device
1918  * @skb: buffer to forward
1919  *
1920  * return values:
1921  *	NET_RX_SUCCESS	(no congestion)
1922  *	NET_RX_DROP     (packet was dropped, but freed)
1923  *
1924  * dev_forward_skb can be used for injecting an skb from the
1925  * start_xmit function of one device into the receive queue
1926  * of another device.
1927  *
1928  * The receiving device may be in another namespace, so
1929  * we have to clear all information in the skb that could
1930  * impact namespace isolation.
1931  */
1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937 
1938 static inline int deliver_skb(struct sk_buff *skb,
1939 			      struct packet_type *pt_prev,
1940 			      struct net_device *orig_dev)
1941 {
1942 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943 		return -ENOMEM;
1944 	refcount_inc(&skb->users);
1945 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947 
1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949 					  struct packet_type **pt,
1950 					  struct net_device *orig_dev,
1951 					  __be16 type,
1952 					  struct list_head *ptype_list)
1953 {
1954 	struct packet_type *ptype, *pt_prev = *pt;
1955 
1956 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1957 		if (ptype->type != type)
1958 			continue;
1959 		if (pt_prev)
1960 			deliver_skb(skb, pt_prev, orig_dev);
1961 		pt_prev = ptype;
1962 	}
1963 	*pt = pt_prev;
1964 }
1965 
1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968 	if (!ptype->af_packet_priv || !skb->sk)
1969 		return false;
1970 
1971 	if (ptype->id_match)
1972 		return ptype->id_match(ptype, skb->sk);
1973 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974 		return true;
1975 
1976 	return false;
1977 }
1978 
1979 /**
1980  * dev_nit_active - return true if any network interface taps are in use
1981  *
1982  * @dev: network device to check for the presence of taps
1983  */
1984 bool dev_nit_active(struct net_device *dev)
1985 {
1986 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987 }
1988 EXPORT_SYMBOL_GPL(dev_nit_active);
1989 
1990 /*
1991  *	Support routine. Sends outgoing frames to any network
1992  *	taps currently in use.
1993  */
1994 
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997 	struct packet_type *ptype;
1998 	struct sk_buff *skb2 = NULL;
1999 	struct packet_type *pt_prev = NULL;
2000 	struct list_head *ptype_list = &ptype_all;
2001 
2002 	rcu_read_lock();
2003 again:
2004 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 		if (ptype->ignore_outgoing)
2006 			continue;
2007 
2008 		/* Never send packets back to the socket
2009 		 * they originated from - MvS (miquels@drinkel.ow.org)
2010 		 */
2011 		if (skb_loop_sk(ptype, skb))
2012 			continue;
2013 
2014 		if (pt_prev) {
2015 			deliver_skb(skb2, pt_prev, skb->dev);
2016 			pt_prev = ptype;
2017 			continue;
2018 		}
2019 
2020 		/* need to clone skb, done only once */
2021 		skb2 = skb_clone(skb, GFP_ATOMIC);
2022 		if (!skb2)
2023 			goto out_unlock;
2024 
2025 		net_timestamp_set(skb2);
2026 
2027 		/* skb->nh should be correctly
2028 		 * set by sender, so that the second statement is
2029 		 * just protection against buggy protocols.
2030 		 */
2031 		skb_reset_mac_header(skb2);
2032 
2033 		if (skb_network_header(skb2) < skb2->data ||
2034 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036 					     ntohs(skb2->protocol),
2037 					     dev->name);
2038 			skb_reset_network_header(skb2);
2039 		}
2040 
2041 		skb2->transport_header = skb2->network_header;
2042 		skb2->pkt_type = PACKET_OUTGOING;
2043 		pt_prev = ptype;
2044 	}
2045 
2046 	if (ptype_list == &ptype_all) {
2047 		ptype_list = &dev->ptype_all;
2048 		goto again;
2049 	}
2050 out_unlock:
2051 	if (pt_prev) {
2052 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054 		else
2055 			kfree_skb(skb2);
2056 	}
2057 	rcu_read_unlock();
2058 }
2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060 
2061 /**
2062  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063  * @dev: Network device
2064  * @txq: number of queues available
2065  *
2066  * If real_num_tx_queues is changed the tc mappings may no longer be
2067  * valid. To resolve this verify the tc mapping remains valid and if
2068  * not NULL the mapping. With no priorities mapping to this
2069  * offset/count pair it will no longer be used. In the worst case TC0
2070  * is invalid nothing can be done so disable priority mappings. If is
2071  * expected that drivers will fix this mapping if they can before
2072  * calling netif_set_real_num_tx_queues.
2073  */
2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075 {
2076 	int i;
2077 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078 
2079 	/* If TC0 is invalidated disable TC mapping */
2080 	if (tc->offset + tc->count > txq) {
2081 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082 		dev->num_tc = 0;
2083 		return;
2084 	}
2085 
2086 	/* Invalidated prio to tc mappings set to TC0 */
2087 	for (i = 1; i < TC_BITMASK + 1; i++) {
2088 		int q = netdev_get_prio_tc_map(dev, i);
2089 
2090 		tc = &dev->tc_to_txq[q];
2091 		if (tc->offset + tc->count > txq) {
2092 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093 				i, q);
2094 			netdev_set_prio_tc_map(dev, i, 0);
2095 		}
2096 	}
2097 }
2098 
2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100 {
2101 	if (dev->num_tc) {
2102 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103 		int i;
2104 
2105 		/* walk through the TCs and see if it falls into any of them */
2106 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107 			if ((txq - tc->offset) < tc->count)
2108 				return i;
2109 		}
2110 
2111 		/* didn't find it, just return -1 to indicate no match */
2112 		return -1;
2113 	}
2114 
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL(netdev_txq_to_tc);
2118 
2119 #ifdef CONFIG_XPS
2120 struct static_key xps_needed __read_mostly;
2121 EXPORT_SYMBOL(xps_needed);
2122 struct static_key xps_rxqs_needed __read_mostly;
2123 EXPORT_SYMBOL(xps_rxqs_needed);
2124 static DEFINE_MUTEX(xps_map_mutex);
2125 #define xmap_dereference(P)		\
2126 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127 
2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129 			     int tci, u16 index)
2130 {
2131 	struct xps_map *map = NULL;
2132 	int pos;
2133 
2134 	if (dev_maps)
2135 		map = xmap_dereference(dev_maps->attr_map[tci]);
2136 	if (!map)
2137 		return false;
2138 
2139 	for (pos = map->len; pos--;) {
2140 		if (map->queues[pos] != index)
2141 			continue;
2142 
2143 		if (map->len > 1) {
2144 			map->queues[pos] = map->queues[--map->len];
2145 			break;
2146 		}
2147 
2148 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149 		kfree_rcu(map, rcu);
2150 		return false;
2151 	}
2152 
2153 	return true;
2154 }
2155 
2156 static bool remove_xps_queue_cpu(struct net_device *dev,
2157 				 struct xps_dev_maps *dev_maps,
2158 				 int cpu, u16 offset, u16 count)
2159 {
2160 	int num_tc = dev->num_tc ? : 1;
2161 	bool active = false;
2162 	int tci;
2163 
2164 	for (tci = cpu * num_tc; num_tc--; tci++) {
2165 		int i, j;
2166 
2167 		for (i = count, j = offset; i--; j++) {
2168 			if (!remove_xps_queue(dev_maps, tci, j))
2169 				break;
2170 		}
2171 
2172 		active |= i < 0;
2173 	}
2174 
2175 	return active;
2176 }
2177 
2178 static void reset_xps_maps(struct net_device *dev,
2179 			   struct xps_dev_maps *dev_maps,
2180 			   bool is_rxqs_map)
2181 {
2182 	if (is_rxqs_map) {
2183 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2184 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2185 	} else {
2186 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2187 	}
2188 	static_key_slow_dec_cpuslocked(&xps_needed);
2189 	kfree_rcu(dev_maps, rcu);
2190 }
2191 
2192 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2193 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2194 			   u16 offset, u16 count, bool is_rxqs_map)
2195 {
2196 	bool active = false;
2197 	int i, j;
2198 
2199 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2200 	     j < nr_ids;)
2201 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2202 					       count);
2203 	if (!active)
2204 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2205 
2206 	if (!is_rxqs_map) {
2207 		for (i = offset + (count - 1); count--; i--) {
2208 			netdev_queue_numa_node_write(
2209 				netdev_get_tx_queue(dev, i),
2210 				NUMA_NO_NODE);
2211 		}
2212 	}
2213 }
2214 
2215 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2216 				   u16 count)
2217 {
2218 	const unsigned long *possible_mask = NULL;
2219 	struct xps_dev_maps *dev_maps;
2220 	unsigned int nr_ids;
2221 
2222 	if (!static_key_false(&xps_needed))
2223 		return;
2224 
2225 	cpus_read_lock();
2226 	mutex_lock(&xps_map_mutex);
2227 
2228 	if (static_key_false(&xps_rxqs_needed)) {
2229 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2230 		if (dev_maps) {
2231 			nr_ids = dev->num_rx_queues;
2232 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2233 				       offset, count, true);
2234 		}
2235 	}
2236 
2237 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2238 	if (!dev_maps)
2239 		goto out_no_maps;
2240 
2241 	if (num_possible_cpus() > 1)
2242 		possible_mask = cpumask_bits(cpu_possible_mask);
2243 	nr_ids = nr_cpu_ids;
2244 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2245 		       false);
2246 
2247 out_no_maps:
2248 	mutex_unlock(&xps_map_mutex);
2249 	cpus_read_unlock();
2250 }
2251 
2252 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2253 {
2254 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2255 }
2256 
2257 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2258 				      u16 index, bool is_rxqs_map)
2259 {
2260 	struct xps_map *new_map;
2261 	int alloc_len = XPS_MIN_MAP_ALLOC;
2262 	int i, pos;
2263 
2264 	for (pos = 0; map && pos < map->len; pos++) {
2265 		if (map->queues[pos] != index)
2266 			continue;
2267 		return map;
2268 	}
2269 
2270 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2271 	if (map) {
2272 		if (pos < map->alloc_len)
2273 			return map;
2274 
2275 		alloc_len = map->alloc_len * 2;
2276 	}
2277 
2278 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2279 	 *  map
2280 	 */
2281 	if (is_rxqs_map)
2282 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2283 	else
2284 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2285 				       cpu_to_node(attr_index));
2286 	if (!new_map)
2287 		return NULL;
2288 
2289 	for (i = 0; i < pos; i++)
2290 		new_map->queues[i] = map->queues[i];
2291 	new_map->alloc_len = alloc_len;
2292 	new_map->len = pos;
2293 
2294 	return new_map;
2295 }
2296 
2297 /* Must be called under cpus_read_lock */
2298 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2299 			  u16 index, bool is_rxqs_map)
2300 {
2301 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2302 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2303 	int i, j, tci, numa_node_id = -2;
2304 	int maps_sz, num_tc = 1, tc = 0;
2305 	struct xps_map *map, *new_map;
2306 	bool active = false;
2307 	unsigned int nr_ids;
2308 
2309 	if (dev->num_tc) {
2310 		/* Do not allow XPS on subordinate device directly */
2311 		num_tc = dev->num_tc;
2312 		if (num_tc < 0)
2313 			return -EINVAL;
2314 
2315 		/* If queue belongs to subordinate dev use its map */
2316 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2317 
2318 		tc = netdev_txq_to_tc(dev, index);
2319 		if (tc < 0)
2320 			return -EINVAL;
2321 	}
2322 
2323 	mutex_lock(&xps_map_mutex);
2324 	if (is_rxqs_map) {
2325 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2326 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2327 		nr_ids = dev->num_rx_queues;
2328 	} else {
2329 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2330 		if (num_possible_cpus() > 1) {
2331 			online_mask = cpumask_bits(cpu_online_mask);
2332 			possible_mask = cpumask_bits(cpu_possible_mask);
2333 		}
2334 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2335 		nr_ids = nr_cpu_ids;
2336 	}
2337 
2338 	if (maps_sz < L1_CACHE_BYTES)
2339 		maps_sz = L1_CACHE_BYTES;
2340 
2341 	/* allocate memory for queue storage */
2342 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2343 	     j < nr_ids;) {
2344 		if (!new_dev_maps)
2345 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2346 		if (!new_dev_maps) {
2347 			mutex_unlock(&xps_map_mutex);
2348 			return -ENOMEM;
2349 		}
2350 
2351 		tci = j * num_tc + tc;
2352 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2353 				 NULL;
2354 
2355 		map = expand_xps_map(map, j, index, is_rxqs_map);
2356 		if (!map)
2357 			goto error;
2358 
2359 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2360 	}
2361 
2362 	if (!new_dev_maps)
2363 		goto out_no_new_maps;
2364 
2365 	if (!dev_maps) {
2366 		/* Increment static keys at most once per type */
2367 		static_key_slow_inc_cpuslocked(&xps_needed);
2368 		if (is_rxqs_map)
2369 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2370 	}
2371 
2372 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2373 	     j < nr_ids;) {
2374 		/* copy maps belonging to foreign traffic classes */
2375 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2376 			/* fill in the new device map from the old device map */
2377 			map = xmap_dereference(dev_maps->attr_map[tci]);
2378 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2379 		}
2380 
2381 		/* We need to explicitly update tci as prevous loop
2382 		 * could break out early if dev_maps is NULL.
2383 		 */
2384 		tci = j * num_tc + tc;
2385 
2386 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2387 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2388 			/* add tx-queue to CPU/rx-queue maps */
2389 			int pos = 0;
2390 
2391 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2392 			while ((pos < map->len) && (map->queues[pos] != index))
2393 				pos++;
2394 
2395 			if (pos == map->len)
2396 				map->queues[map->len++] = index;
2397 #ifdef CONFIG_NUMA
2398 			if (!is_rxqs_map) {
2399 				if (numa_node_id == -2)
2400 					numa_node_id = cpu_to_node(j);
2401 				else if (numa_node_id != cpu_to_node(j))
2402 					numa_node_id = -1;
2403 			}
2404 #endif
2405 		} else if (dev_maps) {
2406 			/* fill in the new device map from the old device map */
2407 			map = xmap_dereference(dev_maps->attr_map[tci]);
2408 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2409 		}
2410 
2411 		/* copy maps belonging to foreign traffic classes */
2412 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2413 			/* fill in the new device map from the old device map */
2414 			map = xmap_dereference(dev_maps->attr_map[tci]);
2415 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2416 		}
2417 	}
2418 
2419 	if (is_rxqs_map)
2420 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2421 	else
2422 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2423 
2424 	/* Cleanup old maps */
2425 	if (!dev_maps)
2426 		goto out_no_old_maps;
2427 
2428 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2429 	     j < nr_ids;) {
2430 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2431 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2432 			map = xmap_dereference(dev_maps->attr_map[tci]);
2433 			if (map && map != new_map)
2434 				kfree_rcu(map, rcu);
2435 		}
2436 	}
2437 
2438 	kfree_rcu(dev_maps, rcu);
2439 
2440 out_no_old_maps:
2441 	dev_maps = new_dev_maps;
2442 	active = true;
2443 
2444 out_no_new_maps:
2445 	if (!is_rxqs_map) {
2446 		/* update Tx queue numa node */
2447 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2448 					     (numa_node_id >= 0) ?
2449 					     numa_node_id : NUMA_NO_NODE);
2450 	}
2451 
2452 	if (!dev_maps)
2453 		goto out_no_maps;
2454 
2455 	/* removes tx-queue from unused CPUs/rx-queues */
2456 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457 	     j < nr_ids;) {
2458 		for (i = tc, tci = j * num_tc; i--; tci++)
2459 			active |= remove_xps_queue(dev_maps, tci, index);
2460 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2461 		    !netif_attr_test_online(j, online_mask, nr_ids))
2462 			active |= remove_xps_queue(dev_maps, tci, index);
2463 		for (i = num_tc - tc, tci++; --i; tci++)
2464 			active |= remove_xps_queue(dev_maps, tci, index);
2465 	}
2466 
2467 	/* free map if not active */
2468 	if (!active)
2469 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2470 
2471 out_no_maps:
2472 	mutex_unlock(&xps_map_mutex);
2473 
2474 	return 0;
2475 error:
2476 	/* remove any maps that we added */
2477 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2478 	     j < nr_ids;) {
2479 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2480 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2481 			map = dev_maps ?
2482 			      xmap_dereference(dev_maps->attr_map[tci]) :
2483 			      NULL;
2484 			if (new_map && new_map != map)
2485 				kfree(new_map);
2486 		}
2487 	}
2488 
2489 	mutex_unlock(&xps_map_mutex);
2490 
2491 	kfree(new_dev_maps);
2492 	return -ENOMEM;
2493 }
2494 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2495 
2496 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2497 			u16 index)
2498 {
2499 	int ret;
2500 
2501 	cpus_read_lock();
2502 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2503 	cpus_read_unlock();
2504 
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL(netif_set_xps_queue);
2508 
2509 #endif
2510 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2511 {
2512 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2513 
2514 	/* Unbind any subordinate channels */
2515 	while (txq-- != &dev->_tx[0]) {
2516 		if (txq->sb_dev)
2517 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2518 	}
2519 }
2520 
2521 void netdev_reset_tc(struct net_device *dev)
2522 {
2523 #ifdef CONFIG_XPS
2524 	netif_reset_xps_queues_gt(dev, 0);
2525 #endif
2526 	netdev_unbind_all_sb_channels(dev);
2527 
2528 	/* Reset TC configuration of device */
2529 	dev->num_tc = 0;
2530 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2531 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2532 }
2533 EXPORT_SYMBOL(netdev_reset_tc);
2534 
2535 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2536 {
2537 	if (tc >= dev->num_tc)
2538 		return -EINVAL;
2539 
2540 #ifdef CONFIG_XPS
2541 	netif_reset_xps_queues(dev, offset, count);
2542 #endif
2543 	dev->tc_to_txq[tc].count = count;
2544 	dev->tc_to_txq[tc].offset = offset;
2545 	return 0;
2546 }
2547 EXPORT_SYMBOL(netdev_set_tc_queue);
2548 
2549 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2550 {
2551 	if (num_tc > TC_MAX_QUEUE)
2552 		return -EINVAL;
2553 
2554 #ifdef CONFIG_XPS
2555 	netif_reset_xps_queues_gt(dev, 0);
2556 #endif
2557 	netdev_unbind_all_sb_channels(dev);
2558 
2559 	dev->num_tc = num_tc;
2560 	return 0;
2561 }
2562 EXPORT_SYMBOL(netdev_set_num_tc);
2563 
2564 void netdev_unbind_sb_channel(struct net_device *dev,
2565 			      struct net_device *sb_dev)
2566 {
2567 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2568 
2569 #ifdef CONFIG_XPS
2570 	netif_reset_xps_queues_gt(sb_dev, 0);
2571 #endif
2572 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2573 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2574 
2575 	while (txq-- != &dev->_tx[0]) {
2576 		if (txq->sb_dev == sb_dev)
2577 			txq->sb_dev = NULL;
2578 	}
2579 }
2580 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2581 
2582 int netdev_bind_sb_channel_queue(struct net_device *dev,
2583 				 struct net_device *sb_dev,
2584 				 u8 tc, u16 count, u16 offset)
2585 {
2586 	/* Make certain the sb_dev and dev are already configured */
2587 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2588 		return -EINVAL;
2589 
2590 	/* We cannot hand out queues we don't have */
2591 	if ((offset + count) > dev->real_num_tx_queues)
2592 		return -EINVAL;
2593 
2594 	/* Record the mapping */
2595 	sb_dev->tc_to_txq[tc].count = count;
2596 	sb_dev->tc_to_txq[tc].offset = offset;
2597 
2598 	/* Provide a way for Tx queue to find the tc_to_txq map or
2599 	 * XPS map for itself.
2600 	 */
2601 	while (count--)
2602 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2603 
2604 	return 0;
2605 }
2606 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2607 
2608 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2609 {
2610 	/* Do not use a multiqueue device to represent a subordinate channel */
2611 	if (netif_is_multiqueue(dev))
2612 		return -ENODEV;
2613 
2614 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2615 	 * Channel 0 is meant to be "native" mode and used only to represent
2616 	 * the main root device. We allow writing 0 to reset the device back
2617 	 * to normal mode after being used as a subordinate channel.
2618 	 */
2619 	if (channel > S16_MAX)
2620 		return -EINVAL;
2621 
2622 	dev->num_tc = -channel;
2623 
2624 	return 0;
2625 }
2626 EXPORT_SYMBOL(netdev_set_sb_channel);
2627 
2628 /*
2629  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2630  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2631  */
2632 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2633 {
2634 	bool disabling;
2635 	int rc;
2636 
2637 	disabling = txq < dev->real_num_tx_queues;
2638 
2639 	if (txq < 1 || txq > dev->num_tx_queues)
2640 		return -EINVAL;
2641 
2642 	if (dev->reg_state == NETREG_REGISTERED ||
2643 	    dev->reg_state == NETREG_UNREGISTERING) {
2644 		ASSERT_RTNL();
2645 
2646 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2647 						  txq);
2648 		if (rc)
2649 			return rc;
2650 
2651 		if (dev->num_tc)
2652 			netif_setup_tc(dev, txq);
2653 
2654 		dev->real_num_tx_queues = txq;
2655 
2656 		if (disabling) {
2657 			synchronize_net();
2658 			qdisc_reset_all_tx_gt(dev, txq);
2659 #ifdef CONFIG_XPS
2660 			netif_reset_xps_queues_gt(dev, txq);
2661 #endif
2662 		}
2663 	} else {
2664 		dev->real_num_tx_queues = txq;
2665 	}
2666 
2667 	return 0;
2668 }
2669 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2670 
2671 #ifdef CONFIG_SYSFS
2672 /**
2673  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2674  *	@dev: Network device
2675  *	@rxq: Actual number of RX queues
2676  *
2677  *	This must be called either with the rtnl_lock held or before
2678  *	registration of the net device.  Returns 0 on success, or a
2679  *	negative error code.  If called before registration, it always
2680  *	succeeds.
2681  */
2682 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2683 {
2684 	int rc;
2685 
2686 	if (rxq < 1 || rxq > dev->num_rx_queues)
2687 		return -EINVAL;
2688 
2689 	if (dev->reg_state == NETREG_REGISTERED) {
2690 		ASSERT_RTNL();
2691 
2692 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2693 						  rxq);
2694 		if (rc)
2695 			return rc;
2696 	}
2697 
2698 	dev->real_num_rx_queues = rxq;
2699 	return 0;
2700 }
2701 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2702 #endif
2703 
2704 /**
2705  * netif_get_num_default_rss_queues - default number of RSS queues
2706  *
2707  * This routine should set an upper limit on the number of RSS queues
2708  * used by default by multiqueue devices.
2709  */
2710 int netif_get_num_default_rss_queues(void)
2711 {
2712 	return is_kdump_kernel() ?
2713 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2714 }
2715 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2716 
2717 static void __netif_reschedule(struct Qdisc *q)
2718 {
2719 	struct softnet_data *sd;
2720 	unsigned long flags;
2721 
2722 	local_irq_save(flags);
2723 	sd = this_cpu_ptr(&softnet_data);
2724 	q->next_sched = NULL;
2725 	*sd->output_queue_tailp = q;
2726 	sd->output_queue_tailp = &q->next_sched;
2727 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2728 	local_irq_restore(flags);
2729 }
2730 
2731 void __netif_schedule(struct Qdisc *q)
2732 {
2733 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2734 		__netif_reschedule(q);
2735 }
2736 EXPORT_SYMBOL(__netif_schedule);
2737 
2738 struct dev_kfree_skb_cb {
2739 	enum skb_free_reason reason;
2740 };
2741 
2742 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2743 {
2744 	return (struct dev_kfree_skb_cb *)skb->cb;
2745 }
2746 
2747 void netif_schedule_queue(struct netdev_queue *txq)
2748 {
2749 	rcu_read_lock();
2750 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2751 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2752 
2753 		__netif_schedule(q);
2754 	}
2755 	rcu_read_unlock();
2756 }
2757 EXPORT_SYMBOL(netif_schedule_queue);
2758 
2759 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2760 {
2761 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2762 		struct Qdisc *q;
2763 
2764 		rcu_read_lock();
2765 		q = rcu_dereference(dev_queue->qdisc);
2766 		__netif_schedule(q);
2767 		rcu_read_unlock();
2768 	}
2769 }
2770 EXPORT_SYMBOL(netif_tx_wake_queue);
2771 
2772 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2773 {
2774 	unsigned long flags;
2775 
2776 	if (unlikely(!skb))
2777 		return;
2778 
2779 	if (likely(refcount_read(&skb->users) == 1)) {
2780 		smp_rmb();
2781 		refcount_set(&skb->users, 0);
2782 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2783 		return;
2784 	}
2785 	get_kfree_skb_cb(skb)->reason = reason;
2786 	local_irq_save(flags);
2787 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2788 	__this_cpu_write(softnet_data.completion_queue, skb);
2789 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2790 	local_irq_restore(flags);
2791 }
2792 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2793 
2794 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2795 {
2796 	if (in_irq() || irqs_disabled())
2797 		__dev_kfree_skb_irq(skb, reason);
2798 	else
2799 		dev_kfree_skb(skb);
2800 }
2801 EXPORT_SYMBOL(__dev_kfree_skb_any);
2802 
2803 
2804 /**
2805  * netif_device_detach - mark device as removed
2806  * @dev: network device
2807  *
2808  * Mark device as removed from system and therefore no longer available.
2809  */
2810 void netif_device_detach(struct net_device *dev)
2811 {
2812 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2813 	    netif_running(dev)) {
2814 		netif_tx_stop_all_queues(dev);
2815 	}
2816 }
2817 EXPORT_SYMBOL(netif_device_detach);
2818 
2819 /**
2820  * netif_device_attach - mark device as attached
2821  * @dev: network device
2822  *
2823  * Mark device as attached from system and restart if needed.
2824  */
2825 void netif_device_attach(struct net_device *dev)
2826 {
2827 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2828 	    netif_running(dev)) {
2829 		netif_tx_wake_all_queues(dev);
2830 		__netdev_watchdog_up(dev);
2831 	}
2832 }
2833 EXPORT_SYMBOL(netif_device_attach);
2834 
2835 /*
2836  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2837  * to be used as a distribution range.
2838  */
2839 static u16 skb_tx_hash(const struct net_device *dev,
2840 		       const struct net_device *sb_dev,
2841 		       struct sk_buff *skb)
2842 {
2843 	u32 hash;
2844 	u16 qoffset = 0;
2845 	u16 qcount = dev->real_num_tx_queues;
2846 
2847 	if (dev->num_tc) {
2848 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2849 
2850 		qoffset = sb_dev->tc_to_txq[tc].offset;
2851 		qcount = sb_dev->tc_to_txq[tc].count;
2852 	}
2853 
2854 	if (skb_rx_queue_recorded(skb)) {
2855 		hash = skb_get_rx_queue(skb);
2856 		while (unlikely(hash >= qcount))
2857 			hash -= qcount;
2858 		return hash + qoffset;
2859 	}
2860 
2861 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2862 }
2863 
2864 static void skb_warn_bad_offload(const struct sk_buff *skb)
2865 {
2866 	static const netdev_features_t null_features;
2867 	struct net_device *dev = skb->dev;
2868 	const char *name = "";
2869 
2870 	if (!net_ratelimit())
2871 		return;
2872 
2873 	if (dev) {
2874 		if (dev->dev.parent)
2875 			name = dev_driver_string(dev->dev.parent);
2876 		else
2877 			name = netdev_name(dev);
2878 	}
2879 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2880 	     "gso_type=%d ip_summed=%d\n",
2881 	     name, dev ? &dev->features : &null_features,
2882 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2883 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2884 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2885 }
2886 
2887 /*
2888  * Invalidate hardware checksum when packet is to be mangled, and
2889  * complete checksum manually on outgoing path.
2890  */
2891 int skb_checksum_help(struct sk_buff *skb)
2892 {
2893 	__wsum csum;
2894 	int ret = 0, offset;
2895 
2896 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2897 		goto out_set_summed;
2898 
2899 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2900 		skb_warn_bad_offload(skb);
2901 		return -EINVAL;
2902 	}
2903 
2904 	/* Before computing a checksum, we should make sure no frag could
2905 	 * be modified by an external entity : checksum could be wrong.
2906 	 */
2907 	if (skb_has_shared_frag(skb)) {
2908 		ret = __skb_linearize(skb);
2909 		if (ret)
2910 			goto out;
2911 	}
2912 
2913 	offset = skb_checksum_start_offset(skb);
2914 	BUG_ON(offset >= skb_headlen(skb));
2915 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2916 
2917 	offset += skb->csum_offset;
2918 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2919 
2920 	if (skb_cloned(skb) &&
2921 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2922 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923 		if (ret)
2924 			goto out;
2925 	}
2926 
2927 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2928 out_set_summed:
2929 	skb->ip_summed = CHECKSUM_NONE;
2930 out:
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL(skb_checksum_help);
2934 
2935 int skb_crc32c_csum_help(struct sk_buff *skb)
2936 {
2937 	__le32 crc32c_csum;
2938 	int ret = 0, offset, start;
2939 
2940 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2941 		goto out;
2942 
2943 	if (unlikely(skb_is_gso(skb)))
2944 		goto out;
2945 
2946 	/* Before computing a checksum, we should make sure no frag could
2947 	 * be modified by an external entity : checksum could be wrong.
