1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 232 const char *name) 233 { 234 struct netdev_name_node *name_node; 235 236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 237 if (!name_node) 238 return NULL; 239 INIT_HLIST_NODE(&name_node->hlist); 240 name_node->dev = dev; 241 name_node->name = name; 242 return name_node; 243 } 244 245 static struct netdev_name_node * 246 netdev_name_node_head_alloc(struct net_device *dev) 247 { 248 struct netdev_name_node *name_node; 249 250 name_node = netdev_name_node_alloc(dev, dev->name); 251 if (!name_node) 252 return NULL; 253 INIT_LIST_HEAD(&name_node->list); 254 return name_node; 255 } 256 257 static void netdev_name_node_free(struct netdev_name_node *name_node) 258 { 259 kfree(name_node); 260 } 261 262 static void netdev_name_node_add(struct net *net, 263 struct netdev_name_node *name_node) 264 { 265 hlist_add_head_rcu(&name_node->hlist, 266 dev_name_hash(net, name_node->name)); 267 } 268 269 static void netdev_name_node_del(struct netdev_name_node *name_node) 270 { 271 hlist_del_rcu(&name_node->hlist); 272 } 273 274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 275 const char *name) 276 { 277 struct hlist_head *head = dev_name_hash(net, name); 278 struct netdev_name_node *name_node; 279 280 hlist_for_each_entry(name_node, head, hlist) 281 if (!strcmp(name_node->name, name)) 282 return name_node; 283 return NULL; 284 } 285 286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 287 const char *name) 288 { 289 struct hlist_head *head = dev_name_hash(net, name); 290 struct netdev_name_node *name_node; 291 292 hlist_for_each_entry_rcu(name_node, head, hlist) 293 if (!strcmp(name_node->name, name)) 294 return name_node; 295 return NULL; 296 } 297 298 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 299 { 300 struct netdev_name_node *name_node; 301 struct net *net = dev_net(dev); 302 303 name_node = netdev_name_node_lookup(net, name); 304 if (name_node) 305 return -EEXIST; 306 name_node = netdev_name_node_alloc(dev, name); 307 if (!name_node) 308 return -ENOMEM; 309 netdev_name_node_add(net, name_node); 310 /* The node that holds dev->name acts as a head of per-device list. */ 311 list_add_tail(&name_node->list, &dev->name_node->list); 312 313 return 0; 314 } 315 EXPORT_SYMBOL(netdev_name_node_alt_create); 316 317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 318 { 319 list_del(&name_node->list); 320 netdev_name_node_del(name_node); 321 kfree(name_node->name); 322 netdev_name_node_free(name_node); 323 } 324 325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 326 { 327 struct netdev_name_node *name_node; 328 struct net *net = dev_net(dev); 329 330 name_node = netdev_name_node_lookup(net, name); 331 if (!name_node) 332 return -ENOENT; 333 /* lookup might have found our primary name or a name belonging 334 * to another device. 335 */ 336 if (name_node == dev->name_node || name_node->dev != dev) 337 return -EINVAL; 338 339 __netdev_name_node_alt_destroy(name_node); 340 341 return 0; 342 } 343 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 344 345 static void netdev_name_node_alt_flush(struct net_device *dev) 346 { 347 struct netdev_name_node *name_node, *tmp; 348 349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 350 __netdev_name_node_alt_destroy(name_node); 351 } 352 353 /* Device list insertion */ 354 static void list_netdevice(struct net_device *dev) 355 { 356 struct net *net = dev_net(dev); 357 358 ASSERT_RTNL(); 359 360 write_lock_bh(&dev_base_lock); 361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 362 netdev_name_node_add(net, dev->name_node); 363 hlist_add_head_rcu(&dev->index_hlist, 364 dev_index_hash(net, dev->ifindex)); 365 write_unlock_bh(&dev_base_lock); 366 367 dev_base_seq_inc(net); 368 } 369 370 /* Device list removal 371 * caller must respect a RCU grace period before freeing/reusing dev 372 */ 373 static void unlist_netdevice(struct net_device *dev) 374 { 375 ASSERT_RTNL(); 376 377 /* Unlink dev from the device chain */ 378 write_lock_bh(&dev_base_lock); 379 list_del_rcu(&dev->dev_list); 380 netdev_name_node_del(dev->name_node); 381 hlist_del_rcu(&dev->index_hlist); 382 write_unlock_bh(&dev_base_lock); 383 384 dev_base_seq_inc(dev_net(dev)); 385 } 386 387 /* 388 * Our notifier list 389 */ 390 391 static RAW_NOTIFIER_HEAD(netdev_chain); 392 393 /* 394 * Device drivers call our routines to queue packets here. We empty the 395 * queue in the local softnet handler. 396 */ 397 398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 399 EXPORT_PER_CPU_SYMBOL(softnet_data); 400 401 /******************************************************************************* 402 * 403 * Protocol management and registration routines 404 * 405 *******************************************************************************/ 406 407 408 /* 409 * Add a protocol ID to the list. Now that the input handler is 410 * smarter we can dispense with all the messy stuff that used to be 411 * here. 412 * 413 * BEWARE!!! Protocol handlers, mangling input packets, 414 * MUST BE last in hash buckets and checking protocol handlers 415 * MUST start from promiscuous ptype_all chain in net_bh. 416 * It is true now, do not change it. 417 * Explanation follows: if protocol handler, mangling packet, will 418 * be the first on list, it is not able to sense, that packet 419 * is cloned and should be copied-on-write, so that it will 420 * change it and subsequent readers will get broken packet. 421 * --ANK (980803) 422 */ 423 424 static inline struct list_head *ptype_head(const struct packet_type *pt) 425 { 426 if (pt->type == htons(ETH_P_ALL)) 427 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 428 else 429 return pt->dev ? &pt->dev->ptype_specific : 430 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 431 } 432 433 /** 434 * dev_add_pack - add packet handler 435 * @pt: packet type declaration 436 * 437 * Add a protocol handler to the networking stack. The passed &packet_type 438 * is linked into kernel lists and may not be freed until it has been 439 * removed from the kernel lists. 440 * 441 * This call does not sleep therefore it can not 442 * guarantee all CPU's that are in middle of receiving packets 443 * will see the new packet type (until the next received packet). 444 */ 445 446 void dev_add_pack(struct packet_type *pt) 447 { 448 struct list_head *head = ptype_head(pt); 449 450 spin_lock(&ptype_lock); 451 list_add_rcu(&pt->list, head); 452 spin_unlock(&ptype_lock); 453 } 454 EXPORT_SYMBOL(dev_add_pack); 455 456 /** 457 * __dev_remove_pack - remove packet handler 458 * @pt: packet type declaration 459 * 460 * Remove a protocol handler that was previously added to the kernel 461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 462 * from the kernel lists and can be freed or reused once this function 463 * returns. 464 * 465 * The packet type might still be in use by receivers 466 * and must not be freed until after all the CPU's have gone 467 * through a quiescent state. 468 */ 469 void __dev_remove_pack(struct packet_type *pt) 470 { 471 struct list_head *head = ptype_head(pt); 472 struct packet_type *pt1; 473 474 spin_lock(&ptype_lock); 475 476 list_for_each_entry(pt1, head, list) { 477 if (pt == pt1) { 478 list_del_rcu(&pt->list); 479 goto out; 480 } 481 } 482 483 pr_warn("dev_remove_pack: %p not found\n", pt); 484 out: 485 spin_unlock(&ptype_lock); 486 } 487 EXPORT_SYMBOL(__dev_remove_pack); 488 489 /** 490 * dev_remove_pack - remove packet handler 491 * @pt: packet type declaration 492 * 493 * Remove a protocol handler that was previously added to the kernel 494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 495 * from the kernel lists and can be freed or reused once this function 496 * returns. 497 * 498 * This call sleeps to guarantee that no CPU is looking at the packet 499 * type after return. 500 */ 501 void dev_remove_pack(struct packet_type *pt) 502 { 503 __dev_remove_pack(pt); 504 505 synchronize_net(); 506 } 507 EXPORT_SYMBOL(dev_remove_pack); 508 509 510 /** 511 * dev_add_offload - register offload handlers 512 * @po: protocol offload declaration 513 * 514 * Add protocol offload handlers to the networking stack. The passed 515 * &proto_offload is linked into kernel lists and may not be freed until 516 * it has been removed from the kernel lists. 517 * 518 * This call does not sleep therefore it can not 519 * guarantee all CPU's that are in middle of receiving packets 520 * will see the new offload handlers (until the next received packet). 521 */ 522 void dev_add_offload(struct packet_offload *po) 523 { 524 struct packet_offload *elem; 525 526 spin_lock(&offload_lock); 527 list_for_each_entry(elem, &offload_base, list) { 528 if (po->priority < elem->priority) 529 break; 530 } 531 list_add_rcu(&po->list, elem->list.prev); 532 spin_unlock(&offload_lock); 533 } 534 EXPORT_SYMBOL(dev_add_offload); 535 536 /** 537 * __dev_remove_offload - remove offload handler 538 * @po: packet offload declaration 539 * 540 * Remove a protocol offload handler that was previously added to the 541 * kernel offload handlers by dev_add_offload(). The passed &offload_type 542 * is removed from the kernel lists and can be freed or reused once this 543 * function returns. 544 * 545 * The packet type might still be in use by receivers 546 * and must not be freed until after all the CPU's have gone 547 * through a quiescent state. 548 */ 549 static void __dev_remove_offload(struct packet_offload *po) 550 { 551 struct list_head *head = &offload_base; 552 struct packet_offload *po1; 553 554 spin_lock(&offload_lock); 555 556 list_for_each_entry(po1, head, list) { 557 if (po == po1) { 558 list_del_rcu(&po->list); 559 goto out; 560 } 561 } 562 563 pr_warn("dev_remove_offload: %p not found\n", po); 564 out: 565 spin_unlock(&offload_lock); 566 } 567 568 /** 569 * dev_remove_offload - remove packet offload handler 570 * @po: packet offload declaration 571 * 572 * Remove a packet offload handler that was previously added to the kernel 573 * offload handlers by dev_add_offload(). The passed &offload_type is 574 * removed from the kernel lists and can be freed or reused once this 575 * function returns. 576 * 577 * This call sleeps to guarantee that no CPU is looking at the packet 578 * type after return. 579 */ 580 void dev_remove_offload(struct packet_offload *po) 581 { 582 __dev_remove_offload(po); 583 584 synchronize_net(); 585 } 586 EXPORT_SYMBOL(dev_remove_offload); 587 588 /****************************************************************************** 589 * 590 * Device Boot-time Settings Routines 591 * 592 ******************************************************************************/ 593 594 /* Boot time configuration table */ 595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 596 597 /** 598 * netdev_boot_setup_add - add new setup entry 599 * @name: name of the device 600 * @map: configured settings for the device 601 * 602 * Adds new setup entry to the dev_boot_setup list. The function 603 * returns 0 on error and 1 on success. This is a generic routine to 604 * all netdevices. 605 */ 606 static int netdev_boot_setup_add(char *name, struct ifmap *map) 607 { 608 struct netdev_boot_setup *s; 609 int i; 610 611 s = dev_boot_setup; 612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 613 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 614 memset(s[i].name, 0, sizeof(s[i].name)); 615 strlcpy(s[i].name, name, IFNAMSIZ); 616 memcpy(&s[i].map, map, sizeof(s[i].map)); 617 break; 618 } 619 } 620 621 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 622 } 623 624 /** 625 * netdev_boot_setup_check - check boot time settings 626 * @dev: the netdevice 627 * 628 * Check boot time settings for the device. 629 * The found settings are set for the device to be used 630 * later in the device probing. 631 * Returns 0 if no settings found, 1 if they are. 632 */ 633 int netdev_boot_setup_check(struct net_device *dev) 634 { 635 struct netdev_boot_setup *s = dev_boot_setup; 636 int i; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 639 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 640 !strcmp(dev->name, s[i].name)) { 641 dev->irq = s[i].map.irq; 642 dev->base_addr = s[i].map.base_addr; 643 dev->mem_start = s[i].map.mem_start; 644 dev->mem_end = s[i].map.mem_end; 645 return 1; 646 } 647 } 648 return 0; 649 } 650 EXPORT_SYMBOL(netdev_boot_setup_check); 651 652 653 /** 654 * netdev_boot_base - get address from boot time settings 655 * @prefix: prefix for network device 656 * @unit: id for network device 657 * 658 * Check boot time settings for the base address of device. 659 * The found settings are set for the device to be used 660 * later in the device probing. 661 * Returns 0 if no settings found. 662 */ 663 unsigned long netdev_boot_base(const char *prefix, int unit) 664 { 665 const struct netdev_boot_setup *s = dev_boot_setup; 666 char name[IFNAMSIZ]; 667 int i; 668 669 sprintf(name, "%s%d", prefix, unit); 670 671 /* 672 * If device already registered then return base of 1 673 * to indicate not to probe for this interface 674 */ 675 if (__dev_get_by_name(&init_net, name)) 676 return 1; 677 678 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 679 if (!strcmp(name, s[i].name)) 680 return s[i].map.base_addr; 681 return 0; 682 } 683 684 /* 685 * Saves at boot time configured settings for any netdevice. 686 */ 687 int __init netdev_boot_setup(char *str) 688 { 689 int ints[5]; 690 struct ifmap map; 691 692 str = get_options(str, ARRAY_SIZE(ints), ints); 693 if (!str || !*str) 694 return 0; 695 696 /* Save settings */ 697 memset(&map, 0, sizeof(map)); 698 if (ints[0] > 0) 699 map.irq = ints[1]; 700 if (ints[0] > 1) 701 map.base_addr = ints[2]; 702 if (ints[0] > 2) 703 map.mem_start = ints[3]; 704 if (ints[0] > 3) 705 map.mem_end = ints[4]; 706 707 /* Add new entry to the list */ 708 return netdev_boot_setup_add(str, &map); 709 } 710 711 __setup("netdev=", netdev_boot_setup); 712 713 /******************************************************************************* 714 * 715 * Device Interface Subroutines 716 * 717 *******************************************************************************/ 718 719 /** 720 * dev_get_iflink - get 'iflink' value of a interface 721 * @dev: targeted interface 722 * 723 * Indicates the ifindex the interface is linked to. 724 * Physical interfaces have the same 'ifindex' and 'iflink' values. 725 */ 726 727 int dev_get_iflink(const struct net_device *dev) 728 { 729 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 730 return dev->netdev_ops->ndo_get_iflink(dev); 731 732 return dev->ifindex; 733 } 734 EXPORT_SYMBOL(dev_get_iflink); 735 736 /** 737 * dev_fill_metadata_dst - Retrieve tunnel egress information. 738 * @dev: targeted interface 739 * @skb: The packet. 740 * 741 * For better visibility of tunnel traffic OVS needs to retrieve 742 * egress tunnel information for a packet. Following API allows 743 * user to get this info. 744 */ 745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 746 { 747 struct ip_tunnel_info *info; 748 749 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 750 return -EINVAL; 751 752 info = skb_tunnel_info_unclone(skb); 753 if (!info) 754 return -ENOMEM; 755 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 756 return -EINVAL; 757 758 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 759 } 760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 761 762 /** 763 * __dev_get_by_name - find a device by its name 764 * @net: the applicable net namespace 765 * @name: name to find 766 * 767 * Find an interface by name. Must be called under RTNL semaphore 768 * or @dev_base_lock. If the name is found a pointer to the device 769 * is returned. If the name is not found then %NULL is returned. The 770 * reference counters are not incremented so the caller must be 771 * careful with locks. 772 */ 773 774 struct net_device *__dev_get_by_name(struct net *net, const char *name) 775 { 776 struct netdev_name_node *node_name; 777 778 node_name = netdev_name_node_lookup(net, name); 779 return node_name ? node_name->dev : NULL; 780 } 781 EXPORT_SYMBOL(__dev_get_by_name); 782 783 /** 784 * dev_get_by_name_rcu - find a device by its name 785 * @net: the applicable net namespace 786 * @name: name to find 787 * 788 * Find an interface by name. 789 * If the name is found a pointer to the device is returned. 790 * If the name is not found then %NULL is returned. 791 * The reference counters are not incremented so the caller must be 792 * careful with locks. The caller must hold RCU lock. 793 */ 794 795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 796 { 797 struct netdev_name_node *node_name; 798 799 node_name = netdev_name_node_lookup_rcu(net, name); 800 return node_name ? node_name->dev : NULL; 801 } 802 EXPORT_SYMBOL(dev_get_by_name_rcu); 803 804 /** 805 * dev_get_by_name - find a device by its name 806 * @net: the applicable net namespace 807 * @name: name to find 808 * 809 * Find an interface by name. This can be called from any 810 * context and does its own locking. The returned handle has 811 * the usage count incremented and the caller must use dev_put() to 812 * release it when it is no longer needed. %NULL is returned if no 813 * matching device is found. 814 */ 815 816 struct net_device *dev_get_by_name(struct net *net, const char *name) 817 { 818 struct net_device *dev; 819 820 rcu_read_lock(); 821 dev = dev_get_by_name_rcu(net, name); 822 if (dev) 823 dev_hold(dev); 824 rcu_read_unlock(); 825 return dev; 826 } 827 EXPORT_SYMBOL(dev_get_by_name); 828 829 /** 830 * __dev_get_by_index - find a device by its ifindex 831 * @net: the applicable net namespace 832 * @ifindex: index of device 833 * 834 * Search for an interface by index. Returns %NULL if the device 835 * is not found or a pointer to the device. The device has not 836 * had its reference counter increased so the caller must be careful 837 * about locking. The caller must hold either the RTNL semaphore 838 * or @dev_base_lock. 839 */ 840 841 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 842 { 843 struct net_device *dev; 844 struct hlist_head *head = dev_index_hash(net, ifindex); 845 846 hlist_for_each_entry(dev, head, index_hlist) 847 if (dev->ifindex == ifindex) 848 return dev; 849 850 return NULL; 851 } 852 EXPORT_SYMBOL(__dev_get_by_index); 853 854 /** 855 * dev_get_by_index_rcu - find a device by its ifindex 856 * @net: the applicable net namespace 857 * @ifindex: index of device 858 * 859 * Search for an interface by index. Returns %NULL if the device 860 * is not found or a pointer to the device. The device has not 861 * had its reference counter increased so the caller must be careful 862 * about locking. The caller must hold RCU lock. 863 */ 864 865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 866 { 867 struct net_device *dev; 868 struct hlist_head *head = dev_index_hash(net, ifindex); 869 870 hlist_for_each_entry_rcu(dev, head, index_hlist) 871 if (dev->ifindex == ifindex) 872 return dev; 873 874 return NULL; 875 } 876 EXPORT_SYMBOL(dev_get_by_index_rcu); 877 878 879 /** 880 * dev_get_by_index - find a device by its ifindex 881 * @net: the applicable net namespace 882 * @ifindex: index of device 883 * 884 * Search for an interface by index. Returns NULL if the device 885 * is not found or a pointer to the device. The device returned has 886 * had a reference added and the pointer is safe until the user calls 887 * dev_put to indicate they have finished with it. 888 */ 889 890 struct net_device *dev_get_by_index(struct net *net, int ifindex) 891 { 892 struct net_device *dev; 893 894 rcu_read_lock(); 895 dev = dev_get_by_index_rcu(net, ifindex); 896 if (dev) 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_index); 902 903 /** 904 * dev_get_by_napi_id - find a device by napi_id 905 * @napi_id: ID of the NAPI struct 906 * 907 * Search for an interface by NAPI ID. Returns %NULL if the device 908 * is not found or a pointer to the device. The device has not had 909 * its reference counter increased so the caller must be careful 910 * about locking. The caller must hold RCU lock. 911 */ 912 913 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 914 { 915 struct napi_struct *napi; 916 917 WARN_ON_ONCE(!rcu_read_lock_held()); 918 919 if (napi_id < MIN_NAPI_ID) 920 return NULL; 921 922 napi = napi_by_id(napi_id); 923 924 return napi ? napi->dev : NULL; 925 } 926 EXPORT_SYMBOL(dev_get_by_napi_id); 927 928 /** 929 * netdev_get_name - get a netdevice name, knowing its ifindex. 930 * @net: network namespace 931 * @name: a pointer to the buffer where the name will be stored. 932 * @ifindex: the ifindex of the interface to get the name from. 933 * 934 * The use of raw_seqcount_begin() and cond_resched() before 935 * retrying is required as we want to give the writers a chance 936 * to complete when CONFIG_PREEMPTION is not set. 937 */ 938 int netdev_get_name(struct net *net, char *name, int ifindex) 939 { 940 struct net_device *dev; 941 unsigned int seq; 942 943 retry: 944 seq = raw_seqcount_begin(&devnet_rename_seq); 945 rcu_read_lock(); 946 dev = dev_get_by_index_rcu(net, ifindex); 947 if (!dev) { 948 rcu_read_unlock(); 949 return -ENODEV; 950 } 951 952 strcpy(name, dev->name); 953 rcu_read_unlock(); 954 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 955 cond_resched(); 956 goto retry; 957 } 958 959 return 0; 960 } 961 962 /** 963 * dev_getbyhwaddr_rcu - find a device by its hardware address 964 * @net: the applicable net namespace 965 * @type: media type of device 966 * @ha: hardware address 967 * 968 * Search for an interface by MAC address. Returns NULL if the device 969 * is not found or a pointer to the device. 970 * The caller must hold RCU or RTNL. 971 * The returned device has not had its ref count increased 972 * and the caller must therefore be careful about locking 973 * 974 */ 975 976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 977 const char *ha) 978 { 979 struct net_device *dev; 980 981 for_each_netdev_rcu(net, dev) 982 if (dev->type == type && 983 !memcmp(dev->dev_addr, ha, dev->addr_len)) 984 return dev; 985 986 return NULL; 987 } 988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 989 990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 991 { 992 struct net_device *dev; 993 994 ASSERT_RTNL(); 995 for_each_netdev(net, dev) 996 if (dev->type == type) 997 return dev; 998 999 return NULL; 1000 } 1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1002 1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1004 { 1005 struct net_device *dev, *ret = NULL; 1006 1007 rcu_read_lock(); 1008 for_each_netdev_rcu(net, dev) 1009 if (dev->type == type) { 1010 dev_hold(dev); 1011 ret = dev; 1012 break; 1013 } 1014 rcu_read_unlock(); 1015 return ret; 1016 } 1017 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1018 1019 /** 1020 * __dev_get_by_flags - find any device with given flags 1021 * @net: the applicable net namespace 1022 * @if_flags: IFF_* values 1023 * @mask: bitmask of bits in if_flags to check 1024 * 1025 * Search for any interface with the given flags. Returns NULL if a device 1026 * is not found or a pointer to the device. Must be called inside 1027 * rtnl_lock(), and result refcount is unchanged. 1028 */ 1029 1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1031 unsigned short mask) 1032 { 1033 struct net_device *dev, *ret; 1034 1035 ASSERT_RTNL(); 1036 1037 ret = NULL; 1038 for_each_netdev(net, dev) { 1039 if (((dev->flags ^ if_flags) & mask) == 0) { 1040 ret = dev; 1041 break; 1042 } 1043 } 1044 return ret; 1045 } 1046 EXPORT_SYMBOL(__dev_get_by_flags); 1047 1048 /** 1049 * dev_valid_name - check if name is okay for network device 1050 * @name: name string 1051 * 1052 * Network device names need to be valid file names to 1053 * to allow sysfs to work. We also disallow any kind of 1054 * whitespace. 1055 */ 1056 bool dev_valid_name(const char *name) 1057 { 1058 if (*name == '\0') 1059 return false; 1060 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1061 return false; 1062 if (!strcmp(name, ".") || !strcmp(name, "..")) 1063 return false; 1064 1065 while (*name) { 1066 if (*name == '/' || *name == ':' || isspace(*name)) 1067 return false; 1068 name++; 1069 } 1070 return true; 1071 } 1072 EXPORT_SYMBOL(dev_valid_name); 1073 1074 /** 1075 * __dev_alloc_name - allocate a name for a device 1076 * @net: network namespace to allocate the device name in 1077 * @name: name format string 1078 * @buf: scratch buffer and result name string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1090 { 1091 int i = 0; 1092 const char *p; 1093 const int max_netdevices = 8*PAGE_SIZE; 1094 unsigned long *inuse; 1095 struct net_device *d; 1096 1097 if (!dev_valid_name(name)) 1098 return -EINVAL; 1099 1100 p = strchr(name, '%'); 1101 if (p) { 1102 /* 1103 * Verify the string as this thing may have come from 1104 * the user. There must be either one "%d" and no other "%" 1105 * characters. 1106 */ 1107 if (p[1] != 'd' || strchr(p + 2, '%')) 1108 return -EINVAL; 1109 1110 /* Use one page as a bit array of possible slots */ 1111 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1112 if (!inuse) 1113 return -ENOMEM; 1114 1115 for_each_netdev(net, d) { 1116 if (!sscanf(d->name, name, &i)) 1117 continue; 1118 if (i < 0 || i >= max_netdevices) 1119 continue; 1120 1121 /* avoid cases where sscanf is not exact inverse of printf */ 1122 snprintf(buf, IFNAMSIZ, name, i); 1123 if (!strncmp(buf, d->name, IFNAMSIZ)) 1124 set_bit(i, inuse); 1125 } 1126 1127 i = find_first_zero_bit(inuse, max_netdevices); 1128 free_page((unsigned long) inuse); 1129 } 1130 1131 snprintf(buf, IFNAMSIZ, name, i); 1132 if (!__dev_get_by_name(net, buf)) 1133 return i; 1134 1135 /* It is possible to run out of possible slots 1136 * when the name is long and there isn't enough space left 1137 * for the digits, or if all bits are used. 1138 */ 1139 return -ENFILE; 1140 } 1141 1142 static int dev_alloc_name_ns(struct net *net, 1143 struct net_device *dev, 1144 const char *name) 1145 { 1146 char buf[IFNAMSIZ]; 1147 int ret; 1148 1149 BUG_ON(!net); 1150 ret = __dev_alloc_name(net, name, buf); 1151 if (ret >= 0) 1152 strlcpy(dev->name, buf, IFNAMSIZ); 1153 return ret; 1154 } 1155 1156 /** 1157 * dev_alloc_name - allocate a name for a device 1158 * @dev: device 1159 * @name: name format string 1160 * 1161 * Passed a format string - eg "lt%d" it will try and find a suitable 1162 * id. It scans list of devices to build up a free map, then chooses 1163 * the first empty slot. The caller must hold the dev_base or rtnl lock 1164 * while allocating the name and adding the device in order to avoid 1165 * duplicates. 1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1167 * Returns the number of the unit assigned or a negative errno code. 1168 */ 1169 1170 int dev_alloc_name(struct net_device *dev, const char *name) 1171 { 1172 return dev_alloc_name_ns(dev_net(dev), dev, name); 1173 } 1174 EXPORT_SYMBOL(dev_alloc_name); 1175 1176 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1177 const char *name) 1178 { 1179 BUG_ON(!net); 1180 1181 if (!dev_valid_name(name)) 1182 return -EINVAL; 1183 1184 if (strchr(name, '%')) 1185 return dev_alloc_name_ns(net, dev, name); 1186 else if (__dev_get_by_name(net, name)) 1187 return -EEXIST; 1188 else if (dev->name != name) 1189 strlcpy(dev->name, name, IFNAMSIZ); 1190 1191 return 0; 1192 } 1193 1194 /** 1195 * dev_change_name - change name of a device 1196 * @dev: device 1197 * @newname: name (or format string) must be at least IFNAMSIZ 1198 * 1199 * Change name of a device, can pass format strings "eth%d". 1200 * for wildcarding. 1201 */ 1202 int dev_change_name(struct net_device *dev, const char *newname) 1203 { 1204 unsigned char old_assign_type; 1205 char oldname[IFNAMSIZ]; 1206 int err = 0; 1207 int ret; 1208 struct net *net; 1209 1210 ASSERT_RTNL(); 1211 BUG_ON(!dev_net(dev)); 1212 1213 net = dev_net(dev); 1214 1215 /* Some auto-enslaved devices e.g. failover slaves are 1216 * special, as userspace might rename the device after 1217 * the interface had been brought up and running since 1218 * the point kernel initiated auto-enslavement. Allow 1219 * live name change even when these slave devices are 1220 * up and running. 1221 * 1222 * Typically, users of these auto-enslaving devices 1223 * don't actually care about slave name change, as 1224 * they are supposed to operate on master interface 1225 * directly. 1226 */ 1227 if (dev->flags & IFF_UP && 1228 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1229 return -EBUSY; 1230 1231 write_seqcount_begin(&devnet_rename_seq); 1232 1233 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1234 write_seqcount_end(&devnet_rename_seq); 1235 return 0; 1236 } 1237 1238 memcpy(oldname, dev->name, IFNAMSIZ); 1239 1240 err = dev_get_valid_name(net, dev, newname); 1241 if (err < 0) { 1242 write_seqcount_end(&devnet_rename_seq); 1243 return err; 1244 } 1245 1246 if (oldname[0] && !strchr(oldname, '%')) 1247 netdev_info(dev, "renamed from %s\n", oldname); 1248 1249 old_assign_type = dev->name_assign_type; 1250 dev->name_assign_type = NET_NAME_RENAMED; 1251 1252 rollback: 1253 ret = device_rename(&dev->dev, dev->name); 1254 if (ret) { 1255 memcpy(dev->name, oldname, IFNAMSIZ); 1256 dev->name_assign_type = old_assign_type; 1257 write_seqcount_end(&devnet_rename_seq); 1258 return ret; 1259 } 1260 1261 write_seqcount_end(&devnet_rename_seq); 1262 1263 netdev_adjacent_rename_links(dev, oldname); 1264 1265 write_lock_bh(&dev_base_lock); 1266 netdev_name_node_del(dev->name_node); 1267 write_unlock_bh(&dev_base_lock); 1268 1269 synchronize_rcu(); 1270 1271 write_lock_bh(&dev_base_lock); 1272 netdev_name_node_add(net, dev->name_node); 1273 write_unlock_bh(&dev_base_lock); 1274 1275 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1276 ret = notifier_to_errno(ret); 1277 1278 if (ret) { 1279 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1280 if (err >= 0) { 1281 err = ret; 1282 write_seqcount_begin(&devnet_rename_seq); 1283 memcpy(dev->name, oldname, IFNAMSIZ); 1284 memcpy(oldname, newname, IFNAMSIZ); 1285 dev->name_assign_type = old_assign_type; 1286 old_assign_type = NET_NAME_RENAMED; 1287 goto rollback; 1288 } else { 1289 pr_err("%s: name change rollback failed: %d\n", 1290 dev->name, ret); 1291 } 1292 } 1293 1294 return err; 1295 } 1296 1297 /** 1298 * dev_set_alias - change ifalias of a device 1299 * @dev: device 1300 * @alias: name up to IFALIASZ 1301 * @len: limit of bytes to copy from info 1302 * 1303 * Set ifalias for a device, 1304 */ 1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1306 { 1307 struct dev_ifalias *new_alias = NULL; 1308 1309 if (len >= IFALIASZ) 1310 return -EINVAL; 1311 1312 if (len) { 1313 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1314 if (!new_alias) 1315 return -ENOMEM; 1316 1317 memcpy(new_alias->ifalias, alias, len); 1318 new_alias->ifalias[len] = 0; 1319 } 1320 1321 mutex_lock(&ifalias_mutex); 1322 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1323 mutex_is_locked(&ifalias_mutex)); 1324 mutex_unlock(&ifalias_mutex); 1325 1326 if (new_alias) 1327 kfree_rcu(new_alias, rcuhead); 1328 1329 return len; 1330 } 1331 EXPORT_SYMBOL(dev_set_alias); 1332 1333 /** 1334 * dev_get_alias - get ifalias of a device 1335 * @dev: device 1336 * @name: buffer to store name of ifalias 1337 * @len: size of buffer 1338 * 1339 * get ifalias for a device. Caller must make sure dev cannot go 1340 * away, e.g. rcu read lock or own a reference count to device. 1341 */ 1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1343 { 1344 const struct dev_ifalias *alias; 1345 int ret = 0; 1346 1347 rcu_read_lock(); 1348 alias = rcu_dereference(dev->ifalias); 1349 if (alias) 1350 ret = snprintf(name, len, "%s", alias->ifalias); 1351 rcu_read_unlock(); 1352 1353 return ret; 1354 } 1355 1356 /** 1357 * netdev_features_change - device changes features 1358 * @dev: device to cause notification 1359 * 1360 * Called to indicate a device has changed features. 1361 */ 1362 void netdev_features_change(struct net_device *dev) 1363 { 1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1365 } 1366 EXPORT_SYMBOL(netdev_features_change); 1367 1368 /** 1369 * netdev_state_change - device changes state 1370 * @dev: device to cause notification 1371 * 1372 * Called to indicate a device has changed state. This function calls 1373 * the notifier chains for netdev_chain and sends a NEWLINK message 1374 * to the routing socket. 1375 */ 1376 void netdev_state_change(struct net_device *dev) 1377 { 1378 if (dev->flags & IFF_UP) { 1379 struct netdev_notifier_change_info change_info = { 1380 .info.dev = dev, 1381 }; 1382 1383 call_netdevice_notifiers_info(NETDEV_CHANGE, 1384 &change_info.info); 1385 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1386 } 1387 } 1388 EXPORT_SYMBOL(netdev_state_change); 1389 1390 /** 1391 * netdev_notify_peers - notify network peers about existence of @dev 1392 * @dev: network device 1393 * 1394 * Generate traffic such that interested network peers are aware of 1395 * @dev, such as by generating a gratuitous ARP. This may be used when 1396 * a device wants to inform the rest of the network about some sort of 1397 * reconfiguration such as a failover event or virtual machine 1398 * migration. 1399 */ 1400 void netdev_notify_peers(struct net_device *dev) 1401 { 1402 rtnl_lock(); 1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1405 rtnl_unlock(); 1406 } 1407 EXPORT_SYMBOL(netdev_notify_peers); 1408 1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1410 { 1411 const struct net_device_ops *ops = dev->netdev_ops; 1412 int ret; 1413 1414 ASSERT_RTNL(); 1415 1416 if (!netif_device_present(dev)) 1417 return -ENODEV; 1418 1419 /* Block netpoll from trying to do any rx path servicing. 1420 * If we don't do this there is a chance ndo_poll_controller 1421 * or ndo_poll may be running while we open the device 1422 */ 1423 netpoll_poll_disable(dev); 1424 1425 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1426 ret = notifier_to_errno(ret); 1427 if (ret) 1428 return ret; 1429 1430 set_bit(__LINK_STATE_START, &dev->state); 1431 1432 if (ops->ndo_validate_addr) 1433 ret = ops->ndo_validate_addr(dev); 1434 1435 if (!ret && ops->ndo_open) 1436 ret = ops->ndo_open(dev); 1437 1438 netpoll_poll_enable(dev); 1439 1440 if (ret) 1441 clear_bit(__LINK_STATE_START, &dev->state); 1442 else { 1443 dev->flags |= IFF_UP; 1444 dev_set_rx_mode(dev); 1445 dev_activate(dev); 1446 add_device_randomness(dev->dev_addr, dev->addr_len); 1447 } 1448 1449 return ret; 1450 } 1451 1452 /** 1453 * dev_open - prepare an interface for use. 1454 * @dev: device to open 1455 * @extack: netlink extended ack 1456 * 1457 * Takes a device from down to up state. The device's private open 1458 * function is invoked and then the multicast lists are loaded. Finally 1459 * the device is moved into the up state and a %NETDEV_UP message is 1460 * sent to the netdev notifier chain. 1461 * 1462 * Calling this function on an active interface is a nop. On a failure 1463 * a negative errno code is returned. 1464 */ 1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1466 { 1467 int ret; 1468 1469 if (dev->flags & IFF_UP) 1470 return 0; 1471 1472 ret = __dev_open(dev, extack); 1473 if (ret < 0) 1474 return ret; 1475 1476 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1477 call_netdevice_notifiers(NETDEV_UP, dev); 1478 1479 return ret; 1480 } 1481 EXPORT_SYMBOL(dev_open); 1482 1483 static void __dev_close_many(struct list_head *head) 1484 { 1485 struct net_device *dev; 1486 1487 ASSERT_RTNL(); 1488 might_sleep(); 1489 1490 list_for_each_entry(dev, head, close_list) { 1491 /* Temporarily disable netpoll until the interface is down */ 1492 netpoll_poll_disable(dev); 1493 1494 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1495 1496 clear_bit(__LINK_STATE_START, &dev->state); 1497 1498 /* Synchronize to scheduled poll. We cannot touch poll list, it 1499 * can be even on different cpu. So just clear netif_running(). 1500 * 1501 * dev->stop() will invoke napi_disable() on all of it's 1502 * napi_struct instances on this device. 