xref: /openbmc/linux/net/core/dev.c (revision 022dacdd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 /*******************************************************************************
402  *
403  *		Protocol management and registration routines
404  *
405  *******************************************************************************/
406 
407 
408 /*
409  *	Add a protocol ID to the list. Now that the input handler is
410  *	smarter we can dispense with all the messy stuff that used to be
411  *	here.
412  *
413  *	BEWARE!!! Protocol handlers, mangling input packets,
414  *	MUST BE last in hash buckets and checking protocol handlers
415  *	MUST start from promiscuous ptype_all chain in net_bh.
416  *	It is true now, do not change it.
417  *	Explanation follows: if protocol handler, mangling packet, will
418  *	be the first on list, it is not able to sense, that packet
419  *	is cloned and should be copied-on-write, so that it will
420  *	change it and subsequent readers will get broken packet.
421  *							--ANK (980803)
422  */
423 
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426 	if (pt->type == htons(ETH_P_ALL))
427 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428 	else
429 		return pt->dev ? &pt->dev->ptype_specific :
430 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432 
433 /**
434  *	dev_add_pack - add packet handler
435  *	@pt: packet type declaration
436  *
437  *	Add a protocol handler to the networking stack. The passed &packet_type
438  *	is linked into kernel lists and may not be freed until it has been
439  *	removed from the kernel lists.
440  *
441  *	This call does not sleep therefore it can not
442  *	guarantee all CPU's that are in middle of receiving packets
443  *	will see the new packet type (until the next received packet).
444  */
445 
446 void dev_add_pack(struct packet_type *pt)
447 {
448 	struct list_head *head = ptype_head(pt);
449 
450 	spin_lock(&ptype_lock);
451 	list_add_rcu(&pt->list, head);
452 	spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455 
456 /**
457  *	__dev_remove_pack	 - remove packet handler
458  *	@pt: packet type declaration
459  *
460  *	Remove a protocol handler that was previously added to the kernel
461  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *	from the kernel lists and can be freed or reused once this function
463  *	returns.
464  *
465  *      The packet type might still be in use by receivers
466  *	and must not be freed until after all the CPU's have gone
467  *	through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471 	struct list_head *head = ptype_head(pt);
472 	struct packet_type *pt1;
473 
474 	spin_lock(&ptype_lock);
475 
476 	list_for_each_entry(pt1, head, list) {
477 		if (pt == pt1) {
478 			list_del_rcu(&pt->list);
479 			goto out;
480 		}
481 	}
482 
483 	pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485 	spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488 
489 /**
490  *	dev_remove_pack	 - remove packet handler
491  *	@pt: packet type declaration
492  *
493  *	Remove a protocol handler that was previously added to the kernel
494  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *	from the kernel lists and can be freed or reused once this function
496  *	returns.
497  *
498  *	This call sleeps to guarantee that no CPU is looking at the packet
499  *	type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503 	__dev_remove_pack(pt);
504 
505 	synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508 
509 
510 /**
511  *	dev_add_offload - register offload handlers
512  *	@po: protocol offload declaration
513  *
514  *	Add protocol offload handlers to the networking stack. The passed
515  *	&proto_offload is linked into kernel lists and may not be freed until
516  *	it has been removed from the kernel lists.
517  *
518  *	This call does not sleep therefore it can not
519  *	guarantee all CPU's that are in middle of receiving packets
520  *	will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524 	struct packet_offload *elem;
525 
526 	spin_lock(&offload_lock);
527 	list_for_each_entry(elem, &offload_base, list) {
528 		if (po->priority < elem->priority)
529 			break;
530 	}
531 	list_add_rcu(&po->list, elem->list.prev);
532 	spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535 
536 /**
537  *	__dev_remove_offload	 - remove offload handler
538  *	@po: packet offload declaration
539  *
540  *	Remove a protocol offload handler that was previously added to the
541  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *	is removed from the kernel lists and can be freed or reused once this
543  *	function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *	and must not be freed until after all the CPU's have gone
547  *	through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551 	struct list_head *head = &offload_base;
552 	struct packet_offload *po1;
553 
554 	spin_lock(&offload_lock);
555 
556 	list_for_each_entry(po1, head, list) {
557 		if (po == po1) {
558 			list_del_rcu(&po->list);
559 			goto out;
560 		}
561 	}
562 
563 	pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565 	spin_unlock(&offload_lock);
566 }
567 
568 /**
569  *	dev_remove_offload	 - remove packet offload handler
570  *	@po: packet offload declaration
571  *
572  *	Remove a packet offload handler that was previously added to the kernel
573  *	offload handlers by dev_add_offload(). The passed &offload_type is
574  *	removed from the kernel lists and can be freed or reused once this
575  *	function returns.
576  *
577  *	This call sleeps to guarantee that no CPU is looking at the packet
578  *	type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582 	__dev_remove_offload(po);
583 
584 	synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587 
588 /******************************************************************************
589  *
590  *		      Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593 
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596 
597 /**
598  *	netdev_boot_setup_add	- add new setup entry
599  *	@name: name of the device
600  *	@map: configured settings for the device
601  *
602  *	Adds new setup entry to the dev_boot_setup list.  The function
603  *	returns 0 on error and 1 on success.  This is a generic routine to
604  *	all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608 	struct netdev_boot_setup *s;
609 	int i;
610 
611 	s = dev_boot_setup;
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 			memset(s[i].name, 0, sizeof(s[i].name));
615 			strlcpy(s[i].name, name, IFNAMSIZ);
616 			memcpy(&s[i].map, map, sizeof(s[i].map));
617 			break;
618 		}
619 	}
620 
621 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623 
624 /**
625  * netdev_boot_setup_check	- check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635 	struct netdev_boot_setup *s = dev_boot_setup;
636 	int i;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 		    !strcmp(dev->name, s[i].name)) {
641 			dev->irq = s[i].map.irq;
642 			dev->base_addr = s[i].map.base_addr;
643 			dev->mem_start = s[i].map.mem_start;
644 			dev->mem_end = s[i].map.mem_end;
645 			return 1;
646 		}
647 	}
648 	return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651 
652 
653 /**
654  * netdev_boot_base	- get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665 	const struct netdev_boot_setup *s = dev_boot_setup;
666 	char name[IFNAMSIZ];
667 	int i;
668 
669 	sprintf(name, "%s%d", prefix, unit);
670 
671 	/*
672 	 * If device already registered then return base of 1
673 	 * to indicate not to probe for this interface
674 	 */
675 	if (__dev_get_by_name(&init_net, name))
676 		return 1;
677 
678 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 		if (!strcmp(name, s[i].name))
680 			return s[i].map.base_addr;
681 	return 0;
682 }
683 
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689 	int ints[5];
690 	struct ifmap map;
691 
692 	str = get_options(str, ARRAY_SIZE(ints), ints);
693 	if (!str || !*str)
694 		return 0;
695 
696 	/* Save settings */
697 	memset(&map, 0, sizeof(map));
698 	if (ints[0] > 0)
699 		map.irq = ints[1];
700 	if (ints[0] > 1)
701 		map.base_addr = ints[2];
702 	if (ints[0] > 2)
703 		map.mem_start = ints[3];
704 	if (ints[0] > 3)
705 		map.mem_end = ints[4];
706 
707 	/* Add new entry to the list */
708 	return netdev_boot_setup_add(str, &map);
709 }
710 
711 __setup("netdev=", netdev_boot_setup);
712 
713 /*******************************************************************************
714  *
715  *			    Device Interface Subroutines
716  *
717  *******************************************************************************/
718 
719 /**
720  *	dev_get_iflink	- get 'iflink' value of a interface
721  *	@dev: targeted interface
722  *
723  *	Indicates the ifindex the interface is linked to.
724  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726 
727 int dev_get_iflink(const struct net_device *dev)
728 {
729 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 		return dev->netdev_ops->ndo_get_iflink(dev);
731 
732 	return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735 
736 /**
737  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *	@dev: targeted interface
739  *	@skb: The packet.
740  *
741  *	For better visibility of tunnel traffic OVS needs to retrieve
742  *	egress tunnel information for a packet. Following API allows
743  *	user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747 	struct ip_tunnel_info *info;
748 
749 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750 		return -EINVAL;
751 
752 	info = skb_tunnel_info_unclone(skb);
753 	if (!info)
754 		return -ENOMEM;
755 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 		return -EINVAL;
757 
758 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761 
762 /**
763  *	__dev_get_by_name	- find a device by its name
764  *	@net: the applicable net namespace
765  *	@name: name to find
766  *
767  *	Find an interface by name. Must be called under RTNL semaphore
768  *	or @dev_base_lock. If the name is found a pointer to the device
769  *	is returned. If the name is not found then %NULL is returned. The
770  *	reference counters are not incremented so the caller must be
771  *	careful with locks.
772  */
773 
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776 	struct netdev_name_node *node_name;
777 
778 	node_name = netdev_name_node_lookup(net, name);
779 	return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782 
783 /**
784  * dev_get_by_name_rcu	- find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797 	struct netdev_name_node *node_name;
798 
799 	node_name = netdev_name_node_lookup_rcu(net, name);
800 	return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803 
804 /**
805  *	dev_get_by_name		- find a device by its name
806  *	@net: the applicable net namespace
807  *	@name: name to find
808  *
809  *	Find an interface by name. This can be called from any
810  *	context and does its own locking. The returned handle has
811  *	the usage count incremented and the caller must use dev_put() to
812  *	release it when it is no longer needed. %NULL is returned if no
813  *	matching device is found.
814  */
815 
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	dev = dev_get_by_name_rcu(net, name);
822 	if (dev)
823 		dev_hold(dev);
824 	rcu_read_unlock();
825 	return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828 
829 /**
830  *	__dev_get_by_index - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold either the RTNL semaphore
838  *	or @dev_base_lock.
839  */
840 
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 	struct hlist_head *head = dev_index_hash(net, ifindex);
845 
846 	hlist_for_each_entry(dev, head, index_hlist)
847 		if (dev->ifindex == ifindex)
848 			return dev;
849 
850 	return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853 
854 /**
855  *	dev_get_by_index_rcu - find a device by its ifindex
856  *	@net: the applicable net namespace
857  *	@ifindex: index of device
858  *
859  *	Search for an interface by index. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not
861  *	had its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867 	struct net_device *dev;
868 	struct hlist_head *head = dev_index_hash(net, ifindex);
869 
870 	hlist_for_each_entry_rcu(dev, head, index_hlist)
871 		if (dev->ifindex == ifindex)
872 			return dev;
873 
874 	return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877 
878 
879 /**
880  *	dev_get_by_index - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *
884  *	Search for an interface by index. Returns NULL if the device
885  *	is not found or a pointer to the device. The device returned has
886  *	had a reference added and the pointer is safe until the user calls
887  *	dev_put to indicate they have finished with it.
888  */
889 
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892 	struct net_device *dev;
893 
894 	rcu_read_lock();
895 	dev = dev_get_by_index_rcu(net, ifindex);
896 	if (dev)
897 		dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  *
934  *	The use of raw_seqcount_begin() and cond_resched() before
935  *	retrying is required as we want to give the writers a chance
936  *	to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940 	struct net_device *dev;
941 	unsigned int seq;
942 
943 retry:
944 	seq = raw_seqcount_begin(&devnet_rename_seq);
945 	rcu_read_lock();
946 	dev = dev_get_by_index_rcu(net, ifindex);
947 	if (!dev) {
948 		rcu_read_unlock();
949 		return -ENODEV;
950 	}
951 
952 	strcpy(name, dev->name);
953 	rcu_read_unlock();
954 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 		cond_resched();
956 		goto retry;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  *	dev_getbyhwaddr_rcu - find a device by its hardware address
964  *	@net: the applicable net namespace
965  *	@type: media type of device
966  *	@ha: hardware address
967  *
968  *	Search for an interface by MAC address. Returns NULL if the device
969  *	is not found or a pointer to the device.
970  *	The caller must hold RCU or RTNL.
971  *	The returned device has not had its ref count increased
972  *	and the caller must therefore be careful about locking
973  *
974  */
975 
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 				       const char *ha)
978 {
979 	struct net_device *dev;
980 
981 	for_each_netdev_rcu(net, dev)
982 		if (dev->type == type &&
983 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
984 			return dev;
985 
986 	return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989 
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992 	struct net_device *dev;
993 
994 	ASSERT_RTNL();
995 	for_each_netdev(net, dev)
996 		if (dev->type == type)
997 			return dev;
998 
999 	return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002 
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005 	struct net_device *dev, *ret = NULL;
1006 
1007 	rcu_read_lock();
1008 	for_each_netdev_rcu(net, dev)
1009 		if (dev->type == type) {
1010 			dev_hold(dev);
1011 			ret = dev;
1012 			break;
1013 		}
1014 	rcu_read_unlock();
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018 
1019 /**
1020  *	__dev_get_by_flags - find any device with given flags
1021  *	@net: the applicable net namespace
1022  *	@if_flags: IFF_* values
1023  *	@mask: bitmask of bits in if_flags to check
1024  *
1025  *	Search for any interface with the given flags. Returns NULL if a device
1026  *	is not found or a pointer to the device. Must be called inside
1027  *	rtnl_lock(), and result refcount is unchanged.
1028  */
1029 
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 				      unsigned short mask)
1032 {
1033 	struct net_device *dev, *ret;
1034 
1035 	ASSERT_RTNL();
1036 
1037 	ret = NULL;
1038 	for_each_netdev(net, dev) {
1039 		if (((dev->flags ^ if_flags) & mask) == 0) {
1040 			ret = dev;
1041 			break;
1042 		}
1043 	}
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047 
1048 /**
1049  *	dev_valid_name - check if name is okay for network device
1050  *	@name: name string
1051  *
1052  *	Network device names need to be valid file names to
1053  *	to allow sysfs to work.  We also disallow any kind of
1054  *	whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058 	if (*name == '\0')
1059 		return false;
1060 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061 		return false;
1062 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1063 		return false;
1064 
1065 	while (*name) {
1066 		if (*name == '/' || *name == ':' || isspace(*name))
1067 			return false;
1068 		name++;
1069 	}
1070 	return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073 
1074 /**
1075  *	__dev_alloc_name - allocate a name for a device
1076  *	@net: network namespace to allocate the device name in
1077  *	@name: name format string
1078  *	@buf:  scratch buffer and result name string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091 	int i = 0;
1092 	const char *p;
1093 	const int max_netdevices = 8*PAGE_SIZE;
1094 	unsigned long *inuse;
1095 	struct net_device *d;
1096 
1097 	if (!dev_valid_name(name))
1098 		return -EINVAL;
1099 
1100 	p = strchr(name, '%');
1101 	if (p) {
1102 		/*
1103 		 * Verify the string as this thing may have come from
1104 		 * the user.  There must be either one "%d" and no other "%"
1105 		 * characters.
1106 		 */
1107 		if (p[1] != 'd' || strchr(p + 2, '%'))
1108 			return -EINVAL;
1109 
1110 		/* Use one page as a bit array of possible slots */
1111 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112 		if (!inuse)
1113 			return -ENOMEM;
1114 
1115 		for_each_netdev(net, d) {
1116 			if (!sscanf(d->name, name, &i))
1117 				continue;
1118 			if (i < 0 || i >= max_netdevices)
1119 				continue;
1120 
1121 			/*  avoid cases where sscanf is not exact inverse of printf */
1122 			snprintf(buf, IFNAMSIZ, name, i);
1123 			if (!strncmp(buf, d->name, IFNAMSIZ))
1124 				set_bit(i, inuse);
1125 		}
1126 
1127 		i = find_first_zero_bit(inuse, max_netdevices);
1128 		free_page((unsigned long) inuse);
1129 	}
1130 
1131 	snprintf(buf, IFNAMSIZ, name, i);
1132 	if (!__dev_get_by_name(net, buf))
1133 		return i;
1134 
1135 	/* It is possible to run out of possible slots
1136 	 * when the name is long and there isn't enough space left
1137 	 * for the digits, or if all bits are used.
1138 	 */
1139 	return -ENFILE;
1140 }
1141 
1142 static int dev_alloc_name_ns(struct net *net,
1143 			     struct net_device *dev,
1144 			     const char *name)
1145 {
1146 	char buf[IFNAMSIZ];
1147 	int ret;
1148 
1149 	BUG_ON(!net);
1150 	ret = __dev_alloc_name(net, name, buf);
1151 	if (ret >= 0)
1152 		strlcpy(dev->name, buf, IFNAMSIZ);
1153 	return ret;
1154 }
1155 
1156 /**
1157  *	dev_alloc_name - allocate a name for a device
1158  *	@dev: device
1159  *	@name: name format string
1160  *
1161  *	Passed a format string - eg "lt%d" it will try and find a suitable
1162  *	id. It scans list of devices to build up a free map, then chooses
1163  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *	while allocating the name and adding the device in order to avoid
1165  *	duplicates.
1166  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *	Returns the number of the unit assigned or a negative errno code.
1168  */
1169 
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175 
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 			      const char *name)
1178 {
1179 	BUG_ON(!net);
1180 
1181 	if (!dev_valid_name(name))
1182 		return -EINVAL;
1183 
1184 	if (strchr(name, '%'))
1185 		return dev_alloc_name_ns(net, dev, name);
1186 	else if (__dev_get_by_name(net, name))
1187 		return -EEXIST;
1188 	else if (dev->name != name)
1189 		strlcpy(dev->name, name, IFNAMSIZ);
1190 
1191 	return 0;
1192 }
1193 
1194 /**
1195  *	dev_change_name - change name of a device
1196  *	@dev: device
1197  *	@newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *	Change name of a device, can pass format strings "eth%d".
1200  *	for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204 	unsigned char old_assign_type;
1205 	char oldname[IFNAMSIZ];
1206 	int err = 0;
1207 	int ret;
1208 	struct net *net;
1209 
1210 	ASSERT_RTNL();
1211 	BUG_ON(!dev_net(dev));
1212 
1213 	net = dev_net(dev);
1214 
1215 	/* Some auto-enslaved devices e.g. failover slaves are
1216 	 * special, as userspace might rename the device after
1217 	 * the interface had been brought up and running since
1218 	 * the point kernel initiated auto-enslavement. Allow
1219 	 * live name change even when these slave devices are
1220 	 * up and running.
1221 	 *
1222 	 * Typically, users of these auto-enslaving devices
1223 	 * don't actually care about slave name change, as
1224 	 * they are supposed to operate on master interface
1225 	 * directly.
1226 	 */
1227 	if (dev->flags & IFF_UP &&
1228 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229 		return -EBUSY;
1230 
1231 	write_seqcount_begin(&devnet_rename_seq);
1232 
1233 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 		write_seqcount_end(&devnet_rename_seq);
1235 		return 0;
1236 	}
1237 
1238 	memcpy(oldname, dev->name, IFNAMSIZ);
1239 
1240 	err = dev_get_valid_name(net, dev, newname);
1241 	if (err < 0) {
1242 		write_seqcount_end(&devnet_rename_seq);
1243 		return err;
1244 	}
1245 
1246 	if (oldname[0] && !strchr(oldname, '%'))
1247 		netdev_info(dev, "renamed from %s\n", oldname);
1248 
1249 	old_assign_type = dev->name_assign_type;
1250 	dev->name_assign_type = NET_NAME_RENAMED;
1251 
1252 rollback:
1253 	ret = device_rename(&dev->dev, dev->name);
1254 	if (ret) {
1255 		memcpy(dev->name, oldname, IFNAMSIZ);
1256 		dev->name_assign_type = old_assign_type;
1257 		write_seqcount_end(&devnet_rename_seq);
1258 		return ret;
1259 	}
1260 
1261 	write_seqcount_end(&devnet_rename_seq);
1262 
1263 	netdev_adjacent_rename_links(dev, oldname);
1264 
1265 	write_lock_bh(&dev_base_lock);
1266 	netdev_name_node_del(dev->name_node);
1267 	write_unlock_bh(&dev_base_lock);
1268 
1269 	synchronize_rcu();
1270 
1271 	write_lock_bh(&dev_base_lock);
1272 	netdev_name_node_add(net, dev->name_node);
1273 	write_unlock_bh(&dev_base_lock);
1274 
1275 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 	ret = notifier_to_errno(ret);
1277 
1278 	if (ret) {
1279 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1280 		if (err >= 0) {
1281 			err = ret;
1282 			write_seqcount_begin(&devnet_rename_seq);
1283 			memcpy(dev->name, oldname, IFNAMSIZ);
1284 			memcpy(oldname, newname, IFNAMSIZ);
1285 			dev->name_assign_type = old_assign_type;
1286 			old_assign_type = NET_NAME_RENAMED;
1287 			goto rollback;
1288 		} else {
1289 			pr_err("%s: name change rollback failed: %d\n",
1290 			       dev->name, ret);
1291 		}
1292 	}
1293 
1294 	return err;
1295 }
1296 
1297 /**
1298  *	dev_set_alias - change ifalias of a device
1299  *	@dev: device
1300  *	@alias: name up to IFALIASZ
1301  *	@len: limit of bytes to copy from info
1302  *
1303  *	Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307 	struct dev_ifalias *new_alias = NULL;
1308 
1309 	if (len >= IFALIASZ)
1310 		return -EINVAL;
1311 
1312 	if (len) {
1313 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 		if (!new_alias)
1315 			return -ENOMEM;
1316 
1317 		memcpy(new_alias->ifalias, alias, len);
1318 		new_alias->ifalias[len] = 0;
1319 	}
1320 
1321 	mutex_lock(&ifalias_mutex);
1322 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 					mutex_is_locked(&ifalias_mutex));
1324 	mutex_unlock(&ifalias_mutex);
1325 
1326 	if (new_alias)
1327 		kfree_rcu(new_alias, rcuhead);
1328 
1329 	return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332 
1333 /**
1334  *	dev_get_alias - get ifalias of a device
1335  *	@dev: device
1336  *	@name: buffer to store name of ifalias
1337  *	@len: size of buffer
1338  *
1339  *	get ifalias for a device.  Caller must make sure dev cannot go
1340  *	away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344 	const struct dev_ifalias *alias;
1345 	int ret = 0;
1346 
1347 	rcu_read_lock();
1348 	alias = rcu_dereference(dev->ifalias);
1349 	if (alias)
1350 		ret = snprintf(name, len, "%s", alias->ifalias);
1351 	rcu_read_unlock();
1352 
1353 	return ret;
1354 }
1355 
1356 /**
1357  *	netdev_features_change - device changes features
1358  *	@dev: device to cause notification
1359  *
1360  *	Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367 
1368 /**
1369  *	netdev_state_change - device changes state
1370  *	@dev: device to cause notification
1371  *
1372  *	Called to indicate a device has changed state. This function calls
1373  *	the notifier chains for netdev_chain and sends a NEWLINK message
1374  *	to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378 	if (dev->flags & IFF_UP) {
1379 		struct netdev_notifier_change_info change_info = {
1380 			.info.dev = dev,
1381 		};
1382 
1383 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1384 					      &change_info.info);
1385 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386 	}
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389 
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402 	rtnl_lock();
1403 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405 	rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408 
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411 	const struct net_device_ops *ops = dev->netdev_ops;
1412 	int ret;
1413 
1414 	ASSERT_RTNL();
1415 
1416 	if (!netif_device_present(dev))
1417 		return -ENODEV;
1418 
1419 	/* Block netpoll from trying to do any rx path servicing.
1420 	 * If we don't do this there is a chance ndo_poll_controller
1421 	 * or ndo_poll may be running while we open the device
1422 	 */
1423 	netpoll_poll_disable(dev);
1424 
1425 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 	ret = notifier_to_errno(ret);
1427 	if (ret)
1428 		return ret;
1429 
1430 	set_bit(__LINK_STATE_START, &dev->state);
1431 
1432 	if (ops->ndo_validate_addr)
1433 		ret = ops->ndo_validate_addr(dev);
1434 
1435 	if (!ret && ops->ndo_open)
1436 		ret = ops->ndo_open(dev);
1437 
1438 	netpoll_poll_enable(dev);
1439 
1440 	if (ret)
1441 		clear_bit(__LINK_STATE_START, &dev->state);
1442 	else {
1443 		dev->flags |= IFF_UP;
1444 		dev_set_rx_mode(dev);
1445 		dev_activate(dev);
1446 		add_device_randomness(dev->dev_addr, dev->addr_len);
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 /**
1453  *	dev_open	- prepare an interface for use.
1454  *	@dev: device to open
1455  *	@extack: netlink extended ack
1456  *
1457  *	Takes a device from down to up state. The device's private open
1458  *	function is invoked and then the multicast lists are loaded. Finally
1459  *	the device is moved into the up state and a %NETDEV_UP message is
1460  *	sent to the netdev notifier chain.
1461  *
1462  *	Calling this function on an active interface is a nop. On a failure
1463  *	a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467 	int ret;
1468 
1469 	if (dev->flags & IFF_UP)
1470 		return 0;
1471 
1472 	ret = __dev_open(dev, extack);
1473 	if (ret < 0)
1474 		return ret;
1475 
1476 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 	call_netdevice_notifiers(NETDEV_UP, dev);
1478 
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482 
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485 	struct net_device *dev;
1486 
1487 	ASSERT_RTNL();
1488 	might_sleep();
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		/* Temporarily disable netpoll until the interface is down */
1492 		netpoll_poll_disable(dev);
1493 
1494 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495 
1496 		clear_bit(__LINK_STATE_START, &dev->state);
1497 
1498 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1499 		 * can be even on different cpu. So just clear netif_running().
1500 		 *
1501 		 * dev->stop() will invoke napi_disable() on all of it's
1502 		 * napi_struct instances on this device.
1503 		 */
1504 		smp_mb__after_atomic(); /* Commit netif_running(). */
1505 	}
1506 
1507 	dev_deactivate_many(head);
1508 
1509 	list_for_each_entry(dev, head, close_list) {
1510 		const struct net_device_ops *ops = dev->netdev_ops;
1511 
1512 		/*
1513 		 *	Call the device specific close. This cannot fail.