2948 	 */
2949 	if (unlikely(skb_has_shared_frag(skb))) {
2950 		ret = __skb_linearize(skb);
2951 		if (ret)
2952 			goto out;
2953 	}
2954 	start = skb_checksum_start_offset(skb);
2955 	offset = start + offsetof(struct sctphdr, checksum);
2956 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2957 		ret = -EINVAL;
2958 		goto out;
2959 	}
2960 	if (skb_cloned(skb) &&
2961 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2962 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2963 		if (ret)
2964 			goto out;
2965 	}
2966 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2967 						  skb->len - start, ~(__u32)0,
2968 						  crc32c_csum_stub));
2969 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2970 	skb->ip_summed = CHECKSUM_NONE;
2971 	skb->csum_not_inet = 0;
2972 out:
2973 	return ret;
2974 }
2975 
2976 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2977 {
2978 	__be16 type = skb->protocol;
2979 
2980 	/* Tunnel gso handlers can set protocol to ethernet. */
2981 	if (type == htons(ETH_P_TEB)) {
2982 		struct ethhdr *eth;
2983 
2984 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2985 			return 0;
2986 
2987 		eth = (struct ethhdr *)skb->data;
2988 		type = eth->h_proto;
2989 	}
2990 
2991 	return __vlan_get_protocol(skb, type, depth);
2992 }
2993 
2994 /**
2995  *	skb_mac_gso_segment - mac layer segmentation handler.
2996  *	@skb: buffer to segment
2997  *	@features: features for the output path (see dev->features)
2998  */
2999 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3000 				    netdev_features_t features)
3001 {
3002 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3003 	struct packet_offload *ptype;
3004 	int vlan_depth = skb->mac_len;
3005 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3006 
3007 	if (unlikely(!type))
3008 		return ERR_PTR(-EINVAL);
3009 
3010 	__skb_pull(skb, vlan_depth);
3011 
3012 	rcu_read_lock();
3013 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3014 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3015 			segs = ptype->callbacks.gso_segment(skb, features);
3016 			break;
3017 		}
3018 	}
3019 	rcu_read_unlock();
3020 
3021 	__skb_push(skb, skb->data - skb_mac_header(skb));
3022 
3023 	return segs;
3024 }
3025 EXPORT_SYMBOL(skb_mac_gso_segment);
3026 
3027 
3028 /* openvswitch calls this on rx path, so we need a different check.
3029  */
3030 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3031 {
3032 	if (tx_path)
3033 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3034 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3035 
3036 	return skb->ip_summed == CHECKSUM_NONE;
3037 }
3038 
3039 /**
3040  *	__skb_gso_segment - Perform segmentation on skb.
3041  *	@skb: buffer to segment
3042  *	@features: features for the output path (see dev->features)
3043  *	@tx_path: whether it is called in TX path
3044  *
3045  *	This function segments the given skb and returns a list of segments.
3046  *
3047  *	It may return NULL if the skb requires no segmentation.  This is
3048  *	only possible when GSO is used for verifying header integrity.
3049  *
3050  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3051  */
3052 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3053 				  netdev_features_t features, bool tx_path)
3054 {
3055 	struct sk_buff *segs;
3056 
3057 	if (unlikely(skb_needs_check(skb, tx_path))) {
3058 		int err;
3059 
3060 		/* We're going to init ->check field in TCP or UDP header */
3061 		err = skb_cow_head(skb, 0);
3062 		if (err < 0)
3063 			return ERR_PTR(err);
3064 	}
3065 
3066 	/* Only report GSO partial support if it will enable us to
3067 	 * support segmentation on this frame without needing additional
3068 	 * work.
3069 	 */
3070 	if (features & NETIF_F_GSO_PARTIAL) {
3071 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3072 		struct net_device *dev = skb->dev;
3073 
3074 		partial_features |= dev->features & dev->gso_partial_features;
3075 		if (!skb_gso_ok(skb, features | partial_features))
3076 			features &= ~NETIF_F_GSO_PARTIAL;
3077 	}
3078 
3079 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3080 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3081 
3082 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3083 	SKB_GSO_CB(skb)->encap_level = 0;
3084 
3085 	skb_reset_mac_header(skb);
3086 	skb_reset_mac_len(skb);
3087 
3088 	segs = skb_mac_gso_segment(skb, features);
3089 
3090 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3091 		skb_warn_bad_offload(skb);
3092 
3093 	return segs;
3094 }
3095 EXPORT_SYMBOL(__skb_gso_segment);
3096 
3097 /* Take action when hardware reception checksum errors are detected. */
3098 #ifdef CONFIG_BUG
3099 void netdev_rx_csum_fault(struct net_device *dev)
3100 {
3101 	if (net_ratelimit()) {
3102 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3103 		dump_stack();
3104 	}
3105 }
3106 EXPORT_SYMBOL(netdev_rx_csum_fault);
3107 #endif
3108 
3109 /* XXX: check that highmem exists at all on the given machine. */
3110 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3111 {
3112 #ifdef CONFIG_HIGHMEM
3113 	int i;
3114 
3115 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3116 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3117 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3118 
3119 			if (PageHighMem(skb_frag_page(frag)))
3120 				return 1;
3121 		}
3122 	}
3123 #endif
3124 	return 0;
3125 }
3126 
3127 /* If MPLS offload request, verify we are testing hardware MPLS features
3128  * instead of standard features for the netdev.
3129  */
3130 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3131 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3132 					   netdev_features_t features,
3133 					   __be16 type)
3134 {
3135 	if (eth_p_mpls(type))
3136 		features &= skb->dev->mpls_features;
3137 
3138 	return features;
3139 }
3140 #else
3141 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3142 					   netdev_features_t features,
3143 					   __be16 type)
3144 {
3145 	return features;
3146 }
3147 #endif
3148 
3149 static netdev_features_t harmonize_features(struct sk_buff *skb,
3150 	netdev_features_t features)
3151 {
3152 	int tmp;
3153 	__be16 type;
3154 
3155 	type = skb_network_protocol(skb, &tmp);
3156 	features = net_mpls_features(skb, features, type);
3157 
3158 	if (skb->ip_summed != CHECKSUM_NONE &&
3159 	    !can_checksum_protocol(features, type)) {
3160 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3161 	}
3162 	if (illegal_highdma(skb->dev, skb))
3163 		features &= ~NETIF_F_SG;
3164 
3165 	return features;
3166 }
3167 
3168 netdev_features_t passthru_features_check(struct sk_buff *skb,
3169 					  struct net_device *dev,
3170 					  netdev_features_t features)
3171 {
3172 	return features;
3173 }
3174 EXPORT_SYMBOL(passthru_features_check);
3175 
3176 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3177 					     struct net_device *dev,
3178 					     netdev_features_t features)
3179 {
3180 	return vlan_features_check(skb, features);
3181 }
3182 
3183 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3184 					    struct net_device *dev,
3185 					    netdev_features_t features)
3186 {
3187 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3188 
3189 	if (gso_segs > dev->gso_max_segs)
3190 		return features & ~NETIF_F_GSO_MASK;
3191 
3192 	/* Support for GSO partial features requires software
3193 	 * intervention before we can actually process the packets
3194 	 * so we need to strip support for any partial features now
3195 	 * and we can pull them back in after we have partially
3196 	 * segmented the frame.
3197 	 */
3198 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3199 		features &= ~dev->gso_partial_features;
3200 
3201 	/* Make sure to clear the IPv4 ID mangling feature if the
3202 	 * IPv4 header has the potential to be fragmented.
3203 	 */
3204 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3205 		struct iphdr *iph = skb->encapsulation ?
3206 				    inner_ip_hdr(skb) : ip_hdr(skb);
3207 
3208 		if (!(iph->frag_off & htons(IP_DF)))
3209 			features &= ~NETIF_F_TSO_MANGLEID;
3210 	}
3211 
3212 	return features;
3213 }
3214 
3215 netdev_features_t netif_skb_features(struct sk_buff *skb)
3216 {
3217 	struct net_device *dev = skb->dev;
3218 	netdev_features_t features = dev->features;
3219 
3220 	if (skb_is_gso(skb))
3221 		features = gso_features_check(skb, dev, features);
3222 
3223 	/* If encapsulation offload request, verify we are testing
3224 	 * hardware encapsulation features instead of standard
3225 	 * features for the netdev
3226 	 */
3227 	if (skb->encapsulation)
3228 		features &= dev->hw_enc_features;
3229 
3230 	if (skb_vlan_tagged(skb))
3231 		features = netdev_intersect_features(features,
3232 						     dev->vlan_features |
3233 						     NETIF_F_HW_VLAN_CTAG_TX |
3234 						     NETIF_F_HW_VLAN_STAG_TX);
3235 
3236 	if (dev->netdev_ops->ndo_features_check)
3237 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3238 								features);
3239 	else
3240 		features &= dflt_features_check(skb, dev, features);
3241 
3242 	return harmonize_features(skb, features);
3243 }
3244 EXPORT_SYMBOL(netif_skb_features);
3245 
3246 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3247 		    struct netdev_queue *txq, bool more)
3248 {
3249 	unsigned int len;
3250 	int rc;
3251 
3252 	if (dev_nit_active(dev))
3253 		dev_queue_xmit_nit(skb, dev);
3254 
3255 	len = skb->len;
3256 	trace_net_dev_start_xmit(skb, dev);
3257 	rc = netdev_start_xmit(skb, dev, txq, more);
3258 	trace_net_dev_xmit(skb, rc, dev, len);
3259 
3260 	return rc;
3261 }
3262 
3263 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3264 				    struct netdev_queue *txq, int *ret)
3265 {
3266 	struct sk_buff *skb = first;
3267 	int rc = NETDEV_TX_OK;
3268 
3269 	while (skb) {
3270 		struct sk_buff *next = skb->next;
3271 
3272 		skb_mark_not_on_list(skb);
3273 		rc = xmit_one(skb, dev, txq, next != NULL);
3274 		if (unlikely(!dev_xmit_complete(rc))) {
3275 			skb->next = next;
3276 			goto out;
3277 		}
3278 
3279 		skb = next;
3280 		if (netif_tx_queue_stopped(txq) && skb) {
3281 			rc = NETDEV_TX_BUSY;
3282 			break;
3283 		}
3284 	}
3285 
3286 out:
3287 	*ret = rc;
3288 	return skb;
3289 }
3290 
3291 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3292 					  netdev_features_t features)
3293 {
3294 	if (skb_vlan_tag_present(skb) &&
3295 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3296 		skb = __vlan_hwaccel_push_inside(skb);
3297 	return skb;
3298 }
3299 
3300 int skb_csum_hwoffload_help(struct sk_buff *skb,
3301 			    const netdev_features_t features)
3302 {
3303 	if (unlikely(skb->csum_not_inet))
3304 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3305 			skb_crc32c_csum_help(skb);
3306 
3307 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3308 }
3309 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3310 
3311 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3312 {
3313 	netdev_features_t features;
3314 
3315 	features = netif_skb_features(skb);
3316 	skb = validate_xmit_vlan(skb, features);
3317 	if (unlikely(!skb))
3318 		goto out_null;
3319 
3320 	skb = sk_validate_xmit_skb(skb, dev);
3321 	if (unlikely(!skb))
3322 		goto out_null;
3323 
3324 	if (netif_needs_gso(skb, features)) {
3325 		struct sk_buff *segs;
3326 
3327 		segs = skb_gso_segment(skb, features);
3328 		if (IS_ERR(segs)) {
3329 			goto out_kfree_skb;
3330 		} else if (segs) {
3331 			consume_skb(skb);
3332 			skb = segs;
3333 		}
3334 	} else {
3335 		if (skb_needs_linearize(skb, features) &&
3336 		    __skb_linearize(skb))
3337 			goto out_kfree_skb;
3338 
3339 		/* If packet is not checksummed and device does not
3340 		 * support checksumming for this protocol, complete
3341 		 * checksumming here.
3342 		 */
3343 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3344 			if (skb->encapsulation)
3345 				skb_set_inner_transport_header(skb,
3346 							       skb_checksum_start_offset(skb));
3347 			else
3348 				skb_set_transport_header(skb,
3349 							 skb_checksum_start_offset(skb));
3350 			if (skb_csum_hwoffload_help(skb, features))
3351 				goto out_kfree_skb;
3352 		}
3353 	}
3354 
3355 	skb = validate_xmit_xfrm(skb, features, again);
3356 
3357 	return skb;
3358 
3359 out_kfree_skb:
3360 	kfree_skb(skb);
3361 out_null:
3362 	atomic_long_inc(&dev->tx_dropped);
3363 	return NULL;
3364 }
3365 
3366 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3367 {
3368 	struct sk_buff *next, *head = NULL, *tail;
3369 
3370 	for (; skb != NULL; skb = next) {
3371 		next = skb->next;
3372 		skb_mark_not_on_list(skb);
3373 
3374 		/* in case skb wont be segmented, point to itself */
3375 		skb->prev = skb;
3376 
3377 		skb = validate_xmit_skb(skb, dev, again);
3378 		if (!skb)
3379 			continue;
3380 
3381 		if (!head)
3382 			head = skb;
3383 		else
3384 			tail->next = skb;
3385 		/* If skb was segmented, skb->prev points to
3386 		 * the last segment. If not, it still contains skb.
3387 		 */
3388 		tail = skb->prev;
3389 	}
3390 	return head;
3391 }
3392 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3393 
3394 static void qdisc_pkt_len_init(struct sk_buff *skb)
3395 {
3396 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3397 
3398 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3399 
3400 	/* To get more precise estimation of bytes sent on wire,
3401 	 * we add to pkt_len the headers size of all segments
3402 	 */
3403 	if (shinfo->gso_size)  {
3404 		unsigned int hdr_len;
3405 		u16 gso_segs = shinfo->gso_segs;
3406 
3407 		/* mac layer + network layer */
3408 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3409 
3410 		/* + transport layer */
3411 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3412 			const struct tcphdr *th;
3413 			struct tcphdr _tcphdr;
3414 
3415 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3416 						sizeof(_tcphdr), &_tcphdr);
3417 			if (likely(th))
3418 				hdr_len += __tcp_hdrlen(th);
3419 		} else {
3420 			struct udphdr _udphdr;
3421 
3422 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3423 					       sizeof(_udphdr), &_udphdr))
3424 				hdr_len += sizeof(struct udphdr);
3425 		}
3426 
3427 		if (shinfo->gso_type & SKB_GSO_DODGY)
3428 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3429 						shinfo->gso_size);
3430 
3431 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3432 	}
3433 }
3434 
3435 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3436 				 struct net_device *dev,
3437 				 struct netdev_queue *txq)
3438 {
3439 	spinlock_t *root_lock = qdisc_lock(q);
3440 	struct sk_buff *to_free = NULL;
3441 	bool contended;
3442 	int rc;
3443 
3444 	qdisc_calculate_pkt_len(skb, q);
3445 
3446 	if (q->flags & TCQ_F_NOLOCK) {
3447 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3448 			__qdisc_drop(skb, &to_free);
3449 			rc = NET_XMIT_DROP;
3450 		} else {
3451 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3452 			qdisc_run(q);
3453 		}
3454 
3455 		if (unlikely(to_free))
3456 			kfree_skb_list(to_free);
3457 		return rc;
3458 	}
3459 
3460 	/*
3461 	 * Heuristic to force contended enqueues to serialize on a
3462 	 * separate lock before trying to get qdisc main lock.
3463 	 * This permits qdisc->running owner to get the lock more
3464 	 * often and dequeue packets faster.
3465 	 */
3466 	contended = qdisc_is_running(q);
3467 	if (unlikely(contended))
3468 		spin_lock(&q->busylock);
3469 
3470 	spin_lock(root_lock);
3471 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3472 		__qdisc_drop(skb, &to_free);
3473 		rc = NET_XMIT_DROP;
3474 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3475 		   qdisc_run_begin(q)) {
3476 		/*
3477 		 * This is a work-conserving queue; there are no old skbs
3478 		 * waiting to be sent out; and the qdisc is not running -
3479 		 * xmit the skb directly.
3480 		 */
3481 
3482 		qdisc_bstats_update(q, skb);
3483 
3484 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3485 			if (unlikely(contended)) {
3486 				spin_unlock(&q->busylock);
3487 				contended = false;
3488 			}
3489 			__qdisc_run(q);
3490 		}
3491 
3492 		qdisc_run_end(q);
3493 		rc = NET_XMIT_SUCCESS;
3494 	} else {
3495 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496 		if (qdisc_run_begin(q)) {
3497 			if (unlikely(contended)) {
3498 				spin_unlock(&q->busylock);
3499 				contended = false;
3500 			}
3501 			__qdisc_run(q);
3502 			qdisc_run_end(q);
3503 		}
3504 	}
3505 	spin_unlock(root_lock);
3506 	if (unlikely(to_free))
3507 		kfree_skb_list(to_free);
3508 	if (unlikely(contended))
3509 		spin_unlock(&q->busylock);
3510 	return rc;
3511 }
3512 
3513 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3514 static void skb_update_prio(struct sk_buff *skb)
3515 {
3516 	const struct netprio_map *map;
3517 	const struct sock *sk;
3518 	unsigned int prioidx;
3519 
3520 	if (skb->priority)
3521 		return;
3522 	map = rcu_dereference_bh(skb->dev->priomap);
3523 	if (!map)
3524 		return;
3525 	sk = skb_to_full_sk(skb);
3526 	if (!sk)
3527 		return;
3528 
3529 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3530 
3531 	if (prioidx < map->priomap_len)
3532 		skb->priority = map->priomap[prioidx];
3533 }
3534 #else
3535 #define skb_update_prio(skb)
3536 #endif
3537 
3538 DEFINE_PER_CPU(int, xmit_recursion);
3539 EXPORT_SYMBOL(xmit_recursion);
3540 
3541 /**
3542  *	dev_loopback_xmit - loop back @skb
3543  *	@net: network namespace this loopback is happening in
3544  *	@sk:  sk needed to be a netfilter okfn
3545  *	@skb: buffer to transmit
3546  */
3547 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3548 {
3549 	skb_reset_mac_header(skb);
3550 	__skb_pull(skb, skb_network_offset(skb));
3551 	skb->pkt_type = PACKET_LOOPBACK;
3552 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3553 	WARN_ON(!skb_dst(skb));
3554 	skb_dst_force(skb);
3555 	netif_rx_ni(skb);
3556 	return 0;
3557 }
3558 EXPORT_SYMBOL(dev_loopback_xmit);
3559 
3560 #ifdef CONFIG_NET_EGRESS
3561 static struct sk_buff *
3562 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3563 {
3564 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3565 	struct tcf_result cl_res;
3566 
3567 	if (!miniq)
3568 		return skb;
3569 
3570 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3571 	mini_qdisc_bstats_cpu_update(miniq, skb);
3572 
3573 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3574 	case TC_ACT_OK:
3575 	case TC_ACT_RECLASSIFY:
3576 		skb->tc_index = TC_H_MIN(cl_res.classid);
3577 		break;
3578 	case TC_ACT_SHOT:
3579 		mini_qdisc_qstats_cpu_drop(miniq);
3580 		*ret = NET_XMIT_DROP;
3581 		kfree_skb(skb);
3582 		return NULL;
3583 	case TC_ACT_STOLEN:
3584 	case TC_ACT_QUEUED:
3585 	case TC_ACT_TRAP:
3586 		*ret = NET_XMIT_SUCCESS;
3587 		consume_skb(skb);
3588 		return NULL;
3589 	case TC_ACT_REDIRECT:
3590 		/* No need to push/pop skb's mac_header here on egress! */
3591 		skb_do_redirect(skb);
3592 		*ret = NET_XMIT_SUCCESS;
3593 		return NULL;
3594 	default:
3595 		break;
3596 	}
3597 
3598 	return skb;
3599 }
3600 #endif /* CONFIG_NET_EGRESS */
3601 
3602 #ifdef CONFIG_XPS
3603 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3604 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3605 {
3606 	struct xps_map *map;
3607 	int queue_index = -1;
3608 
3609 	if (dev->num_tc) {
3610 		tci *= dev->num_tc;
3611 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3612 	}
3613 
3614 	map = rcu_dereference(dev_maps->attr_map[tci]);
3615 	if (map) {
3616 		if (map->len == 1)
3617 			queue_index = map->queues[0];
3618 		else
3619 			queue_index = map->queues[reciprocal_scale(
3620 						skb_get_hash(skb), map->len)];
3621 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3622 			queue_index = -1;
3623 	}
3624 	return queue_index;
3625 }
3626 #endif
3627 
3628 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3629 			 struct sk_buff *skb)
3630 {
3631 #ifdef CONFIG_XPS
3632 	struct xps_dev_maps *dev_maps;
3633 	struct sock *sk = skb->sk;
3634 	int queue_index = -1;
3635 
3636 	if (!static_key_false(&xps_needed))
3637 		return -1;
3638 
3639 	rcu_read_lock();
3640 	if (!static_key_false(&xps_rxqs_needed))
3641 		goto get_cpus_map;
3642 
3643 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3644 	if (dev_maps) {
3645 		int tci = sk_rx_queue_get(sk);
3646 
3647 		if (tci >= 0 && tci < dev->num_rx_queues)
3648 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3649 							  tci);
3650 	}
3651 
3652 get_cpus_map:
3653 	if (queue_index < 0) {
3654 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3655 		if (dev_maps) {
3656 			unsigned int tci = skb->sender_cpu - 1;
3657 
3658 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3659 							  tci);
3660 		}
3661 	}
3662 	rcu_read_unlock();
3663 
3664 	return queue_index;
3665 #else
3666 	return -1;
3667 #endif
3668 }
3669 
3670 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3671 		     struct net_device *sb_dev,
3672 		     select_queue_fallback_t fallback)
3673 {
3674 	return 0;
3675 }
3676 EXPORT_SYMBOL(dev_pick_tx_zero);
3677 
3678 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3679 		       struct net_device *sb_dev,
3680 		       select_queue_fallback_t fallback)
3681 {
3682 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3683 }
3684 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3685 
3686 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3687 			    struct net_device *sb_dev)
3688 {
3689 	struct sock *sk = skb->sk;
3690 	int queue_index = sk_tx_queue_get(sk);
3691 
3692 	sb_dev = sb_dev ? : dev;
3693 
3694 	if (queue_index < 0 || skb->ooo_okay ||
3695 	    queue_index >= dev->real_num_tx_queues) {
3696 		int new_index = get_xps_queue(dev, sb_dev, skb);
3697 
3698 		if (new_index < 0)
3699 			new_index = skb_tx_hash(dev, sb_dev, skb);
3700 
3701 		if (queue_index != new_index && sk &&
3702 		    sk_fullsock(sk) &&
3703 		    rcu_access_pointer(sk->sk_dst_cache))
3704 			sk_tx_queue_set(sk, new_index);
3705 
3706 		queue_index = new_index;
3707 	}
3708 
3709 	return queue_index;
3710 }
3711 
3712 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3713 				    struct sk_buff *skb,
3714 				    struct net_device *sb_dev)
3715 {
3716 	int queue_index = 0;
3717 
3718 #ifdef CONFIG_XPS
3719 	u32 sender_cpu = skb->sender_cpu - 1;
3720 
3721 	if (sender_cpu >= (u32)NR_CPUS)
3722 		skb->sender_cpu = raw_smp_processor_id() + 1;
3723 #endif
3724 
3725 	if (dev->real_num_tx_queues != 1) {
3726 		const struct net_device_ops *ops = dev->netdev_ops;
3727 
3728 		if (ops->ndo_select_queue)
3729 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3730 							    __netdev_pick_tx);
3731 		else
3732 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3733 
3734 		queue_index = netdev_cap_txqueue(dev, queue_index);
3735 	}
3736 
3737 	skb_set_queue_mapping(skb, queue_index);
3738 	return netdev_get_tx_queue(dev, queue_index);
3739 }
3740 
3741 /**
3742  *	__dev_queue_xmit - transmit a buffer
3743  *	@skb: buffer to transmit
3744  *	@sb_dev: suboordinate device used for L2 forwarding offload
3745  *
3746  *	Queue a buffer for transmission to a network device. The caller must
3747  *	have set the device and priority and built the buffer before calling
3748  *	this function. The function can be called from an interrupt.
3749  *
3750  *	A negative errno code is returned on a failure. A success does not
3751  *	guarantee the frame will be transmitted as it may be dropped due
3752  *	to congestion or traffic shaping.
3753  *
3754  * -----------------------------------------------------------------------------------
3755  *      I notice this method can also return errors from the queue disciplines,
3756  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3757  *      be positive.
3758  *
3759  *      Regardless of the return value, the skb is consumed, so it is currently
3760  *      difficult to retry a send to this method.  (You can bump the ref count
3761  *      before sending to hold a reference for retry if you are careful.)
3762  *
3763  *      When calling this method, interrupts MUST be enabled.  This is because
3764  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3765  *          --BLG
3766  */
3767 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3768 {
3769 	struct net_device *dev = skb->dev;
3770 	struct netdev_queue *txq;
3771 	struct Qdisc *q;
3772 	int rc = -ENOMEM;
3773 	bool again = false;
3774 
3775 	skb_reset_mac_header(skb);
3776 
3777 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3778 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3779 
3780 	/* Disable soft irqs for various locks below. Also
3781 	 * stops preemption for RCU.
3782 	 */
3783 	rcu_read_lock_bh();
3784 
3785 	skb_update_prio(skb);
3786 
3787 	qdisc_pkt_len_init(skb);
3788 #ifdef CONFIG_NET_CLS_ACT
3789 	skb->tc_at_ingress = 0;
3790 # ifdef CONFIG_NET_EGRESS
3791 	if (static_branch_unlikely(&egress_needed_key)) {
3792 		skb = sch_handle_egress(skb, &rc, dev);
3793 		if (!skb)
3794 			goto out;
3795 	}
3796 # endif
3797 #endif
3798 	/* If device/qdisc don't need skb->dst, release it right now while
3799 	 * its hot in this cpu cache.
3800 	 */
3801 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3802 		skb_dst_drop(skb);
3803 	else
3804 		skb_dst_force(skb);
3805 
3806 	txq = netdev_pick_tx(dev, skb, sb_dev);
3807 	q = rcu_dereference_bh(txq->qdisc);
3808 
3809 	trace_net_dev_queue(skb);
3810 	if (q->enqueue) {
3811 		rc = __dev_xmit_skb(skb, q, dev, txq);
3812 		goto out;
3813 	}
3814 
3815 	/* The device has no queue. Common case for software devices:
3816 	 * loopback, all the sorts of tunnels...
3817 
3818 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3819 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3820 	 * counters.)
3821 	 * However, it is possible, that they rely on protection
3822 	 * made by us here.
3823 
3824 	 * Check this and shot the lock. It is not prone from deadlocks.