1503 */ 1504 smp_mb__after_atomic(); /* Commit netif_running(). */ 1505 } 1506 1507 dev_deactivate_many(head); 1508 1509 list_for_each_entry(dev, head, close_list) { 1510 const struct net_device_ops *ops = dev->netdev_ops; 1511 1512 /* 1513 * Call the device specific close. This cannot fail. 1514 * Only if device is UP 1515 * 1516 * We allow it to be called even after a DETACH hot-plug 1517 * event. 1518 */ 1519 if (ops->ndo_stop) 1520 ops->ndo_stop(dev); 1521 1522 dev->flags &= ~IFF_UP; 1523 netpoll_poll_enable(dev); 1524 } 1525 } 1526 1527 static void __dev_close(struct net_device *dev) 1528 { 1529 LIST_HEAD(single); 1530 1531 list_add(&dev->close_list, &single); 1532 __dev_close_many(&single); 1533 list_del(&single); 1534 } 1535 1536 void dev_close_many(struct list_head *head, bool unlink) 1537 { 1538 struct net_device *dev, *tmp; 1539 1540 /* Remove the devices that don't need to be closed */ 1541 list_for_each_entry_safe(dev, tmp, head, close_list) 1542 if (!(dev->flags & IFF_UP)) 1543 list_del_init(&dev->close_list); 1544 1545 __dev_close_many(head); 1546 1547 list_for_each_entry_safe(dev, tmp, head, close_list) { 1548 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1549 call_netdevice_notifiers(NETDEV_DOWN, dev); 1550 if (unlink) 1551 list_del_init(&dev->close_list); 1552 } 1553 } 1554 EXPORT_SYMBOL(dev_close_many); 1555 1556 /** 1557 * dev_close - shutdown an interface. 1558 * @dev: device to shutdown 1559 * 1560 * This function moves an active device into down state. A 1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1563 * chain. 1564 */ 1565 void dev_close(struct net_device *dev) 1566 { 1567 if (dev->flags & IFF_UP) { 1568 LIST_HEAD(single); 1569 1570 list_add(&dev->close_list, &single); 1571 dev_close_many(&single, true); 1572 list_del(&single); 1573 } 1574 } 1575 EXPORT_SYMBOL(dev_close); 1576 1577 1578 /** 1579 * dev_disable_lro - disable Large Receive Offload on a device 1580 * @dev: device 1581 * 1582 * Disable Large Receive Offload (LRO) on a net device. Must be 1583 * called under RTNL. This is needed if received packets may be 1584 * forwarded to another interface. 1585 */ 1586 void dev_disable_lro(struct net_device *dev) 1587 { 1588 struct net_device *lower_dev; 1589 struct list_head *iter; 1590 1591 dev->wanted_features &= ~NETIF_F_LRO; 1592 netdev_update_features(dev); 1593 1594 if (unlikely(dev->features & NETIF_F_LRO)) 1595 netdev_WARN(dev, "failed to disable LRO!\n"); 1596 1597 netdev_for_each_lower_dev(dev, lower_dev, iter) 1598 dev_disable_lro(lower_dev); 1599 } 1600 EXPORT_SYMBOL(dev_disable_lro); 1601 1602 /** 1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1604 * @dev: device 1605 * 1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1607 * called under RTNL. This is needed if Generic XDP is installed on 1608 * the device. 1609 */ 1610 static void dev_disable_gro_hw(struct net_device *dev) 1611 { 1612 dev->wanted_features &= ~NETIF_F_GRO_HW; 1613 netdev_update_features(dev); 1614 1615 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1616 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1617 } 1618 1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1620 { 1621 #define N(val) \ 1622 case NETDEV_##val: \ 1623 return "NETDEV_" __stringify(val); 1624 switch (cmd) { 1625 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1626 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1627 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1628 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1629 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1630 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1631 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1632 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1633 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1634 N(PRE_CHANGEADDR) 1635 } 1636 #undef N 1637 return "UNKNOWN_NETDEV_EVENT"; 1638 } 1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1640 1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1642 struct net_device *dev) 1643 { 1644 struct netdev_notifier_info info = { 1645 .dev = dev, 1646 }; 1647 1648 return nb->notifier_call(nb, val, &info); 1649 } 1650 1651 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1652 struct net_device *dev) 1653 { 1654 int err; 1655 1656 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1657 err = notifier_to_errno(err); 1658 if (err) 1659 return err; 1660 1661 if (!(dev->flags & IFF_UP)) 1662 return 0; 1663 1664 call_netdevice_notifier(nb, NETDEV_UP, dev); 1665 return 0; 1666 } 1667 1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1669 struct net_device *dev) 1670 { 1671 if (dev->flags & IFF_UP) { 1672 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1673 dev); 1674 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1675 } 1676 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1677 } 1678 1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1680 struct net *net) 1681 { 1682 struct net_device *dev; 1683 int err; 1684 1685 for_each_netdev(net, dev) { 1686 err = call_netdevice_register_notifiers(nb, dev); 1687 if (err) 1688 goto rollback; 1689 } 1690 return 0; 1691 1692 rollback: 1693 for_each_netdev_continue_reverse(net, dev) 1694 call_netdevice_unregister_notifiers(nb, dev); 1695 return err; 1696 } 1697 1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1699 struct net *net) 1700 { 1701 struct net_device *dev; 1702 1703 for_each_netdev(net, dev) 1704 call_netdevice_unregister_notifiers(nb, dev); 1705 } 1706 1707 static int dev_boot_phase = 1; 1708 1709 /** 1710 * register_netdevice_notifier - register a network notifier block 1711 * @nb: notifier 1712 * 1713 * Register a notifier to be called when network device events occur. 1714 * The notifier passed is linked into the kernel structures and must 1715 * not be reused until it has been unregistered. A negative errno code 1716 * is returned on a failure. 1717 * 1718 * When registered all registration and up events are replayed 1719 * to the new notifier to allow device to have a race free 1720 * view of the network device list. 1721 */ 1722 1723 int register_netdevice_notifier(struct notifier_block *nb) 1724 { 1725 struct net *net; 1726 int err; 1727 1728 /* Close race with setup_net() and cleanup_net() */ 1729 down_write(&pernet_ops_rwsem); 1730 rtnl_lock(); 1731 err = raw_notifier_chain_register(&netdev_chain, nb); 1732 if (err) 1733 goto unlock; 1734 if (dev_boot_phase) 1735 goto unlock; 1736 for_each_net(net) { 1737 err = call_netdevice_register_net_notifiers(nb, net); 1738 if (err) 1739 goto rollback; 1740 } 1741 1742 unlock: 1743 rtnl_unlock(); 1744 up_write(&pernet_ops_rwsem); 1745 return err; 1746 1747 rollback: 1748 for_each_net_continue_reverse(net) 1749 call_netdevice_unregister_net_notifiers(nb, net); 1750 1751 raw_notifier_chain_unregister(&netdev_chain, nb); 1752 goto unlock; 1753 } 1754 EXPORT_SYMBOL(register_netdevice_notifier); 1755 1756 /** 1757 * unregister_netdevice_notifier - unregister a network notifier block 1758 * @nb: notifier 1759 * 1760 * Unregister a notifier previously registered by 1761 * register_netdevice_notifier(). The notifier is unlinked into the 1762 * kernel structures and may then be reused. A negative errno code 1763 * is returned on a failure. 1764 * 1765 * After unregistering unregister and down device events are synthesized 1766 * for all devices on the device list to the removed notifier to remove 1767 * the need for special case cleanup code. 1768 */ 1769 1770 int unregister_netdevice_notifier(struct notifier_block *nb) 1771 { 1772 struct net *net; 1773 int err; 1774 1775 /* Close race with setup_net() and cleanup_net() */ 1776 down_write(&pernet_ops_rwsem); 1777 rtnl_lock(); 1778 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1779 if (err) 1780 goto unlock; 1781 1782 for_each_net(net) 1783 call_netdevice_unregister_net_notifiers(nb, net); 1784 1785 unlock: 1786 rtnl_unlock(); 1787 up_write(&pernet_ops_rwsem); 1788 return err; 1789 } 1790 EXPORT_SYMBOL(unregister_netdevice_notifier); 1791 1792 static int __register_netdevice_notifier_net(struct net *net, 1793 struct notifier_block *nb, 1794 bool ignore_call_fail) 1795 { 1796 int err; 1797 1798 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1799 if (err) 1800 return err; 1801 if (dev_boot_phase) 1802 return 0; 1803 1804 err = call_netdevice_register_net_notifiers(nb, net); 1805 if (err && !ignore_call_fail) 1806 goto chain_unregister; 1807 1808 return 0; 1809 1810 chain_unregister: 1811 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1812 return err; 1813 } 1814 1815 static int __unregister_netdevice_notifier_net(struct net *net, 1816 struct notifier_block *nb) 1817 { 1818 int err; 1819 1820 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1821 if (err) 1822 return err; 1823 1824 call_netdevice_unregister_net_notifiers(nb, net); 1825 return 0; 1826 } 1827 1828 /** 1829 * register_netdevice_notifier_net - register a per-netns network notifier block 1830 * @net: network namespace 1831 * @nb: notifier 1832 * 1833 * Register a notifier to be called when network device events occur. 1834 * The notifier passed is linked into the kernel structures and must 1835 * not be reused until it has been unregistered. A negative errno code 1836 * is returned on a failure. 1837 * 1838 * When registered all registration and up events are replayed 1839 * to the new notifier to allow device to have a race free 1840 * view of the network device list. 1841 */ 1842 1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1844 { 1845 int err; 1846 1847 rtnl_lock(); 1848 err = __register_netdevice_notifier_net(net, nb, false); 1849 rtnl_unlock(); 1850 return err; 1851 } 1852 EXPORT_SYMBOL(register_netdevice_notifier_net); 1853 1854 /** 1855 * unregister_netdevice_notifier_net - unregister a per-netns 1856 * network notifier block 1857 * @net: network namespace 1858 * @nb: notifier 1859 * 1860 * Unregister a notifier previously registered by 1861 * register_netdevice_notifier(). The notifier is unlinked into the 1862 * kernel structures and may then be reused. A negative errno code 1863 * is returned on a failure. 1864 * 1865 * After unregistering unregister and down device events are synthesized 1866 * for all devices on the device list to the removed notifier to remove 1867 * the need for special case cleanup code. 1868 */ 1869 1870 int unregister_netdevice_notifier_net(struct net *net, 1871 struct notifier_block *nb) 1872 { 1873 int err; 1874 1875 rtnl_lock(); 1876 err = __unregister_netdevice_notifier_net(net, nb); 1877 rtnl_unlock(); 1878 return err; 1879 } 1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1881 1882 int register_netdevice_notifier_dev_net(struct net_device *dev, 1883 struct notifier_block *nb, 1884 struct netdev_net_notifier *nn) 1885 { 1886 int err; 1887 1888 rtnl_lock(); 1889 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1890 if (!err) { 1891 nn->nb = nb; 1892 list_add(&nn->list, &dev->net_notifier_list); 1893 } 1894 rtnl_unlock(); 1895 return err; 1896 } 1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1898 1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1900 struct notifier_block *nb, 1901 struct netdev_net_notifier *nn) 1902 { 1903 int err; 1904 1905 rtnl_lock(); 1906 list_del(&nn->list); 1907 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1908 rtnl_unlock(); 1909 return err; 1910 } 1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1912 1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1914 struct net *net) 1915 { 1916 struct netdev_net_notifier *nn; 1917 1918 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1919 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1920 __register_netdevice_notifier_net(net, nn->nb, true); 1921 } 1922 } 1923 1924 /** 1925 * call_netdevice_notifiers_info - call all network notifier blocks 1926 * @val: value passed unmodified to notifier function 1927 * @info: notifier information data 1928 * 1929 * Call all network notifier blocks. Parameters and return value 1930 * are as for raw_notifier_call_chain(). 1931 */ 1932 1933 static int call_netdevice_notifiers_info(unsigned long val, 1934 struct netdev_notifier_info *info) 1935 { 1936 struct net *net = dev_net(info->dev); 1937 int ret; 1938 1939 ASSERT_RTNL(); 1940 1941 /* Run per-netns notifier block chain first, then run the global one. 1942 * Hopefully, one day, the global one is going to be removed after 1943 * all notifier block registrators get converted to be per-netns. 1944 */ 1945 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1946 if (ret & NOTIFY_STOP_MASK) 1947 return ret; 1948 return raw_notifier_call_chain(&netdev_chain, val, info); 1949 } 1950 1951 static int call_netdevice_notifiers_extack(unsigned long val, 1952 struct net_device *dev, 1953 struct netlink_ext_ack *extack) 1954 { 1955 struct netdev_notifier_info info = { 1956 .dev = dev, 1957 .extack = extack, 1958 }; 1959 1960 return call_netdevice_notifiers_info(val, &info); 1961 } 1962 1963 /** 1964 * call_netdevice_notifiers - call all network notifier blocks 1965 * @val: value passed unmodified to notifier function 1966 * @dev: net_device pointer passed unmodified to notifier function 1967 * 1968 * Call all network notifier blocks. Parameters and return value 1969 * are as for raw_notifier_call_chain(). 1970 */ 1971 1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1973 { 1974 return call_netdevice_notifiers_extack(val, dev, NULL); 1975 } 1976 EXPORT_SYMBOL(call_netdevice_notifiers); 1977 1978 /** 1979 * call_netdevice_notifiers_mtu - call all network notifier blocks 1980 * @val: value passed unmodified to notifier function 1981 * @dev: net_device pointer passed unmodified to notifier function 1982 * @arg: additional u32 argument passed to the notifier function 1983 * 1984 * Call all network notifier blocks. Parameters and return value 1985 * are as for raw_notifier_call_chain(). 1986 */ 1987 static int call_netdevice_notifiers_mtu(unsigned long val, 1988 struct net_device *dev, u32 arg) 1989 { 1990 struct netdev_notifier_info_ext info = { 1991 .info.dev = dev, 1992 .ext.mtu = arg, 1993 }; 1994 1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1996 1997 return call_netdevice_notifiers_info(val, &info.info); 1998 } 1999 2000 #ifdef CONFIG_NET_INGRESS 2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2002 2003 void net_inc_ingress_queue(void) 2004 { 2005 static_branch_inc(&ingress_needed_key); 2006 } 2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2008 2009 void net_dec_ingress_queue(void) 2010 { 2011 static_branch_dec(&ingress_needed_key); 2012 } 2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2014 #endif 2015 2016 #ifdef CONFIG_NET_EGRESS 2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2018 2019 void net_inc_egress_queue(void) 2020 { 2021 static_branch_inc(&egress_needed_key); 2022 } 2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2024 2025 void net_dec_egress_queue(void) 2026 { 2027 static_branch_dec(&egress_needed_key); 2028 } 2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2030 #endif 2031 2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2033 #ifdef CONFIG_JUMP_LABEL 2034 static atomic_t netstamp_needed_deferred; 2035 static atomic_t netstamp_wanted; 2036 static void netstamp_clear(struct work_struct *work) 2037 { 2038 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2039 int wanted; 2040 2041 wanted = atomic_add_return(deferred, &netstamp_wanted); 2042 if (wanted > 0) 2043 static_branch_enable(&netstamp_needed_key); 2044 else 2045 static_branch_disable(&netstamp_needed_key); 2046 } 2047 static DECLARE_WORK(netstamp_work, netstamp_clear); 2048 #endif 2049 2050 void net_enable_timestamp(void) 2051 { 2052 #ifdef CONFIG_JUMP_LABEL 2053 int wanted; 2054 2055 while (1) { 2056 wanted = atomic_read(&netstamp_wanted); 2057 if (wanted <= 0) 2058 break; 2059 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2060 return; 2061 } 2062 atomic_inc(&netstamp_needed_deferred); 2063 schedule_work(&netstamp_work); 2064 #else 2065 static_branch_inc(&netstamp_needed_key); 2066 #endif 2067 } 2068 EXPORT_SYMBOL(net_enable_timestamp); 2069 2070 void net_disable_timestamp(void) 2071 { 2072 #ifdef CONFIG_JUMP_LABEL 2073 int wanted; 2074 2075 while (1) { 2076 wanted = atomic_read(&netstamp_wanted); 2077 if (wanted <= 1) 2078 break; 2079 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2080 return; 2081 } 2082 atomic_dec(&netstamp_needed_deferred); 2083 schedule_work(&netstamp_work); 2084 #else 2085 static_branch_dec(&netstamp_needed_key); 2086 #endif 2087 } 2088 EXPORT_SYMBOL(net_disable_timestamp); 2089 2090 static inline void net_timestamp_set(struct sk_buff *skb) 2091 { 2092 skb->tstamp = 0; 2093 if (static_branch_unlikely(&netstamp_needed_key)) 2094 __net_timestamp(skb); 2095 } 2096 2097 #define net_timestamp_check(COND, SKB) \ 2098 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2099 if ((COND) && !(SKB)->tstamp) \ 2100 __net_timestamp(SKB); \ 2101 } \ 2102 2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2104 { 2105 unsigned int len; 2106 2107 if (!(dev->flags & IFF_UP)) 2108 return false; 2109 2110 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2111 if (skb->len <= len) 2112 return true; 2113 2114 /* if TSO is enabled, we don't care about the length as the packet 2115 * could be forwarded without being segmented before 2116 */ 2117 if (skb_is_gso(skb)) 2118 return true; 2119 2120 return false; 2121 } 2122 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2123 2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2125 { 2126 int ret = ____dev_forward_skb(dev, skb); 2127 2128 if (likely(!ret)) { 2129 skb->protocol = eth_type_trans(skb, dev); 2130 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2131 } 2132 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2136 2137 /** 2138 * dev_forward_skb - loopback an skb to another netif 2139 * 2140 * @dev: destination network device 2141 * @skb: buffer to forward 2142 * 2143 * return values: 2144 * NET_RX_SUCCESS (no congestion) 2145 * NET_RX_DROP (packet was dropped, but freed) 2146 * 2147 * dev_forward_skb can be used for injecting an skb from the 2148 * start_xmit function of one device into the receive queue 2149 * of another device. 2150 * 2151 * The receiving device may be in another namespace, so 2152 * we have to clear all information in the skb that could 2153 * impact namespace isolation. 2154 */ 2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2156 { 2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2158 } 2159 EXPORT_SYMBOL_GPL(dev_forward_skb); 2160 2161 static inline int deliver_skb(struct sk_buff *skb, 2162 struct packet_type *pt_prev, 2163 struct net_device *orig_dev) 2164 { 2165 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2166 return -ENOMEM; 2167 refcount_inc(&skb->users); 2168 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2169 } 2170 2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2172 struct packet_type **pt, 2173 struct net_device *orig_dev, 2174 __be16 type, 2175 struct list_head *ptype_list) 2176 { 2177 struct packet_type *ptype, *pt_prev = *pt; 2178 2179 list_for_each_entry_rcu(ptype, ptype_list, list) { 2180 if (ptype->type != type) 2181 continue; 2182 if (pt_prev) 2183 deliver_skb(skb, pt_prev, orig_dev); 2184 pt_prev = ptype; 2185 } 2186 *pt = pt_prev; 2187 } 2188 2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2190 { 2191 if (!ptype->af_packet_priv || !skb->sk) 2192 return false; 2193 2194 if (ptype->id_match) 2195 return ptype->id_match(ptype, skb->sk); 2196 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2197 return true; 2198 2199 return false; 2200 } 2201 2202 /** 2203 * dev_nit_active - return true if any network interface taps are in use 2204 * 2205 * @dev: network device to check for the presence of taps 2206 */ 2207 bool dev_nit_active(struct net_device *dev) 2208 { 2209 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2210 } 2211 EXPORT_SYMBOL_GPL(dev_nit_active); 2212 2213 /* 2214 * Support routine. Sends outgoing frames to any network 2215 * taps currently in use. 2216 */ 2217 2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2219 { 2220 struct packet_type *ptype; 2221 struct sk_buff *skb2 = NULL; 2222 struct packet_type *pt_prev = NULL; 2223 struct list_head *ptype_list = &ptype_all; 2224 2225 rcu_read_lock(); 2226 again: 2227 list_for_each_entry_rcu(ptype, ptype_list, list) { 2228 if (ptype->ignore_outgoing) 2229 continue; 2230 2231 /* Never send packets back to the socket 2232 * they originated from - MvS (miquels@drinkel.ow.org) 2233 */ 2234 if (skb_loop_sk(ptype, skb)) 2235 continue; 2236 2237 if (pt_prev) { 2238 deliver_skb(skb2, pt_prev, skb->dev); 2239 pt_prev = ptype; 2240 continue; 2241 } 2242 2243 /* need to clone skb, done only once */ 2244 skb2 = skb_clone(skb, GFP_ATOMIC); 2245 if (!skb2) 2246 goto out_unlock; 2247 2248 net_timestamp_set(skb2); 2249 2250 /* skb->nh should be correctly 2251 * set by sender, so that the second statement is 2252 * just protection against buggy protocols. 2253 */ 2254 skb_reset_mac_header(skb2); 2255 2256 if (skb_network_header(skb2) < skb2->data || 2257 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2259 ntohs(skb2->protocol), 2260 dev->name); 2261 skb_reset_network_header(skb2); 2262 } 2263 2264 skb2->transport_header = skb2->network_header; 2265 skb2->pkt_type = PACKET_OUTGOING; 2266 pt_prev = ptype; 2267 } 2268 2269 if (ptype_list == &ptype_all) { 2270 ptype_list = &dev->ptype_all; 2271 goto again; 2272 } 2273 out_unlock: 2274 if (pt_prev) { 2275 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2276 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2277 else 2278 kfree_skb(skb2); 2279 } 2280 rcu_read_unlock(); 2281 } 2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2283 2284 /** 2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2286 * @dev: Network device 2287 * @txq: number of queues available 2288 * 2289 * If real_num_tx_queues is changed the tc mappings may no longer be 2290 * valid. To resolve this verify the tc mapping remains valid and if 2291 * not NULL the mapping. With no priorities mapping to this 2292 * offset/count pair it will no longer be used. In the worst case TC0 2293 * is invalid nothing can be done so disable priority mappings. If is 2294 * expected that drivers will fix this mapping if they can before 2295 * calling netif_set_real_num_tx_queues. 2296 */ 2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2298 { 2299 int i; 2300 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2301 2302 /* If TC0 is invalidated disable TC mapping */ 2303 if (tc->offset + tc->count > txq) { 2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2305 dev->num_tc = 0; 2306 return; 2307 } 2308 2309 /* Invalidated prio to tc mappings set to TC0 */ 2310 for (i = 1; i < TC_BITMASK + 1; i++) { 2311 int q = netdev_get_prio_tc_map(dev, i); 2312 2313 tc = &dev->tc_to_txq[q]; 2314 if (tc->offset + tc->count > txq) { 2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2316 i, q); 2317 netdev_set_prio_tc_map(dev, i, 0); 2318 } 2319 } 2320 } 2321 2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2323 { 2324 if (dev->num_tc) { 2325 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2326 int i; 2327 2328 /* walk through the TCs and see if it falls into any of them */ 2329 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2330 if ((txq - tc->offset) < tc->count) 2331 return i; 2332 } 2333 2334 /* didn't find it, just return -1 to indicate no match */ 2335 return -1; 2336 } 2337 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(netdev_txq_to_tc); 2341 2342 #ifdef CONFIG_XPS 2343 struct static_key xps_needed __read_mostly; 2344 EXPORT_SYMBOL(xps_needed); 2345 struct static_key xps_rxqs_needed __read_mostly; 2346 EXPORT_SYMBOL(xps_rxqs_needed); 2347 static DEFINE_MUTEX(xps_map_mutex); 2348 #define xmap_dereference(P) \ 2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2350 2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2352 int tci, u16 index) 2353 { 2354 struct xps_map *map = NULL; 2355 int pos; 2356 2357 if (dev_maps) 2358 map = xmap_dereference(dev_maps->attr_map[tci]); 2359 if (!map) 2360 return false; 2361 2362 for (pos = map->len; pos--;) { 2363 if (map->queues[pos] != index) 2364 continue; 2365 2366 if (map->len > 1) { 2367 map->queues[pos] = map->queues[--map->len]; 2368 break; 2369 } 2370 2371 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2372 kfree_rcu(map, rcu); 2373 return false; 2374 } 2375 2376 return true; 2377 } 2378 2379 static bool remove_xps_queue_cpu(struct net_device *dev, 2380 struct xps_dev_maps *dev_maps, 2381 int cpu, u16 offset, u16 count) 2382 { 2383 int num_tc = dev->num_tc ? : 1; 2384 bool active = false; 2385 int tci; 2386 2387 for (tci = cpu * num_tc; num_tc--; tci++) { 2388 int i, j; 2389 2390 for (i = count, j = offset; i--; j++) { 2391 if (!remove_xps_queue(dev_maps, tci, j)) 2392 break; 2393 } 2394 2395 active |= i < 0; 2396 } 2397 2398 return active; 2399 } 2400 2401 static void reset_xps_maps(struct net_device *dev, 2402 struct xps_dev_maps *dev_maps, 2403 bool is_rxqs_map) 2404 { 2405 if (is_rxqs_map) { 2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2407 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2408 } else { 2409 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2410 } 2411 static_key_slow_dec_cpuslocked(&xps_needed); 2412 kfree_rcu(dev_maps, rcu); 2413 } 2414 2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2416 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2417 u16 offset, u16 count, bool is_rxqs_map) 2418 { 2419 bool active = false; 2420 int i, j; 2421 2422 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2423 j < nr_ids;) 2424 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2425 count); 2426 if (!active) 2427 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2428 2429 if (!is_rxqs_map) { 2430 for (i = offset + (count - 1); count--; i--) { 2431 netdev_queue_numa_node_write( 2432 netdev_get_tx_queue(dev, i), 2433 NUMA_NO_NODE); 2434 } 2435 } 2436 } 2437 2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2439 u16 count) 2440 { 2441 const unsigned long *possible_mask = NULL; 2442 struct xps_dev_maps *dev_maps; 2443 unsigned int nr_ids; 2444 2445 if (!static_key_false(&xps_needed)) 2446 return; 2447 2448 cpus_read_lock(); 2449 mutex_lock(&xps_map_mutex); 2450 2451 if (static_key_false(&xps_rxqs_needed)) { 2452 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2453 if (dev_maps) { 2454 nr_ids = dev->num_rx_queues; 2455 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2456 offset, count, true); 2457 } 2458 } 2459 2460 dev_maps = xmap_dereference(dev->xps_cpus_map); 2461 if (!dev_maps) 2462 goto out_no_maps; 2463 2464 if (num_possible_cpus() > 1) 2465 possible_mask = cpumask_bits(cpu_possible_mask); 2466 nr_ids = nr_cpu_ids; 2467 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2468 false); 2469 2470 out_no_maps: 2471 mutex_unlock(&xps_map_mutex); 2472 cpus_read_unlock(); 2473 } 2474 2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2476 { 2477 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2478 } 2479 2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2481 u16 index, bool is_rxqs_map) 2482 { 2483 struct xps_map *new_map; 2484 int alloc_len = XPS_MIN_MAP_ALLOC; 2485 int i, pos; 2486 2487 for (pos = 0; map && pos < map->len; pos++) { 2488 if (map->queues[pos] != index) 2489 continue; 2490 return map; 2491 } 2492 2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2494 if (map) { 2495 if (pos < map->alloc_len) 2496 return map; 2497 2498 alloc_len = map->alloc_len * 2; 2499 } 2500 2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2502 * map 2503 */ 2504 if (is_rxqs_map) 2505 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2506 else 2507 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2508 cpu_to_node(attr_index)); 2509 if (!new_map) 2510 return NULL; 2511 2512 for (i = 0; i < pos; i++) 2513 new_map->queues[i] = map->queues[i]; 2514 new_map->alloc_len = alloc_len; 2515 new_map->len = pos; 2516 2517 return new_map; 2518 } 2519 2520 /* Must be called under cpus_read_lock */ 2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2522 u16 index, bool is_rxqs_map) 2523 { 2524 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2525 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2526 int i, j, tci, numa_node_id = -2; 2527 int maps_sz, num_tc = 1, tc = 0; 2528 struct xps_map *map, *new_map; 2529 bool active = false; 2530 unsigned int nr_ids; 2531 2532 if (dev->num_tc) { 2533 /* Do not allow XPS on subordinate device directly */ 2534 num_tc = dev->num_tc; 2535 if (num_tc < 0) 2536 return -EINVAL; 2537 2538 /* If queue belongs to subordinate dev use its map */ 2539 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2540 2541 tc = netdev_txq_to_tc(dev, index); 2542 if (tc < 0) 2543 return -EINVAL; 2544 } 2545 2546 mutex_lock(&xps_map_mutex); 2547 if (is_rxqs_map) { 2548 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2549 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2550 nr_ids = dev->num_rx_queues; 2551 } else { 2552 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2553 if (num_possible_cpus() > 1) { 2554 online_mask = cpumask_bits(cpu_online_mask); 2555 possible_mask = cpumask_bits(cpu_possible_mask); 2556 } 2557 dev_maps = xmap_dereference(dev->xps_cpus_map); 2558 nr_ids = nr_cpu_ids; 2559 } 2560 2561 if (maps_sz < L1_CACHE_BYTES) 2562 maps_sz = L1_CACHE_BYTES; 2563 2564 /* allocate memory for queue storage */ 2565 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2566 j < nr_ids;) { 2567 if (!new_dev_maps) 2568 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2569 if (!new_dev_maps) { 2570 mutex_unlock(&xps_map_mutex); 2571 return -ENOMEM; 2572 } 2573 2574 tci = j * num_tc + tc; 2575 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2576 NULL; 2577 2578 map = expand_xps_map(map, j, index, is_rxqs_map); 2579 if (!map) 2580 goto error; 2581 2582 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2583 } 2584 2585 if (!new_dev_maps) 2586 goto out_no_new_maps; 2587 2588 if (!dev_maps) { 2589 /* Increment static keys at most once per type */ 2590 static_key_slow_inc_cpuslocked(&xps_needed); 2591 if (is_rxqs_map) 2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2593 } 2594 2595 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2596 j < nr_ids;) { 2597 /* copy maps belonging to foreign traffic classes */ 2598 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2599 /* fill in the new device map from the old device map */ 2600 map = xmap_dereference(dev_maps->attr_map[tci]); 2601 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2602 } 2603 2604 /* We need to explicitly update tci as prevous loop 2605 * could break out early if dev_maps is NULL. 2606 */ 2607 tci = j * num_tc + tc; 2608 2609 if (netif_attr_test_mask(j, mask, nr_ids) && 2610 netif_attr_test_online(j, online_mask, nr_ids)) { 2611 /* add tx-queue to CPU/rx-queue maps */ 2612 int pos = 0; 2613 2614 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2615 while ((pos < map->len) && (map->queues[pos] != index)) 2616 pos++; 2617 2618 if (pos == map->len) 2619 map->queues[map->len++] = index; 2620 #ifdef CONFIG_NUMA 2621 if (!is_rxqs_map) { 2622 if (numa_node_id == -2) 2623 numa_node_id = cpu_to_node(j); 2624 else if (numa_node_id != cpu_to_node(j)) 2625 numa_node_id = -1; 2626 } 2627 #endif 2628 } else if (dev_maps) { 2629 /* fill in the new device map from the old device map */ 2630 map = xmap_dereference(dev_maps->attr_map[tci]); 2631 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2632 } 2633 2634 /* copy maps belonging to foreign traffic classes */ 2635 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2636 /* fill in the new device map from the old device map */ 2637 map = xmap_dereference(dev_maps->attr_map[tci]); 2638 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2639 } 2640 } 2641 2642 if (is_rxqs_map) 2643 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2644 else 2645 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2646 2647 /* Cleanup old maps */ 2648 if (!dev_maps) 2649 goto out_no_old_maps; 2650 2651 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2652 j < nr_ids;) { 2653 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2654 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2655 map = xmap_dereference(dev_maps->attr_map[tci]); 2656 if (map && map != new_map) 2657 kfree_rcu(map, rcu); 2658 } 2659 } 2660 2661 kfree_rcu(dev_maps, rcu); 2662 2663 out_no_old_maps: 2664 dev_maps = new_dev_maps; 2665 active = true; 2666 2667 out_no_new_maps: 2668 if (!is_rxqs_map) { 2669 /* update Tx queue numa node */ 2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2671 (numa_node_id >= 0) ? 2672 numa_node_id : NUMA_NO_NODE); 2673 } 2674 2675 if (!dev_maps) 2676 goto out_no_maps; 2677 2678 /* removes tx-queue from unused CPUs/rx-queues */ 2679 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2680 j < nr_ids;) { 2681 for (i = tc, tci = j * num_tc; i--; tci++) 2682 active |= remove_xps_queue(dev_maps, tci, index); 2683 if (!netif_attr_test_mask(j, mask, nr_ids) || 2684 !netif_attr_test_online(j, online_mask, nr_ids)) 2685 active |= remove_xps_queue(dev_maps, tci, index); 2686 for (i = num_tc - tc, tci++; --i; tci++) 2687 active |= remove_xps_queue(dev_maps, tci, index); 2688 } 2689 2690 /* free map if not active */ 2691 if (!active) 2692 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2693 2694 out_no_maps: 2695 mutex_unlock(&xps_map_mutex); 2696 2697 return 0; 2698 error: 2699 /* remove any maps that we added */ 2700 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2701 j < nr_ids;) { 2702 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2703 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2704 map = dev_maps ? 2705 xmap_dereference(dev_maps->attr_map[tci]) : 2706 NULL; 2707 if (new_map && new_map != map) 2708 kfree(new_map); 2709 } 2710 } 2711 2712 mutex_unlock(&xps_map_mutex); 2713 2714 kfree(new_dev_maps); 2715 return -ENOMEM; 2716 } 2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2718 2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2720 u16 index) 2721 { 2722 int ret; 2723 2724 cpus_read_lock(); 2725 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2726 cpus_read_unlock(); 2727 2728 return ret; 2729 } 2730 EXPORT_SYMBOL(netif_set_xps_queue); 2731 2732 #endif 2733 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2734 { 2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2736 2737 /* Unbind any subordinate channels */ 2738 while (txq-- != &dev->_tx[0]) { 2739 if (txq->sb_dev) 2740 netdev_unbind_sb_channel(dev, txq->sb_dev); 2741 } 2742 } 2743 2744 void netdev_reset_tc(struct net_device *dev) 2745 { 2746 #ifdef CONFIG_XPS 2747 netif_reset_xps_queues_gt(dev, 0); 2748 #endif 2749 netdev_unbind_all_sb_channels(dev); 2750 2751 /* Reset TC configuration of device */ 2752 dev->num_tc = 0; 2753 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2754 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2755 } 2756 EXPORT_SYMBOL(netdev_reset_tc); 2757 2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2759 { 2760 if (tc >= dev->num_tc) 2761 return -EINVAL; 2762 2763 #ifdef CONFIG_XPS 2764 netif_reset_xps_queues(dev, offset, count); 2765 #endif 2766 dev->tc_to_txq[tc].count = count; 2767 dev->tc_to_txq[tc].offset = offset; 2768 return 0; 2769 } 2770 EXPORT_SYMBOL(netdev_set_tc_queue); 2771 2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2773 { 2774 if (num_tc > TC_MAX_QUEUE) 2775 return -EINVAL; 2776 2777 #ifdef CONFIG_XPS 2778 netif_reset_xps_queues_gt(dev, 0); 2779 #endif 2780 netdev_unbind_all_sb_channels(dev); 2781 2782 dev->num_tc = num_tc; 2783 return 0; 2784 } 2785 EXPORT_SYMBOL(netdev_set_num_tc); 2786 2787 void netdev_unbind_sb_channel(struct net_device *dev, 2788 struct net_device *sb_dev) 2789 { 2790 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2791 2792 #ifdef CONFIG_XPS 2793 netif_reset_xps_queues_gt(sb_dev, 0); 2794 #endif 2795 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2796 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2797 2798 while (txq-- != &dev->_tx[0]) { 2799 if (txq->sb_dev == sb_dev) 2800 txq->sb_dev = NULL; 2801 } 2802 } 2803 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2804 2805 int netdev_bind_sb_channel_queue(struct net_device *dev, 2806 struct net_device *sb_dev, 2807 u8 tc, u16 count, u16 offset) 2808 { 2809 /* Make certain the sb_dev and dev are already configured */ 2810 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2811 return -EINVAL; 2812 2813 /* We cannot hand out queues we don't have */ 2814 if ((offset + count) > dev->real_num_tx_queues) 2815 return -EINVAL; 2816 2817 /* Record the mapping */ 2818 sb_dev->tc_to_txq[tc].count = count; 2819 sb_dev->tc_to_txq[tc].offset = offset; 2820 2821 /* Provide a way for Tx queue to find the tc_to_txq map or 2822 * XPS map for itself. 