1514 		 *	Only if device is UP
1515 		 *
1516 		 *	We allow it to be called even after a DETACH hot-plug
1517 		 *	event.
1518 		 */
1519 		if (ops->ndo_stop)
1520 			ops->ndo_stop(dev);
1521 
1522 		dev->flags &= ~IFF_UP;
1523 		netpoll_poll_enable(dev);
1524 	}
1525 }
1526 
1527 static void __dev_close(struct net_device *dev)
1528 {
1529 	LIST_HEAD(single);
1530 
1531 	list_add(&dev->close_list, &single);
1532 	__dev_close_many(&single);
1533 	list_del(&single);
1534 }
1535 
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538 	struct net_device *dev, *tmp;
1539 
1540 	/* Remove the devices that don't need to be closed */
1541 	list_for_each_entry_safe(dev, tmp, head, close_list)
1542 		if (!(dev->flags & IFF_UP))
1543 			list_del_init(&dev->close_list);
1544 
1545 	__dev_close_many(head);
1546 
1547 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1550 		if (unlink)
1551 			list_del_init(&dev->close_list);
1552 	}
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555 
1556 /**
1557  *	dev_close - shutdown an interface.
1558  *	@dev: device to shutdown
1559  *
1560  *	This function moves an active device into down state. A
1561  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *	chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567 	if (dev->flags & IFF_UP) {
1568 		LIST_HEAD(single);
1569 
1570 		list_add(&dev->close_list, &single);
1571 		dev_close_many(&single, true);
1572 		list_del(&single);
1573 	}
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576 
1577 
1578 /**
1579  *	dev_disable_lro - disable Large Receive Offload on a device
1580  *	@dev: device
1581  *
1582  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *	called under RTNL.  This is needed if received packets may be
1584  *	forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588 	struct net_device *lower_dev;
1589 	struct list_head *iter;
1590 
1591 	dev->wanted_features &= ~NETIF_F_LRO;
1592 	netdev_update_features(dev);
1593 
1594 	if (unlikely(dev->features & NETIF_F_LRO))
1595 		netdev_WARN(dev, "failed to disable LRO!\n");
1596 
1597 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 		dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601 
1602 /**
1603  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *	@dev: device
1605  *
1606  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *	called under RTNL.  This is needed if Generic XDP is installed on
1608  *	the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 	netdev_update_features(dev);
1614 
1615 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618 
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val) 						\
1622 	case NETDEV_##val:				\
1623 		return "NETDEV_" __stringify(val);
1624 	switch (cmd) {
1625 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634 	N(PRE_CHANGEADDR)
1635 	}
1636 #undef N
1637 	return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640 
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 				   struct net_device *dev)
1643 {
1644 	struct netdev_notifier_info info = {
1645 		.dev = dev,
1646 	};
1647 
1648 	return nb->notifier_call(nb, val, &info);
1649 }
1650 
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 					     struct net_device *dev)
1653 {
1654 	int err;
1655 
1656 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 	err = notifier_to_errno(err);
1658 	if (err)
1659 		return err;
1660 
1661 	if (!(dev->flags & IFF_UP))
1662 		return 0;
1663 
1664 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 	return 0;
1666 }
1667 
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 						struct net_device *dev)
1670 {
1671 	if (dev->flags & IFF_UP) {
1672 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 					dev);
1674 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 	}
1676 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678 
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 						 struct net *net)
1681 {
1682 	struct net_device *dev;
1683 	int err;
1684 
1685 	for_each_netdev(net, dev) {
1686 		err = call_netdevice_register_notifiers(nb, dev);
1687 		if (err)
1688 			goto rollback;
1689 	}
1690 	return 0;
1691 
1692 rollback:
1693 	for_each_netdev_continue_reverse(net, dev)
1694 		call_netdevice_unregister_notifiers(nb, dev);
1695 	return err;
1696 }
1697 
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 						    struct net *net)
1700 {
1701 	struct net_device *dev;
1702 
1703 	for_each_netdev(net, dev)
1704 		call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706 
1707 static int dev_boot_phase = 1;
1708 
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722 
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725 	struct net *net;
1726 	int err;
1727 
1728 	/* Close race with setup_net() and cleanup_net() */
1729 	down_write(&pernet_ops_rwsem);
1730 	rtnl_lock();
1731 	err = raw_notifier_chain_register(&netdev_chain, nb);
1732 	if (err)
1733 		goto unlock;
1734 	if (dev_boot_phase)
1735 		goto unlock;
1736 	for_each_net(net) {
1737 		err = call_netdevice_register_net_notifiers(nb, net);
1738 		if (err)
1739 			goto rollback;
1740 	}
1741 
1742 unlock:
1743 	rtnl_unlock();
1744 	up_write(&pernet_ops_rwsem);
1745 	return err;
1746 
1747 rollback:
1748 	for_each_net_continue_reverse(net)
1749 		call_netdevice_unregister_net_notifiers(nb, net);
1750 
1751 	raw_notifier_chain_unregister(&netdev_chain, nb);
1752 	goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755 
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769 
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772 	struct net *net;
1773 	int err;
1774 
1775 	/* Close race with setup_net() and cleanup_net() */
1776 	down_write(&pernet_ops_rwsem);
1777 	rtnl_lock();
1778 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779 	if (err)
1780 		goto unlock;
1781 
1782 	for_each_net(net)
1783 		call_netdevice_unregister_net_notifiers(nb, net);
1784 
1785 unlock:
1786 	rtnl_unlock();
1787 	up_write(&pernet_ops_rwsem);
1788 	return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791 
1792 static int __register_netdevice_notifier_net(struct net *net,
1793 					     struct notifier_block *nb,
1794 					     bool ignore_call_fail)
1795 {
1796 	int err;
1797 
1798 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 	if (err)
1800 		return err;
1801 	if (dev_boot_phase)
1802 		return 0;
1803 
1804 	err = call_netdevice_register_net_notifiers(nb, net);
1805 	if (err && !ignore_call_fail)
1806 		goto chain_unregister;
1807 
1808 	return 0;
1809 
1810 chain_unregister:
1811 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 	return err;
1813 }
1814 
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816 					       struct notifier_block *nb)
1817 {
1818 	int err;
1819 
1820 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 	if (err)
1822 		return err;
1823 
1824 	call_netdevice_unregister_net_notifiers(nb, net);
1825 	return 0;
1826 }
1827 
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842 
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845 	int err;
1846 
1847 	rtnl_lock();
1848 	err = __register_netdevice_notifier_net(net, nb, false);
1849 	rtnl_unlock();
1850 	return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853 
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869 
1870 int unregister_netdevice_notifier_net(struct net *net,
1871 				      struct notifier_block *nb)
1872 {
1873 	int err;
1874 
1875 	rtnl_lock();
1876 	err = __unregister_netdevice_notifier_net(net, nb);
1877 	rtnl_unlock();
1878 	return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881 
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 					struct notifier_block *nb,
1884 					struct netdev_net_notifier *nn)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 	if (!err) {
1891 		nn->nb = nb;
1892 		list_add(&nn->list, &dev->net_notifier_list);
1893 	}
1894 	rtnl_unlock();
1895 	return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898 
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 					  struct notifier_block *nb,
1901 					  struct netdev_net_notifier *nn)
1902 {
1903 	int err;
1904 
1905 	rtnl_lock();
1906 	list_del(&nn->list);
1907 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 	rtnl_unlock();
1909 	return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912 
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 					     struct net *net)
1915 {
1916 	struct netdev_net_notifier *nn;
1917 
1918 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 		__register_netdevice_notifier_net(net, nn->nb, true);
1921 	}
1922 }
1923 
1924 /**
1925  *	call_netdevice_notifiers_info - call all network notifier blocks
1926  *	@val: value passed unmodified to notifier function
1927  *	@info: notifier information data
1928  *
1929  *	Call all network notifier blocks.  Parameters and return value
1930  *	are as for raw_notifier_call_chain().
1931  */
1932 
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934 					 struct netdev_notifier_info *info)
1935 {
1936 	struct net *net = dev_net(info->dev);
1937 	int ret;
1938 
1939 	ASSERT_RTNL();
1940 
1941 	/* Run per-netns notifier block chain first, then run the global one.
1942 	 * Hopefully, one day, the global one is going to be removed after
1943 	 * all notifier block registrators get converted to be per-netns.
1944 	 */
1945 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 	if (ret & NOTIFY_STOP_MASK)
1947 		return ret;
1948 	return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950 
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952 					   struct net_device *dev,
1953 					   struct netlink_ext_ack *extack)
1954 {
1955 	struct netdev_notifier_info info = {
1956 		.dev = dev,
1957 		.extack = extack,
1958 	};
1959 
1960 	return call_netdevice_notifiers_info(val, &info);
1961 }
1962 
1963 /**
1964  *	call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *	Call all network notifier blocks.  Parameters and return value
1969  *	are as for raw_notifier_call_chain().
1970  */
1971 
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974 	return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977 
1978 /**
1979  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@dev: net_device pointer passed unmodified to notifier function
1982  *	@arg: additional u32 argument passed to the notifier function
1983  *
1984  *	Call all network notifier blocks.  Parameters and return value
1985  *	are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988 					struct net_device *dev, u32 arg)
1989 {
1990 	struct netdev_notifier_info_ext info = {
1991 		.info.dev = dev,
1992 		.ext.mtu = arg,
1993 	};
1994 
1995 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996 
1997 	return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999 
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002 
2003 void net_inc_ingress_queue(void)
2004 {
2005 	static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008 
2009 void net_dec_ingress_queue(void)
2010 {
2011 	static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015 
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018 
2019 void net_inc_egress_queue(void)
2020 {
2021 	static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024 
2025 void net_dec_egress_queue(void)
2026 {
2027 	static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031 
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039 	int wanted;
2040 
2041 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 	if (wanted > 0)
2043 		static_branch_enable(&netstamp_needed_key);
2044 	else
2045 		static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049 
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053 	int wanted;
2054 
2055 	while (1) {
2056 		wanted = atomic_read(&netstamp_wanted);
2057 		if (wanted <= 0)
2058 			break;
2059 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 			return;
2061 	}
2062 	atomic_inc(&netstamp_needed_deferred);
2063 	schedule_work(&netstamp_work);
2064 #else
2065 	static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069 
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073 	int wanted;
2074 
2075 	while (1) {
2076 		wanted = atomic_read(&netstamp_wanted);
2077 		if (wanted <= 1)
2078 			break;
2079 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 			return;
2081 	}
2082 	atomic_dec(&netstamp_needed_deferred);
2083 	schedule_work(&netstamp_work);
2084 #else
2085 	static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089 
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092 	skb->tstamp = 0;
2093 	if (static_branch_unlikely(&netstamp_needed_key))
2094 		__net_timestamp(skb);
2095 }
2096 
2097 #define net_timestamp_check(COND, SKB)				\
2098 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2099 		if ((COND) && !(SKB)->tstamp)			\
2100 			__net_timestamp(SKB);			\
2101 	}							\
2102 
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105 	unsigned int len;
2106 
2107 	if (!(dev->flags & IFF_UP))
2108 		return false;
2109 
2110 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 	if (skb->len <= len)
2112 		return true;
2113 
2114 	/* if TSO is enabled, we don't care about the length as the packet
2115 	 * could be forwarded without being segmented before
2116 	 */
2117 	if (skb_is_gso(skb))
2118 		return true;
2119 
2120 	return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123 
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126 	int ret = ____dev_forward_skb(dev, skb);
2127 
2128 	if (likely(!ret)) {
2129 		skb->protocol = eth_type_trans(skb, dev);
2130 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 	}
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136 
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *	NET_RX_SUCCESS	(no congestion)
2145  *	NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160 
2161 static inline int deliver_skb(struct sk_buff *skb,
2162 			      struct packet_type *pt_prev,
2163 			      struct net_device *orig_dev)
2164 {
2165 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166 		return -ENOMEM;
2167 	refcount_inc(&skb->users);
2168 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170 
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 					  struct packet_type **pt,
2173 					  struct net_device *orig_dev,
2174 					  __be16 type,
2175 					  struct list_head *ptype_list)
2176 {
2177 	struct packet_type *ptype, *pt_prev = *pt;
2178 
2179 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 		if (ptype->type != type)
2181 			continue;
2182 		if (pt_prev)
2183 			deliver_skb(skb, pt_prev, orig_dev);
2184 		pt_prev = ptype;
2185 	}
2186 	*pt = pt_prev;
2187 }
2188 
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191 	if (!ptype->af_packet_priv || !skb->sk)
2192 		return false;
2193 
2194 	if (ptype->id_match)
2195 		return ptype->id_match(ptype, skb->sk);
2196 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 		return true;
2198 
2199 	return false;
2200 }
2201 
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212 
2213 /*
2214  *	Support routine. Sends outgoing frames to any network
2215  *	taps currently in use.
2216  */
2217 
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220 	struct packet_type *ptype;
2221 	struct sk_buff *skb2 = NULL;
2222 	struct packet_type *pt_prev = NULL;
2223 	struct list_head *ptype_list = &ptype_all;
2224 
2225 	rcu_read_lock();
2226 again:
2227 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 		if (ptype->ignore_outgoing)
2229 			continue;
2230 
2231 		/* Never send packets back to the socket
2232 		 * they originated from - MvS (miquels@drinkel.ow.org)
2233 		 */
2234 		if (skb_loop_sk(ptype, skb))
2235 			continue;
2236 
2237 		if (pt_prev) {
2238 			deliver_skb(skb2, pt_prev, skb->dev);
2239 			pt_prev = ptype;
2240 			continue;
2241 		}
2242 
2243 		/* need to clone skb, done only once */
2244 		skb2 = skb_clone(skb, GFP_ATOMIC);
2245 		if (!skb2)
2246 			goto out_unlock;
2247 
2248 		net_timestamp_set(skb2);
2249 
2250 		/* skb->nh should be correctly
2251 		 * set by sender, so that the second statement is
2252 		 * just protection against buggy protocols.
2253 		 */
2254 		skb_reset_mac_header(skb2);
2255 
2256 		if (skb_network_header(skb2) < skb2->data ||
2257 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 					     ntohs(skb2->protocol),
2260 					     dev->name);
2261 			skb_reset_network_header(skb2);
2262 		}
2263 
2264 		skb2->transport_header = skb2->network_header;
2265 		skb2->pkt_type = PACKET_OUTGOING;
2266 		pt_prev = ptype;
2267 	}
2268 
2269 	if (ptype_list == &ptype_all) {
2270 		ptype_list = &dev->ptype_all;
2271 		goto again;
2272 	}
2273 out_unlock:
2274 	if (pt_prev) {
2275 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 		else
2278 			kfree_skb(skb2);
2279 	}
2280 	rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283 
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299 	int i;
2300 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301 
2302 	/* If TC0 is invalidated disable TC mapping */
2303 	if (tc->offset + tc->count > txq) {
2304 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305 		dev->num_tc = 0;
2306 		return;
2307 	}
2308 
2309 	/* Invalidated prio to tc mappings set to TC0 */
2310 	for (i = 1; i < TC_BITMASK + 1; i++) {
2311 		int q = netdev_get_prio_tc_map(dev, i);
2312 
2313 		tc = &dev->tc_to_txq[q];
2314 		if (tc->offset + tc->count > txq) {
2315 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 				i, q);
2317 			netdev_set_prio_tc_map(dev, i, 0);
2318 		}
2319 	}
2320 }
2321 
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324 	if (dev->num_tc) {
2325 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 		int i;
2327 
2328 		/* walk through the TCs and see if it falls into any of them */
2329 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 			if ((txq - tc->offset) < tc->count)
2331 				return i;
2332 		}
2333 
2334 		/* didn't find it, just return -1 to indicate no match */
2335 		return -1;
2336 	}
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341 
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)		\
2349 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350 
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 			     int tci, u16 index)
2353 {
2354 	struct xps_map *map = NULL;
2355 	int pos;
2356 
2357 	if (dev_maps)
2358 		map = xmap_dereference(dev_maps->attr_map[tci]);
2359 	if (!map)
2360 		return false;
2361 
2362 	for (pos = map->len; pos--;) {
2363 		if (map->queues[pos] != index)
2364 			continue;
2365 
2366 		if (map->len > 1) {
2367 			map->queues[pos] = map->queues[--map->len];
2368 			break;
2369 		}
2370 
2371 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 		kfree_rcu(map, rcu);
2373 		return false;
2374 	}
2375 
2376 	return true;
2377 }
2378 
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380 				 struct xps_dev_maps *dev_maps,
2381 				 int cpu, u16 offset, u16 count)
2382 {
2383 	int num_tc = dev->num_tc ? : 1;
2384 	bool active = false;
2385 	int tci;
2386 
2387 	for (tci = cpu * num_tc; num_tc--; tci++) {
2388 		int i, j;
2389 
2390 		for (i = count, j = offset; i--; j++) {
2391 			if (!remove_xps_queue(dev_maps, tci, j))
2392 				break;
2393 		}
2394 
2395 		active |= i < 0;
2396 	}
2397 
2398 	return active;
2399 }
2400 
2401 static void reset_xps_maps(struct net_device *dev,
2402 			   struct xps_dev_maps *dev_maps,
2403 			   bool is_rxqs_map)
2404 {
2405 	if (is_rxqs_map) {
2406 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 	} else {
2409 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 	}
2411 	static_key_slow_dec_cpuslocked(&xps_needed);
2412 	kfree_rcu(dev_maps, rcu);
2413 }
2414 
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 			   u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419 	bool active = false;
2420 	int i, j;
2421 
2422 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 	     j < nr_ids;)
2424 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 					       count);
2426 	if (!active)
2427 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428 
2429 	if (!is_rxqs_map) {
2430 		for (i = offset + (count - 1); count--; i--) {
2431 			netdev_queue_numa_node_write(
2432 				netdev_get_tx_queue(dev, i),
2433 				NUMA_NO_NODE);
2434 		}
2435 	}
2436 }
2437 
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 				   u16 count)
2440 {
2441 	const unsigned long *possible_mask = NULL;
2442 	struct xps_dev_maps *dev_maps;
2443 	unsigned int nr_ids;
2444 
2445 	if (!static_key_false(&xps_needed))
2446 		return;
2447 
2448 	cpus_read_lock();
2449 	mutex_lock(&xps_map_mutex);
2450 
2451 	if (static_key_false(&xps_rxqs_needed)) {
2452 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 		if (dev_maps) {
2454 			nr_ids = dev->num_rx_queues;
2455 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 				       offset, count, true);
2457 		}
2458 	}
2459 
2460 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 	if (!dev_maps)
2462 		goto out_no_maps;
2463 
2464 	if (num_possible_cpus() > 1)
2465 		possible_mask = cpumask_bits(cpu_possible_mask);
2466 	nr_ids = nr_cpu_ids;
2467 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 		       false);
2469 
2470 out_no_maps:
2471 	mutex_unlock(&xps_map_mutex);
2472 	cpus_read_unlock();
2473 }
2474 
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479 
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 				      u16 index, bool is_rxqs_map)
2482 {
2483 	struct xps_map *new_map;
2484 	int alloc_len = XPS_MIN_MAP_ALLOC;
2485 	int i, pos;
2486 
2487 	for (pos = 0; map && pos < map->len; pos++) {
2488 		if (map->queues[pos] != index)
2489 			continue;
2490 		return map;
2491 	}
2492 
2493 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 	if (map) {
2495 		if (pos < map->alloc_len)
2496 			return map;
2497 
2498 		alloc_len = map->alloc_len * 2;
2499 	}
2500 
2501 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 	 *  map
2503 	 */
2504 	if (is_rxqs_map)
2505 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 	else
2507 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 				       cpu_to_node(attr_index));
2509 	if (!new_map)
2510 		return NULL;
2511 
2512 	for (i = 0; i < pos; i++)
2513 		new_map->queues[i] = map->queues[i];
2514 	new_map->alloc_len = alloc_len;
2515 	new_map->len = pos;
2516 
2517 	return new_map;
2518 }
2519 
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 			  u16 index, bool is_rxqs_map)
2523 {
2524 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 	int i, j, tci, numa_node_id = -2;
2527 	int maps_sz, num_tc = 1, tc = 0;
2528 	struct xps_map *map, *new_map;
2529 	bool active = false;
2530 	unsigned int nr_ids;
2531 
2532 	if (dev->num_tc) {
2533 		/* Do not allow XPS on subordinate device directly */
2534 		num_tc = dev->num_tc;
2535 		if (num_tc < 0)
2536 			return -EINVAL;
2537 
2538 		/* If queue belongs to subordinate dev use its map */
2539 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540 
2541 		tc = netdev_txq_to_tc(dev, index);
2542 		if (tc < 0)
2543 			return -EINVAL;
2544 	}
2545 
2546 	mutex_lock(&xps_map_mutex);
2547 	if (is_rxqs_map) {
2548 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 		nr_ids = dev->num_rx_queues;
2551 	} else {
2552 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 		if (num_possible_cpus() > 1) {
2554 			online_mask = cpumask_bits(cpu_online_mask);
2555 			possible_mask = cpumask_bits(cpu_possible_mask);
2556 		}
2557 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 		nr_ids = nr_cpu_ids;
2559 	}
2560 
2561 	if (maps_sz < L1_CACHE_BYTES)
2562 		maps_sz = L1_CACHE_BYTES;
2563 
2564 	/* allocate memory for queue storage */
2565 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 	     j < nr_ids;) {
2567 		if (!new_dev_maps)
2568 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 		if (!new_dev_maps) {
2570 			mutex_unlock(&xps_map_mutex);
2571 			return -ENOMEM;
2572 		}
2573 
2574 		tci = j * num_tc + tc;
2575 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576 				 NULL;
2577 
2578 		map = expand_xps_map(map, j, index, is_rxqs_map);
2579 		if (!map)
2580 			goto error;
2581 
2582 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583 	}
2584 
2585 	if (!new_dev_maps)
2586 		goto out_no_new_maps;
2587 
2588 	if (!dev_maps) {
2589 		/* Increment static keys at most once per type */
2590 		static_key_slow_inc_cpuslocked(&xps_needed);
2591 		if (is_rxqs_map)
2592 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 	}
2594 
2595 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 	     j < nr_ids;) {
2597 		/* copy maps belonging to foreign traffic classes */
2598 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 			/* fill in the new device map from the old device map */
2600 			map = xmap_dereference(dev_maps->attr_map[tci]);
2601 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602 		}
2603 
2604 		/* We need to explicitly update tci as prevous loop
2605 		 * could break out early if dev_maps is NULL.
2606 		 */
2607 		tci = j * num_tc + tc;
2608 
2609 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2611 			/* add tx-queue to CPU/rx-queue maps */
2612 			int pos = 0;
2613 
2614 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 			while ((pos < map->len) && (map->queues[pos] != index))
2616 				pos++;
2617 
2618 			if (pos == map->len)
2619 				map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621 			if (!is_rxqs_map) {
2622 				if (numa_node_id == -2)
2623 					numa_node_id = cpu_to_node(j);
2624 				else if (numa_node_id != cpu_to_node(j))
2625 					numa_node_id = -1;
2626 			}
2627 #endif
2628 		} else if (dev_maps) {
2629 			/* fill in the new device map from the old device map */
2630 			map = xmap_dereference(dev_maps->attr_map[tci]);
2631 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632 		}
2633 
2634 		/* copy maps belonging to foreign traffic classes */
2635 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 			/* fill in the new device map from the old device map */
2637 			map = xmap_dereference(dev_maps->attr_map[tci]);
2638 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639 		}
2640 	}
2641 
2642 	if (is_rxqs_map)
2643 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 	else
2645 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646 
2647 	/* Cleanup old maps */
2648 	if (!dev_maps)
2649 		goto out_no_old_maps;
2650 
2651 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 	     j < nr_ids;) {
2653 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 			map = xmap_dereference(dev_maps->attr_map[tci]);
2656 			if (map && map != new_map)
2657 				kfree_rcu(map, rcu);
2658 		}
2659 	}
2660 
2661 	kfree_rcu(dev_maps, rcu);
2662 
2663 out_no_old_maps:
2664 	dev_maps = new_dev_maps;
2665 	active = true;
2666 
2667 out_no_new_maps:
2668 	if (!is_rxqs_map) {
2669 		/* update Tx queue numa node */
2670 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 					     (numa_node_id >= 0) ?
2672 					     numa_node_id : NUMA_NO_NODE);
2673 	}
2674 
2675 	if (!dev_maps)
2676 		goto out_no_maps;
2677 
2678 	/* removes tx-queue from unused CPUs/rx-queues */
2679 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 	     j < nr_ids;) {
2681 		for (i = tc, tci = j * num_tc; i--; tci++)
2682 			active |= remove_xps_queue(dev_maps, tci, index);
2683 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 		    !netif_attr_test_online(j, online_mask, nr_ids))
2685 			active |= remove_xps_queue(dev_maps, tci, index);
2686 		for (i = num_tc - tc, tci++; --i; tci++)
2687 			active |= remove_xps_queue(dev_maps, tci, index);
2688 	}
2689 
2690 	/* free map if not active */
2691 	if (!active)
2692 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693 
2694 out_no_maps:
2695 	mutex_unlock(&xps_map_mutex);
2696 
2697 	return 0;
2698 error:
2699 	/* remove any maps that we added */
2700 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 	     j < nr_ids;) {
2702 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 			map = dev_maps ?