3825 	 *Either shot noqueue qdisc, it is even simpler 8)
3826 	 */
3827 	if (dev->flags & IFF_UP) {
3828 		int cpu = smp_processor_id(); /* ok because BHs are off */
3829 
3830 		if (txq->xmit_lock_owner != cpu) {
3831 			if (unlikely(__this_cpu_read(xmit_recursion) >
3832 				     XMIT_RECURSION_LIMIT))
3833 				goto recursion_alert;
3834 
3835 			skb = validate_xmit_skb(skb, dev, &again);
3836 			if (!skb)
3837 				goto out;
3838 
3839 			HARD_TX_LOCK(dev, txq, cpu);
3840 
3841 			if (!netif_xmit_stopped(txq)) {
3842 				__this_cpu_inc(xmit_recursion);
3843 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3844 				__this_cpu_dec(xmit_recursion);
3845 				if (dev_xmit_complete(rc)) {
3846 					HARD_TX_UNLOCK(dev, txq);
3847 					goto out;
3848 				}
3849 			}
3850 			HARD_TX_UNLOCK(dev, txq);
3851 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3852 					     dev->name);
3853 		} else {
3854 			/* Recursion is detected! It is possible,
3855 			 * unfortunately
3856 			 */
3857 recursion_alert:
3858 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3859 					     dev->name);
3860 		}
3861 	}
3862 
3863 	rc = -ENETDOWN;
3864 	rcu_read_unlock_bh();
3865 
3866 	atomic_long_inc(&dev->tx_dropped);
3867 	kfree_skb_list(skb);
3868 	return rc;
3869 out:
3870 	rcu_read_unlock_bh();
3871 	return rc;
3872 }
3873 
3874 int dev_queue_xmit(struct sk_buff *skb)
3875 {
3876 	return __dev_queue_xmit(skb, NULL);
3877 }
3878 EXPORT_SYMBOL(dev_queue_xmit);
3879 
3880 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3881 {
3882 	return __dev_queue_xmit(skb, sb_dev);
3883 }
3884 EXPORT_SYMBOL(dev_queue_xmit_accel);
3885 
3886 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3887 {
3888 	struct net_device *dev = skb->dev;
3889 	struct sk_buff *orig_skb = skb;
3890 	struct netdev_queue *txq;
3891 	int ret = NETDEV_TX_BUSY;
3892 	bool again = false;
3893 
3894 	if (unlikely(!netif_running(dev) ||
3895 		     !netif_carrier_ok(dev)))
3896 		goto drop;
3897 
3898 	skb = validate_xmit_skb_list(skb, dev, &again);
3899 	if (skb != orig_skb)
3900 		goto drop;
3901 
3902 	skb_set_queue_mapping(skb, queue_id);
3903 	txq = skb_get_tx_queue(dev, skb);
3904 
3905 	local_bh_disable();
3906 
3907 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3908 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3909 		ret = netdev_start_xmit(skb, dev, txq, false);
3910 	HARD_TX_UNLOCK(dev, txq);
3911 
3912 	local_bh_enable();
3913 
3914 	if (!dev_xmit_complete(ret))
3915 		kfree_skb(skb);
3916 
3917 	return ret;
3918 drop:
3919 	atomic_long_inc(&dev->tx_dropped);
3920 	kfree_skb_list(skb);
3921 	return NET_XMIT_DROP;
3922 }
3923 EXPORT_SYMBOL(dev_direct_xmit);
3924 
3925 /*************************************************************************
3926  *			Receiver routines
3927  *************************************************************************/
3928 
3929 int netdev_max_backlog __read_mostly = 1000;
3930 EXPORT_SYMBOL(netdev_max_backlog);
3931 
3932 int netdev_tstamp_prequeue __read_mostly = 1;
3933 int netdev_budget __read_mostly = 300;
3934 unsigned int __read_mostly netdev_budget_usecs = 2000;
3935 int weight_p __read_mostly = 64;           /* old backlog weight */
3936 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3937 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3938 int dev_rx_weight __read_mostly = 64;
3939 int dev_tx_weight __read_mostly = 64;
3940 
3941 /* Called with irq disabled */
3942 static inline void ____napi_schedule(struct softnet_data *sd,
3943 				     struct napi_struct *napi)
3944 {
3945 	list_add_tail(&napi->poll_list, &sd->poll_list);
3946 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3947 }
3948 
3949 #ifdef CONFIG_RPS
3950 
3951 /* One global table that all flow-based protocols share. */
3952 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3953 EXPORT_SYMBOL(rps_sock_flow_table);
3954 u32 rps_cpu_mask __read_mostly;
3955 EXPORT_SYMBOL(rps_cpu_mask);
3956 
3957 struct static_key rps_needed __read_mostly;
3958 EXPORT_SYMBOL(rps_needed);
3959 struct static_key rfs_needed __read_mostly;
3960 EXPORT_SYMBOL(rfs_needed);
3961 
3962 static struct rps_dev_flow *
3963 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964 	    struct rps_dev_flow *rflow, u16 next_cpu)
3965 {
3966 	if (next_cpu < nr_cpu_ids) {
3967 #ifdef CONFIG_RFS_ACCEL
3968 		struct netdev_rx_queue *rxqueue;
3969 		struct rps_dev_flow_table *flow_table;
3970 		struct rps_dev_flow *old_rflow;
3971 		u32 flow_id;
3972 		u16 rxq_index;
3973 		int rc;
3974 
3975 		/* Should we steer this flow to a different hardware queue? */
3976 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3977 		    !(dev->features & NETIF_F_NTUPLE))
3978 			goto out;
3979 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3980 		if (rxq_index == skb_get_rx_queue(skb))
3981 			goto out;
3982 
3983 		rxqueue = dev->_rx + rxq_index;
3984 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3985 		if (!flow_table)
3986 			goto out;
3987 		flow_id = skb_get_hash(skb) & flow_table->mask;
3988 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3989 							rxq_index, flow_id);
3990 		if (rc < 0)
3991 			goto out;
3992 		old_rflow = rflow;
3993 		rflow = &flow_table->flows[flow_id];
3994 		rflow->filter = rc;
3995 		if (old_rflow->filter == rflow->filter)
3996 			old_rflow->filter = RPS_NO_FILTER;
3997 	out:
3998 #endif
3999 		rflow->last_qtail =
4000 			per_cpu(softnet_data, next_cpu).input_queue_head;
4001 	}
4002 
4003 	rflow->cpu = next_cpu;
4004 	return rflow;
4005 }
4006 
4007 /*
4008  * get_rps_cpu is called from netif_receive_skb and returns the target
4009  * CPU from the RPS map of the receiving queue for a given skb.
4010  * rcu_read_lock must be held on entry.
4011  */
4012 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4013 		       struct rps_dev_flow **rflowp)
4014 {
4015 	const struct rps_sock_flow_table *sock_flow_table;
4016 	struct netdev_rx_queue *rxqueue = dev->_rx;
4017 	struct rps_dev_flow_table *flow_table;
4018 	struct rps_map *map;
4019 	int cpu = -1;
4020 	u32 tcpu;
4021 	u32 hash;
4022 
4023 	if (skb_rx_queue_recorded(skb)) {
4024 		u16 index = skb_get_rx_queue(skb);
4025 
4026 		if (unlikely(index >= dev->real_num_rx_queues)) {
4027 			WARN_ONCE(dev->real_num_rx_queues > 1,
4028 				  "%s received packet on queue %u, but number "
4029 				  "of RX queues is %u\n",
4030 				  dev->name, index, dev->real_num_rx_queues);
4031 			goto done;
4032 		}
4033 		rxqueue += index;
4034 	}
4035 
4036 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4037 
4038 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4039 	map = rcu_dereference(rxqueue->rps_map);
4040 	if (!flow_table && !map)
4041 		goto done;
4042 
4043 	skb_reset_network_header(skb);
4044 	hash = skb_get_hash(skb);
4045 	if (!hash)
4046 		goto done;
4047 
4048 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4049 	if (flow_table && sock_flow_table) {
4050 		struct rps_dev_flow *rflow;
4051 		u32 next_cpu;
4052 		u32 ident;
4053 
4054 		/* First check into global flow table if there is a match */
4055 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4056 		if ((ident ^ hash) & ~rps_cpu_mask)
4057 			goto try_rps;
4058 
4059 		next_cpu = ident & rps_cpu_mask;
4060 
4061 		/* OK, now we know there is a match,
4062 		 * we can look at the local (per receive queue) flow table
4063 		 */
4064 		rflow = &flow_table->flows[hash & flow_table->mask];
4065 		tcpu = rflow->cpu;
4066 
4067 		/*
4068 		 * If the desired CPU (where last recvmsg was done) is
4069 		 * different from current CPU (one in the rx-queue flow
4070 		 * table entry), switch if one of the following holds:
4071 		 *   - Current CPU is unset (>= nr_cpu_ids).
4072 		 *   - Current CPU is offline.
4073 		 *   - The current CPU's queue tail has advanced beyond the
4074 		 *     last packet that was enqueued using this table entry.
4075 		 *     This guarantees that all previous packets for the flow
4076 		 *     have been dequeued, thus preserving in order delivery.
4077 		 */
4078 		if (unlikely(tcpu != next_cpu) &&
4079 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4080 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4081 		      rflow->last_qtail)) >= 0)) {
4082 			tcpu = next_cpu;
4083 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4084 		}
4085 
4086 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4087 			*rflowp = rflow;
4088 			cpu = tcpu;
4089 			goto done;
4090 		}
4091 	}
4092 
4093 try_rps:
4094 
4095 	if (map) {
4096 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4097 		if (cpu_online(tcpu)) {
4098 			cpu = tcpu;
4099 			goto done;
4100 		}
4101 	}
4102 
4103 done:
4104 	return cpu;
4105 }
4106 
4107 #ifdef CONFIG_RFS_ACCEL
4108 
4109 /**
4110  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4111  * @dev: Device on which the filter was set
4112  * @rxq_index: RX queue index
4113  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4114  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4115  *
4116  * Drivers that implement ndo_rx_flow_steer() should periodically call
4117  * this function for each installed filter and remove the filters for
4118  * which it returns %true.
4119  */
4120 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4121 			 u32 flow_id, u16 filter_id)
4122 {
4123 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4124 	struct rps_dev_flow_table *flow_table;
4125 	struct rps_dev_flow *rflow;
4126 	bool expire = true;
4127 	unsigned int cpu;
4128 
4129 	rcu_read_lock();
4130 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4131 	if (flow_table && flow_id <= flow_table->mask) {
4132 		rflow = &flow_table->flows[flow_id];
4133 		cpu = READ_ONCE(rflow->cpu);
4134 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4135 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4136 			   rflow->last_qtail) <
4137 		     (int)(10 * flow_table->mask)))
4138 			expire = false;
4139 	}
4140 	rcu_read_unlock();
4141 	return expire;
4142 }
4143 EXPORT_SYMBOL(rps_may_expire_flow);
4144 
4145 #endif /* CONFIG_RFS_ACCEL */
4146 
4147 /* Called from hardirq (IPI) context */
4148 static void rps_trigger_softirq(void *data)
4149 {
4150 	struct softnet_data *sd = data;
4151 
4152 	____napi_schedule(sd, &sd->backlog);
4153 	sd->received_rps++;
4154 }
4155 
4156 #endif /* CONFIG_RPS */
4157 
4158 /*
4159  * Check if this softnet_data structure is another cpu one
4160  * If yes, queue it to our IPI list and return 1
4161  * If no, return 0
4162  */
4163 static int rps_ipi_queued(struct softnet_data *sd)
4164 {
4165 #ifdef CONFIG_RPS
4166 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4167 
4168 	if (sd != mysd) {
4169 		sd->rps_ipi_next = mysd->rps_ipi_list;
4170 		mysd->rps_ipi_list = sd;
4171 
4172 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4173 		return 1;
4174 	}
4175 #endif /* CONFIG_RPS */
4176 	return 0;
4177 }
4178 
4179 #ifdef CONFIG_NET_FLOW_LIMIT
4180 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4181 #endif
4182 
4183 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4184 {
4185 #ifdef CONFIG_NET_FLOW_LIMIT
4186 	struct sd_flow_limit *fl;
4187 	struct softnet_data *sd;
4188 	unsigned int old_flow, new_flow;
4189 
4190 	if (qlen < (netdev_max_backlog >> 1))
4191 		return false;
4192 
4193 	sd = this_cpu_ptr(&softnet_data);
4194 
4195 	rcu_read_lock();
4196 	fl = rcu_dereference(sd->flow_limit);
4197 	if (fl) {
4198 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4199 		old_flow = fl->history[fl->history_head];
4200 		fl->history[fl->history_head] = new_flow;
4201 
4202 		fl->history_head++;
4203 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4204 
4205 		if (likely(fl->buckets[old_flow]))
4206 			fl->buckets[old_flow]--;
4207 
4208 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4209 			fl->count++;
4210 			rcu_read_unlock();
4211 			return true;
4212 		}
4213 	}
4214 	rcu_read_unlock();
4215 #endif
4216 	return false;
4217 }
4218 
4219 /*
4220  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4221  * queue (may be a remote CPU queue).
4222  */
4223 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4224 			      unsigned int *qtail)
4225 {
4226 	struct softnet_data *sd;
4227 	unsigned long flags;
4228 	unsigned int qlen;
4229 
4230 	sd = &per_cpu(softnet_data, cpu);
4231 
4232 	local_irq_save(flags);
4233 
4234 	rps_lock(sd);
4235 	if (!netif_running(skb->dev))
4236 		goto drop;
4237 	qlen = skb_queue_len(&sd->input_pkt_queue);
4238 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4239 		if (qlen) {
4240 enqueue:
4241 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4242 			input_queue_tail_incr_save(sd, qtail);
4243 			rps_unlock(sd);
4244 			local_irq_restore(flags);
4245 			return NET_RX_SUCCESS;
4246 		}
4247 
4248 		/* Schedule NAPI for backlog device
4249 		 * We can use non atomic operation since we own the queue lock
4250 		 */
4251 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4252 			if (!rps_ipi_queued(sd))
4253 				____napi_schedule(sd, &sd->backlog);
4254 		}
4255 		goto enqueue;
4256 	}
4257 
4258 drop:
4259 	sd->dropped++;
4260 	rps_unlock(sd);
4261 
4262 	local_irq_restore(flags);
4263 
4264 	atomic_long_inc(&skb->dev->rx_dropped);
4265 	kfree_skb(skb);
4266 	return NET_RX_DROP;
4267 }
4268 
4269 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4270 {
4271 	struct net_device *dev = skb->dev;
4272 	struct netdev_rx_queue *rxqueue;
4273 
4274 	rxqueue = dev->_rx;
4275 
4276 	if (skb_rx_queue_recorded(skb)) {
4277 		u16 index = skb_get_rx_queue(skb);
4278 
4279 		if (unlikely(index >= dev->real_num_rx_queues)) {
4280 			WARN_ONCE(dev->real_num_rx_queues > 1,
4281 				  "%s received packet on queue %u, but number "
4282 				  "of RX queues is %u\n",
4283 				  dev->name, index, dev->real_num_rx_queues);
4284 
4285 			return rxqueue; /* Return first rxqueue */
4286 		}
4287 		rxqueue += index;
4288 	}
4289 	return rxqueue;
4290 }
4291 
4292 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4293 				     struct xdp_buff *xdp,
4294 				     struct bpf_prog *xdp_prog)
4295 {
4296 	struct netdev_rx_queue *rxqueue;
4297 	void *orig_data, *orig_data_end;
4298 	u32 metalen, act = XDP_DROP;
4299 	__be16 orig_eth_type;
4300 	struct ethhdr *eth;
4301 	bool orig_bcast;
4302 	int hlen, off;
4303 	u32 mac_len;
4304 
4305 	/* Reinjected packets coming from act_mirred or similar should
4306 	 * not get XDP generic processing.
4307 	 */
4308 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4309 		return XDP_PASS;
4310 
4311 	/* XDP packets must be linear and must have sufficient headroom
4312 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4313 	 * native XDP provides, thus we need to do it here as well.
4314 	 */
4315 	if (skb_is_nonlinear(skb) ||
4316 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4317 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4318 		int troom = skb->tail + skb->data_len - skb->end;
4319 
4320 		/* In case we have to go down the path and also linearize,
4321 		 * then lets do the pskb_expand_head() work just once here.
4322 		 */
4323 		if (pskb_expand_head(skb,
4324 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4325 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4326 			goto do_drop;
4327 		if (skb_linearize(skb))
4328 			goto do_drop;
4329 	}
4330 
4331 	/* The XDP program wants to see the packet starting at the MAC
4332 	 * header.
4333 	 */
4334 	mac_len = skb->data - skb_mac_header(skb);
4335 	hlen = skb_headlen(skb) + mac_len;
4336 	xdp->data = skb->data - mac_len;
4337 	xdp->data_meta = xdp->data;
4338 	xdp->data_end = xdp->data + hlen;
4339 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4340 	orig_data_end = xdp->data_end;
4341 	orig_data = xdp->data;
4342 	eth = (struct ethhdr *)xdp->data;
4343 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4344 	orig_eth_type = eth->h_proto;
4345 
4346 	rxqueue = netif_get_rxqueue(skb);
4347 	xdp->rxq = &rxqueue->xdp_rxq;
4348 
4349 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4350 
4351 	off = xdp->data - orig_data;
4352 	if (off > 0)
4353 		__skb_pull(skb, off);
4354 	else if (off < 0)
4355 		__skb_push(skb, -off);
4356 	skb->mac_header += off;
4357 
4358 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4359 	 * pckt.
4360 	 */
4361 	off = orig_data_end - xdp->data_end;
4362 	if (off != 0) {
4363 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4364 		skb->len -= off;
4365 
4366 	}
4367 
4368 	/* check if XDP changed eth hdr such SKB needs update */
4369 	eth = (struct ethhdr *)xdp->data;
4370 	if ((orig_eth_type != eth->h_proto) ||
4371 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4372 		__skb_push(skb, ETH_HLEN);
4373 		skb->protocol = eth_type_trans(skb, skb->dev);
4374 	}
4375 
4376 	switch (act) {
4377 	case XDP_REDIRECT:
4378 	case XDP_TX:
4379 		__skb_push(skb, mac_len);
4380 		break;
4381 	case XDP_PASS:
4382 		metalen = xdp->data - xdp->data_meta;
4383 		if (metalen)
4384 			skb_metadata_set(skb, metalen);
4385 		break;
4386 	default:
4387 		bpf_warn_invalid_xdp_action(act);
4388 		/* fall through */
4389 	case XDP_ABORTED:
4390 		trace_xdp_exception(skb->dev, xdp_prog, act);
4391 		/* fall through */
4392 	case XDP_DROP:
4393 	do_drop:
4394 		kfree_skb(skb);
4395 		break;
4396 	}
4397 
4398 	return act;
4399 }
4400 
4401 /* When doing generic XDP we have to bypass the qdisc layer and the
4402  * network taps in order to match in-driver-XDP behavior.
4403  */
4404 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4405 {
4406 	struct net_device *dev = skb->dev;
4407 	struct netdev_queue *txq;
4408 	bool free_skb = true;
4409 	int cpu, rc;
4410 
4411 	txq = netdev_pick_tx(dev, skb, NULL);
4412 	cpu = smp_processor_id();
4413 	HARD_TX_LOCK(dev, txq, cpu);
4414 	if (!netif_xmit_stopped(txq)) {
4415 		rc = netdev_start_xmit(skb, dev, txq, 0);
4416 		if (dev_xmit_complete(rc))
4417 			free_skb = false;
4418 	}
4419 	HARD_TX_UNLOCK(dev, txq);
4420 	if (free_skb) {
4421 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4422 		kfree_skb(skb);
4423 	}
4424 }
4425 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4426 
4427 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4428 
4429 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4430 {
4431 	if (xdp_prog) {
4432 		struct xdp_buff xdp;
4433 		u32 act;
4434 		int err;
4435 
4436 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4437 		if (act != XDP_PASS) {
4438 			switch (act) {
4439 			case XDP_REDIRECT:
4440 				err = xdp_do_generic_redirect(skb->dev, skb,
4441 							      &xdp, xdp_prog);
4442 				if (err)
4443 					goto out_redir;
4444 				break;
4445 			case XDP_TX:
4446 				generic_xdp_tx(skb, xdp_prog);
4447 				break;
4448 			}
4449 			return XDP_DROP;
4450 		}
4451 	}
4452 	return XDP_PASS;
4453 out_redir:
4454 	kfree_skb(skb);
4455 	return XDP_DROP;
4456 }
4457 EXPORT_SYMBOL_GPL(do_xdp_generic);
4458 
4459 static int netif_rx_internal(struct sk_buff *skb)
4460 {
4461 	int ret;
4462 
4463 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4464 
4465 	trace_netif_rx(skb);
4466 
4467 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4468 		int ret;
4469 
4470 		preempt_disable();
4471 		rcu_read_lock();
4472 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4473 		rcu_read_unlock();
4474 		preempt_enable();
4475 
4476 		/* Consider XDP consuming the packet a success from
4477 		 * the netdev point of view we do not want to count
4478 		 * this as an error.
4479 		 */
4480 		if (ret != XDP_PASS)
4481 			return NET_RX_SUCCESS;
4482 	}
4483 
4484 #ifdef CONFIG_RPS
4485 	if (static_key_false(&rps_needed)) {
4486 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4487 		int cpu;
4488 
4489 		preempt_disable();
4490 		rcu_read_lock();
4491 
4492 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4493 		if (cpu < 0)
4494 			cpu = smp_processor_id();
4495 
4496 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4497 
4498 		rcu_read_unlock();
4499 		preempt_enable();
4500 	} else
4501 #endif
4502 	{
4503 		unsigned int qtail;
4504 
4505 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4506 		put_cpu();
4507 	}
4508 	return ret;
4509 }
4510 
4511 /**
4512  *	netif_rx	-	post buffer to the network code
4513  *	@skb: buffer to post
4514  *
4515  *	This function receives a packet from a device driver and queues it for
4516  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4517  *	may be dropped during processing for congestion control or by the
4518  *	protocol layers.
4519  *
4520  *	return values:
4521  *	NET_RX_SUCCESS	(no congestion)
4522  *	NET_RX_DROP     (packet was dropped)
4523  *
4524  */
4525 
4526 int netif_rx(struct sk_buff *skb)
4527 {
4528 	trace_netif_rx_entry(skb);
4529 
4530 	return netif_rx_internal(skb);
4531 }
4532 EXPORT_SYMBOL(netif_rx);
4533 
4534 int netif_rx_ni(struct sk_buff *skb)
4535 {
4536 	int err;
4537 
4538 	trace_netif_rx_ni_entry(skb);
4539 
4540 	preempt_disable();
4541 	err = netif_rx_internal(skb);
4542 	if (local_softirq_pending())
4543 		do_softirq();
4544 	preempt_enable();
4545 
4546 	return err;
4547 }
4548 EXPORT_SYMBOL(netif_rx_ni);
4549 
4550 static __latent_entropy void net_tx_action(struct softirq_action *h)
4551 {
4552 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4553 
4554 	if (sd->completion_queue) {
4555 		struct sk_buff *clist;
4556 
4557 		local_irq_disable();
4558 		clist = sd->completion_queue;
4559 		sd->completion_queue = NULL;
4560 		local_irq_enable();
4561 
4562 		while (clist) {
4563 			struct sk_buff *skb = clist;
4564 
4565 			clist = clist->next;
4566 
4567 			WARN_ON(refcount_read(&skb->users));
4568 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4569 				trace_consume_skb(skb);
4570 			else
4571 				trace_kfree_skb(skb, net_tx_action);
4572 
4573 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4574 				__kfree_skb(skb);
4575 			else
4576 				__kfree_skb_defer(skb);
4577 		}
4578 
4579 		__kfree_skb_flush();
4580 	}
4581 
4582 	if (sd->output_queue) {
4583 		struct Qdisc *head;
4584 
4585 		local_irq_disable();
4586 		head = sd->output_queue;
4587 		sd->output_queue = NULL;
4588 		sd->output_queue_tailp = &sd->output_queue;
4589 		local_irq_enable();
4590 
4591 		while (head) {
4592 			struct Qdisc *q = head;
4593 			spinlock_t *root_lock = NULL;
4594 
4595 			head = head->next_sched;
4596 
4597 			if (!(q->flags & TCQ_F_NOLOCK)) {
4598 				root_lock = qdisc_lock(q);
4599 				spin_lock(root_lock);
4600 			}
4601 			/* We need to make sure head->next_sched is read
4602 			 * before clearing __QDISC_STATE_SCHED
4603 			 */
4604 			smp_mb__before_atomic();
4605 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4606 			qdisc_run(q);
4607 			if (root_lock)
4608 				spin_unlock(root_lock);
4609 		}
4610 	}
4611 
4612 	xfrm_dev_backlog(sd);
4613 }
4614 
4615 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4616 /* This hook is defined here for ATM LANE */
4617 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4618 			     unsigned char *addr) __read_mostly;
4619 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4620 #endif
4621 
4622 static inline struct sk_buff *
4623 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4624 		   struct net_device *orig_dev)
4625 {
4626 #ifdef CONFIG_NET_CLS_ACT
4627 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4628 	struct tcf_result cl_res;
4629 
4630 	/* If there's at least one ingress present somewhere (so
4631 	 * we get here via enabled static key), remaining devices
4632 	 * that are not configured with an ingress qdisc will bail
4633 	 * out here.
4634 	 */
4635 	if (!miniq)
4636 		return skb;
4637 
4638 	if (*pt_prev) {
4639 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4640 		*pt_prev = NULL;
4641 	}
4642 
4643 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4644 	skb->tc_at_ingress = 1;
4645 	mini_qdisc_bstats_cpu_update(miniq, skb);
4646 
4647 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4648 	case TC_ACT_OK:
4649 	case TC_ACT_RECLASSIFY:
4650 		skb->tc_index = TC_H_MIN(cl_res.classid);
4651 		break;
4652 	case TC_ACT_SHOT:
4653 		mini_qdisc_qstats_cpu_drop(miniq);
4654 		kfree_skb(skb);
4655 		return NULL;
4656 	case TC_ACT_STOLEN:
4657 	case TC_ACT_QUEUED:
4658 	case TC_ACT_TRAP:
4659 		consume_skb(skb);
4660 		return NULL;
4661 	case TC_ACT_REDIRECT:
4662 		/* skb_mac_header check was done by cls/act_bpf, so
4663 		 * we can safely push the L2 header back before
4664 		 * redirecting to another netdev
4665 		 */
4666 		__skb_push(skb, skb->mac_len);
4667 		skb_do_redirect(skb);
4668 		return NULL;
4669 	case TC_ACT_REINSERT:
4670 		/* this does not scrub the packet, and updates stats on error */
4671 		skb_tc_reinsert(skb, &cl_res);
4672 		return NULL;
4673 	default:
4674 		break;
4675 	}
4676 #endif /* CONFIG_NET_CLS_ACT */
4677 	return skb;
4678 }
4679 
4680 /**
4681  *	netdev_is_rx_handler_busy - check if receive handler is registered
4682  *	@dev: device to check
4683  *
4684  *	Check if a receive handler is already registered for a given device.
4685  *	Return true if there one.
4686  *
4687  *	The caller must hold the rtnl_mutex.
4688  */
4689 bool netdev_is_rx_handler_busy(struct net_device *dev)
4690 {
4691 	ASSERT_RTNL();
4692 	return dev && rtnl_dereference(dev->rx_handler);
4693 }
4694 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4695 
4696 /**
4697  *	netdev_rx_handler_register - register receive handler
4698  *	@dev: device to register a handler for
4699  *	@rx_handler: receive handler to register
4700  *	@rx_handler_data: data pointer that is used by rx handler
4701  *
4702  *	Register a receive handler for a device. This handler will then be
4703  *	called from __netif_receive_skb. A negative errno code is returned
4704  *	on a failure.
4705  *
4706  *	The caller must hold the rtnl_mutex.
4707  *
4708  *	For a general description of rx_handler, see enum rx_handler_result.
4709  */
4710 int netdev_rx_handler_register(struct net_device *dev,
4711 			       rx_handler_func_t *rx_handler,
4712 			       void *rx_handler_data)
4713 {
4714 	if (netdev_is_rx_handler_busy(dev))
4715 		return -EBUSY;
4716 
4717 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4718 		return -EINVAL;
4719 
4720 	/* Note: rx_handler_data must be set before rx_handler */
4721 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4722 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4723 
4724 	return 0;
4725 }
4726 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4727 
4728 /**
4729  *	netdev_rx_handler_unregister - unregister receive handler
4730  *	@dev: device to unregister a handler from
4731  *
4732  *	Unregister a receive handler from a device.
4733  *
4734  *	The caller must hold the rtnl_mutex.
4735  */
4736 void netdev_rx_handler_unregister(struct net_device *dev)
4737 {
4738 
4739 	ASSERT_RTNL();
4740 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4741 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4742 	 * section has a guarantee to see a non NULL rx_handler_data
4743 	 * as well.
4744 	 */
4745 	synchronize_net();
4746 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4747 }
4748 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4749 
4750 /*
4751  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4752  * the special handling of PFMEMALLOC skbs.