2823 */ 2824 while (count--) 2825 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2826 2827 return 0; 2828 } 2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2830 2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2832 { 2833 /* Do not use a multiqueue device to represent a subordinate channel */ 2834 if (netif_is_multiqueue(dev)) 2835 return -ENODEV; 2836 2837 /* We allow channels 1 - 32767 to be used for subordinate channels. 2838 * Channel 0 is meant to be "native" mode and used only to represent 2839 * the main root device. We allow writing 0 to reset the device back 2840 * to normal mode after being used as a subordinate channel. 2841 */ 2842 if (channel > S16_MAX) 2843 return -EINVAL; 2844 2845 dev->num_tc = -channel; 2846 2847 return 0; 2848 } 2849 EXPORT_SYMBOL(netdev_set_sb_channel); 2850 2851 /* 2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2854 */ 2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2856 { 2857 bool disabling; 2858 int rc; 2859 2860 disabling = txq < dev->real_num_tx_queues; 2861 2862 if (txq < 1 || txq > dev->num_tx_queues) 2863 return -EINVAL; 2864 2865 if (dev->reg_state == NETREG_REGISTERED || 2866 dev->reg_state == NETREG_UNREGISTERING) { 2867 ASSERT_RTNL(); 2868 2869 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2870 txq); 2871 if (rc) 2872 return rc; 2873 2874 if (dev->num_tc) 2875 netif_setup_tc(dev, txq); 2876 2877 dev->real_num_tx_queues = txq; 2878 2879 if (disabling) { 2880 synchronize_net(); 2881 qdisc_reset_all_tx_gt(dev, txq); 2882 #ifdef CONFIG_XPS 2883 netif_reset_xps_queues_gt(dev, txq); 2884 #endif 2885 } 2886 } else { 2887 dev->real_num_tx_queues = txq; 2888 } 2889 2890 return 0; 2891 } 2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2893 2894 #ifdef CONFIG_SYSFS 2895 /** 2896 * netif_set_real_num_rx_queues - set actual number of RX queues used 2897 * @dev: Network device 2898 * @rxq: Actual number of RX queues 2899 * 2900 * This must be called either with the rtnl_lock held or before 2901 * registration of the net device. Returns 0 on success, or a 2902 * negative error code. If called before registration, it always 2903 * succeeds. 2904 */ 2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2906 { 2907 int rc; 2908 2909 if (rxq < 1 || rxq > dev->num_rx_queues) 2910 return -EINVAL; 2911 2912 if (dev->reg_state == NETREG_REGISTERED) { 2913 ASSERT_RTNL(); 2914 2915 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2916 rxq); 2917 if (rc) 2918 return rc; 2919 } 2920 2921 dev->real_num_rx_queues = rxq; 2922 return 0; 2923 } 2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2925 #endif 2926 2927 /** 2928 * netif_get_num_default_rss_queues - default number of RSS queues 2929 * 2930 * This routine should set an upper limit on the number of RSS queues 2931 * used by default by multiqueue devices. 2932 */ 2933 int netif_get_num_default_rss_queues(void) 2934 { 2935 return is_kdump_kernel() ? 2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2937 } 2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2939 2940 static void __netif_reschedule(struct Qdisc *q) 2941 { 2942 struct softnet_data *sd; 2943 unsigned long flags; 2944 2945 local_irq_save(flags); 2946 sd = this_cpu_ptr(&softnet_data); 2947 q->next_sched = NULL; 2948 *sd->output_queue_tailp = q; 2949 sd->output_queue_tailp = &q->next_sched; 2950 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2951 local_irq_restore(flags); 2952 } 2953 2954 void __netif_schedule(struct Qdisc *q) 2955 { 2956 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2957 __netif_reschedule(q); 2958 } 2959 EXPORT_SYMBOL(__netif_schedule); 2960 2961 struct dev_kfree_skb_cb { 2962 enum skb_free_reason reason; 2963 }; 2964 2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2966 { 2967 return (struct dev_kfree_skb_cb *)skb->cb; 2968 } 2969 2970 void netif_schedule_queue(struct netdev_queue *txq) 2971 { 2972 rcu_read_lock(); 2973 if (!netif_xmit_stopped(txq)) { 2974 struct Qdisc *q = rcu_dereference(txq->qdisc); 2975 2976 __netif_schedule(q); 2977 } 2978 rcu_read_unlock(); 2979 } 2980 EXPORT_SYMBOL(netif_schedule_queue); 2981 2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2983 { 2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2985 struct Qdisc *q; 2986 2987 rcu_read_lock(); 2988 q = rcu_dereference(dev_queue->qdisc); 2989 __netif_schedule(q); 2990 rcu_read_unlock(); 2991 } 2992 } 2993 EXPORT_SYMBOL(netif_tx_wake_queue); 2994 2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2996 { 2997 unsigned long flags; 2998 2999 if (unlikely(!skb)) 3000 return; 3001 3002 if (likely(refcount_read(&skb->users) == 1)) { 3003 smp_rmb(); 3004 refcount_set(&skb->users, 0); 3005 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3006 return; 3007 } 3008 get_kfree_skb_cb(skb)->reason = reason; 3009 local_irq_save(flags); 3010 skb->next = __this_cpu_read(softnet_data.completion_queue); 3011 __this_cpu_write(softnet_data.completion_queue, skb); 3012 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3013 local_irq_restore(flags); 3014 } 3015 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3016 3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3018 { 3019 if (in_irq() || irqs_disabled()) 3020 __dev_kfree_skb_irq(skb, reason); 3021 else 3022 dev_kfree_skb(skb); 3023 } 3024 EXPORT_SYMBOL(__dev_kfree_skb_any); 3025 3026 3027 /** 3028 * netif_device_detach - mark device as removed 3029 * @dev: network device 3030 * 3031 * Mark device as removed from system and therefore no longer available. 3032 */ 3033 void netif_device_detach(struct net_device *dev) 3034 { 3035 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3036 netif_running(dev)) { 3037 netif_tx_stop_all_queues(dev); 3038 } 3039 } 3040 EXPORT_SYMBOL(netif_device_detach); 3041 3042 /** 3043 * netif_device_attach - mark device as attached 3044 * @dev: network device 3045 * 3046 * Mark device as attached from system and restart if needed. 3047 */ 3048 void netif_device_attach(struct net_device *dev) 3049 { 3050 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3051 netif_running(dev)) { 3052 netif_tx_wake_all_queues(dev); 3053 __netdev_watchdog_up(dev); 3054 } 3055 } 3056 EXPORT_SYMBOL(netif_device_attach); 3057 3058 /* 3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3060 * to be used as a distribution range. 3061 */ 3062 static u16 skb_tx_hash(const struct net_device *dev, 3063 const struct net_device *sb_dev, 3064 struct sk_buff *skb) 3065 { 3066 u32 hash; 3067 u16 qoffset = 0; 3068 u16 qcount = dev->real_num_tx_queues; 3069 3070 if (dev->num_tc) { 3071 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3072 3073 qoffset = sb_dev->tc_to_txq[tc].offset; 3074 qcount = sb_dev->tc_to_txq[tc].count; 3075 } 3076 3077 if (skb_rx_queue_recorded(skb)) { 3078 hash = skb_get_rx_queue(skb); 3079 if (hash >= qoffset) 3080 hash -= qoffset; 3081 while (unlikely(hash >= qcount)) 3082 hash -= qcount; 3083 return hash + qoffset; 3084 } 3085 3086 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3087 } 3088 3089 static void skb_warn_bad_offload(const struct sk_buff *skb) 3090 { 3091 static const netdev_features_t null_features; 3092 struct net_device *dev = skb->dev; 3093 const char *name = ""; 3094 3095 if (!net_ratelimit()) 3096 return; 3097 3098 if (dev) { 3099 if (dev->dev.parent) 3100 name = dev_driver_string(dev->dev.parent); 3101 else 3102 name = netdev_name(dev); 3103 } 3104 skb_dump(KERN_WARNING, skb, false); 3105 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3106 name, dev ? &dev->features : &null_features, 3107 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3108 } 3109 3110 /* 3111 * Invalidate hardware checksum when packet is to be mangled, and 3112 * complete checksum manually on outgoing path. 3113 */ 3114 int skb_checksum_help(struct sk_buff *skb) 3115 { 3116 __wsum csum; 3117 int ret = 0, offset; 3118 3119 if (skb->ip_summed == CHECKSUM_COMPLETE) 3120 goto out_set_summed; 3121 3122 if (unlikely(skb_shinfo(skb)->gso_size)) { 3123 skb_warn_bad_offload(skb); 3124 return -EINVAL; 3125 } 3126 3127 /* Before computing a checksum, we should make sure no frag could 3128 * be modified by an external entity : checksum could be wrong. 3129 */ 3130 if (skb_has_shared_frag(skb)) { 3131 ret = __skb_linearize(skb); 3132 if (ret) 3133 goto out; 3134 } 3135 3136 offset = skb_checksum_start_offset(skb); 3137 BUG_ON(offset >= skb_headlen(skb)); 3138 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3139 3140 offset += skb->csum_offset; 3141 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3142 3143 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3144 if (ret) 3145 goto out; 3146 3147 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3148 out_set_summed: 3149 skb->ip_summed = CHECKSUM_NONE; 3150 out: 3151 return ret; 3152 } 3153 EXPORT_SYMBOL(skb_checksum_help); 3154 3155 int skb_crc32c_csum_help(struct sk_buff *skb) 3156 { 3157 __le32 crc32c_csum; 3158 int ret = 0, offset, start; 3159 3160 if (skb->ip_summed != CHECKSUM_PARTIAL) 3161 goto out; 3162 3163 if (unlikely(skb_is_gso(skb))) 3164 goto out; 3165 3166 /* Before computing a checksum, we should make sure no frag could 3167 * be modified by an external entity : checksum could be wrong. 3168 */ 3169 if (unlikely(skb_has_shared_frag(skb))) { 3170 ret = __skb_linearize(skb); 3171 if (ret) 3172 goto out; 3173 } 3174 start = skb_checksum_start_offset(skb); 3175 offset = start + offsetof(struct sctphdr, checksum); 3176 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3177 ret = -EINVAL; 3178 goto out; 3179 } 3180 3181 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3182 if (ret) 3183 goto out; 3184 3185 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3186 skb->len - start, ~(__u32)0, 3187 crc32c_csum_stub)); 3188 *(__le32 *)(skb->data + offset) = crc32c_csum; 3189 skb->ip_summed = CHECKSUM_NONE; 3190 skb->csum_not_inet = 0; 3191 out: 3192 return ret; 3193 } 3194 3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3196 { 3197 __be16 type = skb->protocol; 3198 3199 /* Tunnel gso handlers can set protocol to ethernet. */ 3200 if (type == htons(ETH_P_TEB)) { 3201 struct ethhdr *eth; 3202 3203 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3204 return 0; 3205 3206 eth = (struct ethhdr *)skb->data; 3207 type = eth->h_proto; 3208 } 3209 3210 return __vlan_get_protocol(skb, type, depth); 3211 } 3212 3213 /** 3214 * skb_mac_gso_segment - mac layer segmentation handler. 3215 * @skb: buffer to segment 3216 * @features: features for the output path (see dev->features) 3217 */ 3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3219 netdev_features_t features) 3220 { 3221 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3222 struct packet_offload *ptype; 3223 int vlan_depth = skb->mac_len; 3224 __be16 type = skb_network_protocol(skb, &vlan_depth); 3225 3226 if (unlikely(!type)) 3227 return ERR_PTR(-EINVAL); 3228 3229 __skb_pull(skb, vlan_depth); 3230 3231 rcu_read_lock(); 3232 list_for_each_entry_rcu(ptype, &offload_base, list) { 3233 if (ptype->type == type && ptype->callbacks.gso_segment) { 3234 segs = ptype->callbacks.gso_segment(skb, features); 3235 break; 3236 } 3237 } 3238 rcu_read_unlock(); 3239 3240 __skb_push(skb, skb->data - skb_mac_header(skb)); 3241 3242 return segs; 3243 } 3244 EXPORT_SYMBOL(skb_mac_gso_segment); 3245 3246 3247 /* openvswitch calls this on rx path, so we need a different check. 3248 */ 3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3250 { 3251 if (tx_path) 3252 return skb->ip_summed != CHECKSUM_PARTIAL && 3253 skb->ip_summed != CHECKSUM_UNNECESSARY; 3254 3255 return skb->ip_summed == CHECKSUM_NONE; 3256 } 3257 3258 /** 3259 * __skb_gso_segment - Perform segmentation on skb. 3260 * @skb: buffer to segment 3261 * @features: features for the output path (see dev->features) 3262 * @tx_path: whether it is called in TX path 3263 * 3264 * This function segments the given skb and returns a list of segments. 3265 * 3266 * It may return NULL if the skb requires no segmentation. This is 3267 * only possible when GSO is used for verifying header integrity. 3268 * 3269 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3270 */ 3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3272 netdev_features_t features, bool tx_path) 3273 { 3274 struct sk_buff *segs; 3275 3276 if (unlikely(skb_needs_check(skb, tx_path))) { 3277 int err; 3278 3279 /* We're going to init ->check field in TCP or UDP header */ 3280 err = skb_cow_head(skb, 0); 3281 if (err < 0) 3282 return ERR_PTR(err); 3283 } 3284 3285 /* Only report GSO partial support if it will enable us to 3286 * support segmentation on this frame without needing additional 3287 * work. 3288 */ 3289 if (features & NETIF_F_GSO_PARTIAL) { 3290 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3291 struct net_device *dev = skb->dev; 3292 3293 partial_features |= dev->features & dev->gso_partial_features; 3294 if (!skb_gso_ok(skb, features | partial_features)) 3295 features &= ~NETIF_F_GSO_PARTIAL; 3296 } 3297 3298 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3299 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3300 3301 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3302 SKB_GSO_CB(skb)->encap_level = 0; 3303 3304 skb_reset_mac_header(skb); 3305 skb_reset_mac_len(skb); 3306 3307 segs = skb_mac_gso_segment(skb, features); 3308 3309 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3310 skb_warn_bad_offload(skb); 3311 3312 return segs; 3313 } 3314 EXPORT_SYMBOL(__skb_gso_segment); 3315 3316 /* Take action when hardware reception checksum errors are detected. */ 3317 #ifdef CONFIG_BUG 3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3319 { 3320 if (net_ratelimit()) { 3321 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3322 skb_dump(KERN_ERR, skb, true); 3323 dump_stack(); 3324 } 3325 } 3326 EXPORT_SYMBOL(netdev_rx_csum_fault); 3327 #endif 3328 3329 /* XXX: check that highmem exists at all on the given machine. */ 3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3331 { 3332 #ifdef CONFIG_HIGHMEM 3333 int i; 3334 3335 if (!(dev->features & NETIF_F_HIGHDMA)) { 3336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3338 3339 if (PageHighMem(skb_frag_page(frag))) 3340 return 1; 3341 } 3342 } 3343 #endif 3344 return 0; 3345 } 3346 3347 /* If MPLS offload request, verify we are testing hardware MPLS features 3348 * instead of standard features for the netdev. 3349 */ 3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3351 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3352 netdev_features_t features, 3353 __be16 type) 3354 { 3355 if (eth_p_mpls(type)) 3356 features &= skb->dev->mpls_features; 3357 3358 return features; 3359 } 3360 #else 3361 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3362 netdev_features_t features, 3363 __be16 type) 3364 { 3365 return features; 3366 } 3367 #endif 3368 3369 static netdev_features_t harmonize_features(struct sk_buff *skb, 3370 netdev_features_t features) 3371 { 3372 int tmp; 3373 __be16 type; 3374 3375 type = skb_network_protocol(skb, &tmp); 3376 features = net_mpls_features(skb, features, type); 3377 3378 if (skb->ip_summed != CHECKSUM_NONE && 3379 !can_checksum_protocol(features, type)) { 3380 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3381 } 3382 if (illegal_highdma(skb->dev, skb)) 3383 features &= ~NETIF_F_SG; 3384 3385 return features; 3386 } 3387 3388 netdev_features_t passthru_features_check(struct sk_buff *skb, 3389 struct net_device *dev, 3390 netdev_features_t features) 3391 { 3392 return features; 3393 } 3394 EXPORT_SYMBOL(passthru_features_check); 3395 3396 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3397 struct net_device *dev, 3398 netdev_features_t features) 3399 { 3400 return vlan_features_check(skb, features); 3401 } 3402 3403 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3404 struct net_device *dev, 3405 netdev_features_t features) 3406 { 3407 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3408 3409 if (gso_segs > dev->gso_max_segs) 3410 return features & ~NETIF_F_GSO_MASK; 3411 3412 /* Support for GSO partial features requires software 3413 * intervention before we can actually process the packets 3414 * so we need to strip support for any partial features now 3415 * and we can pull them back in after we have partially 3416 * segmented the frame. 3417 */ 3418 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3419 features &= ~dev->gso_partial_features; 3420 3421 /* Make sure to clear the IPv4 ID mangling feature if the 3422 * IPv4 header has the potential to be fragmented. 3423 */ 3424 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3425 struct iphdr *iph = skb->encapsulation ? 3426 inner_ip_hdr(skb) : ip_hdr(skb); 3427 3428 if (!(iph->frag_off & htons(IP_DF))) 3429 features &= ~NETIF_F_TSO_MANGLEID; 3430 } 3431 3432 return features; 3433 } 3434 3435 netdev_features_t netif_skb_features(struct sk_buff *skb) 3436 { 3437 struct net_device *dev = skb->dev; 3438 netdev_features_t features = dev->features; 3439 3440 if (skb_is_gso(skb)) 3441 features = gso_features_check(skb, dev, features); 3442 3443 /* If encapsulation offload request, verify we are testing 3444 * hardware encapsulation features instead of standard 3445 * features for the netdev 3446 */ 3447 if (skb->encapsulation) 3448 features &= dev->hw_enc_features; 3449 3450 if (skb_vlan_tagged(skb)) 3451 features = netdev_intersect_features(features, 3452 dev->vlan_features | 3453 NETIF_F_HW_VLAN_CTAG_TX | 3454 NETIF_F_HW_VLAN_STAG_TX); 3455 3456 if (dev->netdev_ops->ndo_features_check) 3457 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3458 features); 3459 else 3460 features &= dflt_features_check(skb, dev, features); 3461 3462 return harmonize_features(skb, features); 3463 } 3464 EXPORT_SYMBOL(netif_skb_features); 3465 3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3467 struct netdev_queue *txq, bool more) 3468 { 3469 unsigned int len; 3470 int rc; 3471 3472 if (dev_nit_active(dev)) 3473 dev_queue_xmit_nit(skb, dev); 3474 3475 len = skb->len; 3476 trace_net_dev_start_xmit(skb, dev); 3477 rc = netdev_start_xmit(skb, dev, txq, more); 3478 trace_net_dev_xmit(skb, rc, dev, len); 3479 3480 return rc; 3481 } 3482 3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3484 struct netdev_queue *txq, int *ret) 3485 { 3486 struct sk_buff *skb = first; 3487 int rc = NETDEV_TX_OK; 3488 3489 while (skb) { 3490 struct sk_buff *next = skb->next; 3491 3492 skb_mark_not_on_list(skb); 3493 rc = xmit_one(skb, dev, txq, next != NULL); 3494 if (unlikely(!dev_xmit_complete(rc))) { 3495 skb->next = next; 3496 goto out; 3497 } 3498 3499 skb = next; 3500 if (netif_tx_queue_stopped(txq) && skb) { 3501 rc = NETDEV_TX_BUSY; 3502 break; 3503 } 3504 } 3505 3506 out: 3507 *ret = rc; 3508 return skb; 3509 } 3510 3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3512 netdev_features_t features) 3513 { 3514 if (skb_vlan_tag_present(skb) && 3515 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3516 skb = __vlan_hwaccel_push_inside(skb); 3517 return skb; 3518 } 3519 3520 int skb_csum_hwoffload_help(struct sk_buff *skb, 3521 const netdev_features_t features) 3522 { 3523 if (unlikely(skb->csum_not_inet)) 3524 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3525 skb_crc32c_csum_help(skb); 3526 3527 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3528 } 3529 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3530 3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3532 { 3533 netdev_features_t features; 3534 3535 features = netif_skb_features(skb); 3536 skb = validate_xmit_vlan(skb, features); 3537 if (unlikely(!skb)) 3538 goto out_null; 3539 3540 skb = sk_validate_xmit_skb(skb, dev); 3541 if (unlikely(!skb)) 3542 goto out_null; 3543 3544 if (netif_needs_gso(skb, features)) { 3545 struct sk_buff *segs; 3546 3547 segs = skb_gso_segment(skb, features); 3548 if (IS_ERR(segs)) { 3549 goto out_kfree_skb; 3550 } else if (segs) { 3551 consume_skb(skb); 3552 skb = segs; 3553 } 3554 } else { 3555 if (skb_needs_linearize(skb, features) && 3556 __skb_linearize(skb)) 3557 goto out_kfree_skb; 3558 3559 /* If packet is not checksummed and device does not 3560 * support checksumming for this protocol, complete 3561 * checksumming here. 3562 */ 3563 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3564 if (skb->encapsulation) 3565 skb_set_inner_transport_header(skb, 3566 skb_checksum_start_offset(skb)); 3567 else 3568 skb_set_transport_header(skb, 3569 skb_checksum_start_offset(skb)); 3570 if (skb_csum_hwoffload_help(skb, features)) 3571 goto out_kfree_skb; 3572 } 3573 } 3574 3575 skb = validate_xmit_xfrm(skb, features, again); 3576 3577 return skb; 3578 3579 out_kfree_skb: 3580 kfree_skb(skb); 3581 out_null: 3582 atomic_long_inc(&dev->tx_dropped); 3583 return NULL; 3584 } 3585 3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3587 { 3588 struct sk_buff *next, *head = NULL, *tail; 3589 3590 for (; skb != NULL; skb = next) { 3591 next = skb->next; 3592 skb_mark_not_on_list(skb); 3593 3594 /* in case skb wont be segmented, point to itself */ 3595 skb->prev = skb; 3596 3597 skb = validate_xmit_skb(skb, dev, again); 3598 if (!skb) 3599 continue; 3600 3601 if (!head) 3602 head = skb; 3603 else 3604 tail->next = skb; 3605 /* If skb was segmented, skb->prev points to 3606 * the last segment. If not, it still contains skb. 3607 */ 3608 tail = skb->prev; 3609 } 3610 return head; 3611 } 3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3613 3614 static void qdisc_pkt_len_init(struct sk_buff *skb) 3615 { 3616 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3617 3618 qdisc_skb_cb(skb)->pkt_len = skb->len; 3619 3620 /* To get more precise estimation of bytes sent on wire, 3621 * we add to pkt_len the headers size of all segments 3622 */ 3623 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3624 unsigned int hdr_len; 3625 u16 gso_segs = shinfo->gso_segs; 3626 3627 /* mac layer + network layer */ 3628 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3629 3630 /* + transport layer */ 3631 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3632 const struct tcphdr *th; 3633 struct tcphdr _tcphdr; 3634 3635 th = skb_header_pointer(skb, skb_transport_offset(skb), 3636 sizeof(_tcphdr), &_tcphdr); 3637 if (likely(th)) 3638 hdr_len += __tcp_hdrlen(th); 3639 } else { 3640 struct udphdr _udphdr; 3641 3642 if (skb_header_pointer(skb, skb_transport_offset(skb), 3643 sizeof(_udphdr), &_udphdr)) 3644 hdr_len += sizeof(struct udphdr); 3645 } 3646 3647 if (shinfo->gso_type & SKB_GSO_DODGY) 3648 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3649 shinfo->gso_size); 3650 3651 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3652 } 3653 } 3654 3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3656 struct net_device *dev, 3657 struct netdev_queue *txq) 3658 { 3659 spinlock_t *root_lock = qdisc_lock(q); 3660 struct sk_buff *to_free = NULL; 3661 bool contended; 3662 int rc; 3663 3664 qdisc_calculate_pkt_len(skb, q); 3665 3666 if (q->flags & TCQ_F_NOLOCK) { 3667 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3668 qdisc_run(q); 3669 3670 if (unlikely(to_free)) 3671 kfree_skb_list(to_free); 3672 return rc; 3673 } 3674 3675 /* 3676 * Heuristic to force contended enqueues to serialize on a 3677 * separate lock before trying to get qdisc main lock. 3678 * This permits qdisc->running owner to get the lock more 3679 * often and dequeue packets faster. 3680 */ 3681 contended = qdisc_is_running(q); 3682 if (unlikely(contended)) 3683 spin_lock(&q->busylock); 3684 3685 spin_lock(root_lock); 3686 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3687 __qdisc_drop(skb, &to_free); 3688 rc = NET_XMIT_DROP; 3689 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3690 qdisc_run_begin(q)) { 3691 /* 3692 * This is a work-conserving queue; there are no old skbs 3693 * waiting to be sent out; and the qdisc is not running - 3694 * xmit the skb directly. 3695 */ 3696 3697 qdisc_bstats_update(q, skb); 3698 3699 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3700 if (unlikely(contended)) { 3701 spin_unlock(&q->busylock); 3702 contended = false; 3703 } 3704 __qdisc_run(q); 3705 } 3706 3707 qdisc_run_end(q); 3708 rc = NET_XMIT_SUCCESS; 3709 } else { 3710 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3711 if (qdisc_run_begin(q)) { 3712 if (unlikely(contended)) { 3713 spin_unlock(&q->busylock); 3714 contended = false; 3715 } 3716 __qdisc_run(q); 3717 qdisc_run_end(q); 3718 } 3719 } 3720 spin_unlock(root_lock); 3721 if (unlikely(to_free)) 3722 kfree_skb_list(to_free); 3723 if (unlikely(contended)) 3724 spin_unlock(&q->busylock); 3725 return rc; 3726 } 3727 3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3729 static void skb_update_prio(struct sk_buff *skb) 3730 { 3731 const struct netprio_map *map; 3732 const struct sock *sk; 3733 unsigned int prioidx; 3734 3735 if (skb->priority) 3736 return; 3737 map = rcu_dereference_bh(skb->dev->priomap); 3738 if (!map) 3739 return; 3740 sk = skb_to_full_sk(skb); 3741 if (!sk) 3742 return; 3743 3744 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3745 3746 if (prioidx < map->priomap_len) 3747 skb->priority = map->priomap[prioidx]; 3748 } 3749 #else 3750 #define skb_update_prio(skb) 3751 #endif 3752 3753 /** 3754 * dev_loopback_xmit - loop back @skb 3755 * @net: network namespace this loopback is happening in 3756 * @sk: sk needed to be a netfilter okfn 3757 * @skb: buffer to transmit 3758 */ 3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3760 { 3761 skb_reset_mac_header(skb); 3762 __skb_pull(skb, skb_network_offset(skb)); 3763 skb->pkt_type = PACKET_LOOPBACK; 3764 skb->ip_summed = CHECKSUM_UNNECESSARY; 3765 WARN_ON(!skb_dst(skb)); 3766 skb_dst_force(skb); 3767 netif_rx_ni(skb); 3768 return 0; 3769 } 3770 EXPORT_SYMBOL(dev_loopback_xmit); 3771 3772 #ifdef CONFIG_NET_EGRESS 3773 static struct sk_buff * 3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3775 { 3776 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3777 struct tcf_result cl_res; 3778 3779 if (!miniq) 3780 return skb; 3781 3782 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3783 mini_qdisc_bstats_cpu_update(miniq, skb); 3784 3785 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3786 case TC_ACT_OK: 3787 case TC_ACT_RECLASSIFY: 3788 skb->tc_index = TC_H_MIN(cl_res.classid); 3789 break; 3790 case TC_ACT_SHOT: 3791 mini_qdisc_qstats_cpu_drop(miniq); 3792 *ret = NET_XMIT_DROP; 3793 kfree_skb(skb); 3794 return NULL; 3795 case TC_ACT_STOLEN: 3796 case TC_ACT_QUEUED: 3797 case TC_ACT_TRAP: 3798 *ret = NET_XMIT_SUCCESS; 3799 consume_skb(skb); 3800 return NULL; 3801 case TC_ACT_REDIRECT: 3802 /* No need to push/pop skb's mac_header here on egress! */ 3803 skb_do_redirect(skb); 3804 *ret = NET_XMIT_SUCCESS; 3805 return NULL; 3806 default: 3807 break; 3808 } 3809 3810 return skb; 3811 } 3812 #endif /* CONFIG_NET_EGRESS */ 3813 3814 #ifdef CONFIG_XPS 3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3816 struct xps_dev_maps *dev_maps, unsigned int tci) 3817 { 3818 struct xps_map *map; 3819 int queue_index = -1; 3820 3821 if (dev->num_tc) { 3822 tci *= dev->num_tc; 3823 tci += netdev_get_prio_tc_map(dev, skb->priority); 3824 } 3825 3826 map = rcu_dereference(dev_maps->attr_map[tci]); 3827 if (map) { 3828 if (map->len == 1) 3829 queue_index = map->queues[0]; 3830 else 3831 queue_index = map->queues[reciprocal_scale( 3832 skb_get_hash(skb), map->len)]; 3833 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3834 queue_index = -1; 3835 } 3836 return queue_index; 3837 } 3838 #endif 3839 3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3841 struct sk_buff *skb) 3842 { 3843 #ifdef CONFIG_XPS 3844 struct xps_dev_maps *dev_maps; 3845 struct sock *sk = skb->sk; 3846 int queue_index = -1; 3847 3848 if (!static_key_false(&xps_needed)) 3849 return -1; 3850 3851 rcu_read_lock(); 3852 if (!static_key_false(&xps_rxqs_needed)) 3853 goto get_cpus_map; 3854 3855 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3856 if (dev_maps) { 3857 int tci = sk_rx_queue_get(sk); 3858 3859 if (tci >= 0 && tci < dev->num_rx_queues) 3860 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3861 tci); 3862 } 3863 3864 get_cpus_map: 3865 if (queue_index < 0) { 3866 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3867 if (dev_maps) { 3868 unsigned int tci = skb->sender_cpu - 1; 3869 3870 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3871 tci); 3872 } 3873 } 3874 rcu_read_unlock(); 3875 3876 return queue_index; 3877 #else 3878 return -1; 3879 #endif 3880 } 3881 3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3883 struct net_device *sb_dev) 3884 { 3885 return 0; 3886 } 3887 EXPORT_SYMBOL(dev_pick_tx_zero); 3888 3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3890 struct net_device *sb_dev) 3891 { 3892 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3893 } 3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3895 3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3897 struct net_device *sb_dev) 3898 { 3899 struct sock *sk = skb->sk; 3900 int queue_index = sk_tx_queue_get(sk); 3901 3902 sb_dev = sb_dev ? : dev; 3903 3904 if (queue_index < 0 || skb->ooo_okay || 3905 queue_index >= dev->real_num_tx_queues) { 3906 int new_index = get_xps_queue(dev, sb_dev, skb); 3907 3908 if (new_index < 0) 3909 new_index = skb_tx_hash(dev, sb_dev, skb); 3910 3911 if (queue_index != new_index && sk && 3912 sk_fullsock(sk) && 3913 rcu_access_pointer(sk->sk_dst_cache)) 3914 sk_tx_queue_set(sk, new_index); 3915 3916 queue_index = new_index; 3917 } 3918 3919 return queue_index; 3920 } 3921 EXPORT_SYMBOL(netdev_pick_tx); 3922 3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3924 struct sk_buff *skb, 3925 struct net_device *sb_dev) 3926 { 3927 int queue_index = 0; 3928 3929 #ifdef CONFIG_XPS 3930 u32 sender_cpu = skb->sender_cpu - 1; 3931 3932 if (sender_cpu >= (u32)NR_CPUS) 3933 skb->sender_cpu = raw_smp_processor_id() + 1; 3934 #endif 3935 3936 if (dev->real_num_tx_queues != 1) { 3937 const struct net_device_ops *ops = dev->netdev_ops; 3938 3939 if (ops->ndo_select_queue) 3940 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3941 else 3942 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3943 3944 queue_index = netdev_cap_txqueue(dev, queue_index); 3945 } 3946 3947 skb_set_queue_mapping(skb, queue_index); 3948 return netdev_get_tx_queue(dev, queue_index); 3949 } 3950 3951 /** 3952 * __dev_queue_xmit - transmit a buffer 3953 * @skb: buffer to transmit 3954 * @sb_dev: suboordinate device used for L2 forwarding offload 3955 * 3956 * Queue a buffer for transmission to a network device. The caller must 3957 * have set the device and priority and built the buffer before calling 3958 * this function. The function can be called from an interrupt. 3959 * 3960 * A negative errno code is returned on a failure. A success does not 3961 * guarantee the frame will be transmitted as it may be dropped due 3962 * to congestion or traffic shaping. 3963 * 3964 * ----------------------------------------------------------------------------------- 3965 * I notice this method can also return errors from the queue disciplines, 3966 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3967 * be positive. 3968 * 3969 * Regardless of the return value, the skb is consumed, so it is currently 3970 * difficult to retry a send to this method. (You can bump the ref count 3971 * before sending to hold a reference for retry if you are careful.) 3972 * 3973 * When calling this method, interrupts MUST be enabled. This is because 3974 * the BH enable code must have IRQs enabled so that it will not deadlock. 3975 * --BLG 3976 */ 3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3978 { 3979 struct net_device *dev = skb->dev; 3980 struct netdev_queue *txq; 3981 struct Qdisc *q; 3982 int rc = -ENOMEM; 3983 bool again = false; 3984 3985 skb_reset_mac_header(skb); 3986 3987 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3988 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3989 3990 /* Disable soft irqs for various locks below. Also 3991 * stops preemption for RCU. 3992 */ 3993 rcu_read_lock_bh(); 3994 3995 skb_update_prio(skb); 3996 3997 qdisc_pkt_len_init(skb); 3998 #ifdef CONFIG_NET_CLS_ACT 3999 skb->tc_at_ingress = 0; 4000 # ifdef CONFIG_NET_EGRESS 4001 if (static_branch_unlikely(&egress_needed_key)) { 4002 skb = sch_handle_egress(skb, &rc, dev); 4003 if (!skb) 4004 goto out; 4005 } 4006 # endif 4007 #endif 4008 /* If device/qdisc don't need skb->dst, release it right now while 4009 * its hot in this cpu cache. 4010 */ 4011 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4012 skb_dst_drop(skb); 4013 else 4014 skb_dst_force(skb); 4015 4016 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4017 q = rcu_dereference_bh(txq->qdisc); 4018 4019 trace_net_dev_queue(skb); 4020 if (q->enqueue) { 4021 rc = __dev_xmit_skb(skb, q, dev, txq); 4022 goto out; 4023 } 4024 4025 /* The device has no queue. Common case for software devices: 4026 * loopback, all the sorts of tunnels... 4027 4028 * Really, it is unlikely that netif_tx_lock protection is necessary 4029 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4030 * counters.) 4031 * However, it is possible, that they rely on protection 4032 * made by us here. 4033 4034 * Check this and shot the lock. It is not prone from deadlocks. 4035 *Either shot noqueue qdisc, it is even simpler 8) 4036 */ 4037 if (dev->flags & IFF_UP) { 4038 int cpu = smp_processor_id(); /* ok because BHs are off */ 4039 4040 if (txq->xmit_lock_owner != cpu) { 4041 if (dev_xmit_recursion()) 4042 goto recursion_alert; 4043 4044 skb = validate_xmit_skb(skb, dev, &again); 4045 if (!skb) 4046 goto out; 4047 4048 HARD_TX_LOCK(dev, txq, cpu); 4049 4050 if (!netif_xmit_stopped(txq)) { 4051 dev_xmit_recursion_inc(); 4052 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4053 dev_xmit_recursion_dec(); 4054 if (dev_xmit_complete(rc)) { 4055 HARD_TX_UNLOCK(dev, txq); 4056 goto out; 4057 } 4058 } 4059 HARD_TX_UNLOCK(dev, txq); 4060 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4061 dev->name); 4062 } else { 4063 /* Recursion is detected! It is possible, 4064 * unfortunately 4065 */ 4066 recursion_alert: 4067 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4068 dev->name); 4069 } 4070 } 4071 4072 rc = -ENETDOWN; 4073 rcu_read_unlock_bh(); 4074 4075 atomic_long_inc(&dev->tx_dropped); 4076 kfree_skb_list(skb); 4077 return rc; 4078 out: 4079 rcu_read_unlock_bh(); 4080 return rc; 4081 } 4082 4083 int dev_queue_xmit(struct sk_buff *skb) 4084 { 4085 return __dev_queue_xmit(skb, NULL); 4086 } 4087 EXPORT_SYMBOL(dev_queue_xmit); 4088 4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4090 { 4091 return __dev_queue_xmit(skb, sb_dev); 4092 } 4093 EXPORT_SYMBOL(dev_queue_xmit_accel); 4094 4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4096 { 4097 struct net_device *dev = skb->dev; 4098 struct sk_buff *orig_skb = skb; 4099 struct netdev_queue *txq; 4100 int ret = NETDEV_TX_BUSY; 4101 bool again = false; 4102 4103 if (unlikely(!netif_running(dev) || 4104 !netif_carrier_ok(dev))) 4105 goto drop; 4106 4107 skb = validate_xmit_skb_list(skb, dev, &again); 4108 if (skb != orig_skb) 4109 goto drop; 4110 4111 skb_set_queue_mapping(skb, queue_id); 4112 txq = skb_get_tx_queue(dev, skb); 4113 4114 local_bh_disable(); 4115 4116 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4117 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4118 ret = netdev_start_xmit(skb, dev, txq, false); 4119 HARD_TX_UNLOCK(dev, txq); 4120 4121 local_bh_enable(); 4122 4123 if (!dev_xmit_complete(ret)) 4124 kfree_skb(skb); 4125 4126 return ret; 4127 drop: 4128 atomic_long_inc(&dev->tx_dropped); 4129 kfree_skb_list(skb); 4130 return NET_XMIT_DROP; 4131 } 4132 EXPORT_SYMBOL(dev_direct_xmit); 4133 4134 /************************************************************************* 4135 * Receiver routines 4136 *************************************************************************/ 4137 4138 int netdev_max_backlog __read_mostly = 1000; 4139 EXPORT_SYMBOL(netdev_max_backlog); 4140 4141 int netdev_tstamp_prequeue __read_mostly = 1; 4142 int netdev_budget __read_mostly = 300; 4143 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4144 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4145 int weight_p __read_mostly = 64; /* old backlog weight */ 4146 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4147 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4148 int dev_rx_weight __read_mostly = 64; 4149 int dev_tx_weight __read_mostly = 64; 4150 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4151 int gro_normal_batch __read_mostly = 8; 4152 4153 /* Called with irq disabled */ 4154 static inline void ____napi_schedule(struct softnet_data *sd, 4155 struct napi_struct *napi) 4156 { 4157 list_add_tail(&napi->poll_list, &sd->poll_list); 4158 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4159 } 4160 4161 #ifdef CONFIG_RPS 4162 4163 /* One global table that all flow-based protocols share. */ 4164 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4165 EXPORT_SYMBOL(rps_sock_flow_table); 4166 u32 rps_cpu_mask __read_mostly; 4167 EXPORT_SYMBOL(rps_cpu_mask); 4168 4169 struct static_key_false rps_needed __read_mostly; 4170 EXPORT_SYMBOL(rps_needed); 4171 struct static_key_false rfs_needed __read_mostly; 4172 EXPORT_SYMBOL(rfs_needed); 4173 4174 static struct rps_dev_flow * 4175 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4176 struct rps_dev_flow *rflow, u16 next_cpu) 4177 { 4178 if (next_cpu < nr_cpu_ids) { 4179 #ifdef CONFIG_RFS_ACCEL 4180 struct netdev_rx_queue *rxqueue; 4181 struct rps_dev_flow_table *flow_table; 4182 struct rps_dev_flow *old_rflow; 4183 u32 flow_id; 4184 u16 rxq_index; 4185 int rc; 4186 4187 /* Should we steer this flow to a different hardware queue? */ 4188 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4189 !