2705 			      xmap_dereference(dev_maps->attr_map[tci]) :
2706 			      NULL;
2707 			if (new_map && new_map != map)
2708 				kfree(new_map);
2709 		}
2710 	}
2711 
2712 	mutex_unlock(&xps_map_mutex);
2713 
2714 	kfree(new_dev_maps);
2715 	return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718 
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 			u16 index)
2721 {
2722 	int ret;
2723 
2724 	cpus_read_lock();
2725 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 	cpus_read_unlock();
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731 
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736 
2737 	/* Unbind any subordinate channels */
2738 	while (txq-- != &dev->_tx[0]) {
2739 		if (txq->sb_dev)
2740 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 	}
2742 }
2743 
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747 	netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749 	netdev_unbind_all_sb_channels(dev);
2750 
2751 	/* Reset TC configuration of device */
2752 	dev->num_tc = 0;
2753 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757 
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760 	if (tc >= dev->num_tc)
2761 		return -EINVAL;
2762 
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766 	dev->tc_to_txq[tc].count = count;
2767 	dev->tc_to_txq[tc].offset = offset;
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771 
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774 	if (num_tc > TC_MAX_QUEUE)
2775 		return -EINVAL;
2776 
2777 #ifdef CONFIG_XPS
2778 	netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780 	netdev_unbind_all_sb_channels(dev);
2781 
2782 	dev->num_tc = num_tc;
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786 
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788 			      struct net_device *sb_dev)
2789 {
2790 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791 
2792 #ifdef CONFIG_XPS
2793 	netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797 
2798 	while (txq-- != &dev->_tx[0]) {
2799 		if (txq->sb_dev == sb_dev)
2800 			txq->sb_dev = NULL;
2801 	}
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804 
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 				 struct net_device *sb_dev,
2807 				 u8 tc, u16 count, u16 offset)
2808 {
2809 	/* Make certain the sb_dev and dev are already configured */
2810 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 		return -EINVAL;
2812 
2813 	/* We cannot hand out queues we don't have */
2814 	if ((offset + count) > dev->real_num_tx_queues)
2815 		return -EINVAL;
2816 
2817 	/* Record the mapping */
2818 	sb_dev->tc_to_txq[tc].count = count;
2819 	sb_dev->tc_to_txq[tc].offset = offset;
2820 
2821 	/* Provide a way for Tx queue to find the tc_to_txq map or
2822 	 * XPS map for itself.
2823 	 */
2824 	while (count--)
2825 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830 
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833 	/* Do not use a multiqueue device to represent a subordinate channel */
2834 	if (netif_is_multiqueue(dev))
2835 		return -ENODEV;
2836 
2837 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2838 	 * Channel 0 is meant to be "native" mode and used only to represent
2839 	 * the main root device. We allow writing 0 to reset the device back
2840 	 * to normal mode after being used as a subordinate channel.
2841 	 */
2842 	if (channel > S16_MAX)
2843 		return -EINVAL;
2844 
2845 	dev->num_tc = -channel;
2846 
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850 
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857 	bool disabling;
2858 	int rc;
2859 
2860 	disabling = txq < dev->real_num_tx_queues;
2861 
2862 	if (txq < 1 || txq > dev->num_tx_queues)
2863 		return -EINVAL;
2864 
2865 	if (dev->reg_state == NETREG_REGISTERED ||
2866 	    dev->reg_state == NETREG_UNREGISTERING) {
2867 		ASSERT_RTNL();
2868 
2869 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 						  txq);
2871 		if (rc)
2872 			return rc;
2873 
2874 		if (dev->num_tc)
2875 			netif_setup_tc(dev, txq);
2876 
2877 		dev->real_num_tx_queues = txq;
2878 
2879 		if (disabling) {
2880 			synchronize_net();
2881 			qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883 			netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885 		}
2886 	} else {
2887 		dev->real_num_tx_queues = txq;
2888 	}
2889 
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893 
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *	@dev: Network device
2898  *	@rxq: Actual number of RX queues
2899  *
2900  *	This must be called either with the rtnl_lock held or before
2901  *	registration of the net device.  Returns 0 on success, or a
2902  *	negative error code.  If called before registration, it always
2903  *	succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907 	int rc;
2908 
2909 	if (rxq < 1 || rxq > dev->num_rx_queues)
2910 		return -EINVAL;
2911 
2912 	if (dev->reg_state == NETREG_REGISTERED) {
2913 		ASSERT_RTNL();
2914 
2915 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 						  rxq);
2917 		if (rc)
2918 			return rc;
2919 	}
2920 
2921 	dev->real_num_rx_queues = rxq;
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926 
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935 	return is_kdump_kernel() ?
2936 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939 
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942 	struct softnet_data *sd;
2943 	unsigned long flags;
2944 
2945 	local_irq_save(flags);
2946 	sd = this_cpu_ptr(&softnet_data);
2947 	q->next_sched = NULL;
2948 	*sd->output_queue_tailp = q;
2949 	sd->output_queue_tailp = &q->next_sched;
2950 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 	local_irq_restore(flags);
2952 }
2953 
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 		__netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960 
2961 struct dev_kfree_skb_cb {
2962 	enum skb_free_reason reason;
2963 };
2964 
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967 	return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969 
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972 	rcu_read_lock();
2973 	if (!netif_xmit_stopped(txq)) {
2974 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2975 
2976 		__netif_schedule(q);
2977 	}
2978 	rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981 
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 		struct Qdisc *q;
2986 
2987 		rcu_read_lock();
2988 		q = rcu_dereference(dev_queue->qdisc);
2989 		__netif_schedule(q);
2990 		rcu_read_unlock();
2991 	}
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994 
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997 	unsigned long flags;
2998 
2999 	if (unlikely(!skb))
3000 		return;
3001 
3002 	if (likely(refcount_read(&skb->users) == 1)) {
3003 		smp_rmb();
3004 		refcount_set(&skb->users, 0);
3005 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3006 		return;
3007 	}
3008 	get_kfree_skb_cb(skb)->reason = reason;
3009 	local_irq_save(flags);
3010 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 	__this_cpu_write(softnet_data.completion_queue, skb);
3012 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 	local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016 
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019 	if (in_irq() || irqs_disabled())
3020 		__dev_kfree_skb_irq(skb, reason);
3021 	else
3022 		dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025 
3026 
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 	    netif_running(dev)) {
3037 		netif_tx_stop_all_queues(dev);
3038 	}
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041 
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 	    netif_running(dev)) {
3052 		netif_tx_wake_all_queues(dev);
3053 		__netdev_watchdog_up(dev);
3054 	}
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057 
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063 		       const struct net_device *sb_dev,
3064 		       struct sk_buff *skb)
3065 {
3066 	u32 hash;
3067 	u16 qoffset = 0;
3068 	u16 qcount = dev->real_num_tx_queues;
3069 
3070 	if (dev->num_tc) {
3071 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072 
3073 		qoffset = sb_dev->tc_to_txq[tc].offset;
3074 		qcount = sb_dev->tc_to_txq[tc].count;
3075 	}
3076 
3077 	if (skb_rx_queue_recorded(skb)) {
3078 		hash = skb_get_rx_queue(skb);
3079 		if (hash >= qoffset)
3080 			hash -= qoffset;
3081 		while (unlikely(hash >= qcount))
3082 			hash -= qcount;
3083 		return hash + qoffset;
3084 	}
3085 
3086 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087 }
3088 
3089 static void skb_warn_bad_offload(const struct sk_buff *skb)
3090 {
3091 	static const netdev_features_t null_features;
3092 	struct net_device *dev = skb->dev;
3093 	const char *name = "";
3094 
3095 	if (!net_ratelimit())
3096 		return;
3097 
3098 	if (dev) {
3099 		if (dev->dev.parent)
3100 			name = dev_driver_string(dev->dev.parent);
3101 		else
3102 			name = netdev_name(dev);
3103 	}
3104 	skb_dump(KERN_WARNING, skb, false);
3105 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106 	     name, dev ? &dev->features : &null_features,
3107 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3108 }
3109 
3110 /*
3111  * Invalidate hardware checksum when packet is to be mangled, and
3112  * complete checksum manually on outgoing path.
3113  */
3114 int skb_checksum_help(struct sk_buff *skb)
3115 {
3116 	__wsum csum;
3117 	int ret = 0, offset;
3118 
3119 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3120 		goto out_set_summed;
3121 
3122 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3123 		skb_warn_bad_offload(skb);
3124 		return -EINVAL;
3125 	}
3126 
3127 	/* Before computing a checksum, we should make sure no frag could
3128 	 * be modified by an external entity : checksum could be wrong.
3129 	 */
3130 	if (skb_has_shared_frag(skb)) {
3131 		ret = __skb_linearize(skb);
3132 		if (ret)
3133 			goto out;
3134 	}
3135 
3136 	offset = skb_checksum_start_offset(skb);
3137 	BUG_ON(offset >= skb_headlen(skb));
3138 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139 
3140 	offset += skb->csum_offset;
3141 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142 
3143 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144 	if (ret)
3145 		goto out;
3146 
3147 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3148 out_set_summed:
3149 	skb->ip_summed = CHECKSUM_NONE;
3150 out:
3151 	return ret;
3152 }
3153 EXPORT_SYMBOL(skb_checksum_help);
3154 
3155 int skb_crc32c_csum_help(struct sk_buff *skb)
3156 {
3157 	__le32 crc32c_csum;
3158 	int ret = 0, offset, start;
3159 
3160 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3161 		goto out;
3162 
3163 	if (unlikely(skb_is_gso(skb)))
3164 		goto out;
3165 
3166 	/* Before computing a checksum, we should make sure no frag could
3167 	 * be modified by an external entity : checksum could be wrong.
3168 	 */
3169 	if (unlikely(skb_has_shared_frag(skb))) {
3170 		ret = __skb_linearize(skb);
3171 		if (ret)
3172 			goto out;
3173 	}
3174 	start = skb_checksum_start_offset(skb);
3175 	offset = start + offsetof(struct sctphdr, checksum);
3176 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177 		ret = -EINVAL;
3178 		goto out;
3179 	}
3180 
3181 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182 	if (ret)
3183 		goto out;
3184 
3185 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186 						  skb->len - start, ~(__u32)0,
3187 						  crc32c_csum_stub));
3188 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3189 	skb->ip_summed = CHECKSUM_NONE;
3190 	skb->csum_not_inet = 0;
3191 out:
3192 	return ret;
3193 }
3194 
3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3196 {
3197 	__be16 type = skb->protocol;
3198 
3199 	/* Tunnel gso handlers can set protocol to ethernet. */
3200 	if (type == htons(ETH_P_TEB)) {
3201 		struct ethhdr *eth;
3202 
3203 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204 			return 0;
3205 
3206 		eth = (struct ethhdr *)skb->data;
3207 		type = eth->h_proto;
3208 	}
3209 
3210 	return __vlan_get_protocol(skb, type, depth);
3211 }
3212 
3213 /**
3214  *	skb_mac_gso_segment - mac layer segmentation handler.
3215  *	@skb: buffer to segment
3216  *	@features: features for the output path (see dev->features)
3217  */
3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219 				    netdev_features_t features)
3220 {
3221 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222 	struct packet_offload *ptype;
3223 	int vlan_depth = skb->mac_len;
3224 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3225 
3226 	if (unlikely(!type))
3227 		return ERR_PTR(-EINVAL);
3228 
3229 	__skb_pull(skb, vlan_depth);
3230 
3231 	rcu_read_lock();
3232 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3233 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3234 			segs = ptype->callbacks.gso_segment(skb, features);
3235 			break;
3236 		}
3237 	}
3238 	rcu_read_unlock();
3239 
3240 	__skb_push(skb, skb->data - skb_mac_header(skb));
3241 
3242 	return segs;
3243 }
3244 EXPORT_SYMBOL(skb_mac_gso_segment);
3245 
3246 
3247 /* openvswitch calls this on rx path, so we need a different check.
3248  */
3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250 {
3251 	if (tx_path)
3252 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3253 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3254 
3255 	return skb->ip_summed == CHECKSUM_NONE;
3256 }
3257 
3258 /**
3259  *	__skb_gso_segment - Perform segmentation on skb.
3260  *	@skb: buffer to segment
3261  *	@features: features for the output path (see dev->features)
3262  *	@tx_path: whether it is called in TX path
3263  *
3264  *	This function segments the given skb and returns a list of segments.
3265  *
3266  *	It may return NULL if the skb requires no segmentation.  This is
3267  *	only possible when GSO is used for verifying header integrity.
3268  *
3269  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3270  */
3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272 				  netdev_features_t features, bool tx_path)
3273 {
3274 	struct sk_buff *segs;
3275 
3276 	if (unlikely(skb_needs_check(skb, tx_path))) {
3277 		int err;
3278 
3279 		/* We're going to init ->check field in TCP or UDP header */
3280 		err = skb_cow_head(skb, 0);
3281 		if (err < 0)
3282 			return ERR_PTR(err);
3283 	}
3284 
3285 	/* Only report GSO partial support if it will enable us to
3286 	 * support segmentation on this frame without needing additional
3287 	 * work.
3288 	 */
3289 	if (features & NETIF_F_GSO_PARTIAL) {
3290 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291 		struct net_device *dev = skb->dev;
3292 
3293 		partial_features |= dev->features & dev->gso_partial_features;
3294 		if (!skb_gso_ok(skb, features | partial_features))
3295 			features &= ~NETIF_F_GSO_PARTIAL;
3296 	}
3297 
3298 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3299 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300 
3301 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302 	SKB_GSO_CB(skb)->encap_level = 0;
3303 
3304 	skb_reset_mac_header(skb);
3305 	skb_reset_mac_len(skb);
3306 
3307 	segs = skb_mac_gso_segment(skb, features);
3308 
3309 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310 		skb_warn_bad_offload(skb);
3311 
3312 	return segs;
3313 }
3314 EXPORT_SYMBOL(__skb_gso_segment);
3315 
3316 /* Take action when hardware reception checksum errors are detected. */
3317 #ifdef CONFIG_BUG
3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3319 {
3320 	if (net_ratelimit()) {
3321 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322 		skb_dump(KERN_ERR, skb, true);
3323 		dump_stack();
3324 	}
3325 }
3326 EXPORT_SYMBOL(netdev_rx_csum_fault);
3327 #endif
3328 
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3331 {
3332 #ifdef CONFIG_HIGHMEM
3333 	int i;
3334 
3335 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3336 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3338 
3339 			if (PageHighMem(skb_frag_page(frag)))
3340 				return 1;
3341 		}
3342 	}
3343 #endif
3344 	return 0;
3345 }
3346 
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348  * instead of standard features for the netdev.
3349  */
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 					   netdev_features_t features,
3353 					   __be16 type)
3354 {
3355 	if (eth_p_mpls(type))
3356 		features &= skb->dev->mpls_features;
3357 
3358 	return features;
3359 }
3360 #else
3361 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362 					   netdev_features_t features,
3363 					   __be16 type)
3364 {
3365 	return features;
3366 }
3367 #endif
3368 
3369 static netdev_features_t harmonize_features(struct sk_buff *skb,
3370 	netdev_features_t features)
3371 {
3372 	int tmp;
3373 	__be16 type;
3374 
3375 	type = skb_network_protocol(skb, &tmp);
3376 	features = net_mpls_features(skb, features, type);
3377 
3378 	if (skb->ip_summed != CHECKSUM_NONE &&
3379 	    !can_checksum_protocol(features, type)) {
3380 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381 	}
3382 	if (illegal_highdma(skb->dev, skb))
3383 		features &= ~NETIF_F_SG;
3384 
3385 	return features;
3386 }
3387 
3388 netdev_features_t passthru_features_check(struct sk_buff *skb,
3389 					  struct net_device *dev,
3390 					  netdev_features_t features)
3391 {
3392 	return features;
3393 }
3394 EXPORT_SYMBOL(passthru_features_check);
3395 
3396 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397 					     struct net_device *dev,
3398 					     netdev_features_t features)
3399 {
3400 	return vlan_features_check(skb, features);
3401 }
3402 
3403 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404 					    struct net_device *dev,
3405 					    netdev_features_t features)
3406 {
3407 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408 
3409 	if (gso_segs > dev->gso_max_segs)
3410 		return features & ~NETIF_F_GSO_MASK;
3411 
3412 	/* Support for GSO partial features requires software
3413 	 * intervention before we can actually process the packets
3414 	 * so we need to strip support for any partial features now
3415 	 * and we can pull them back in after we have partially
3416 	 * segmented the frame.
3417 	 */
3418 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419 		features &= ~dev->gso_partial_features;
3420 
3421 	/* Make sure to clear the IPv4 ID mangling feature if the
3422 	 * IPv4 header has the potential to be fragmented.
3423 	 */
3424 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425 		struct iphdr *iph = skb->encapsulation ?
3426 				    inner_ip_hdr(skb) : ip_hdr(skb);
3427 
3428 		if (!(iph->frag_off & htons(IP_DF)))
3429 			features &= ~NETIF_F_TSO_MANGLEID;
3430 	}
3431 
3432 	return features;
3433 }
3434 
3435 netdev_features_t netif_skb_features(struct sk_buff *skb)
3436 {
3437 	struct net_device *dev = skb->dev;
3438 	netdev_features_t features = dev->features;
3439 
3440 	if (skb_is_gso(skb))
3441 		features = gso_features_check(skb, dev, features);
3442 
3443 	/* If encapsulation offload request, verify we are testing
3444 	 * hardware encapsulation features instead of standard
3445 	 * features for the netdev
3446 	 */
3447 	if (skb->encapsulation)
3448 		features &= dev->hw_enc_features;
3449 
3450 	if (skb_vlan_tagged(skb))
3451 		features = netdev_intersect_features(features,
3452 						     dev->vlan_features |
3453 						     NETIF_F_HW_VLAN_CTAG_TX |
3454 						     NETIF_F_HW_VLAN_STAG_TX);
3455 
3456 	if (dev->netdev_ops->ndo_features_check)
3457 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458 								features);
3459 	else
3460 		features &= dflt_features_check(skb, dev, features);
3461 
3462 	return harmonize_features(skb, features);
3463 }
3464 EXPORT_SYMBOL(netif_skb_features);
3465 
3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467 		    struct netdev_queue *txq, bool more)
3468 {
3469 	unsigned int len;
3470 	int rc;
3471 
3472 	if (dev_nit_active(dev))
3473 		dev_queue_xmit_nit(skb, dev);
3474 
3475 	len = skb->len;
3476 	trace_net_dev_start_xmit(skb, dev);
3477 	rc = netdev_start_xmit(skb, dev, txq, more);
3478 	trace_net_dev_xmit(skb, rc, dev, len);
3479 
3480 	return rc;
3481 }
3482 
3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484 				    struct netdev_queue *txq, int *ret)
3485 {
3486 	struct sk_buff *skb = first;
3487 	int rc = NETDEV_TX_OK;
3488 
3489 	while (skb) {
3490 		struct sk_buff *next = skb->next;
3491 
3492 		skb_mark_not_on_list(skb);
3493 		rc = xmit_one(skb, dev, txq, next != NULL);
3494 		if (unlikely(!dev_xmit_complete(rc))) {
3495 			skb->next = next;
3496 			goto out;
3497 		}
3498 
3499 		skb = next;
3500 		if (netif_tx_queue_stopped(txq) && skb) {
3501 			rc = NETDEV_TX_BUSY;
3502 			break;
3503 		}
3504 	}
3505 
3506 out:
3507 	*ret = rc;
3508 	return skb;
3509 }
3510 
3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512 					  netdev_features_t features)
3513 {
3514 	if (skb_vlan_tag_present(skb) &&
3515 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3516 		skb = __vlan_hwaccel_push_inside(skb);
3517 	return skb;
3518 }
3519 
3520 int skb_csum_hwoffload_help(struct sk_buff *skb,
3521 			    const netdev_features_t features)
3522 {
3523 	if (unlikely(skb->csum_not_inet))
3524 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525 			skb_crc32c_csum_help(skb);
3526 
3527 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528 }
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530 
3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3532 {
3533 	netdev_features_t features;
3534 
3535 	features = netif_skb_features(skb);
3536 	skb = validate_xmit_vlan(skb, features);
3537 	if (unlikely(!skb))
3538 		goto out_null;
3539 
3540 	skb = sk_validate_xmit_skb(skb, dev);
3541 	if (unlikely(!skb))
3542 		goto out_null;
3543 
3544 	if (netif_needs_gso(skb, features)) {
3545 		struct sk_buff *segs;
3546 
3547 		segs = skb_gso_segment(skb, features);
3548 		if (IS_ERR(segs)) {
3549 			goto out_kfree_skb;
3550 		} else if (segs) {
3551 			consume_skb(skb);
3552 			skb = segs;
3553 		}
3554 	} else {
3555 		if (skb_needs_linearize(skb, features) &&
3556 		    __skb_linearize(skb))
3557 			goto out_kfree_skb;
3558 
3559 		/* If packet is not checksummed and device does not
3560 		 * support checksumming for this protocol, complete
3561 		 * checksumming here.
3562 		 */
3563 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564 			if (skb->encapsulation)
3565 				skb_set_inner_transport_header(skb,
3566 							       skb_checksum_start_offset(skb));
3567 			else
3568 				skb_set_transport_header(skb,
3569 							 skb_checksum_start_offset(skb));
3570 			if (skb_csum_hwoffload_help(skb, features))
3571 				goto out_kfree_skb;
3572 		}
3573 	}
3574 
3575 	skb = validate_xmit_xfrm(skb, features, again);
3576 
3577 	return skb;
3578 
3579 out_kfree_skb:
3580 	kfree_skb(skb);
3581 out_null:
3582 	atomic_long_inc(&dev->tx_dropped);
3583 	return NULL;
3584 }
3585 
3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3587 {
3588 	struct sk_buff *next, *head = NULL, *tail;
3589 
3590 	for (; skb != NULL; skb = next) {
3591 		next = skb->next;
3592 		skb_mark_not_on_list(skb);
3593 
3594 		/* in case skb wont be segmented, point to itself */
3595 		skb->prev = skb;
3596 
3597 		skb = validate_xmit_skb(skb, dev, again);
3598 		if (!skb)
3599 			continue;
3600 
3601 		if (!head)
3602 			head = skb;
3603 		else
3604 			tail->next = skb;
3605 		/* If skb was segmented, skb->prev points to
3606 		 * the last segment. If not, it still contains skb.
3607 		 */
3608 		tail = skb->prev;
3609 	}
3610 	return head;
3611 }
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3613 
3614 static void qdisc_pkt_len_init(struct sk_buff *skb)
3615 {
3616 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617 
3618 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3619 
3620 	/* To get more precise estimation of bytes sent on wire,
3621 	 * we add to pkt_len the headers size of all segments
3622 	 */
3623 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624 		unsigned int hdr_len;
3625 		u16 gso_segs = shinfo->gso_segs;
3626 
3627 		/* mac layer + network layer */
3628 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629 
3630 		/* + transport layer */
3631 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632 			const struct tcphdr *th;
3633 			struct tcphdr _tcphdr;
3634 
3635 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3636 						sizeof(_tcphdr), &_tcphdr);
3637 			if (likely(th))
3638 				hdr_len += __tcp_hdrlen(th);
3639 		} else {
3640 			struct udphdr _udphdr;
3641 
3642 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3643 					       sizeof(_udphdr), &_udphdr))
3644 				hdr_len += sizeof(struct udphdr);
3645 		}
3646 
3647 		if (shinfo->gso_type & SKB_GSO_DODGY)
3648 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649 						shinfo->gso_size);
3650 
3651 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3652 	}
3653 }
3654 
3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656 				 struct net_device *dev,
3657 				 struct netdev_queue *txq)
3658 {
3659 	spinlock_t *root_lock = qdisc_lock(q);
3660 	struct sk_buff *to_free = NULL;
3661 	bool contended;
3662 	int rc;
3663 
3664 	qdisc_calculate_pkt_len(skb, q);
3665 
3666 	if (q->flags & TCQ_F_NOLOCK) {
3667 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668 		qdisc_run(q);
3669 
3670 		if (unlikely(to_free))
3671 			kfree_skb_list(to_free);
3672 		return rc;
3673 	}
3674 
3675 	/*
3676 	 * Heuristic to force contended enqueues to serialize on a
3677 	 * separate lock before trying to get qdisc main lock.
3678 	 * This permits qdisc->running owner to get the lock more
3679 	 * often and dequeue packets faster.
3680 	 */
3681 	contended = qdisc_is_running(q);
3682 	if (unlikely(contended))
3683 		spin_lock(&q->busylock);
3684 
3685 	spin_lock(root_lock);
3686 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687 		__qdisc_drop(skb, &to_free);
3688 		rc = NET_XMIT_DROP;
3689 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690 		   qdisc_run_begin(q)) {
3691 		/*
3692 		 * This is a work-conserving queue; there are no old skbs
3693 		 * waiting to be sent out; and the qdisc is not running -
3694 		 * xmit the skb directly.