4753  */
4754 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4755 {
4756 	switch (skb->protocol) {
4757 	case htons(ETH_P_ARP):
4758 	case htons(ETH_P_IP):
4759 	case htons(ETH_P_IPV6):
4760 	case htons(ETH_P_8021Q):
4761 	case htons(ETH_P_8021AD):
4762 		return true;
4763 	default:
4764 		return false;
4765 	}
4766 }
4767 
4768 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4769 			     int *ret, struct net_device *orig_dev)
4770 {
4771 #ifdef CONFIG_NETFILTER_INGRESS
4772 	if (nf_hook_ingress_active(skb)) {
4773 		int ingress_retval;
4774 
4775 		if (*pt_prev) {
4776 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4777 			*pt_prev = NULL;
4778 		}
4779 
4780 		rcu_read_lock();
4781 		ingress_retval = nf_hook_ingress(skb);
4782 		rcu_read_unlock();
4783 		return ingress_retval;
4784 	}
4785 #endif /* CONFIG_NETFILTER_INGRESS */
4786 	return 0;
4787 }
4788 
4789 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4790 				    struct packet_type **ppt_prev)
4791 {
4792 	struct packet_type *ptype, *pt_prev;
4793 	rx_handler_func_t *rx_handler;
4794 	struct net_device *orig_dev;
4795 	bool deliver_exact = false;
4796 	int ret = NET_RX_DROP;
4797 	__be16 type;
4798 
4799 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4800 
4801 	trace_netif_receive_skb(skb);
4802 
4803 	orig_dev = skb->dev;
4804 
4805 	skb_reset_network_header(skb);
4806 	if (!skb_transport_header_was_set(skb))
4807 		skb_reset_transport_header(skb);
4808 	skb_reset_mac_len(skb);
4809 
4810 	pt_prev = NULL;
4811 
4812 another_round:
4813 	skb->skb_iif = skb->dev->ifindex;
4814 
4815 	__this_cpu_inc(softnet_data.processed);
4816 
4817 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4818 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4819 		skb = skb_vlan_untag(skb);
4820 		if (unlikely(!skb))
4821 			goto out;
4822 	}
4823 
4824 	if (skb_skip_tc_classify(skb))
4825 		goto skip_classify;
4826 
4827 	if (pfmemalloc)
4828 		goto skip_taps;
4829 
4830 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4831 		if (pt_prev)
4832 			ret = deliver_skb(skb, pt_prev, orig_dev);
4833 		pt_prev = ptype;
4834 	}
4835 
4836 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4837 		if (pt_prev)
4838 			ret = deliver_skb(skb, pt_prev, orig_dev);
4839 		pt_prev = ptype;
4840 	}
4841 
4842 skip_taps:
4843 #ifdef CONFIG_NET_INGRESS
4844 	if (static_branch_unlikely(&ingress_needed_key)) {
4845 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4846 		if (!skb)
4847 			goto out;
4848 
4849 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4850 			goto out;
4851 	}
4852 #endif
4853 	skb_reset_tc(skb);
4854 skip_classify:
4855 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4856 		goto drop;
4857 
4858 	if (skb_vlan_tag_present(skb)) {
4859 		if (pt_prev) {
4860 			ret = deliver_skb(skb, pt_prev, orig_dev);
4861 			pt_prev = NULL;
4862 		}
4863 		if (vlan_do_receive(&skb))
4864 			goto another_round;
4865 		else if (unlikely(!skb))
4866 			goto out;
4867 	}
4868 
4869 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4870 	if (rx_handler) {
4871 		if (pt_prev) {
4872 			ret = deliver_skb(skb, pt_prev, orig_dev);
4873 			pt_prev = NULL;
4874 		}
4875 		switch (rx_handler(&skb)) {
4876 		case RX_HANDLER_CONSUMED:
4877 			ret = NET_RX_SUCCESS;
4878 			goto out;
4879 		case RX_HANDLER_ANOTHER:
4880 			goto another_round;
4881 		case RX_HANDLER_EXACT:
4882 			deliver_exact = true;
4883 		case RX_HANDLER_PASS:
4884 			break;
4885 		default:
4886 			BUG();
4887 		}
4888 	}
4889 
4890 	if (unlikely(skb_vlan_tag_present(skb))) {
4891 		if (skb_vlan_tag_get_id(skb))
4892 			skb->pkt_type = PACKET_OTHERHOST;
4893 		/* Note: we might in the future use prio bits
4894 		 * and set skb->priority like in vlan_do_receive()
4895 		 * For the time being, just ignore Priority Code Point
4896 		 */
4897 		skb->vlan_tci = 0;
4898 	}
4899 
4900 	type = skb->protocol;
4901 
4902 	/* deliver only exact match when indicated */
4903 	if (likely(!deliver_exact)) {
4904 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4905 				       &ptype_base[ntohs(type) &
4906 						   PTYPE_HASH_MASK]);
4907 	}
4908 
4909 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4910 			       &orig_dev->ptype_specific);
4911 
4912 	if (unlikely(skb->dev != orig_dev)) {
4913 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4914 				       &skb->dev->ptype_specific);
4915 	}
4916 
4917 	if (pt_prev) {
4918 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4919 			goto drop;
4920 		*ppt_prev = pt_prev;
4921 	} else {
4922 drop:
4923 		if (!deliver_exact)
4924 			atomic_long_inc(&skb->dev->rx_dropped);
4925 		else
4926 			atomic_long_inc(&skb->dev->rx_nohandler);
4927 		kfree_skb(skb);
4928 		/* Jamal, now you will not able to escape explaining
4929 		 * me how you were going to use this. :-)
4930 		 */
4931 		ret = NET_RX_DROP;
4932 	}
4933 
4934 out:
4935 	return ret;
4936 }
4937 
4938 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4939 {
4940 	struct net_device *orig_dev = skb->dev;
4941 	struct packet_type *pt_prev = NULL;
4942 	int ret;
4943 
4944 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4945 	if (pt_prev)
4946 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4947 	return ret;
4948 }
4949 
4950 /**
4951  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4952  *	@skb: buffer to process
4953  *
4954  *	More direct receive version of netif_receive_skb().  It should
4955  *	only be used by callers that have a need to skip RPS and Generic XDP.
4956  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4957  *
4958  *	This function may only be called from softirq context and interrupts
4959  *	should be enabled.
4960  *
4961  *	Return values (usually ignored):
4962  *	NET_RX_SUCCESS: no congestion
4963  *	NET_RX_DROP: packet was dropped
4964  */
4965 int netif_receive_skb_core(struct sk_buff *skb)
4966 {
4967 	int ret;
4968 
4969 	rcu_read_lock();
4970 	ret = __netif_receive_skb_one_core(skb, false);
4971 	rcu_read_unlock();
4972 
4973 	return ret;
4974 }
4975 EXPORT_SYMBOL(netif_receive_skb_core);
4976 
4977 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4978 						  struct packet_type *pt_prev,
4979 						  struct net_device *orig_dev)
4980 {
4981 	struct sk_buff *skb, *next;
4982 
4983 	if (!pt_prev)
4984 		return;
4985 	if (list_empty(head))
4986 		return;
4987 	if (pt_prev->list_func != NULL)
4988 		pt_prev->list_func(head, pt_prev, orig_dev);
4989 	else
4990 		list_for_each_entry_safe(skb, next, head, list)
4991 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4992 }
4993 
4994 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4995 {
4996 	/* Fast-path assumptions:
4997 	 * - There is no RX handler.
4998 	 * - Only one packet_type matches.
4999 	 * If either of these fails, we will end up doing some per-packet
5000 	 * processing in-line, then handling the 'last ptype' for the whole
5001 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5002 	 * because the 'last ptype' must be constant across the sublist, and all
5003 	 * other ptypes are handled per-packet.
5004 	 */
5005 	/* Current (common) ptype of sublist */
5006 	struct packet_type *pt_curr = NULL;
5007 	/* Current (common) orig_dev of sublist */
5008 	struct net_device *od_curr = NULL;
5009 	struct list_head sublist;
5010 	struct sk_buff *skb, *next;
5011 
5012 	INIT_LIST_HEAD(&sublist);
5013 	list_for_each_entry_safe(skb, next, head, list) {
5014 		struct net_device *orig_dev = skb->dev;
5015 		struct packet_type *pt_prev = NULL;
5016 
5017 		skb_list_del_init(skb);
5018 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5019 		if (!pt_prev)
5020 			continue;
5021 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5022 			/* dispatch old sublist */
5023 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5024 			/* start new sublist */
5025 			INIT_LIST_HEAD(&sublist);
5026 			pt_curr = pt_prev;
5027 			od_curr = orig_dev;
5028 		}
5029 		list_add_tail(&skb->list, &sublist);
5030 	}
5031 
5032 	/* dispatch final sublist */
5033 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034 }
5035 
5036 static int __netif_receive_skb(struct sk_buff *skb)
5037 {
5038 	int ret;
5039 
5040 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5041 		unsigned int noreclaim_flag;
5042 
5043 		/*
5044 		 * PFMEMALLOC skbs are special, they should
5045 		 * - be delivered to SOCK_MEMALLOC sockets only
5046 		 * - stay away from userspace
5047 		 * - have bounded memory usage
5048 		 *
5049 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5050 		 * context down to all allocation sites.
5051 		 */
5052 		noreclaim_flag = memalloc_noreclaim_save();
5053 		ret = __netif_receive_skb_one_core(skb, true);
5054 		memalloc_noreclaim_restore(noreclaim_flag);
5055 	} else
5056 		ret = __netif_receive_skb_one_core(skb, false);
5057 
5058 	return ret;
5059 }
5060 
5061 static void __netif_receive_skb_list(struct list_head *head)
5062 {
5063 	unsigned long noreclaim_flag = 0;
5064 	struct sk_buff *skb, *next;
5065 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5066 
5067 	list_for_each_entry_safe(skb, next, head, list) {
5068 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5069 			struct list_head sublist;
5070 
5071 			/* Handle the previous sublist */
5072 			list_cut_before(&sublist, head, &skb->list);
5073 			if (!list_empty(&sublist))
5074 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5075 			pfmemalloc = !pfmemalloc;
5076 			/* See comments in __netif_receive_skb */
5077 			if (pfmemalloc)
5078 				noreclaim_flag = memalloc_noreclaim_save();
5079 			else
5080 				memalloc_noreclaim_restore(noreclaim_flag);
5081 		}
5082 	}
5083 	/* Handle the remaining sublist */
5084 	if (!list_empty(head))
5085 		__netif_receive_skb_list_core(head, pfmemalloc);
5086 	/* Restore pflags */
5087 	if (pfmemalloc)
5088 		memalloc_noreclaim_restore(noreclaim_flag);
5089 }
5090 
5091 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5092 {
5093 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5094 	struct bpf_prog *new = xdp->prog;
5095 	int ret = 0;
5096 
5097 	switch (xdp->command) {
5098 	case XDP_SETUP_PROG:
5099 		rcu_assign_pointer(dev->xdp_prog, new);
5100 		if (old)
5101 			bpf_prog_put(old);
5102 
5103 		if (old && !new) {
5104 			static_branch_dec(&generic_xdp_needed_key);
5105 		} else if (new && !old) {
5106 			static_branch_inc(&generic_xdp_needed_key);
5107 			dev_disable_lro(dev);
5108 			dev_disable_gro_hw(dev);
5109 		}
5110 		break;
5111 
5112 	case XDP_QUERY_PROG:
5113 		xdp->prog_id = old ? old->aux->id : 0;
5114 		break;
5115 
5116 	default:
5117 		ret = -EINVAL;
5118 		break;
5119 	}
5120 
5121 	return ret;
5122 }
5123 
5124 static int netif_receive_skb_internal(struct sk_buff *skb)
5125 {
5126 	int ret;
5127 
5128 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5129 
5130 	if (skb_defer_rx_timestamp(skb))
5131 		return NET_RX_SUCCESS;
5132 
5133 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5134 		int ret;
5135 
5136 		preempt_disable();
5137 		rcu_read_lock();
5138 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5139 		rcu_read_unlock();
5140 		preempt_enable();
5141 
5142 		if (ret != XDP_PASS)
5143 			return NET_RX_DROP;
5144 	}
5145 
5146 	rcu_read_lock();
5147 #ifdef CONFIG_RPS
5148 	if (static_key_false(&rps_needed)) {
5149 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5150 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5151 
5152 		if (cpu >= 0) {
5153 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5154 			rcu_read_unlock();
5155 			return ret;
5156 		}
5157 	}
5158 #endif
5159 	ret = __netif_receive_skb(skb);
5160 	rcu_read_unlock();
5161 	return ret;
5162 }
5163 
5164 static void netif_receive_skb_list_internal(struct list_head *head)
5165 {
5166 	struct bpf_prog *xdp_prog = NULL;
5167 	struct sk_buff *skb, *next;
5168 	struct list_head sublist;
5169 
5170 	INIT_LIST_HEAD(&sublist);
5171 	list_for_each_entry_safe(skb, next, head, list) {
5172 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5173 		skb_list_del_init(skb);
5174 		if (!skb_defer_rx_timestamp(skb))
5175 			list_add_tail(&skb->list, &sublist);
5176 	}
5177 	list_splice_init(&sublist, head);
5178 
5179 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5180 		preempt_disable();
5181 		rcu_read_lock();
5182 		list_for_each_entry_safe(skb, next, head, list) {
5183 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5184 			skb_list_del_init(skb);
5185 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5186 				list_add_tail(&skb->list, &sublist);
5187 		}
5188 		rcu_read_unlock();
5189 		preempt_enable();
5190 		/* Put passed packets back on main list */
5191 		list_splice_init(&sublist, head);
5192 	}
5193 
5194 	rcu_read_lock();
5195 #ifdef CONFIG_RPS
5196 	if (static_key_false(&rps_needed)) {
5197 		list_for_each_entry_safe(skb, next, head, list) {
5198 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5199 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5200 
5201 			if (cpu >= 0) {
5202 				/* Will be handled, remove from list */
5203 				skb_list_del_init(skb);
5204 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5205 			}
5206 		}
5207 	}
5208 #endif
5209 	__netif_receive_skb_list(head);
5210 	rcu_read_unlock();
5211 }
5212 
5213 /**
5214  *	netif_receive_skb - process receive buffer from network
5215  *	@skb: buffer to process
5216  *
5217  *	netif_receive_skb() is the main receive data processing function.
5218  *	It always succeeds. The buffer may be dropped during processing
5219  *	for congestion control or by the protocol layers.
5220  *
5221  *	This function may only be called from softirq context and interrupts
5222  *	should be enabled.
5223  *
5224  *	Return values (usually ignored):
5225  *	NET_RX_SUCCESS: no congestion
5226  *	NET_RX_DROP: packet was dropped
5227  */
5228 int netif_receive_skb(struct sk_buff *skb)
5229 {
5230 	trace_netif_receive_skb_entry(skb);
5231 
5232 	return netif_receive_skb_internal(skb);
5233 }
5234 EXPORT_SYMBOL(netif_receive_skb);
5235 
5236 /**
5237  *	netif_receive_skb_list - process many receive buffers from network
5238  *	@head: list of skbs to process.
5239  *
5240  *	Since return value of netif_receive_skb() is normally ignored, and
5241  *	wouldn't be meaningful for a list, this function returns void.
5242  *
5243  *	This function may only be called from softirq context and interrupts
5244  *	should be enabled.
5245  */
5246 void netif_receive_skb_list(struct list_head *head)
5247 {
5248 	struct sk_buff *skb;
5249 
5250 	if (list_empty(head))
5251 		return;
5252 	list_for_each_entry(skb, head, list)
5253 		trace_netif_receive_skb_list_entry(skb);
5254 	netif_receive_skb_list_internal(head);
5255 }
5256 EXPORT_SYMBOL(netif_receive_skb_list);
5257 
5258 DEFINE_PER_CPU(struct work_struct, flush_works);
5259 
5260 /* Network device is going away, flush any packets still pending */
5261 static void flush_backlog(struct work_struct *work)
5262 {
5263 	struct sk_buff *skb, *tmp;
5264 	struct softnet_data *sd;
5265 
5266 	local_bh_disable();
5267 	sd = this_cpu_ptr(&softnet_data);
5268 
5269 	local_irq_disable();
5270 	rps_lock(sd);
5271 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5272 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5273 			__skb_unlink(skb, &sd->input_pkt_queue);
5274 			kfree_skb(skb);
5275 			input_queue_head_incr(sd);
5276 		}
5277 	}
5278 	rps_unlock(sd);
5279 	local_irq_enable();
5280 
5281 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5282 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5283 			__skb_unlink(skb, &sd->process_queue);
5284 			kfree_skb(skb);
5285 			input_queue_head_incr(sd);
5286 		}
5287 	}
5288 	local_bh_enable();
5289 }
5290 
5291 static void flush_all_backlogs(void)
5292 {
5293 	unsigned int cpu;
5294 
5295 	get_online_cpus();
5296 
5297 	for_each_online_cpu(cpu)
5298 		queue_work_on(cpu, system_highpri_wq,
5299 			      per_cpu_ptr(&flush_works, cpu));
5300 
5301 	for_each_online_cpu(cpu)
5302 		flush_work(per_cpu_ptr(&flush_works, cpu));
5303 
5304 	put_online_cpus();
5305 }
5306 
5307 static int napi_gro_complete(struct sk_buff *skb)
5308 {
5309 	struct packet_offload *ptype;
5310 	__be16 type = skb->protocol;
5311 	struct list_head *head = &offload_base;
5312 	int err = -ENOENT;
5313 
5314 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5315 
5316 	if (NAPI_GRO_CB(skb)->count == 1) {
5317 		skb_shinfo(skb)->gso_size = 0;
5318 		goto out;
5319 	}
5320 
5321 	rcu_read_lock();
5322 	list_for_each_entry_rcu(ptype, head, list) {
5323 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5324 			continue;
5325 
5326 		err = ptype->callbacks.gro_complete(skb, 0);
5327 		break;
5328 	}
5329 	rcu_read_unlock();
5330 
5331 	if (err) {
5332 		WARN_ON(&ptype->list == head);
5333 		kfree_skb(skb);
5334 		return NET_RX_SUCCESS;
5335 	}
5336 
5337 out:
5338 	return netif_receive_skb_internal(skb);
5339 }
5340 
5341 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5342 				   bool flush_old)
5343 {
5344 	struct list_head *head = &napi->gro_hash[index].list;
5345 	struct sk_buff *skb, *p;
5346 
5347 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5348 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5349 			return;
5350 		skb_list_del_init(skb);
5351 		napi_gro_complete(skb);
5352 		napi->gro_hash[index].count--;
5353 	}
5354 
5355 	if (!napi->gro_hash[index].count)
5356 		__clear_bit(index, &napi->gro_bitmask);
5357 }
5358 
5359 /* napi->gro_hash[].list contains packets ordered by age.
5360  * youngest packets at the head of it.
5361  * Complete skbs in reverse order to reduce latencies.
5362  */
5363 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5364 {
5365 	u32 i;
5366 
5367 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5368 		if (test_bit(i, &napi->gro_bitmask))
5369 			__napi_gro_flush_chain(napi, i, flush_old);
5370 	}
5371 }
5372 EXPORT_SYMBOL(napi_gro_flush);
5373 
5374 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5375 					  struct sk_buff *skb)
5376 {
5377 	unsigned int maclen = skb->dev->hard_header_len;
5378 	u32 hash = skb_get_hash_raw(skb);
5379 	struct list_head *head;
5380 	struct sk_buff *p;
5381 
5382 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5383 	list_for_each_entry(p, head, list) {
5384 		unsigned long diffs;
5385 
5386 		NAPI_GRO_CB(p)->flush = 0;
5387 
5388 		if (hash != skb_get_hash_raw(p)) {
5389 			NAPI_GRO_CB(p)->same_flow = 0;
5390 			continue;
5391 		}
5392 
5393 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5394 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5395 		diffs |= skb_metadata_dst_cmp(p, skb);
5396 		diffs |= skb_metadata_differs(p, skb);
5397 		if (maclen == ETH_HLEN)
5398 			diffs |= compare_ether_header(skb_mac_header(p),
5399 						      skb_mac_header(skb));
5400 		else if (!diffs)
5401 			diffs = memcmp(skb_mac_header(p),
5402 				       skb_mac_header(skb),
5403 				       maclen);
5404 		NAPI_GRO_CB(p)->same_flow = !diffs;
5405 	}
5406 
5407 	return head;
5408 }
5409 
5410 static void skb_gro_reset_offset(struct sk_buff *skb)
5411 {
5412 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5413 	const skb_frag_t *frag0 = &pinfo->frags[0];
5414 
5415 	NAPI_GRO_CB(skb)->data_offset = 0;
5416 	NAPI_GRO_CB(skb)->frag0 = NULL;
5417 	NAPI_GRO_CB(skb)->frag0_len = 0;
5418 
5419 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5420 	    pinfo->nr_frags &&
5421 	    !PageHighMem(skb_frag_page(frag0))) {
5422 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5423 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5424 						    skb_frag_size(frag0),
5425 						    skb->end - skb->tail);
5426 	}
5427 }
5428 
5429 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5430 {
5431 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5432 
5433 	BUG_ON(skb->end - skb->tail < grow);
5434 
5435 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5436 
5437 	skb->data_len -= grow;
5438 	skb->tail += grow;
5439 
5440 	pinfo->frags[0].page_offset += grow;
5441 	skb_frag_size_sub(&pinfo->frags[0], grow);
5442 
5443 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5444 		skb_frag_unref(skb, 0);
5445 		memmove(pinfo->frags, pinfo->frags + 1,
5446 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5447 	}
5448 }
5449 
5450 static void gro_flush_oldest(struct list_head *head)
5451 {
5452 	struct sk_buff *oldest;
5453 
5454 	oldest = list_last_entry(head, struct sk_buff, list);
5455 
5456 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5457 	 * impossible.
5458 	 */
5459 	if (WARN_ON_ONCE(!oldest))
5460 		return;
5461 
5462 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5463 	 * SKB to the chain.
5464 	 */
5465 	skb_list_del_init(oldest);
5466 	napi_gro_complete(oldest);
5467 }
5468 
5469 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5470 {
5471 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5472 	struct list_head *head = &offload_base;
5473 	struct packet_offload *ptype;
5474 	__be16 type = skb->protocol;
5475 	struct list_head *gro_head;
5476 	struct sk_buff *pp = NULL;
5477 	enum gro_result ret;
5478 	int same_flow;
5479 	int grow;
5480 
5481 	if (netif_elide_gro(skb->dev))
5482 		goto normal;
5483 
5484 	gro_head = gro_list_prepare(napi, skb);
5485 
5486 	rcu_read_lock();
5487 	list_for_each_entry_rcu(ptype, head, list) {
5488 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5489 			continue;
5490 
5491 		skb_set_network_header(skb, skb_gro_offset(skb));
5492 		skb_reset_mac_len(skb);
5493 		NAPI_GRO_CB(skb)->same_flow = 0;
5494 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5495 		NAPI_GRO_CB(skb)->free = 0;
5496 		NAPI_GRO_CB(skb)->encap_mark = 0;
5497 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5498 		NAPI_GRO_CB(skb)->is_fou = 0;
5499 		NAPI_GRO_CB(skb)->is_atomic = 1;
5500 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5501 
5502 		/* Setup for GRO checksum validation */
5503 		switch (skb->ip_summed) {
5504 		case CHECKSUM_COMPLETE:
5505 			NAPI_GRO_CB(skb)->csum = skb->csum;
5506 			NAPI_GRO_CB(skb)->csum_valid = 1;
5507 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5508 			break;
5509 		case CHECKSUM_UNNECESSARY:
5510 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5511 			NAPI_GRO_CB(skb)->csum_valid = 0;
5512 			break;
5513 		default:
5514 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5515 			NAPI_GRO_CB(skb)->csum_valid = 0;
5516 		}
5517 
5518 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5519 		break;
5520 	}
5521 	rcu_read_unlock();
5522 
5523 	if (&ptype->list == head)
5524 		goto normal;
5525 
5526 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5527 		ret = GRO_CONSUMED;
5528 		goto ok;
5529 	}
5530 
5531 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5532 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5533 
5534 	if (pp) {
5535 		skb_list_del_init(pp);
5536 		napi_gro_complete(pp);
5537 		napi->gro_hash[hash].count--;
5538 	}
5539 
5540 	if (same_flow)
5541 		goto ok;
5542 
5543 	if (NAPI_GRO_CB(skb)->flush)
5544 		goto normal;
5545 
5546 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5547 		gro_flush_oldest(gro_head);
5548 	} else {
5549 		napi->gro_hash[hash].count++;
5550 	}
5551 	NAPI_GRO_CB(skb)->count = 1;
5552 	NAPI_GRO_CB(skb)->age = jiffies;
5553 	NAPI_GRO_CB(skb)->last = skb;
5554 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5555 	list_add(&skb->list, gro_head);
5556 	ret = GRO_HELD;
5557 
5558 pull:
5559 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5560 	if (grow > 0)
5561 		gro_pull_from_frag0(skb, grow);
5562 ok:
5563 	if (napi->gro_hash[hash].count) {
5564 		if (!test_bit(hash, &napi->gro_bitmask))
5565 			__set_bit(hash, &napi->gro_bitmask);
5566 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5567 		__clear_bit(hash, &napi->gro_bitmask);
5568 	}
5569 
5570 	return ret;
5571 
5572 normal:
5573 	ret = GRO_NORMAL;
5574 	goto pull;
5575 }
5576 
5577 struct packet_offload *gro_find_receive_by_type(__be16 type)
5578 {
5579 	struct list_head *offload_head = &offload_base;
5580 	struct packet_offload *ptype;
5581 
5582 	list_for_each_entry_rcu(ptype, offload_head, list) {
5583 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5584 			continue;
5585 		return ptype;
5586 	}
5587 	return NULL;
5588 }
5589 EXPORT_SYMBOL(gro_find_receive_by_type);
5590 
5591 struct packet_offload *gro_find_complete_by_type(__be16 type)
5592 {
5593 	struct list_head *offload_head = &offload_base;
5594 	struct packet_offload *ptype;
5595 
5596 	list_for_each_entry_rcu(ptype, offload_head, list) {
5597 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5598 			continue;
5599 		return ptype;
5600 	}
5601 	return NULL;
5602 }
5603 EXPORT_SYMBOL(gro_find_complete_by_type);
5604 
5605 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5606 {
5607 	skb_dst_drop(skb);
5608 	secpath_reset(skb);
5609 	kmem_cache_free(skbuff_head_cache, skb);
5610 }
5611 
5612 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5613 {
5614 	switch (ret) {
5615 	case GRO_NORMAL:
5616 		if (netif_receive_skb_internal(skb))
5617 			ret = GRO_DROP;
5618 		break;
5619 
5620 	case GRO_DROP:
5621 		kfree_skb(skb);
5622 		break;
5623 
5624 	case GRO_MERGED_FREE:
5625 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5626 			napi_skb_free_stolen_head(skb);
5627 		else
5628 			__kfree_skb(skb);
5629 		break;
5630 
5631 	case GRO_HELD:
5632 	case GRO_MERGED:
5633 	case GRO_CONSUMED:
5634 		break;
5635 	}
5636 
5637 	return ret;
5638 }
5639 
5640 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5641 {
5642 	skb_mark_napi_id(skb, napi);
5643 	trace_napi_gro_receive_entry(skb);
5644 
5645 	skb_gro_reset_offset(skb);
5646 
5647 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5648 }
5649 EXPORT_SYMBOL(napi_gro_receive);
5650 
5651 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5652 {
5653 	if (unlikely(skb->pfmemalloc)) {
5654 		consume_skb(skb);
5655 		return;
5656 	}
5657 	__skb_pull(skb, skb_headlen(skb));
5658 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5659 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5660 	skb->vlan_tci = 0;
5661 	skb->dev = napi->dev;
5662 	skb->skb_iif = 0;
5663 
5664 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5665 	skb->pkt_type = PACKET_HOST;
5666 
5667 	skb->encapsulation = 0;
5668 	skb_shinfo(skb)->gso_type = 0;
5669 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5670 	secpath_reset(skb);
5671 
5672 	napi->skb = skb;
5673 }
5674 
5675 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5676 {
5677 	struct sk_buff *skb = napi->skb;
5678 
5679 	if (!skb) {
5680 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5681 		if (skb) {
5682 			napi->skb = skb;
5683 			skb_mark_napi_id(skb, napi);
5684 		}
5685 	}
5686 	return skb;
5687 }
5688 EXPORT_SYMBOL(napi_get_frags);
5689 
5690 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5691 				      struct sk_buff *skb,
5692 				      gro_result_t ret)
5693 {
5694 	switch (ret) {
5695 	case GRO_NORMAL:
5696 	case GRO_HELD:
5697 		__skb_push(skb, ETH_HLEN);
5698 		skb->protocol = eth_type_trans(skb, skb->dev);
5699 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5700 			ret = GRO_DROP;
5701 		break;
5702 
5703 	case GRO_DROP:
5704 		napi_reuse_skb(napi, skb);
5705 		break;
5706 
5707 	case GRO_MERGED_FREE:
5708 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5709 			napi_skb_free_stolen_head(skb);
5710 		else
5711 			napi_reuse_skb(napi, skb);
5712 		break;
5713 
5714 	case GRO_MERGED:
5715 	case GRO_CONSUMED:
5716 		break;
5717 	}
5718 
5719 	return ret;
5720 }
5721 
5722 /* Upper GRO stack assumes network header starts at gro_offset=0
5723  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5724  * We copy ethernet header into skb->data to have a common layout.
5725  */
5726 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5727 {
5728 	struct sk_buff *skb = napi->skb;
5729 	const struct ethhdr *eth;
5730 	unsigned int hlen = sizeof(*eth);
5731 
5732 	napi->skb = NULL;
5733 
5734 	skb_reset_mac_header(skb);
5735 	skb_gro_reset_offset(skb);
5736 
5737 	eth = skb_gro_header_fast(skb, 0);
5738 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5739 		eth = skb_gro_header_slow(skb, hlen, 0);
5740 		if (unlikely(!eth)) {
5741 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5742 					     __func__, napi->dev->name);
5743 			napi_reuse_skb(napi, skb);
5744 			return NULL;
5745 		}
5746 	} else {
5747 		gro_pull_from_frag0(skb, hlen);
5748 		NAPI_GRO_CB(skb)->frag0 += hlen;
5749 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5750 	}
5751 	__skb_pull(skb, hlen);
5752 
5753 	/*
5754 	 * This works because the only protocols we care about don't require
5755 	 * special handling.
5756 	 * We'll fix it up properly in napi_frags_finish()
5757 	 */
5758 	skb->protocol = eth->h_proto;
5759 
5760 	return skb;
5761 }
5762 
5763 gro_result_t napi_gro_frags(struct napi_struct *napi)
5764 {
5765 	struct sk_buff *skb = napi_frags_skb(napi);
5766 
5767 	if (!skb)
5768 		return GRO_DROP;
5769 
5770 	trace_napi_gro_frags_entry(skb);
5771 
5772 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5773 }
5774 EXPORT_SYMBOL(napi_gro_frags);
5775 
5776 /* Compute the checksum from gro_offset and return the folded value
5777  * after adding in any pseudo checksum.
5778  */
5779 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5780 {
5781 	__wsum wsum;
5782 	__sum16 sum;
5783 
5784 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5785 
5786 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5787 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5788 	if (likely(!sum)) {
5789 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5790 		    !skb->csum_complete_sw)
5791 			netdev_rx_csum_fault(skb->dev);
5792 	}
5793 
5794 	NAPI_GRO_CB(skb)->csum = wsum;
5795 	NAPI_GRO_CB(skb)->csum_valid = 1;
5796 
5797 	return sum;
5798 }
5799 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5800 
5801 static void net_rps_send_ipi(struct softnet_data *remsd)
5802 {
5803 #ifdef CONFIG_RPS
5804 	while (remsd) {
5805 		struct softnet_data *next = remsd->rps_ipi_next;
5806 
5807 		if (cpu_online(remsd->cpu))
5808 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5809 		remsd = next;
5810 	}
5811 #endif
5812 }
5813 
5814 /*
5815  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5816  * Note: called with local irq disabled, but exits with local irq enabled.