(dev->features & NETIF_F_NTUPLE)) 4190 goto out; 4191 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4192 if (rxq_index == skb_get_rx_queue(skb)) 4193 goto out; 4194 4195 rxqueue = dev->_rx + rxq_index; 4196 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4197 if (!flow_table) 4198 goto out; 4199 flow_id = skb_get_hash(skb) & flow_table->mask; 4200 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4201 rxq_index, flow_id); 4202 if (rc < 0) 4203 goto out; 4204 old_rflow = rflow; 4205 rflow = &flow_table->flows[flow_id]; 4206 rflow->filter = rc; 4207 if (old_rflow->filter == rflow->filter) 4208 old_rflow->filter = RPS_NO_FILTER; 4209 out: 4210 #endif 4211 rflow->last_qtail = 4212 per_cpu(softnet_data, next_cpu).input_queue_head; 4213 } 4214 4215 rflow->cpu = next_cpu; 4216 return rflow; 4217 } 4218 4219 /* 4220 * get_rps_cpu is called from netif_receive_skb and returns the target 4221 * CPU from the RPS map of the receiving queue for a given skb. 4222 * rcu_read_lock must be held on entry. 4223 */ 4224 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4225 struct rps_dev_flow **rflowp) 4226 { 4227 const struct rps_sock_flow_table *sock_flow_table; 4228 struct netdev_rx_queue *rxqueue = dev->_rx; 4229 struct rps_dev_flow_table *flow_table; 4230 struct rps_map *map; 4231 int cpu = -1; 4232 u32 tcpu; 4233 u32 hash; 4234 4235 if (skb_rx_queue_recorded(skb)) { 4236 u16 index = skb_get_rx_queue(skb); 4237 4238 if (unlikely(index >= dev->real_num_rx_queues)) { 4239 WARN_ONCE(dev->real_num_rx_queues > 1, 4240 "%s received packet on queue %u, but number " 4241 "of RX queues is %u\n", 4242 dev->name, index, dev->real_num_rx_queues); 4243 goto done; 4244 } 4245 rxqueue += index; 4246 } 4247 4248 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4249 4250 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4251 map = rcu_dereference(rxqueue->rps_map); 4252 if (!flow_table && !map) 4253 goto done; 4254 4255 skb_reset_network_header(skb); 4256 hash = skb_get_hash(skb); 4257 if (!hash) 4258 goto done; 4259 4260 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4261 if (flow_table && sock_flow_table) { 4262 struct rps_dev_flow *rflow; 4263 u32 next_cpu; 4264 u32 ident; 4265 4266 /* First check into global flow table if there is a match */ 4267 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4268 if ((ident ^ hash) & ~rps_cpu_mask) 4269 goto try_rps; 4270 4271 next_cpu = ident & rps_cpu_mask; 4272 4273 /* OK, now we know there is a match, 4274 * we can look at the local (per receive queue) flow table 4275 */ 4276 rflow = &flow_table->flows[hash & flow_table->mask]; 4277 tcpu = rflow->cpu; 4278 4279 /* 4280 * If the desired CPU (where last recvmsg was done) is 4281 * different from current CPU (one in the rx-queue flow 4282 * table entry), switch if one of the following holds: 4283 * - Current CPU is unset (>= nr_cpu_ids). 4284 * - Current CPU is offline. 4285 * - The current CPU's queue tail has advanced beyond the 4286 * last packet that was enqueued using this table entry. 4287 * This guarantees that all previous packets for the flow 4288 * have been dequeued, thus preserving in order delivery. 4289 */ 4290 if (unlikely(tcpu != next_cpu) && 4291 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4292 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4293 rflow->last_qtail)) >= 0)) { 4294 tcpu = next_cpu; 4295 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4296 } 4297 4298 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4299 *rflowp = rflow; 4300 cpu = tcpu; 4301 goto done; 4302 } 4303 } 4304 4305 try_rps: 4306 4307 if (map) { 4308 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4309 if (cpu_online(tcpu)) { 4310 cpu = tcpu; 4311 goto done; 4312 } 4313 } 4314 4315 done: 4316 return cpu; 4317 } 4318 4319 #ifdef CONFIG_RFS_ACCEL 4320 4321 /** 4322 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4323 * @dev: Device on which the filter was set 4324 * @rxq_index: RX queue index 4325 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4326 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4327 * 4328 * Drivers that implement ndo_rx_flow_steer() should periodically call 4329 * this function for each installed filter and remove the filters for 4330 * which it returns %true. 4331 */ 4332 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4333 u32 flow_id, u16 filter_id) 4334 { 4335 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4336 struct rps_dev_flow_table *flow_table; 4337 struct rps_dev_flow *rflow; 4338 bool expire = true; 4339 unsigned int cpu; 4340 4341 rcu_read_lock(); 4342 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4343 if (flow_table && flow_id <= flow_table->mask) { 4344 rflow = &flow_table->flows[flow_id]; 4345 cpu = READ_ONCE(rflow->cpu); 4346 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4347 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4348 rflow->last_qtail) < 4349 (int)(10 * flow_table->mask))) 4350 expire = false; 4351 } 4352 rcu_read_unlock(); 4353 return expire; 4354 } 4355 EXPORT_SYMBOL(rps_may_expire_flow); 4356 4357 #endif /* CONFIG_RFS_ACCEL */ 4358 4359 /* Called from hardirq (IPI) context */ 4360 static void rps_trigger_softirq(void *data) 4361 { 4362 struct softnet_data *sd = data; 4363 4364 ____napi_schedule(sd, &sd->backlog); 4365 sd->received_rps++; 4366 } 4367 4368 #endif /* CONFIG_RPS */ 4369 4370 /* 4371 * Check if this softnet_data structure is another cpu one 4372 * If yes, queue it to our IPI list and return 1 4373 * If no, return 0 4374 */ 4375 static int rps_ipi_queued(struct softnet_data *sd) 4376 { 4377 #ifdef CONFIG_RPS 4378 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4379 4380 if (sd != mysd) { 4381 sd->rps_ipi_next = mysd->rps_ipi_list; 4382 mysd->rps_ipi_list = sd; 4383 4384 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4385 return 1; 4386 } 4387 #endif /* CONFIG_RPS */ 4388 return 0; 4389 } 4390 4391 #ifdef CONFIG_NET_FLOW_LIMIT 4392 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4393 #endif 4394 4395 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4396 { 4397 #ifdef CONFIG_NET_FLOW_LIMIT 4398 struct sd_flow_limit *fl; 4399 struct softnet_data *sd; 4400 unsigned int old_flow, new_flow; 4401 4402 if (qlen < (netdev_max_backlog >> 1)) 4403 return false; 4404 4405 sd = this_cpu_ptr(&softnet_data); 4406 4407 rcu_read_lock(); 4408 fl = rcu_dereference(sd->flow_limit); 4409 if (fl) { 4410 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4411 old_flow = fl->history[fl->history_head]; 4412 fl->history[fl->history_head] = new_flow; 4413 4414 fl->history_head++; 4415 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4416 4417 if (likely(fl->buckets[old_flow])) 4418 fl->buckets[old_flow]--; 4419 4420 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4421 fl->count++; 4422 rcu_read_unlock(); 4423 return true; 4424 } 4425 } 4426 rcu_read_unlock(); 4427 #endif 4428 return false; 4429 } 4430 4431 /* 4432 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4433 * queue (may be a remote CPU queue). 4434 */ 4435 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4436 unsigned int *qtail) 4437 { 4438 struct softnet_data *sd; 4439 unsigned long flags; 4440 unsigned int qlen; 4441 4442 sd = &per_cpu(softnet_data, cpu); 4443 4444 local_irq_save(flags); 4445 4446 rps_lock(sd); 4447 if (!netif_running(skb->dev)) 4448 goto drop; 4449 qlen = skb_queue_len(&sd->input_pkt_queue); 4450 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4451 if (qlen) { 4452 enqueue: 4453 __skb_queue_tail(&sd->input_pkt_queue, skb); 4454 input_queue_tail_incr_save(sd, qtail); 4455 rps_unlock(sd); 4456 local_irq_restore(flags); 4457 return NET_RX_SUCCESS; 4458 } 4459 4460 /* Schedule NAPI for backlog device 4461 * We can use non atomic operation since we own the queue lock 4462 */ 4463 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4464 if (!rps_ipi_queued(sd)) 4465 ____napi_schedule(sd, &sd->backlog); 4466 } 4467 goto enqueue; 4468 } 4469 4470 drop: 4471 sd->dropped++; 4472 rps_unlock(sd); 4473 4474 local_irq_restore(flags); 4475 4476 atomic_long_inc(&skb->dev->rx_dropped); 4477 kfree_skb(skb); 4478 return NET_RX_DROP; 4479 } 4480 4481 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4482 { 4483 struct net_device *dev = skb->dev; 4484 struct netdev_rx_queue *rxqueue; 4485 4486 rxqueue = dev->_rx; 4487 4488 if (skb_rx_queue_recorded(skb)) { 4489 u16 index = skb_get_rx_queue(skb); 4490 4491 if (unlikely(index >= dev->real_num_rx_queues)) { 4492 WARN_ONCE(dev->real_num_rx_queues > 1, 4493 "%s received packet on queue %u, but number " 4494 "of RX queues is %u\n", 4495 dev->name, index, dev->real_num_rx_queues); 4496 4497 return rxqueue; /* Return first rxqueue */ 4498 } 4499 rxqueue += index; 4500 } 4501 return rxqueue; 4502 } 4503 4504 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4505 struct xdp_buff *xdp, 4506 struct bpf_prog *xdp_prog) 4507 { 4508 struct netdev_rx_queue *rxqueue; 4509 void *orig_data, *orig_data_end; 4510 u32 metalen, act = XDP_DROP; 4511 __be16 orig_eth_type; 4512 struct ethhdr *eth; 4513 bool orig_bcast; 4514 int hlen, off; 4515 u32 mac_len; 4516 4517 /* Reinjected packets coming from act_mirred or similar should 4518 * not get XDP generic processing. 4519 */ 4520 if (skb_is_redirected(skb)) 4521 return XDP_PASS; 4522 4523 /* XDP packets must be linear and must have sufficient headroom 4524 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4525 * native XDP provides, thus we need to do it here as well. 4526 */ 4527 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4528 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4529 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4530 int troom = skb->tail + skb->data_len - skb->end; 4531 4532 /* In case we have to go down the path and also linearize, 4533 * then lets do the pskb_expand_head() work just once here. 4534 */ 4535 if (pskb_expand_head(skb, 4536 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4537 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4538 goto do_drop; 4539 if (skb_linearize(skb)) 4540 goto do_drop; 4541 } 4542 4543 /* The XDP program wants to see the packet starting at the MAC 4544 * header. 4545 */ 4546 mac_len = skb->data - skb_mac_header(skb); 4547 hlen = skb_headlen(skb) + mac_len; 4548 xdp->data = skb->data - mac_len; 4549 xdp->data_meta = xdp->data; 4550 xdp->data_end = xdp->data + hlen; 4551 xdp->data_hard_start = skb->data - skb_headroom(skb); 4552 orig_data_end = xdp->data_end; 4553 orig_data = xdp->data; 4554 eth = (struct ethhdr *)xdp->data; 4555 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4556 orig_eth_type = eth->h_proto; 4557 4558 rxqueue = netif_get_rxqueue(skb); 4559 xdp->rxq = &rxqueue->xdp_rxq; 4560 4561 act = bpf_prog_run_xdp(xdp_prog, xdp); 4562 4563 /* check if bpf_xdp_adjust_head was used */ 4564 off = xdp->data - orig_data; 4565 if (off) { 4566 if (off > 0) 4567 __skb_pull(skb, off); 4568 else if (off < 0) 4569 __skb_push(skb, -off); 4570 4571 skb->mac_header += off; 4572 skb_reset_network_header(skb); 4573 } 4574 4575 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4576 * pckt. 4577 */ 4578 off = orig_data_end - xdp->data_end; 4579 if (off != 0) { 4580 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4581 skb->len -= off; 4582 4583 } 4584 4585 /* check if XDP changed eth hdr such SKB needs update */ 4586 eth = (struct ethhdr *)xdp->data; 4587 if ((orig_eth_type != eth->h_proto) || 4588 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4589 __skb_push(skb, ETH_HLEN); 4590 skb->protocol = eth_type_trans(skb, skb->dev); 4591 } 4592 4593 switch (act) { 4594 case XDP_REDIRECT: 4595 case XDP_TX: 4596 __skb_push(skb, mac_len); 4597 break; 4598 case XDP_PASS: 4599 metalen = xdp->data - xdp->data_meta; 4600 if (metalen) 4601 skb_metadata_set(skb, metalen); 4602 break; 4603 default: 4604 bpf_warn_invalid_xdp_action(act); 4605 /* fall through */ 4606 case XDP_ABORTED: 4607 trace_xdp_exception(skb->dev, xdp_prog, act); 4608 /* fall through */ 4609 case XDP_DROP: 4610 do_drop: 4611 kfree_skb(skb); 4612 break; 4613 } 4614 4615 return act; 4616 } 4617 4618 /* When doing generic XDP we have to bypass the qdisc layer and the 4619 * network taps in order to match in-driver-XDP behavior. 4620 */ 4621 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4622 { 4623 struct net_device *dev = skb->dev; 4624 struct netdev_queue *txq; 4625 bool free_skb = true; 4626 int cpu, rc; 4627 4628 txq = netdev_core_pick_tx(dev, skb, NULL); 4629 cpu = smp_processor_id(); 4630 HARD_TX_LOCK(dev, txq, cpu); 4631 if (!netif_xmit_stopped(txq)) { 4632 rc = netdev_start_xmit(skb, dev, txq, 0); 4633 if (dev_xmit_complete(rc)) 4634 free_skb = false; 4635 } 4636 HARD_TX_UNLOCK(dev, txq); 4637 if (free_skb) { 4638 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4639 kfree_skb(skb); 4640 } 4641 } 4642 4643 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4644 4645 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4646 { 4647 if (xdp_prog) { 4648 struct xdp_buff xdp; 4649 u32 act; 4650 int err; 4651 4652 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4653 if (act != XDP_PASS) { 4654 switch (act) { 4655 case XDP_REDIRECT: 4656 err = xdp_do_generic_redirect(skb->dev, skb, 4657 &xdp, xdp_prog); 4658 if (err) 4659 goto out_redir; 4660 break; 4661 case XDP_TX: 4662 generic_xdp_tx(skb, xdp_prog); 4663 break; 4664 } 4665 return XDP_DROP; 4666 } 4667 } 4668 return XDP_PASS; 4669 out_redir: 4670 kfree_skb(skb); 4671 return XDP_DROP; 4672 } 4673 EXPORT_SYMBOL_GPL(do_xdp_generic); 4674 4675 static int netif_rx_internal(struct sk_buff *skb) 4676 { 4677 int ret; 4678 4679 net_timestamp_check(netdev_tstamp_prequeue, skb); 4680 4681 trace_netif_rx(skb); 4682 4683 #ifdef CONFIG_RPS 4684 if (static_branch_unlikely(&rps_needed)) { 4685 struct rps_dev_flow voidflow, *rflow = &voidflow; 4686 int cpu; 4687 4688 preempt_disable(); 4689 rcu_read_lock(); 4690 4691 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4692 if (cpu < 0) 4693 cpu = smp_processor_id(); 4694 4695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4696 4697 rcu_read_unlock(); 4698 preempt_enable(); 4699 } else 4700 #endif 4701 { 4702 unsigned int qtail; 4703 4704 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4705 put_cpu(); 4706 } 4707 return ret; 4708 } 4709 4710 /** 4711 * netif_rx - post buffer to the network code 4712 * @skb: buffer to post 4713 * 4714 * This function receives a packet from a device driver and queues it for 4715 * the upper (protocol) levels to process. It always succeeds. The buffer 4716 * may be dropped during processing for congestion control or by the 4717 * protocol layers. 4718 * 4719 * return values: 4720 * NET_RX_SUCCESS (no congestion) 4721 * NET_RX_DROP (packet was dropped) 4722 * 4723 */ 4724 4725 int netif_rx(struct sk_buff *skb) 4726 { 4727 int ret; 4728 4729 trace_netif_rx_entry(skb); 4730 4731 ret = netif_rx_internal(skb); 4732 trace_netif_rx_exit(ret); 4733 4734 return ret; 4735 } 4736 EXPORT_SYMBOL(netif_rx); 4737 4738 int netif_rx_ni(struct sk_buff *skb) 4739 { 4740 int err; 4741 4742 trace_netif_rx_ni_entry(skb); 4743 4744 preempt_disable(); 4745 err = netif_rx_internal(skb); 4746 if (local_softirq_pending()) 4747 do_softirq(); 4748 preempt_enable(); 4749 trace_netif_rx_ni_exit(err); 4750 4751 return err; 4752 } 4753 EXPORT_SYMBOL(netif_rx_ni); 4754 4755 static __latent_entropy void net_tx_action(struct softirq_action *h) 4756 { 4757 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4758 4759 if (sd->completion_queue) { 4760 struct sk_buff *clist; 4761 4762 local_irq_disable(); 4763 clist = sd->completion_queue; 4764 sd->completion_queue = NULL; 4765 local_irq_enable(); 4766 4767 while (clist) { 4768 struct sk_buff *skb = clist; 4769 4770 clist = clist->next; 4771 4772 WARN_ON(refcount_read(&skb->users)); 4773 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4774 trace_consume_skb(skb); 4775 else 4776 trace_kfree_skb(skb, net_tx_action); 4777 4778 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4779 __kfree_skb(skb); 4780 else 4781 __kfree_skb_defer(skb); 4782 } 4783 4784 __kfree_skb_flush(); 4785 } 4786 4787 if (sd->output_queue) { 4788 struct Qdisc *head; 4789 4790 local_irq_disable(); 4791 head = sd->output_queue; 4792 sd->output_queue = NULL; 4793 sd->output_queue_tailp = &sd->output_queue; 4794 local_irq_enable(); 4795 4796 while (head) { 4797 struct Qdisc *q = head; 4798 spinlock_t *root_lock = NULL; 4799 4800 head = head->next_sched; 4801 4802 if (!(q->flags & TCQ_F_NOLOCK)) { 4803 root_lock = qdisc_lock(q); 4804 spin_lock(root_lock); 4805 } 4806 /* We need to make sure head->next_sched is read 4807 * before clearing __QDISC_STATE_SCHED 4808 */ 4809 smp_mb__before_atomic(); 4810 clear_bit(__QDISC_STATE_SCHED, &q->state); 4811 qdisc_run(q); 4812 if (root_lock) 4813 spin_unlock(root_lock); 4814 } 4815 } 4816 4817 xfrm_dev_backlog(sd); 4818 } 4819 4820 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4821 /* This hook is defined here for ATM LANE */ 4822 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4823 unsigned char *addr) __read_mostly; 4824 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4825 #endif 4826 4827 static inline struct sk_buff * 4828 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4829 struct net_device *orig_dev) 4830 { 4831 #ifdef CONFIG_NET_CLS_ACT 4832 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4833 struct tcf_result cl_res; 4834 4835 /* If there's at least one ingress present somewhere (so 4836 * we get here via enabled static key), remaining devices 4837 * that are not configured with an ingress qdisc will bail 4838 * out here. 4839 */ 4840 if (!miniq) 4841 return skb; 4842 4843 if (*pt_prev) { 4844 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4845 *pt_prev = NULL; 4846 } 4847 4848 qdisc_skb_cb(skb)->pkt_len = skb->len; 4849 skb->tc_at_ingress = 1; 4850 mini_qdisc_bstats_cpu_update(miniq, skb); 4851 4852 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4853 &cl_res, false)) { 4854 case TC_ACT_OK: 4855 case TC_ACT_RECLASSIFY: 4856 skb->tc_index = TC_H_MIN(cl_res.classid); 4857 break; 4858 case TC_ACT_SHOT: 4859 mini_qdisc_qstats_cpu_drop(miniq); 4860 kfree_skb(skb); 4861 return NULL; 4862 case TC_ACT_STOLEN: 4863 case TC_ACT_QUEUED: 4864 case TC_ACT_TRAP: 4865 consume_skb(skb); 4866 return NULL; 4867 case TC_ACT_REDIRECT: 4868 /* skb_mac_header check was done by cls/act_bpf, so 4869 * we can safely push the L2 header back before 4870 * redirecting to another netdev 4871 */ 4872 __skb_push(skb, skb->mac_len); 4873 skb_do_redirect(skb); 4874 return NULL; 4875 case TC_ACT_CONSUMED: 4876 return NULL; 4877 default: 4878 break; 4879 } 4880 #endif /* CONFIG_NET_CLS_ACT */ 4881 return skb; 4882 } 4883 4884 /** 4885 * netdev_is_rx_handler_busy - check if receive handler is registered 4886 * @dev: device to check 4887 * 4888 * Check if a receive handler is already registered for a given device. 4889 * Return true if there one. 4890 * 4891 * The caller must hold the rtnl_mutex. 4892 */ 4893 bool netdev_is_rx_handler_busy(struct net_device *dev) 4894 { 4895 ASSERT_RTNL(); 4896 return dev && rtnl_dereference(dev->rx_handler); 4897 } 4898 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4899 4900 /** 4901 * netdev_rx_handler_register - register receive handler 4902 * @dev: device to register a handler for 4903 * @rx_handler: receive handler to register 4904 * @rx_handler_data: data pointer that is used by rx handler 4905 * 4906 * Register a receive handler for a device. This handler will then be 4907 * called from __netif_receive_skb. A negative errno code is returned 4908 * on a failure. 4909 * 4910 * The caller must hold the rtnl_mutex. 4911 * 4912 * For a general description of rx_handler, see enum rx_handler_result. 4913 */ 4914 int netdev_rx_handler_register(struct net_device *dev, 4915 rx_handler_func_t *rx_handler, 4916 void *rx_handler_data) 4917 { 4918 if (netdev_is_rx_handler_busy(dev)) 4919 return -EBUSY; 4920 4921 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4922 return -EINVAL; 4923 4924 /* Note: rx_handler_data must be set before rx_handler */ 4925 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4926 rcu_assign_pointer(dev->rx_handler, rx_handler); 4927 4928 return 0; 4929 } 4930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4931 4932 /** 4933 * netdev_rx_handler_unregister - unregister receive handler 4934 * @dev: device to unregister a handler from 4935 * 4936 * Unregister a receive handler from a device. 4937 * 4938 * The caller must hold the rtnl_mutex. 4939 */ 4940 void netdev_rx_handler_unregister(struct net_device *dev) 4941 { 4942 4943 ASSERT_RTNL(); 4944 RCU_INIT_POINTER(dev->rx_handler, NULL); 4945 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4946 * section has a guarantee to see a non NULL rx_handler_data 4947 * as well. 4948 */ 4949 synchronize_net(); 4950 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4951 } 4952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4953 4954 /* 4955 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4956 * the special handling of PFMEMALLOC skbs. 4957 */ 4958 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4959 { 4960 switch (skb->protocol) { 4961 case htons(ETH_P_ARP): 4962 case htons(ETH_P_IP): 4963 case htons(ETH_P_IPV6): 4964 case htons(ETH_P_8021Q): 4965 case htons(ETH_P_8021AD): 4966 return true; 4967 default: 4968 return false; 4969 } 4970 } 4971 4972 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4973 int *ret, struct net_device *orig_dev) 4974 { 4975 if (nf_hook_ingress_active(skb)) { 4976 int ingress_retval; 4977 4978 if (*pt_prev) { 4979 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4980 *pt_prev = NULL; 4981 } 4982 4983 rcu_read_lock(); 4984 ingress_retval = nf_hook_ingress(skb); 4985 rcu_read_unlock(); 4986 return ingress_retval; 4987 } 4988 return 0; 4989 } 4990 4991 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4992 struct packet_type **ppt_prev) 4993 { 4994 struct packet_type *ptype, *pt_prev; 4995 rx_handler_func_t *rx_handler; 4996 struct net_device *orig_dev; 4997 bool deliver_exact = false; 4998 int ret = NET_RX_DROP; 4999 __be16 type; 5000 5001 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5002 5003 trace_netif_receive_skb(skb); 5004 5005 orig_dev = skb->dev; 5006 5007 skb_reset_network_header(skb); 5008 if (!skb_transport_header_was_set(skb)) 5009 skb_reset_transport_header(skb); 5010 skb_reset_mac_len(skb); 5011 5012 pt_prev = NULL; 5013 5014 another_round: 5015 skb->skb_iif = skb->dev->ifindex; 5016 5017 __this_cpu_inc(softnet_data.processed); 5018 5019 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5020 int ret2; 5021 5022 preempt_disable(); 5023 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5024 preempt_enable(); 5025 5026 if (ret2 != XDP_PASS) 5027 return NET_RX_DROP; 5028 skb_reset_mac_len(skb); 5029 } 5030 5031 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5032 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5033 skb = skb_vlan_untag(skb); 5034 if (unlikely(!skb)) 5035 goto out; 5036 } 5037 5038 if (skb_skip_tc_classify(skb)) 5039 goto skip_classify; 5040 5041 if (pfmemalloc) 5042 goto skip_taps; 5043 5044 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5045 if (pt_prev) 5046 ret = deliver_skb(skb, pt_prev, orig_dev); 5047 pt_prev = ptype; 5048 } 5049 5050 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5051 if (pt_prev) 5052 ret = deliver_skb(skb, pt_prev, orig_dev); 5053 pt_prev = ptype; 5054 } 5055 5056 skip_taps: 5057 #ifdef CONFIG_NET_INGRESS 5058 if (static_branch_unlikely(&ingress_needed_key)) { 5059 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5060 if (!skb) 5061 goto out; 5062 5063 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5064 goto out; 5065 } 5066 #endif 5067 skb_reset_redirect(skb); 5068 skip_classify: 5069 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5070 goto drop; 5071 5072 if (skb_vlan_tag_present(skb)) { 5073 if (pt_prev) { 5074 ret = deliver_skb(skb, pt_prev, orig_dev); 5075 pt_prev = NULL; 5076 } 5077 if (vlan_do_receive(&skb)) 5078 goto another_round; 5079 else if (unlikely(!skb)) 5080 goto out; 5081 } 5082 5083 rx_handler = rcu_dereference(skb->dev->rx_handler); 5084 if (rx_handler) { 5085 if (pt_prev) { 5086 ret = deliver_skb(skb, pt_prev, orig_dev); 5087 pt_prev = NULL; 5088 } 5089 switch (rx_handler(&skb)) { 5090 case RX_HANDLER_CONSUMED: 5091 ret = NET_RX_SUCCESS; 5092 goto out; 5093 case RX_HANDLER_ANOTHER: 5094 goto another_round; 5095 case RX_HANDLER_EXACT: 5096 deliver_exact = true; 5097 case RX_HANDLER_PASS: 5098 break; 5099 default: 5100 BUG(); 5101 } 5102 } 5103 5104 if (unlikely(skb_vlan_tag_present(skb))) { 5105 check_vlan_id: 5106 if (skb_vlan_tag_get_id(skb)) { 5107 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5108 * find vlan device. 5109 */ 5110 skb->pkt_type = PACKET_OTHERHOST; 5111 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5112 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5113 /* Outer header is 802.1P with vlan 0, inner header is 5114 * 802.1Q or 802.1AD and vlan_do_receive() above could 5115 * not find vlan dev for vlan id 0. 5116 */ 5117 __vlan_hwaccel_clear_tag(skb); 5118 skb = skb_vlan_untag(skb); 5119 if (unlikely(!skb)) 5120 goto out; 5121 if (vlan_do_receive(&skb)) 5122 /* After stripping off 802.1P header with vlan 0 5123 * vlan dev is found for inner header. 5124 */ 5125 goto another_round; 5126 else if (unlikely(!skb)) 5127 goto out; 5128 else 5129 /* We have stripped outer 802.1P vlan 0 header. 5130 * But could not find vlan dev. 5131 * check again for vlan id to set OTHERHOST. 5132 */ 5133 goto check_vlan_id; 5134 } 5135 /* Note: we might in the future use prio bits 5136 * and set skb->priority like in vlan_do_receive() 5137 * For the time being, just ignore Priority Code Point 5138 */ 5139 __vlan_hwaccel_clear_tag(skb); 5140 } 5141 5142 type = skb->protocol; 5143 5144 /* deliver only exact match when indicated */ 5145 if (likely(!deliver_exact)) { 5146 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5147 &ptype_base[ntohs(type) & 5148 PTYPE_HASH_MASK]); 5149 } 5150 5151 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5152 &orig_dev->ptype_specific); 5153 5154 if (unlikely(skb->dev != orig_dev)) { 5155 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5156 &skb->dev->ptype_specific); 5157 } 5158 5159 if (pt_prev) { 5160 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5161 goto drop; 5162 *ppt_prev = pt_prev; 5163 } else { 5164 drop: 5165 if (!deliver_exact) 5166 atomic_long_inc(&skb->dev->rx_dropped); 5167 else 5168 atomic_long_inc(&skb->dev->rx_nohandler); 5169 kfree_skb(skb); 5170 /* Jamal, now you will not able to escape explaining 5171 * me how you were going to use this. :-) 5172 */ 5173 ret = NET_RX_DROP; 5174 } 5175 5176 out: 5177 return ret; 5178 } 5179 5180 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5181 { 5182 struct net_device *orig_dev = skb->dev; 5183 struct packet_type *pt_prev = NULL; 5184 int ret; 5185 5186 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5187 if (pt_prev) 5188 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5189 skb->dev, pt_prev, orig_dev); 5190 return ret; 5191 } 5192 5193 /** 5194 * netif_receive_skb_core - special purpose version of netif_receive_skb 5195 * @skb: buffer to process 5196 * 5197 * More direct receive version of netif_receive_skb(). It should 5198 * only be used by callers that have a need to skip RPS and Generic XDP. 5199 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5200 * 5201 * This function may only be called from softirq context and interrupts 5202 * should be enabled. 5203 * 5204 * Return values (usually ignored): 5205 * NET_RX_SUCCESS: no congestion 5206 * NET_RX_DROP: packet was dropped 5207 */ 5208 int netif_receive_skb_core(struct sk_buff *skb) 5209 { 5210 int ret; 5211 5212 rcu_read_lock(); 5213 ret = __netif_receive_skb_one_core(skb, false); 5214 rcu_read_unlock(); 5215 5216 return ret; 5217 } 5218 EXPORT_SYMBOL(netif_receive_skb_core); 5219 5220 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5221 struct packet_type *pt_prev, 5222 struct net_device *orig_dev) 5223 { 5224 struct sk_buff *skb, *next; 5225 5226 if (!pt_prev) 5227 return; 5228 if (list_empty(head)) 5229 return; 5230 if (pt_prev->list_func != NULL) 5231 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5232 ip_list_rcv, head, pt_prev, orig_dev); 5233 else 5234 list_for_each_entry_safe(skb, next, head, list) { 5235 skb_list_del_init(skb); 5236 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5237 } 5238 } 5239 5240 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5241 { 5242 /* Fast-path assumptions: 5243 * - There is no RX handler. 5244 * - Only one packet_type matches. 5245 * If either of these fails, we will end up doing some per-packet 5246 * processing in-line, then handling the 'last ptype' for the whole 5247 * sublist. This can't cause out-of-order delivery to any single ptype, 5248 * because the 'last ptype' must be constant across the sublist, and all 5249 * other ptypes are handled per-packet. 5250 */ 5251 /* Current (common) ptype of sublist */ 5252 struct packet_type *pt_curr = NULL; 5253 /* Current (common) orig_dev of sublist */ 5254 struct net_device *od_curr = NULL; 5255 struct list_head sublist; 5256 struct sk_buff *skb, *next; 5257 5258 INIT_LIST_HEAD(&sublist); 5259 list_for_each_entry_safe(skb, next, head, list) { 5260 struct net_device *orig_dev = skb->dev; 5261 struct packet_type *pt_prev = NULL; 5262 5263 skb_list_del_init(skb); 5264 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5265 if (!pt_prev) 5266 continue; 5267 if (pt_curr != pt_prev || od_curr != orig_dev) { 5268 /* dispatch old sublist */ 5269 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5270 /* start new sublist */ 5271 INIT_LIST_HEAD(&sublist); 5272 pt_curr = pt_prev; 5273 od_curr = orig_dev; 5274 } 5275 list_add_tail(&skb->list, &sublist); 5276 } 5277 5278 /* dispatch final sublist */ 5279 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5280 } 5281 5282 static int __netif_receive_skb(struct sk_buff *skb) 5283 { 5284 int ret; 5285 5286 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5287 unsigned int noreclaim_flag; 5288 5289 /* 5290 * PFMEMALLOC skbs are special, they should 5291 * - be delivered to SOCK_MEMALLOC sockets only 5292 * - stay away from userspace 5293 * - have bounded memory usage 5294 * 5295 * Use PF_MEMALLOC as this saves us from propagating the allocation 5296 * context down to all allocation sites. 5297 */ 5298 noreclaim_flag = memalloc_noreclaim_save(); 5299 ret = __netif_receive_skb_one_core(skb, true); 5300 memalloc_noreclaim_restore(noreclaim_flag); 5301 } else 5302 ret = __netif_receive_skb_one_core(skb, false); 5303 5304 return ret; 5305 } 5306 5307 static void __netif_receive_skb_list(struct list_head *head) 5308 { 5309 unsigned long noreclaim_flag = 0; 5310 struct sk_buff *skb, *next; 5311 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5312 5313 list_for_each_entry_safe(skb, next, head, list) { 5314 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5315 struct list_head sublist; 5316 5317 /* Handle the previous sublist */ 5318 list_cut_before(&sublist, head, &skb->list); 5319 if (!list_empty(&sublist)) 5320 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5321 pfmemalloc = !pfmemalloc; 5322 /* See comments in __netif_receive_skb */ 5323 if (pfmemalloc) 5324 noreclaim_flag = memalloc_noreclaim_save(); 5325 else 5326 memalloc_noreclaim_restore(noreclaim_flag); 5327 } 5328 } 5329 /* Handle the remaining sublist */ 5330 if (!list_empty(head)) 5331 __netif_receive_skb_list_core(head, pfmemalloc); 5332 /* Restore pflags */ 5333 if (pfmemalloc) 5334 memalloc_noreclaim_restore(noreclaim_flag); 5335 } 5336 5337 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5338 { 5339 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5340 struct bpf_prog *new = xdp->prog; 5341 int ret = 0; 5342 5343 switch (xdp->command) { 5344 case XDP_SETUP_PROG: 5345 rcu_assign_pointer(dev->xdp_prog, new); 5346 if (old) 5347 bpf_prog_put(old); 5348 5349 if (old && !new) { 5350 static_branch_dec(&generic_xdp_needed_key); 5351 } else if (new && !old) { 5352 static_branch_inc(&generic_xdp_needed_key); 5353 dev_disable_lro(dev); 5354 dev_disable_gro_hw(dev); 5355 } 5356 break; 5357 5358 case XDP_QUERY_PROG: 5359 xdp->prog_id = old ? old->aux->id : 0; 5360 break; 5361 5362 default: 5363 ret = -EINVAL; 5364 break; 5365 } 5366 5367 return ret; 5368 } 5369 5370 static int netif_receive_skb_internal(struct sk_buff *skb) 5371 { 5372 int ret; 5373 5374 net_timestamp_check(netdev_tstamp_prequeue, skb); 5375 5376 if (skb_defer_rx_timestamp(skb)) 5377 return NET_RX_SUCCESS; 5378 5379 rcu_read_lock(); 5380 #ifdef CONFIG_RPS 5381 if (static_branch_unlikely(&rps_needed)) { 5382 struct rps_dev_flow voidflow, *rflow = &voidflow; 5383 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5384 5385 if (cpu >= 0) { 5386 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5387 rcu_read_unlock(); 5388 return ret; 5389 } 5390 } 5391 #endif 5392 ret = __netif_receive_skb(skb); 5393 rcu_read_unlock(); 5394 return ret; 5395 } 5396 5397 static void netif_receive_skb_list_internal(struct list_head *head) 5398 { 5399 struct sk_buff *skb, *next; 5400 struct list_head sublist; 5401 5402 INIT_LIST_HEAD(&sublist); 5403 list_for_each_entry_safe(skb, next, head, list) { 5404 net_timestamp_check(netdev_tstamp_prequeue, skb); 5405 skb_list_del_init(skb); 5406 if (!skb_defer_rx_timestamp(skb)) 5407 list_add_tail(&skb->list, &sublist); 5408 } 5409 list_splice_init(&sublist, head); 5410 5411 rcu_read_lock(); 5412 #ifdef CONFIG_RPS 5413 if (static_branch_unlikely(&rps_needed)) { 5414 list_for_each_entry_safe(skb, next, head, list) { 5415 struct rps_dev_flow voidflow, *rflow = &voidflow; 5416 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5417 5418 if (cpu >= 0) { 5419 /* Will be handled, remove from list */ 5420 skb_list_del_init(skb); 5421 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5422 } 5423 } 5424 } 5425 #endif 5426 __netif_receive_skb_list(head); 5427 rcu_read_unlock(); 5428 } 5429 5430 /** 5431 * netif_receive_skb - process receive buffer from network 5432 * @skb: buffer to process 5433 * 5434 * netif_receive_skb() is the main receive data processing function. 