3695 		 */
3696 
3697 		qdisc_bstats_update(q, skb);
3698 
3699 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700 			if (unlikely(contended)) {
3701 				spin_unlock(&q->busylock);
3702 				contended = false;
3703 			}
3704 			__qdisc_run(q);
3705 		}
3706 
3707 		qdisc_run_end(q);
3708 		rc = NET_XMIT_SUCCESS;
3709 	} else {
3710 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711 		if (qdisc_run_begin(q)) {
3712 			if (unlikely(contended)) {
3713 				spin_unlock(&q->busylock);
3714 				contended = false;
3715 			}
3716 			__qdisc_run(q);
3717 			qdisc_run_end(q);
3718 		}
3719 	}
3720 	spin_unlock(root_lock);
3721 	if (unlikely(to_free))
3722 		kfree_skb_list(to_free);
3723 	if (unlikely(contended))
3724 		spin_unlock(&q->busylock);
3725 	return rc;
3726 }
3727 
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff *skb)
3730 {
3731 	const struct netprio_map *map;
3732 	const struct sock *sk;
3733 	unsigned int prioidx;
3734 
3735 	if (skb->priority)
3736 		return;
3737 	map = rcu_dereference_bh(skb->dev->priomap);
3738 	if (!map)
3739 		return;
3740 	sk = skb_to_full_sk(skb);
3741 	if (!sk)
3742 		return;
3743 
3744 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745 
3746 	if (prioidx < map->priomap_len)
3747 		skb->priority = map->priomap[prioidx];
3748 }
3749 #else
3750 #define skb_update_prio(skb)
3751 #endif
3752 
3753 /**
3754  *	dev_loopback_xmit - loop back @skb
3755  *	@net: network namespace this loopback is happening in
3756  *	@sk:  sk needed to be a netfilter okfn
3757  *	@skb: buffer to transmit
3758  */
3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3760 {
3761 	skb_reset_mac_header(skb);
3762 	__skb_pull(skb, skb_network_offset(skb));
3763 	skb->pkt_type = PACKET_LOOPBACK;
3764 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 	WARN_ON(!skb_dst(skb));
3766 	skb_dst_force(skb);
3767 	netif_rx_ni(skb);
3768 	return 0;
3769 }
3770 EXPORT_SYMBOL(dev_loopback_xmit);
3771 
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff *
3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775 {
3776 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3777 	struct tcf_result cl_res;
3778 
3779 	if (!miniq)
3780 		return skb;
3781 
3782 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783 	mini_qdisc_bstats_cpu_update(miniq, skb);
3784 
3785 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3786 	case TC_ACT_OK:
3787 	case TC_ACT_RECLASSIFY:
3788 		skb->tc_index = TC_H_MIN(cl_res.classid);
3789 		break;
3790 	case TC_ACT_SHOT:
3791 		mini_qdisc_qstats_cpu_drop(miniq);
3792 		*ret = NET_XMIT_DROP;
3793 		kfree_skb(skb);
3794 		return NULL;
3795 	case TC_ACT_STOLEN:
3796 	case TC_ACT_QUEUED:
3797 	case TC_ACT_TRAP:
3798 		*ret = NET_XMIT_SUCCESS;
3799 		consume_skb(skb);
3800 		return NULL;
3801 	case TC_ACT_REDIRECT:
3802 		/* No need to push/pop skb's mac_header here on egress! */
3803 		skb_do_redirect(skb);
3804 		*ret = NET_XMIT_SUCCESS;
3805 		return NULL;
3806 	default:
3807 		break;
3808 	}
3809 
3810 	return skb;
3811 }
3812 #endif /* CONFIG_NET_EGRESS */
3813 
3814 #ifdef CONFIG_XPS
3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3817 {
3818 	struct xps_map *map;
3819 	int queue_index = -1;
3820 
3821 	if (dev->num_tc) {
3822 		tci *= dev->num_tc;
3823 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3824 	}
3825 
3826 	map = rcu_dereference(dev_maps->attr_map[tci]);
3827 	if (map) {
3828 		if (map->len == 1)
3829 			queue_index = map->queues[0];
3830 		else
3831 			queue_index = map->queues[reciprocal_scale(
3832 						skb_get_hash(skb), map->len)];
3833 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3834 			queue_index = -1;
3835 	}
3836 	return queue_index;
3837 }
3838 #endif
3839 
3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841 			 struct sk_buff *skb)
3842 {
3843 #ifdef CONFIG_XPS
3844 	struct xps_dev_maps *dev_maps;
3845 	struct sock *sk = skb->sk;
3846 	int queue_index = -1;
3847 
3848 	if (!static_key_false(&xps_needed))
3849 		return -1;
3850 
3851 	rcu_read_lock();
3852 	if (!static_key_false(&xps_rxqs_needed))
3853 		goto get_cpus_map;
3854 
3855 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3856 	if (dev_maps) {
3857 		int tci = sk_rx_queue_get(sk);
3858 
3859 		if (tci >= 0 && tci < dev->num_rx_queues)
3860 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861 							  tci);
3862 	}
3863 
3864 get_cpus_map:
3865 	if (queue_index < 0) {
3866 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3867 		if (dev_maps) {
3868 			unsigned int tci = skb->sender_cpu - 1;
3869 
3870 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871 							  tci);
3872 		}
3873 	}
3874 	rcu_read_unlock();
3875 
3876 	return queue_index;
3877 #else
3878 	return -1;
3879 #endif
3880 }
3881 
3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3883 		     struct net_device *sb_dev)
3884 {
3885 	return 0;
3886 }
3887 EXPORT_SYMBOL(dev_pick_tx_zero);
3888 
3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3890 		       struct net_device *sb_dev)
3891 {
3892 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893 }
3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895 
3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897 		     struct net_device *sb_dev)
3898 {
3899 	struct sock *sk = skb->sk;
3900 	int queue_index = sk_tx_queue_get(sk);
3901 
3902 	sb_dev = sb_dev ? : dev;
3903 
3904 	if (queue_index < 0 || skb->ooo_okay ||
3905 	    queue_index >= dev->real_num_tx_queues) {
3906 		int new_index = get_xps_queue(dev, sb_dev, skb);
3907 
3908 		if (new_index < 0)
3909 			new_index = skb_tx_hash(dev, sb_dev, skb);
3910 
3911 		if (queue_index != new_index && sk &&
3912 		    sk_fullsock(sk) &&
3913 		    rcu_access_pointer(sk->sk_dst_cache))
3914 			sk_tx_queue_set(sk, new_index);
3915 
3916 		queue_index = new_index;
3917 	}
3918 
3919 	return queue_index;
3920 }
3921 EXPORT_SYMBOL(netdev_pick_tx);
3922 
3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924 					 struct sk_buff *skb,
3925 					 struct net_device *sb_dev)
3926 {
3927 	int queue_index = 0;
3928 
3929 #ifdef CONFIG_XPS
3930 	u32 sender_cpu = skb->sender_cpu - 1;
3931 
3932 	if (sender_cpu >= (u32)NR_CPUS)
3933 		skb->sender_cpu = raw_smp_processor_id() + 1;
3934 #endif
3935 
3936 	if (dev->real_num_tx_queues != 1) {
3937 		const struct net_device_ops *ops = dev->netdev_ops;
3938 
3939 		if (ops->ndo_select_queue)
3940 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3941 		else
3942 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3943 
3944 		queue_index = netdev_cap_txqueue(dev, queue_index);
3945 	}
3946 
3947 	skb_set_queue_mapping(skb, queue_index);
3948 	return netdev_get_tx_queue(dev, queue_index);
3949 }
3950 
3951 /**
3952  *	__dev_queue_xmit - transmit a buffer
3953  *	@skb: buffer to transmit
3954  *	@sb_dev: suboordinate device used for L2 forwarding offload
3955  *
3956  *	Queue a buffer for transmission to a network device. The caller must
3957  *	have set the device and priority and built the buffer before calling
3958  *	this function. The function can be called from an interrupt.
3959  *
3960  *	A negative errno code is returned on a failure. A success does not
3961  *	guarantee the frame will be transmitted as it may be dropped due
3962  *	to congestion or traffic shaping.
3963  *
3964  * -----------------------------------------------------------------------------------
3965  *      I notice this method can also return errors from the queue disciplines,
3966  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3967  *      be positive.
3968  *
3969  *      Regardless of the return value, the skb is consumed, so it is currently
3970  *      difficult to retry a send to this method.  (You can bump the ref count
3971  *      before sending to hold a reference for retry if you are careful.)
3972  *
3973  *      When calling this method, interrupts MUST be enabled.  This is because
3974  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3975  *          --BLG
3976  */
3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3978 {
3979 	struct net_device *dev = skb->dev;
3980 	struct netdev_queue *txq;
3981 	struct Qdisc *q;
3982 	int rc = -ENOMEM;
3983 	bool again = false;
3984 
3985 	skb_reset_mac_header(skb);
3986 
3987 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989 
3990 	/* Disable soft irqs for various locks below. Also
3991 	 * stops preemption for RCU.
3992 	 */
3993 	rcu_read_lock_bh();
3994 
3995 	skb_update_prio(skb);
3996 
3997 	qdisc_pkt_len_init(skb);
3998 #ifdef CONFIG_NET_CLS_ACT
3999 	skb->tc_at_ingress = 0;
4000 # ifdef CONFIG_NET_EGRESS
4001 	if (static_branch_unlikely(&egress_needed_key)) {
4002 		skb = sch_handle_egress(skb, &rc, dev);
4003 		if (!skb)
4004 			goto out;
4005 	}
4006 # endif
4007 #endif
4008 	/* If device/qdisc don't need skb->dst, release it right now while
4009 	 * its hot in this cpu cache.
4010 	 */
4011 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012 		skb_dst_drop(skb);
4013 	else
4014 		skb_dst_force(skb);
4015 
4016 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4017 	q = rcu_dereference_bh(txq->qdisc);
4018 
4019 	trace_net_dev_queue(skb);
4020 	if (q->enqueue) {
4021 		rc = __dev_xmit_skb(skb, q, dev, txq);
4022 		goto out;
4023 	}
4024 
4025 	/* The device has no queue. Common case for software devices:
4026 	 * loopback, all the sorts of tunnels...
4027 
4028 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4030 	 * counters.)
4031 	 * However, it is possible, that they rely on protection
4032 	 * made by us here.
4033 
4034 	 * Check this and shot the lock. It is not prone from deadlocks.
4035 	 *Either shot noqueue qdisc, it is even simpler 8)
4036 	 */
4037 	if (dev->flags & IFF_UP) {
4038 		int cpu = smp_processor_id(); /* ok because BHs are off */
4039 
4040 		if (txq->xmit_lock_owner != cpu) {
4041 			if (dev_xmit_recursion())
4042 				goto recursion_alert;
4043 
4044 			skb = validate_xmit_skb(skb, dev, &again);
4045 			if (!skb)
4046 				goto out;
4047 
4048 			HARD_TX_LOCK(dev, txq, cpu);
4049 
4050 			if (!netif_xmit_stopped(txq)) {
4051 				dev_xmit_recursion_inc();
4052 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4053 				dev_xmit_recursion_dec();
4054 				if (dev_xmit_complete(rc)) {
4055 					HARD_TX_UNLOCK(dev, txq);
4056 					goto out;
4057 				}
4058 			}
4059 			HARD_TX_UNLOCK(dev, txq);
4060 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061 					     dev->name);
4062 		} else {
4063 			/* Recursion is detected! It is possible,
4064 			 * unfortunately
4065 			 */
4066 recursion_alert:
4067 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068 					     dev->name);
4069 		}
4070 	}
4071 
4072 	rc = -ENETDOWN;
4073 	rcu_read_unlock_bh();
4074 
4075 	atomic_long_inc(&dev->tx_dropped);
4076 	kfree_skb_list(skb);
4077 	return rc;
4078 out:
4079 	rcu_read_unlock_bh();
4080 	return rc;
4081 }
4082 
4083 int dev_queue_xmit(struct sk_buff *skb)
4084 {
4085 	return __dev_queue_xmit(skb, NULL);
4086 }
4087 EXPORT_SYMBOL(dev_queue_xmit);
4088 
4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4090 {
4091 	return __dev_queue_xmit(skb, sb_dev);
4092 }
4093 EXPORT_SYMBOL(dev_queue_xmit_accel);
4094 
4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096 {
4097 	struct net_device *dev = skb->dev;
4098 	struct sk_buff *orig_skb = skb;
4099 	struct netdev_queue *txq;
4100 	int ret = NETDEV_TX_BUSY;
4101 	bool again = false;
4102 
4103 	if (unlikely(!netif_running(dev) ||
4104 		     !netif_carrier_ok(dev)))
4105 		goto drop;
4106 
4107 	skb = validate_xmit_skb_list(skb, dev, &again);
4108 	if (skb != orig_skb)
4109 		goto drop;
4110 
4111 	skb_set_queue_mapping(skb, queue_id);
4112 	txq = skb_get_tx_queue(dev, skb);
4113 
4114 	local_bh_disable();
4115 
4116 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4117 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4118 		ret = netdev_start_xmit(skb, dev, txq, false);
4119 	HARD_TX_UNLOCK(dev, txq);
4120 
4121 	local_bh_enable();
4122 
4123 	if (!dev_xmit_complete(ret))
4124 		kfree_skb(skb);
4125 
4126 	return ret;
4127 drop:
4128 	atomic_long_inc(&dev->tx_dropped);
4129 	kfree_skb_list(skb);
4130 	return NET_XMIT_DROP;
4131 }
4132 EXPORT_SYMBOL(dev_direct_xmit);
4133 
4134 /*************************************************************************
4135  *			Receiver routines
4136  *************************************************************************/
4137 
4138 int netdev_max_backlog __read_mostly = 1000;
4139 EXPORT_SYMBOL(netdev_max_backlog);
4140 
4141 int netdev_tstamp_prequeue __read_mostly = 1;
4142 int netdev_budget __read_mostly = 300;
4143 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4144 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4145 int weight_p __read_mostly = 64;           /* old backlog weight */
4146 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4147 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4148 int dev_rx_weight __read_mostly = 64;
4149 int dev_tx_weight __read_mostly = 64;
4150 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4151 int gro_normal_batch __read_mostly = 8;
4152 
4153 /* Called with irq disabled */
4154 static inline void ____napi_schedule(struct softnet_data *sd,
4155 				     struct napi_struct *napi)
4156 {
4157 	list_add_tail(&napi->poll_list, &sd->poll_list);
4158 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4159 }
4160 
4161 #ifdef CONFIG_RPS
4162 
4163 /* One global table that all flow-based protocols share. */
4164 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4165 EXPORT_SYMBOL(rps_sock_flow_table);
4166 u32 rps_cpu_mask __read_mostly;
4167 EXPORT_SYMBOL(rps_cpu_mask);
4168 
4169 struct static_key_false rps_needed __read_mostly;
4170 EXPORT_SYMBOL(rps_needed);
4171 struct static_key_false rfs_needed __read_mostly;
4172 EXPORT_SYMBOL(rfs_needed);
4173 
4174 static struct rps_dev_flow *
4175 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4176 	    struct rps_dev_flow *rflow, u16 next_cpu)
4177 {
4178 	if (next_cpu < nr_cpu_ids) {
4179 #ifdef CONFIG_RFS_ACCEL
4180 		struct netdev_rx_queue *rxqueue;
4181 		struct rps_dev_flow_table *flow_table;
4182 		struct rps_dev_flow *old_rflow;
4183 		u32 flow_id;
4184 		u16 rxq_index;
4185 		int rc;
4186 
4187 		/* Should we steer this flow to a different hardware queue? */
4188 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4189 		    !(dev->features & NETIF_F_NTUPLE))
4190 			goto out;
4191 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4192 		if (rxq_index == skb_get_rx_queue(skb))
4193 			goto out;
4194 
4195 		rxqueue = dev->_rx + rxq_index;
4196 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4197 		if (!flow_table)
4198 			goto out;
4199 		flow_id = skb_get_hash(skb) & flow_table->mask;
4200 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4201 							rxq_index, flow_id);
4202 		if (rc < 0)
4203 			goto out;
4204 		old_rflow = rflow;
4205 		rflow = &flow_table->flows[flow_id];
4206 		rflow->filter = rc;
4207 		if (old_rflow->filter == rflow->filter)
4208 			old_rflow->filter = RPS_NO_FILTER;
4209 	out:
4210 #endif
4211 		rflow->last_qtail =
4212 			per_cpu(softnet_data, next_cpu).input_queue_head;
4213 	}
4214 
4215 	rflow->cpu = next_cpu;
4216 	return rflow;
4217 }
4218 
4219 /*
4220  * get_rps_cpu is called from netif_receive_skb and returns the target
4221  * CPU from the RPS map of the receiving queue for a given skb.
4222  * rcu_read_lock must be held on entry.
4223  */
4224 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4225 		       struct rps_dev_flow **rflowp)
4226 {
4227 	const struct rps_sock_flow_table *sock_flow_table;
4228 	struct netdev_rx_queue *rxqueue = dev->_rx;
4229 	struct rps_dev_flow_table *flow_table;
4230 	struct rps_map *map;
4231 	int cpu = -1;
4232 	u32 tcpu;
4233 	u32 hash;
4234 
4235 	if (skb_rx_queue_recorded(skb)) {
4236 		u16 index = skb_get_rx_queue(skb);
4237 
4238 		if (unlikely(index >= dev->real_num_rx_queues)) {
4239 			WARN_ONCE(dev->real_num_rx_queues > 1,
4240 				  "%s received packet on queue %u, but number "
4241 				  "of RX queues is %u\n",
4242 				  dev->name, index, dev->real_num_rx_queues);
4243 			goto done;
4244 		}
4245 		rxqueue += index;
4246 	}
4247 
4248 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4249 
4250 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4251 	map = rcu_dereference(rxqueue->rps_map);
4252 	if (!flow_table && !map)
4253 		goto done;
4254 
4255 	skb_reset_network_header(skb);
4256 	hash = skb_get_hash(skb);
4257 	if (!hash)
4258 		goto done;
4259 
4260 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4261 	if (flow_table && sock_flow_table) {
4262 		struct rps_dev_flow *rflow;
4263 		u32 next_cpu;
4264 		u32 ident;
4265 
4266 		/* First check into global flow table if there is a match */
4267 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4268 		if ((ident ^ hash) & ~rps_cpu_mask)
4269 			goto try_rps;
4270 
4271 		next_cpu = ident & rps_cpu_mask;
4272 
4273 		/* OK, now we know there is a match,
4274 		 * we can look at the local (per receive queue) flow table
4275 		 */
4276 		rflow = &flow_table->flows[hash & flow_table->mask];
4277 		tcpu = rflow->cpu;
4278 
4279 		/*
4280 		 * If the desired CPU (where last recvmsg was done) is
4281 		 * different from current CPU (one in the rx-queue flow
4282 		 * table entry), switch if one of the following holds:
4283 		 *   - Current CPU is unset (>= nr_cpu_ids).
4284 		 *   - Current CPU is offline.
4285 		 *   - The current CPU's queue tail has advanced beyond the
4286 		 *     last packet that was enqueued using this table entry.
4287 		 *     This guarantees that all previous packets for the flow
4288 		 *     have been dequeued, thus preserving in order delivery.
4289 		 */
4290 		if (unlikely(tcpu != next_cpu) &&
4291 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4292 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4293 		      rflow->last_qtail)) >= 0)) {
4294 			tcpu = next_cpu;
4295 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4296 		}
4297 
4298 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4299 			*rflowp = rflow;
4300 			cpu = tcpu;
4301 			goto done;
4302 		}
4303 	}
4304 
4305 try_rps:
4306 
4307 	if (map) {
4308 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4309 		if (cpu_online(tcpu)) {
4310 			cpu = tcpu;
4311 			goto done;
4312 		}
4313 	}
4314 
4315 done:
4316 	return cpu;
4317 }
4318 
4319 #ifdef CONFIG_RFS_ACCEL
4320 
4321 /**
4322  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4323  * @dev: Device on which the filter was set
4324  * @rxq_index: RX queue index
4325  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4326  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4327  *
4328  * Drivers that implement ndo_rx_flow_steer() should periodically call
4329  * this function for each installed filter and remove the filters for
4330  * which it returns %true.
4331  */
4332 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4333 			 u32 flow_id, u16 filter_id)
4334 {
4335 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4336 	struct rps_dev_flow_table *flow_table;
4337 	struct rps_dev_flow *rflow;
4338 	bool expire = true;
4339 	unsigned int cpu;
4340 
4341 	rcu_read_lock();
4342 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343 	if (flow_table && flow_id <= flow_table->mask) {
4344 		rflow = &flow_table->flows[flow_id];
4345 		cpu = READ_ONCE(rflow->cpu);
4346 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4347 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4348 			   rflow->last_qtail) <
4349 		     (int)(10 * flow_table->mask)))
4350 			expire = false;
4351 	}
4352 	rcu_read_unlock();
4353 	return expire;
4354 }
4355 EXPORT_SYMBOL(rps_may_expire_flow);
4356 
4357 #endif /* CONFIG_RFS_ACCEL */
4358 
4359 /* Called from hardirq (IPI) context */
4360 static void rps_trigger_softirq(void *data)
4361 {
4362 	struct softnet_data *sd = data;
4363 
4364 	____napi_schedule(sd, &sd->backlog);
4365 	sd->received_rps++;
4366 }
4367 
4368 #endif /* CONFIG_RPS */
4369 
4370 /*
4371  * Check if this softnet_data structure is another cpu one
4372  * If yes, queue it to our IPI list and return 1
4373  * If no, return 0
4374  */
4375 static int rps_ipi_queued(struct softnet_data *sd)
4376 {
4377 #ifdef CONFIG_RPS
4378 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4379 
4380 	if (sd != mysd) {
4381 		sd->rps_ipi_next = mysd->rps_ipi_list;
4382 		mysd->rps_ipi_list = sd;
4383 
4384 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4385 		return 1;
4386 	}
4387 #endif /* CONFIG_RPS */
4388 	return 0;
4389 }
4390 
4391 #ifdef CONFIG_NET_FLOW_LIMIT
4392 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4393 #endif
4394 
4395 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4396 {
4397 #ifdef CONFIG_NET_FLOW_LIMIT
4398 	struct sd_flow_limit *fl;
4399 	struct softnet_data *sd;
4400 	unsigned int old_flow, new_flow;
4401 
4402 	if (qlen < (netdev_max_backlog >> 1))
4403 		return false;
4404 
4405 	sd = this_cpu_ptr(&softnet_data);
4406 
4407 	rcu_read_lock();
4408 	fl = rcu_dereference(sd->flow_limit);
4409 	if (fl) {
4410 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4411 		old_flow = fl->history[fl->history_head];
4412 		fl->history[fl->history_head] = new_flow;
4413 
4414 		fl->history_head++;
4415 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4416 
4417 		if (likely(fl->buckets[old_flow]))
4418 			fl->buckets[old_flow]--;
4419 
4420 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4421 			fl->count++;
4422 			rcu_read_unlock();
4423 			return true;
4424 		}
4425 	}
4426 	rcu_read_unlock();
4427 #endif
4428 	return false;
4429 }
4430 
4431 /*
4432  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4433  * queue (may be a remote CPU queue).
4434  */
4435 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4436 			      unsigned int *qtail)
4437 {
4438 	struct softnet_data *sd;
4439 	unsigned long flags;
4440 	unsigned int qlen;
4441 
4442 	sd = &per_cpu(softnet_data, cpu);
4443 
4444 	local_irq_save(flags);
4445 
4446 	rps_lock(sd);
4447 	if (!netif_running(skb->dev))
4448 		goto drop;
4449 	qlen = skb_queue_len(&sd->input_pkt_queue);
4450 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4451 		if (qlen) {
4452 enqueue:
4453 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4454 			input_queue_tail_incr_save(sd, qtail);
4455 			rps_unlock(sd);
4456 			local_irq_restore(flags);
4457 			return NET_RX_SUCCESS;
4458 		}
4459 
4460 		/* Schedule NAPI for backlog device
4461 		 * We can use non atomic operation since we own the queue lock
4462 		 */
4463 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4464 			if (!rps_ipi_queued(sd))
4465 				____napi_schedule(sd, &sd->backlog);
4466 		}
4467 		goto enqueue;
4468 	}
4469 
4470 drop:
4471 	sd->dropped++;
4472 	rps_unlock(sd);
4473 
4474 	local_irq_restore(flags);
4475 
4476 	atomic_long_inc(&skb->dev->rx_dropped);
4477 	kfree_skb(skb);
4478 	return NET_RX_DROP;
4479 }
4480 
4481 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4482 {
4483 	struct net_device *dev = skb->dev;
4484 	struct netdev_rx_queue *rxqueue;
4485 
4486 	rxqueue = dev->_rx;
4487 
4488 	if (skb_rx_queue_recorded(skb)) {
4489 		u16 index = skb_get_rx_queue(skb);
4490 
4491 		if (unlikely(index >= dev->real_num_rx_queues)) {
4492 			WARN_ONCE(dev->real_num_rx_queues > 1,
4493 				  "%s received packet on queue %u, but number "
4494 				  "of RX queues is %u\n",
4495 				  dev->name, index, dev->real_num_rx_queues);
4496 
4497 			return rxqueue; /* Return first rxqueue */
4498 		}
4499 		rxqueue += index;
4500 	}
4501 	return rxqueue;
4502 }
4503 
4504 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4505 				     struct xdp_buff *xdp,
4506 				     struct bpf_prog *xdp_prog)
4507 {
4508 	struct netdev_rx_queue *rxqueue;
4509 	void *orig_data, *orig_data_end;
4510 	u32 metalen, act = XDP_DROP;
4511 	__be16 orig_eth_type;
4512 	struct ethhdr *eth;
4513 	bool orig_bcast;
4514 	int hlen, off;
4515 	u32 mac_len;
4516 
4517 	/* Reinjected packets coming from act_mirred or similar should
4518 	 * not get XDP generic processing.
4519 	 */
4520 	if (skb_is_redirected(skb))
4521 		return XDP_PASS;
4522 
4523 	/* XDP packets must be linear and must have sufficient headroom
4524 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4525 	 * native XDP provides, thus we need to do it here as well.
4526 	 */
4527 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4528 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4529 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4530 		int troom = skb->tail + skb->data_len - skb->end;
4531 
4532 		/* In case we have to go down the path and also linearize,
4533 		 * then lets do the pskb_expand_head() work just once here.
4534 		 */
4535 		if (pskb_expand_head(skb,
4536 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4537 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4538 			goto do_drop;
4539 		if (skb_linearize(skb))
4540 			goto do_drop;
4541 	}
4542 
4543 	/* The XDP program wants to see the packet starting at the MAC
4544 	 * header.