5817  */
5818 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5819 {
5820 #ifdef CONFIG_RPS
5821 	struct softnet_data *remsd = sd->rps_ipi_list;
5822 
5823 	if (remsd) {
5824 		sd->rps_ipi_list = NULL;
5825 
5826 		local_irq_enable();
5827 
5828 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5829 		net_rps_send_ipi(remsd);
5830 	} else
5831 #endif
5832 		local_irq_enable();
5833 }
5834 
5835 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5836 {
5837 #ifdef CONFIG_RPS
5838 	return sd->rps_ipi_list != NULL;
5839 #else
5840 	return false;
5841 #endif
5842 }
5843 
5844 static int process_backlog(struct napi_struct *napi, int quota)
5845 {
5846 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5847 	bool again = true;
5848 	int work = 0;
5849 
5850 	/* Check if we have pending ipi, its better to send them now,
5851 	 * not waiting net_rx_action() end.
5852 	 */
5853 	if (sd_has_rps_ipi_waiting(sd)) {
5854 		local_irq_disable();
5855 		net_rps_action_and_irq_enable(sd);
5856 	}
5857 
5858 	napi->weight = dev_rx_weight;
5859 	while (again) {
5860 		struct sk_buff *skb;
5861 
5862 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5863 			rcu_read_lock();
5864 			__netif_receive_skb(skb);
5865 			rcu_read_unlock();
5866 			input_queue_head_incr(sd);
5867 			if (++work >= quota)
5868 				return work;
5869 
5870 		}
5871 
5872 		local_irq_disable();
5873 		rps_lock(sd);
5874 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5875 			/*
5876 			 * Inline a custom version of __napi_complete().
5877 			 * only current cpu owns and manipulates this napi,
5878 			 * and NAPI_STATE_SCHED is the only possible flag set
5879 			 * on backlog.
5880 			 * We can use a plain write instead of clear_bit(),
5881 			 * and we dont need an smp_mb() memory barrier.
5882 			 */
5883 			napi->state = 0;
5884 			again = false;
5885 		} else {
5886 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5887 						   &sd->process_queue);
5888 		}
5889 		rps_unlock(sd);
5890 		local_irq_enable();
5891 	}
5892 
5893 	return work;
5894 }
5895 
5896 /**
5897  * __napi_schedule - schedule for receive
5898  * @n: entry to schedule
5899  *
5900  * The entry's receive function will be scheduled to run.
5901  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5902  */
5903 void __napi_schedule(struct napi_struct *n)
5904 {
5905 	unsigned long flags;
5906 
5907 	local_irq_save(flags);
5908 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5909 	local_irq_restore(flags);
5910 }
5911 EXPORT_SYMBOL(__napi_schedule);
5912 
5913 /**
5914  *	napi_schedule_prep - check if napi can be scheduled
5915  *	@n: napi context
5916  *
5917  * Test if NAPI routine is already running, and if not mark
5918  * it as running.  This is used as a condition variable
5919  * insure only one NAPI poll instance runs.  We also make
5920  * sure there is no pending NAPI disable.
5921  */
5922 bool napi_schedule_prep(struct napi_struct *n)
5923 {
5924 	unsigned long val, new;
5925 
5926 	do {
5927 		val = READ_ONCE(n->state);
5928 		if (unlikely(val & NAPIF_STATE_DISABLE))
5929 			return false;
5930 		new = val | NAPIF_STATE_SCHED;
5931 
5932 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5933 		 * This was suggested by Alexander Duyck, as compiler
5934 		 * emits better code than :
5935 		 * if (val & NAPIF_STATE_SCHED)
5936 		 *     new |= NAPIF_STATE_MISSED;
5937 		 */
5938 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5939 						   NAPIF_STATE_MISSED;
5940 	} while (cmpxchg(&n->state, val, new) != val);
5941 
5942 	return !(val & NAPIF_STATE_SCHED);
5943 }
5944 EXPORT_SYMBOL(napi_schedule_prep);
5945 
5946 /**
5947  * __napi_schedule_irqoff - schedule for receive
5948  * @n: entry to schedule
5949  *
5950  * Variant of __napi_schedule() assuming hard irqs are masked
5951  */
5952 void __napi_schedule_irqoff(struct napi_struct *n)
5953 {
5954 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5955 }
5956 EXPORT_SYMBOL(__napi_schedule_irqoff);
5957 
5958 bool napi_complete_done(struct napi_struct *n, int work_done)
5959 {
5960 	unsigned long flags, val, new;
5961 
5962 	/*
5963 	 * 1) Don't let napi dequeue from the cpu poll list
5964 	 *    just in case its running on a different cpu.
5965 	 * 2) If we are busy polling, do nothing here, we have
5966 	 *    the guarantee we will be called later.
5967 	 */
5968 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5969 				 NAPIF_STATE_IN_BUSY_POLL)))
5970 		return false;
5971 
5972 	if (n->gro_bitmask) {
5973 		unsigned long timeout = 0;
5974 
5975 		if (work_done)
5976 			timeout = n->dev->gro_flush_timeout;
5977 
5978 		/* When the NAPI instance uses a timeout and keeps postponing
5979 		 * it, we need to bound somehow the time packets are kept in
5980 		 * the GRO layer
5981 		 */
5982 		napi_gro_flush(n, !!timeout);
5983 		if (timeout)
5984 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5985 				      HRTIMER_MODE_REL_PINNED);
5986 	}
5987 	if (unlikely(!list_empty(&n->poll_list))) {
5988 		/* If n->poll_list is not empty, we need to mask irqs */
5989 		local_irq_save(flags);
5990 		list_del_init(&n->poll_list);
5991 		local_irq_restore(flags);
5992 	}
5993 
5994 	do {
5995 		val = READ_ONCE(n->state);
5996 
5997 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5998 
5999 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6000 
6001 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6002 		 * because we will call napi->poll() one more time.
6003 		 * This C code was suggested by Alexander Duyck to help gcc.
6004 		 */
6005 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6006 						    NAPIF_STATE_SCHED;
6007 	} while (cmpxchg(&n->state, val, new) != val);
6008 
6009 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6010 		__napi_schedule(n);
6011 		return false;
6012 	}
6013 
6014 	return true;
6015 }
6016 EXPORT_SYMBOL(napi_complete_done);
6017 
6018 /* must be called under rcu_read_lock(), as we dont take a reference */
6019 static struct napi_struct *napi_by_id(unsigned int napi_id)
6020 {
6021 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6022 	struct napi_struct *napi;
6023 
6024 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6025 		if (napi->napi_id == napi_id)
6026 			return napi;
6027 
6028 	return NULL;
6029 }
6030 
6031 #if defined(CONFIG_NET_RX_BUSY_POLL)
6032 
6033 #define BUSY_POLL_BUDGET 8
6034 
6035 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6036 {
6037 	int rc;
6038 
6039 	/* Busy polling means there is a high chance device driver hard irq
6040 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6041 	 * set in napi_schedule_prep().
6042 	 * Since we are about to call napi->poll() once more, we can safely
6043 	 * clear NAPI_STATE_MISSED.
6044 	 *
6045 	 * Note: x86 could use a single "lock and ..." instruction
6046 	 * to perform these two clear_bit()
6047 	 */
6048 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6049 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6050 
6051 	local_bh_disable();
6052 
6053 	/* All we really want here is to re-enable device interrupts.
6054 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6055 	 */
6056 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6057 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6058 	netpoll_poll_unlock(have_poll_lock);
6059 	if (rc == BUSY_POLL_BUDGET)
6060 		__napi_schedule(napi);
6061 	local_bh_enable();
6062 }
6063 
6064 void napi_busy_loop(unsigned int napi_id,
6065 		    bool (*loop_end)(void *, unsigned long),
6066 		    void *loop_end_arg)
6067 {
6068 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6069 	int (*napi_poll)(struct napi_struct *napi, int budget);
6070 	void *have_poll_lock = NULL;
6071 	struct napi_struct *napi;
6072 
6073 restart:
6074 	napi_poll = NULL;
6075 
6076 	rcu_read_lock();
6077 
6078 	napi = napi_by_id(napi_id);
6079 	if (!napi)
6080 		goto out;
6081 
6082 	preempt_disable();
6083 	for (;;) {
6084 		int work = 0;
6085 
6086 		local_bh_disable();
6087 		if (!napi_poll) {
6088 			unsigned long val = READ_ONCE(napi->state);
6089 
6090 			/* If multiple threads are competing for this napi,
6091 			 * we avoid dirtying napi->state as much as we can.
6092 			 */
6093 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6094 				   NAPIF_STATE_IN_BUSY_POLL))
6095 				goto count;
6096 			if (cmpxchg(&napi->state, val,
6097 				    val | NAPIF_STATE_IN_BUSY_POLL |
6098 					  NAPIF_STATE_SCHED) != val)
6099 				goto count;
6100 			have_poll_lock = netpoll_poll_lock(napi);
6101 			napi_poll = napi->poll;
6102 		}
6103 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6104 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6105 count:
6106 		if (work > 0)
6107 			__NET_ADD_STATS(dev_net(napi->dev),
6108 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6109 		local_bh_enable();
6110 
6111 		if (!loop_end || loop_end(loop_end_arg, start_time))
6112 			break;
6113 
6114 		if (unlikely(need_resched())) {
6115 			if (napi_poll)
6116 				busy_poll_stop(napi, have_poll_lock);
6117 			preempt_enable();
6118 			rcu_read_unlock();
6119 			cond_resched();
6120 			if (loop_end(loop_end_arg, start_time))
6121 				return;
6122 			goto restart;
6123 		}
6124 		cpu_relax();
6125 	}
6126 	if (napi_poll)
6127 		busy_poll_stop(napi, have_poll_lock);
6128 	preempt_enable();
6129 out:
6130 	rcu_read_unlock();
6131 }
6132 EXPORT_SYMBOL(napi_busy_loop);
6133 
6134 #endif /* CONFIG_NET_RX_BUSY_POLL */
6135 
6136 static void napi_hash_add(struct napi_struct *napi)
6137 {
6138 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6139 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6140 		return;
6141 
6142 	spin_lock(&napi_hash_lock);
6143 
6144 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6145 	do {
6146 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6147 			napi_gen_id = MIN_NAPI_ID;
6148 	} while (napi_by_id(napi_gen_id));
6149 	napi->napi_id = napi_gen_id;
6150 
6151 	hlist_add_head_rcu(&napi->napi_hash_node,
6152 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6153 
6154 	spin_unlock(&napi_hash_lock);
6155 }
6156 
6157 /* Warning : caller is responsible to make sure rcu grace period
6158  * is respected before freeing memory containing @napi
6159  */
6160 bool napi_hash_del(struct napi_struct *napi)
6161 {
6162 	bool rcu_sync_needed = false;
6163 
6164 	spin_lock(&napi_hash_lock);
6165 
6166 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6167 		rcu_sync_needed = true;
6168 		hlist_del_rcu(&napi->napi_hash_node);
6169 	}
6170 	spin_unlock(&napi_hash_lock);
6171 	return rcu_sync_needed;
6172 }
6173 EXPORT_SYMBOL_GPL(napi_hash_del);
6174 
6175 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6176 {
6177 	struct napi_struct *napi;
6178 
6179 	napi = container_of(timer, struct napi_struct, timer);
6180 
6181 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6182 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6183 	 */
6184 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6185 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6186 		__napi_schedule_irqoff(napi);
6187 
6188 	return HRTIMER_NORESTART;
6189 }
6190 
6191 static void init_gro_hash(struct napi_struct *napi)
6192 {
6193 	int i;
6194 
6195 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6196 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6197 		napi->gro_hash[i].count = 0;
6198 	}
6199 	napi->gro_bitmask = 0;
6200 }
6201 
6202 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6203 		    int (*poll)(struct napi_struct *, int), int weight)
6204 {
6205 	INIT_LIST_HEAD(&napi->poll_list);
6206 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6207 	napi->timer.function = napi_watchdog;
6208 	init_gro_hash(napi);
6209 	napi->skb = NULL;
6210 	napi->poll = poll;
6211 	if (weight > NAPI_POLL_WEIGHT)
6212 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6213 				weight);
6214 	napi->weight = weight;
6215 	list_add(&napi->dev_list, &dev->napi_list);
6216 	napi->dev = dev;
6217 #ifdef CONFIG_NETPOLL
6218 	napi->poll_owner = -1;
6219 #endif
6220 	set_bit(NAPI_STATE_SCHED, &napi->state);
6221 	napi_hash_add(napi);
6222 }
6223 EXPORT_SYMBOL(netif_napi_add);
6224 
6225 void napi_disable(struct napi_struct *n)
6226 {
6227 	might_sleep();
6228 	set_bit(NAPI_STATE_DISABLE, &n->state);
6229 
6230 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6231 		msleep(1);
6232 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6233 		msleep(1);
6234 
6235 	hrtimer_cancel(&n->timer);
6236 
6237 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6238 }
6239 EXPORT_SYMBOL(napi_disable);
6240 
6241 static void flush_gro_hash(struct napi_struct *napi)
6242 {
6243 	int i;
6244 
6245 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6246 		struct sk_buff *skb, *n;
6247 
6248 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6249 			kfree_skb(skb);
6250 		napi->gro_hash[i].count = 0;
6251 	}
6252 }
6253 
6254 /* Must be called in process context */
6255 void netif_napi_del(struct napi_struct *napi)
6256 {
6257 	might_sleep();
6258 	if (napi_hash_del(napi))
6259 		synchronize_net();
6260 	list_del_init(&napi->dev_list);
6261 	napi_free_frags(napi);
6262 
6263 	flush_gro_hash(napi);
6264 	napi->gro_bitmask = 0;
6265 }
6266 EXPORT_SYMBOL(netif_napi_del);
6267 
6268 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6269 {
6270 	void *have;
6271 	int work, weight;
6272 
6273 	list_del_init(&n->poll_list);
6274 
6275 	have = netpoll_poll_lock(n);
6276 
6277 	weight = n->weight;
6278 
6279 	/* This NAPI_STATE_SCHED test is for avoiding a race
6280 	 * with netpoll's poll_napi().  Only the entity which
6281 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6282 	 * actually make the ->poll() call.  Therefore we avoid
6283 	 * accidentally calling ->poll() when NAPI is not scheduled.
6284 	 */
6285 	work = 0;
6286 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6287 		work = n->poll(n, weight);
6288 		trace_napi_poll(n, work, weight);
6289 	}
6290 
6291 	WARN_ON_ONCE(work > weight);
6292 
6293 	if (likely(work < weight))
6294 		goto out_unlock;
6295 
6296 	/* Drivers must not modify the NAPI state if they
6297 	 * consume the entire weight.  In such cases this code
6298 	 * still "owns" the NAPI instance and therefore can
6299 	 * move the instance around on the list at-will.
6300 	 */
6301 	if (unlikely(napi_disable_pending(n))) {
6302 		napi_complete(n);
6303 		goto out_unlock;
6304 	}
6305 
6306 	if (n->gro_bitmask) {
6307 		/* flush too old packets
6308 		 * If HZ < 1000, flush all packets.
6309 		 */
6310 		napi_gro_flush(n, HZ >= 1000);
6311 	}
6312 
6313 	/* Some drivers may have called napi_schedule
6314 	 * prior to exhausting their budget.
6315 	 */
6316 	if (unlikely(!list_empty(&n->poll_list))) {
6317 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6318 			     n->dev ? n->dev->name : "backlog");
6319 		goto out_unlock;
6320 	}
6321 
6322 	list_add_tail(&n->poll_list, repoll);
6323 
6324 out_unlock:
6325 	netpoll_poll_unlock(have);
6326 
6327 	return work;
6328 }
6329 
6330 static __latent_entropy void net_rx_action(struct softirq_action *h)
6331 {
6332 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6333 	unsigned long time_limit = jiffies +
6334 		usecs_to_jiffies(netdev_budget_usecs);
6335 	int budget = netdev_budget;
6336 	LIST_HEAD(list);
6337 	LIST_HEAD(repoll);
6338 
6339 	local_irq_disable();
6340 	list_splice_init(&sd->poll_list, &list);
6341 	local_irq_enable();
6342 
6343 	for (;;) {
6344 		struct napi_struct *n;
6345 
6346 		if (list_empty(&list)) {
6347 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6348 				goto out;
6349 			break;
6350 		}
6351 
6352 		n = list_first_entry(&list, struct napi_struct, poll_list);
6353 		budget -= napi_poll(n, &repoll);
6354 
6355 		/* If softirq window is exhausted then punt.
6356 		 * Allow this to run for 2 jiffies since which will allow
6357 		 * an average latency of 1.5/HZ.
6358 		 */
6359 		if (unlikely(budget <= 0 ||
6360 			     time_after_eq(jiffies, time_limit))) {
6361 			sd->time_squeeze++;
6362 			break;
6363 		}
6364 	}
6365 
6366 	local_irq_disable();
6367 
6368 	list_splice_tail_init(&sd->poll_list, &list);
6369 	list_splice_tail(&repoll, &list);
6370 	list_splice(&list, &sd->poll_list);
6371 	if (!list_empty(&sd->poll_list))
6372 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6373 
6374 	net_rps_action_and_irq_enable(sd);
6375 out:
6376 	__kfree_skb_flush();
6377 }
6378 
6379 struct netdev_adjacent {
6380 	struct net_device *dev;
6381 
6382 	/* upper master flag, there can only be one master device per list */
6383 	bool master;
6384 
6385 	/* counter for the number of times this device was added to us */
6386 	u16 ref_nr;
6387 
6388 	/* private field for the users */
6389 	void *private;
6390 
6391 	struct list_head list;
6392 	struct rcu_head rcu;
6393 };
6394 
6395 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6396 						 struct list_head *adj_list)
6397 {
6398 	struct netdev_adjacent *adj;
6399 
6400 	list_for_each_entry(adj, adj_list, list) {
6401 		if (adj->dev == adj_dev)
6402 			return adj;
6403 	}
6404 	return NULL;
6405 }
6406 
6407 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6408 {
6409 	struct net_device *dev = data;
6410 
6411 	return upper_dev == dev;
6412 }
6413 
6414 /**
6415  * netdev_has_upper_dev - Check if device is linked to an upper device
6416  * @dev: device
6417  * @upper_dev: upper device to check
6418  *
6419  * Find out if a device is linked to specified upper device and return true
6420  * in case it is. Note that this checks only immediate upper device,
6421  * not through a complete stack of devices. The caller must hold the RTNL lock.
6422  */
6423 bool netdev_has_upper_dev(struct net_device *dev,
6424 			  struct net_device *upper_dev)
6425 {
6426 	ASSERT_RTNL();
6427 
6428 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6429 					     upper_dev);
6430 }
6431 EXPORT_SYMBOL(netdev_has_upper_dev);
6432 
6433 /**
6434  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6435  * @dev: device
6436  * @upper_dev: upper device to check
6437  *
6438  * Find out if a device is linked to specified upper device and return true
6439  * in case it is. Note that this checks the entire upper device chain.
6440  * The caller must hold rcu lock.
6441  */
6442 
6443 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6444 				  struct net_device *upper_dev)
6445 {
6446 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6447 					       upper_dev);
6448 }
6449 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6450 
6451 /**
6452  * netdev_has_any_upper_dev - Check if device is linked to some device
6453  * @dev: device
6454  *
6455  * Find out if a device is linked to an upper device and return true in case
6456  * it is. The caller must hold the RTNL lock.
6457  */
6458 bool netdev_has_any_upper_dev(struct net_device *dev)
6459 {
6460 	ASSERT_RTNL();
6461 
6462 	return !list_empty(&dev->adj_list.upper);
6463 }
6464 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6465 
6466 /**
6467  * netdev_master_upper_dev_get - Get master upper device
6468  * @dev: device
6469  *
6470  * Find a master upper device and return pointer to it or NULL in case
6471  * it's not there. The caller must hold the RTNL lock.
6472  */
6473 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6474 {
6475 	struct netdev_adjacent *upper;
6476 
6477 	ASSERT_RTNL();
6478 
6479 	if (list_empty(&dev->adj_list.upper))
6480 		return NULL;
6481 
6482 	upper = list_first_entry(&dev->adj_list.upper,
6483 				 struct netdev_adjacent, list);
6484 	if (likely(upper->master))
6485 		return upper->dev;
6486 	return NULL;
6487 }
6488 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6489 
6490 /**
6491  * netdev_has_any_lower_dev - Check if device is linked to some device
6492  * @dev: device
6493  *
6494  * Find out if a device is linked to a lower device and return true in case
6495  * it is. The caller must hold the RTNL lock.
6496  */
6497 static bool netdev_has_any_lower_dev(struct net_device *dev)
6498 {
6499 	ASSERT_RTNL();
6500 
6501 	return !list_empty(&dev->adj_list.lower);
6502 }
6503 
6504 void *netdev_adjacent_get_private(struct list_head *adj_list)
6505 {
6506 	struct netdev_adjacent *adj;
6507 
6508 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6509 
6510 	return adj->private;
6511 }
6512 EXPORT_SYMBOL(netdev_adjacent_get_private);
6513 
6514 /**
6515  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6516  * @dev: device
6517  * @iter: list_head ** of the current position
6518  *
6519  * Gets the next device from the dev's upper list, starting from iter
6520  * position. The caller must hold RCU read lock.
6521  */
6522 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6523 						 struct list_head **iter)
6524 {
6525 	struct netdev_adjacent *upper;
6526 
6527 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6528 
6529 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6530 
6531 	if (&upper->list == &dev->adj_list.upper)
6532 		return NULL;
6533 
6534 	*iter = &upper->list;
6535 
6536 	return upper->dev;
6537 }
6538 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6539 
6540 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6541 						    struct list_head **iter)
6542 {
6543 	struct netdev_adjacent *upper;
6544 
6545 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546 
6547 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6548 
6549 	if (&upper->list == &dev->adj_list.upper)
6550 		return NULL;
6551 
6552 	*iter = &upper->list;
6553 
6554 	return upper->dev;
6555 }
6556 
6557 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6558 				  int (*fn)(struct net_device *dev,
6559 					    void *data),
6560 				  void *data)
6561 {
6562 	struct net_device *udev;
6563 	struct list_head *iter;
6564 	int ret;
6565 
6566 	for (iter = &dev->adj_list.upper,
6567 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6568 	     udev;
6569 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6570 		/* first is the upper device itself */
6571 		ret = fn(udev, data);
6572 		if (ret)
6573 			return ret;
6574 
6575 		/* then look at all of its upper devices */
6576 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6577 		if (ret)
6578 			return ret;
6579 	}
6580 
6581 	return 0;
6582 }
6583 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6584 
6585 /**
6586  * netdev_lower_get_next_private - Get the next ->private from the
6587  *				   lower neighbour list
6588  * @dev: device
6589  * @iter: list_head ** of the current position
6590  *
6591  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6592  * list, starting from iter position. The caller must hold either hold the
6593  * RTNL lock or its own locking that guarantees that the neighbour lower
6594  * list will remain unchanged.
6595  */
6596 void *netdev_lower_get_next_private(struct net_device *dev,
6597 				    struct list_head **iter)
6598 {
6599 	struct netdev_adjacent *lower;
6600 
6601 	lower = list_entry(*iter, struct netdev_adjacent, list);
6602 
6603 	if (&lower->list == &dev->adj_list.lower)
6604 		return NULL;
6605 
6606 	*iter = lower->list.next;
6607 
6608 	return lower->private;
6609 }
6610 EXPORT_SYMBOL(netdev_lower_get_next_private);
6611 
6612 /**
6613  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6614  *				       lower neighbour list, RCU
6615  *				       variant
6616  * @dev: device
6617  * @iter: list_head ** of the current position
6618  *
6619  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6620  * list, starting from iter position. The caller must hold RCU read lock.
6621  */
6622 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6623 					struct list_head **iter)
6624 {
6625 	struct netdev_adjacent *lower;
6626 
6627 	WARN_ON_ONCE(!rcu_read_lock_held());
6628 
6629 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6630 
6631 	if (&lower->list == &dev->adj_list.lower)
6632 		return NULL;
6633 
6634 	*iter = &lower->list;
6635 
6636 	return lower->private;
6637 }
6638 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6639 
6640 /**
6641  * netdev_lower_get_next - Get the next device from the lower neighbour
6642  *                         list
6643  * @dev: device
6644  * @iter: list_head ** of the current position
6645  *
6646  * Gets the next netdev_adjacent from the dev's lower neighbour
6647  * list, starting from iter position. The caller must hold RTNL lock or
6648  * its own locking that guarantees that the neighbour lower
6649  * list will remain unchanged.
6650  */
6651 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6652 {
6653 	struct netdev_adjacent *lower;
6654 
6655 	lower = list_entry(*iter, struct netdev_adjacent, list);
6656 
6657 	if (&lower->list == &dev->adj_list.lower)
6658 		return NULL;
6659 
6660 	*iter = lower->list.next;
6661 
6662 	return lower->dev;
6663 }
6664 EXPORT_SYMBOL(netdev_lower_get_next);
6665 
6666 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6667 						struct list_head **iter)
6668 {
6669 	struct netdev_adjacent *lower;
6670 
6671 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6672 
6673 	if (&lower->list == &dev->adj_list.lower)
6674 		return NULL;
6675 
6676 	*iter = &lower->list;
6677 
6678 	return lower->dev;
6679 }
6680 
6681 int netdev_walk_all_lower_dev(struct net_device *dev,
6682 			      int (*fn)(struct net_device *dev,
6683 					void *data),
6684 			      void *data)
6685 {
6686 	struct net_device *ldev;
6687 	struct list_head *iter;
6688 	int ret;
6689 
6690 	for (iter = &dev->adj_list.lower,
6691 	     ldev = netdev_next_lower_dev(dev, &iter);
6692 	     ldev;
6693 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6694 		/* first is the lower device itself */
6695 		ret = fn(ldev, data);
6696 		if (ret)
6697 			return ret;
6698 
6699 		/* then look at all of its lower devices */
6700 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6701 		if (ret)
6702 			return ret;
6703 	}
6704 
6705 	return 0;
6706 }
6707 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6708 
6709 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6710 						    struct list_head **iter)
6711 {
6712 	struct netdev_adjacent *lower;
6713 
6714 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6715 	if (&lower->list == &dev->adj_list.lower)
6716 		return NULL;
6717 
6718 	*iter = &lower->list;
6719 
6720 	return lower->dev;
6721 }
6722 
6723 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6724 				  int (*fn)(struct net_device *dev,
6725 					    void *data),
6726 				  void *data)
6727 {
6728 	struct net_device *ldev;
6729 	struct list_head *iter;
6730 	int ret;
6731 
6732 	for (iter = &dev->adj_list.lower,
6733 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6734 	     ldev;
6735 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6736 		/* first is the lower device itself */
6737 		ret = fn(ldev, data);
6738 		if (ret)
6739 			return ret;
6740 
6741 		/* then look at all of its lower devices */
6742 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6743 		if (ret)
6744 			return ret;
6745 	}
6746 
6747 	return 0;
6748 }
6749 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6750 
6751 /**
6752  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6753  *				       lower neighbour list, RCU
6754  *				       variant
6755  * @dev: device
6756  *
6757  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6758  * list. The caller must hold RCU read lock.
6759  */
6760 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6761 {
6762 	struct netdev_adjacent *lower;
6763 
6764 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6765 			struct netdev_adjacent, list);
6766 	if (lower)
6767 		return lower->private;
6768 	return NULL;
6769 }
6770 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6771 
6772 /**
6773  * netdev_master_upper_dev_get_rcu - Get master upper device
6774  * @dev: device
6775  *
6776  * Find a master upper device and return pointer to it or NULL in case
6777  * it's not there. The caller must hold the RCU read lock.