5435 * It always succeeds. The buffer may be dropped during processing 5436 * for congestion control or by the protocol layers. 5437 * 5438 * This function may only be called from softirq context and interrupts 5439 * should be enabled. 5440 * 5441 * Return values (usually ignored): 5442 * NET_RX_SUCCESS: no congestion 5443 * NET_RX_DROP: packet was dropped 5444 */ 5445 int netif_receive_skb(struct sk_buff *skb) 5446 { 5447 int ret; 5448 5449 trace_netif_receive_skb_entry(skb); 5450 5451 ret = netif_receive_skb_internal(skb); 5452 trace_netif_receive_skb_exit(ret); 5453 5454 return ret; 5455 } 5456 EXPORT_SYMBOL(netif_receive_skb); 5457 5458 /** 5459 * netif_receive_skb_list - process many receive buffers from network 5460 * @head: list of skbs to process. 5461 * 5462 * Since return value of netif_receive_skb() is normally ignored, and 5463 * wouldn't be meaningful for a list, this function returns void. 5464 * 5465 * This function may only be called from softirq context and interrupts 5466 * should be enabled. 5467 */ 5468 void netif_receive_skb_list(struct list_head *head) 5469 { 5470 struct sk_buff *skb; 5471 5472 if (list_empty(head)) 5473 return; 5474 if (trace_netif_receive_skb_list_entry_enabled()) { 5475 list_for_each_entry(skb, head, list) 5476 trace_netif_receive_skb_list_entry(skb); 5477 } 5478 netif_receive_skb_list_internal(head); 5479 trace_netif_receive_skb_list_exit(0); 5480 } 5481 EXPORT_SYMBOL(netif_receive_skb_list); 5482 5483 DEFINE_PER_CPU(struct work_struct, flush_works); 5484 5485 /* Network device is going away, flush any packets still pending */ 5486 static void flush_backlog(struct work_struct *work) 5487 { 5488 struct sk_buff *skb, *tmp; 5489 struct softnet_data *sd; 5490 5491 local_bh_disable(); 5492 sd = this_cpu_ptr(&softnet_data); 5493 5494 local_irq_disable(); 5495 rps_lock(sd); 5496 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5497 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5498 __skb_unlink(skb, &sd->input_pkt_queue); 5499 kfree_skb(skb); 5500 input_queue_head_incr(sd); 5501 } 5502 } 5503 rps_unlock(sd); 5504 local_irq_enable(); 5505 5506 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5507 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5508 __skb_unlink(skb, &sd->process_queue); 5509 kfree_skb(skb); 5510 input_queue_head_incr(sd); 5511 } 5512 } 5513 local_bh_enable(); 5514 } 5515 5516 static void flush_all_backlogs(void) 5517 { 5518 unsigned int cpu; 5519 5520 get_online_cpus(); 5521 5522 for_each_online_cpu(cpu) 5523 queue_work_on(cpu, system_highpri_wq, 5524 per_cpu_ptr(&flush_works, cpu)); 5525 5526 for_each_online_cpu(cpu) 5527 flush_work(per_cpu_ptr(&flush_works, cpu)); 5528 5529 put_online_cpus(); 5530 } 5531 5532 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5533 static void gro_normal_list(struct napi_struct *napi) 5534 { 5535 if (!napi->rx_count) 5536 return; 5537 netif_receive_skb_list_internal(&napi->rx_list); 5538 INIT_LIST_HEAD(&napi->rx_list); 5539 napi->rx_count = 0; 5540 } 5541 5542 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5543 * pass the whole batch up to the stack. 5544 */ 5545 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5546 { 5547 list_add_tail(&skb->list, &napi->rx_list); 5548 if (++napi->rx_count >= gro_normal_batch) 5549 gro_normal_list(napi); 5550 } 5551 5552 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5553 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5554 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5555 { 5556 struct packet_offload *ptype; 5557 __be16 type = skb->protocol; 5558 struct list_head *head = &offload_base; 5559 int err = -ENOENT; 5560 5561 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5562 5563 if (NAPI_GRO_CB(skb)->count == 1) { 5564 skb_shinfo(skb)->gso_size = 0; 5565 goto out; 5566 } 5567 5568 rcu_read_lock(); 5569 list_for_each_entry_rcu(ptype, head, list) { 5570 if (ptype->type != type || !ptype->callbacks.gro_complete) 5571 continue; 5572 5573 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5574 ipv6_gro_complete, inet_gro_complete, 5575 skb, 0); 5576 break; 5577 } 5578 rcu_read_unlock(); 5579 5580 if (err) { 5581 WARN_ON(&ptype->list == head); 5582 kfree_skb(skb); 5583 return NET_RX_SUCCESS; 5584 } 5585 5586 out: 5587 gro_normal_one(napi, skb); 5588 return NET_RX_SUCCESS; 5589 } 5590 5591 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5592 bool flush_old) 5593 { 5594 struct list_head *head = &napi->gro_hash[index].list; 5595 struct sk_buff *skb, *p; 5596 5597 list_for_each_entry_safe_reverse(skb, p, head, list) { 5598 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5599 return; 5600 skb_list_del_init(skb); 5601 napi_gro_complete(napi, skb); 5602 napi->gro_hash[index].count--; 5603 } 5604 5605 if (!napi->gro_hash[index].count) 5606 __clear_bit(index, &napi->gro_bitmask); 5607 } 5608 5609 /* napi->gro_hash[].list contains packets ordered by age. 5610 * youngest packets at the head of it. 5611 * Complete skbs in reverse order to reduce latencies. 5612 */ 5613 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5614 { 5615 unsigned long bitmask = napi->gro_bitmask; 5616 unsigned int i, base = ~0U; 5617 5618 while ((i = ffs(bitmask)) != 0) { 5619 bitmask >>= i; 5620 base += i; 5621 __napi_gro_flush_chain(napi, base, flush_old); 5622 } 5623 } 5624 EXPORT_SYMBOL(napi_gro_flush); 5625 5626 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5627 struct sk_buff *skb) 5628 { 5629 unsigned int maclen = skb->dev->hard_header_len; 5630 u32 hash = skb_get_hash_raw(skb); 5631 struct list_head *head; 5632 struct sk_buff *p; 5633 5634 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5635 list_for_each_entry(p, head, list) { 5636 unsigned long diffs; 5637 5638 NAPI_GRO_CB(p)->flush = 0; 5639 5640 if (hash != skb_get_hash_raw(p)) { 5641 NAPI_GRO_CB(p)->same_flow = 0; 5642 continue; 5643 } 5644 5645 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5646 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5647 if (skb_vlan_tag_present(p)) 5648 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5649 diffs |= skb_metadata_dst_cmp(p, skb); 5650 diffs |= skb_metadata_differs(p, skb); 5651 if (maclen == ETH_HLEN) 5652 diffs |= compare_ether_header(skb_mac_header(p), 5653 skb_mac_header(skb)); 5654 else if (!diffs) 5655 diffs = memcmp(skb_mac_header(p), 5656 skb_mac_header(skb), 5657 maclen); 5658 NAPI_GRO_CB(p)->same_flow = !diffs; 5659 } 5660 5661 return head; 5662 } 5663 5664 static void skb_gro_reset_offset(struct sk_buff *skb) 5665 { 5666 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5667 const skb_frag_t *frag0 = &pinfo->frags[0]; 5668 5669 NAPI_GRO_CB(skb)->data_offset = 0; 5670 NAPI_GRO_CB(skb)->frag0 = NULL; 5671 NAPI_GRO_CB(skb)->frag0_len = 0; 5672 5673 if (!skb_headlen(skb) && pinfo->nr_frags && 5674 !PageHighMem(skb_frag_page(frag0))) { 5675 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5676 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5677 skb_frag_size(frag0), 5678 skb->end - skb->tail); 5679 } 5680 } 5681 5682 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5683 { 5684 struct skb_shared_info *pinfo = skb_shinfo(skb); 5685 5686 BUG_ON(skb->end - skb->tail < grow); 5687 5688 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5689 5690 skb->data_len -= grow; 5691 skb->tail += grow; 5692 5693 skb_frag_off_add(&pinfo->frags[0], grow); 5694 skb_frag_size_sub(&pinfo->frags[0], grow); 5695 5696 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5697 skb_frag_unref(skb, 0); 5698 memmove(pinfo->frags, pinfo->frags + 1, 5699 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5700 } 5701 } 5702 5703 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5704 { 5705 struct sk_buff *oldest; 5706 5707 oldest = list_last_entry(head, struct sk_buff, list); 5708 5709 /* We are called with head length >= MAX_GRO_SKBS, so this is 5710 * impossible. 5711 */ 5712 if (WARN_ON_ONCE(!oldest)) 5713 return; 5714 5715 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5716 * SKB to the chain. 5717 */ 5718 skb_list_del_init(oldest); 5719 napi_gro_complete(napi, oldest); 5720 } 5721 5722 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5723 struct sk_buff *)); 5724 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5725 struct sk_buff *)); 5726 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5727 { 5728 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5729 struct list_head *head = &offload_base; 5730 struct packet_offload *ptype; 5731 __be16 type = skb->protocol; 5732 struct list_head *gro_head; 5733 struct sk_buff *pp = NULL; 5734 enum gro_result ret; 5735 int same_flow; 5736 int grow; 5737 5738 if (netif_elide_gro(skb->dev)) 5739 goto normal; 5740 5741 gro_head = gro_list_prepare(napi, skb); 5742 5743 rcu_read_lock(); 5744 list_for_each_entry_rcu(ptype, head, list) { 5745 if (ptype->type != type || !ptype->callbacks.gro_receive) 5746 continue; 5747 5748 skb_set_network_header(skb, skb_gro_offset(skb)); 5749 skb_reset_mac_len(skb); 5750 NAPI_GRO_CB(skb)->same_flow = 0; 5751 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5752 NAPI_GRO_CB(skb)->free = 0; 5753 NAPI_GRO_CB(skb)->encap_mark = 0; 5754 NAPI_GRO_CB(skb)->recursion_counter = 0; 5755 NAPI_GRO_CB(skb)->is_fou = 0; 5756 NAPI_GRO_CB(skb)->is_atomic = 1; 5757 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5758 5759 /* Setup for GRO checksum validation */ 5760 switch (skb->ip_summed) { 5761 case CHECKSUM_COMPLETE: 5762 NAPI_GRO_CB(skb)->csum = skb->csum; 5763 NAPI_GRO_CB(skb)->csum_valid = 1; 5764 NAPI_GRO_CB(skb)->csum_cnt = 0; 5765 break; 5766 case CHECKSUM_UNNECESSARY: 5767 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5768 NAPI_GRO_CB(skb)->csum_valid = 0; 5769 break; 5770 default: 5771 NAPI_GRO_CB(skb)->csum_cnt = 0; 5772 NAPI_GRO_CB(skb)->csum_valid = 0; 5773 } 5774 5775 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5776 ipv6_gro_receive, inet_gro_receive, 5777 gro_head, skb); 5778 break; 5779 } 5780 rcu_read_unlock(); 5781 5782 if (&ptype->list == head) 5783 goto normal; 5784 5785 if (PTR_ERR(pp) == -EINPROGRESS) { 5786 ret = GRO_CONSUMED; 5787 goto ok; 5788 } 5789 5790 same_flow = NAPI_GRO_CB(skb)->same_flow; 5791 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5792 5793 if (pp) { 5794 skb_list_del_init(pp); 5795 napi_gro_complete(napi, pp); 5796 napi->gro_hash[hash].count--; 5797 } 5798 5799 if (same_flow) 5800 goto ok; 5801 5802 if (NAPI_GRO_CB(skb)->flush) 5803 goto normal; 5804 5805 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5806 gro_flush_oldest(napi, gro_head); 5807 } else { 5808 napi->gro_hash[hash].count++; 5809 } 5810 NAPI_GRO_CB(skb)->count = 1; 5811 NAPI_GRO_CB(skb)->age = jiffies; 5812 NAPI_GRO_CB(skb)->last = skb; 5813 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5814 list_add(&skb->list, gro_head); 5815 ret = GRO_HELD; 5816 5817 pull: 5818 grow = skb_gro_offset(skb) - skb_headlen(skb); 5819 if (grow > 0) 5820 gro_pull_from_frag0(skb, grow); 5821 ok: 5822 if (napi->gro_hash[hash].count) { 5823 if (!test_bit(hash, &napi->gro_bitmask)) 5824 __set_bit(hash, &napi->gro_bitmask); 5825 } else if (test_bit(hash, &napi->gro_bitmask)) { 5826 __clear_bit(hash, &napi->gro_bitmask); 5827 } 5828 5829 return ret; 5830 5831 normal: 5832 ret = GRO_NORMAL; 5833 goto pull; 5834 } 5835 5836 struct packet_offload *gro_find_receive_by_type(__be16 type) 5837 { 5838 struct list_head *offload_head = &offload_base; 5839 struct packet_offload *ptype; 5840 5841 list_for_each_entry_rcu(ptype, offload_head, list) { 5842 if (ptype->type != type || !ptype->callbacks.gro_receive) 5843 continue; 5844 return ptype; 5845 } 5846 return NULL; 5847 } 5848 EXPORT_SYMBOL(gro_find_receive_by_type); 5849 5850 struct packet_offload *gro_find_complete_by_type(__be16 type) 5851 { 5852 struct list_head *offload_head = &offload_base; 5853 struct packet_offload *ptype; 5854 5855 list_for_each_entry_rcu(ptype, offload_head, list) { 5856 if (ptype->type != type || !ptype->callbacks.gro_complete) 5857 continue; 5858 return ptype; 5859 } 5860 return NULL; 5861 } 5862 EXPORT_SYMBOL(gro_find_complete_by_type); 5863 5864 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5865 { 5866 skb_dst_drop(skb); 5867 skb_ext_put(skb); 5868 kmem_cache_free(skbuff_head_cache, skb); 5869 } 5870 5871 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5872 struct sk_buff *skb, 5873 gro_result_t ret) 5874 { 5875 switch (ret) { 5876 case GRO_NORMAL: 5877 gro_normal_one(napi, skb); 5878 break; 5879 5880 case GRO_DROP: 5881 kfree_skb(skb); 5882 break; 5883 5884 case GRO_MERGED_FREE: 5885 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5886 napi_skb_free_stolen_head(skb); 5887 else 5888 __kfree_skb(skb); 5889 break; 5890 5891 case GRO_HELD: 5892 case GRO_MERGED: 5893 case GRO_CONSUMED: 5894 break; 5895 } 5896 5897 return ret; 5898 } 5899 5900 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5901 { 5902 gro_result_t ret; 5903 5904 skb_mark_napi_id(skb, napi); 5905 trace_napi_gro_receive_entry(skb); 5906 5907 skb_gro_reset_offset(skb); 5908 5909 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 5910 trace_napi_gro_receive_exit(ret); 5911 5912 return ret; 5913 } 5914 EXPORT_SYMBOL(napi_gro_receive); 5915 5916 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5917 { 5918 if (unlikely(skb->pfmemalloc)) { 5919 consume_skb(skb); 5920 return; 5921 } 5922 __skb_pull(skb, skb_headlen(skb)); 5923 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5924 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5925 __vlan_hwaccel_clear_tag(skb); 5926 skb->dev = napi->dev; 5927 skb->skb_iif = 0; 5928 5929 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5930 skb->pkt_type = PACKET_HOST; 5931 5932 skb->encapsulation = 0; 5933 skb_shinfo(skb)->gso_type = 0; 5934 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5935 skb_ext_reset(skb); 5936 5937 napi->skb = skb; 5938 } 5939 5940 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5941 { 5942 struct sk_buff *skb = napi->skb; 5943 5944 if (!skb) { 5945 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5946 if (skb) { 5947 napi->skb = skb; 5948 skb_mark_napi_id(skb, napi); 5949 } 5950 } 5951 return skb; 5952 } 5953 EXPORT_SYMBOL(napi_get_frags); 5954 5955 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5956 struct sk_buff *skb, 5957 gro_result_t ret) 5958 { 5959 switch (ret) { 5960 case GRO_NORMAL: 5961 case GRO_HELD: 5962 __skb_push(skb, ETH_HLEN); 5963 skb->protocol = eth_type_trans(skb, skb->dev); 5964 if (ret == GRO_NORMAL) 5965 gro_normal_one(napi, skb); 5966 break; 5967 5968 case GRO_DROP: 5969 napi_reuse_skb(napi, skb); 5970 break; 5971 5972 case GRO_MERGED_FREE: 5973 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5974 napi_skb_free_stolen_head(skb); 5975 else 5976 napi_reuse_skb(napi, skb); 5977 break; 5978 5979 case GRO_MERGED: 5980 case GRO_CONSUMED: 5981 break; 5982 } 5983 5984 return ret; 5985 } 5986 5987 /* Upper GRO stack assumes network header starts at gro_offset=0 5988 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5989 * We copy ethernet header into skb->data to have a common layout. 5990 */ 5991 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5992 { 5993 struct sk_buff *skb = napi->skb; 5994 const struct ethhdr *eth; 5995 unsigned int hlen = sizeof(*eth); 5996 5997 napi->skb = NULL; 5998 5999 skb_reset_mac_header(skb); 6000 skb_gro_reset_offset(skb); 6001 6002 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6003 eth = skb_gro_header_slow(skb, hlen, 0); 6004 if (unlikely(!eth)) { 6005 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6006 __func__, napi->dev->name); 6007 napi_reuse_skb(napi, skb); 6008 return NULL; 6009 } 6010 } else { 6011 eth = (const struct ethhdr *)skb->data; 6012 gro_pull_from_frag0(skb, hlen); 6013 NAPI_GRO_CB(skb)->frag0 += hlen; 6014 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6015 } 6016 __skb_pull(skb, hlen); 6017 6018 /* 6019 * This works because the only protocols we care about don't require 6020 * special handling. 6021 * We'll fix it up properly in napi_frags_finish() 6022 */ 6023 skb->protocol = eth->h_proto; 6024 6025 return skb; 6026 } 6027 6028 gro_result_t napi_gro_frags(struct napi_struct *napi) 6029 { 6030 gro_result_t ret; 6031 struct sk_buff *skb = napi_frags_skb(napi); 6032 6033 if (!skb) 6034 return GRO_DROP; 6035 6036 trace_napi_gro_frags_entry(skb); 6037 6038 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6039 trace_napi_gro_frags_exit(ret); 6040 6041 return ret; 6042 } 6043 EXPORT_SYMBOL(napi_gro_frags); 6044 6045 /* Compute the checksum from gro_offset and return the folded value 6046 * after adding in any pseudo checksum. 6047 */ 6048 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6049 { 6050 __wsum wsum; 6051 __sum16 sum; 6052 6053 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6054 6055 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6056 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6057 /* See comments in __skb_checksum_complete(). */ 6058 if (likely(!sum)) { 6059 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6060 !skb->csum_complete_sw) 6061 netdev_rx_csum_fault(skb->dev, skb); 6062 } 6063 6064 NAPI_GRO_CB(skb)->csum = wsum; 6065 NAPI_GRO_CB(skb)->csum_valid = 1; 6066 6067 return sum; 6068 } 6069 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6070 6071 static void net_rps_send_ipi(struct softnet_data *remsd) 6072 { 6073 #ifdef CONFIG_RPS 6074 while (remsd) { 6075 struct softnet_data *next = remsd->rps_ipi_next; 6076 6077 if (cpu_online(remsd->cpu)) 6078 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6079 remsd = next; 6080 } 6081 #endif 6082 } 6083 6084 /* 6085 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6086 * Note: called with local irq disabled, but exits with local irq enabled. 6087 */ 6088 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6089 { 6090 #ifdef CONFIG_RPS 6091 struct softnet_data *remsd = sd->rps_ipi_list; 6092 6093 if (remsd) { 6094 sd->rps_ipi_list = NULL; 6095 6096 local_irq_enable(); 6097 6098 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6099 net_rps_send_ipi(remsd); 6100 } else 6101 #endif 6102 local_irq_enable(); 6103 } 6104 6105 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6106 { 6107 #ifdef CONFIG_RPS 6108 return sd->rps_ipi_list != NULL; 6109 #else 6110 return false; 6111 #endif 6112 } 6113 6114 static int process_backlog(struct napi_struct *napi, int quota) 6115 { 6116 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6117 bool again = true; 6118 int work = 0; 6119 6120 /* Check if we have pending ipi, its better to send them now, 6121 * not waiting net_rx_action() end. 6122 */ 6123 if (sd_has_rps_ipi_waiting(sd)) { 6124 local_irq_disable(); 6125 net_rps_action_and_irq_enable(sd); 6126 } 6127 6128 napi->weight = dev_rx_weight; 6129 while (again) { 6130 struct sk_buff *skb; 6131 6132 while ((skb = __skb_dequeue(&sd->process_queue))) { 6133 rcu_read_lock(); 6134 __netif_receive_skb(skb); 6135 rcu_read_unlock(); 6136 input_queue_head_incr(sd); 6137 if (++work >= quota) 6138 return work; 6139 6140 } 6141 6142 local_irq_disable(); 6143 rps_lock(sd); 6144 if (skb_queue_empty(&sd->input_pkt_queue)) { 6145 /* 6146 * Inline a custom version of __napi_complete(). 6147 * only current cpu owns and manipulates this napi, 6148 * and NAPI_STATE_SCHED is the only possible flag set 6149 * on backlog. 6150 * We can use a plain write instead of clear_bit(), 6151 * and we dont need an smp_mb() memory barrier. 6152 */ 6153 napi->state = 0; 6154 again = false; 6155 } else { 6156 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6157 &sd->process_queue); 6158 } 6159 rps_unlock(sd); 6160 local_irq_enable(); 6161 } 6162 6163 return work; 6164 } 6165 6166 /** 6167 * __napi_schedule - schedule for receive 6168 * @n: entry to schedule 6169 * 6170 * The entry's receive function will be scheduled to run. 6171 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6172 */ 6173 void __napi_schedule(struct napi_struct *n) 6174 { 6175 unsigned long flags; 6176 6177 local_irq_save(flags); 6178 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6179 local_irq_restore(flags); 6180 } 6181 EXPORT_SYMBOL(__napi_schedule); 6182 6183 /** 6184 * napi_schedule_prep - check if napi can be scheduled 6185 * @n: napi context 6186 * 6187 * Test if NAPI routine is already running, and if not mark 6188 * it as running. This is used as a condition variable 6189 * insure only one NAPI poll instance runs. We also make 6190 * sure there is no pending NAPI disable. 6191 */ 6192 bool napi_schedule_prep(struct napi_struct *n) 6193 { 6194 unsigned long val, new; 6195 6196 do { 6197 val = READ_ONCE(n->state); 6198 if (unlikely(val & NAPIF_STATE_DISABLE)) 6199 return false; 6200 new = val | NAPIF_STATE_SCHED; 6201 6202 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6203 * This was suggested by Alexander Duyck, as compiler 6204 * emits better code than : 6205 * if (val & NAPIF_STATE_SCHED) 6206 * new |= NAPIF_STATE_MISSED; 6207 */ 6208 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6209 NAPIF_STATE_MISSED; 6210 } while (cmpxchg(&n->state, val, new) != val); 6211 6212 return !(val & NAPIF_STATE_SCHED); 6213 } 6214 EXPORT_SYMBOL(napi_schedule_prep); 6215 6216 /** 6217 * __napi_schedule_irqoff - schedule for receive 6218 * @n: entry to schedule 6219 * 6220 * Variant of __napi_schedule() assuming hard irqs are masked 6221 */ 6222 void __napi_schedule_irqoff(struct napi_struct *n) 6223 { 6224 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6225 } 6226 EXPORT_SYMBOL(__napi_schedule_irqoff); 6227 6228 bool napi_complete_done(struct napi_struct *n, int work_done) 6229 { 6230 unsigned long flags, val, new; 6231 6232 /* 6233 * 1) Don't let napi dequeue from the cpu poll list 6234 * just in case its running on a different cpu. 6235 * 2) If we are busy polling, do nothing here, we have 6236 * the guarantee we will be called later. 6237 */ 6238 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6239 NAPIF_STATE_IN_BUSY_POLL))) 6240 return false; 6241 6242 if (n->gro_bitmask) { 6243 unsigned long timeout = 0; 6244 6245 if (work_done) 6246 timeout = n->dev->gro_flush_timeout; 6247 6248 /* When the NAPI instance uses a timeout and keeps postponing 6249 * it, we need to bound somehow the time packets are kept in 6250 * the GRO layer 6251 */ 6252 napi_gro_flush(n, !!timeout); 6253 if (timeout) 6254 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6255 HRTIMER_MODE_REL_PINNED); 6256 } 6257 6258 gro_normal_list(n); 6259 6260 if (unlikely(!list_empty(&n->poll_list))) { 6261 /* If n->poll_list is not empty, we need to mask irqs */ 6262 local_irq_save(flags); 6263 list_del_init(&n->poll_list); 6264 local_irq_restore(flags); 6265 } 6266 6267 do { 6268 val = READ_ONCE(n->state); 6269 6270 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6271 6272 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6273 6274 /* If STATE_MISSED was set, leave STATE_SCHED set, 6275 * because we will call napi->poll() one more time. 6276 * This C code was suggested by Alexander Duyck to help gcc. 6277 */ 6278 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6279 NAPIF_STATE_SCHED; 6280 } while (cmpxchg(&n->state, val, new) != val); 6281 6282 if (unlikely(val & NAPIF_STATE_MISSED)) { 6283 __napi_schedule(n); 6284 return false; 6285 } 6286 6287 return true; 6288 } 6289 EXPORT_SYMBOL(napi_complete_done); 6290 6291 /* must be called under rcu_read_lock(), as we dont take a reference */ 6292 static struct napi_struct *napi_by_id(unsigned int napi_id) 6293 { 6294 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6295 struct napi_struct *napi; 6296 6297 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6298 if (napi->napi_id == napi_id) 6299 return napi; 6300 6301 return NULL; 6302 } 6303 6304 #if defined(CONFIG_NET_RX_BUSY_POLL) 6305 6306 #define BUSY_POLL_BUDGET 8 6307 6308 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6309 { 6310 int rc; 6311 6312 /* Busy polling means there is a high chance device driver hard irq 6313 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6314 * set in napi_schedule_prep(). 6315 * Since we are about to call napi->poll() once more, we can safely 6316 * clear NAPI_STATE_MISSED. 6317 * 6318 * Note: x86 could use a single "lock and ..." instruction 6319 * to perform these two clear_bit() 6320 */ 6321 clear_bit(NAPI_STATE_MISSED, &napi->state); 6322 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6323 6324 local_bh_disable(); 6325 6326 /* All we really want here is to re-enable device interrupts. 6327 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6328 */ 6329 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6330 /* We can't gro_normal_list() here, because napi->poll() might have 6331 * rearmed the napi (napi_complete_done()) in which case it could 6332 * already be running on another CPU. 6333 */ 6334 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6335 netpoll_poll_unlock(have_poll_lock); 6336 if (rc == BUSY_POLL_BUDGET) { 6337 /* As the whole budget was spent, we still own the napi so can 6338 * safely handle the rx_list. 6339 */ 6340 gro_normal_list(napi); 6341 __napi_schedule(napi); 6342 } 6343 local_bh_enable(); 6344 } 6345 6346 void napi_busy_loop(unsigned int napi_id, 6347 bool (*loop_end)(void *, unsigned long), 6348 void *loop_end_arg) 6349 { 6350 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6351 int (*napi_poll)(struct napi_struct *napi, int budget); 6352 void *have_poll_lock = NULL; 6353 struct napi_struct *napi; 6354 6355 restart: 6356 napi_poll = NULL; 6357 6358 rcu_read_lock(); 6359 6360 napi = napi_by_id(napi_id); 6361 if (!napi) 6362 goto out; 6363 6364 preempt_disable(); 6365 for (;;) { 6366 int work = 0; 6367 6368 local_bh_disable(); 6369 if (!napi_poll) { 6370 unsigned long val = READ_ONCE(napi->state); 6371 6372 /* If multiple threads are competing for this napi, 6373 * we avoid dirtying napi->state as much as we can. 6374 */ 6375 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6376 NAPIF_STATE_IN_BUSY_POLL)) 6377 goto count; 6378 if (cmpxchg(&napi->state, val, 6379 val | NAPIF_STATE_IN_BUSY_POLL | 6380 NAPIF_STATE_SCHED) != val) 6381 goto count; 6382 have_poll_lock = netpoll_poll_lock(napi); 6383 napi_poll = napi->poll; 6384 } 6385 work = napi_poll(napi, BUSY_POLL_BUDGET); 6386 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6387 gro_normal_list(napi); 6388 count: 6389 if (work > 0) 6390 __NET_ADD_STATS(dev_net(napi->dev), 6391 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6392 local_bh_enable(); 6393 6394 if (!loop_end || loop_end(loop_end_arg, start_time)) 6395 break; 6396 6397 if (unlikely(need_resched())) { 6398 if (napi_poll) 6399 busy_poll_stop(napi, have_poll_lock); 6400 preempt_enable(); 6401 rcu_read_unlock(); 6402 cond_resched(); 6403 if (loop_end(loop_end_arg, start_time)) 6404 return; 6405 goto restart; 6406 } 6407 cpu_relax(); 6408 } 6409 if (napi_poll) 6410 busy_poll_stop(napi, have_poll_lock); 6411 preempt_enable(); 6412 out: 6413 rcu_read_unlock(); 6414 } 6415 EXPORT_SYMBOL(napi_busy_loop); 6416 6417 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6418 6419 static void napi_hash_add(struct napi_struct *napi) 6420 { 6421 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6422 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6423 return; 6424 6425 spin_lock(&napi_hash_lock); 6426 6427 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6428 do { 6429 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6430 napi_gen_id = MIN_NAPI_ID; 6431 } while (napi_by_id(napi_gen_id)); 6432 napi->napi_id = napi_gen_id; 6433 6434 hlist_add_head_rcu(&napi->napi_hash_node, 6435 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6436 6437 spin_unlock(&napi_hash_lock); 6438 } 6439 6440 /* Warning : caller is responsible to make sure rcu grace period 6441 * is respected before freeing memory containing @napi 6442 */ 6443 bool napi_hash_del(struct napi_struct *napi) 6444 { 6445 bool rcu_sync_needed = false; 6446 6447 spin_lock(&napi_hash_lock); 6448 6449 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6450 rcu_sync_needed = true; 6451 hlist_del_rcu(&napi->napi_hash_node); 6452 } 6453 spin_unlock(&napi_hash_lock); 6454 return rcu_sync_needed; 6455 } 6456 EXPORT_SYMBOL_GPL(napi_hash_del); 6457 6458 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6459 { 6460 struct napi_struct *napi; 6461 6462 napi = container_of(timer, struct napi_struct, timer); 6463 6464 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6465 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6466 */ 6467 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6468 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6469 __napi_schedule_irqoff(napi); 6470 6471 return HRTIMER_NORESTART; 6472 } 6473 6474 static void init_gro_hash(struct napi_struct *napi) 6475 { 6476 int i; 6477 6478 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6479 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6480 napi->gro_hash[i].count = 0; 6481 } 6482 napi->gro_bitmask = 0; 6483 } 6484 6485 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6486 int (*poll)(struct napi_struct *, int), int weight) 6487 { 6488 INIT_LIST_HEAD(&napi->poll_list); 6489 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6490 napi->timer.function = napi_watchdog; 6491 init_gro_hash(napi); 6492 napi->skb = NULL; 6493 INIT_LIST_HEAD(&napi->rx_list); 6494 napi->rx_count = 0; 6495 napi->poll = poll; 6496 if (weight > NAPI_POLL_WEIGHT) 6497 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6498 weight); 6499 napi->weight = weight; 6500 list_add(&napi->dev_list, &dev->napi_list); 6501 napi->dev = dev; 6502 #ifdef CONFIG_NETPOLL 6503 napi->poll_owner = -1; 6504 #endif 6505 set_bit(NAPI_STATE_SCHED, &napi->state); 6506 napi_hash_add(napi); 6507 } 6508 EXPORT_SYMBOL(netif_napi_add); 6509 6510 void napi_disable(struct napi_struct *n) 6511 { 6512 might_sleep(); 6513 set_bit(NAPI_STATE_DISABLE, &n->state); 6514 6515 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6516 msleep(1); 6517 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6518 msleep(1); 6519 6520 hrtimer_cancel(&n->timer); 6521 6522 clear_bit(NAPI_STATE_DISABLE, &n->state); 6523 } 6524 EXPORT_SYMBOL(napi_disable); 6525 6526 static void flush_gro_hash(struct napi_struct *napi) 6527 { 6528 int i; 6529 6530 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6531 struct sk_buff *skb, *n; 6532 6533 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6534 kfree_skb(skb); 6535 napi->gro_hash[i].count = 0; 6536 } 6537 } 6538 6539 /* Must be called in process context */ 6540 void netif_napi_del(struct napi_struct *napi) 6541 { 6542 might_sleep(); 6543 if (napi_hash_del(napi)) 6544 synchronize_net(); 6545 list_del_init(&napi->dev_list); 6546 napi_free_frags(napi); 6547 6548 flush_gro_hash(napi); 6549 napi->gro_bitmask = 0; 6550 } 6551 EXPORT_SYMBOL(netif_napi_del); 6552 6553 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6554 { 6555 void *have; 6556 int work, weight; 6557 6558 list_del_init(&n->poll_list); 6559 6560 have = netpoll_poll_lock(n); 6561 6562 weight = n->weight; 6563 6564 /* This NAPI_STATE_SCHED test is for avoiding a race 6565 * with netpoll's poll_napi(). Only the entity which 6566 * obtains the lock and sees NAPI_STATE_SCHED set will 6567 * actually make the ->poll() call. Therefore we avoid 6568 * accidentally calling ->poll() when NAPI is not scheduled. 6569 */ 6570 work = 0; 6571 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6572 work = n->poll(n, weight); 6573 trace_napi_poll(n, work, weight); 6574 } 6575 6576 WARN_ON_ONCE(work > weight); 6577 6578 if (likely(work < weight)) 6579 goto out_unlock; 6580 6581 /* Drivers must not modify the NAPI state if they 6582 * consume the entire weight. In such cases this code 6583 * still "owns" the NAPI instance and therefore can 6584 * move the instance around on the list at-will. 6585 */ 6586 if (unlikely(napi_disable_pending(n))) { 6587 napi_complete(n); 6588 goto out_unlock; 6589 } 6590 6591 if (n->gro_bitmask) { 6592 /* flush too old packets 6593 * If HZ < 1000, flush all packets. 6594 */ 6595 napi_gro_flush(n, HZ >= 1000); 6596 } 6597 6598 gro_normal_list(n); 6599 6600 /* Some drivers may have called napi_schedule 6601 * prior to exhausting their budget. 6602 */ 6603 if (unlikely(!list_empty(&n->poll_list))) { 6604 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6605 n->dev ? n->dev->name : "backlog"); 6606 goto out_unlock; 6607 } 6608 6609 list_add_tail(&n->poll_list, repoll); 6610 6611 out_unlock: 6612 netpoll_poll_unlock(have); 6613 6614 return work; 6615 } 6616 6617 static __latent_entropy void net_rx_action(struct softirq_action *h) 6618 { 6619 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6620 unsigned long time_limit = jiffies + 6621 usecs_to_jiffies(netdev_budget_usecs); 6622 int budget = netdev_budget; 6623 LIST_HEAD(list); 6624 LIST_HEAD(repoll); 6625 6626 local_irq_disable(); 6627 list_splice_init(&sd->poll_list, &list); 6628 local_irq_enable(); 6629 6630 for (;;) { 6631 struct napi_struct *n; 6632 6633 if (list_empty(&list)) { 6634 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6635 goto out; 6636 break; 6637 } 6638 6639 n = list_first_entry(&list, struct napi_struct, poll_list); 6640 budget -= napi_poll(n, &repoll); 6641 6642 /* If softirq window is exhausted then punt. 6643 * Allow this to run for 2 jiffies since which will allow 6644 * an average latency of 1.5/HZ. 6645 */ 6646 if (unlikely(budget <= 0 || 6647 time_after_eq(jiffies, time_limit))) { 6648 sd->time_squeeze++; 6649 break; 6650 } 6651 } 6652 6653 local_irq_disable(); 6654 6655 list_splice_tail_init(&sd->poll_list, &list); 6656 list_splice_tail(&repoll, &list); 6657 list_splice(&list, &sd->poll_list); 6658 if (!list_empty(&sd->poll_list)) 6659 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6660 6661 net_rps_action_and_irq_enable(sd); 6662 out: 6663 __kfree_skb_flush(); 6664 } 6665 6666 struct netdev_adjacent { 6667 struct net_device *dev; 6668 6669 /* upper master flag, there can only be one master device per list */ 6670 bool master; 6671 6672 /* lookup ignore flag */ 6673 bool ignore; 6674 6675 /* counter for the number of times this device was added to us */ 6676 u16 ref_nr; 6677 6678 /* private field for the users */ 6679 void *private; 6680 6681 struct list_head list; 6682 struct rcu_head rcu; 6683 }; 6684 6685 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6686 struct list_head *adj_list) 6687 { 6688 struct netdev_adjacent *adj; 6689 6690 list_for_each_entry(adj, adj_list, list) { 6691 if (adj->dev == adj_dev) 6692 return adj; 6693 } 6694 return NULL; 6695 } 6696 6697 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6698 { 6699 struct net_device *dev = data; 6700 6701 return upper_dev == dev; 6702 } 6703 6704 /** 6705 * netdev_has_upper_dev - Check if device is linked to an upper device 6706 * @dev: device 6707 * @upper_dev: upper device to check 6708 * 6709 * Find out if a device is linked to specified upper device and return true 6710 * in case it is. Note that this checks only immediate upper device, 6711 * not through a complete stack of devices. The caller must hold the RTNL lock. 6712 */ 6713 bool netdev_has_upper_dev(struct net_device *dev, 6714 struct net_device *upper_dev) 6715 { 6716 ASSERT_RTNL(); 6717 6718 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6719 upper_dev); 6720 } 6721 EXPORT_SYMBOL(netdev_has_upper_dev); 6722 6723 /** 6724 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6725 * @dev: device 6726 * @upper_dev: upper device to check 6727 * 6728 * Find out if a device is linked to specified upper device and return true 6729 * in case it is. Note that this checks the entire upper device chain. 