4545 	 */
4546 	mac_len = skb->data - skb_mac_header(skb);
4547 	hlen = skb_headlen(skb) + mac_len;
4548 	xdp->data = skb->data - mac_len;
4549 	xdp->data_meta = xdp->data;
4550 	xdp->data_end = xdp->data + hlen;
4551 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4552 	orig_data_end = xdp->data_end;
4553 	orig_data = xdp->data;
4554 	eth = (struct ethhdr *)xdp->data;
4555 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4556 	orig_eth_type = eth->h_proto;
4557 
4558 	rxqueue = netif_get_rxqueue(skb);
4559 	xdp->rxq = &rxqueue->xdp_rxq;
4560 
4561 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4562 
4563 	/* check if bpf_xdp_adjust_head was used */
4564 	off = xdp->data - orig_data;
4565 	if (off) {
4566 		if (off > 0)
4567 			__skb_pull(skb, off);
4568 		else if (off < 0)
4569 			__skb_push(skb, -off);
4570 
4571 		skb->mac_header += off;
4572 		skb_reset_network_header(skb);
4573 	}
4574 
4575 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4576 	 * pckt.
4577 	 */
4578 	off = orig_data_end - xdp->data_end;
4579 	if (off != 0) {
4580 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4581 		skb->len -= off;
4582 
4583 	}
4584 
4585 	/* check if XDP changed eth hdr such SKB needs update */
4586 	eth = (struct ethhdr *)xdp->data;
4587 	if ((orig_eth_type != eth->h_proto) ||
4588 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4589 		__skb_push(skb, ETH_HLEN);
4590 		skb->protocol = eth_type_trans(skb, skb->dev);
4591 	}
4592 
4593 	switch (act) {
4594 	case XDP_REDIRECT:
4595 	case XDP_TX:
4596 		__skb_push(skb, mac_len);
4597 		break;
4598 	case XDP_PASS:
4599 		metalen = xdp->data - xdp->data_meta;
4600 		if (metalen)
4601 			skb_metadata_set(skb, metalen);
4602 		break;
4603 	default:
4604 		bpf_warn_invalid_xdp_action(act);
4605 		/* fall through */
4606 	case XDP_ABORTED:
4607 		trace_xdp_exception(skb->dev, xdp_prog, act);
4608 		/* fall through */
4609 	case XDP_DROP:
4610 	do_drop:
4611 		kfree_skb(skb);
4612 		break;
4613 	}
4614 
4615 	return act;
4616 }
4617 
4618 /* When doing generic XDP we have to bypass the qdisc layer and the
4619  * network taps in order to match in-driver-XDP behavior.
4620  */
4621 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4622 {
4623 	struct net_device *dev = skb->dev;
4624 	struct netdev_queue *txq;
4625 	bool free_skb = true;
4626 	int cpu, rc;
4627 
4628 	txq = netdev_core_pick_tx(dev, skb, NULL);
4629 	cpu = smp_processor_id();
4630 	HARD_TX_LOCK(dev, txq, cpu);
4631 	if (!netif_xmit_stopped(txq)) {
4632 		rc = netdev_start_xmit(skb, dev, txq, 0);
4633 		if (dev_xmit_complete(rc))
4634 			free_skb = false;
4635 	}
4636 	HARD_TX_UNLOCK(dev, txq);
4637 	if (free_skb) {
4638 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4639 		kfree_skb(skb);
4640 	}
4641 }
4642 
4643 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4644 
4645 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4646 {
4647 	if (xdp_prog) {
4648 		struct xdp_buff xdp;
4649 		u32 act;
4650 		int err;
4651 
4652 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4653 		if (act != XDP_PASS) {
4654 			switch (act) {
4655 			case XDP_REDIRECT:
4656 				err = xdp_do_generic_redirect(skb->dev, skb,
4657 							      &xdp, xdp_prog);
4658 				if (err)
4659 					goto out_redir;
4660 				break;
4661 			case XDP_TX:
4662 				generic_xdp_tx(skb, xdp_prog);
4663 				break;
4664 			}
4665 			return XDP_DROP;
4666 		}
4667 	}
4668 	return XDP_PASS;
4669 out_redir:
4670 	kfree_skb(skb);
4671 	return XDP_DROP;
4672 }
4673 EXPORT_SYMBOL_GPL(do_xdp_generic);
4674 
4675 static int netif_rx_internal(struct sk_buff *skb)
4676 {
4677 	int ret;
4678 
4679 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4680 
4681 	trace_netif_rx(skb);
4682 
4683 #ifdef CONFIG_RPS
4684 	if (static_branch_unlikely(&rps_needed)) {
4685 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4686 		int cpu;
4687 
4688 		preempt_disable();
4689 		rcu_read_lock();
4690 
4691 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4692 		if (cpu < 0)
4693 			cpu = smp_processor_id();
4694 
4695 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696 
4697 		rcu_read_unlock();
4698 		preempt_enable();
4699 	} else
4700 #endif
4701 	{
4702 		unsigned int qtail;
4703 
4704 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4705 		put_cpu();
4706 	}
4707 	return ret;
4708 }
4709 
4710 /**
4711  *	netif_rx	-	post buffer to the network code
4712  *	@skb: buffer to post
4713  *
4714  *	This function receives a packet from a device driver and queues it for
4715  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4716  *	may be dropped during processing for congestion control or by the
4717  *	protocol layers.
4718  *
4719  *	return values:
4720  *	NET_RX_SUCCESS	(no congestion)
4721  *	NET_RX_DROP     (packet was dropped)
4722  *
4723  */
4724 
4725 int netif_rx(struct sk_buff *skb)
4726 {
4727 	int ret;
4728 
4729 	trace_netif_rx_entry(skb);
4730 
4731 	ret = netif_rx_internal(skb);
4732 	trace_netif_rx_exit(ret);
4733 
4734 	return ret;
4735 }
4736 EXPORT_SYMBOL(netif_rx);
4737 
4738 int netif_rx_ni(struct sk_buff *skb)
4739 {
4740 	int err;
4741 
4742 	trace_netif_rx_ni_entry(skb);
4743 
4744 	preempt_disable();
4745 	err = netif_rx_internal(skb);
4746 	if (local_softirq_pending())
4747 		do_softirq();
4748 	preempt_enable();
4749 	trace_netif_rx_ni_exit(err);
4750 
4751 	return err;
4752 }
4753 EXPORT_SYMBOL(netif_rx_ni);
4754 
4755 static __latent_entropy void net_tx_action(struct softirq_action *h)
4756 {
4757 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4758 
4759 	if (sd->completion_queue) {
4760 		struct sk_buff *clist;
4761 
4762 		local_irq_disable();
4763 		clist = sd->completion_queue;
4764 		sd->completion_queue = NULL;
4765 		local_irq_enable();
4766 
4767 		while (clist) {
4768 			struct sk_buff *skb = clist;
4769 
4770 			clist = clist->next;
4771 
4772 			WARN_ON(refcount_read(&skb->users));
4773 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4774 				trace_consume_skb(skb);
4775 			else
4776 				trace_kfree_skb(skb, net_tx_action);
4777 
4778 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4779 				__kfree_skb(skb);
4780 			else
4781 				__kfree_skb_defer(skb);
4782 		}
4783 
4784 		__kfree_skb_flush();
4785 	}
4786 
4787 	if (sd->output_queue) {
4788 		struct Qdisc *head;
4789 
4790 		local_irq_disable();
4791 		head = sd->output_queue;
4792 		sd->output_queue = NULL;
4793 		sd->output_queue_tailp = &sd->output_queue;
4794 		local_irq_enable();
4795 
4796 		while (head) {
4797 			struct Qdisc *q = head;
4798 			spinlock_t *root_lock = NULL;
4799 
4800 			head = head->next_sched;
4801 
4802 			if (!(q->flags & TCQ_F_NOLOCK)) {
4803 				root_lock = qdisc_lock(q);
4804 				spin_lock(root_lock);
4805 			}
4806 			/* We need to make sure head->next_sched is read
4807 			 * before clearing __QDISC_STATE_SCHED
4808 			 */
4809 			smp_mb__before_atomic();
4810 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4811 			qdisc_run(q);
4812 			if (root_lock)
4813 				spin_unlock(root_lock);
4814 		}
4815 	}
4816 
4817 	xfrm_dev_backlog(sd);
4818 }
4819 
4820 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4821 /* This hook is defined here for ATM LANE */
4822 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4823 			     unsigned char *addr) __read_mostly;
4824 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4825 #endif
4826 
4827 static inline struct sk_buff *
4828 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4829 		   struct net_device *orig_dev)
4830 {
4831 #ifdef CONFIG_NET_CLS_ACT
4832 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4833 	struct tcf_result cl_res;
4834 
4835 	/* If there's at least one ingress present somewhere (so
4836 	 * we get here via enabled static key), remaining devices
4837 	 * that are not configured with an ingress qdisc will bail
4838 	 * out here.
4839 	 */
4840 	if (!miniq)
4841 		return skb;
4842 
4843 	if (*pt_prev) {
4844 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4845 		*pt_prev = NULL;
4846 	}
4847 
4848 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4849 	skb->tc_at_ingress = 1;
4850 	mini_qdisc_bstats_cpu_update(miniq, skb);
4851 
4852 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4853 				     &cl_res, false)) {
4854 	case TC_ACT_OK:
4855 	case TC_ACT_RECLASSIFY:
4856 		skb->tc_index = TC_H_MIN(cl_res.classid);
4857 		break;
4858 	case TC_ACT_SHOT:
4859 		mini_qdisc_qstats_cpu_drop(miniq);
4860 		kfree_skb(skb);
4861 		return NULL;
4862 	case TC_ACT_STOLEN:
4863 	case TC_ACT_QUEUED:
4864 	case TC_ACT_TRAP:
4865 		consume_skb(skb);
4866 		return NULL;
4867 	case TC_ACT_REDIRECT:
4868 		/* skb_mac_header check was done by cls/act_bpf, so
4869 		 * we can safely push the L2 header back before
4870 		 * redirecting to another netdev
4871 		 */
4872 		__skb_push(skb, skb->mac_len);
4873 		skb_do_redirect(skb);
4874 		return NULL;
4875 	case TC_ACT_CONSUMED:
4876 		return NULL;
4877 	default:
4878 		break;
4879 	}
4880 #endif /* CONFIG_NET_CLS_ACT */
4881 	return skb;
4882 }
4883 
4884 /**
4885  *	netdev_is_rx_handler_busy - check if receive handler is registered
4886  *	@dev: device to check
4887  *
4888  *	Check if a receive handler is already registered for a given device.
4889  *	Return true if there one.
4890  *
4891  *	The caller must hold the rtnl_mutex.
4892  */
4893 bool netdev_is_rx_handler_busy(struct net_device *dev)
4894 {
4895 	ASSERT_RTNL();
4896 	return dev && rtnl_dereference(dev->rx_handler);
4897 }
4898 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4899 
4900 /**
4901  *	netdev_rx_handler_register - register receive handler
4902  *	@dev: device to register a handler for
4903  *	@rx_handler: receive handler to register
4904  *	@rx_handler_data: data pointer that is used by rx handler
4905  *
4906  *	Register a receive handler for a device. This handler will then be
4907  *	called from __netif_receive_skb. A negative errno code is returned
4908  *	on a failure.
4909  *
4910  *	The caller must hold the rtnl_mutex.
4911  *
4912  *	For a general description of rx_handler, see enum rx_handler_result.
4913  */
4914 int netdev_rx_handler_register(struct net_device *dev,
4915 			       rx_handler_func_t *rx_handler,
4916 			       void *rx_handler_data)
4917 {
4918 	if (netdev_is_rx_handler_busy(dev))
4919 		return -EBUSY;
4920 
4921 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4922 		return -EINVAL;
4923 
4924 	/* Note: rx_handler_data must be set before rx_handler */
4925 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4926 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4927 
4928 	return 0;
4929 }
4930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4931 
4932 /**
4933  *	netdev_rx_handler_unregister - unregister receive handler
4934  *	@dev: device to unregister a handler from
4935  *
4936  *	Unregister a receive handler from a device.
4937  *
4938  *	The caller must hold the rtnl_mutex.
4939  */
4940 void netdev_rx_handler_unregister(struct net_device *dev)
4941 {
4942 
4943 	ASSERT_RTNL();
4944 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4945 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4946 	 * section has a guarantee to see a non NULL rx_handler_data
4947 	 * as well.
4948 	 */
4949 	synchronize_net();
4950 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4951 }
4952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4953 
4954 /*
4955  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4956  * the special handling of PFMEMALLOC skbs.
4957  */
4958 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4959 {
4960 	switch (skb->protocol) {
4961 	case htons(ETH_P_ARP):
4962 	case htons(ETH_P_IP):
4963 	case htons(ETH_P_IPV6):
4964 	case htons(ETH_P_8021Q):
4965 	case htons(ETH_P_8021AD):
4966 		return true;
4967 	default:
4968 		return false;
4969 	}
4970 }
4971 
4972 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4973 			     int *ret, struct net_device *orig_dev)
4974 {
4975 	if (nf_hook_ingress_active(skb)) {
4976 		int ingress_retval;
4977 
4978 		if (*pt_prev) {
4979 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4980 			*pt_prev = NULL;
4981 		}
4982 
4983 		rcu_read_lock();
4984 		ingress_retval = nf_hook_ingress(skb);
4985 		rcu_read_unlock();
4986 		return ingress_retval;
4987 	}
4988 	return 0;
4989 }
4990 
4991 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4992 				    struct packet_type **ppt_prev)
4993 {
4994 	struct packet_type *ptype, *pt_prev;
4995 	rx_handler_func_t *rx_handler;
4996 	struct net_device *orig_dev;
4997 	bool deliver_exact = false;
4998 	int ret = NET_RX_DROP;
4999 	__be16 type;
5000 
5001 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5002 
5003 	trace_netif_receive_skb(skb);
5004 
5005 	orig_dev = skb->dev;
5006 
5007 	skb_reset_network_header(skb);
5008 	if (!skb_transport_header_was_set(skb))
5009 		skb_reset_transport_header(skb);
5010 	skb_reset_mac_len(skb);
5011 
5012 	pt_prev = NULL;
5013 
5014 another_round:
5015 	skb->skb_iif = skb->dev->ifindex;
5016 
5017 	__this_cpu_inc(softnet_data.processed);
5018 
5019 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5020 		int ret2;
5021 
5022 		preempt_disable();
5023 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5024 		preempt_enable();
5025 
5026 		if (ret2 != XDP_PASS)
5027 			return NET_RX_DROP;
5028 		skb_reset_mac_len(skb);
5029 	}
5030 
5031 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5032 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5033 		skb = skb_vlan_untag(skb);
5034 		if (unlikely(!skb))
5035 			goto out;
5036 	}
5037 
5038 	if (skb_skip_tc_classify(skb))
5039 		goto skip_classify;
5040 
5041 	if (pfmemalloc)
5042 		goto skip_taps;
5043 
5044 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5045 		if (pt_prev)
5046 			ret = deliver_skb(skb, pt_prev, orig_dev);
5047 		pt_prev = ptype;
5048 	}
5049 
5050 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5051 		if (pt_prev)
5052 			ret = deliver_skb(skb, pt_prev, orig_dev);
5053 		pt_prev = ptype;
5054 	}
5055 
5056 skip_taps:
5057 #ifdef CONFIG_NET_INGRESS
5058 	if (static_branch_unlikely(&ingress_needed_key)) {
5059 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5060 		if (!skb)
5061 			goto out;
5062 
5063 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5064 			goto out;
5065 	}
5066 #endif
5067 	skb_reset_redirect(skb);
5068 skip_classify:
5069 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5070 		goto drop;
5071 
5072 	if (skb_vlan_tag_present(skb)) {
5073 		if (pt_prev) {
5074 			ret = deliver_skb(skb, pt_prev, orig_dev);
5075 			pt_prev = NULL;
5076 		}
5077 		if (vlan_do_receive(&skb))
5078 			goto another_round;
5079 		else if (unlikely(!skb))
5080 			goto out;
5081 	}
5082 
5083 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5084 	if (rx_handler) {
5085 		if (pt_prev) {
5086 			ret = deliver_skb(skb, pt_prev, orig_dev);
5087 			pt_prev = NULL;
5088 		}
5089 		switch (rx_handler(&skb)) {
5090 		case RX_HANDLER_CONSUMED:
5091 			ret = NET_RX_SUCCESS;
5092 			goto out;
5093 		case RX_HANDLER_ANOTHER:
5094 			goto another_round;
5095 		case RX_HANDLER_EXACT:
5096 			deliver_exact = true;
5097 		case RX_HANDLER_PASS:
5098 			break;
5099 		default:
5100 			BUG();
5101 		}
5102 	}
5103 
5104 	if (unlikely(skb_vlan_tag_present(skb))) {
5105 check_vlan_id:
5106 		if (skb_vlan_tag_get_id(skb)) {
5107 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5108 			 * find vlan device.
5109 			 */
5110 			skb->pkt_type = PACKET_OTHERHOST;
5111 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5112 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5113 			/* Outer header is 802.1P with vlan 0, inner header is
5114 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5115 			 * not find vlan dev for vlan id 0.
5116 			 */
5117 			__vlan_hwaccel_clear_tag(skb);
5118 			skb = skb_vlan_untag(skb);
5119 			if (unlikely(!skb))
5120 				goto out;
5121 			if (vlan_do_receive(&skb))
5122 				/* After stripping off 802.1P header with vlan 0
5123 				 * vlan dev is found for inner header.
5124 				 */
5125 				goto another_round;
5126 			else if (unlikely(!skb))
5127 				goto out;
5128 			else
5129 				/* We have stripped outer 802.1P vlan 0 header.
5130 				 * But could not find vlan dev.
5131 				 * check again for vlan id to set OTHERHOST.
5132 				 */
5133 				goto check_vlan_id;
5134 		}
5135 		/* Note: we might in the future use prio bits
5136 		 * and set skb->priority like in vlan_do_receive()
5137 		 * For the time being, just ignore Priority Code Point
5138 		 */
5139 		__vlan_hwaccel_clear_tag(skb);
5140 	}
5141 
5142 	type = skb->protocol;
5143 
5144 	/* deliver only exact match when indicated */
5145 	if (likely(!deliver_exact)) {
5146 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5147 				       &ptype_base[ntohs(type) &
5148 						   PTYPE_HASH_MASK]);
5149 	}
5150 
5151 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5152 			       &orig_dev->ptype_specific);
5153 
5154 	if (unlikely(skb->dev != orig_dev)) {
5155 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5156 				       &skb->dev->ptype_specific);
5157 	}
5158 
5159 	if (pt_prev) {
5160 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5161 			goto drop;
5162 		*ppt_prev = pt_prev;
5163 	} else {
5164 drop:
5165 		if (!deliver_exact)
5166 			atomic_long_inc(&skb->dev->rx_dropped);
5167 		else
5168 			atomic_long_inc(&skb->dev->rx_nohandler);
5169 		kfree_skb(skb);
5170 		/* Jamal, now you will not able to escape explaining
5171 		 * me how you were going to use this. :-)
5172 		 */
5173 		ret = NET_RX_DROP;
5174 	}
5175 
5176 out:
5177 	return ret;
5178 }
5179 
5180 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5181 {
5182 	struct net_device *orig_dev = skb->dev;
5183 	struct packet_type *pt_prev = NULL;
5184 	int ret;
5185 
5186 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5187 	if (pt_prev)
5188 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5189 					 skb->dev, pt_prev, orig_dev);
5190 	return ret;
5191 }
5192 
5193 /**
5194  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5195  *	@skb: buffer to process
5196  *
5197  *	More direct receive version of netif_receive_skb().  It should
5198  *	only be used by callers that have a need to skip RPS and Generic XDP.
5199  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5200  *
5201  *	This function may only be called from softirq context and interrupts
5202  *	should be enabled.
5203  *
5204  *	Return values (usually ignored):
5205  *	NET_RX_SUCCESS: no congestion
5206  *	NET_RX_DROP: packet was dropped
5207  */
5208 int netif_receive_skb_core(struct sk_buff *skb)
5209 {
5210 	int ret;
5211 
5212 	rcu_read_lock();
5213 	ret = __netif_receive_skb_one_core(skb, false);
5214 	rcu_read_unlock();
5215 
5216 	return ret;
5217 }
5218 EXPORT_SYMBOL(netif_receive_skb_core);
5219 
5220 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5221 						  struct packet_type *pt_prev,
5222 						  struct net_device *orig_dev)
5223 {
5224 	struct sk_buff *skb, *next;
5225 
5226 	if (!pt_prev)
5227 		return;
5228 	if (list_empty(head))
5229 		return;
5230 	if (pt_prev->list_func != NULL)
5231 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5232 				   ip_list_rcv, head, pt_prev, orig_dev);
5233 	else
5234 		list_for_each_entry_safe(skb, next, head, list) {
5235 			skb_list_del_init(skb);
5236 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5237 		}
5238 }
5239 
5240 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5241 {
5242 	/* Fast-path assumptions:
5243 	 * - There is no RX handler.
5244 	 * - Only one packet_type matches.
5245 	 * If either of these fails, we will end up doing some per-packet
5246 	 * processing in-line, then handling the 'last ptype' for the whole
5247 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5248 	 * because the 'last ptype' must be constant across the sublist, and all
5249 	 * other ptypes are handled per-packet.
5250 	 */
5251 	/* Current (common) ptype of sublist */
5252 	struct packet_type *pt_curr = NULL;
5253 	/* Current (common) orig_dev of sublist */
5254 	struct net_device *od_curr = NULL;
5255 	struct list_head sublist;
5256 	struct sk_buff *skb, *next;
5257 
5258 	INIT_LIST_HEAD(&sublist);
5259 	list_for_each_entry_safe(skb, next, head, list) {
5260 		struct net_device *orig_dev = skb->dev;
5261 		struct packet_type *pt_prev = NULL;
5262 
5263 		skb_list_del_init(skb);
5264 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5265 		if (!pt_prev)
5266 			continue;
5267 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5268 			/* dispatch old sublist */
5269 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5270 			/* start new sublist */
5271 			INIT_LIST_HEAD(&sublist);
5272 			pt_curr = pt_prev;
5273 			od_curr = orig_dev;
5274 		}
5275 		list_add_tail(&skb->list, &sublist);
5276 	}
5277 
5278 	/* dispatch final sublist */
5279 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5280 }
5281 
5282 static int __netif_receive_skb(struct sk_buff *skb)
5283 {
5284 	int ret;
5285 
5286 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5287 		unsigned int noreclaim_flag;
5288 
5289 		/*
5290 		 * PFMEMALLOC skbs are special, they should
5291 		 * - be delivered to SOCK_MEMALLOC sockets only
5292 		 * - stay away from userspace
5293 		 * - have bounded memory usage
5294 		 *
5295 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5296 		 * context down to all allocation sites.
5297 		 */
5298 		noreclaim_flag = memalloc_noreclaim_save();
5299 		ret = __netif_receive_skb_one_core(skb, true);
5300 		memalloc_noreclaim_restore(noreclaim_flag);
5301 	} else
5302 		ret = __netif_receive_skb_one_core(skb, false);
5303 
5304 	return ret;
5305 }
5306 
5307 static void __netif_receive_skb_list(struct list_head *head)
5308 {
5309 	unsigned long noreclaim_flag = 0;
5310 	struct sk_buff *skb, *next;
5311 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5312 
5313 	list_for_each_entry_safe(skb, next, head, list) {
5314 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5315 			struct list_head sublist;
5316 
5317 			/* Handle the previous sublist */
5318 			list_cut_before(&sublist, head, &skb->list);
5319 			if (!list_empty(&sublist))
5320 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5321 			pfmemalloc = !pfmemalloc;
5322 			/* See comments in __netif_receive_skb */
5323 			if (pfmemalloc)
5324 				noreclaim_flag = memalloc_noreclaim_save();
5325 			else
5326 				memalloc_noreclaim_restore(noreclaim_flag);
5327 		}
5328 	}
5329 	/* Handle the remaining sublist */
5330 	if (!list_empty(head))
5331 		__netif_receive_skb_list_core(head, pfmemalloc);
5332 	/* Restore pflags */
5333 	if (pfmemalloc)
5334 		memalloc_noreclaim_restore(noreclaim_flag);
5335 }
5336 
5337 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5338 {
5339 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5340 	struct bpf_prog *new = xdp->prog;
5341 	int ret = 0;
5342 
5343 	switch (xdp->command) {
5344 	case XDP_SETUP_PROG:
5345 		rcu_assign_pointer(dev->xdp_prog, new);
5346 		if (old)
5347 			bpf_prog_put(old);
5348 
5349 		if (old && !new) {
5350 			static_branch_dec(&generic_xdp_needed_key);
5351 		} else if (new && !old) {
5352 			static_branch_inc(&generic_xdp_needed_key);
5353 			dev_disable_lro(dev);
5354 			dev_disable_gro_hw(dev);
5355 		}
5356 		break;
5357 
5358 	case XDP_QUERY_PROG:
5359 		xdp->prog_id = old ? old->aux->id : 0;
5360 		break;
5361 
5362 	default:
5363 		ret = -EINVAL;
5364 		break;
5365 	}
5366 
5367 	return ret;
5368 }
5369 
5370 static int netif_receive_skb_internal(struct sk_buff *skb)
5371 {
5372 	int ret;
5373 
5374 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5375 
5376 	if (skb_defer_rx_timestamp(skb))
5377 		return NET_RX_SUCCESS;
5378 
5379 	rcu_read_lock();
5380 #ifdef CONFIG_RPS
5381 	if (static_branch_unlikely(&rps_needed)) {
5382 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5383 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5384 
5385 		if (cpu >= 0) {
5386 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5387 			rcu_read_unlock();
5388 			return ret;
5389 		}
5390 	}
5391 #endif
5392 	ret = __netif_receive_skb(skb);
5393 	rcu_read_unlock();
5394 	return ret;
5395 }
5396 
5397 static void netif_receive_skb_list_internal(struct list_head *head)
5398 {
5399 	struct sk_buff *skb, *next;
5400 	struct list_head sublist;
5401 
5402 	INIT_LIST_HEAD(&sublist);
5403 	list_for_each_entry_safe(skb, next, head, list) {
5404 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5405 		skb_list_del_init(skb);
5406 		if (!skb_defer_rx_timestamp(skb))
5407 			list_add_tail(&skb->list, &sublist);
5408 	}
5409 	list_splice_init(&sublist, head);
5410 
5411 	rcu_read_lock();
5412 #ifdef CONFIG_RPS
5413 	if (static_branch_unlikely(&rps_needed)) {
5414 		list_for_each_entry_safe(skb, next, head, list) {
5415 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5416 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5417 
5418 			if (cpu >= 0) {
5419 				/* Will be handled, remove from list */
5420 				skb_list_del_init(skb);
5421 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5422 			}
5423 		}
5424 	}
5425 #endif
5426 	__netif_receive_skb_list(head);
5427 	rcu_read_unlock();
5428 }
5429 
5430 /**
5431  *	netif_receive_skb - process receive buffer from network
5432  *	@skb: buffer to process
5433  *
5434  *	netif_receive_skb() is the main receive data processing function.