6778  */
6779 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6780 {
6781 	struct netdev_adjacent *upper;
6782 
6783 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6784 				       struct netdev_adjacent, list);
6785 	if (upper && likely(upper->master))
6786 		return upper->dev;
6787 	return NULL;
6788 }
6789 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6790 
6791 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6792 			      struct net_device *adj_dev,
6793 			      struct list_head *dev_list)
6794 {
6795 	char linkname[IFNAMSIZ+7];
6796 
6797 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6798 		"upper_%s" : "lower_%s", adj_dev->name);
6799 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6800 				 linkname);
6801 }
6802 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6803 			       char *name,
6804 			       struct list_head *dev_list)
6805 {
6806 	char linkname[IFNAMSIZ+7];
6807 
6808 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6809 		"upper_%s" : "lower_%s", name);
6810 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6811 }
6812 
6813 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6814 						 struct net_device *adj_dev,
6815 						 struct list_head *dev_list)
6816 {
6817 	return (dev_list == &dev->adj_list.upper ||
6818 		dev_list == &dev->adj_list.lower) &&
6819 		net_eq(dev_net(dev), dev_net(adj_dev));
6820 }
6821 
6822 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6823 					struct net_device *adj_dev,
6824 					struct list_head *dev_list,
6825 					void *private, bool master)
6826 {
6827 	struct netdev_adjacent *adj;
6828 	int ret;
6829 
6830 	adj = __netdev_find_adj(adj_dev, dev_list);
6831 
6832 	if (adj) {
6833 		adj->ref_nr += 1;
6834 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6835 			 dev->name, adj_dev->name, adj->ref_nr);
6836 
6837 		return 0;
6838 	}
6839 
6840 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6841 	if (!adj)
6842 		return -ENOMEM;
6843 
6844 	adj->dev = adj_dev;
6845 	adj->master = master;
6846 	adj->ref_nr = 1;
6847 	adj->private = private;
6848 	dev_hold(adj_dev);
6849 
6850 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6851 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6852 
6853 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6854 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6855 		if (ret)
6856 			goto free_adj;
6857 	}
6858 
6859 	/* Ensure that master link is always the first item in list. */
6860 	if (master) {
6861 		ret = sysfs_create_link(&(dev->dev.kobj),
6862 					&(adj_dev->dev.kobj), "master");
6863 		if (ret)
6864 			goto remove_symlinks;
6865 
6866 		list_add_rcu(&adj->list, dev_list);
6867 	} else {
6868 		list_add_tail_rcu(&adj->list, dev_list);
6869 	}
6870 
6871 	return 0;
6872 
6873 remove_symlinks:
6874 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6875 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6876 free_adj:
6877 	kfree(adj);
6878 	dev_put(adj_dev);
6879 
6880 	return ret;
6881 }
6882 
6883 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6884 					 struct net_device *adj_dev,
6885 					 u16 ref_nr,
6886 					 struct list_head *dev_list)
6887 {
6888 	struct netdev_adjacent *adj;
6889 
6890 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6891 		 dev->name, adj_dev->name, ref_nr);
6892 
6893 	adj = __netdev_find_adj(adj_dev, dev_list);
6894 
6895 	if (!adj) {
6896 		pr_err("Adjacency does not exist for device %s from %s\n",
6897 		       dev->name, adj_dev->name);
6898 		WARN_ON(1);
6899 		return;
6900 	}
6901 
6902 	if (adj->ref_nr > ref_nr) {
6903 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6904 			 dev->name, adj_dev->name, ref_nr,
6905 			 adj->ref_nr - ref_nr);
6906 		adj->ref_nr -= ref_nr;
6907 		return;
6908 	}
6909 
6910 	if (adj->master)
6911 		sysfs_remove_link(&(dev->dev.kobj), "master");
6912 
6913 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6914 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6915 
6916 	list_del_rcu(&adj->list);
6917 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6918 		 adj_dev->name, dev->name, adj_dev->name);
6919 	dev_put(adj_dev);
6920 	kfree_rcu(adj, rcu);
6921 }
6922 
6923 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6924 					    struct net_device *upper_dev,
6925 					    struct list_head *up_list,
6926 					    struct list_head *down_list,
6927 					    void *private, bool master)
6928 {
6929 	int ret;
6930 
6931 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6932 					   private, master);
6933 	if (ret)
6934 		return ret;
6935 
6936 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6937 					   private, false);
6938 	if (ret) {
6939 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6940 		return ret;
6941 	}
6942 
6943 	return 0;
6944 }
6945 
6946 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6947 					       struct net_device *upper_dev,
6948 					       u16 ref_nr,
6949 					       struct list_head *up_list,
6950 					       struct list_head *down_list)
6951 {
6952 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6953 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6954 }
6955 
6956 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6957 						struct net_device *upper_dev,
6958 						void *private, bool master)
6959 {
6960 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6961 						&dev->adj_list.upper,
6962 						&upper_dev->adj_list.lower,
6963 						private, master);
6964 }
6965 
6966 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6967 						   struct net_device *upper_dev)
6968 {
6969 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6970 					   &dev->adj_list.upper,
6971 					   &upper_dev->adj_list.lower);
6972 }
6973 
6974 static int __netdev_upper_dev_link(struct net_device *dev,
6975 				   struct net_device *upper_dev, bool master,
6976 				   void *upper_priv, void *upper_info,
6977 				   struct netlink_ext_ack *extack)
6978 {
6979 	struct netdev_notifier_changeupper_info changeupper_info = {
6980 		.info = {
6981 			.dev = dev,
6982 			.extack = extack,
6983 		},
6984 		.upper_dev = upper_dev,
6985 		.master = master,
6986 		.linking = true,
6987 		.upper_info = upper_info,
6988 	};
6989 	struct net_device *master_dev;
6990 	int ret = 0;
6991 
6992 	ASSERT_RTNL();
6993 
6994 	if (dev == upper_dev)
6995 		return -EBUSY;
6996 
6997 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6998 	if (netdev_has_upper_dev(upper_dev, dev))
6999 		return -EBUSY;
7000 
7001 	if (!master) {
7002 		if (netdev_has_upper_dev(dev, upper_dev))
7003 			return -EEXIST;
7004 	} else {
7005 		master_dev = netdev_master_upper_dev_get(dev);
7006 		if (master_dev)
7007 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7008 	}
7009 
7010 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7011 					    &changeupper_info.info);
7012 	ret = notifier_to_errno(ret);
7013 	if (ret)
7014 		return ret;
7015 
7016 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7017 						   master);
7018 	if (ret)
7019 		return ret;
7020 
7021 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7022 					    &changeupper_info.info);
7023 	ret = notifier_to_errno(ret);
7024 	if (ret)
7025 		goto rollback;
7026 
7027 	return 0;
7028 
7029 rollback:
7030 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7031 
7032 	return ret;
7033 }
7034 
7035 /**
7036  * netdev_upper_dev_link - Add a link to the upper device
7037  * @dev: device
7038  * @upper_dev: new upper device
7039  * @extack: netlink extended ack
7040  *
7041  * Adds a link to device which is upper to this one. The caller must hold
7042  * the RTNL lock. On a failure a negative errno code is returned.
7043  * On success the reference counts are adjusted and the function
7044  * returns zero.
7045  */
7046 int netdev_upper_dev_link(struct net_device *dev,
7047 			  struct net_device *upper_dev,
7048 			  struct netlink_ext_ack *extack)
7049 {
7050 	return __netdev_upper_dev_link(dev, upper_dev, false,
7051 				       NULL, NULL, extack);
7052 }
7053 EXPORT_SYMBOL(netdev_upper_dev_link);
7054 
7055 /**
7056  * netdev_master_upper_dev_link - Add a master link to the upper device
7057  * @dev: device
7058  * @upper_dev: new upper device
7059  * @upper_priv: upper device private
7060  * @upper_info: upper info to be passed down via notifier
7061  * @extack: netlink extended ack
7062  *
7063  * Adds a link to device which is upper to this one. In this case, only
7064  * one master upper device can be linked, although other non-master devices
7065  * might be linked as well. The caller must hold the RTNL lock.
7066  * On a failure a negative errno code is returned. On success the reference
7067  * counts are adjusted and the function returns zero.
7068  */
7069 int netdev_master_upper_dev_link(struct net_device *dev,
7070 				 struct net_device *upper_dev,
7071 				 void *upper_priv, void *upper_info,
7072 				 struct netlink_ext_ack *extack)
7073 {
7074 	return __netdev_upper_dev_link(dev, upper_dev, true,
7075 				       upper_priv, upper_info, extack);
7076 }
7077 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7078 
7079 /**
7080  * netdev_upper_dev_unlink - Removes a link to upper device
7081  * @dev: device
7082  * @upper_dev: new upper device
7083  *
7084  * Removes a link to device which is upper to this one. The caller must hold
7085  * the RTNL lock.
7086  */
7087 void netdev_upper_dev_unlink(struct net_device *dev,
7088 			     struct net_device *upper_dev)
7089 {
7090 	struct netdev_notifier_changeupper_info changeupper_info = {
7091 		.info = {
7092 			.dev = dev,
7093 		},
7094 		.upper_dev = upper_dev,
7095 		.linking = false,
7096 	};
7097 
7098 	ASSERT_RTNL();
7099 
7100 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7101 
7102 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7103 				      &changeupper_info.info);
7104 
7105 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7106 
7107 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7108 				      &changeupper_info.info);
7109 }
7110 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7111 
7112 /**
7113  * netdev_bonding_info_change - Dispatch event about slave change
7114  * @dev: device
7115  * @bonding_info: info to dispatch
7116  *
7117  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7118  * The caller must hold the RTNL lock.
7119  */
7120 void netdev_bonding_info_change(struct net_device *dev,
7121 				struct netdev_bonding_info *bonding_info)
7122 {
7123 	struct netdev_notifier_bonding_info info = {
7124 		.info.dev = dev,
7125 	};
7126 
7127 	memcpy(&info.bonding_info, bonding_info,
7128 	       sizeof(struct netdev_bonding_info));
7129 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7130 				      &info.info);
7131 }
7132 EXPORT_SYMBOL(netdev_bonding_info_change);
7133 
7134 static void netdev_adjacent_add_links(struct net_device *dev)
7135 {
7136 	struct netdev_adjacent *iter;
7137 
7138 	struct net *net = dev_net(dev);
7139 
7140 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7141 		if (!net_eq(net, dev_net(iter->dev)))
7142 			continue;
7143 		netdev_adjacent_sysfs_add(iter->dev, dev,
7144 					  &iter->dev->adj_list.lower);
7145 		netdev_adjacent_sysfs_add(dev, iter->dev,
7146 					  &dev->adj_list.upper);
7147 	}
7148 
7149 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7150 		if (!net_eq(net, dev_net(iter->dev)))
7151 			continue;
7152 		netdev_adjacent_sysfs_add(iter->dev, dev,
7153 					  &iter->dev->adj_list.upper);
7154 		netdev_adjacent_sysfs_add(dev, iter->dev,
7155 					  &dev->adj_list.lower);
7156 	}
7157 }
7158 
7159 static void netdev_adjacent_del_links(struct net_device *dev)
7160 {
7161 	struct netdev_adjacent *iter;
7162 
7163 	struct net *net = dev_net(dev);
7164 
7165 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7166 		if (!net_eq(net, dev_net(iter->dev)))
7167 			continue;
7168 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7169 					  &iter->dev->adj_list.lower);
7170 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7171 					  &dev->adj_list.upper);
7172 	}
7173 
7174 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7175 		if (!net_eq(net, dev_net(iter->dev)))
7176 			continue;
7177 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7178 					  &iter->dev->adj_list.upper);
7179 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7180 					  &dev->adj_list.lower);
7181 	}
7182 }
7183 
7184 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7185 {
7186 	struct netdev_adjacent *iter;
7187 
7188 	struct net *net = dev_net(dev);
7189 
7190 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7191 		if (!net_eq(net, dev_net(iter->dev)))
7192 			continue;
7193 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7194 					  &iter->dev->adj_list.lower);
7195 		netdev_adjacent_sysfs_add(iter->dev, dev,
7196 					  &iter->dev->adj_list.lower);
7197 	}
7198 
7199 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7200 		if (!net_eq(net, dev_net(iter->dev)))
7201 			continue;
7202 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7203 					  &iter->dev->adj_list.upper);
7204 		netdev_adjacent_sysfs_add(iter->dev, dev,
7205 					  &iter->dev->adj_list.upper);
7206 	}
7207 }
7208 
7209 void *netdev_lower_dev_get_private(struct net_device *dev,
7210 				   struct net_device *lower_dev)
7211 {
7212 	struct netdev_adjacent *lower;
7213 
7214 	if (!lower_dev)
7215 		return NULL;
7216 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7217 	if (!lower)
7218 		return NULL;
7219 
7220 	return lower->private;
7221 }
7222 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7223 
7224 
7225 int dev_get_nest_level(struct net_device *dev)
7226 {
7227 	struct net_device *lower = NULL;
7228 	struct list_head *iter;
7229 	int max_nest = -1;
7230 	int nest;
7231 
7232 	ASSERT_RTNL();
7233 
7234 	netdev_for_each_lower_dev(dev, lower, iter) {
7235 		nest = dev_get_nest_level(lower);
7236 		if (max_nest < nest)
7237 			max_nest = nest;
7238 	}
7239 
7240 	return max_nest + 1;
7241 }
7242 EXPORT_SYMBOL(dev_get_nest_level);
7243 
7244 /**
7245  * netdev_lower_change - Dispatch event about lower device state change
7246  * @lower_dev: device
7247  * @lower_state_info: state to dispatch
7248  *
7249  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7250  * The caller must hold the RTNL lock.
7251  */
7252 void netdev_lower_state_changed(struct net_device *lower_dev,
7253 				void *lower_state_info)
7254 {
7255 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7256 		.info.dev = lower_dev,
7257 	};
7258 
7259 	ASSERT_RTNL();
7260 	changelowerstate_info.lower_state_info = lower_state_info;
7261 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7262 				      &changelowerstate_info.info);
7263 }
7264 EXPORT_SYMBOL(netdev_lower_state_changed);
7265 
7266 static void dev_change_rx_flags(struct net_device *dev, int flags)
7267 {
7268 	const struct net_device_ops *ops = dev->netdev_ops;
7269 
7270 	if (ops->ndo_change_rx_flags)
7271 		ops->ndo_change_rx_flags(dev, flags);
7272 }
7273 
7274 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7275 {
7276 	unsigned int old_flags = dev->flags;
7277 	kuid_t uid;
7278 	kgid_t gid;
7279 
7280 	ASSERT_RTNL();
7281 
7282 	dev->flags |= IFF_PROMISC;
7283 	dev->promiscuity += inc;
7284 	if (dev->promiscuity == 0) {
7285 		/*
7286 		 * Avoid overflow.
7287 		 * If inc causes overflow, untouch promisc and return error.
7288 		 */
7289 		if (inc < 0)
7290 			dev->flags &= ~IFF_PROMISC;
7291 		else {
7292 			dev->promiscuity -= inc;
7293 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7294 				dev->name);
7295 			return -EOVERFLOW;
7296 		}
7297 	}
7298 	if (dev->flags != old_flags) {
7299 		pr_info("device %s %s promiscuous mode\n",
7300 			dev->name,
7301 			dev->flags & IFF_PROMISC ? "entered" : "left");
7302 		if (audit_enabled) {
7303 			current_uid_gid(&uid, &gid);
7304 			audit_log(audit_context(), GFP_ATOMIC,
7305 				  AUDIT_ANOM_PROMISCUOUS,
7306 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7307 				  dev->name, (dev->flags & IFF_PROMISC),
7308 				  (old_flags & IFF_PROMISC),
7309 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7310 				  from_kuid(&init_user_ns, uid),
7311 				  from_kgid(&init_user_ns, gid),
7312 				  audit_get_sessionid(current));
7313 		}
7314 
7315 		dev_change_rx_flags(dev, IFF_PROMISC);
7316 	}
7317 	if (notify)
7318 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7319 	return 0;
7320 }
7321 
7322 /**
7323  *	dev_set_promiscuity	- update promiscuity count on a device
7324  *	@dev: device
7325  *	@inc: modifier
7326  *
7327  *	Add or remove promiscuity from a device. While the count in the device
7328  *	remains above zero the interface remains promiscuous. Once it hits zero
7329  *	the device reverts back to normal filtering operation. A negative inc
7330  *	value is used to drop promiscuity on the device.
7331  *	Return 0 if successful or a negative errno code on error.
7332  */
7333 int dev_set_promiscuity(struct net_device *dev, int inc)
7334 {
7335 	unsigned int old_flags = dev->flags;
7336 	int err;
7337 
7338 	err = __dev_set_promiscuity(dev, inc, true);
7339 	if (err < 0)
7340 		return err;
7341 	if (dev->flags != old_flags)
7342 		dev_set_rx_mode(dev);
7343 	return err;
7344 }
7345 EXPORT_SYMBOL(dev_set_promiscuity);
7346 
7347 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7348 {
7349 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7350 
7351 	ASSERT_RTNL();
7352 
7353 	dev->flags |= IFF_ALLMULTI;
7354 	dev->allmulti += inc;
7355 	if (dev->allmulti == 0) {
7356 		/*
7357 		 * Avoid overflow.
7358 		 * If inc causes overflow, untouch allmulti and return error.
7359 		 */
7360 		if (inc < 0)
7361 			dev->flags &= ~IFF_ALLMULTI;
7362 		else {
7363 			dev->allmulti -= inc;
7364 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7365 				dev->name);
7366 			return -EOVERFLOW;
7367 		}
7368 	}
7369 	if (dev->flags ^ old_flags) {
7370 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7371 		dev_set_rx_mode(dev);
7372 		if (notify)
7373 			__dev_notify_flags(dev, old_flags,
7374 					   dev->gflags ^ old_gflags);
7375 	}
7376 	return 0;
7377 }
7378 
7379 /**
7380  *	dev_set_allmulti	- update allmulti count on a device
7381  *	@dev: device
7382  *	@inc: modifier
7383  *
7384  *	Add or remove reception of all multicast frames to a device. While the
7385  *	count in the device remains above zero the interface remains listening
7386  *	to all interfaces. Once it hits zero the device reverts back to normal
7387  *	filtering operation. A negative @inc value is used to drop the counter
7388  *	when releasing a resource needing all multicasts.
7389  *	Return 0 if successful or a negative errno code on error.
7390  */
7391 
7392 int dev_set_allmulti(struct net_device *dev, int inc)
7393 {
7394 	return __dev_set_allmulti(dev, inc, true);
7395 }
7396 EXPORT_SYMBOL(dev_set_allmulti);
7397 
7398 /*
7399  *	Upload unicast and multicast address lists to device and
7400  *	configure RX filtering. When the device doesn't support unicast
7401  *	filtering it is put in promiscuous mode while unicast addresses
7402  *	are present.
7403  */
7404 void __dev_set_rx_mode(struct net_device *dev)
7405 {
7406 	const struct net_device_ops *ops = dev->netdev_ops;
7407 
7408 	/* dev_open will call this function so the list will stay sane. */
7409 	if (!(dev->flags&IFF_UP))
7410 		return;
7411 
7412 	if (!netif_device_present(dev))
7413 		return;
7414 
7415 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7416 		/* Unicast addresses changes may only happen under the rtnl,
7417 		 * therefore calling __dev_set_promiscuity here is safe.
7418 		 */
7419 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7420 			__dev_set_promiscuity(dev, 1, false);
7421 			dev->uc_promisc = true;
7422 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7423 			__dev_set_promiscuity(dev, -1, false);
7424 			dev->uc_promisc = false;
7425 		}
7426 	}
7427 
7428 	if (ops->ndo_set_rx_mode)
7429 		ops->ndo_set_rx_mode(dev);
7430 }
7431 
7432 void dev_set_rx_mode(struct net_device *dev)
7433 {
7434 	netif_addr_lock_bh(dev);
7435 	__dev_set_rx_mode(dev);
7436 	netif_addr_unlock_bh(dev);
7437 }
7438 
7439 /**
7440  *	dev_get_flags - get flags reported to userspace
7441  *	@dev: device
7442  *
7443  *	Get the combination of flag bits exported through APIs to userspace.
7444  */
7445 unsigned int dev_get_flags(const struct net_device *dev)
7446 {
7447 	unsigned int flags;
7448 
7449 	flags = (dev->flags & ~(IFF_PROMISC |
7450 				IFF_ALLMULTI |
7451 				IFF_RUNNING |
7452 				IFF_LOWER_UP |
7453 				IFF_DORMANT)) |
7454 		(dev->gflags & (IFF_PROMISC |
7455 				IFF_ALLMULTI));
7456 
7457 	if (netif_running(dev)) {
7458 		if (netif_oper_up(dev))
7459 			flags |= IFF_RUNNING;
7460 		if (netif_carrier_ok(dev))
7461 			flags |= IFF_LOWER_UP;
7462 		if (netif_dormant(dev))
7463 			flags |= IFF_DORMANT;
7464 	}
7465 
7466 	return flags;
7467 }
7468 EXPORT_SYMBOL(dev_get_flags);
7469 
7470 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7471 {
7472 	unsigned int old_flags = dev->flags;
7473 	int ret;
7474 
7475 	ASSERT_RTNL();
7476 
7477 	/*
7478 	 *	Set the flags on our device.
7479 	 */
7480 
7481 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7482 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7483 			       IFF_AUTOMEDIA)) |
7484 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7485 				    IFF_ALLMULTI));
7486 
7487 	/*
7488 	 *	Load in the correct multicast list now the flags have changed.
7489 	 */
7490 
7491 	if ((old_flags ^ flags) & IFF_MULTICAST)
7492 		dev_change_rx_flags(dev, IFF_MULTICAST);
7493 
7494 	dev_set_rx_mode(dev);
7495 
7496 	/*
7497 	 *	Have we downed the interface. We handle IFF_UP ourselves
7498 	 *	according to user attempts to set it, rather than blindly
7499 	 *	setting it.
7500 	 */
7501 
7502 	ret = 0;
7503 	if ((old_flags ^ flags) & IFF_UP) {
7504 		if (old_flags & IFF_UP)
7505 			__dev_close(dev);
7506 		else
7507 			ret = __dev_open(dev);
7508 	}
7509 
7510 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7511 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7512 		unsigned int old_flags = dev->flags;
7513 
7514 		dev->gflags ^= IFF_PROMISC;
7515 
7516 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7517 			if (dev->flags != old_flags)
7518 				dev_set_rx_mode(dev);
7519 	}
7520 
7521 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7522 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7523 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7524 	 */
7525 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7526 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7527 
7528 		dev->gflags ^= IFF_ALLMULTI;
7529 		__dev_set_allmulti(dev, inc, false);
7530 	}
7531 
7532 	return ret;
7533 }
7534 
7535 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7536 			unsigned int gchanges)
7537 {
7538 	unsigned int changes = dev->flags ^ old_flags;
7539 
7540 	if (gchanges)
7541 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7542 
7543 	if (changes & IFF_UP) {
7544 		if (dev->flags & IFF_UP)
7545 			call_netdevice_notifiers(NETDEV_UP, dev);
7546 		else
7547 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7548 	}
7549 
7550 	if (dev->flags & IFF_UP &&
7551 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7552 		struct netdev_notifier_change_info change_info = {
7553 			.info = {
7554 				.dev = dev,
7555 			},
7556 			.flags_changed = changes,
7557 		};
7558 
7559 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7560 	}
7561 }
7562 
7563 /**
7564  *	dev_change_flags - change device settings
7565  *	@dev: device
7566  *	@flags: device state flags
7567  *
7568  *	Change settings on device based state flags. The flags are
7569  *	in the userspace exported format.
7570  */
7571 int dev_change_flags(struct net_device *dev, unsigned int flags)
7572 {
7573 	int ret;
7574 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7575 
7576 	ret = __dev_change_flags(dev, flags);
7577 	if (ret < 0)
7578 		return ret;
7579 
7580 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7581 	__dev_notify_flags(dev, old_flags, changes);
7582 	return ret;
7583 }
7584 EXPORT_SYMBOL(dev_change_flags);
7585 
7586 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7587 {
7588 	const struct net_device_ops *ops = dev->netdev_ops;
7589 
7590 	if (ops->ndo_change_mtu)
7591 		return ops->ndo_change_mtu(dev, new_mtu);
7592 
7593 	dev->mtu = new_mtu;
7594 	return 0;
7595 }
7596 EXPORT_SYMBOL(__dev_set_mtu);
7597 
7598 /**
7599  *	dev_set_mtu_ext - Change maximum transfer unit
7600  *	@dev: device
7601  *	@new_mtu: new transfer unit
7602  *	@extack: netlink extended ack
7603  *
7604  *	Change the maximum transfer size of the network device.
7605  */
7606 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7607 		    struct netlink_ext_ack *extack)
7608 {
7609 	int err, orig_mtu;
7610 
7611 	if (new_mtu == dev->mtu)
7612 		return 0;
7613 
7614 	/* MTU must be positive, and in range */
7615 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7616 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7617 		return -EINVAL;
7618 	}
7619 
7620 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7621 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7622 		return -EINVAL;
7623 	}
7624 
7625 	if (!netif_device_present(dev))
7626 		return -ENODEV;
7627 
7628 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7629 	err = notifier_to_errno(err);
7630 	if (err)
7631 		return err;
7632 
7633 	orig_mtu = dev->mtu;
7634 	err = __dev_set_mtu(dev, new_mtu);
7635 
7636 	if (!err) {
7637 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7638 						   orig_mtu);
7639 		err = notifier_to_errno(err);
7640 		if (err) {
7641 			/* setting mtu back and notifying everyone again,
7642 			 * so that they have a chance to revert changes.
7643 			 */
7644 			__dev_set_mtu(dev, orig_mtu);
7645 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7646 						     new_mtu);
7647 		}
7648 	}
7649 	return err;
7650 }
7651 
7652 int dev_set_mtu(struct net_device *dev, int new_mtu)
7653 {
7654 	struct netlink_ext_ack extack;
7655 	int err;
7656 
7657 	memset(&extack, 0, sizeof(extack));
7658 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7659 	if (err && extack._msg)
7660 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7661 	return err;
7662 }
7663 EXPORT_SYMBOL(dev_set_mtu);
7664 
7665 /**
7666  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7667  *	@dev: device
7668  *	@new_len: new tx queue length
7669  */
7670 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7671 {
7672 	unsigned int orig_len = dev->tx_queue_len;
7673 	int res;
7674 
7675 	if (new_len != (unsigned int)new_len)
7676 		return -ERANGE;
7677 
7678 	if (new_len != orig_len) {
7679 		dev->tx_queue_len = new_len;
7680 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7681 		res = notifier_to_errno(res);
7682 		if (res)
7683 			goto err_rollback;
7684 		res = dev_qdisc_change_tx_queue_len(dev);
7685 		if (res)
7686 			goto err_rollback;
7687 	}
7688 
7689 	return 0;
7690 
7691 err_rollback:
7692 	netdev_err(dev, "refused to change device tx_queue_len\n");
7693 	dev->tx_queue_len = orig_len;
7694 	return res;
7695 }
7696 
7697 /**
7698  *	dev_set_group - Change group this device belongs to
7699  *	@dev: device
7700  *	@new_group: group this device should belong to
7701  */
7702 void dev_set_group(struct net_device *dev, int new_group)
7703 {
7704 	dev->group = new_group;
7705 }
7706 EXPORT_SYMBOL(dev_set_group);
7707 
7708 /**
7709  *	dev_set_mac_address - Change Media Access Control Address
7710  *	@dev: device
7711  *	@sa: new address
7712  *
7713  *	Change the hardware (MAC) address of the device
7714  */
7715 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7716 {
7717 	const struct net_device_ops *ops = dev->netdev_ops;
7718 	int err;
7719 
7720 	if (!ops->ndo_set_mac_address)
7721 		return -EOPNOTSUPP;
7722 	if (sa->sa_family != dev->type)
7723 		return -EINVAL;
7724 	if (!netif_device_present(dev))
7725 		return -ENODEV;
7726 	err = ops->ndo_set_mac_address(dev, sa);
7727 	if (err)
7728 		return err;
7729 	dev->addr_assign_type = NET_ADDR_SET;
7730 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7731 	add_device_randomness(dev->dev_addr, dev->addr_len);
7732 	return 0;
7733 }
7734 EXPORT_SYMBOL(dev_set_mac_address);
7735 
7736 /**
7737  *	dev_change_carrier - Change device carrier
7738  *	@dev: device
7739  *	@new_carrier: new value
7740  *
7741  *	Change device carrier
7742  */
7743 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7744 {
7745 	const struct net_device_ops *ops = dev->netdev_ops;
7746 
7747 	if (!ops->ndo_change_carrier)
7748 		return -EOPNOTSUPP;
7749 	if (!netif_device_present(dev))
7750 		return -ENODEV;
7751 	return ops->ndo_change_carrier(dev, new_carrier);
7752 }
7753 EXPORT_SYMBOL(dev_change_carrier);
7754 
7755 /**
7756  *	dev_get_phys_port_id - Get device physical port ID
7757  *	@dev: device
7758  *	@ppid: port ID
7759  *
7760  *	Get device physical port ID
7761  */
7762 int dev_get_phys_port_id(struct net_device *dev,
7763 			 struct netdev_phys_item_id *ppid)
7764 {
7765 	const struct net_device_ops *ops = dev->netdev_ops;
7766 
7767 	if (!ops->ndo_get_phys_port_id)
7768 		return -EOPNOTSUPP;
7769 	return ops->ndo_get_phys_port_id(dev, ppid);
7770 }
7771 EXPORT_SYMBOL(dev_get_phys_port_id);
7772 
7773 /**
7774  *	dev_get_phys_port_name - Get device physical port name
7775  *	@dev: device
7776  *	@name: port name
7777  *	@len: limit of bytes to copy to name
7778  *
7779  *	Get device physical port name
7780  */
7781 int dev_get_phys_port_name(struct net_device *dev,
7782 			   char *name, size_t len)
7783 {
7784 	const struct net_device_ops *ops = dev->netdev_ops;
7785 
7786 	if (!ops->ndo_get_phys_port_name)
7787 		return -EOPNOTSUPP;
7788 	return ops->ndo_get_phys_port_name(dev, name, len);
7789 }
7790 EXPORT_SYMBOL(dev_get_phys_port_name);
7791 
7792 /**
7793  *	dev_change_proto_down - update protocol port state information
7794  *	@dev: device
7795  *	@proto_down: new value
7796  *
7797  *	This info can be used by switch drivers to set the phys state of the
7798  *	port.