6730 * The caller must hold rcu lock. 6731 */ 6732 6733 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6734 struct net_device *upper_dev) 6735 { 6736 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6737 upper_dev); 6738 } 6739 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6740 6741 /** 6742 * netdev_has_any_upper_dev - Check if device is linked to some device 6743 * @dev: device 6744 * 6745 * Find out if a device is linked to an upper device and return true in case 6746 * it is. The caller must hold the RTNL lock. 6747 */ 6748 bool netdev_has_any_upper_dev(struct net_device *dev) 6749 { 6750 ASSERT_RTNL(); 6751 6752 return !list_empty(&dev->adj_list.upper); 6753 } 6754 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6755 6756 /** 6757 * netdev_master_upper_dev_get - Get master upper device 6758 * @dev: device 6759 * 6760 * Find a master upper device and return pointer to it or NULL in case 6761 * it's not there. The caller must hold the RTNL lock. 6762 */ 6763 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6764 { 6765 struct netdev_adjacent *upper; 6766 6767 ASSERT_RTNL(); 6768 6769 if (list_empty(&dev->adj_list.upper)) 6770 return NULL; 6771 6772 upper = list_first_entry(&dev->adj_list.upper, 6773 struct netdev_adjacent, list); 6774 if (likely(upper->master)) 6775 return upper->dev; 6776 return NULL; 6777 } 6778 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6779 6780 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6781 { 6782 struct netdev_adjacent *upper; 6783 6784 ASSERT_RTNL(); 6785 6786 if (list_empty(&dev->adj_list.upper)) 6787 return NULL; 6788 6789 upper = list_first_entry(&dev->adj_list.upper, 6790 struct netdev_adjacent, list); 6791 if (likely(upper->master) && !upper->ignore) 6792 return upper->dev; 6793 return NULL; 6794 } 6795 6796 /** 6797 * netdev_has_any_lower_dev - Check if device is linked to some device 6798 * @dev: device 6799 * 6800 * Find out if a device is linked to a lower device and return true in case 6801 * it is. The caller must hold the RTNL lock. 6802 */ 6803 static bool netdev_has_any_lower_dev(struct net_device *dev) 6804 { 6805 ASSERT_RTNL(); 6806 6807 return !list_empty(&dev->adj_list.lower); 6808 } 6809 6810 void *netdev_adjacent_get_private(struct list_head *adj_list) 6811 { 6812 struct netdev_adjacent *adj; 6813 6814 adj = list_entry(adj_list, struct netdev_adjacent, list); 6815 6816 return adj->private; 6817 } 6818 EXPORT_SYMBOL(netdev_adjacent_get_private); 6819 6820 /** 6821 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6822 * @dev: device 6823 * @iter: list_head ** of the current position 6824 * 6825 * Gets the next device from the dev's upper list, starting from iter 6826 * position. The caller must hold RCU read lock. 6827 */ 6828 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6829 struct list_head **iter) 6830 { 6831 struct netdev_adjacent *upper; 6832 6833 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6834 6835 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6836 6837 if (&upper->list == &dev->adj_list.upper) 6838 return NULL; 6839 6840 *iter = &upper->list; 6841 6842 return upper->dev; 6843 } 6844 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6845 6846 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6847 struct list_head **iter, 6848 bool *ignore) 6849 { 6850 struct netdev_adjacent *upper; 6851 6852 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6853 6854 if (&upper->list == &dev->adj_list.upper) 6855 return NULL; 6856 6857 *iter = &upper->list; 6858 *ignore = upper->ignore; 6859 6860 return upper->dev; 6861 } 6862 6863 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6864 struct list_head **iter) 6865 { 6866 struct netdev_adjacent *upper; 6867 6868 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6869 6870 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6871 6872 if (&upper->list == &dev->adj_list.upper) 6873 return NULL; 6874 6875 *iter = &upper->list; 6876 6877 return upper->dev; 6878 } 6879 6880 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6881 int (*fn)(struct net_device *dev, 6882 void *data), 6883 void *data) 6884 { 6885 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6886 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6887 int ret, cur = 0; 6888 bool ignore; 6889 6890 now = dev; 6891 iter = &dev->adj_list.upper; 6892 6893 while (1) { 6894 if (now != dev) { 6895 ret = fn(now, data); 6896 if (ret) 6897 return ret; 6898 } 6899 6900 next = NULL; 6901 while (1) { 6902 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6903 if (!udev) 6904 break; 6905 if (ignore) 6906 continue; 6907 6908 next = udev; 6909 niter = &udev->adj_list.upper; 6910 dev_stack[cur] = now; 6911 iter_stack[cur++] = iter; 6912 break; 6913 } 6914 6915 if (!next) { 6916 if (!cur) 6917 return 0; 6918 next = dev_stack[--cur]; 6919 niter = iter_stack[cur]; 6920 } 6921 6922 now = next; 6923 iter = niter; 6924 } 6925 6926 return 0; 6927 } 6928 6929 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6930 int (*fn)(struct net_device *dev, 6931 void *data), 6932 void *data) 6933 { 6934 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6935 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6936 int ret, cur = 0; 6937 6938 now = dev; 6939 iter = &dev->adj_list.upper; 6940 6941 while (1) { 6942 if (now != dev) { 6943 ret = fn(now, data); 6944 if (ret) 6945 return ret; 6946 } 6947 6948 next = NULL; 6949 while (1) { 6950 udev = netdev_next_upper_dev_rcu(now, &iter); 6951 if (!udev) 6952 break; 6953 6954 next = udev; 6955 niter = &udev->adj_list.upper; 6956 dev_stack[cur] = now; 6957 iter_stack[cur++] = iter; 6958 break; 6959 } 6960 6961 if (!next) { 6962 if (!cur) 6963 return 0; 6964 next = dev_stack[--cur]; 6965 niter = iter_stack[cur]; 6966 } 6967 6968 now = next; 6969 iter = niter; 6970 } 6971 6972 return 0; 6973 } 6974 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6975 6976 static bool __netdev_has_upper_dev(struct net_device *dev, 6977 struct net_device *upper_dev) 6978 { 6979 ASSERT_RTNL(); 6980 6981 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 6982 upper_dev); 6983 } 6984 6985 /** 6986 * netdev_lower_get_next_private - Get the next ->private from the 6987 * lower neighbour list 6988 * @dev: device 6989 * @iter: list_head ** of the current position 6990 * 6991 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6992 * list, starting from iter position. The caller must hold either hold the 6993 * RTNL lock or its own locking that guarantees that the neighbour lower 6994 * list will remain unchanged. 6995 */ 6996 void *netdev_lower_get_next_private(struct net_device *dev, 6997 struct list_head **iter) 6998 { 6999 struct netdev_adjacent *lower; 7000 7001 lower = list_entry(*iter, struct netdev_adjacent, list); 7002 7003 if (&lower->list == &dev->adj_list.lower) 7004 return NULL; 7005 7006 *iter = lower->list.next; 7007 7008 return lower->private; 7009 } 7010 EXPORT_SYMBOL(netdev_lower_get_next_private); 7011 7012 /** 7013 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7014 * lower neighbour list, RCU 7015 * variant 7016 * @dev: device 7017 * @iter: list_head ** of the current position 7018 * 7019 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7020 * list, starting from iter position. The caller must hold RCU read lock. 7021 */ 7022 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7023 struct list_head **iter) 7024 { 7025 struct netdev_adjacent *lower; 7026 7027 WARN_ON_ONCE(!rcu_read_lock_held()); 7028 7029 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7030 7031 if (&lower->list == &dev->adj_list.lower) 7032 return NULL; 7033 7034 *iter = &lower->list; 7035 7036 return lower->private; 7037 } 7038 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7039 7040 /** 7041 * netdev_lower_get_next - Get the next device from the lower neighbour 7042 * list 7043 * @dev: device 7044 * @iter: list_head ** of the current position 7045 * 7046 * Gets the next netdev_adjacent from the dev's lower neighbour 7047 * list, starting from iter position. The caller must hold RTNL lock or 7048 * its own locking that guarantees that the neighbour lower 7049 * list will remain unchanged. 7050 */ 7051 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7052 { 7053 struct netdev_adjacent *lower; 7054 7055 lower = list_entry(*iter, struct netdev_adjacent, list); 7056 7057 if (&lower->list == &dev->adj_list.lower) 7058 return NULL; 7059 7060 *iter = lower->list.next; 7061 7062 return lower->dev; 7063 } 7064 EXPORT_SYMBOL(netdev_lower_get_next); 7065 7066 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7067 struct list_head **iter) 7068 { 7069 struct netdev_adjacent *lower; 7070 7071 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7072 7073 if (&lower->list == &dev->adj_list.lower) 7074 return NULL; 7075 7076 *iter = &lower->list; 7077 7078 return lower->dev; 7079 } 7080 7081 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7082 struct list_head **iter, 7083 bool *ignore) 7084 { 7085 struct netdev_adjacent *lower; 7086 7087 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7088 7089 if (&lower->list == &dev->adj_list.lower) 7090 return NULL; 7091 7092 *iter = &lower->list; 7093 *ignore = lower->ignore; 7094 7095 return lower->dev; 7096 } 7097 7098 int netdev_walk_all_lower_dev(struct net_device *dev, 7099 int (*fn)(struct net_device *dev, 7100 void *data), 7101 void *data) 7102 { 7103 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7104 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7105 int ret, cur = 0; 7106 7107 now = dev; 7108 iter = &dev->adj_list.lower; 7109 7110 while (1) { 7111 if (now != dev) { 7112 ret = fn(now, data); 7113 if (ret) 7114 return ret; 7115 } 7116 7117 next = NULL; 7118 while (1) { 7119 ldev = netdev_next_lower_dev(now, &iter); 7120 if (!ldev) 7121 break; 7122 7123 next = ldev; 7124 niter = &ldev->adj_list.lower; 7125 dev_stack[cur] = now; 7126 iter_stack[cur++] = iter; 7127 break; 7128 } 7129 7130 if (!next) { 7131 if (!cur) 7132 return 0; 7133 next = dev_stack[--cur]; 7134 niter = iter_stack[cur]; 7135 } 7136 7137 now = next; 7138 iter = niter; 7139 } 7140 7141 return 0; 7142 } 7143 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7144 7145 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7146 int (*fn)(struct net_device *dev, 7147 void *data), 7148 void *data) 7149 { 7150 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7151 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7152 int ret, cur = 0; 7153 bool ignore; 7154 7155 now = dev; 7156 iter = &dev->adj_list.lower; 7157 7158 while (1) { 7159 if (now != dev) { 7160 ret = fn(now, data); 7161 if (ret) 7162 return ret; 7163 } 7164 7165 next = NULL; 7166 while (1) { 7167 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7168 if (!ldev) 7169 break; 7170 if (ignore) 7171 continue; 7172 7173 next = ldev; 7174 niter = &ldev->adj_list.lower; 7175 dev_stack[cur] = now; 7176 iter_stack[cur++] = iter; 7177 break; 7178 } 7179 7180 if (!next) { 7181 if (!cur) 7182 return 0; 7183 next = dev_stack[--cur]; 7184 niter = iter_stack[cur]; 7185 } 7186 7187 now = next; 7188 iter = niter; 7189 } 7190 7191 return 0; 7192 } 7193 7194 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7195 struct list_head **iter) 7196 { 7197 struct netdev_adjacent *lower; 7198 7199 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7200 if (&lower->list == &dev->adj_list.lower) 7201 return NULL; 7202 7203 *iter = &lower->list; 7204 7205 return lower->dev; 7206 } 7207 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7208 7209 static u8 __netdev_upper_depth(struct net_device *dev) 7210 { 7211 struct net_device *udev; 7212 struct list_head *iter; 7213 u8 max_depth = 0; 7214 bool ignore; 7215 7216 for (iter = &dev->adj_list.upper, 7217 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7218 udev; 7219 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7220 if (ignore) 7221 continue; 7222 if (max_depth < udev->upper_level) 7223 max_depth = udev->upper_level; 7224 } 7225 7226 return max_depth; 7227 } 7228 7229 static u8 __netdev_lower_depth(struct net_device *dev) 7230 { 7231 struct net_device *ldev; 7232 struct list_head *iter; 7233 u8 max_depth = 0; 7234 bool ignore; 7235 7236 for (iter = &dev->adj_list.lower, 7237 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7238 ldev; 7239 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7240 if (ignore) 7241 continue; 7242 if (max_depth < ldev->lower_level) 7243 max_depth = ldev->lower_level; 7244 } 7245 7246 return max_depth; 7247 } 7248 7249 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7250 { 7251 dev->upper_level = __netdev_upper_depth(dev) + 1; 7252 return 0; 7253 } 7254 7255 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7256 { 7257 dev->lower_level = __netdev_lower_depth(dev) + 1; 7258 return 0; 7259 } 7260 7261 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7262 int (*fn)(struct net_device *dev, 7263 void *data), 7264 void *data) 7265 { 7266 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7267 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7268 int ret, cur = 0; 7269 7270 now = dev; 7271 iter = &dev->adj_list.lower; 7272 7273 while (1) { 7274 if (now != dev) { 7275 ret = fn(now, data); 7276 if (ret) 7277 return ret; 7278 } 7279 7280 next = NULL; 7281 while (1) { 7282 ldev = netdev_next_lower_dev_rcu(now, &iter); 7283 if (!ldev) 7284 break; 7285 7286 next = ldev; 7287 niter = &ldev->adj_list.lower; 7288 dev_stack[cur] = now; 7289 iter_stack[cur++] = iter; 7290 break; 7291 } 7292 7293 if (!next) { 7294 if (!cur) 7295 return 0; 7296 next = dev_stack[--cur]; 7297 niter = iter_stack[cur]; 7298 } 7299 7300 now = next; 7301 iter = niter; 7302 } 7303 7304 return 0; 7305 } 7306 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7307 7308 /** 7309 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7310 * lower neighbour list, RCU 7311 * variant 7312 * @dev: device 7313 * 7314 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7315 * list. The caller must hold RCU read lock. 7316 */ 7317 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7318 { 7319 struct netdev_adjacent *lower; 7320 7321 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7322 struct netdev_adjacent, list); 7323 if (lower) 7324 return lower->private; 7325 return NULL; 7326 } 7327 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7328 7329 /** 7330 * netdev_master_upper_dev_get_rcu - Get master upper device 7331 * @dev: device 7332 * 7333 * Find a master upper device and return pointer to it or NULL in case 7334 * it's not there. The caller must hold the RCU read lock. 7335 */ 7336 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7337 { 7338 struct netdev_adjacent *upper; 7339 7340 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7341 struct netdev_adjacent, list); 7342 if (upper && likely(upper->master)) 7343 return upper->dev; 7344 return NULL; 7345 } 7346 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7347 7348 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7349 struct net_device *adj_dev, 7350 struct list_head *dev_list) 7351 { 7352 char linkname[IFNAMSIZ+7]; 7353 7354 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7355 "upper_%s" : "lower_%s", adj_dev->name); 7356 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7357 linkname); 7358 } 7359 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7360 char *name, 7361 struct list_head *dev_list) 7362 { 7363 char linkname[IFNAMSIZ+7]; 7364 7365 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7366 "upper_%s" : "lower_%s", name); 7367 sysfs_remove_link(&(dev->dev.kobj), linkname); 7368 } 7369 7370 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7371 struct net_device *adj_dev, 7372 struct list_head *dev_list) 7373 { 7374 return (dev_list == &dev->adj_list.upper || 7375 dev_list == &dev->adj_list.lower) && 7376 net_eq(dev_net(dev), dev_net(adj_dev)); 7377 } 7378 7379 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7380 struct net_device *adj_dev, 7381 struct list_head *dev_list, 7382 void *private, bool master) 7383 { 7384 struct netdev_adjacent *adj; 7385 int ret; 7386 7387 adj = __netdev_find_adj(adj_dev, dev_list); 7388 7389 if (adj) { 7390 adj->ref_nr += 1; 7391 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7392 dev->name, adj_dev->name, adj->ref_nr); 7393 7394 return 0; 7395 } 7396 7397 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7398 if (!adj) 7399 return -ENOMEM; 7400 7401 adj->dev = adj_dev; 7402 adj->master = master; 7403 adj->ref_nr = 1; 7404 adj->private = private; 7405 adj->ignore = false; 7406 dev_hold(adj_dev); 7407 7408 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7409 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7410 7411 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7412 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7413 if (ret) 7414 goto free_adj; 7415 } 7416 7417 /* Ensure that master link is always the first item in list. */ 7418 if (master) { 7419 ret = sysfs_create_link(&(dev->dev.kobj), 7420 &(adj_dev->dev.kobj), "master"); 7421 if (ret) 7422 goto remove_symlinks; 7423 7424 list_add_rcu(&adj->list, dev_list); 7425 } else { 7426 list_add_tail_rcu(&adj->list, dev_list); 7427 } 7428 7429 return 0; 7430 7431 remove_symlinks: 7432 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7433 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7434 free_adj: 7435 kfree(adj); 7436 dev_put(adj_dev); 7437 7438 return ret; 7439 } 7440 7441 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7442 struct net_device *adj_dev, 7443 u16 ref_nr, 7444 struct list_head *dev_list) 7445 { 7446 struct netdev_adjacent *adj; 7447 7448 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7449 dev->name, adj_dev->name, ref_nr); 7450 7451 adj = __netdev_find_adj(adj_dev, dev_list); 7452 7453 if (!adj) { 7454 pr_err("Adjacency does not exist for device %s from %s\n", 7455 dev->name, adj_dev->name); 7456 WARN_ON(1); 7457 return; 7458 } 7459 7460 if (adj->ref_nr > ref_nr) { 7461 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7462 dev->name, adj_dev->name, ref_nr, 7463 adj->ref_nr - ref_nr); 7464 adj->ref_nr -= ref_nr; 7465 return; 7466 } 7467 7468 if (adj->master) 7469 sysfs_remove_link(&(dev->dev.kobj), "master"); 7470 7471 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7472 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7473 7474 list_del_rcu(&adj->list); 7475 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7476 adj_dev->name, dev->name, adj_dev->name); 7477 dev_put(adj_dev); 7478 kfree_rcu(adj, rcu); 7479 } 7480 7481 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7482 struct net_device *upper_dev, 7483 struct list_head *up_list, 7484 struct list_head *down_list, 7485 void *private, bool master) 7486 { 7487 int ret; 7488 7489 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7490 private, master); 7491 if (ret) 7492 return ret; 7493 7494 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7495 private, false); 7496 if (ret) { 7497 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7498 return ret; 7499 } 7500 7501 return 0; 7502 } 7503 7504 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7505 struct net_device *upper_dev, 7506 u16 ref_nr, 7507 struct list_head *up_list, 7508 struct list_head *down_list) 7509 { 7510 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7511 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7512 } 7513 7514 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7515 struct net_device *upper_dev, 7516 void *private, bool master) 7517 { 7518 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7519 &dev->adj_list.upper, 7520 &upper_dev->adj_list.lower, 7521 private, master); 7522 } 7523 7524 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7525 struct net_device *upper_dev) 7526 { 7527 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7528 &dev->adj_list.upper, 7529 &upper_dev->adj_list.lower); 7530 } 7531 7532 static int __netdev_upper_dev_link(struct net_device *dev, 7533 struct net_device *upper_dev, bool master, 7534 void *upper_priv, void *upper_info, 7535 struct netlink_ext_ack *extack) 7536 { 7537 struct netdev_notifier_changeupper_info changeupper_info = { 7538 .info = { 7539 .dev = dev, 7540 .extack = extack, 7541 }, 7542 .upper_dev = upper_dev, 7543 .master = master, 7544 .linking = true, 7545 .upper_info = upper_info, 7546 }; 7547 struct net_device *master_dev; 7548 int ret = 0; 7549 7550 ASSERT_RTNL(); 7551 7552 if (dev == upper_dev) 7553 return -EBUSY; 7554 7555 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7556 if (__netdev_has_upper_dev(upper_dev, dev)) 7557 return -EBUSY; 7558 7559 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7560 return -EMLINK; 7561 7562 if (!master) { 7563 if (__netdev_has_upper_dev(dev, upper_dev)) 7564 return -EEXIST; 7565 } else { 7566 master_dev = __netdev_master_upper_dev_get(dev); 7567 if (master_dev) 7568 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7569 } 7570 7571 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7572 &changeupper_info.info); 7573 ret = notifier_to_errno(ret); 7574 if (ret) 7575 return ret; 7576 7577 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7578 master); 7579 if (ret) 7580 return ret; 7581 7582 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7583 &changeupper_info.info); 7584 ret = notifier_to_errno(ret); 7585 if (ret) 7586 goto rollback; 7587 7588 __netdev_update_upper_level(dev, NULL); 7589 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7590 7591 __netdev_update_lower_level(upper_dev, NULL); 7592 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7593 NULL); 7594 7595 return 0; 7596 7597 rollback: 7598 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7599 7600 return ret; 7601 } 7602 7603 /** 7604 * netdev_upper_dev_link - Add a link to the upper device 7605 * @dev: device 7606 * @upper_dev: new upper device 7607 * @extack: netlink extended ack 7608 * 7609 * Adds a link to device which is upper to this one. The caller must hold 7610 * the RTNL lock. On a failure a negative errno code is returned. 7611 * On success the reference counts are adjusted and the function 7612 * returns zero. 7613 */ 7614 int netdev_upper_dev_link(struct net_device *dev, 7615 struct net_device *upper_dev, 7616 struct netlink_ext_ack *extack) 7617 { 7618 return __netdev_upper_dev_link(dev, upper_dev, false, 7619 NULL, NULL, extack); 7620 } 7621 EXPORT_SYMBOL(netdev_upper_dev_link); 7622 7623 /** 7624 * netdev_master_upper_dev_link - Add a master link to the upper device 7625 * @dev: device 7626 * @upper_dev: new upper device 7627 * @upper_priv: upper device private 7628 * @upper_info: upper info to be passed down via notifier 7629 * @extack: netlink extended ack 7630 * 7631 * Adds a link to device which is upper to this one. In this case, only 7632 * one master upper device can be linked, although other non-master devices 7633 * might be linked as well. The caller must hold the RTNL lock. 7634 * On a failure a negative errno code is returned. On success the reference 7635 * counts are adjusted and the function returns zero. 7636 */ 7637 int netdev_master_upper_dev_link(struct net_device *dev, 7638 struct net_device *upper_dev, 7639 void *upper_priv, void *upper_info, 7640 struct netlink_ext_ack *extack) 7641 { 7642 return __netdev_upper_dev_link(dev, upper_dev, true, 7643 upper_priv, upper_info, extack); 7644 } 7645 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7646 7647 /** 7648 * netdev_upper_dev_unlink - Removes a link to upper device 7649 * @dev: device 7650 * @upper_dev: new upper device 7651 * 7652 * Removes a link to device which is upper to this one. The caller must hold 7653 * the RTNL lock. 7654 */ 7655 void netdev_upper_dev_unlink(struct net_device *dev, 7656 struct net_device *upper_dev) 7657 { 7658 struct netdev_notifier_changeupper_info changeupper_info = { 7659 .info = { 7660 .dev = dev, 7661 }, 7662 .upper_dev = upper_dev, 7663 .linking = false, 7664 }; 7665 7666 ASSERT_RTNL(); 7667 7668 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7669 7670 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7671 &changeupper_info.info); 7672 7673 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7674 7675 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7676 &changeupper_info.info); 7677 7678 __netdev_update_upper_level(dev, NULL); 7679 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7680 7681 __netdev_update_lower_level(upper_dev, NULL); 7682 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7683 NULL); 7684 } 7685 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7686 7687 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7688 struct net_device *lower_dev, 7689 bool val) 7690 { 7691 struct netdev_adjacent *adj; 7692 7693 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7694 if (adj) 7695 adj->ignore = val; 7696 7697 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7698 if (adj) 7699 adj->ignore = val; 7700 } 7701 7702 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7703 struct net_device *lower_dev) 7704 { 7705 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7706 } 7707 7708 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7709 struct net_device *lower_dev) 7710 { 7711 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7712 } 7713 7714 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7715 struct net_device *new_dev, 7716 struct net_device *dev, 7717 struct netlink_ext_ack *extack) 7718 { 7719 int err; 7720 7721 if (!new_dev) 7722 return 0; 7723 7724 if (old_dev && new_dev != old_dev) 7725 netdev_adjacent_dev_disable(dev, old_dev); 7726 7727 err = netdev_upper_dev_link(new_dev, dev, extack); 7728 if (err) { 7729 if (old_dev && new_dev != old_dev) 7730 netdev_adjacent_dev_enable(dev, old_dev); 7731 return err; 7732 } 7733 7734 return 0; 7735 } 7736 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7737 7738 void netdev_adjacent_change_commit(struct net_device *old_dev, 7739 struct net_device *new_dev, 7740 struct net_device *dev) 7741 { 7742 if (!new_dev || !old_dev) 7743 return; 7744 7745 if (new_dev == old_dev) 7746 return; 7747 7748 netdev_adjacent_dev_enable(dev, old_dev); 7749 netdev_upper_dev_unlink(old_dev, dev); 7750 } 7751 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7752 7753 void netdev_adjacent_change_abort(struct net_device *old_dev, 7754 struct net_device *new_dev, 7755 struct net_device *dev) 7756 { 7757 if (!new_dev) 7758 return; 7759 7760 if (old_dev && new_dev != old_dev) 7761 netdev_adjacent_dev_enable(dev, old_dev); 7762 7763 netdev_upper_dev_unlink(new_dev, dev); 7764 } 7765 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7766 7767 /** 7768 * netdev_bonding_info_change - Dispatch event about slave change 7769 * @dev: device 7770 * @bonding_info: info to dispatch 7771 * 7772 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7773 * The caller must hold the RTNL lock. 7774 */ 7775 void netdev_bonding_info_change(struct net_device *dev, 7776 struct netdev_bonding_info *bonding_info) 7777 { 7778 struct netdev_notifier_bonding_info info = { 7779 .info.dev = dev, 7780 }; 7781 7782 memcpy(&info.bonding_info, bonding_info, 7783 sizeof(struct netdev_bonding_info)); 7784 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7785 &info.info); 7786 } 7787 EXPORT_SYMBOL(netdev_bonding_info_change); 7788 7789 static void netdev_adjacent_add_links(struct net_device *dev) 7790 { 7791 struct netdev_adjacent *iter; 7792 7793 struct net *net = dev_net(dev); 7794 7795 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7796 if (!net_eq(net, dev_net(iter->dev))) 7797 continue; 7798 netdev_adjacent_sysfs_add(iter->dev, dev, 7799 &iter->dev->adj_list.lower); 7800 netdev_adjacent_sysfs_add(dev, iter->dev, 7801 &dev->adj_list.upper); 7802 } 7803 7804 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7805 if (!net_eq(net, dev_net(iter->dev))) 7806 continue; 7807 netdev_adjacent_sysfs_add(iter->dev, dev, 7808 &iter->dev->adj_list.upper); 7809 netdev_adjacent_sysfs_add(dev, iter->dev, 7810 &dev->adj_list.lower); 7811 } 7812 } 7813 7814 static void netdev_adjacent_del_links(struct net_device *dev) 7815 { 7816 struct netdev_adjacent *iter; 7817 7818 struct net *net = dev_net(dev); 7819 7820 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7821 if (!net_eq(net, dev_net(iter->dev))) 7822 continue; 7823 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7824 &iter->dev->adj_list.lower); 7825 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7826 &dev->adj_list.upper); 7827 } 7828 7829 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7830 if (!net_eq(net, dev_net(iter->dev))) 7831 continue; 7832 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7833 &iter->dev->adj_list.upper); 7834 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7835 &dev->adj_list.lower); 7836 } 7837 } 7838 7839 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7840 { 7841 struct netdev_adjacent *iter; 7842 7843 struct net *net = dev_net(dev); 7844 7845 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7846 if (!net_eq(net, dev_net(iter->dev))) 7847 continue; 7848 netdev_adjacent_sysfs_del(iter->dev, oldname, 7849 &iter->dev->adj_list.lower); 7850 netdev_adjacent_sysfs_add(iter->dev, dev, 7851 &iter->dev->adj_list.lower); 7852 } 7853 7854 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7855 if (!net_eq(net, dev_net(iter->dev))) 7856 continue; 7857 netdev_adjacent_sysfs_del(iter->dev, oldname, 7858 &iter->dev->adj_list.upper); 7859 netdev_adjacent_sysfs_add(iter->dev, dev, 7860 &iter->dev->adj_list.upper); 7861 } 7862 } 7863 7864 void *netdev_lower_dev_get_private(struct net_device *dev, 7865 struct net_device *lower_dev) 7866 { 7867 struct netdev_adjacent *lower; 7868 7869 if (!lower_dev) 7870 return NULL; 7871 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7872 if (!lower) 7873 return NULL; 7874 7875 return lower->private; 7876 } 7877 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7878 7879 7880 /** 7881 * netdev_lower_change - Dispatch event about lower device state change 7882 * @lower_dev: device 7883 * @lower_state_info: state to dispatch 7884 * 7885 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7886 * The caller must hold the RTNL lock. 7887 */ 7888 void netdev_lower_state_changed(struct net_device *lower_dev, 7889 void *lower_state_info) 7890 { 7891 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7892 .info.dev = lower_dev, 7893 }; 7894 7895 ASSERT_RTNL(); 7896 changelowerstate_info.lower_state_info = lower_state_info; 7897 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7898 &changelowerstate_info.info); 7899 } 7900 EXPORT_SYMBOL(netdev_lower_state_changed); 7901 7902 static void dev_change_rx_flags(struct net_device *dev, int flags) 7903 { 7904 const struct net_device_ops *ops = dev->netdev_ops; 7905 7906 if (ops->ndo_change_rx_flags) 7907 ops->ndo_change_rx_flags(dev, flags); 7908 } 7909 7910 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7911 { 7912 unsigned int old_flags = dev->flags; 7913 kuid_t uid; 7914 kgid_t gid; 7915 7916 ASSERT_RTNL(); 7917 7918 dev->flags |= IFF_PROMISC; 7919 dev->promiscuity += inc; 7920 if (dev->promiscuity == 0) { 7921 /* 7922 * Avoid overflow. 7923 * If inc causes overflow, untouch promisc and return error. 7924 */ 7925 if (inc < 0) 7926 dev->flags &= ~IFF_PROMISC; 7927 else { 7928 dev->promiscuity -= inc; 7929 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7930 dev->name); 7931 return -EOVERFLOW; 7932 } 7933 } 7934 if (dev->flags != old_flags) { 7935 pr_info("device %s %s promiscuous mode\n", 7936 dev->name, 7937 dev->flags & IFF_PROMISC ? "entered" : "left"); 7938 if (audit_enabled) { 7939 current_uid_gid(&uid, &gid); 7940 audit_log(audit_context(), GFP_ATOMIC, 7941 AUDIT_ANOM_PROMISCUOUS, 7942 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7943 dev->name, (dev->flags & IFF_PROMISC), 7944 (old_flags & IFF_PROMISC), 7945 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7946 from_kuid(&init_user_ns, uid), 7947 from_kgid(&init_user_ns, gid), 7948 audit_get_sessionid(current)); 7949 } 7950 7951 dev_change_rx_flags(dev, IFF_PROMISC); 7952 } 7953 if (notify) 7954 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7955 return 0; 7956 } 7957 7958 /** 7959 * dev_set_promiscuity - update promiscuity count on a device 7960 * @dev: device 7961 * @inc: modifier 7962 * 7963 * Add or remove promiscuity from a device. While the count in the device 7964 * remains above zero the interface remains promiscuous. Once it hits zero 7965 * the device reverts back to normal filtering operation. A negative inc 7966 * value is used to drop promiscuity on the device. 7967 * Return 0 if successful or a negative errno code on error. 7968 */ 7969 int dev_set_promiscuity(struct net_device *dev, int inc) 7970 { 7971 unsigned int old_flags = dev->flags; 7972 int err; 7973 7974 err = __dev_set_promiscuity(dev, inc, true); 7975 if (err < 0) 7976 return err; 7977 if (dev->flags != old_flags) 7978 dev_set_rx_mode(dev); 7979 return err; 7980 } 7981 EXPORT_SYMBOL(dev_set_promiscuity); 7982 7983 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7984 { 7985 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7986 7987 ASSERT_RTNL(); 7988 7989 dev->flags |= IFF_ALLMULTI; 7990 dev->allmulti += inc; 7991 if (dev->allmulti == 0) { 7992 /* 7993 * Avoid overflow. 7994 * If inc causes overflow, untouch allmulti and return error. 7995 */ 7996 if (inc < 0) 7997 dev->flags &= ~IFF_ALLMULTI; 7998 else { 7999 dev->allmulti -= inc; 8000 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8001 dev->name); 8002 return -EOVERFLOW; 8003 } 8004 } 8005 if (dev->flags ^ old_flags) { 8006 dev_change_rx_flags(dev, IFF_ALLMULTI); 8007 dev_set_rx_mode(dev); 8008 if (notify) 8009 __dev_notify_flags(dev, old_flags, 8010 dev->gflags ^ old_gflags); 8011 } 8012 return 0; 8013 } 8014 8015 /** 8016 * dev_set_allmulti - update allmulti count on a device 8017 * @dev: device 8018 * @inc: modifier 8019 * 8020 * Add or remove reception of all multicast frames to a device. While the 8021 * count in the device remains above zero the interface remains listening 8022 * to all interfaces. Once it hits zero the device reverts back to normal 8023 * filtering operation. A negative @inc value is used to drop the counter 8024 * when releasing a resource needing all multicasts. 8025 * Return 0 if successful or a negative errno code on error. 8026 */ 8027 8028 int dev_set_allmulti(struct net_device *dev, int inc) 8029 { 8030 return __dev_set_allmulti(dev, inc, true); 8031 } 8032 EXPORT_SYMBOL(dev_set_allmulti); 8033 8034 /* 8035 * Upload unicast and multicast address lists to device and 8036 * configure RX filtering. When the device doesn't support unicast 8037 * filtering it is put in promiscuous mode while unicast addresses 8038 * are present. 8039 */ 8040 void __dev_set_rx_mode(struct net_device *dev) 8041 { 8042 const struct net_device_ops *ops = dev->netdev_ops; 8043 8044 /* dev_open will call this function so the list will stay sane. */ 8045 if (!(dev->flags&IFF_UP)) 8046 return; 8047 8048 if (!netif_device_present(dev)) 8049 return; 8050 8051 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8052 /* Unicast addresses changes may only happen under the rtnl, 8053 * therefore calling __dev_set_promiscuity here is safe. 8054 */ 8055 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8056 __dev_set_promiscuity(dev, 1, false); 8057 dev->uc_promisc = true; 8058 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8059 __dev_set_promiscuity(dev, -1, false); 8060 dev->uc_promisc = false; 8061 } 8062 } 8063 8064 if (ops->ndo_set_rx_mode) 8065 ops->ndo_set_rx_mode(dev); 8066 } 8067 8068 void dev_set_rx_mode(struct net_device *dev) 8069 { 8070 netif_addr_lock_bh(dev); 8071 __dev_set_rx_mode(dev); 8072 netif_addr_unlock_bh(dev); 8073 } 8074 8075 /** 8076 * dev_get_flags - get flags reported to userspace 8077 * @dev: device 8078 * 8079 * Get the combination of flag bits exported through APIs to userspace. 8080 */ 8081 unsigned int dev_get_flags(const struct net_device *dev) 8082 { 8083 unsigned int flags; 8084 8085 flags = (dev->flags & ~(IFF_PROMISC | 8086 IFF_ALLMULTI | 8087 IFF_RUNNING | 8088 IFF_LOWER_UP | 8089 IFF_DORMANT)) | 8090 (dev->gflags & (IFF_PROMISC | 8091 IFF_ALLMULTI)); 8092 8093 if (netif_running(dev)) { 8094 if (netif_oper_up(dev)) 8095 flags |= IFF_RUNNING; 8096 if (netif_carrier_ok(dev)) 8097 flags |= IFF_LOWER_UP; 8098 if (netif_dormant(dev)) 8099 flags |= IFF_DORMANT; 8100 } 8101 8102 return flags; 8103 } 8104 EXPORT_SYMBOL(dev_get_flags); 8105 8106 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8107 struct netlink_ext_ack *extack) 8108 { 8109 unsigned int old_flags = dev->flags; 8110 int ret; 8111 8112 ASSERT_RTNL(); 8113 8114 /* 8115 * Set the flags on our device. 