5435  *	It always succeeds. The buffer may be dropped during processing
5436  *	for congestion control or by the protocol layers.
5437  *
5438  *	This function may only be called from softirq context and interrupts
5439  *	should be enabled.
5440  *
5441  *	Return values (usually ignored):
5442  *	NET_RX_SUCCESS: no congestion
5443  *	NET_RX_DROP: packet was dropped
5444  */
5445 int netif_receive_skb(struct sk_buff *skb)
5446 {
5447 	int ret;
5448 
5449 	trace_netif_receive_skb_entry(skb);
5450 
5451 	ret = netif_receive_skb_internal(skb);
5452 	trace_netif_receive_skb_exit(ret);
5453 
5454 	return ret;
5455 }
5456 EXPORT_SYMBOL(netif_receive_skb);
5457 
5458 /**
5459  *	netif_receive_skb_list - process many receive buffers from network
5460  *	@head: list of skbs to process.
5461  *
5462  *	Since return value of netif_receive_skb() is normally ignored, and
5463  *	wouldn't be meaningful for a list, this function returns void.
5464  *
5465  *	This function may only be called from softirq context and interrupts
5466  *	should be enabled.
5467  */
5468 void netif_receive_skb_list(struct list_head *head)
5469 {
5470 	struct sk_buff *skb;
5471 
5472 	if (list_empty(head))
5473 		return;
5474 	if (trace_netif_receive_skb_list_entry_enabled()) {
5475 		list_for_each_entry(skb, head, list)
5476 			trace_netif_receive_skb_list_entry(skb);
5477 	}
5478 	netif_receive_skb_list_internal(head);
5479 	trace_netif_receive_skb_list_exit(0);
5480 }
5481 EXPORT_SYMBOL(netif_receive_skb_list);
5482 
5483 DEFINE_PER_CPU(struct work_struct, flush_works);
5484 
5485 /* Network device is going away, flush any packets still pending */
5486 static void flush_backlog(struct work_struct *work)
5487 {
5488 	struct sk_buff *skb, *tmp;
5489 	struct softnet_data *sd;
5490 
5491 	local_bh_disable();
5492 	sd = this_cpu_ptr(&softnet_data);
5493 
5494 	local_irq_disable();
5495 	rps_lock(sd);
5496 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5497 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5498 			__skb_unlink(skb, &sd->input_pkt_queue);
5499 			kfree_skb(skb);
5500 			input_queue_head_incr(sd);
5501 		}
5502 	}
5503 	rps_unlock(sd);
5504 	local_irq_enable();
5505 
5506 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5507 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5508 			__skb_unlink(skb, &sd->process_queue);
5509 			kfree_skb(skb);
5510 			input_queue_head_incr(sd);
5511 		}
5512 	}
5513 	local_bh_enable();
5514 }
5515 
5516 static void flush_all_backlogs(void)
5517 {
5518 	unsigned int cpu;
5519 
5520 	get_online_cpus();
5521 
5522 	for_each_online_cpu(cpu)
5523 		queue_work_on(cpu, system_highpri_wq,
5524 			      per_cpu_ptr(&flush_works, cpu));
5525 
5526 	for_each_online_cpu(cpu)
5527 		flush_work(per_cpu_ptr(&flush_works, cpu));
5528 
5529 	put_online_cpus();
5530 }
5531 
5532 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5533 static void gro_normal_list(struct napi_struct *napi)
5534 {
5535 	if (!napi->rx_count)
5536 		return;
5537 	netif_receive_skb_list_internal(&napi->rx_list);
5538 	INIT_LIST_HEAD(&napi->rx_list);
5539 	napi->rx_count = 0;
5540 }
5541 
5542 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5543  * pass the whole batch up to the stack.
5544  */
5545 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5546 {
5547 	list_add_tail(&skb->list, &napi->rx_list);
5548 	if (++napi->rx_count >= gro_normal_batch)
5549 		gro_normal_list(napi);
5550 }
5551 
5552 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5553 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5554 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5555 {
5556 	struct packet_offload *ptype;
5557 	__be16 type = skb->protocol;
5558 	struct list_head *head = &offload_base;
5559 	int err = -ENOENT;
5560 
5561 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5562 
5563 	if (NAPI_GRO_CB(skb)->count == 1) {
5564 		skb_shinfo(skb)->gso_size = 0;
5565 		goto out;
5566 	}
5567 
5568 	rcu_read_lock();
5569 	list_for_each_entry_rcu(ptype, head, list) {
5570 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5571 			continue;
5572 
5573 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5574 					 ipv6_gro_complete, inet_gro_complete,
5575 					 skb, 0);
5576 		break;
5577 	}
5578 	rcu_read_unlock();
5579 
5580 	if (err) {
5581 		WARN_ON(&ptype->list == head);
5582 		kfree_skb(skb);
5583 		return NET_RX_SUCCESS;
5584 	}
5585 
5586 out:
5587 	gro_normal_one(napi, skb);
5588 	return NET_RX_SUCCESS;
5589 }
5590 
5591 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5592 				   bool flush_old)
5593 {
5594 	struct list_head *head = &napi->gro_hash[index].list;
5595 	struct sk_buff *skb, *p;
5596 
5597 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5598 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5599 			return;
5600 		skb_list_del_init(skb);
5601 		napi_gro_complete(napi, skb);
5602 		napi->gro_hash[index].count--;
5603 	}
5604 
5605 	if (!napi->gro_hash[index].count)
5606 		__clear_bit(index, &napi->gro_bitmask);
5607 }
5608 
5609 /* napi->gro_hash[].list contains packets ordered by age.
5610  * youngest packets at the head of it.
5611  * Complete skbs in reverse order to reduce latencies.
5612  */
5613 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5614 {
5615 	unsigned long bitmask = napi->gro_bitmask;
5616 	unsigned int i, base = ~0U;
5617 
5618 	while ((i = ffs(bitmask)) != 0) {
5619 		bitmask >>= i;
5620 		base += i;
5621 		__napi_gro_flush_chain(napi, base, flush_old);
5622 	}
5623 }
5624 EXPORT_SYMBOL(napi_gro_flush);
5625 
5626 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5627 					  struct sk_buff *skb)
5628 {
5629 	unsigned int maclen = skb->dev->hard_header_len;
5630 	u32 hash = skb_get_hash_raw(skb);
5631 	struct list_head *head;
5632 	struct sk_buff *p;
5633 
5634 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5635 	list_for_each_entry(p, head, list) {
5636 		unsigned long diffs;
5637 
5638 		NAPI_GRO_CB(p)->flush = 0;
5639 
5640 		if (hash != skb_get_hash_raw(p)) {
5641 			NAPI_GRO_CB(p)->same_flow = 0;
5642 			continue;
5643 		}
5644 
5645 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5646 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5647 		if (skb_vlan_tag_present(p))
5648 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5649 		diffs |= skb_metadata_dst_cmp(p, skb);
5650 		diffs |= skb_metadata_differs(p, skb);
5651 		if (maclen == ETH_HLEN)
5652 			diffs |= compare_ether_header(skb_mac_header(p),
5653 						      skb_mac_header(skb));
5654 		else if (!diffs)
5655 			diffs = memcmp(skb_mac_header(p),
5656 				       skb_mac_header(skb),
5657 				       maclen);
5658 		NAPI_GRO_CB(p)->same_flow = !diffs;
5659 	}
5660 
5661 	return head;
5662 }
5663 
5664 static void skb_gro_reset_offset(struct sk_buff *skb)
5665 {
5666 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5667 	const skb_frag_t *frag0 = &pinfo->frags[0];
5668 
5669 	NAPI_GRO_CB(skb)->data_offset = 0;
5670 	NAPI_GRO_CB(skb)->frag0 = NULL;
5671 	NAPI_GRO_CB(skb)->frag0_len = 0;
5672 
5673 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5674 	    !PageHighMem(skb_frag_page(frag0))) {
5675 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5676 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5677 						    skb_frag_size(frag0),
5678 						    skb->end - skb->tail);
5679 	}
5680 }
5681 
5682 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5683 {
5684 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5685 
5686 	BUG_ON(skb->end - skb->tail < grow);
5687 
5688 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5689 
5690 	skb->data_len -= grow;
5691 	skb->tail += grow;
5692 
5693 	skb_frag_off_add(&pinfo->frags[0], grow);
5694 	skb_frag_size_sub(&pinfo->frags[0], grow);
5695 
5696 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5697 		skb_frag_unref(skb, 0);
5698 		memmove(pinfo->frags, pinfo->frags + 1,
5699 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5700 	}
5701 }
5702 
5703 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5704 {
5705 	struct sk_buff *oldest;
5706 
5707 	oldest = list_last_entry(head, struct sk_buff, list);
5708 
5709 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5710 	 * impossible.
5711 	 */
5712 	if (WARN_ON_ONCE(!oldest))
5713 		return;
5714 
5715 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5716 	 * SKB to the chain.
5717 	 */
5718 	skb_list_del_init(oldest);
5719 	napi_gro_complete(napi, oldest);
5720 }
5721 
5722 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5723 							   struct sk_buff *));
5724 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5725 							   struct sk_buff *));
5726 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5729 	struct list_head *head = &offload_base;
5730 	struct packet_offload *ptype;
5731 	__be16 type = skb->protocol;
5732 	struct list_head *gro_head;
5733 	struct sk_buff *pp = NULL;
5734 	enum gro_result ret;
5735 	int same_flow;
5736 	int grow;
5737 
5738 	if (netif_elide_gro(skb->dev))
5739 		goto normal;
5740 
5741 	gro_head = gro_list_prepare(napi, skb);
5742 
5743 	rcu_read_lock();
5744 	list_for_each_entry_rcu(ptype, head, list) {
5745 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5746 			continue;
5747 
5748 		skb_set_network_header(skb, skb_gro_offset(skb));
5749 		skb_reset_mac_len(skb);
5750 		NAPI_GRO_CB(skb)->same_flow = 0;
5751 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5752 		NAPI_GRO_CB(skb)->free = 0;
5753 		NAPI_GRO_CB(skb)->encap_mark = 0;
5754 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5755 		NAPI_GRO_CB(skb)->is_fou = 0;
5756 		NAPI_GRO_CB(skb)->is_atomic = 1;
5757 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5758 
5759 		/* Setup for GRO checksum validation */
5760 		switch (skb->ip_summed) {
5761 		case CHECKSUM_COMPLETE:
5762 			NAPI_GRO_CB(skb)->csum = skb->csum;
5763 			NAPI_GRO_CB(skb)->csum_valid = 1;
5764 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5765 			break;
5766 		case CHECKSUM_UNNECESSARY:
5767 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5768 			NAPI_GRO_CB(skb)->csum_valid = 0;
5769 			break;
5770 		default:
5771 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5772 			NAPI_GRO_CB(skb)->csum_valid = 0;
5773 		}
5774 
5775 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5776 					ipv6_gro_receive, inet_gro_receive,
5777 					gro_head, skb);
5778 		break;
5779 	}
5780 	rcu_read_unlock();
5781 
5782 	if (&ptype->list == head)
5783 		goto normal;
5784 
5785 	if (PTR_ERR(pp) == -EINPROGRESS) {
5786 		ret = GRO_CONSUMED;
5787 		goto ok;
5788 	}
5789 
5790 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5791 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5792 
5793 	if (pp) {
5794 		skb_list_del_init(pp);
5795 		napi_gro_complete(napi, pp);
5796 		napi->gro_hash[hash].count--;
5797 	}
5798 
5799 	if (same_flow)
5800 		goto ok;
5801 
5802 	if (NAPI_GRO_CB(skb)->flush)
5803 		goto normal;
5804 
5805 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5806 		gro_flush_oldest(napi, gro_head);
5807 	} else {
5808 		napi->gro_hash[hash].count++;
5809 	}
5810 	NAPI_GRO_CB(skb)->count = 1;
5811 	NAPI_GRO_CB(skb)->age = jiffies;
5812 	NAPI_GRO_CB(skb)->last = skb;
5813 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5814 	list_add(&skb->list, gro_head);
5815 	ret = GRO_HELD;
5816 
5817 pull:
5818 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5819 	if (grow > 0)
5820 		gro_pull_from_frag0(skb, grow);
5821 ok:
5822 	if (napi->gro_hash[hash].count) {
5823 		if (!test_bit(hash, &napi->gro_bitmask))
5824 			__set_bit(hash, &napi->gro_bitmask);
5825 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5826 		__clear_bit(hash, &napi->gro_bitmask);
5827 	}
5828 
5829 	return ret;
5830 
5831 normal:
5832 	ret = GRO_NORMAL;
5833 	goto pull;
5834 }
5835 
5836 struct packet_offload *gro_find_receive_by_type(__be16 type)
5837 {
5838 	struct list_head *offload_head = &offload_base;
5839 	struct packet_offload *ptype;
5840 
5841 	list_for_each_entry_rcu(ptype, offload_head, list) {
5842 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5843 			continue;
5844 		return ptype;
5845 	}
5846 	return NULL;
5847 }
5848 EXPORT_SYMBOL(gro_find_receive_by_type);
5849 
5850 struct packet_offload *gro_find_complete_by_type(__be16 type)
5851 {
5852 	struct list_head *offload_head = &offload_base;
5853 	struct packet_offload *ptype;
5854 
5855 	list_for_each_entry_rcu(ptype, offload_head, list) {
5856 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5857 			continue;
5858 		return ptype;
5859 	}
5860 	return NULL;
5861 }
5862 EXPORT_SYMBOL(gro_find_complete_by_type);
5863 
5864 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5865 {
5866 	skb_dst_drop(skb);
5867 	skb_ext_put(skb);
5868 	kmem_cache_free(skbuff_head_cache, skb);
5869 }
5870 
5871 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5872 				    struct sk_buff *skb,
5873 				    gro_result_t ret)
5874 {
5875 	switch (ret) {
5876 	case GRO_NORMAL:
5877 		gro_normal_one(napi, skb);
5878 		break;
5879 
5880 	case GRO_DROP:
5881 		kfree_skb(skb);
5882 		break;
5883 
5884 	case GRO_MERGED_FREE:
5885 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5886 			napi_skb_free_stolen_head(skb);
5887 		else
5888 			__kfree_skb(skb);
5889 		break;
5890 
5891 	case GRO_HELD:
5892 	case GRO_MERGED:
5893 	case GRO_CONSUMED:
5894 		break;
5895 	}
5896 
5897 	return ret;
5898 }
5899 
5900 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5901 {
5902 	gro_result_t ret;
5903 
5904 	skb_mark_napi_id(skb, napi);
5905 	trace_napi_gro_receive_entry(skb);
5906 
5907 	skb_gro_reset_offset(skb);
5908 
5909 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5910 	trace_napi_gro_receive_exit(ret);
5911 
5912 	return ret;
5913 }
5914 EXPORT_SYMBOL(napi_gro_receive);
5915 
5916 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5917 {
5918 	if (unlikely(skb->pfmemalloc)) {
5919 		consume_skb(skb);
5920 		return;
5921 	}
5922 	__skb_pull(skb, skb_headlen(skb));
5923 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5924 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5925 	__vlan_hwaccel_clear_tag(skb);
5926 	skb->dev = napi->dev;
5927 	skb->skb_iif = 0;
5928 
5929 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5930 	skb->pkt_type = PACKET_HOST;
5931 
5932 	skb->encapsulation = 0;
5933 	skb_shinfo(skb)->gso_type = 0;
5934 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5935 	skb_ext_reset(skb);
5936 
5937 	napi->skb = skb;
5938 }
5939 
5940 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5941 {
5942 	struct sk_buff *skb = napi->skb;
5943 
5944 	if (!skb) {
5945 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5946 		if (skb) {
5947 			napi->skb = skb;
5948 			skb_mark_napi_id(skb, napi);
5949 		}
5950 	}
5951 	return skb;
5952 }
5953 EXPORT_SYMBOL(napi_get_frags);
5954 
5955 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5956 				      struct sk_buff *skb,
5957 				      gro_result_t ret)
5958 {
5959 	switch (ret) {
5960 	case GRO_NORMAL:
5961 	case GRO_HELD:
5962 		__skb_push(skb, ETH_HLEN);
5963 		skb->protocol = eth_type_trans(skb, skb->dev);
5964 		if (ret == GRO_NORMAL)
5965 			gro_normal_one(napi, skb);
5966 		break;
5967 
5968 	case GRO_DROP:
5969 		napi_reuse_skb(napi, skb);
5970 		break;
5971 
5972 	case GRO_MERGED_FREE:
5973 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5974 			napi_skb_free_stolen_head(skb);
5975 		else
5976 			napi_reuse_skb(napi, skb);
5977 		break;
5978 
5979 	case GRO_MERGED:
5980 	case GRO_CONSUMED:
5981 		break;
5982 	}
5983 
5984 	return ret;
5985 }
5986 
5987 /* Upper GRO stack assumes network header starts at gro_offset=0
5988  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5989  * We copy ethernet header into skb->data to have a common layout.
5990  */
5991 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5992 {
5993 	struct sk_buff *skb = napi->skb;
5994 	const struct ethhdr *eth;
5995 	unsigned int hlen = sizeof(*eth);
5996 
5997 	napi->skb = NULL;
5998 
5999 	skb_reset_mac_header(skb);
6000 	skb_gro_reset_offset(skb);
6001 
6002 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6003 		eth = skb_gro_header_slow(skb, hlen, 0);
6004 		if (unlikely(!eth)) {
6005 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6006 					     __func__, napi->dev->name);
6007 			napi_reuse_skb(napi, skb);
6008 			return NULL;
6009 		}
6010 	} else {
6011 		eth = (const struct ethhdr *)skb->data;
6012 		gro_pull_from_frag0(skb, hlen);
6013 		NAPI_GRO_CB(skb)->frag0 += hlen;
6014 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6015 	}
6016 	__skb_pull(skb, hlen);
6017 
6018 	/*
6019 	 * This works because the only protocols we care about don't require
6020 	 * special handling.
6021 	 * We'll fix it up properly in napi_frags_finish()
6022 	 */
6023 	skb->protocol = eth->h_proto;
6024 
6025 	return skb;
6026 }
6027 
6028 gro_result_t napi_gro_frags(struct napi_struct *napi)
6029 {
6030 	gro_result_t ret;
6031 	struct sk_buff *skb = napi_frags_skb(napi);
6032 
6033 	if (!skb)
6034 		return GRO_DROP;
6035 
6036 	trace_napi_gro_frags_entry(skb);
6037 
6038 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6039 	trace_napi_gro_frags_exit(ret);
6040 
6041 	return ret;
6042 }
6043 EXPORT_SYMBOL(napi_gro_frags);
6044 
6045 /* Compute the checksum from gro_offset and return the folded value
6046  * after adding in any pseudo checksum.
6047  */
6048 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6049 {
6050 	__wsum wsum;
6051 	__sum16 sum;
6052 
6053 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6054 
6055 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6056 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6057 	/* See comments in __skb_checksum_complete(). */
6058 	if (likely(!sum)) {
6059 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6060 		    !skb->csum_complete_sw)
6061 			netdev_rx_csum_fault(skb->dev, skb);
6062 	}
6063 
6064 	NAPI_GRO_CB(skb)->csum = wsum;
6065 	NAPI_GRO_CB(skb)->csum_valid = 1;
6066 
6067 	return sum;
6068 }
6069 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6070 
6071 static void net_rps_send_ipi(struct softnet_data *remsd)
6072 {
6073 #ifdef CONFIG_RPS
6074 	while (remsd) {
6075 		struct softnet_data *next = remsd->rps_ipi_next;
6076 
6077 		if (cpu_online(remsd->cpu))
6078 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6079 		remsd = next;
6080 	}
6081 #endif
6082 }
6083 
6084 /*
6085  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6086  * Note: called with local irq disabled, but exits with local irq enabled.
6087  */
6088 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6089 {
6090 #ifdef CONFIG_RPS
6091 	struct softnet_data *remsd = sd->rps_ipi_list;
6092 
6093 	if (remsd) {
6094 		sd->rps_ipi_list = NULL;
6095 
6096 		local_irq_enable();
6097 
6098 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6099 		net_rps_send_ipi(remsd);
6100 	} else
6101 #endif
6102 		local_irq_enable();
6103 }
6104 
6105 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6106 {
6107 #ifdef CONFIG_RPS
6108 	return sd->rps_ipi_list != NULL;
6109 #else
6110 	return false;
6111 #endif
6112 }
6113 
6114 static int process_backlog(struct napi_struct *napi, int quota)
6115 {
6116 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6117 	bool again = true;
6118 	int work = 0;
6119 
6120 	/* Check if we have pending ipi, its better to send them now,
6121 	 * not waiting net_rx_action() end.
6122 	 */
6123 	if (sd_has_rps_ipi_waiting(sd)) {
6124 		local_irq_disable();
6125 		net_rps_action_and_irq_enable(sd);
6126 	}
6127 
6128 	napi->weight = dev_rx_weight;
6129 	while (again) {
6130 		struct sk_buff *skb;
6131 
6132 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6133 			rcu_read_lock();
6134 			__netif_receive_skb(skb);
6135 			rcu_read_unlock();
6136 			input_queue_head_incr(sd);
6137 			if (++work >= quota)
6138 				return work;
6139 
6140 		}
6141 
6142 		local_irq_disable();
6143 		rps_lock(sd);
6144 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6145 			/*
6146 			 * Inline a custom version of __napi_complete().
6147 			 * only current cpu owns and manipulates this napi,
6148 			 * and NAPI_STATE_SCHED is the only possible flag set
6149 			 * on backlog.
6150 			 * We can use a plain write instead of clear_bit(),
6151 			 * and we dont need an smp_mb() memory barrier.
6152 			 */
6153 			napi->state = 0;
6154 			again = false;
6155 		} else {
6156 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6157 						   &sd->process_queue);
6158 		}
6159 		rps_unlock(sd);
6160 		local_irq_enable();
6161 	}
6162 
6163 	return work;
6164 }
6165 
6166 /**
6167  * __napi_schedule - schedule for receive
6168  * @n: entry to schedule
6169  *
6170  * The entry's receive function will be scheduled to run.
6171  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6172  */
6173 void __napi_schedule(struct napi_struct *n)
6174 {
6175 	unsigned long flags;
6176 
6177 	local_irq_save(flags);
6178 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6179 	local_irq_restore(flags);
6180 }
6181 EXPORT_SYMBOL(__napi_schedule);
6182 
6183 /**
6184  *	napi_schedule_prep - check if napi can be scheduled
6185  *	@n: napi context
6186  *
6187  * Test if NAPI routine is already running, and if not mark
6188  * it as running.  This is used as a condition variable
6189  * insure only one NAPI poll instance runs.  We also make
6190  * sure there is no pending NAPI disable.
6191  */
6192 bool napi_schedule_prep(struct napi_struct *n)
6193 {
6194 	unsigned long val, new;
6195 
6196 	do {
6197 		val = READ_ONCE(n->state);
6198 		if (unlikely(val & NAPIF_STATE_DISABLE))
6199 			return false;
6200 		new = val | NAPIF_STATE_SCHED;
6201 
6202 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6203 		 * This was suggested by Alexander Duyck, as compiler
6204 		 * emits better code than :
6205 		 * if (val & NAPIF_STATE_SCHED)
6206 		 *     new |= NAPIF_STATE_MISSED;
6207 		 */
6208 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6209 						   NAPIF_STATE_MISSED;
6210 	} while (cmpxchg(&n->state, val, new) != val);
6211 
6212 	return !(val & NAPIF_STATE_SCHED);
6213 }
6214 EXPORT_SYMBOL(napi_schedule_prep);
6215 
6216 /**
6217  * __napi_schedule_irqoff - schedule for receive
6218  * @n: entry to schedule
6219  *
6220  * Variant of __napi_schedule() assuming hard irqs are masked
6221  */
6222 void __napi_schedule_irqoff(struct napi_struct *n)
6223 {
6224 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6225 }
6226 EXPORT_SYMBOL(__napi_schedule_irqoff);
6227 
6228 bool napi_complete_done(struct napi_struct *n, int work_done)
6229 {
6230 	unsigned long flags, val, new;
6231 
6232 	/*
6233 	 * 1) Don't let napi dequeue from the cpu poll list
6234 	 *    just in case its running on a different cpu.
6235 	 * 2) If we are busy polling, do nothing here, we have
6236 	 *    the guarantee we will be called later.