7799  */
7800 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7801 {
7802 	const struct net_device_ops *ops = dev->netdev_ops;
7803 
7804 	if (!ops->ndo_change_proto_down)
7805 		return -EOPNOTSUPP;
7806 	if (!netif_device_present(dev))
7807 		return -ENODEV;
7808 	return ops->ndo_change_proto_down(dev, proto_down);
7809 }
7810 EXPORT_SYMBOL(dev_change_proto_down);
7811 
7812 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7813 		    enum bpf_netdev_command cmd)
7814 {
7815 	struct netdev_bpf xdp;
7816 
7817 	if (!bpf_op)
7818 		return 0;
7819 
7820 	memset(&xdp, 0, sizeof(xdp));
7821 	xdp.command = cmd;
7822 
7823 	/* Query must always succeed. */
7824 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7825 
7826 	return xdp.prog_id;
7827 }
7828 
7829 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7830 			   struct netlink_ext_ack *extack, u32 flags,
7831 			   struct bpf_prog *prog)
7832 {
7833 	struct netdev_bpf xdp;
7834 
7835 	memset(&xdp, 0, sizeof(xdp));
7836 	if (flags & XDP_FLAGS_HW_MODE)
7837 		xdp.command = XDP_SETUP_PROG_HW;
7838 	else
7839 		xdp.command = XDP_SETUP_PROG;
7840 	xdp.extack = extack;
7841 	xdp.flags = flags;
7842 	xdp.prog = prog;
7843 
7844 	return bpf_op(dev, &xdp);
7845 }
7846 
7847 static void dev_xdp_uninstall(struct net_device *dev)
7848 {
7849 	struct netdev_bpf xdp;
7850 	bpf_op_t ndo_bpf;
7851 
7852 	/* Remove generic XDP */
7853 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7854 
7855 	/* Remove from the driver */
7856 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7857 	if (!ndo_bpf)
7858 		return;
7859 
7860 	memset(&xdp, 0, sizeof(xdp));
7861 	xdp.command = XDP_QUERY_PROG;
7862 	WARN_ON(ndo_bpf(dev, &xdp));
7863 	if (xdp.prog_id)
7864 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7865 					NULL));
7866 
7867 	/* Remove HW offload */
7868 	memset(&xdp, 0, sizeof(xdp));
7869 	xdp.command = XDP_QUERY_PROG_HW;
7870 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7871 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7872 					NULL));
7873 }
7874 
7875 /**
7876  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7877  *	@dev: device
7878  *	@extack: netlink extended ack
7879  *	@fd: new program fd or negative value to clear
7880  *	@flags: xdp-related flags
7881  *
7882  *	Set or clear a bpf program for a device
7883  */
7884 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7885 		      int fd, u32 flags)
7886 {
7887 	const struct net_device_ops *ops = dev->netdev_ops;
7888 	enum bpf_netdev_command query;
7889 	struct bpf_prog *prog = NULL;
7890 	bpf_op_t bpf_op, bpf_chk;
7891 	int err;
7892 
7893 	ASSERT_RTNL();
7894 
7895 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7896 
7897 	bpf_op = bpf_chk = ops->ndo_bpf;
7898 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7899 		return -EOPNOTSUPP;
7900 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7901 		bpf_op = generic_xdp_install;
7902 	if (bpf_op == bpf_chk)
7903 		bpf_chk = generic_xdp_install;
7904 
7905 	if (fd >= 0) {
7906 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7907 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7908 			return -EEXIST;
7909 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7910 		    __dev_xdp_query(dev, bpf_op, query))
7911 			return -EBUSY;
7912 
7913 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7914 					     bpf_op == ops->ndo_bpf);
7915 		if (IS_ERR(prog))
7916 			return PTR_ERR(prog);
7917 
7918 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7919 		    bpf_prog_is_dev_bound(prog->aux)) {
7920 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7921 			bpf_prog_put(prog);
7922 			return -EINVAL;
7923 		}
7924 	}
7925 
7926 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7927 	if (err < 0 && prog)
7928 		bpf_prog_put(prog);
7929 
7930 	return err;
7931 }
7932 
7933 /**
7934  *	dev_new_index	-	allocate an ifindex
7935  *	@net: the applicable net namespace
7936  *
7937  *	Returns a suitable unique value for a new device interface
7938  *	number.  The caller must hold the rtnl semaphore or the
7939  *	dev_base_lock to be sure it remains unique.
7940  */
7941 static int dev_new_index(struct net *net)
7942 {
7943 	int ifindex = net->ifindex;
7944 
7945 	for (;;) {
7946 		if (++ifindex <= 0)
7947 			ifindex = 1;
7948 		if (!__dev_get_by_index(net, ifindex))
7949 			return net->ifindex = ifindex;
7950 	}
7951 }
7952 
7953 /* Delayed registration/unregisteration */
7954 static LIST_HEAD(net_todo_list);
7955 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7956 
7957 static void net_set_todo(struct net_device *dev)
7958 {
7959 	list_add_tail(&dev->todo_list, &net_todo_list);
7960 	dev_net(dev)->dev_unreg_count++;
7961 }
7962 
7963 static void rollback_registered_many(struct list_head *head)
7964 {
7965 	struct net_device *dev, *tmp;
7966 	LIST_HEAD(close_head);
7967 
7968 	BUG_ON(dev_boot_phase);
7969 	ASSERT_RTNL();
7970 
7971 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7972 		/* Some devices call without registering
7973 		 * for initialization unwind. Remove those
7974 		 * devices and proceed with the remaining.
7975 		 */
7976 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7977 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7978 				 dev->name, dev);
7979 
7980 			WARN_ON(1);
7981 			list_del(&dev->unreg_list);
7982 			continue;
7983 		}
7984 		dev->dismantle = true;
7985 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7986 	}
7987 
7988 	/* If device is running, close it first. */
7989 	list_for_each_entry(dev, head, unreg_list)
7990 		list_add_tail(&dev->close_list, &close_head);
7991 	dev_close_many(&close_head, true);
7992 
7993 	list_for_each_entry(dev, head, unreg_list) {
7994 		/* And unlink it from device chain. */
7995 		unlist_netdevice(dev);
7996 
7997 		dev->reg_state = NETREG_UNREGISTERING;
7998 	}
7999 	flush_all_backlogs();
8000 
8001 	synchronize_net();
8002 
8003 	list_for_each_entry(dev, head, unreg_list) {
8004 		struct sk_buff *skb = NULL;
8005 
8006 		/* Shutdown queueing discipline. */
8007 		dev_shutdown(dev);
8008 
8009 		dev_xdp_uninstall(dev);
8010 
8011 		/* Notify protocols, that we are about to destroy
8012 		 * this device. They should clean all the things.
8013 		 */
8014 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8015 
8016 		if (!dev->rtnl_link_ops ||
8017 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8018 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8019 						     GFP_KERNEL, NULL, 0);
8020 
8021 		/*
8022 		 *	Flush the unicast and multicast chains
8023 		 */
8024 		dev_uc_flush(dev);
8025 		dev_mc_flush(dev);
8026 
8027 		if (dev->netdev_ops->ndo_uninit)
8028 			dev->netdev_ops->ndo_uninit(dev);
8029 
8030 		if (skb)
8031 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8032 
8033 		/* Notifier chain MUST detach us all upper devices. */
8034 		WARN_ON(netdev_has_any_upper_dev(dev));
8035 		WARN_ON(netdev_has_any_lower_dev(dev));
8036 
8037 		/* Remove entries from kobject tree */
8038 		netdev_unregister_kobject(dev);
8039 #ifdef CONFIG_XPS
8040 		/* Remove XPS queueing entries */
8041 		netif_reset_xps_queues_gt(dev, 0);
8042 #endif
8043 	}
8044 
8045 	synchronize_net();
8046 
8047 	list_for_each_entry(dev, head, unreg_list)
8048 		dev_put(dev);
8049 }
8050 
8051 static void rollback_registered(struct net_device *dev)
8052 {
8053 	LIST_HEAD(single);
8054 
8055 	list_add(&dev->unreg_list, &single);
8056 	rollback_registered_many(&single);
8057 	list_del(&single);
8058 }
8059 
8060 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8061 	struct net_device *upper, netdev_features_t features)
8062 {
8063 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8064 	netdev_features_t feature;
8065 	int feature_bit;
8066 
8067 	for_each_netdev_feature(&upper_disables, feature_bit) {
8068 		feature = __NETIF_F_BIT(feature_bit);
8069 		if (!(upper->wanted_features & feature)
8070 		    && (features & feature)) {
8071 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8072 				   &feature, upper->name);
8073 			features &= ~feature;
8074 		}
8075 	}
8076 
8077 	return features;
8078 }
8079 
8080 static void netdev_sync_lower_features(struct net_device *upper,
8081 	struct net_device *lower, netdev_features_t features)
8082 {
8083 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8084 	netdev_features_t feature;
8085 	int feature_bit;
8086 
8087 	for_each_netdev_feature(&upper_disables, feature_bit) {
8088 		feature = __NETIF_F_BIT(feature_bit);
8089 		if (!(features & feature) && (lower->features & feature)) {
8090 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8091 				   &feature, lower->name);
8092 			lower->wanted_features &= ~feature;
8093 			netdev_update_features(lower);
8094 
8095 			if (unlikely(lower->features & feature))
8096 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8097 					    &feature, lower->name);
8098 		}
8099 	}
8100 }
8101 
8102 static netdev_features_t netdev_fix_features(struct net_device *dev,
8103 	netdev_features_t features)
8104 {
8105 	/* Fix illegal checksum combinations */
8106 	if ((features & NETIF_F_HW_CSUM) &&
8107 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8108 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8109 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8110 	}
8111 
8112 	/* TSO requires that SG is present as well. */
8113 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8114 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8115 		features &= ~NETIF_F_ALL_TSO;
8116 	}
8117 
8118 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8119 					!(features & NETIF_F_IP_CSUM)) {
8120 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8121 		features &= ~NETIF_F_TSO;
8122 		features &= ~NETIF_F_TSO_ECN;
8123 	}
8124 
8125 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8126 					 !(features & NETIF_F_IPV6_CSUM)) {
8127 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8128 		features &= ~NETIF_F_TSO6;
8129 	}
8130 
8131 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8132 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8133 		features &= ~NETIF_F_TSO_MANGLEID;
8134 
8135 	/* TSO ECN requires that TSO is present as well. */
8136 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8137 		features &= ~NETIF_F_TSO_ECN;
8138 
8139 	/* Software GSO depends on SG. */
8140 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8141 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8142 		features &= ~NETIF_F_GSO;
8143 	}
8144 
8145 	/* GSO partial features require GSO partial be set */
8146 	if ((features & dev->gso_partial_features) &&
8147 	    !(features & NETIF_F_GSO_PARTIAL)) {
8148 		netdev_dbg(dev,
8149 			   "Dropping partially supported GSO features since no GSO partial.\n");
8150 		features &= ~dev->gso_partial_features;
8151 	}
8152 
8153 	if (!(features & NETIF_F_RXCSUM)) {
8154 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8155 		 * successfully merged by hardware must also have the
8156 		 * checksum verified by hardware.  If the user does not
8157 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8158 		 */
8159 		if (features & NETIF_F_GRO_HW) {
8160 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8161 			features &= ~NETIF_F_GRO_HW;
8162 		}
8163 	}
8164 
8165 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8166 	if (features & NETIF_F_RXFCS) {
8167 		if (features & NETIF_F_LRO) {
8168 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8169 			features &= ~NETIF_F_LRO;
8170 		}
8171 
8172 		if (features & NETIF_F_GRO_HW) {
8173 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8174 			features &= ~NETIF_F_GRO_HW;
8175 		}
8176 	}
8177 
8178 	return features;
8179 }
8180 
8181 int __netdev_update_features(struct net_device *dev)
8182 {
8183 	struct net_device *upper, *lower;
8184 	netdev_features_t features;
8185 	struct list_head *iter;
8186 	int err = -1;
8187 
8188 	ASSERT_RTNL();
8189 
8190 	features = netdev_get_wanted_features(dev);
8191 
8192 	if (dev->netdev_ops->ndo_fix_features)
8193 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8194 
8195 	/* driver might be less strict about feature dependencies */
8196 	features = netdev_fix_features(dev, features);
8197 
8198 	/* some features can't be enabled if they're off an an upper device */
8199 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8200 		features = netdev_sync_upper_features(dev, upper, features);
8201 
8202 	if (dev->features == features)
8203 		goto sync_lower;
8204 
8205 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8206 		&dev->features, &features);
8207 
8208 	if (dev->netdev_ops->ndo_set_features)
8209 		err = dev->netdev_ops->ndo_set_features(dev, features);
8210 	else
8211 		err = 0;
8212 
8213 	if (unlikely(err < 0)) {
8214 		netdev_err(dev,
8215 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8216 			err, &features, &dev->features);
8217 		/* return non-0 since some features might have changed and
8218 		 * it's better to fire a spurious notification than miss it
8219 		 */
8220 		return -1;
8221 	}
8222 
8223 sync_lower:
8224 	/* some features must be disabled on lower devices when disabled
8225 	 * on an upper device (think: bonding master or bridge)
8226 	 */
8227 	netdev_for_each_lower_dev(dev, lower, iter)
8228 		netdev_sync_lower_features(dev, lower, features);
8229 
8230 	if (!err) {
8231 		netdev_features_t diff = features ^ dev->features;
8232 
8233 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8234 			/* udp_tunnel_{get,drop}_rx_info both need
8235 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8236 			 * device, or they won't do anything.
8237 			 * Thus we need to update dev->features
8238 			 * *before* calling udp_tunnel_get_rx_info,
8239 			 * but *after* calling udp_tunnel_drop_rx_info.
8240 			 */
8241 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8242 				dev->features = features;
8243 				udp_tunnel_get_rx_info(dev);
8244 			} else {
8245 				udp_tunnel_drop_rx_info(dev);
8246 			}
8247 		}
8248 
8249 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8250 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8251 				dev->features = features;
8252 				err |= vlan_get_rx_ctag_filter_info(dev);
8253 			} else {
8254 				vlan_drop_rx_ctag_filter_info(dev);
8255 			}
8256 		}
8257 
8258 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8259 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8260 				dev->features = features;
8261 				err |= vlan_get_rx_stag_filter_info(dev);
8262 			} else {
8263 				vlan_drop_rx_stag_filter_info(dev);
8264 			}
8265 		}
8266 
8267 		dev->features = features;
8268 	}
8269 
8270 	return err < 0 ? 0 : 1;
8271 }
8272 
8273 /**
8274  *	netdev_update_features - recalculate device features
8275  *	@dev: the device to check
8276  *
8277  *	Recalculate dev->features set and send notifications if it
8278  *	has changed. Should be called after driver or hardware dependent
8279  *	conditions might have changed that influence the features.
8280  */
8281 void netdev_update_features(struct net_device *dev)
8282 {
8283 	if (__netdev_update_features(dev))
8284 		netdev_features_change(dev);
8285 }
8286 EXPORT_SYMBOL(netdev_update_features);
8287 
8288 /**
8289  *	netdev_change_features - recalculate device features
8290  *	@dev: the device to check
8291  *
8292  *	Recalculate dev->features set and send notifications even
8293  *	if they have not changed. Should be called instead of
8294  *	netdev_update_features() if also dev->vlan_features might
8295  *	have changed to allow the changes to be propagated to stacked
8296  *	VLAN devices.
8297  */
8298 void netdev_change_features(struct net_device *dev)
8299 {
8300 	__netdev_update_features(dev);
8301 	netdev_features_change(dev);
8302 }
8303 EXPORT_SYMBOL(netdev_change_features);
8304 
8305 /**
8306  *	netif_stacked_transfer_operstate -	transfer operstate
8307  *	@rootdev: the root or lower level device to transfer state from
8308  *	@dev: the device to transfer operstate to
8309  *
8310  *	Transfer operational state from root to device. This is normally
8311  *	called when a stacking relationship exists between the root
8312  *	device and the device(a leaf device).
8313  */
8314 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8315 					struct net_device *dev)
8316 {
8317 	if (rootdev->operstate == IF_OPER_DORMANT)
8318 		netif_dormant_on(dev);
8319 	else
8320 		netif_dormant_off(dev);
8321 
8322 	if (netif_carrier_ok(rootdev))
8323 		netif_carrier_on(dev);
8324 	else
8325 		netif_carrier_off(dev);
8326 }
8327 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8328 
8329 static int netif_alloc_rx_queues(struct net_device *dev)
8330 {
8331 	unsigned int i, count = dev->num_rx_queues;
8332 	struct netdev_rx_queue *rx;
8333 	size_t sz = count * sizeof(*rx);
8334 	int err = 0;
8335 
8336 	BUG_ON(count < 1);
8337 
8338 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8339 	if (!rx)
8340 		return -ENOMEM;
8341 
8342 	dev->_rx = rx;
8343 
8344 	for (i = 0; i < count; i++) {
8345 		rx[i].dev = dev;
8346 
8347 		/* XDP RX-queue setup */
8348 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8349 		if (err < 0)
8350 			goto err_rxq_info;
8351 	}
8352 	return 0;
8353 
8354 err_rxq_info:
8355 	/* Rollback successful reg's and free other resources */
8356 	while (i--)
8357 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8358 	kvfree(dev->_rx);
8359 	dev->_rx = NULL;
8360 	return err;
8361 }
8362 
8363 static void netif_free_rx_queues(struct net_device *dev)
8364 {
8365 	unsigned int i, count = dev->num_rx_queues;
8366 
8367 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8368 	if (!dev->_rx)
8369 		return;
8370 
8371 	for (i = 0; i < count; i++)
8372 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8373 
8374 	kvfree(dev->_rx);
8375 }
8376 
8377 static void netdev_init_one_queue(struct net_device *dev,
8378 				  struct netdev_queue *queue, void *_unused)
8379 {
8380 	/* Initialize queue lock */
8381 	spin_lock_init(&queue->_xmit_lock);
8382 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8383 	queue->xmit_lock_owner = -1;
8384 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8385 	queue->dev = dev;
8386 #ifdef CONFIG_BQL
8387 	dql_init(&queue->dql, HZ);
8388 #endif
8389 }
8390 
8391 static void netif_free_tx_queues(struct net_device *dev)
8392 {
8393 	kvfree(dev->_tx);
8394 }
8395 
8396 static int netif_alloc_netdev_queues(struct net_device *dev)
8397 {
8398 	unsigned int count = dev->num_tx_queues;
8399 	struct netdev_queue *tx;
8400 	size_t sz = count * sizeof(*tx);
8401 
8402 	if (count < 1 || count > 0xffff)
8403 		return -EINVAL;
8404 
8405 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8406 	if (!tx)
8407 		return -ENOMEM;
8408 
8409 	dev->_tx = tx;
8410 
8411 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8412 	spin_lock_init(&dev->tx_global_lock);
8413 
8414 	return 0;
8415 }
8416 
8417 void netif_tx_stop_all_queues(struct net_device *dev)
8418 {
8419 	unsigned int i;
8420 
8421 	for (i = 0; i < dev->num_tx_queues; i++) {
8422 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8423 
8424 		netif_tx_stop_queue(txq);
8425 	}
8426 }
8427 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8428 
8429 /**
8430  *	register_netdevice	- register a network device
8431  *	@dev: device to register
8432  *
8433  *	Take a completed network device structure and add it to the kernel
8434  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8435  *	chain. 0 is returned on success. A negative errno code is returned
8436  *	on a failure to set up the device, or if the name is a duplicate.
8437  *
8438  *	Callers must hold the rtnl semaphore. You may want
8439  *	register_netdev() instead of this.
8440  *
8441  *	BUGS:
8442  *	The locking appears insufficient to guarantee two parallel registers
8443  *	will not get the same name.
8444  */
8445 
8446 int register_netdevice(struct net_device *dev)
8447 {
8448 	int ret;
8449 	struct net *net = dev_net(dev);
8450 
8451 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8452 		     NETDEV_FEATURE_COUNT);
8453 	BUG_ON(dev_boot_phase);
8454 	ASSERT_RTNL();
8455 
8456 	might_sleep();
8457 
8458 	/* When net_device's are persistent, this will be fatal. */
8459 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8460 	BUG_ON(!net);
8461 
8462 	spin_lock_init(&dev->addr_list_lock);
8463 	netdev_set_addr_lockdep_class(dev);
8464 
8465 	ret = dev_get_valid_name(net, dev, dev->name);
8466 	if (ret < 0)
8467 		goto out;
8468 
8469 	/* Init, if this function is available */
8470 	if (dev->netdev_ops->ndo_init) {
8471 		ret = dev->netdev_ops->ndo_init(dev);
8472 		if (ret) {
8473 			if (ret > 0)
8474 				ret = -EIO;
8475 			goto out;
8476 		}
8477 	}
8478 
8479 	if (((dev->hw_features | dev->features) &
8480 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8481 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8482 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8483 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8484 		ret = -EINVAL;
8485 		goto err_uninit;
8486 	}
8487 
8488 	ret = -EBUSY;
8489 	if (!dev->ifindex)
8490 		dev->ifindex = dev_new_index(net);
8491 	else if (__dev_get_by_index(net, dev->ifindex))
8492 		goto err_uninit;
8493 
8494 	/* Transfer changeable features to wanted_features and enable
8495 	 * software offloads (GSO and GRO).
8496 	 */
8497 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8498 	dev->features |= NETIF_F_SOFT_FEATURES;
8499 
8500 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8501 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8502 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8503 	}
8504 
8505 	dev->wanted_features = dev->features & dev->hw_features;
8506 
8507 	if (!(dev->flags & IFF_LOOPBACK))
8508 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8509 
8510 	/* If IPv4 TCP segmentation offload is supported we should also
8511 	 * allow the device to enable segmenting the frame with the option
8512 	 * of ignoring a static IP ID value.  This doesn't enable the
8513 	 * feature itself but allows the user to enable it later.
8514 	 */
8515 	if (dev->hw_features & NETIF_F_TSO)
8516 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8517 	if (dev->vlan_features & NETIF_F_TSO)
8518 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8519 	if (dev->mpls_features & NETIF_F_TSO)
8520 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8521 	if (dev->hw_enc_features & NETIF_F_TSO)
8522 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8523 
8524 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8525 	 */
8526 	dev->vlan_features |= NETIF_F_HIGHDMA;
8527 
8528 	/* Make NETIF_F_SG inheritable to tunnel devices.
8529 	 */
8530 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8531 
8532 	/* Make NETIF_F_SG inheritable to MPLS.
8533 	 */
8534 	dev->mpls_features |= NETIF_F_SG;
8535 
8536 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8537 	ret = notifier_to_errno(ret);
8538 	if (ret)
8539 		goto err_uninit;
8540 
8541 	ret = netdev_register_kobject(dev);
8542 	if (ret)
8543 		goto err_uninit;
8544 	dev->reg_state = NETREG_REGISTERED;
8545 
8546 	__netdev_update_features(dev);
8547 
8548 	/*
8549 	 *	Default initial state at registry is that the
8550 	 *	device is present.
8551 	 */
8552 
8553 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8554 
8555 	linkwatch_init_dev(dev);
8556 
8557 	dev_init_scheduler(dev);
8558 	dev_hold(dev);
8559 	list_netdevice(dev);
8560 	add_device_randomness(dev->dev_addr, dev->addr_len);
8561 
8562 	/* If the device has permanent device address, driver should
8563 	 * set dev_addr and also addr_assign_type should be set to
8564 	 * NET_ADDR_PERM (default value).
8565 	 */
8566 	if (dev->addr_assign_type == NET_ADDR_PERM)
8567 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8568 
8569 	/* Notify protocols, that a new device appeared. */
8570 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8571 	ret = notifier_to_errno(ret);
8572 	if (ret) {
8573 		rollback_registered(dev);
8574 		dev->reg_state = NETREG_UNREGISTERED;
8575 	}
8576 	/*
8577 	 *	Prevent userspace races by waiting until the network
8578 	 *	device is fully setup before sending notifications.
8579 	 */
8580 	if (!dev->rtnl_link_ops ||
8581 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8582 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8583 
8584 out:
8585 	return ret;
8586 
8587 err_uninit:
8588 	if (dev->netdev_ops->ndo_uninit)
8589 		dev->netdev_ops->ndo_uninit(dev);
8590 	if (dev->priv_destructor)
8591 		dev->priv_destructor(dev);
8592 	goto out;
8593 }
8594 EXPORT_SYMBOL(register_netdevice);
8595 
8596 /**
8597  *	init_dummy_netdev	- init a dummy network device for NAPI
8598  *	@dev: device to init
8599  *
8600  *	This takes a network device structure and initialize the minimum
8601  *	amount of fields so it can be used to schedule NAPI polls without
8602  *	registering a full blown interface. This is to be used by drivers
8603  *	that need to tie several hardware interfaces to a single NAPI
8604  *	poll scheduler due to HW limitations.
8605  */
8606 int init_dummy_netdev(struct net_device *dev)
8607 {
8608 	/* Clear everything. Note we don't initialize spinlocks
8609 	 * are they aren't supposed to be taken by any of the
8610 	 * NAPI code and this dummy netdev is supposed to be
8611 	 * only ever used for NAPI polls
8612 	 */
8613 	memset(dev, 0, sizeof(struct net_device));
8614 
8615 	/* make sure we BUG if trying to hit standard
8616 	 * register/unregister code path
8617 	 */
8618 	dev->reg_state = NETREG_DUMMY;
8619 
8620 	/* NAPI wants this */
8621 	INIT_LIST_HEAD(&dev->napi_list);
8622 
8623 	/* a dummy interface is started by default */
8624 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8625 	set_bit(__LINK_STATE_START, &dev->state);
8626 
8627 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8628 	 * because users of this 'device' dont need to change
8629 	 * its refcount.
8630 	 */
8631 
8632 	return 0;
8633 }
8634 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8635 
8636 
8637 /**
8638  *	register_netdev	- register a network device
8639  *	@dev: device to register
8640  *
8641  *	Take a completed network device structure and add it to the kernel
8642  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8643  *	chain. 0 is returned on success. A negative errno code is returned
8644  *	on a failure to set up the device, or if the name is a duplicate.
8645  *
8646  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8647  *	and expands the device name if you passed a format string to
8648  *	alloc_netdev.
8649  */
8650 int register_netdev(struct net_device *dev)
8651 {
8652 	int err;
8653 
8654 	if (rtnl_lock_killable())
8655 		return -EINTR;
8656 	err = register_netdevice(dev);
8657 	rtnl_unlock();
8658 	return err;
8659 }
8660 EXPORT_SYMBOL(register_netdev);
8661 
8662 int netdev_refcnt_read(const struct net_device *dev)
8663 {
8664 	int i, refcnt = 0;
8665 
8666 	for_each_possible_cpu(i)
8667 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8668 	return refcnt;
8669 }
8670 EXPORT_SYMBOL(netdev_refcnt_read);
8671 
8672 /**
8673  * netdev_wait_allrefs - wait until all references are gone.
8674  * @dev: target net_device
8675  *
8676  * This is called when unregistering network devices.
8677  *
8678  * Any protocol or device that holds a reference should register
8679  * for netdevice notification, and cleanup and put back the
8680  * reference if they receive an UNREGISTER event.
8681  * We can get stuck here if buggy protocols don't correctly
8682  * call dev_put.
8683  */
8684 static void netdev_wait_allrefs(struct net_device *dev)
8685 {
8686 	unsigned long rebroadcast_time, warning_time;
8687 	int refcnt;
8688 
8689 	linkwatch_forget_dev(dev);
8690 
8691 	rebroadcast_time = warning_time = jiffies;
8692 	refcnt = netdev_refcnt_read(dev);
8693 
8694 	while (refcnt != 0) {
8695 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8696 			rtnl_lock();
8697 
8698 			/* Rebroadcast unregister notification */
8699 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8700 
8701 			__rtnl_unlock();
8702 			rcu_barrier();
8703 			rtnl_lock();
8704 
8705 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8706 				     &dev->state)) {
8707 				/* We must not have linkwatch events
8708 				 * pending on unregister. If this
8709 				 * happens, we simply run the queue
8710 				 * unscheduled, resulting in a noop
8711 				 * for this device.
8712 				 */
8713 				linkwatch_run_queue();
8714 			}
8715 
8716 			__rtnl_unlock();
8717 
8718 			rebroadcast_time = jiffies;
8719 		}
8720 
8721 		msleep(250);
8722 
8723 		refcnt = netdev_refcnt_read(dev);
8724 
8725 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8726 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8727 				 dev->name, refcnt);
8728 			warning_time = jiffies;
8729 		}
8730 	}
8731 }
8732 
8733 /* The sequence is:
8734  *
8735  *	rtnl_lock();
8736  *	...
8737  *	register_netdevice(x1);
8738  *	register_netdevice(x2);
8739  *	...
8740  *	unregister_netdevice(y1);
8741  *	unregister_netdevice(y2);
8742  *      ...
8743  *	rtnl_unlock();
8744  *	free_netdev(y1);
8745  *	free_netdev(y2);
8746  *
8747  * We are invoked by rtnl_unlock().
8748  * This allows us to deal with problems:
8749  * 1) We can delete sysfs objects which invoke hotplug
8750  *    without deadlocking with linkwatch via keventd.
8751  * 2) Since we run with the RTNL semaphore not held, we can sleep
8752  *    safely in order to wait for the netdev refcnt to drop to zero.
8753  *
8754  * We must not return until all unregister events added during
8755  * the interval the lock was held have been completed.