8116 */ 8117 8118 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8119 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8120 IFF_AUTOMEDIA)) | 8121 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8122 IFF_ALLMULTI)); 8123 8124 /* 8125 * Load in the correct multicast list now the flags have changed. 8126 */ 8127 8128 if ((old_flags ^ flags) & IFF_MULTICAST) 8129 dev_change_rx_flags(dev, IFF_MULTICAST); 8130 8131 dev_set_rx_mode(dev); 8132 8133 /* 8134 * Have we downed the interface. We handle IFF_UP ourselves 8135 * according to user attempts to set it, rather than blindly 8136 * setting it. 8137 */ 8138 8139 ret = 0; 8140 if ((old_flags ^ flags) & IFF_UP) { 8141 if (old_flags & IFF_UP) 8142 __dev_close(dev); 8143 else 8144 ret = __dev_open(dev, extack); 8145 } 8146 8147 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8148 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8149 unsigned int old_flags = dev->flags; 8150 8151 dev->gflags ^= IFF_PROMISC; 8152 8153 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8154 if (dev->flags != old_flags) 8155 dev_set_rx_mode(dev); 8156 } 8157 8158 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8159 * is important. Some (broken) drivers set IFF_PROMISC, when 8160 * IFF_ALLMULTI is requested not asking us and not reporting. 8161 */ 8162 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8163 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8164 8165 dev->gflags ^= IFF_ALLMULTI; 8166 __dev_set_allmulti(dev, inc, false); 8167 } 8168 8169 return ret; 8170 } 8171 8172 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8173 unsigned int gchanges) 8174 { 8175 unsigned int changes = dev->flags ^ old_flags; 8176 8177 if (gchanges) 8178 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8179 8180 if (changes & IFF_UP) { 8181 if (dev->flags & IFF_UP) 8182 call_netdevice_notifiers(NETDEV_UP, dev); 8183 else 8184 call_netdevice_notifiers(NETDEV_DOWN, dev); 8185 } 8186 8187 if (dev->flags & IFF_UP && 8188 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8189 struct netdev_notifier_change_info change_info = { 8190 .info = { 8191 .dev = dev, 8192 }, 8193 .flags_changed = changes, 8194 }; 8195 8196 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8197 } 8198 } 8199 8200 /** 8201 * dev_change_flags - change device settings 8202 * @dev: device 8203 * @flags: device state flags 8204 * @extack: netlink extended ack 8205 * 8206 * Change settings on device based state flags. The flags are 8207 * in the userspace exported format. 8208 */ 8209 int dev_change_flags(struct net_device *dev, unsigned int flags, 8210 struct netlink_ext_ack *extack) 8211 { 8212 int ret; 8213 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8214 8215 ret = __dev_change_flags(dev, flags, extack); 8216 if (ret < 0) 8217 return ret; 8218 8219 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8220 __dev_notify_flags(dev, old_flags, changes); 8221 return ret; 8222 } 8223 EXPORT_SYMBOL(dev_change_flags); 8224 8225 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8226 { 8227 const struct net_device_ops *ops = dev->netdev_ops; 8228 8229 if (ops->ndo_change_mtu) 8230 return ops->ndo_change_mtu(dev, new_mtu); 8231 8232 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8233 WRITE_ONCE(dev->mtu, new_mtu); 8234 return 0; 8235 } 8236 EXPORT_SYMBOL(__dev_set_mtu); 8237 8238 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8239 struct netlink_ext_ack *extack) 8240 { 8241 /* MTU must be positive, and in range */ 8242 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8243 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8244 return -EINVAL; 8245 } 8246 8247 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8248 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8249 return -EINVAL; 8250 } 8251 return 0; 8252 } 8253 8254 /** 8255 * dev_set_mtu_ext - Change maximum transfer unit 8256 * @dev: device 8257 * @new_mtu: new transfer unit 8258 * @extack: netlink extended ack 8259 * 8260 * Change the maximum transfer size of the network device. 8261 */ 8262 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8263 struct netlink_ext_ack *extack) 8264 { 8265 int err, orig_mtu; 8266 8267 if (new_mtu == dev->mtu) 8268 return 0; 8269 8270 err = dev_validate_mtu(dev, new_mtu, extack); 8271 if (err) 8272 return err; 8273 8274 if (!netif_device_present(dev)) 8275 return -ENODEV; 8276 8277 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8278 err = notifier_to_errno(err); 8279 if (err) 8280 return err; 8281 8282 orig_mtu = dev->mtu; 8283 err = __dev_set_mtu(dev, new_mtu); 8284 8285 if (!err) { 8286 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8287 orig_mtu); 8288 err = notifier_to_errno(err); 8289 if (err) { 8290 /* setting mtu back and notifying everyone again, 8291 * so that they have a chance to revert changes. 8292 */ 8293 __dev_set_mtu(dev, orig_mtu); 8294 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8295 new_mtu); 8296 } 8297 } 8298 return err; 8299 } 8300 8301 int dev_set_mtu(struct net_device *dev, int new_mtu) 8302 { 8303 struct netlink_ext_ack extack; 8304 int err; 8305 8306 memset(&extack, 0, sizeof(extack)); 8307 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8308 if (err && extack._msg) 8309 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8310 return err; 8311 } 8312 EXPORT_SYMBOL(dev_set_mtu); 8313 8314 /** 8315 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8316 * @dev: device 8317 * @new_len: new tx queue length 8318 */ 8319 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8320 { 8321 unsigned int orig_len = dev->tx_queue_len; 8322 int res; 8323 8324 if (new_len != (unsigned int)new_len) 8325 return -ERANGE; 8326 8327 if (new_len != orig_len) { 8328 dev->tx_queue_len = new_len; 8329 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8330 res = notifier_to_errno(res); 8331 if (res) 8332 goto err_rollback; 8333 res = dev_qdisc_change_tx_queue_len(dev); 8334 if (res) 8335 goto err_rollback; 8336 } 8337 8338 return 0; 8339 8340 err_rollback: 8341 netdev_err(dev, "refused to change device tx_queue_len\n"); 8342 dev->tx_queue_len = orig_len; 8343 return res; 8344 } 8345 8346 /** 8347 * dev_set_group - Change group this device belongs to 8348 * @dev: device 8349 * @new_group: group this device should belong to 8350 */ 8351 void dev_set_group(struct net_device *dev, int new_group) 8352 { 8353 dev->group = new_group; 8354 } 8355 EXPORT_SYMBOL(dev_set_group); 8356 8357 /** 8358 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8359 * @dev: device 8360 * @addr: new address 8361 * @extack: netlink extended ack 8362 */ 8363 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8364 struct netlink_ext_ack *extack) 8365 { 8366 struct netdev_notifier_pre_changeaddr_info info = { 8367 .info.dev = dev, 8368 .info.extack = extack, 8369 .dev_addr = addr, 8370 }; 8371 int rc; 8372 8373 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8374 return notifier_to_errno(rc); 8375 } 8376 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8377 8378 /** 8379 * dev_set_mac_address - Change Media Access Control Address 8380 * @dev: device 8381 * @sa: new address 8382 * @extack: netlink extended ack 8383 * 8384 * Change the hardware (MAC) address of the device 8385 */ 8386 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8387 struct netlink_ext_ack *extack) 8388 { 8389 const struct net_device_ops *ops = dev->netdev_ops; 8390 int err; 8391 8392 if (!ops->ndo_set_mac_address) 8393 return -EOPNOTSUPP; 8394 if (sa->sa_family != dev->type) 8395 return -EINVAL; 8396 if (!netif_device_present(dev)) 8397 return -ENODEV; 8398 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8399 if (err) 8400 return err; 8401 err = ops->ndo_set_mac_address(dev, sa); 8402 if (err) 8403 return err; 8404 dev->addr_assign_type = NET_ADDR_SET; 8405 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8406 add_device_randomness(dev->dev_addr, dev->addr_len); 8407 return 0; 8408 } 8409 EXPORT_SYMBOL(dev_set_mac_address); 8410 8411 /** 8412 * dev_change_carrier - Change device carrier 8413 * @dev: device 8414 * @new_carrier: new value 8415 * 8416 * Change device carrier 8417 */ 8418 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8419 { 8420 const struct net_device_ops *ops = dev->netdev_ops; 8421 8422 if (!ops->ndo_change_carrier) 8423 return -EOPNOTSUPP; 8424 if (!netif_device_present(dev)) 8425 return -ENODEV; 8426 return ops->ndo_change_carrier(dev, new_carrier); 8427 } 8428 EXPORT_SYMBOL(dev_change_carrier); 8429 8430 /** 8431 * dev_get_phys_port_id - Get device physical port ID 8432 * @dev: device 8433 * @ppid: port ID 8434 * 8435 * Get device physical port ID 8436 */ 8437 int dev_get_phys_port_id(struct net_device *dev, 8438 struct netdev_phys_item_id *ppid) 8439 { 8440 const struct net_device_ops *ops = dev->netdev_ops; 8441 8442 if (!ops->ndo_get_phys_port_id) 8443 return -EOPNOTSUPP; 8444 return ops->ndo_get_phys_port_id(dev, ppid); 8445 } 8446 EXPORT_SYMBOL(dev_get_phys_port_id); 8447 8448 /** 8449 * dev_get_phys_port_name - Get device physical port name 8450 * @dev: device 8451 * @name: port name 8452 * @len: limit of bytes to copy to name 8453 * 8454 * Get device physical port name 8455 */ 8456 int dev_get_phys_port_name(struct net_device *dev, 8457 char *name, size_t len) 8458 { 8459 const struct net_device_ops *ops = dev->netdev_ops; 8460 int err; 8461 8462 if (ops->ndo_get_phys_port_name) { 8463 err = ops->ndo_get_phys_port_name(dev, name, len); 8464 if (err != -EOPNOTSUPP) 8465 return err; 8466 } 8467 return devlink_compat_phys_port_name_get(dev, name, len); 8468 } 8469 EXPORT_SYMBOL(dev_get_phys_port_name); 8470 8471 /** 8472 * dev_get_port_parent_id - Get the device's port parent identifier 8473 * @dev: network device 8474 * @ppid: pointer to a storage for the port's parent identifier 8475 * @recurse: allow/disallow recursion to lower devices 8476 * 8477 * Get the devices's port parent identifier 8478 */ 8479 int dev_get_port_parent_id(struct net_device *dev, 8480 struct netdev_phys_item_id *ppid, 8481 bool recurse) 8482 { 8483 const struct net_device_ops *ops = dev->netdev_ops; 8484 struct netdev_phys_item_id first = { }; 8485 struct net_device *lower_dev; 8486 struct list_head *iter; 8487 int err; 8488 8489 if (ops->ndo_get_port_parent_id) { 8490 err = ops->ndo_get_port_parent_id(dev, ppid); 8491 if (err != -EOPNOTSUPP) 8492 return err; 8493 } 8494 8495 err = devlink_compat_switch_id_get(dev, ppid); 8496 if (!err || err != -EOPNOTSUPP) 8497 return err; 8498 8499 if (!recurse) 8500 return -EOPNOTSUPP; 8501 8502 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8503 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8504 if (err) 8505 break; 8506 if (!first.id_len) 8507 first = *ppid; 8508 else if (memcmp(&first, ppid, sizeof(*ppid))) 8509 return -ENODATA; 8510 } 8511 8512 return err; 8513 } 8514 EXPORT_SYMBOL(dev_get_port_parent_id); 8515 8516 /** 8517 * netdev_port_same_parent_id - Indicate if two network devices have 8518 * the same port parent identifier 8519 * @a: first network device 8520 * @b: second network device 8521 */ 8522 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8523 { 8524 struct netdev_phys_item_id a_id = { }; 8525 struct netdev_phys_item_id b_id = { }; 8526 8527 if (dev_get_port_parent_id(a, &a_id, true) || 8528 dev_get_port_parent_id(b, &b_id, true)) 8529 return false; 8530 8531 return netdev_phys_item_id_same(&a_id, &b_id); 8532 } 8533 EXPORT_SYMBOL(netdev_port_same_parent_id); 8534 8535 /** 8536 * dev_change_proto_down - update protocol port state information 8537 * @dev: device 8538 * @proto_down: new value 8539 * 8540 * This info can be used by switch drivers to set the phys state of the 8541 * port. 8542 */ 8543 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8544 { 8545 const struct net_device_ops *ops = dev->netdev_ops; 8546 8547 if (!ops->ndo_change_proto_down) 8548 return -EOPNOTSUPP; 8549 if (!netif_device_present(dev)) 8550 return -ENODEV; 8551 return ops->ndo_change_proto_down(dev, proto_down); 8552 } 8553 EXPORT_SYMBOL(dev_change_proto_down); 8554 8555 /** 8556 * dev_change_proto_down_generic - generic implementation for 8557 * ndo_change_proto_down that sets carrier according to 8558 * proto_down. 8559 * 8560 * @dev: device 8561 * @proto_down: new value 8562 */ 8563 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8564 { 8565 if (proto_down) 8566 netif_carrier_off(dev); 8567 else 8568 netif_carrier_on(dev); 8569 dev->proto_down = proto_down; 8570 return 0; 8571 } 8572 EXPORT_SYMBOL(dev_change_proto_down_generic); 8573 8574 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8575 enum bpf_netdev_command cmd) 8576 { 8577 struct netdev_bpf xdp; 8578 8579 if (!bpf_op) 8580 return 0; 8581 8582 memset(&xdp, 0, sizeof(xdp)); 8583 xdp.command = cmd; 8584 8585 /* Query must always succeed. */ 8586 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8587 8588 return xdp.prog_id; 8589 } 8590 8591 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8592 struct netlink_ext_ack *extack, u32 flags, 8593 struct bpf_prog *prog) 8594 { 8595 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8596 struct bpf_prog *prev_prog = NULL; 8597 struct netdev_bpf xdp; 8598 int err; 8599 8600 if (non_hw) { 8601 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8602 XDP_QUERY_PROG)); 8603 if (IS_ERR(prev_prog)) 8604 prev_prog = NULL; 8605 } 8606 8607 memset(&xdp, 0, sizeof(xdp)); 8608 if (flags & XDP_FLAGS_HW_MODE) 8609 xdp.command = XDP_SETUP_PROG_HW; 8610 else 8611 xdp.command = XDP_SETUP_PROG; 8612 xdp.extack = extack; 8613 xdp.flags = flags; 8614 xdp.prog = prog; 8615 8616 err = bpf_op(dev, &xdp); 8617 if (!err && non_hw) 8618 bpf_prog_change_xdp(prev_prog, prog); 8619 8620 if (prev_prog) 8621 bpf_prog_put(prev_prog); 8622 8623 return err; 8624 } 8625 8626 static void dev_xdp_uninstall(struct net_device *dev) 8627 { 8628 struct netdev_bpf xdp; 8629 bpf_op_t ndo_bpf; 8630 8631 /* Remove generic XDP */ 8632 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8633 8634 /* Remove from the driver */ 8635 ndo_bpf = dev->netdev_ops->ndo_bpf; 8636 if (!ndo_bpf) 8637 return; 8638 8639 memset(&xdp, 0, sizeof(xdp)); 8640 xdp.command = XDP_QUERY_PROG; 8641 WARN_ON(ndo_bpf(dev, &xdp)); 8642 if (xdp.prog_id) 8643 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8644 NULL)); 8645 8646 /* Remove HW offload */ 8647 memset(&xdp, 0, sizeof(xdp)); 8648 xdp.command = XDP_QUERY_PROG_HW; 8649 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8650 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8651 NULL)); 8652 } 8653 8654 /** 8655 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8656 * @dev: device 8657 * @extack: netlink extended ack 8658 * @fd: new program fd or negative value to clear 8659 * @expected_fd: old program fd that userspace expects to replace or clear 8660 * @flags: xdp-related flags 8661 * 8662 * Set or clear a bpf program for a device 8663 */ 8664 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8665 int fd, int expected_fd, u32 flags) 8666 { 8667 const struct net_device_ops *ops = dev->netdev_ops; 8668 enum bpf_netdev_command query; 8669 u32 prog_id, expected_id = 0; 8670 bpf_op_t bpf_op, bpf_chk; 8671 struct bpf_prog *prog; 8672 bool offload; 8673 int err; 8674 8675 ASSERT_RTNL(); 8676 8677 offload = flags & XDP_FLAGS_HW_MODE; 8678 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8679 8680 bpf_op = bpf_chk = ops->ndo_bpf; 8681 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8682 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8683 return -EOPNOTSUPP; 8684 } 8685 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8686 bpf_op = generic_xdp_install; 8687 if (bpf_op == bpf_chk) 8688 bpf_chk = generic_xdp_install; 8689 8690 prog_id = __dev_xdp_query(dev, bpf_op, query); 8691 if (flags & XDP_FLAGS_REPLACE) { 8692 if (expected_fd >= 0) { 8693 prog = bpf_prog_get_type_dev(expected_fd, 8694 BPF_PROG_TYPE_XDP, 8695 bpf_op == ops->ndo_bpf); 8696 if (IS_ERR(prog)) 8697 return PTR_ERR(prog); 8698 expected_id = prog->aux->id; 8699 bpf_prog_put(prog); 8700 } 8701 8702 if (prog_id != expected_id) { 8703 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 8704 return -EEXIST; 8705 } 8706 } 8707 if (fd >= 0) { 8708 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8709 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8710 return -EEXIST; 8711 } 8712 8713 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8714 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8715 return -EBUSY; 8716 } 8717 8718 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8719 bpf_op == ops->ndo_bpf); 8720 if (IS_ERR(prog)) 8721 return PTR_ERR(prog); 8722 8723 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8724 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8725 bpf_prog_put(prog); 8726 return -EINVAL; 8727 } 8728 8729 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8730 if (prog->aux->id && prog->aux->id == prog_id) { 8731 bpf_prog_put(prog); 8732 return 0; 8733 } 8734 } else { 8735 if (!prog_id) 8736 return 0; 8737 prog = NULL; 8738 } 8739 8740 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8741 if (err < 0 && prog) 8742 bpf_prog_put(prog); 8743 8744 return err; 8745 } 8746 8747 /** 8748 * dev_new_index - allocate an ifindex 8749 * @net: the applicable net namespace 8750 * 8751 * Returns a suitable unique value for a new device interface 8752 * number. The caller must hold the rtnl semaphore or the 8753 * dev_base_lock to be sure it remains unique. 8754 */ 8755 static int dev_new_index(struct net *net) 8756 { 8757 int ifindex = net->ifindex; 8758 8759 for (;;) { 8760 if (++ifindex <= 0) 8761 ifindex = 1; 8762 if (!__dev_get_by_index(net, ifindex)) 8763 return net->ifindex = ifindex; 8764 } 8765 } 8766 8767 /* Delayed registration/unregisteration */ 8768 static LIST_HEAD(net_todo_list); 8769 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8770 8771 static void net_set_todo(struct net_device *dev) 8772 { 8773 list_add_tail(&dev->todo_list, &net_todo_list); 8774 dev_net(dev)->dev_unreg_count++; 8775 } 8776 8777 static void rollback_registered_many(struct list_head *head) 8778 { 8779 struct net_device *dev, *tmp; 8780 LIST_HEAD(close_head); 8781 8782 BUG_ON(dev_boot_phase); 8783 ASSERT_RTNL(); 8784 8785 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8786 /* Some devices call without registering 8787 * for initialization unwind. Remove those 8788 * devices and proceed with the remaining. 8789 */ 8790 if (dev->reg_state == NETREG_UNINITIALIZED) { 8791 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8792 dev->name, dev); 8793 8794 WARN_ON(1); 8795 list_del(&dev->unreg_list); 8796 continue; 8797 } 8798 dev->dismantle = true; 8799 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8800 } 8801 8802 /* If device is running, close it first. */ 8803 list_for_each_entry(dev, head, unreg_list) 8804 list_add_tail(&dev->close_list, &close_head); 8805 dev_close_many(&close_head, true); 8806 8807 list_for_each_entry(dev, head, unreg_list) { 8808 /* And unlink it from device chain. */ 8809 unlist_netdevice(dev); 8810 8811 dev->reg_state = NETREG_UNREGISTERING; 8812 } 8813 flush_all_backlogs(); 8814 8815 synchronize_net(); 8816 8817 list_for_each_entry(dev, head, unreg_list) { 8818 struct sk_buff *skb = NULL; 8819 8820 /* Shutdown queueing discipline. */ 8821 dev_shutdown(dev); 8822 8823 dev_xdp_uninstall(dev); 8824 8825 /* Notify protocols, that we are about to destroy 8826 * this device. They should clean all the things. 8827 */ 8828 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8829 8830 if (!dev->rtnl_link_ops || 8831 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8832 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8833 GFP_KERNEL, NULL, 0); 8834 8835 /* 8836 * Flush the unicast and multicast chains 8837 */ 8838 dev_uc_flush(dev); 8839 dev_mc_flush(dev); 8840 8841 netdev_name_node_alt_flush(dev); 8842 netdev_name_node_free(dev->name_node); 8843 8844 if (dev->netdev_ops->ndo_uninit) 8845 dev->netdev_ops->ndo_uninit(dev); 8846 8847 if (skb) 8848 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8849 8850 /* Notifier chain MUST detach us all upper devices. */ 8851 WARN_ON(netdev_has_any_upper_dev(dev)); 8852 WARN_ON(netdev_has_any_lower_dev(dev)); 8853 8854 /* Remove entries from kobject tree */ 8855 netdev_unregister_kobject(dev); 8856 #ifdef CONFIG_XPS 8857 /* Remove XPS queueing entries */ 8858 netif_reset_xps_queues_gt(dev, 0); 8859 #endif 8860 } 8861 8862 synchronize_net(); 8863 8864 list_for_each_entry(dev, head, unreg_list) 8865 dev_put(dev); 8866 } 8867 8868 static void rollback_registered(struct net_device *dev) 8869 { 8870 LIST_HEAD(single); 8871 8872 list_add(&dev->unreg_list, &single); 8873 rollback_registered_many(&single); 8874 list_del(&single); 8875 } 8876 8877 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8878 struct net_device *upper, netdev_features_t features) 8879 { 8880 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8881 netdev_features_t feature; 8882 int feature_bit; 8883 8884 for_each_netdev_feature(upper_disables, feature_bit) { 8885 feature = __NETIF_F_BIT(feature_bit); 8886 if (!(upper->wanted_features & feature) 8887 && (features & feature)) { 8888 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8889 &feature, upper->name); 8890 features &= ~feature; 8891 } 8892 } 8893 8894 return features; 8895 } 8896 8897 static void netdev_sync_lower_features(struct net_device *upper, 8898 struct net_device *lower, netdev_features_t features) 8899 { 8900 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8901 netdev_features_t feature; 8902 int feature_bit; 8903 8904 for_each_netdev_feature(upper_disables, feature_bit) { 8905 feature = __NETIF_F_BIT(feature_bit); 8906 if (!(features & feature) && (lower->features & feature)) { 8907 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8908 &feature, lower->name); 8909 lower->wanted_features &= ~feature; 8910 netdev_update_features(lower); 8911 8912 if (unlikely(lower->features & feature)) 8913 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8914 &feature, lower->name); 8915 } 8916 } 8917 } 8918 8919 static netdev_features_t netdev_fix_features(struct net_device *dev, 8920 netdev_features_t features) 8921 { 8922 /* Fix illegal checksum combinations */ 8923 if ((features & NETIF_F_HW_CSUM) && 8924 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8925 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8926 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8927 } 8928 8929 /* TSO requires that SG is present as well. */ 8930 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8931 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8932 features &= ~NETIF_F_ALL_TSO; 8933 } 8934 8935 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8936 !(features & NETIF_F_IP_CSUM)) { 8937 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8938 features &= ~NETIF_F_TSO; 8939 features &= ~NETIF_F_TSO_ECN; 8940 } 8941 8942 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8943 !(features & NETIF_F_IPV6_CSUM)) { 8944 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8945 features &= ~NETIF_F_TSO6; 8946 } 8947 8948 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8949 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8950 features &= ~NETIF_F_TSO_MANGLEID; 8951 8952 /* TSO ECN requires that TSO is present as well. */ 8953 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8954 features &= ~NETIF_F_TSO_ECN; 8955 8956 /* Software GSO depends on SG. */ 8957 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8958 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8959 features &= ~NETIF_F_GSO; 8960 } 8961 8962 /* GSO partial features require GSO partial be set */ 8963 if ((features & dev->gso_partial_features) && 8964 !(features & NETIF_F_GSO_PARTIAL)) { 8965 netdev_dbg(dev, 8966 "Dropping partially supported GSO features since no GSO partial.\n"); 8967 features &= ~dev->gso_partial_features; 8968 } 8969 8970 if (!(features & NETIF_F_RXCSUM)) { 8971 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8972 * successfully merged by hardware must also have the 8973 * checksum verified by hardware. If the user does not 8974 * want to enable RXCSUM, logically, we should disable GRO_HW. 8975 */ 8976 if (features & NETIF_F_GRO_HW) { 8977 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8978 features &= ~NETIF_F_GRO_HW; 8979 } 8980 } 8981 8982 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8983 if (features & NETIF_F_RXFCS) { 8984 if (features & NETIF_F_LRO) { 8985 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8986 features &= ~NETIF_F_LRO; 8987 } 8988 8989 if (features & NETIF_F_GRO_HW) { 8990 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8991 features &= ~NETIF_F_GRO_HW; 8992 } 8993 } 8994 8995 return features; 8996 } 8997 8998 int __netdev_update_features(struct net_device *dev) 8999 { 9000 struct net_device *upper, *lower; 9001 netdev_features_t features; 9002 struct list_head *iter; 9003 int err = -1; 9004 9005 ASSERT_RTNL(); 9006 9007 features = netdev_get_wanted_features(dev); 9008 9009 if (dev->netdev_ops->ndo_fix_features) 9010 features = dev->netdev_ops->ndo_fix_features(dev, features); 9011 9012 /* driver might be less strict about feature dependencies */ 9013 features = netdev_fix_features(dev, features); 9014 9015 /* some features can't be enabled if they're off an an upper device */ 9016 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9017 features = netdev_sync_upper_features(dev, upper, features); 9018 9019 if (dev->features == features) 9020 goto sync_lower; 9021 9022 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9023 &dev->features, &features); 9024 9025 if (dev->netdev_ops->ndo_set_features) 9026 err = dev->netdev_ops->ndo_set_features(dev, features); 9027 else 9028 err = 0; 9029 9030 if (unlikely(err < 0)) { 9031 netdev_err(dev, 9032 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9033 err, &features, &dev->features); 9034 /* return non-0 since some features might have changed and 9035 * it's better to fire a spurious notification than miss it 9036 */ 9037 return -1; 9038 } 9039 9040 sync_lower: 9041 /* some features must be disabled on lower devices when disabled 9042 * on an upper device (think: bonding master or bridge) 9043 */ 9044 netdev_for_each_lower_dev(dev, lower, iter) 9045 netdev_sync_lower_features(dev, lower, features); 9046 9047 if (!err) { 9048 netdev_features_t diff = features ^ dev->features; 9049 9050 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9051 /* udp_tunnel_{get,drop}_rx_info both need 9052 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9053 * device, or they won't do anything. 9054 * Thus we need to update dev->features 9055 * *before* calling udp_tunnel_get_rx_info, 9056 * but *after* calling udp_tunnel_drop_rx_info. 9057 */ 9058 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9059 dev->features = features; 9060 udp_tunnel_get_rx_info(dev); 9061 } else { 9062 udp_tunnel_drop_rx_info(dev); 9063 } 9064 } 9065 9066 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9067 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9068 dev->features = features; 9069 err |= vlan_get_rx_ctag_filter_info(dev); 9070 } else { 9071 vlan_drop_rx_ctag_filter_info(dev); 9072 } 9073 } 9074 9075 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9076 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9077 dev->features = features; 9078 err |= vlan_get_rx_stag_filter_info(dev); 9079 } else { 9080 vlan_drop_rx_stag_filter_info(dev); 9081 } 9082 } 9083 9084 dev->features = features; 9085 } 9086 9087 return err < 0 ? 0 : 1; 9088 } 9089 9090 /** 9091 * netdev_update_features - recalculate device features 9092 * @dev: the device to check 9093 * 9094 * Recalculate dev->features set and send notifications if it 9095 * has changed. Should be called after driver or hardware dependent 9096 * conditions might have changed that influence the features. 9097 */ 9098 void netdev_update_features(struct net_device *dev) 9099 { 9100 if (__netdev_update_features(dev)) 9101 netdev_features_change(dev); 9102 } 9103 EXPORT_SYMBOL(netdev_update_features); 9104 9105 /** 9106 * netdev_change_features - recalculate device features 9107 * @dev: the device to check 9108 * 9109 * Recalculate dev->features set and send notifications even 9110 * if they have not changed. Should be called instead of 9111 * netdev_update_features() if also dev->vlan_features might 9112 * have changed to allow the changes to be propagated to stacked 9113 * VLAN devices. 9114 */ 9115 void netdev_change_features(struct net_device *dev) 9116 { 9117 __netdev_update_features(dev); 9118 netdev_features_change(dev); 9119 } 9120 EXPORT_SYMBOL(netdev_change_features); 9121 9122 /** 9123 * netif_stacked_transfer_operstate - transfer operstate 9124 * @rootdev: the root or lower level device to transfer state from 9125 * @dev: the device to transfer operstate to 9126 * 9127 * Transfer operational state from root to device. This is normally 9128 * called when a stacking relationship exists between the root 9129 * device and the device(a leaf device). 9130 */ 9131 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9132 struct net_device *dev) 9133 { 9134 if (rootdev->operstate == IF_OPER_DORMANT) 9135 netif_dormant_on(dev); 9136 else 9137 netif_dormant_off(dev); 9138 9139 if (netif_carrier_ok(rootdev)) 9140 netif_carrier_on(dev); 9141 else 9142 netif_carrier_off(dev); 9143 } 9144 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9145 9146 static int netif_alloc_rx_queues(struct net_device *dev) 9147 { 9148 unsigned int i, count = dev->num_rx_queues; 9149 struct netdev_rx_queue *rx; 9150 size_t sz = count * sizeof(*rx); 9151 int err = 0; 9152 9153 BUG_ON(count < 1); 9154 9155 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9156 if (!rx) 9157 return -ENOMEM; 9158 9159 dev->_rx = rx; 9160 9161 for (i = 0; i < count; i++) { 9162 rx[i].dev = dev; 9163 9164 /* XDP RX-queue setup */ 9165 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9166 if (err < 0) 9167 goto err_rxq_info; 9168 } 9169 return 0; 9170 9171 err_rxq_info: 9172 /* Rollback successful reg's and free other resources */ 9173 while (i--) 9174 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9175 kvfree(dev->_rx); 9176 dev->_rx = NULL; 9177 return err; 9178 } 9179 9180 static void netif_free_rx_queues(struct net_device *dev) 9181 { 9182 unsigned int i, count = dev->num_rx_queues; 9183 9184 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9185 if (!dev->_rx) 9186 return; 9187 9188 for (i = 0; i < count; i++) 9189 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9190 9191 kvfree(dev->_rx); 9192 } 9193 9194 static void netdev_init_one_queue(struct net_device *dev, 9195 struct netdev_queue *queue, void *_unused) 9196 { 9197 /* Initialize queue lock */ 9198 spin_lock_init(&queue->_xmit_lock); 9199 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key); 9200 queue->xmit_lock_owner = -1; 9201 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9202 queue->dev = dev; 9203 #ifdef CONFIG_BQL 9204 dql_init(&queue->dql, HZ); 9205 #endif 9206 } 9207 9208 static void netif_free_tx_queues(struct net_device *dev) 9209 { 9210 kvfree(dev->_tx); 9211 } 9212 9213 static int netif_alloc_netdev_queues(struct net_device *dev) 9214 { 9215 unsigned int count = dev->num_tx_queues; 9216 struct netdev_queue *tx; 9217 size_t sz = count * sizeof(*tx); 9218 9219 if (count < 1 || count > 0xffff) 9220 return -EINVAL; 9221 9222 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9223 if (!tx) 9224 return -ENOMEM; 9225 9226 dev->_tx = tx; 9227 9228 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9229 spin_lock_init(&dev->tx_global_lock); 9230 9231 return 0; 9232 } 9233 9234 void netif_tx_stop_all_queues(struct net_device *dev) 9235 { 9236 unsigned int i; 9237 9238 for (i = 0; i < dev->num_tx_queues; i++) { 9239 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9240 9241 netif_tx_stop_queue(txq); 9242 } 9243 } 9244 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9245 9246 static void netdev_register_lockdep_key(struct net_device *dev) 9247 { 9248 lockdep_register_key(&dev->qdisc_tx_busylock_key); 9249 lockdep_register_key(&dev->qdisc_running_key); 9250 lockdep_register_key(&dev->qdisc_xmit_lock_key); 9251 lockdep_register_key(&dev->addr_list_lock_key); 9252 } 9253 9254 static void netdev_unregister_lockdep_key(struct net_device *dev) 9255 { 9256 lockdep_unregister_key(&dev->qdisc_tx_busylock_key); 9257 lockdep_unregister_key(&dev->qdisc_running_key); 9258 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 9259 lockdep_unregister_key(&dev->addr_list_lock_key); 9260 } 9261 9262 void netdev_update_lockdep_key(struct net_device *dev) 9263 { 9264 lockdep_unregister_key(&dev->addr_list_lock_key); 9265 lockdep_register_key(&dev->addr_list_lock_key); 9266 9267 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9268 } 9269 EXPORT_SYMBOL(netdev_update_lockdep_key); 9270 9271 /** 9272 * register_netdevice - register a network device 9273 * @dev: device to register 9274 * 9275 * Take a completed network device structure and add it to the kernel 9276 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9277 * chain. 0 is returned on success. A negative errno code is returned 9278 * on a failure to set up the device, or if the name is a duplicate. 9279 * 9280 * Callers must hold the rtnl semaphore. You may want 9281 * register_netdev() instead of this. 9282 * 9283 * BUGS: 9284 * The locking appears insufficient to guarantee two parallel registers 9285 * will not get the same name. 9286 */ 9287 9288 int register_netdevice(struct net_device *dev) 9289 { 9290 int ret; 9291 struct net *net = dev_net(dev); 9292 9293 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9294 NETDEV_FEATURE_COUNT); 9295 BUG_ON(dev_boot_phase); 9296 ASSERT_RTNL(); 9297 9298 might_sleep(); 9299 9300 /* When net_device's are persistent, this will be fatal. */ 9301 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9302 BUG_ON(!net); 9303 9304 ret = ethtool_check_ops(dev->ethtool_ops); 9305 if (ret) 9306 return ret; 9307 9308 spin_lock_init(&dev->addr_list_lock); 9309 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9310 9311 ret = dev_get_valid_name(net, dev, dev->name); 9312 if (ret < 0) 9313 goto out; 9314 9315 ret = -ENOMEM; 9316 dev->name_node = netdev_name_node_head_alloc(dev); 9317 if (!dev->name_node) 9318 goto out; 9319 9320 /* Init, if this function is available */ 9321 if (dev->netdev_ops->ndo_init) { 9322 ret = dev->netdev_ops->ndo_init(dev); 9323 if (ret) { 9324 if (ret > 0) 9325 ret = -EIO; 9326 goto err_free_name; 9327 } 9328 } 9329 9330 if (((dev->hw_features | dev->features) & 9331 NETIF_F_HW_VLAN_CTAG_FILTER) && 9332 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9333 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9334 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9335 ret = -EINVAL; 9336 goto err_uninit; 9337 } 9338 9339 ret = -EBUSY; 9340 if (!dev->ifindex) 9341 dev->ifindex = dev_new_index(net); 9342 else if (__dev_get_by_index(net, dev->ifindex)) 9343 goto err_uninit; 9344 9345 /* Transfer changeable features to wanted_features and enable 9346 * software offloads (GSO and GRO). 9347 */ 9348 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9349 dev->features |= NETIF_F_SOFT_FEATURES; 9350 9351 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9352 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9353 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9354 } 9355 9356 dev->wanted_features = dev->features & dev->hw_features; 9357 9358 if (!(dev->flags & IFF_LOOPBACK)) 9359 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9360 9361 /* If IPv4 TCP segmentation offload is supported we should also 9362 * allow the device to enable segmenting the frame with the option 9363 * of ignoring a static IP ID value. This doesn't enable the 9364 * feature itself but allows the user to enable it later. 