6237 	 */
6238 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6239 				 NAPIF_STATE_IN_BUSY_POLL)))
6240 		return false;
6241 
6242 	if (n->gro_bitmask) {
6243 		unsigned long timeout = 0;
6244 
6245 		if (work_done)
6246 			timeout = n->dev->gro_flush_timeout;
6247 
6248 		/* When the NAPI instance uses a timeout and keeps postponing
6249 		 * it, we need to bound somehow the time packets are kept in
6250 		 * the GRO layer
6251 		 */
6252 		napi_gro_flush(n, !!timeout);
6253 		if (timeout)
6254 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6255 				      HRTIMER_MODE_REL_PINNED);
6256 	}
6257 
6258 	gro_normal_list(n);
6259 
6260 	if (unlikely(!list_empty(&n->poll_list))) {
6261 		/* If n->poll_list is not empty, we need to mask irqs */
6262 		local_irq_save(flags);
6263 		list_del_init(&n->poll_list);
6264 		local_irq_restore(flags);
6265 	}
6266 
6267 	do {
6268 		val = READ_ONCE(n->state);
6269 
6270 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6271 
6272 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6273 
6274 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6275 		 * because we will call napi->poll() one more time.
6276 		 * This C code was suggested by Alexander Duyck to help gcc.
6277 		 */
6278 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6279 						    NAPIF_STATE_SCHED;
6280 	} while (cmpxchg(&n->state, val, new) != val);
6281 
6282 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6283 		__napi_schedule(n);
6284 		return false;
6285 	}
6286 
6287 	return true;
6288 }
6289 EXPORT_SYMBOL(napi_complete_done);
6290 
6291 /* must be called under rcu_read_lock(), as we dont take a reference */
6292 static struct napi_struct *napi_by_id(unsigned int napi_id)
6293 {
6294 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6295 	struct napi_struct *napi;
6296 
6297 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6298 		if (napi->napi_id == napi_id)
6299 			return napi;
6300 
6301 	return NULL;
6302 }
6303 
6304 #if defined(CONFIG_NET_RX_BUSY_POLL)
6305 
6306 #define BUSY_POLL_BUDGET 8
6307 
6308 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6309 {
6310 	int rc;
6311 
6312 	/* Busy polling means there is a high chance device driver hard irq
6313 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6314 	 * set in napi_schedule_prep().
6315 	 * Since we are about to call napi->poll() once more, we can safely
6316 	 * clear NAPI_STATE_MISSED.
6317 	 *
6318 	 * Note: x86 could use a single "lock and ..." instruction
6319 	 * to perform these two clear_bit()
6320 	 */
6321 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6322 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6323 
6324 	local_bh_disable();
6325 
6326 	/* All we really want here is to re-enable device interrupts.
6327 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6328 	 */
6329 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6330 	/* We can't gro_normal_list() here, because napi->poll() might have
6331 	 * rearmed the napi (napi_complete_done()) in which case it could
6332 	 * already be running on another CPU.
6333 	 */
6334 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6335 	netpoll_poll_unlock(have_poll_lock);
6336 	if (rc == BUSY_POLL_BUDGET) {
6337 		/* As the whole budget was spent, we still own the napi so can
6338 		 * safely handle the rx_list.
6339 		 */
6340 		gro_normal_list(napi);
6341 		__napi_schedule(napi);
6342 	}
6343 	local_bh_enable();
6344 }
6345 
6346 void napi_busy_loop(unsigned int napi_id,
6347 		    bool (*loop_end)(void *, unsigned long),
6348 		    void *loop_end_arg)
6349 {
6350 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6351 	int (*napi_poll)(struct napi_struct *napi, int budget);
6352 	void *have_poll_lock = NULL;
6353 	struct napi_struct *napi;
6354 
6355 restart:
6356 	napi_poll = NULL;
6357 
6358 	rcu_read_lock();
6359 
6360 	napi = napi_by_id(napi_id);
6361 	if (!napi)
6362 		goto out;
6363 
6364 	preempt_disable();
6365 	for (;;) {
6366 		int work = 0;
6367 
6368 		local_bh_disable();
6369 		if (!napi_poll) {
6370 			unsigned long val = READ_ONCE(napi->state);
6371 
6372 			/* If multiple threads are competing for this napi,
6373 			 * we avoid dirtying napi->state as much as we can.
6374 			 */
6375 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6376 				   NAPIF_STATE_IN_BUSY_POLL))
6377 				goto count;
6378 			if (cmpxchg(&napi->state, val,
6379 				    val | NAPIF_STATE_IN_BUSY_POLL |
6380 					  NAPIF_STATE_SCHED) != val)
6381 				goto count;
6382 			have_poll_lock = netpoll_poll_lock(napi);
6383 			napi_poll = napi->poll;
6384 		}
6385 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6386 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6387 		gro_normal_list(napi);
6388 count:
6389 		if (work > 0)
6390 			__NET_ADD_STATS(dev_net(napi->dev),
6391 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6392 		local_bh_enable();
6393 
6394 		if (!loop_end || loop_end(loop_end_arg, start_time))
6395 			break;
6396 
6397 		if (unlikely(need_resched())) {
6398 			if (napi_poll)
6399 				busy_poll_stop(napi, have_poll_lock);
6400 			preempt_enable();
6401 			rcu_read_unlock();
6402 			cond_resched();
6403 			if (loop_end(loop_end_arg, start_time))
6404 				return;
6405 			goto restart;
6406 		}
6407 		cpu_relax();
6408 	}
6409 	if (napi_poll)
6410 		busy_poll_stop(napi, have_poll_lock);
6411 	preempt_enable();
6412 out:
6413 	rcu_read_unlock();
6414 }
6415 EXPORT_SYMBOL(napi_busy_loop);
6416 
6417 #endif /* CONFIG_NET_RX_BUSY_POLL */
6418 
6419 static void napi_hash_add(struct napi_struct *napi)
6420 {
6421 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6422 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6423 		return;
6424 
6425 	spin_lock(&napi_hash_lock);
6426 
6427 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6428 	do {
6429 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6430 			napi_gen_id = MIN_NAPI_ID;
6431 	} while (napi_by_id(napi_gen_id));
6432 	napi->napi_id = napi_gen_id;
6433 
6434 	hlist_add_head_rcu(&napi->napi_hash_node,
6435 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6436 
6437 	spin_unlock(&napi_hash_lock);
6438 }
6439 
6440 /* Warning : caller is responsible to make sure rcu grace period
6441  * is respected before freeing memory containing @napi
6442  */
6443 bool napi_hash_del(struct napi_struct *napi)
6444 {
6445 	bool rcu_sync_needed = false;
6446 
6447 	spin_lock(&napi_hash_lock);
6448 
6449 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6450 		rcu_sync_needed = true;
6451 		hlist_del_rcu(&napi->napi_hash_node);
6452 	}
6453 	spin_unlock(&napi_hash_lock);
6454 	return rcu_sync_needed;
6455 }
6456 EXPORT_SYMBOL_GPL(napi_hash_del);
6457 
6458 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6459 {
6460 	struct napi_struct *napi;
6461 
6462 	napi = container_of(timer, struct napi_struct, timer);
6463 
6464 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6465 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6466 	 */
6467 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6468 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6469 		__napi_schedule_irqoff(napi);
6470 
6471 	return HRTIMER_NORESTART;
6472 }
6473 
6474 static void init_gro_hash(struct napi_struct *napi)
6475 {
6476 	int i;
6477 
6478 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6479 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6480 		napi->gro_hash[i].count = 0;
6481 	}
6482 	napi->gro_bitmask = 0;
6483 }
6484 
6485 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6486 		    int (*poll)(struct napi_struct *, int), int weight)
6487 {
6488 	INIT_LIST_HEAD(&napi->poll_list);
6489 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6490 	napi->timer.function = napi_watchdog;
6491 	init_gro_hash(napi);
6492 	napi->skb = NULL;
6493 	INIT_LIST_HEAD(&napi->rx_list);
6494 	napi->rx_count = 0;
6495 	napi->poll = poll;
6496 	if (weight > NAPI_POLL_WEIGHT)
6497 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6498 				weight);
6499 	napi->weight = weight;
6500 	list_add(&napi->dev_list, &dev->napi_list);
6501 	napi->dev = dev;
6502 #ifdef CONFIG_NETPOLL
6503 	napi->poll_owner = -1;
6504 #endif
6505 	set_bit(NAPI_STATE_SCHED, &napi->state);
6506 	napi_hash_add(napi);
6507 }
6508 EXPORT_SYMBOL(netif_napi_add);
6509 
6510 void napi_disable(struct napi_struct *n)
6511 {
6512 	might_sleep();
6513 	set_bit(NAPI_STATE_DISABLE, &n->state);
6514 
6515 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6516 		msleep(1);
6517 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6518 		msleep(1);
6519 
6520 	hrtimer_cancel(&n->timer);
6521 
6522 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6523 }
6524 EXPORT_SYMBOL(napi_disable);
6525 
6526 static void flush_gro_hash(struct napi_struct *napi)
6527 {
6528 	int i;
6529 
6530 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6531 		struct sk_buff *skb, *n;
6532 
6533 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6534 			kfree_skb(skb);
6535 		napi->gro_hash[i].count = 0;
6536 	}
6537 }
6538 
6539 /* Must be called in process context */
6540 void netif_napi_del(struct napi_struct *napi)
6541 {
6542 	might_sleep();
6543 	if (napi_hash_del(napi))
6544 		synchronize_net();
6545 	list_del_init(&napi->dev_list);
6546 	napi_free_frags(napi);
6547 
6548 	flush_gro_hash(napi);
6549 	napi->gro_bitmask = 0;
6550 }
6551 EXPORT_SYMBOL(netif_napi_del);
6552 
6553 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6554 {
6555 	void *have;
6556 	int work, weight;
6557 
6558 	list_del_init(&n->poll_list);
6559 
6560 	have = netpoll_poll_lock(n);
6561 
6562 	weight = n->weight;
6563 
6564 	/* This NAPI_STATE_SCHED test is for avoiding a race
6565 	 * with netpoll's poll_napi().  Only the entity which
6566 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6567 	 * actually make the ->poll() call.  Therefore we avoid
6568 	 * accidentally calling ->poll() when NAPI is not scheduled.
6569 	 */
6570 	work = 0;
6571 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6572 		work = n->poll(n, weight);
6573 		trace_napi_poll(n, work, weight);
6574 	}
6575 
6576 	WARN_ON_ONCE(work > weight);
6577 
6578 	if (likely(work < weight))
6579 		goto out_unlock;
6580 
6581 	/* Drivers must not modify the NAPI state if they
6582 	 * consume the entire weight.  In such cases this code
6583 	 * still "owns" the NAPI instance and therefore can
6584 	 * move the instance around on the list at-will.
6585 	 */
6586 	if (unlikely(napi_disable_pending(n))) {
6587 		napi_complete(n);
6588 		goto out_unlock;
6589 	}
6590 
6591 	if (n->gro_bitmask) {
6592 		/* flush too old packets
6593 		 * If HZ < 1000, flush all packets.
6594 		 */
6595 		napi_gro_flush(n, HZ >= 1000);
6596 	}
6597 
6598 	gro_normal_list(n);
6599 
6600 	/* Some drivers may have called napi_schedule
6601 	 * prior to exhausting their budget.
6602 	 */
6603 	if (unlikely(!list_empty(&n->poll_list))) {
6604 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6605 			     n->dev ? n->dev->name : "backlog");
6606 		goto out_unlock;
6607 	}
6608 
6609 	list_add_tail(&n->poll_list, repoll);
6610 
6611 out_unlock:
6612 	netpoll_poll_unlock(have);
6613 
6614 	return work;
6615 }
6616 
6617 static __latent_entropy void net_rx_action(struct softirq_action *h)
6618 {
6619 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6620 	unsigned long time_limit = jiffies +
6621 		usecs_to_jiffies(netdev_budget_usecs);
6622 	int budget = netdev_budget;
6623 	LIST_HEAD(list);
6624 	LIST_HEAD(repoll);
6625 
6626 	local_irq_disable();
6627 	list_splice_init(&sd->poll_list, &list);
6628 	local_irq_enable();
6629 
6630 	for (;;) {
6631 		struct napi_struct *n;
6632 
6633 		if (list_empty(&list)) {
6634 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6635 				goto out;
6636 			break;
6637 		}
6638 
6639 		n = list_first_entry(&list, struct napi_struct, poll_list);
6640 		budget -= napi_poll(n, &repoll);
6641 
6642 		/* If softirq window is exhausted then punt.
6643 		 * Allow this to run for 2 jiffies since which will allow
6644 		 * an average latency of 1.5/HZ.
6645 		 */
6646 		if (unlikely(budget <= 0 ||
6647 			     time_after_eq(jiffies, time_limit))) {
6648 			sd->time_squeeze++;
6649 			break;
6650 		}
6651 	}
6652 
6653 	local_irq_disable();
6654 
6655 	list_splice_tail_init(&sd->poll_list, &list);
6656 	list_splice_tail(&repoll, &list);
6657 	list_splice(&list, &sd->poll_list);
6658 	if (!list_empty(&sd->poll_list))
6659 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6660 
6661 	net_rps_action_and_irq_enable(sd);
6662 out:
6663 	__kfree_skb_flush();
6664 }
6665 
6666 struct netdev_adjacent {
6667 	struct net_device *dev;
6668 
6669 	/* upper master flag, there can only be one master device per list */
6670 	bool master;
6671 
6672 	/* lookup ignore flag */
6673 	bool ignore;
6674 
6675 	/* counter for the number of times this device was added to us */
6676 	u16 ref_nr;
6677 
6678 	/* private field for the users */
6679 	void *private;
6680 
6681 	struct list_head list;
6682 	struct rcu_head rcu;
6683 };
6684 
6685 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6686 						 struct list_head *adj_list)
6687 {
6688 	struct netdev_adjacent *adj;
6689 
6690 	list_for_each_entry(adj, adj_list, list) {
6691 		if (adj->dev == adj_dev)
6692 			return adj;
6693 	}
6694 	return NULL;
6695 }
6696 
6697 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6698 {
6699 	struct net_device *dev = data;
6700 
6701 	return upper_dev == dev;
6702 }
6703 
6704 /**
6705  * netdev_has_upper_dev - Check if device is linked to an upper device
6706  * @dev: device
6707  * @upper_dev: upper device to check
6708  *
6709  * Find out if a device is linked to specified upper device and return true
6710  * in case it is. Note that this checks only immediate upper device,
6711  * not through a complete stack of devices. The caller must hold the RTNL lock.
6712  */
6713 bool netdev_has_upper_dev(struct net_device *dev,
6714 			  struct net_device *upper_dev)
6715 {
6716 	ASSERT_RTNL();
6717 
6718 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6719 					     upper_dev);
6720 }
6721 EXPORT_SYMBOL(netdev_has_upper_dev);
6722 
6723 /**
6724  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6725  * @dev: device
6726  * @upper_dev: upper device to check
6727  *
6728  * Find out if a device is linked to specified upper device and return true
6729  * in case it is. Note that this checks the entire upper device chain.
6730  * The caller must hold rcu lock.
6731  */
6732 
6733 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6734 				  struct net_device *upper_dev)
6735 {
6736 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6737 					       upper_dev);
6738 }
6739 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6740 
6741 /**
6742  * netdev_has_any_upper_dev - Check if device is linked to some device
6743  * @dev: device
6744  *
6745  * Find out if a device is linked to an upper device and return true in case
6746  * it is. The caller must hold the RTNL lock.
6747  */
6748 bool netdev_has_any_upper_dev(struct net_device *dev)
6749 {
6750 	ASSERT_RTNL();
6751 
6752 	return !list_empty(&dev->adj_list.upper);
6753 }
6754 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6755 
6756 /**
6757  * netdev_master_upper_dev_get - Get master upper device
6758  * @dev: device
6759  *
6760  * Find a master upper device and return pointer to it or NULL in case
6761  * it's not there. The caller must hold the RTNL lock.
6762  */
6763 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6764 {
6765 	struct netdev_adjacent *upper;
6766 
6767 	ASSERT_RTNL();
6768 
6769 	if (list_empty(&dev->adj_list.upper))
6770 		return NULL;
6771 
6772 	upper = list_first_entry(&dev->adj_list.upper,
6773 				 struct netdev_adjacent, list);
6774 	if (likely(upper->master))
6775 		return upper->dev;
6776 	return NULL;
6777 }
6778 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6779 
6780 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6781 {
6782 	struct netdev_adjacent *upper;
6783 
6784 	ASSERT_RTNL();
6785 
6786 	if (list_empty(&dev->adj_list.upper))
6787 		return NULL;
6788 
6789 	upper = list_first_entry(&dev->adj_list.upper,
6790 				 struct netdev_adjacent, list);
6791 	if (likely(upper->master) && !upper->ignore)
6792 		return upper->dev;
6793 	return NULL;
6794 }
6795 
6796 /**
6797  * netdev_has_any_lower_dev - Check if device is linked to some device
6798  * @dev: device
6799  *
6800  * Find out if a device is linked to a lower device and return true in case
6801  * it is. The caller must hold the RTNL lock.
6802  */
6803 static bool netdev_has_any_lower_dev(struct net_device *dev)
6804 {
6805 	ASSERT_RTNL();
6806 
6807 	return !list_empty(&dev->adj_list.lower);
6808 }
6809 
6810 void *netdev_adjacent_get_private(struct list_head *adj_list)
6811 {
6812 	struct netdev_adjacent *adj;
6813 
6814 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6815 
6816 	return adj->private;
6817 }
6818 EXPORT_SYMBOL(netdev_adjacent_get_private);
6819 
6820 /**
6821  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6822  * @dev: device
6823  * @iter: list_head ** of the current position
6824  *
6825  * Gets the next device from the dev's upper list, starting from iter
6826  * position. The caller must hold RCU read lock.
6827  */
6828 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6829 						 struct list_head **iter)
6830 {
6831 	struct netdev_adjacent *upper;
6832 
6833 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6834 
6835 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6836 
6837 	if (&upper->list == &dev->adj_list.upper)
6838 		return NULL;
6839 
6840 	*iter = &upper->list;
6841 
6842 	return upper->dev;
6843 }
6844 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6845 
6846 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6847 						  struct list_head **iter,
6848 						  bool *ignore)
6849 {
6850 	struct netdev_adjacent *upper;
6851 
6852 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6853 
6854 	if (&upper->list == &dev->adj_list.upper)
6855 		return NULL;
6856 
6857 	*iter = &upper->list;
6858 	*ignore = upper->ignore;
6859 
6860 	return upper->dev;
6861 }
6862 
6863 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6864 						    struct list_head **iter)
6865 {
6866 	struct netdev_adjacent *upper;
6867 
6868 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6869 
6870 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6871 
6872 	if (&upper->list == &dev->adj_list.upper)
6873 		return NULL;
6874 
6875 	*iter = &upper->list;
6876 
6877 	return upper->dev;
6878 }
6879 
6880 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6881 				       int (*fn)(struct net_device *dev,
6882 						 void *data),
6883 				       void *data)
6884 {
6885 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6886 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6887 	int ret, cur = 0;
6888 	bool ignore;
6889 
6890 	now = dev;
6891 	iter = &dev->adj_list.upper;
6892 
6893 	while (1) {
6894 		if (now != dev) {
6895 			ret = fn(now, data);
6896 			if (ret)
6897 				return ret;
6898 		}
6899 
6900 		next = NULL;
6901 		while (1) {
6902 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6903 			if (!udev)
6904 				break;
6905 			if (ignore)
6906 				continue;
6907 
6908 			next = udev;
6909 			niter = &udev->adj_list.upper;
6910 			dev_stack[cur] = now;
6911 			iter_stack[cur++] = iter;
6912 			break;
6913 		}
6914 
6915 		if (!next) {
6916 			if (!cur)
6917 				return 0;
6918 			next = dev_stack[--cur];
6919 			niter = iter_stack[cur];
6920 		}
6921 
6922 		now = next;
6923 		iter = niter;
6924 	}
6925 
6926 	return 0;
6927 }
6928 
6929 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6930 				  int (*fn)(struct net_device *dev,
6931 					    void *data),
6932 				  void *data)
6933 {
6934 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6935 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6936 	int ret, cur = 0;
6937 
6938 	now = dev;
6939 	iter = &dev->adj_list.upper;
6940 
6941 	while (1) {
6942 		if (now != dev) {
6943 			ret = fn(now, data);
6944 			if (ret)
6945 				return ret;
6946 		}
6947 
6948 		next = NULL;
6949 		while (1) {
6950 			udev = netdev_next_upper_dev_rcu(now, &iter);
6951 			if (!udev)
6952 				break;
6953 
6954 			next = udev;
6955 			niter = &udev->adj_list.upper;
6956 			dev_stack[cur] = now;
6957 			iter_stack[cur++] = iter;
6958 			break;
6959 		}
6960 
6961 		if (!next) {
6962 			if (!cur)
6963 				return 0;
6964 			next = dev_stack[--cur];
6965 			niter = iter_stack[cur];
6966 		}
6967 
6968 		now = next;
6969 		iter = niter;
6970 	}
6971 
6972 	return 0;
6973 }
6974 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6975 
6976 static bool __netdev_has_upper_dev(struct net_device *dev,
6977 				   struct net_device *upper_dev)
6978 {
6979 	ASSERT_RTNL();
6980 
6981 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6982 					   upper_dev);
6983 }
6984 
6985 /**
6986  * netdev_lower_get_next_private - Get the next ->private from the
6987  *				   lower neighbour list
6988  * @dev: device
6989  * @iter: list_head ** of the current position
6990  *
6991  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6992  * list, starting from iter position. The caller must hold either hold the
6993  * RTNL lock or its own locking that guarantees that the neighbour lower
6994  * list will remain unchanged.
6995  */
6996 void *netdev_lower_get_next_private(struct net_device *dev,
6997 				    struct list_head **iter)
6998 {
6999 	struct netdev_adjacent *lower;
7000 
7001 	lower = list_entry(*iter, struct netdev_adjacent, list);
7002 
7003 	if (&lower->list == &dev->adj_list.lower)
7004 		return NULL;
7005 
7006 	*iter = lower->list.next;
7007 
7008 	return lower->private;
7009 }
7010 EXPORT_SYMBOL(netdev_lower_get_next_private);
7011 
7012 /**
7013  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7014  *				       lower neighbour list, RCU
7015  *				       variant
7016  * @dev: device
7017  * @iter: list_head ** of the current position
7018  *
7019  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7020  * list, starting from iter position. The caller must hold RCU read lock.
7021  */
7022 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7023 					struct list_head **iter)
7024 {
7025 	struct netdev_adjacent *lower;
7026 
7027 	WARN_ON_ONCE(!rcu_read_lock_held());
7028 
7029 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7030 
7031 	if (&lower->list == &dev->adj_list.lower)
7032 		return NULL;
7033 
7034 	*iter = &lower->list;
7035 
7036 	return lower->private;
7037 }
7038 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7039 
7040 /**
7041  * netdev_lower_get_next - Get the next device from the lower neighbour
7042  *                         list
7043  * @dev: device
7044  * @iter: list_head ** of the current position
7045  *
7046  * Gets the next netdev_adjacent from the dev's lower neighbour
7047  * list, starting from iter position. The caller must hold RTNL lock or
7048  * its own locking that guarantees that the neighbour lower
7049  * list will remain unchanged.