8756  */
8757 void netdev_run_todo(void)
8758 {
8759 	struct list_head list;
8760 
8761 	/* Snapshot list, allow later requests */
8762 	list_replace_init(&net_todo_list, &list);
8763 
8764 	__rtnl_unlock();
8765 
8766 
8767 	/* Wait for rcu callbacks to finish before next phase */
8768 	if (!list_empty(&list))
8769 		rcu_barrier();
8770 
8771 	while (!list_empty(&list)) {
8772 		struct net_device *dev
8773 			= list_first_entry(&list, struct net_device, todo_list);
8774 		list_del(&dev->todo_list);
8775 
8776 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8777 			pr_err("network todo '%s' but state %d\n",
8778 			       dev->name, dev->reg_state);
8779 			dump_stack();
8780 			continue;
8781 		}
8782 
8783 		dev->reg_state = NETREG_UNREGISTERED;
8784 
8785 		netdev_wait_allrefs(dev);
8786 
8787 		/* paranoia */
8788 		BUG_ON(netdev_refcnt_read(dev));
8789 		BUG_ON(!list_empty(&dev->ptype_all));
8790 		BUG_ON(!list_empty(&dev->ptype_specific));
8791 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8792 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8793 #if IS_ENABLED(CONFIG_DECNET)
8794 		WARN_ON(dev->dn_ptr);
8795 #endif
8796 		if (dev->priv_destructor)
8797 			dev->priv_destructor(dev);
8798 		if (dev->needs_free_netdev)
8799 			free_netdev(dev);
8800 
8801 		/* Report a network device has been unregistered */
8802 		rtnl_lock();
8803 		dev_net(dev)->dev_unreg_count--;
8804 		__rtnl_unlock();
8805 		wake_up(&netdev_unregistering_wq);
8806 
8807 		/* Free network device */
8808 		kobject_put(&dev->dev.kobj);
8809 	}
8810 }
8811 
8812 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8813  * all the same fields in the same order as net_device_stats, with only
8814  * the type differing, but rtnl_link_stats64 may have additional fields
8815  * at the end for newer counters.
8816  */
8817 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8818 			     const struct net_device_stats *netdev_stats)
8819 {
8820 #if BITS_PER_LONG == 64
8821 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8822 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8823 	/* zero out counters that only exist in rtnl_link_stats64 */
8824 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8825 	       sizeof(*stats64) - sizeof(*netdev_stats));
8826 #else
8827 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8828 	const unsigned long *src = (const unsigned long *)netdev_stats;
8829 	u64 *dst = (u64 *)stats64;
8830 
8831 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8832 	for (i = 0; i < n; i++)
8833 		dst[i] = src[i];
8834 	/* zero out counters that only exist in rtnl_link_stats64 */
8835 	memset((char *)stats64 + n * sizeof(u64), 0,
8836 	       sizeof(*stats64) - n * sizeof(u64));
8837 #endif
8838 }
8839 EXPORT_SYMBOL(netdev_stats_to_stats64);
8840 
8841 /**
8842  *	dev_get_stats	- get network device statistics
8843  *	@dev: device to get statistics from
8844  *	@storage: place to store stats
8845  *
8846  *	Get network statistics from device. Return @storage.
8847  *	The device driver may provide its own method by setting
8848  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8849  *	otherwise the internal statistics structure is used.
8850  */
8851 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8852 					struct rtnl_link_stats64 *storage)
8853 {
8854 	const struct net_device_ops *ops = dev->netdev_ops;
8855 
8856 	if (ops->ndo_get_stats64) {
8857 		memset(storage, 0, sizeof(*storage));
8858 		ops->ndo_get_stats64(dev, storage);
8859 	} else if (ops->ndo_get_stats) {
8860 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8861 	} else {
8862 		netdev_stats_to_stats64(storage, &dev->stats);
8863 	}
8864 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8865 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8866 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8867 	return storage;
8868 }
8869 EXPORT_SYMBOL(dev_get_stats);
8870 
8871 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8872 {
8873 	struct netdev_queue *queue = dev_ingress_queue(dev);
8874 
8875 #ifdef CONFIG_NET_CLS_ACT
8876 	if (queue)
8877 		return queue;
8878 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8879 	if (!queue)
8880 		return NULL;
8881 	netdev_init_one_queue(dev, queue, NULL);
8882 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8883 	queue->qdisc_sleeping = &noop_qdisc;
8884 	rcu_assign_pointer(dev->ingress_queue, queue);
8885 #endif
8886 	return queue;
8887 }
8888 
8889 static const struct ethtool_ops default_ethtool_ops;
8890 
8891 void netdev_set_default_ethtool_ops(struct net_device *dev,
8892 				    const struct ethtool_ops *ops)
8893 {
8894 	if (dev->ethtool_ops == &default_ethtool_ops)
8895 		dev->ethtool_ops = ops;
8896 }
8897 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8898 
8899 void netdev_freemem(struct net_device *dev)
8900 {
8901 	char *addr = (char *)dev - dev->padded;
8902 
8903 	kvfree(addr);
8904 }
8905 
8906 /**
8907  * alloc_netdev_mqs - allocate network device
8908  * @sizeof_priv: size of private data to allocate space for
8909  * @name: device name format string
8910  * @name_assign_type: origin of device name
8911  * @setup: callback to initialize device
8912  * @txqs: the number of TX subqueues to allocate
8913  * @rxqs: the number of RX subqueues to allocate
8914  *
8915  * Allocates a struct net_device with private data area for driver use
8916  * and performs basic initialization.  Also allocates subqueue structs
8917  * for each queue on the device.
8918  */
8919 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8920 		unsigned char name_assign_type,
8921 		void (*setup)(struct net_device *),
8922 		unsigned int txqs, unsigned int rxqs)
8923 {
8924 	struct net_device *dev;
8925 	unsigned int alloc_size;
8926 	struct net_device *p;
8927 
8928 	BUG_ON(strlen(name) >= sizeof(dev->name));
8929 
8930 	if (txqs < 1) {
8931 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8932 		return NULL;
8933 	}
8934 
8935 	if (rxqs < 1) {
8936 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8937 		return NULL;
8938 	}
8939 
8940 	alloc_size = sizeof(struct net_device);
8941 	if (sizeof_priv) {
8942 		/* ensure 32-byte alignment of private area */
8943 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8944 		alloc_size += sizeof_priv;
8945 	}
8946 	/* ensure 32-byte alignment of whole construct */
8947 	alloc_size += NETDEV_ALIGN - 1;
8948 
8949 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8950 	if (!p)
8951 		return NULL;
8952 
8953 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8954 	dev->padded = (char *)dev - (char *)p;
8955 
8956 	dev->pcpu_refcnt = alloc_percpu(int);
8957 	if (!dev->pcpu_refcnt)
8958 		goto free_dev;
8959 
8960 	if (dev_addr_init(dev))
8961 		goto free_pcpu;
8962 
8963 	dev_mc_init(dev);
8964 	dev_uc_init(dev);
8965 
8966 	dev_net_set(dev, &init_net);
8967 
8968 	dev->gso_max_size = GSO_MAX_SIZE;
8969 	dev->gso_max_segs = GSO_MAX_SEGS;
8970 
8971 	INIT_LIST_HEAD(&dev->napi_list);
8972 	INIT_LIST_HEAD(&dev->unreg_list);
8973 	INIT_LIST_HEAD(&dev->close_list);
8974 	INIT_LIST_HEAD(&dev->link_watch_list);
8975 	INIT_LIST_HEAD(&dev->adj_list.upper);
8976 	INIT_LIST_HEAD(&dev->adj_list.lower);
8977 	INIT_LIST_HEAD(&dev->ptype_all);
8978 	INIT_LIST_HEAD(&dev->ptype_specific);
8979 #ifdef CONFIG_NET_SCHED
8980 	hash_init(dev->qdisc_hash);
8981 #endif
8982 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8983 	setup(dev);
8984 
8985 	if (!dev->tx_queue_len) {
8986 		dev->priv_flags |= IFF_NO_QUEUE;
8987 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8988 	}
8989 
8990 	dev->num_tx_queues = txqs;
8991 	dev->real_num_tx_queues = txqs;
8992 	if (netif_alloc_netdev_queues(dev))
8993 		goto free_all;
8994 
8995 	dev->num_rx_queues = rxqs;
8996 	dev->real_num_rx_queues = rxqs;
8997 	if (netif_alloc_rx_queues(dev))
8998 		goto free_all;
8999 
9000 	strcpy(dev->name, name);
9001 	dev->name_assign_type = name_assign_type;
9002 	dev->group = INIT_NETDEV_GROUP;
9003 	if (!dev->ethtool_ops)
9004 		dev->ethtool_ops = &default_ethtool_ops;
9005 
9006 	nf_hook_ingress_init(dev);
9007 
9008 	return dev;
9009 
9010 free_all:
9011 	free_netdev(dev);
9012 	return NULL;
9013 
9014 free_pcpu:
9015 	free_percpu(dev->pcpu_refcnt);
9016 free_dev:
9017 	netdev_freemem(dev);
9018 	return NULL;
9019 }
9020 EXPORT_SYMBOL(alloc_netdev_mqs);
9021 
9022 /**
9023  * free_netdev - free network device
9024  * @dev: device
9025  *
9026  * This function does the last stage of destroying an allocated device
9027  * interface. The reference to the device object is released. If this
9028  * is the last reference then it will be freed.Must be called in process
9029  * context.
9030  */
9031 void free_netdev(struct net_device *dev)
9032 {
9033 	struct napi_struct *p, *n;
9034 
9035 	might_sleep();
9036 	netif_free_tx_queues(dev);
9037 	netif_free_rx_queues(dev);
9038 
9039 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9040 
9041 	/* Flush device addresses */
9042 	dev_addr_flush(dev);
9043 
9044 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9045 		netif_napi_del(p);
9046 
9047 	free_percpu(dev->pcpu_refcnt);
9048 	dev->pcpu_refcnt = NULL;
9049 
9050 	/*  Compatibility with error handling in drivers */
9051 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9052 		netdev_freemem(dev);
9053 		return;
9054 	}
9055 
9056 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9057 	dev->reg_state = NETREG_RELEASED;
9058 
9059 	/* will free via device release */
9060 	put_device(&dev->dev);
9061 }
9062 EXPORT_SYMBOL(free_netdev);
9063 
9064 /**
9065  *	synchronize_net -  Synchronize with packet receive processing
9066  *
9067  *	Wait for packets currently being received to be done.
9068  *	Does not block later packets from starting.
9069  */
9070 void synchronize_net(void)
9071 {
9072 	might_sleep();
9073 	if (rtnl_is_locked())
9074 		synchronize_rcu_expedited();
9075 	else
9076 		synchronize_rcu();
9077 }
9078 EXPORT_SYMBOL(synchronize_net);
9079 
9080 /**
9081  *	unregister_netdevice_queue - remove device from the kernel
9082  *	@dev: device
9083  *	@head: list
9084  *
9085  *	This function shuts down a device interface and removes it
9086  *	from the kernel tables.
9087  *	If head not NULL, device is queued to be unregistered later.
9088  *
9089  *	Callers must hold the rtnl semaphore.  You may want
9090  *	unregister_netdev() instead of this.
9091  */
9092 
9093 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9094 {
9095 	ASSERT_RTNL();
9096 
9097 	if (head) {
9098 		list_move_tail(&dev->unreg_list, head);
9099 	} else {
9100 		rollback_registered(dev);
9101 		/* Finish processing unregister after unlock */
9102 		net_set_todo(dev);
9103 	}
9104 }
9105 EXPORT_SYMBOL(unregister_netdevice_queue);
9106 
9107 /**
9108  *	unregister_netdevice_many - unregister many devices
9109  *	@head: list of devices
9110  *
9111  *  Note: As most callers use a stack allocated list_head,
9112  *  we force a list_del() to make sure stack wont be corrupted later.
9113  */
9114 void unregister_netdevice_many(struct list_head *head)
9115 {
9116 	struct net_device *dev;
9117 
9118 	if (!list_empty(head)) {
9119 		rollback_registered_many(head);
9120 		list_for_each_entry(dev, head, unreg_list)
9121 			net_set_todo(dev);
9122 		list_del(head);
9123 	}
9124 }
9125 EXPORT_SYMBOL(unregister_netdevice_many);
9126 
9127 /**
9128  *	unregister_netdev - remove device from the kernel
9129  *	@dev: device
9130  *
9131  *	This function shuts down a device interface and removes it
9132  *	from the kernel tables.
9133  *
9134  *	This is just a wrapper for unregister_netdevice that takes
9135  *	the rtnl semaphore.  In general you want to use this and not
9136  *	unregister_netdevice.
9137  */
9138 void unregister_netdev(struct net_device *dev)
9139 {
9140 	rtnl_lock();
9141 	unregister_netdevice(dev);
9142 	rtnl_unlock();
9143 }
9144 EXPORT_SYMBOL(unregister_netdev);
9145 
9146 /**
9147  *	dev_change_net_namespace - move device to different nethost namespace
9148  *	@dev: device
9149  *	@net: network namespace
9150  *	@pat: If not NULL name pattern to try if the current device name
9151  *	      is already taken in the destination network namespace.
9152  *
9153  *	This function shuts down a device interface and moves it
9154  *	to a new network namespace. On success 0 is returned, on
9155  *	a failure a netagive errno code is returned.
9156  *
9157  *	Callers must hold the rtnl semaphore.
9158  */
9159 
9160 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9161 {
9162 	int err, new_nsid, new_ifindex;
9163 
9164 	ASSERT_RTNL();
9165 
9166 	/* Don't allow namespace local devices to be moved. */
9167 	err = -EINVAL;
9168 	if (dev->features & NETIF_F_NETNS_LOCAL)
9169 		goto out;
9170 
9171 	/* Ensure the device has been registrered */
9172 	if (dev->reg_state != NETREG_REGISTERED)
9173 		goto out;
9174 
9175 	/* Get out if there is nothing todo */
9176 	err = 0;
9177 	if (net_eq(dev_net(dev), net))
9178 		goto out;
9179 
9180 	/* Pick the destination device name, and ensure
9181 	 * we can use it in the destination network namespace.
9182 	 */
9183 	err = -EEXIST;
9184 	if (__dev_get_by_name(net, dev->name)) {
9185 		/* We get here if we can't use the current device name */
9186 		if (!pat)
9187 			goto out;
9188 		err = dev_get_valid_name(net, dev, pat);
9189 		if (err < 0)
9190 			goto out;
9191 	}
9192 
9193 	/*
9194 	 * And now a mini version of register_netdevice unregister_netdevice.
9195 	 */
9196 
9197 	/* If device is running close it first. */
9198 	dev_close(dev);
9199 
9200 	/* And unlink it from device chain */
9201 	unlist_netdevice(dev);
9202 
9203 	synchronize_net();
9204 
9205 	/* Shutdown queueing discipline. */
9206 	dev_shutdown(dev);
9207 
9208 	/* Notify protocols, that we are about to destroy
9209 	 * this device. They should clean all the things.
9210 	 *
9211 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9212 	 * This is wanted because this way 8021q and macvlan know
9213 	 * the device is just moving and can keep their slaves up.
9214 	 */
9215 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9216 	rcu_barrier();
9217 
9218 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9219 	/* If there is an ifindex conflict assign a new one */
9220 	if (__dev_get_by_index(net, dev->ifindex))
9221 		new_ifindex = dev_new_index(net);
9222 	else
9223 		new_ifindex = dev->ifindex;
9224 
9225 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9226 			    new_ifindex);
9227 
9228 	/*
9229 	 *	Flush the unicast and multicast chains
9230 	 */
9231 	dev_uc_flush(dev);
9232 	dev_mc_flush(dev);
9233 
9234 	/* Send a netdev-removed uevent to the old namespace */
9235 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9236 	netdev_adjacent_del_links(dev);
9237 
9238 	/* Actually switch the network namespace */
9239 	dev_net_set(dev, net);
9240 	dev->ifindex = new_ifindex;
9241 
9242 	/* Send a netdev-add uevent to the new namespace */
9243 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9244 	netdev_adjacent_add_links(dev);
9245 
9246 	/* Fixup kobjects */
9247 	err = device_rename(&dev->dev, dev->name);
9248 	WARN_ON(err);
9249 
9250 	/* Add the device back in the hashes */
9251 	list_netdevice(dev);
9252 
9253 	/* Notify protocols, that a new device appeared. */
9254 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9255 
9256 	/*
9257 	 *	Prevent userspace races by waiting until the network
9258 	 *	device is fully setup before sending notifications.
9259 	 */
9260 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9261 
9262 	synchronize_net();
9263 	err = 0;
9264 out:
9265 	return err;
9266 }
9267 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9268 
9269 static int dev_cpu_dead(unsigned int oldcpu)
9270 {
9271 	struct sk_buff **list_skb;
9272 	struct sk_buff *skb;
9273 	unsigned int cpu;
9274 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9275 
9276 	local_irq_disable();
9277 	cpu = smp_processor_id();
9278 	sd = &per_cpu(softnet_data, cpu);
9279 	oldsd = &per_cpu(softnet_data, oldcpu);
9280 
9281 	/* Find end of our completion_queue. */
9282 	list_skb = &sd->completion_queue;
9283 	while (*list_skb)
9284 		list_skb = &(*list_skb)->next;
9285 	/* Append completion queue from offline CPU. */
9286 	*list_skb = oldsd->completion_queue;
9287 	oldsd->completion_queue = NULL;
9288 
9289 	/* Append output queue from offline CPU. */
9290 	if (oldsd->output_queue) {
9291 		*sd->output_queue_tailp = oldsd->output_queue;
9292 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9293 		oldsd->output_queue = NULL;
9294 		oldsd->output_queue_tailp = &oldsd->output_queue;
9295 	}
9296 	/* Append NAPI poll list from offline CPU, with one exception :
9297 	 * process_backlog() must be called by cpu owning percpu backlog.
9298 	 * We properly handle process_queue & input_pkt_queue later.
9299 	 */
9300 	while (!list_empty(&oldsd->poll_list)) {
9301 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9302 							    struct napi_struct,
9303 							    poll_list);
9304 
9305 		list_del_init(&napi->poll_list);
9306 		if (napi->poll == process_backlog)
9307 			napi->state = 0;
9308 		else
9309 			____napi_schedule(sd, napi);
9310 	}
9311 
9312 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9313 	local_irq_enable();
9314 
9315 #ifdef CONFIG_RPS
9316 	remsd = oldsd->rps_ipi_list;
9317 	oldsd->rps_ipi_list = NULL;
9318 #endif
9319 	/* send out pending IPI's on offline CPU */
9320 	net_rps_send_ipi(remsd);
9321 
9322 	/* Process offline CPU's input_pkt_queue */
9323 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9324 		netif_rx_ni(skb);
9325 		input_queue_head_incr(oldsd);
9326 	}
9327 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9328 		netif_rx_ni(skb);
9329 		input_queue_head_incr(oldsd);
9330 	}
9331 
9332 	return 0;
9333 }
9334 
9335 /**
9336  *	netdev_increment_features - increment feature set by one
9337  *	@all: current feature set
9338  *	@one: new feature set
9339  *	@mask: mask feature set
9340  *
9341  *	Computes a new feature set after adding a device with feature set
9342  *	@one to the master device with current feature set @all.  Will not
9343  *	enable anything that is off in @mask. Returns the new feature set.
9344  */
9345 netdev_features_t netdev_increment_features(netdev_features_t all,
9346 	netdev_features_t one, netdev_features_t mask)
9347 {
9348 	if (mask & NETIF_F_HW_CSUM)
9349 		mask |= NETIF_F_CSUM_MASK;
9350 	mask |= NETIF_F_VLAN_CHALLENGED;
9351 
9352 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9353 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9354 
9355 	/* If one device supports hw checksumming, set for all. */
9356 	if (all & NETIF_F_HW_CSUM)
9357 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9358 
9359 	return all;
9360 }
9361 EXPORT_SYMBOL(netdev_increment_features);
9362 
9363 static struct hlist_head * __net_init netdev_create_hash(void)
9364 {
9365 	int i;
9366 	struct hlist_head *hash;
9367 
9368 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9369 	if (hash != NULL)
9370 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9371 			INIT_HLIST_HEAD(&hash[i]);
9372 
9373 	return hash;
9374 }
9375 
9376 /* Initialize per network namespace state */
9377 static int __net_init netdev_init(struct net *net)
9378 {
9379 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9380 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9381 
9382 	if (net != &init_net)
9383 		INIT_LIST_HEAD(&net->dev_base_head);
9384 
9385 	net->dev_name_head = netdev_create_hash();
9386 	if (net->dev_name_head == NULL)
9387 		goto err_name;
9388 
9389 	net->dev_index_head = netdev_create_hash();
9390 	if (net->dev_index_head == NULL)
9391 		goto err_idx;
9392 
9393 	return 0;
9394 
9395 err_idx:
9396 	kfree(net->dev_name_head);
9397 err_name:
9398 	return -ENOMEM;
9399 }
9400 
9401 /**
9402  *	netdev_drivername - network driver for the device
9403  *	@dev: network device
9404  *
9405  *	Determine network driver for device.
9406  */
9407 const char *netdev_drivername(const struct net_device *dev)
9408 {
9409 	const struct device_driver *driver;
9410 	const struct device *parent;
9411 	const char *empty = "";
9412 
9413 	parent = dev->dev.parent;
9414 	if (!parent)
9415 		return empty;
9416 
9417 	driver = parent->driver;
9418 	if (driver && driver->name)
9419 		return driver->name;
9420 	return empty;
9421 }
9422 
9423 static void __netdev_printk(const char *level, const struct net_device *dev,
9424 			    struct va_format *vaf)
9425 {
9426 	if (dev && dev->dev.parent) {
9427 		dev_printk_emit(level[1] - '0',
9428 				dev->dev.parent,
9429 				"%s %s %s%s: %pV",
9430 				dev_driver_string(dev->dev.parent),
9431 				dev_name(dev->dev.parent),
9432 				netdev_name(dev), netdev_reg_state(dev),
9433 				vaf);
9434 	} else if (dev) {
9435 		printk("%s%s%s: %pV",
9436 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9437 	} else {
9438 		printk("%s(NULL net_device): %pV", level, vaf);
9439 	}
9440 }
9441 
9442 void netdev_printk(const char *level, const struct net_device *dev,
9443 		   const char *format, ...)
9444 {
9445 	struct va_format vaf;
9446 	va_list args;
9447 
9448 	va_start(args, format);
9449 
9450 	vaf.fmt = format;
9451 	vaf.va = &args;
9452 
9453 	__netdev_printk(level, dev, &vaf);
9454 
9455 	va_end(args);
9456 }
9457 EXPORT_SYMBOL(netdev_printk);
9458 
9459 #define define_netdev_printk_level(func, level)			\
9460 void func(const struct net_device *dev, const char *fmt, ...)	\
9461 {								\
9462 	struct va_format vaf;					\
9463 	va_list args;						\
9464 								\
9465 	va_start(args, fmt);					\
9466 								\
9467 	vaf.fmt = fmt;						\
9468 	vaf.va = &args;						\
9469 								\
9470 	__netdev_printk(level, dev, &vaf);			\
9471 								\
9472 	va_end(args);						\
9473 }								\
9474 EXPORT_SYMBOL(func);
9475 
9476 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9477 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9478 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9479 define_netdev_printk_level(netdev_err, KERN_ERR);
9480 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9481 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9482 define_netdev_printk_level(netdev_info, KERN_INFO);
9483 
9484 static void __net_exit netdev_exit(struct net *net)
9485 {
9486 	kfree(net->dev_name_head);
9487 	kfree(net->dev_index_head);
9488 	if (net != &init_net)
9489 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9490 }
9491 
9492 static struct pernet_operations __net_initdata netdev_net_ops = {
9493 	.init = netdev_init,
9494 	.exit = netdev_exit,
9495 };
9496 
9497 static void __net_exit default_device_exit(struct net *net)
9498 {
9499 	struct net_device *dev, *aux;
9500 	/*
9501 	 * Push all migratable network devices back to the
9502 	 * initial network namespace
9503 	 */
9504 	rtnl_lock();
9505 	for_each_netdev_safe(net, dev, aux) {
9506 		int err;
9507 		char fb_name[IFNAMSIZ];
9508 
9509 		/* Ignore unmoveable devices (i.e. loopback) */
9510 		if (dev->features & NETIF_F_NETNS_LOCAL)
9511 			continue;
9512 
9513 		/* Leave virtual devices for the generic cleanup */
9514 		if (dev->rtnl_link_ops)
9515 			continue;
9516 
9517 		/* Push remaining network devices to init_net */
9518 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9519 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9520 		if (err) {
9521 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9522 				 __func__, dev->name, err);
9523 			BUG();
9524 		}
9525 	}
9526 	rtnl_unlock();
9527 }
9528 
9529 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9530 {
9531 	/* Return with the rtnl_lock held when there are no network
9532 	 * devices unregistering in any network namespace in net_list.
9533 	 */
9534 	struct net *net;
9535 	bool unregistering;
9536 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9537 
9538 	add_wait_queue(&netdev_unregistering_wq, &wait);
9539 	for (;;) {
9540 		unregistering = false;
9541 		rtnl_lock();
9542 		list_for_each_entry(net, net_list, exit_list) {
9543 			if (net->dev_unreg_count > 0) {
9544 				unregistering = true;
9545 				break;
9546 			}
9547 		}
9548 		if (!unregistering)
9549 			break;
9550 		__rtnl_unlock();
9551 
9552 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9553 	}
9554 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9555 }
9556 
9557 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9558 {
9559 	/* At exit all network devices most be removed from a network
9560 	 * namespace.  Do this in the reverse order of registration.
9561 	 * Do this across as many network namespaces as possible to
9562 	 * improve batching efficiency.
9563 	 */
9564 	struct net_device *dev;
9565 	struct net *net;
9566 	LIST_HEAD(dev_kill_list);
9567 
9568 	/* To prevent network device cleanup code from dereferencing
9569 	 * loopback devices or network devices that have been freed
9570 	 * wait here for all pending unregistrations to complete,
9571 	 * before unregistring the loopback device and allowing the
9572 	 * network namespace be freed.
9573 	 *
9574 	 * The netdev todo list containing all network devices
9575 	 * unregistrations that happen in default_device_exit_batch
9576 	 * will run in the rtnl_unlock() at the end of
9577 	 * default_device_exit_batch.
9578 	 */
9579 	rtnl_lock_unregistering(net_list);
9580 	list_for_each_entry(net, net_list, exit_list) {
9581 		for_each_netdev_reverse(net, dev) {
9582 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9583 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9584 			else
9585 				unregister_netdevice_queue(dev, &dev_kill_list);
9586 		}
9587 	}
9588 	unregister_netdevice_many(&dev_kill_list);
9589 	rtnl_unlock();
9590 }
9591 
9592 static struct pernet_operations __net_initdata default_device_ops = {
9593 	.exit = default_device_exit,
9594 	.exit_batch = default_device_exit_batch,
9595 };
9596 
9597 /*
9598  *	Initialize the DEV module. At boot time this walks the device list and
9599  *	unhooks any devices that fail to initialise (normally hardware not
9600  *	present) and leaves us with a valid list of present and active devices.
9601  *
9602  */
9603 
9604 /*
9605  *       This is called single threaded during boot, so no need
9606  *       to take the rtnl semaphore.
9607  */
9608 static int __init net_dev_init(void)
9609 {
9610 	int i, rc = -ENOMEM;
9611 
9612 	BUG_ON(!dev_boot_phase);
9613 
9614 	if (dev_proc_init())
9615 		goto out;
9616 
9617 	if (netdev_kobject_init())
9618 		goto out;
9619 
9620 	INIT_LIST_HEAD(&ptype_all);
9621 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9622 		INIT_LIST_HEAD(&ptype_base[i]);
9623 
9624 	INIT_LIST_HEAD(&offload_base);
9625 
9626 	if (register_pernet_subsys(&netdev_net_ops))
9627 		goto out;
9628 
9629 	/*
9630 	 *	Initialise the packet receive queues.
9631 	 */
9632 
9633 	for_each_possible_cpu(i) {
9634 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9635 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9636 
9637 		INIT_WORK(flush, flush_backlog);
9638 
9639 		skb_queue_head_init(&sd->input_pkt_queue);
9640 		skb_queue_head_init(&sd->process_queue);
9641 #ifdef CONFIG_XFRM_OFFLOAD
9642 		skb_queue_head_init(&sd->xfrm_backlog);
9643 #endif
9644 		INIT_LIST_HEAD(&sd->poll_list);
9645 		sd->output_queue_tailp = &sd->output_queue;
9646 #ifdef CONFIG_RPS
9647 		sd->csd.func = rps_trigger_softirq;
9648 		sd->csd.info = sd;
9649 		sd->cpu = i;
9650 #endif
9651 
9652 		init_gro_hash(&sd->backlog);
9653 		sd->backlog.poll = process_backlog;
9654 		sd->backlog.weight = weight_p;
9655 	}
9656 
9657 	dev_boot_phase = 0;
9658 
9659 	/* The loopback device is special if any other network devices
9660 	 * is present in a network namespace the loopback device must
9661 	 * be present. Since we now dynamically allocate and free the
9662 	 * loopback device ensure this invariant is maintained by
9663 	 * keeping the loopback device as the first device on the
9664 	 * list of network devices.  Ensuring the loopback devices
9665 	 * is the first device that appears and the last network device
9666 	 * that disappears.
9667 	 */
9668 	if (register_pernet_device(&loopback_net_ops))
9669 		goto out;
9670 
9671 	if (register_pernet_device(&default_device_ops))
9672 		goto out;
9673 
9674 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9675 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9676 
9677 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9678 				       NULL, dev_cpu_dead);
9679 	WARN_ON(rc < 0);
9680 	rc = 0;
9681 out:
9682 	return rc;
9683 }
9684 
9685 subsys_initcall(net_dev_init);
9686