9365 */ 9366 if (dev->hw_features & NETIF_F_TSO) 9367 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9368 if (dev->vlan_features & NETIF_F_TSO) 9369 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9370 if (dev->mpls_features & NETIF_F_TSO) 9371 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9372 if (dev->hw_enc_features & NETIF_F_TSO) 9373 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9374 9375 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9376 */ 9377 dev->vlan_features |= NETIF_F_HIGHDMA; 9378 9379 /* Make NETIF_F_SG inheritable to tunnel devices. 9380 */ 9381 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9382 9383 /* Make NETIF_F_SG inheritable to MPLS. 9384 */ 9385 dev->mpls_features |= NETIF_F_SG; 9386 9387 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9388 ret = notifier_to_errno(ret); 9389 if (ret) 9390 goto err_uninit; 9391 9392 ret = netdev_register_kobject(dev); 9393 if (ret) { 9394 dev->reg_state = NETREG_UNREGISTERED; 9395 goto err_uninit; 9396 } 9397 dev->reg_state = NETREG_REGISTERED; 9398 9399 __netdev_update_features(dev); 9400 9401 /* 9402 * Default initial state at registry is that the 9403 * device is present. 9404 */ 9405 9406 set_bit(__LINK_STATE_PRESENT, &dev->state); 9407 9408 linkwatch_init_dev(dev); 9409 9410 dev_init_scheduler(dev); 9411 dev_hold(dev); 9412 list_netdevice(dev); 9413 add_device_randomness(dev->dev_addr, dev->addr_len); 9414 9415 /* If the device has permanent device address, driver should 9416 * set dev_addr and also addr_assign_type should be set to 9417 * NET_ADDR_PERM (default value). 9418 */ 9419 if (dev->addr_assign_type == NET_ADDR_PERM) 9420 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9421 9422 /* Notify protocols, that a new device appeared. */ 9423 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9424 ret = notifier_to_errno(ret); 9425 if (ret) { 9426 rollback_registered(dev); 9427 rcu_barrier(); 9428 9429 dev->reg_state = NETREG_UNREGISTERED; 9430 } 9431 /* 9432 * Prevent userspace races by waiting until the network 9433 * device is fully setup before sending notifications. 9434 */ 9435 if (!dev->rtnl_link_ops || 9436 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9437 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9438 9439 out: 9440 return ret; 9441 9442 err_uninit: 9443 if (dev->netdev_ops->ndo_uninit) 9444 dev->netdev_ops->ndo_uninit(dev); 9445 if (dev->priv_destructor) 9446 dev->priv_destructor(dev); 9447 err_free_name: 9448 netdev_name_node_free(dev->name_node); 9449 goto out; 9450 } 9451 EXPORT_SYMBOL(register_netdevice); 9452 9453 /** 9454 * init_dummy_netdev - init a dummy network device for NAPI 9455 * @dev: device to init 9456 * 9457 * This takes a network device structure and initialize the minimum 9458 * amount of fields so it can be used to schedule NAPI polls without 9459 * registering a full blown interface. This is to be used by drivers 9460 * that need to tie several hardware interfaces to a single NAPI 9461 * poll scheduler due to HW limitations. 9462 */ 9463 int init_dummy_netdev(struct net_device *dev) 9464 { 9465 /* Clear everything. Note we don't initialize spinlocks 9466 * are they aren't supposed to be taken by any of the 9467 * NAPI code and this dummy netdev is supposed to be 9468 * only ever used for NAPI polls 9469 */ 9470 memset(dev, 0, sizeof(struct net_device)); 9471 9472 /* make sure we BUG if trying to hit standard 9473 * register/unregister code path 9474 */ 9475 dev->reg_state = NETREG_DUMMY; 9476 9477 /* NAPI wants this */ 9478 INIT_LIST_HEAD(&dev->napi_list); 9479 9480 /* a dummy interface is started by default */ 9481 set_bit(__LINK_STATE_PRESENT, &dev->state); 9482 set_bit(__LINK_STATE_START, &dev->state); 9483 9484 /* napi_busy_loop stats accounting wants this */ 9485 dev_net_set(dev, &init_net); 9486 9487 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9488 * because users of this 'device' dont need to change 9489 * its refcount. 9490 */ 9491 9492 return 0; 9493 } 9494 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9495 9496 9497 /** 9498 * register_netdev - register a network device 9499 * @dev: device to register 9500 * 9501 * Take a completed network device structure and add it to the kernel 9502 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9503 * chain. 0 is returned on success. A negative errno code is returned 9504 * on a failure to set up the device, or if the name is a duplicate. 9505 * 9506 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9507 * and expands the device name if you passed a format string to 9508 * alloc_netdev. 9509 */ 9510 int register_netdev(struct net_device *dev) 9511 { 9512 int err; 9513 9514 if (rtnl_lock_killable()) 9515 return -EINTR; 9516 err = register_netdevice(dev); 9517 rtnl_unlock(); 9518 return err; 9519 } 9520 EXPORT_SYMBOL(register_netdev); 9521 9522 int netdev_refcnt_read(const struct net_device *dev) 9523 { 9524 int i, refcnt = 0; 9525 9526 for_each_possible_cpu(i) 9527 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9528 return refcnt; 9529 } 9530 EXPORT_SYMBOL(netdev_refcnt_read); 9531 9532 /** 9533 * netdev_wait_allrefs - wait until all references are gone. 9534 * @dev: target net_device 9535 * 9536 * This is called when unregistering network devices. 9537 * 9538 * Any protocol or device that holds a reference should register 9539 * for netdevice notification, and cleanup and put back the 9540 * reference if they receive an UNREGISTER event. 9541 * We can get stuck here if buggy protocols don't correctly 9542 * call dev_put. 9543 */ 9544 static void netdev_wait_allrefs(struct net_device *dev) 9545 { 9546 unsigned long rebroadcast_time, warning_time; 9547 int refcnt; 9548 9549 linkwatch_forget_dev(dev); 9550 9551 rebroadcast_time = warning_time = jiffies; 9552 refcnt = netdev_refcnt_read(dev); 9553 9554 while (refcnt != 0) { 9555 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9556 rtnl_lock(); 9557 9558 /* Rebroadcast unregister notification */ 9559 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9560 9561 __rtnl_unlock(); 9562 rcu_barrier(); 9563 rtnl_lock(); 9564 9565 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9566 &dev->state)) { 9567 /* We must not have linkwatch events 9568 * pending on unregister. If this 9569 * happens, we simply run the queue 9570 * unscheduled, resulting in a noop 9571 * for this device. 9572 */ 9573 linkwatch_run_queue(); 9574 } 9575 9576 __rtnl_unlock(); 9577 9578 rebroadcast_time = jiffies; 9579 } 9580 9581 msleep(250); 9582 9583 refcnt = netdev_refcnt_read(dev); 9584 9585 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9586 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9587 dev->name, refcnt); 9588 warning_time = jiffies; 9589 } 9590 } 9591 } 9592 9593 /* The sequence is: 9594 * 9595 * rtnl_lock(); 9596 * ... 9597 * register_netdevice(x1); 9598 * register_netdevice(x2); 9599 * ... 9600 * unregister_netdevice(y1); 9601 * unregister_netdevice(y2); 9602 * ... 9603 * rtnl_unlock(); 9604 * free_netdev(y1); 9605 * free_netdev(y2); 9606 * 9607 * We are invoked by rtnl_unlock(). 9608 * This allows us to deal with problems: 9609 * 1) We can delete sysfs objects which invoke hotplug 9610 * without deadlocking with linkwatch via keventd. 9611 * 2) Since we run with the RTNL semaphore not held, we can sleep 9612 * safely in order to wait for the netdev refcnt to drop to zero. 9613 * 9614 * We must not return until all unregister events added during 9615 * the interval the lock was held have been completed. 9616 */ 9617 void netdev_run_todo(void) 9618 { 9619 struct list_head list; 9620 9621 /* Snapshot list, allow later requests */ 9622 list_replace_init(&net_todo_list, &list); 9623 9624 __rtnl_unlock(); 9625 9626 9627 /* Wait for rcu callbacks to finish before next phase */ 9628 if (!list_empty(&list)) 9629 rcu_barrier(); 9630 9631 while (!list_empty(&list)) { 9632 struct net_device *dev 9633 = list_first_entry(&list, struct net_device, todo_list); 9634 list_del(&dev->todo_list); 9635 9636 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9637 pr_err("network todo '%s' but state %d\n", 9638 dev->name, dev->reg_state); 9639 dump_stack(); 9640 continue; 9641 } 9642 9643 dev->reg_state = NETREG_UNREGISTERED; 9644 9645 netdev_wait_allrefs(dev); 9646 9647 /* paranoia */ 9648 BUG_ON(netdev_refcnt_read(dev)); 9649 BUG_ON(!list_empty(&dev->ptype_all)); 9650 BUG_ON(!list_empty(&dev->ptype_specific)); 9651 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9652 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9653 #if IS_ENABLED(CONFIG_DECNET) 9654 WARN_ON(dev->dn_ptr); 9655 #endif 9656 if (dev->priv_destructor) 9657 dev->priv_destructor(dev); 9658 if (dev->needs_free_netdev) 9659 free_netdev(dev); 9660 9661 /* Report a network device has been unregistered */ 9662 rtnl_lock(); 9663 dev_net(dev)->dev_unreg_count--; 9664 __rtnl_unlock(); 9665 wake_up(&netdev_unregistering_wq); 9666 9667 /* Free network device */ 9668 kobject_put(&dev->dev.kobj); 9669 } 9670 } 9671 9672 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9673 * all the same fields in the same order as net_device_stats, with only 9674 * the type differing, but rtnl_link_stats64 may have additional fields 9675 * at the end for newer counters. 9676 */ 9677 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9678 const struct net_device_stats *netdev_stats) 9679 { 9680 #if BITS_PER_LONG == 64 9681 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9682 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9683 /* zero out counters that only exist in rtnl_link_stats64 */ 9684 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9685 sizeof(*stats64) - sizeof(*netdev_stats)); 9686 #else 9687 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9688 const unsigned long *src = (const unsigned long *)netdev_stats; 9689 u64 *dst = (u64 *)stats64; 9690 9691 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9692 for (i = 0; i < n; i++) 9693 dst[i] = src[i]; 9694 /* zero out counters that only exist in rtnl_link_stats64 */ 9695 memset((char *)stats64 + n * sizeof(u64), 0, 9696 sizeof(*stats64) - n * sizeof(u64)); 9697 #endif 9698 } 9699 EXPORT_SYMBOL(netdev_stats_to_stats64); 9700 9701 /** 9702 * dev_get_stats - get network device statistics 9703 * @dev: device to get statistics from 9704 * @storage: place to store stats 9705 * 9706 * Get network statistics from device. Return @storage. 9707 * The device driver may provide its own method by setting 9708 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9709 * otherwise the internal statistics structure is used. 9710 */ 9711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9712 struct rtnl_link_stats64 *storage) 9713 { 9714 const struct net_device_ops *ops = dev->netdev_ops; 9715 9716 if (ops->ndo_get_stats64) { 9717 memset(storage, 0, sizeof(*storage)); 9718 ops->ndo_get_stats64(dev, storage); 9719 } else if (ops->ndo_get_stats) { 9720 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9721 } else { 9722 netdev_stats_to_stats64(storage, &dev->stats); 9723 } 9724 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9725 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9726 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9727 return storage; 9728 } 9729 EXPORT_SYMBOL(dev_get_stats); 9730 9731 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9732 { 9733 struct netdev_queue *queue = dev_ingress_queue(dev); 9734 9735 #ifdef CONFIG_NET_CLS_ACT 9736 if (queue) 9737 return queue; 9738 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9739 if (!queue) 9740 return NULL; 9741 netdev_init_one_queue(dev, queue, NULL); 9742 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9743 queue->qdisc_sleeping = &noop_qdisc; 9744 rcu_assign_pointer(dev->ingress_queue, queue); 9745 #endif 9746 return queue; 9747 } 9748 9749 static const struct ethtool_ops default_ethtool_ops; 9750 9751 void netdev_set_default_ethtool_ops(struct net_device *dev, 9752 const struct ethtool_ops *ops) 9753 { 9754 if (dev->ethtool_ops == &default_ethtool_ops) 9755 dev->ethtool_ops = ops; 9756 } 9757 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9758 9759 void netdev_freemem(struct net_device *dev) 9760 { 9761 char *addr = (char *)dev - dev->padded; 9762 9763 kvfree(addr); 9764 } 9765 9766 /** 9767 * alloc_netdev_mqs - allocate network device 9768 * @sizeof_priv: size of private data to allocate space for 9769 * @name: device name format string 9770 * @name_assign_type: origin of device name 9771 * @setup: callback to initialize device 9772 * @txqs: the number of TX subqueues to allocate 9773 * @rxqs: the number of RX subqueues to allocate 9774 * 9775 * Allocates a struct net_device with private data area for driver use 9776 * and performs basic initialization. Also allocates subqueue structs 9777 * for each queue on the device. 9778 */ 9779 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9780 unsigned char name_assign_type, 9781 void (*setup)(struct net_device *), 9782 unsigned int txqs, unsigned int rxqs) 9783 { 9784 struct net_device *dev; 9785 unsigned int alloc_size; 9786 struct net_device *p; 9787 9788 BUG_ON(strlen(name) >= sizeof(dev->name)); 9789 9790 if (txqs < 1) { 9791 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9792 return NULL; 9793 } 9794 9795 if (rxqs < 1) { 9796 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9797 return NULL; 9798 } 9799 9800 alloc_size = sizeof(struct net_device); 9801 if (sizeof_priv) { 9802 /* ensure 32-byte alignment of private area */ 9803 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9804 alloc_size += sizeof_priv; 9805 } 9806 /* ensure 32-byte alignment of whole construct */ 9807 alloc_size += NETDEV_ALIGN - 1; 9808 9809 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9810 if (!p) 9811 return NULL; 9812 9813 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9814 dev->padded = (char *)dev - (char *)p; 9815 9816 dev->pcpu_refcnt = alloc_percpu(int); 9817 if (!dev->pcpu_refcnt) 9818 goto free_dev; 9819 9820 if (dev_addr_init(dev)) 9821 goto free_pcpu; 9822 9823 dev_mc_init(dev); 9824 dev_uc_init(dev); 9825 9826 dev_net_set(dev, &init_net); 9827 9828 netdev_register_lockdep_key(dev); 9829 9830 dev->gso_max_size = GSO_MAX_SIZE; 9831 dev->gso_max_segs = GSO_MAX_SEGS; 9832 dev->upper_level = 1; 9833 dev->lower_level = 1; 9834 9835 INIT_LIST_HEAD(&dev->napi_list); 9836 INIT_LIST_HEAD(&dev->unreg_list); 9837 INIT_LIST_HEAD(&dev->close_list); 9838 INIT_LIST_HEAD(&dev->link_watch_list); 9839 INIT_LIST_HEAD(&dev->adj_list.upper); 9840 INIT_LIST_HEAD(&dev->adj_list.lower); 9841 INIT_LIST_HEAD(&dev->ptype_all); 9842 INIT_LIST_HEAD(&dev->ptype_specific); 9843 INIT_LIST_HEAD(&dev->net_notifier_list); 9844 #ifdef CONFIG_NET_SCHED 9845 hash_init(dev->qdisc_hash); 9846 #endif 9847 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9848 setup(dev); 9849 9850 if (!dev->tx_queue_len) { 9851 dev->priv_flags |= IFF_NO_QUEUE; 9852 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9853 } 9854 9855 dev->num_tx_queues = txqs; 9856 dev->real_num_tx_queues = txqs; 9857 if (netif_alloc_netdev_queues(dev)) 9858 goto free_all; 9859 9860 dev->num_rx_queues = rxqs; 9861 dev->real_num_rx_queues = rxqs; 9862 if (netif_alloc_rx_queues(dev)) 9863 goto free_all; 9864 9865 strcpy(dev->name, name); 9866 dev->name_assign_type = name_assign_type; 9867 dev->group = INIT_NETDEV_GROUP; 9868 if (!dev->ethtool_ops) 9869 dev->ethtool_ops = &default_ethtool_ops; 9870 9871 nf_hook_ingress_init(dev); 9872 9873 return dev; 9874 9875 free_all: 9876 free_netdev(dev); 9877 return NULL; 9878 9879 free_pcpu: 9880 free_percpu(dev->pcpu_refcnt); 9881 free_dev: 9882 netdev_freemem(dev); 9883 return NULL; 9884 } 9885 EXPORT_SYMBOL(alloc_netdev_mqs); 9886 9887 /** 9888 * free_netdev - free network device 9889 * @dev: device 9890 * 9891 * This function does the last stage of destroying an allocated device 9892 * interface. The reference to the device object is released. If this 9893 * is the last reference then it will be freed.Must be called in process 9894 * context. 9895 */ 9896 void free_netdev(struct net_device *dev) 9897 { 9898 struct napi_struct *p, *n; 9899 9900 might_sleep(); 9901 netif_free_tx_queues(dev); 9902 netif_free_rx_queues(dev); 9903 9904 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9905 9906 /* Flush device addresses */ 9907 dev_addr_flush(dev); 9908 9909 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9910 netif_napi_del(p); 9911 9912 free_percpu(dev->pcpu_refcnt); 9913 dev->pcpu_refcnt = NULL; 9914 free_percpu(dev->xdp_bulkq); 9915 dev->xdp_bulkq = NULL; 9916 9917 netdev_unregister_lockdep_key(dev); 9918 9919 /* Compatibility with error handling in drivers */ 9920 if (dev->reg_state == NETREG_UNINITIALIZED) { 9921 netdev_freemem(dev); 9922 return; 9923 } 9924 9925 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9926 dev->reg_state = NETREG_RELEASED; 9927 9928 /* will free via device release */ 9929 put_device(&dev->dev); 9930 } 9931 EXPORT_SYMBOL(free_netdev); 9932 9933 /** 9934 * synchronize_net - Synchronize with packet receive processing 9935 * 9936 * Wait for packets currently being received to be done. 9937 * Does not block later packets from starting. 9938 */ 9939 void synchronize_net(void) 9940 { 9941 might_sleep(); 9942 if (rtnl_is_locked()) 9943 synchronize_rcu_expedited(); 9944 else 9945 synchronize_rcu(); 9946 } 9947 EXPORT_SYMBOL(synchronize_net); 9948 9949 /** 9950 * unregister_netdevice_queue - remove device from the kernel 9951 * @dev: device 9952 * @head: list 9953 * 9954 * This function shuts down a device interface and removes it 9955 * from the kernel tables. 9956 * If head not NULL, device is queued to be unregistered later. 9957 * 9958 * Callers must hold the rtnl semaphore. You may want 9959 * unregister_netdev() instead of this. 9960 */ 9961 9962 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9963 { 9964 ASSERT_RTNL(); 9965 9966 if (head) { 9967 list_move_tail(&dev->unreg_list, head); 9968 } else { 9969 rollback_registered(dev); 9970 /* Finish processing unregister after unlock */ 9971 net_set_todo(dev); 9972 } 9973 } 9974 EXPORT_SYMBOL(unregister_netdevice_queue); 9975 9976 /** 9977 * unregister_netdevice_many - unregister many devices 9978 * @head: list of devices 9979 * 9980 * Note: As most callers use a stack allocated list_head, 9981 * we force a list_del() to make sure stack wont be corrupted later. 9982 */ 9983 void unregister_netdevice_many(struct list_head *head) 9984 { 9985 struct net_device *dev; 9986 9987 if (!list_empty(head)) { 9988 rollback_registered_many(head); 9989 list_for_each_entry(dev, head, unreg_list) 9990 net_set_todo(dev); 9991 list_del(head); 9992 } 9993 } 9994 EXPORT_SYMBOL(unregister_netdevice_many); 9995 9996 /** 9997 * unregister_netdev - remove device from the kernel 9998 * @dev: device 9999 * 10000 * This function shuts down a device interface and removes it 10001 * from the kernel tables. 10002 * 10003 * This is just a wrapper for unregister_netdevice that takes 10004 * the rtnl semaphore. In general you want to use this and not 10005 * unregister_netdevice. 10006 */ 10007 void unregister_netdev(struct net_device *dev) 10008 { 10009 rtnl_lock(); 10010 unregister_netdevice(dev); 10011 rtnl_unlock(); 10012 } 10013 EXPORT_SYMBOL(unregister_netdev); 10014 10015 /** 10016 * dev_change_net_namespace - move device to different nethost namespace 10017 * @dev: device 10018 * @net: network namespace 10019 * @pat: If not NULL name pattern to try if the current device name 10020 * is already taken in the destination network namespace. 10021 * 10022 * This function shuts down a device interface and moves it 10023 * to a new network namespace. On success 0 is returned, on 10024 * a failure a netagive errno code is returned. 10025 * 10026 * Callers must hold the rtnl semaphore. 10027 */ 10028 10029 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10030 { 10031 struct net *net_old = dev_net(dev); 10032 int err, new_nsid, new_ifindex; 10033 10034 ASSERT_RTNL(); 10035 10036 /* Don't allow namespace local devices to be moved. */ 10037 err = -EINVAL; 10038 if (dev->features & NETIF_F_NETNS_LOCAL) 10039 goto out; 10040 10041 /* Ensure the device has been registrered */ 10042 if (dev->reg_state != NETREG_REGISTERED) 10043 goto out; 10044 10045 /* Get out if there is nothing todo */ 10046 err = 0; 10047 if (net_eq(net_old, net)) 10048 goto out; 10049 10050 /* Pick the destination device name, and ensure 10051 * we can use it in the destination network namespace. 10052 */ 10053 err = -EEXIST; 10054 if (__dev_get_by_name(net, dev->name)) { 10055 /* We get here if we can't use the current device name */ 10056 if (!pat) 10057 goto out; 10058 err = dev_get_valid_name(net, dev, pat); 10059 if (err < 0) 10060 goto out; 10061 } 10062 10063 /* 10064 * And now a mini version of register_netdevice unregister_netdevice. 10065 */ 10066 10067 /* If device is running close it first. */ 10068 dev_close(dev); 10069 10070 /* And unlink it from device chain */ 10071 unlist_netdevice(dev); 10072 10073 synchronize_net(); 10074 10075 /* Shutdown queueing discipline. */ 10076 dev_shutdown(dev); 10077 10078 /* Notify protocols, that we are about to destroy 10079 * this device. They should clean all the things. 10080 * 10081 * Note that dev->reg_state stays at NETREG_REGISTERED. 10082 * This is wanted because this way 8021q and macvlan know 10083 * the device is just moving and can keep their slaves up. 10084 */ 10085 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10086 rcu_barrier(); 10087 10088 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10089 /* If there is an ifindex conflict assign a new one */ 10090 if (__dev_get_by_index(net, dev->ifindex)) 10091 new_ifindex = dev_new_index(net); 10092 else 10093 new_ifindex = dev->ifindex; 10094 10095 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10096 new_ifindex); 10097 10098 /* 10099 * Flush the unicast and multicast chains 10100 */ 10101 dev_uc_flush(dev); 10102 dev_mc_flush(dev); 10103 10104 /* Send a netdev-removed uevent to the old namespace */ 10105 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10106 netdev_adjacent_del_links(dev); 10107 10108 /* Move per-net netdevice notifiers that are following the netdevice */ 10109 move_netdevice_notifiers_dev_net(dev, net); 10110 10111 /* Actually switch the network namespace */ 10112 dev_net_set(dev, net); 10113 dev->ifindex = new_ifindex; 10114 10115 /* Send a netdev-add uevent to the new namespace */ 10116 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10117 netdev_adjacent_add_links(dev); 10118 10119 /* Fixup kobjects */ 10120 err = device_rename(&dev->dev, dev->name); 10121 WARN_ON(err); 10122 10123 /* Adapt owner in case owning user namespace of target network 10124 * namespace is different from the original one. 10125 */ 10126 err = netdev_change_owner(dev, net_old, net); 10127 WARN_ON(err); 10128 10129 /* Add the device back in the hashes */ 10130 list_netdevice(dev); 10131 10132 /* Notify protocols, that a new device appeared. */ 10133 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10134 10135 /* 10136 * Prevent userspace races by waiting until the network 10137 * device is fully setup before sending notifications. 10138 */ 10139 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10140 10141 synchronize_net(); 10142 err = 0; 10143 out: 10144 return err; 10145 } 10146 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10147 10148 static int dev_cpu_dead(unsigned int oldcpu) 10149 { 10150 struct sk_buff **list_skb; 10151 struct sk_buff *skb; 10152 unsigned int cpu; 10153 struct softnet_data *sd, *oldsd, *remsd = NULL; 10154 10155 local_irq_disable(); 10156 cpu = smp_processor_id(); 10157 sd = &per_cpu(softnet_data, cpu); 10158 oldsd = &per_cpu(softnet_data, oldcpu); 10159 10160 /* Find end of our completion_queue. */ 10161 list_skb = &sd->completion_queue; 10162 while (*list_skb) 10163 list_skb = &(*list_skb)->next; 10164 /* Append completion queue from offline CPU. */ 10165 *list_skb = oldsd->completion_queue; 10166 oldsd->completion_queue = NULL; 10167 10168 /* Append output queue from offline CPU. */ 10169 if (oldsd->output_queue) { 10170 *sd->output_queue_tailp = oldsd->output_queue; 10171 sd->output_queue_tailp = oldsd->output_queue_tailp; 10172 oldsd->output_queue = NULL; 10173 oldsd->output_queue_tailp = &oldsd->output_queue; 10174 } 10175 /* Append NAPI poll list from offline CPU, with one exception : 10176 * process_backlog() must be called by cpu owning percpu backlog. 10177 * We properly handle process_queue & input_pkt_queue later. 10178 */ 10179 while (!list_empty(&oldsd->poll_list)) { 10180 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10181 struct napi_struct, 10182 poll_list); 10183 10184 list_del_init(&napi->poll_list); 10185 if (napi->poll == process_backlog) 10186 napi->state = 0; 10187 else 10188 ____napi_schedule(sd, napi); 10189 } 10190 10191 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10192 local_irq_enable(); 10193 10194 #ifdef CONFIG_RPS 10195 remsd = oldsd->rps_ipi_list; 10196 oldsd->rps_ipi_list = NULL; 10197 #endif 10198 /* send out pending IPI's on offline CPU */ 10199 net_rps_send_ipi(remsd); 10200 10201 /* Process offline CPU's input_pkt_queue */ 10202 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10203 netif_rx_ni(skb); 10204 input_queue_head_incr(oldsd); 10205 } 10206 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10207 netif_rx_ni(skb); 10208 input_queue_head_incr(oldsd); 10209 } 10210 10211 return 0; 10212 } 10213 10214 /** 10215 * netdev_increment_features - increment feature set by one 10216 * @all: current feature set 10217 * @one: new feature set 10218 * @mask: mask feature set 10219 * 10220 * Computes a new feature set after adding a device with feature set 10221 * @one to the master device with current feature set @all. Will not 10222 * enable anything that is off in @mask. Returns the new feature set. 10223 */ 10224 netdev_features_t netdev_increment_features(netdev_features_t all, 10225 netdev_features_t one, netdev_features_t mask) 10226 { 10227 if (mask & NETIF_F_HW_CSUM) 10228 mask |= NETIF_F_CSUM_MASK; 10229 mask |= NETIF_F_VLAN_CHALLENGED; 10230 10231 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10232 all &= one | ~NETIF_F_ALL_FOR_ALL; 10233 10234 /* If one device supports hw checksumming, set for all. */ 10235 if (all & NETIF_F_HW_CSUM) 10236 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10237 10238 return all; 10239 } 10240 EXPORT_SYMBOL(netdev_increment_features); 10241 10242 static struct hlist_head * __net_init netdev_create_hash(void) 10243 { 10244 int i; 10245 struct hlist_head *hash; 10246 10247 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10248 if (hash != NULL) 10249 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10250 INIT_HLIST_HEAD(&hash[i]); 10251 10252 return hash; 10253 } 10254 10255 /* Initialize per network namespace state */ 10256 static int __net_init netdev_init(struct net *net) 10257 { 10258 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10259 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10260 10261 if (net != &init_net) 10262 INIT_LIST_HEAD(&net->dev_base_head); 10263 10264 net->dev_name_head = netdev_create_hash(); 10265 if (net->dev_name_head == NULL) 10266 goto err_name; 10267 10268 net->dev_index_head = netdev_create_hash(); 10269 if (net->dev_index_head == NULL) 10270 goto err_idx; 10271 10272 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10273 10274 return 0; 10275 10276 err_idx: 10277 kfree(net->dev_name_head); 10278 err_name: 10279 return -ENOMEM; 10280 } 10281 10282 /** 10283 * netdev_drivername - network driver for the device 10284 * @dev: network device 10285 * 10286 * Determine network driver for device. 10287 */ 10288 const char *netdev_drivername(const struct net_device *dev) 10289 { 10290 const struct device_driver *driver; 10291 const struct device *parent; 10292 const char *empty = ""; 10293 10294 parent = dev->dev.parent; 10295 if (!parent) 10296 return empty; 10297 10298 driver = parent->driver; 10299 if (driver && driver->name) 10300 return driver->name; 10301 return empty; 10302 } 10303 10304 static void __netdev_printk(const char *level, const struct net_device *dev, 10305 struct va_format *vaf) 10306 { 10307 if (dev && dev->dev.parent) { 10308 dev_printk_emit(level[1] - '0', 10309 dev->dev.parent, 10310 "%s %s %s%s: %pV", 10311 dev_driver_string(dev->dev.parent), 10312 dev_name(dev->dev.parent), 10313 netdev_name(dev), netdev_reg_state(dev), 10314 vaf); 10315 } else if (dev) { 10316 printk("%s%s%s: %pV", 10317 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10318 } else { 10319 printk("%s(NULL net_device): %pV", level, vaf); 10320 } 10321 } 10322 10323 void netdev_printk(const char *level, const struct net_device *dev, 10324 const char *format, ...) 10325 { 10326 struct va_format vaf; 10327 va_list args; 10328 10329 va_start(args, format); 10330 10331 vaf.fmt = format; 10332 vaf.va = &args; 10333 10334 __netdev_printk(level, dev, &vaf); 10335 10336 va_end(args); 10337 } 10338 EXPORT_SYMBOL(netdev_printk); 10339 10340 #define define_netdev_printk_level(func, level) \ 10341 void func(const struct net_device *dev, const char *fmt, ...) \ 10342 { \ 10343 struct va_format vaf; \ 10344 va_list args; \ 10345 \ 10346 va_start(args, fmt); \ 10347 \ 10348 vaf.fmt = fmt; \ 10349 vaf.va = &args; \ 10350 \ 10351 __netdev_printk(level, dev, &vaf); \ 10352 \ 10353 va_end(args); \ 10354 } \ 10355 EXPORT_SYMBOL(func); 10356 10357 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10358 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10359 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10360 define_netdev_printk_level(netdev_err, KERN_ERR); 10361 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10362 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10363 define_netdev_printk_level(netdev_info, KERN_INFO); 10364 10365 static void __net_exit netdev_exit(struct net *net) 10366 { 10367 kfree(net->dev_name_head); 10368 kfree(net->dev_index_head); 10369 if (net != &init_net) 10370 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10371 } 10372 10373 static struct pernet_operations __net_initdata netdev_net_ops = { 10374 .init = netdev_init, 10375 .exit = netdev_exit, 10376 }; 10377 10378 static void __net_exit default_device_exit(struct net *net) 10379 { 10380 struct net_device *dev, *aux; 10381 /* 10382 * Push all migratable network devices back to the 10383 * initial network namespace 10384 */ 10385 rtnl_lock(); 10386 for_each_netdev_safe(net, dev, aux) { 10387 int err; 10388 char fb_name[IFNAMSIZ]; 10389 10390 /* Ignore unmoveable devices (i.e. loopback) */ 10391 if (dev->features & NETIF_F_NETNS_LOCAL) 10392 continue; 10393 10394 /* Leave virtual devices for the generic cleanup */ 10395 if (dev->rtnl_link_ops) 10396 continue; 10397 10398 /* Push remaining network devices to init_net */ 10399 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10400 if (__dev_get_by_name(&init_net, fb_name)) 10401 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10402 err = dev_change_net_namespace(dev, &init_net, fb_name); 10403 if (err) { 10404 pr_emerg("%s: failed to move %s to init_net: %d\n", 10405 __func__, dev->name, err); 10406 BUG(); 10407 } 10408 } 10409 rtnl_unlock(); 10410 } 10411 10412 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10413 { 10414 /* Return with the rtnl_lock held when there are no network 10415 * devices unregistering in any network namespace in net_list. 10416 */ 10417 struct net *net; 10418 bool unregistering; 10419 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10420 10421 add_wait_queue(&netdev_unregistering_wq, &wait); 10422 for (;;) { 10423 unregistering = false; 10424 rtnl_lock(); 10425 list_for_each_entry(net, net_list, exit_list) { 10426 if (net->dev_unreg_count > 0) { 10427 unregistering = true; 10428 break; 10429 } 10430 } 10431 if (!unregistering) 10432 break; 10433 __rtnl_unlock(); 10434 10435 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10436 } 10437 remove_wait_queue(&netdev_unregistering_wq, &wait); 10438 } 10439 10440 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10441 { 10442 /* At exit all network devices most be removed from a network 10443 * namespace. Do this in the reverse order of registration. 10444 * Do this across as many network namespaces as possible to 10445 * improve batching efficiency. 10446 */ 10447 struct net_device *dev; 10448 struct net *net; 10449 LIST_HEAD(dev_kill_list); 10450 10451 /* To prevent network device cleanup code from dereferencing 10452 * loopback devices or network devices that have been freed 10453 * wait here for all pending unregistrations to complete, 10454 * before unregistring the loopback device and allowing the 10455 * network namespace be freed. 10456 * 10457 * The netdev todo list containing all network devices 10458 * unregistrations that happen in default_device_exit_batch 10459 * will run in the rtnl_unlock() at the end of 10460 * default_device_exit_batch. 10461 */ 10462 rtnl_lock_unregistering(net_list); 10463 list_for_each_entry(net, net_list, exit_list) { 10464 for_each_netdev_reverse(net, dev) { 10465 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10466 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10467 else 10468 unregister_netdevice_queue(dev, &dev_kill_list); 10469 } 10470 } 10471 unregister_netdevice_many(&dev_kill_list); 10472 rtnl_unlock(); 10473 } 10474 10475 static struct pernet_operations __net_initdata default_device_ops = { 10476 .exit = default_device_exit, 10477 .exit_batch = default_device_exit_batch, 10478 }; 10479 10480 /* 10481 * Initialize the DEV module. At boot time this walks the device list and 10482 * unhooks any devices that fail to initialise (normally hardware not 10483 * present) and leaves us with a valid list of present and active devices. 10484 * 10485 */ 10486 10487 /* 10488 * This is called single threaded during boot, so no need 10489 * to take the rtnl semaphore. 10490 */ 10491 static int __init net_dev_init(void) 10492 { 10493 int i, rc = -ENOMEM; 10494 10495 BUG_ON(!dev_boot_phase); 10496 10497 if (dev_proc_init()) 10498 goto out; 10499 10500 if (netdev_kobject_init()) 10501 goto out; 10502 10503 INIT_LIST_HEAD(&ptype_all); 10504 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10505 INIT_LIST_HEAD(&ptype_base[i]); 10506 10507 INIT_LIST_HEAD(&offload_base); 10508 10509 if (register_pernet_subsys(&netdev_net_ops)) 10510 goto out; 10511 10512 /* 10513 * Initialise the packet receive queues. 10514 */ 10515 10516 for_each_possible_cpu(i) { 10517 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10518 struct softnet_data *sd = &per_cpu(softnet_data, i); 10519 10520 INIT_WORK(flush, flush_backlog); 10521 10522 skb_queue_head_init(&sd->input_pkt_queue); 10523 skb_queue_head_init(&sd->process_queue); 10524 #ifdef CONFIG_XFRM_OFFLOAD 10525 skb_queue_head_init(&sd->xfrm_backlog); 10526 #endif 10527 INIT_LIST_HEAD(&sd->poll_list); 10528 sd->output_queue_tailp = &sd->output_queue; 10529 #ifdef CONFIG_RPS 10530 sd->csd.func = rps_trigger_softirq; 10531 sd->csd.info = sd; 10532 sd->cpu = i; 10533 #endif 10534 10535 init_gro_hash(&sd->backlog); 10536 sd->backlog.poll = process_backlog; 10537 sd->backlog.weight = weight_p; 10538 } 10539 10540 dev_boot_phase = 0; 10541 10542 /* The loopback device is special if any other network devices 10543 * is present in a network namespace the loopback device must 10544 * be present. Since we now dynamically allocate and free the 10545 * loopback device ensure this invariant is maintained by 10546 * keeping the loopback device as the first device on the 10547 * list of network devices. Ensuring the loopback devices 10548 * is the first device that appears and the last network device 10549 * that disappears. 10550 */ 10551 if (register_pernet_device(&loopback_net_ops)) 10552 goto out; 10553 10554 if (register_pernet_device(&default_device_ops)) 10555 goto out; 10556 10557 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10558 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10559 10560 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10561 NULL, dev_cpu_dead); 10562 WARN_ON(rc < 0); 10563 rc = 0; 10564 out: 10565 return rc; 10566 } 10567 10568 subsys_initcall(net_dev_init); 10569