7050  */
7051 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7052 {
7053 	struct netdev_adjacent *lower;
7054 
7055 	lower = list_entry(*iter, struct netdev_adjacent, list);
7056 
7057 	if (&lower->list == &dev->adj_list.lower)
7058 		return NULL;
7059 
7060 	*iter = lower->list.next;
7061 
7062 	return lower->dev;
7063 }
7064 EXPORT_SYMBOL(netdev_lower_get_next);
7065 
7066 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7067 						struct list_head **iter)
7068 {
7069 	struct netdev_adjacent *lower;
7070 
7071 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7072 
7073 	if (&lower->list == &dev->adj_list.lower)
7074 		return NULL;
7075 
7076 	*iter = &lower->list;
7077 
7078 	return lower->dev;
7079 }
7080 
7081 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7082 						  struct list_head **iter,
7083 						  bool *ignore)
7084 {
7085 	struct netdev_adjacent *lower;
7086 
7087 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7088 
7089 	if (&lower->list == &dev->adj_list.lower)
7090 		return NULL;
7091 
7092 	*iter = &lower->list;
7093 	*ignore = lower->ignore;
7094 
7095 	return lower->dev;
7096 }
7097 
7098 int netdev_walk_all_lower_dev(struct net_device *dev,
7099 			      int (*fn)(struct net_device *dev,
7100 					void *data),
7101 			      void *data)
7102 {
7103 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7104 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7105 	int ret, cur = 0;
7106 
7107 	now = dev;
7108 	iter = &dev->adj_list.lower;
7109 
7110 	while (1) {
7111 		if (now != dev) {
7112 			ret = fn(now, data);
7113 			if (ret)
7114 				return ret;
7115 		}
7116 
7117 		next = NULL;
7118 		while (1) {
7119 			ldev = netdev_next_lower_dev(now, &iter);
7120 			if (!ldev)
7121 				break;
7122 
7123 			next = ldev;
7124 			niter = &ldev->adj_list.lower;
7125 			dev_stack[cur] = now;
7126 			iter_stack[cur++] = iter;
7127 			break;
7128 		}
7129 
7130 		if (!next) {
7131 			if (!cur)
7132 				return 0;
7133 			next = dev_stack[--cur];
7134 			niter = iter_stack[cur];
7135 		}
7136 
7137 		now = next;
7138 		iter = niter;
7139 	}
7140 
7141 	return 0;
7142 }
7143 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7144 
7145 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7146 				       int (*fn)(struct net_device *dev,
7147 						 void *data),
7148 				       void *data)
7149 {
7150 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7151 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7152 	int ret, cur = 0;
7153 	bool ignore;
7154 
7155 	now = dev;
7156 	iter = &dev->adj_list.lower;
7157 
7158 	while (1) {
7159 		if (now != dev) {
7160 			ret = fn(now, data);
7161 			if (ret)
7162 				return ret;
7163 		}
7164 
7165 		next = NULL;
7166 		while (1) {
7167 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7168 			if (!ldev)
7169 				break;
7170 			if (ignore)
7171 				continue;
7172 
7173 			next = ldev;
7174 			niter = &ldev->adj_list.lower;
7175 			dev_stack[cur] = now;
7176 			iter_stack[cur++] = iter;
7177 			break;
7178 		}
7179 
7180 		if (!next) {
7181 			if (!cur)
7182 				return 0;
7183 			next = dev_stack[--cur];
7184 			niter = iter_stack[cur];
7185 		}
7186 
7187 		now = next;
7188 		iter = niter;
7189 	}
7190 
7191 	return 0;
7192 }
7193 
7194 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7195 					     struct list_head **iter)
7196 {
7197 	struct netdev_adjacent *lower;
7198 
7199 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7200 	if (&lower->list == &dev->adj_list.lower)
7201 		return NULL;
7202 
7203 	*iter = &lower->list;
7204 
7205 	return lower->dev;
7206 }
7207 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7208 
7209 static u8 __netdev_upper_depth(struct net_device *dev)
7210 {
7211 	struct net_device *udev;
7212 	struct list_head *iter;
7213 	u8 max_depth = 0;
7214 	bool ignore;
7215 
7216 	for (iter = &dev->adj_list.upper,
7217 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7218 	     udev;
7219 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7220 		if (ignore)
7221 			continue;
7222 		if (max_depth < udev->upper_level)
7223 			max_depth = udev->upper_level;
7224 	}
7225 
7226 	return max_depth;
7227 }
7228 
7229 static u8 __netdev_lower_depth(struct net_device *dev)
7230 {
7231 	struct net_device *ldev;
7232 	struct list_head *iter;
7233 	u8 max_depth = 0;
7234 	bool ignore;
7235 
7236 	for (iter = &dev->adj_list.lower,
7237 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7238 	     ldev;
7239 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7240 		if (ignore)
7241 			continue;
7242 		if (max_depth < ldev->lower_level)
7243 			max_depth = ldev->lower_level;
7244 	}
7245 
7246 	return max_depth;
7247 }
7248 
7249 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7250 {
7251 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7252 	return 0;
7253 }
7254 
7255 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7256 {
7257 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7258 	return 0;
7259 }
7260 
7261 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7262 				  int (*fn)(struct net_device *dev,
7263 					    void *data),
7264 				  void *data)
7265 {
7266 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7267 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7268 	int ret, cur = 0;
7269 
7270 	now = dev;
7271 	iter = &dev->adj_list.lower;
7272 
7273 	while (1) {
7274 		if (now != dev) {
7275 			ret = fn(now, data);
7276 			if (ret)
7277 				return ret;
7278 		}
7279 
7280 		next = NULL;
7281 		while (1) {
7282 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7283 			if (!ldev)
7284 				break;
7285 
7286 			next = ldev;
7287 			niter = &ldev->adj_list.lower;
7288 			dev_stack[cur] = now;
7289 			iter_stack[cur++] = iter;
7290 			break;
7291 		}
7292 
7293 		if (!next) {
7294 			if (!cur)
7295 				return 0;
7296 			next = dev_stack[--cur];
7297 			niter = iter_stack[cur];
7298 		}
7299 
7300 		now = next;
7301 		iter = niter;
7302 	}
7303 
7304 	return 0;
7305 }
7306 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7307 
7308 /**
7309  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7310  *				       lower neighbour list, RCU
7311  *				       variant
7312  * @dev: device
7313  *
7314  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7315  * list. The caller must hold RCU read lock.
7316  */
7317 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7318 {
7319 	struct netdev_adjacent *lower;
7320 
7321 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7322 			struct netdev_adjacent, list);
7323 	if (lower)
7324 		return lower->private;
7325 	return NULL;
7326 }
7327 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7328 
7329 /**
7330  * netdev_master_upper_dev_get_rcu - Get master upper device
7331  * @dev: device
7332  *
7333  * Find a master upper device and return pointer to it or NULL in case
7334  * it's not there. The caller must hold the RCU read lock.
7335  */
7336 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7337 {
7338 	struct netdev_adjacent *upper;
7339 
7340 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7341 				       struct netdev_adjacent, list);
7342 	if (upper && likely(upper->master))
7343 		return upper->dev;
7344 	return NULL;
7345 }
7346 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7347 
7348 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7349 			      struct net_device *adj_dev,
7350 			      struct list_head *dev_list)
7351 {
7352 	char linkname[IFNAMSIZ+7];
7353 
7354 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7355 		"upper_%s" : "lower_%s", adj_dev->name);
7356 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7357 				 linkname);
7358 }
7359 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7360 			       char *name,
7361 			       struct list_head *dev_list)
7362 {
7363 	char linkname[IFNAMSIZ+7];
7364 
7365 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7366 		"upper_%s" : "lower_%s", name);
7367 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7368 }
7369 
7370 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7371 						 struct net_device *adj_dev,
7372 						 struct list_head *dev_list)
7373 {
7374 	return (dev_list == &dev->adj_list.upper ||
7375 		dev_list == &dev->adj_list.lower) &&
7376 		net_eq(dev_net(dev), dev_net(adj_dev));
7377 }
7378 
7379 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7380 					struct net_device *adj_dev,
7381 					struct list_head *dev_list,
7382 					void *private, bool master)
7383 {
7384 	struct netdev_adjacent *adj;
7385 	int ret;
7386 
7387 	adj = __netdev_find_adj(adj_dev, dev_list);
7388 
7389 	if (adj) {
7390 		adj->ref_nr += 1;
7391 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7392 			 dev->name, adj_dev->name, adj->ref_nr);
7393 
7394 		return 0;
7395 	}
7396 
7397 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7398 	if (!adj)
7399 		return -ENOMEM;
7400 
7401 	adj->dev = adj_dev;
7402 	adj->master = master;
7403 	adj->ref_nr = 1;
7404 	adj->private = private;
7405 	adj->ignore = false;
7406 	dev_hold(adj_dev);
7407 
7408 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7409 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7410 
7411 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7412 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7413 		if (ret)
7414 			goto free_adj;
7415 	}
7416 
7417 	/* Ensure that master link is always the first item in list. */
7418 	if (master) {
7419 		ret = sysfs_create_link(&(dev->dev.kobj),
7420 					&(adj_dev->dev.kobj), "master");
7421 		if (ret)
7422 			goto remove_symlinks;
7423 
7424 		list_add_rcu(&adj->list, dev_list);
7425 	} else {
7426 		list_add_tail_rcu(&adj->list, dev_list);
7427 	}
7428 
7429 	return 0;
7430 
7431 remove_symlinks:
7432 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7433 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7434 free_adj:
7435 	kfree(adj);
7436 	dev_put(adj_dev);
7437 
7438 	return ret;
7439 }
7440 
7441 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7442 					 struct net_device *adj_dev,
7443 					 u16 ref_nr,
7444 					 struct list_head *dev_list)
7445 {
7446 	struct netdev_adjacent *adj;
7447 
7448 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7449 		 dev->name, adj_dev->name, ref_nr);
7450 
7451 	adj = __netdev_find_adj(adj_dev, dev_list);
7452 
7453 	if (!adj) {
7454 		pr_err("Adjacency does not exist for device %s from %s\n",
7455 		       dev->name, adj_dev->name);
7456 		WARN_ON(1);
7457 		return;
7458 	}
7459 
7460 	if (adj->ref_nr > ref_nr) {
7461 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7462 			 dev->name, adj_dev->name, ref_nr,
7463 			 adj->ref_nr - ref_nr);
7464 		adj->ref_nr -= ref_nr;
7465 		return;
7466 	}
7467 
7468 	if (adj->master)
7469 		sysfs_remove_link(&(dev->dev.kobj), "master");
7470 
7471 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7472 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7473 
7474 	list_del_rcu(&adj->list);
7475 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7476 		 adj_dev->name, dev->name, adj_dev->name);
7477 	dev_put(adj_dev);
7478 	kfree_rcu(adj, rcu);
7479 }
7480 
7481 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7482 					    struct net_device *upper_dev,
7483 					    struct list_head *up_list,
7484 					    struct list_head *down_list,
7485 					    void *private, bool master)
7486 {
7487 	int ret;
7488 
7489 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7490 					   private, master);
7491 	if (ret)
7492 		return ret;
7493 
7494 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7495 					   private, false);
7496 	if (ret) {
7497 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7498 		return ret;
7499 	}
7500 
7501 	return 0;
7502 }
7503 
7504 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7505 					       struct net_device *upper_dev,
7506 					       u16 ref_nr,
7507 					       struct list_head *up_list,
7508 					       struct list_head *down_list)
7509 {
7510 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7511 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7512 }
7513 
7514 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7515 						struct net_device *upper_dev,
7516 						void *private, bool master)
7517 {
7518 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7519 						&dev->adj_list.upper,
7520 						&upper_dev->adj_list.lower,
7521 						private, master);
7522 }
7523 
7524 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7525 						   struct net_device *upper_dev)
7526 {
7527 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7528 					   &dev->adj_list.upper,
7529 					   &upper_dev->adj_list.lower);
7530 }
7531 
7532 static int __netdev_upper_dev_link(struct net_device *dev,
7533 				   struct net_device *upper_dev, bool master,
7534 				   void *upper_priv, void *upper_info,
7535 				   struct netlink_ext_ack *extack)
7536 {
7537 	struct netdev_notifier_changeupper_info changeupper_info = {
7538 		.info = {
7539 			.dev = dev,
7540 			.extack = extack,
7541 		},
7542 		.upper_dev = upper_dev,
7543 		.master = master,
7544 		.linking = true,
7545 		.upper_info = upper_info,
7546 	};
7547 	struct net_device *master_dev;
7548 	int ret = 0;
7549 
7550 	ASSERT_RTNL();
7551 
7552 	if (dev == upper_dev)
7553 		return -EBUSY;
7554 
7555 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7556 	if (__netdev_has_upper_dev(upper_dev, dev))
7557 		return -EBUSY;
7558 
7559 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7560 		return -EMLINK;
7561 
7562 	if (!master) {
7563 		if (__netdev_has_upper_dev(dev, upper_dev))
7564 			return -EEXIST;
7565 	} else {
7566 		master_dev = __netdev_master_upper_dev_get(dev);
7567 		if (master_dev)
7568 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7569 	}
7570 
7571 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7572 					    &changeupper_info.info);
7573 	ret = notifier_to_errno(ret);
7574 	if (ret)
7575 		return ret;
7576 
7577 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7578 						   master);
7579 	if (ret)
7580 		return ret;
7581 
7582 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7583 					    &changeupper_info.info);
7584 	ret = notifier_to_errno(ret);
7585 	if (ret)
7586 		goto rollback;
7587 
7588 	__netdev_update_upper_level(dev, NULL);
7589 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7590 
7591 	__netdev_update_lower_level(upper_dev, NULL);
7592 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7593 				    NULL);
7594 
7595 	return 0;
7596 
7597 rollback:
7598 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7599 
7600 	return ret;
7601 }
7602 
7603 /**
7604  * netdev_upper_dev_link - Add a link to the upper device
7605  * @dev: device
7606  * @upper_dev: new upper device
7607  * @extack: netlink extended ack
7608  *
7609  * Adds a link to device which is upper to this one. The caller must hold
7610  * the RTNL lock. On a failure a negative errno code is returned.
7611  * On success the reference counts are adjusted and the function
7612  * returns zero.
7613  */
7614 int netdev_upper_dev_link(struct net_device *dev,
7615 			  struct net_device *upper_dev,
7616 			  struct netlink_ext_ack *extack)
7617 {
7618 	return __netdev_upper_dev_link(dev, upper_dev, false,
7619 				       NULL, NULL, extack);
7620 }
7621 EXPORT_SYMBOL(netdev_upper_dev_link);
7622 
7623 /**
7624  * netdev_master_upper_dev_link - Add a master link to the upper device
7625  * @dev: device
7626  * @upper_dev: new upper device
7627  * @upper_priv: upper device private
7628  * @upper_info: upper info to be passed down via notifier
7629  * @extack: netlink extended ack
7630  *
7631  * Adds a link to device which is upper to this one. In this case, only
7632  * one master upper device can be linked, although other non-master devices
7633  * might be linked as well. The caller must hold the RTNL lock.
7634  * On a failure a negative errno code is returned. On success the reference
7635  * counts are adjusted and the function returns zero.
7636  */
7637 int netdev_master_upper_dev_link(struct net_device *dev,
7638 				 struct net_device *upper_dev,
7639 				 void *upper_priv, void *upper_info,
7640 				 struct netlink_ext_ack *extack)
7641 {
7642 	return __netdev_upper_dev_link(dev, upper_dev, true,
7643 				       upper_priv, upper_info, extack);
7644 }
7645 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7646 
7647 /**
7648  * netdev_upper_dev_unlink - Removes a link to upper device
7649  * @dev: device
7650  * @upper_dev: new upper device
7651  *
7652  * Removes a link to device which is upper to this one. The caller must hold
7653  * the RTNL lock.
7654  */
7655 void netdev_upper_dev_unlink(struct net_device *dev,
7656 			     struct net_device *upper_dev)
7657 {
7658 	struct netdev_notifier_changeupper_info changeupper_info = {
7659 		.info = {
7660 			.dev = dev,
7661 		},
7662 		.upper_dev = upper_dev,
7663 		.linking = false,
7664 	};
7665 
7666 	ASSERT_RTNL();
7667 
7668 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7669 
7670 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7671 				      &changeupper_info.info);
7672 
7673 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7674 
7675 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7676 				      &changeupper_info.info);
7677 
7678 	__netdev_update_upper_level(dev, NULL);
7679 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7680 
7681 	__netdev_update_lower_level(upper_dev, NULL);
7682 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7683 				    NULL);
7684 }
7685 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7686 
7687 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7688 				      struct net_device *lower_dev,
7689 				      bool val)
7690 {
7691 	struct netdev_adjacent *adj;
7692 
7693 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7694 	if (adj)
7695 		adj->ignore = val;
7696 
7697 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7698 	if (adj)
7699 		adj->ignore = val;
7700 }
7701 
7702 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7703 					struct net_device *lower_dev)
7704 {
7705 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7706 }
7707 
7708 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7709 				       struct net_device *lower_dev)
7710 {
7711 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7712 }
7713 
7714 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7715 				   struct net_device *new_dev,
7716 				   struct net_device *dev,
7717 				   struct netlink_ext_ack *extack)
7718 {
7719 	int err;
7720 
7721 	if (!new_dev)
7722 		return 0;
7723 
7724 	if (old_dev && new_dev != old_dev)
7725 		netdev_adjacent_dev_disable(dev, old_dev);
7726 
7727 	err = netdev_upper_dev_link(new_dev, dev, extack);
7728 	if (err) {
7729 		if (old_dev && new_dev != old_dev)
7730 			netdev_adjacent_dev_enable(dev, old_dev);
7731 		return err;
7732 	}
7733 
7734 	return 0;
7735 }
7736 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7737 
7738 void netdev_adjacent_change_commit(struct net_device *old_dev,
7739 				   struct net_device *new_dev,
7740 				   struct net_device *dev)
7741 {
7742 	if (!new_dev || !old_dev)
7743 		return;
7744 
7745 	if (new_dev == old_dev)
7746 		return;
7747 
7748 	netdev_adjacent_dev_enable(dev, old_dev);
7749 	netdev_upper_dev_unlink(old_dev, dev);
7750 }
7751 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7752 
7753 void netdev_adjacent_change_abort(struct net_device *old_dev,
7754 				  struct net_device *new_dev,
7755 				  struct net_device *dev)
7756 {
7757 	if (!new_dev)
7758 		return;
7759 
7760 	if (old_dev && new_dev != old_dev)
7761 		netdev_adjacent_dev_enable(dev, old_dev);
7762 
7763 	netdev_upper_dev_unlink(new_dev, dev);
7764 }
7765 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7766 
7767 /**
7768  * netdev_bonding_info_change - Dispatch event about slave change
7769  * @dev: device
7770  * @bonding_info: info to dispatch
7771  *
7772  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7773  * The caller must hold the RTNL lock.
7774  */
7775 void netdev_bonding_info_change(struct net_device *dev,
7776 				struct netdev_bonding_info *bonding_info)
7777 {
7778 	struct netdev_notifier_bonding_info info = {
7779 		.info.dev = dev,
7780 	};
7781 
7782 	memcpy(&info.bonding_info, bonding_info,
7783 	       sizeof(struct netdev_bonding_info));
7784 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7785 				      &info.info);
7786 }
7787 EXPORT_SYMBOL(netdev_bonding_info_change);
7788 
7789 static void netdev_adjacent_add_links(struct net_device *dev)
7790 {
7791 	struct netdev_adjacent *iter;
7792 
7793 	struct net *net = dev_net(dev);
7794 
7795 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7796 		if (!net_eq(net, dev_net(iter->dev)))
7797 			continue;
7798 		netdev_adjacent_sysfs_add(iter->dev, dev,
7799 					  &iter->dev->adj_list.lower);
7800 		netdev_adjacent_sysfs_add(dev, iter->dev,
7801 					  &dev->adj_list.upper);
7802 	}
7803 
7804 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7805 		if (!net_eq(net, dev_net(iter->dev)))
7806 			continue;
7807 		netdev_adjacent_sysfs_add(iter->dev, dev,
7808 					  &iter->dev->adj_list.upper);
7809 		netdev_adjacent_sysfs_add(dev, iter->dev,
7810 					  &dev->adj_list.lower);
7811 	}
7812 }
7813 
7814 static void netdev_adjacent_del_links(struct net_device *dev)
7815 {
7816 	struct netdev_adjacent *iter;
7817 
7818 	struct net *net = dev_net(dev);
7819 
7820 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7821 		if (!net_eq(net, dev_net(iter->dev)))
7822 			continue;
7823 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7824 					  &iter->dev->adj_list.lower);
7825 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7826 					  &dev->adj_list.upper);
7827 	}
7828 
7829 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7830 		if (!net_eq(net, dev_net(iter->dev)))
7831 			continue;
7832 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7833 					  &iter->dev->adj_list.upper);
7834 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7835 					  &dev->adj_list.lower);
7836 	}
7837 }
7838 
7839 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7840 {
7841 	struct netdev_adjacent *iter;
7842 
7843 	struct net *net = dev_net(dev);
7844 
7845 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7846 		if (!net_eq(net, dev_net(iter->dev)))
7847 			continue;
7848 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7849 					  &iter->dev->adj_list.lower);
7850 		netdev_adjacent_sysfs_add(iter->dev, dev,
7851 					  &iter->dev->adj_list.lower);
7852 	}
7853 
7854 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7855 		if (!net_eq(net, dev_net(iter->dev)))
7856 			continue;
7857 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7858 					  &iter->dev->adj_list.upper);
7859 		netdev_adjacent_sysfs_add(iter->dev, dev,
7860 					  &iter->dev->adj_list.upper);
7861 	}
7862 }
7863 
7864 void *netdev_lower_dev_get_private(struct net_device *dev,
7865 				   struct net_device *lower_dev)
7866 {
7867 	struct netdev_adjacent *lower;
7868 
7869 	if (!lower_dev)
7870 		return NULL;
7871 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7872 	if (!lower)
7873 		return NULL;
7874 
7875 	return lower->private;
7876 }
7877 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7878 
7879 
7880 /**
7881  * netdev_lower_change - Dispatch event about lower device state change
7882  * @lower_dev: device
7883  * @lower_state_info: state to dispatch
7884  *
7885  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7886  * The caller must hold the RTNL lock.
7887  */
7888 void netdev_lower_state_changed(struct net_device *lower_dev,
7889 				void *lower_state_info)
7890 {
7891 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7892 		.info.dev = lower_dev,
7893 	};
7894 
7895 	ASSERT_RTNL();
7896 	changelowerstate_info.lower_state_info = lower_state_info;
7897 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7898 				      &changelowerstate_info.info);
7899 }
7900 EXPORT_SYMBOL(netdev_lower_state_changed);
7901 
7902 static void dev_change_rx_flags(struct net_device *dev, int flags)
7903 {
7904 	const struct net_device_ops *ops = dev->netdev_ops;
7905 
7906 	if (ops->ndo_change_rx_flags)
7907 		ops->ndo_change_rx_flags(dev, flags);
7908 }
7909 
7910 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7911 {
7912 	unsigned int old_flags = dev->flags;
7913 	kuid_t uid;
7914 	kgid_t gid;
7915 
7916 	ASSERT_RTNL();
7917 
7918 	dev->flags |= IFF_PROMISC;
7919 	dev->promiscuity += inc;
7920 	if (dev->promiscuity == 0) {
7921 		/*
7922 		 * Avoid overflow.
7923 		 * If inc causes overflow, untouch promisc and return error.
7924 		 */
7925 		if (inc < 0)
7926 			dev->flags &= ~IFF_PROMISC;
7927 		else {
7928 			dev->promiscuity -= inc;
7929 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7930 				dev->name);
7931 			return -EOVERFLOW;
7932 		}
7933 	}
7934 	if (dev->flags != old_flags) {
7935 		pr_info("device %s %s promiscuous mode\n",
7936 			dev->name,
7937 			dev->flags & IFF_PROMISC ? "entered" : "left");
7938 		if (audit_enabled) {
7939 			current_uid_gid(&uid, &gid);
7940 			audit_log(audit_context(), GFP_ATOMIC,
7941 				  AUDIT_ANOM_PROMISCUOUS,
7942 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7943 				  dev->name, (dev->flags & IFF_PROMISC),
7944 				  (old_flags & IFF_PROMISC),
7945 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7946 				  from_kuid(&init_user_ns, uid),
7947 				  from_kgid(&init_user_ns, gid),
7948 				  audit_get_sessionid(current));
7949 		}
7950 
7951 		dev_change_rx_flags(dev, IFF_PROMISC);
7952 	}
7953 	if (notify)
7954 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7955 	return 0;
7956 }
7957 
7958 /**
7959  *	dev_set_promiscuity	- update promiscuity count on a device
7960  *	@dev: device
7961  *	@inc: modifier
7962  *
7963  *	Add or remove promiscuity from a device. While the count in the device
7964  *	remains above zero the interface remains promiscuous. Once it hits zero
7965  *	the device reverts back to normal filtering operation. A negative inc
7966  *	value is used to drop promiscuity on the device.
7967  *	Return 0 if successful or a negative errno code on error.
7968  */
7969 int dev_set_promiscuity(struct net_device *dev, int inc)
7970 {
7971 	unsigned int old_flags = dev->flags;
7972 	int err;
7973 
7974 	err = __dev_set_promiscuity(dev, inc, true);
7975 	if (err < 0)
7976 		return err;
7977 	if (dev->flags != old_flags)
7978 		dev_set_rx_mode(dev);
7979 	return err;
7980 }
7981 EXPORT_SYMBOL(dev_set_promiscuity);
7982 
7983 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7984 {
7985 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7986 
7987 	ASSERT_RTNL();
7988 
7989 	dev->flags |= IFF_ALLMULTI;
7990 	dev->allmulti += inc;
7991 	if (dev->allmulti == 0) {
7992 		/*
7993 		 * Avoid overflow.
7994 		 * If inc causes overflow, untouch allmulti and return error.
7995 		 */
7996 		if (inc < 0)
7997 			dev->flags &= ~IFF_ALLMULTI;
7998 		else {
7999 			dev->allmulti -= inc;
8000 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8001 				dev->name);
8002 			return -EOVERFLOW;
8003 		}
8004 	}
8005 	if (dev->flags ^ old_flags) {
8006 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8007 		dev_set_rx_mode(dev);
8008 		if (notify)
8009 			__dev_notify_flags(dev, old_flags,
8010 					   dev->gflags ^ old_gflags);
8011 	}
8012 	return 0;
8013 }
8014 
8015 /**
8016  *	dev_set_allmulti	- update allmulti count on a device
8017  *	@dev: device
8018  *	@inc: modifier
8019  *
8020  *	Add or remove reception of all multicast frames to a device. While the
8021  *	count in the device remains above zero the interface remains listening
8022  *	to all interfaces. Once it hits zero the device reverts back to normal
8023  *	filtering operation. A negative @inc value is used to drop the counter
8024  *	when releasing a resource needing all multicasts.
8025  *	Return 0 if successful or a negative errno code on error.
8026  */
8027 
8028 int dev_set_allmulti(struct net_device *dev, int inc)
8029 {
8030 	return __dev_set_allmulti(dev, inc, true);
8031 }
8032 EXPORT_SYMBOL(dev_set_allmulti);
8033 
8034 /*
8035  *	Upload unicast and multicast address lists to device and
8036  *	configure RX filtering. When the device doesn't support unicast
8037  *	filtering it is put in promiscuous mode while unicast addresses
8038  *	are present.
8039  */
8040 void __dev_set_rx_mode(struct net_device *dev)
8041 {
8042 	const struct net_device_ops *ops = dev->netdev_ops;
8043 
8044 	/* dev_open will call this function so the list will stay sane. */
8045 	if (!(dev->flags&IFF_UP))
8046 		return;
8047 
8048 	if (!netif_device_present(dev))
8049 		return;
8050 
8051 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8052 		/* Unicast addresses changes may only happen under the rtnl,
8053 		 * therefore calling __dev_set_promiscuity here is safe.
8054 		 */
8055 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8056 			__dev_set_promiscuity(dev, 1, false);
8057 			dev->uc_promisc = true;
8058 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8059 			__dev_set_promiscuity(dev, -1, false);
8060 			dev->uc_promisc = false;
8061 		}
8062 	}
8063 
8064 	if (ops->ndo_set_rx_mode)
8065 		ops->ndo_set_rx_mode(dev);
8066 }
8067 
8068 void dev_set_rx_mode(struct net_device *dev)
8069 {
8070 	netif_addr_lock_bh(dev);
8071 	__dev_set_rx_mode(dev);
8072 	netif_addr_unlock_bh(dev);
8073 }
8074 
8075 /**
8076  *	dev_get_flags - get flags reported to userspace
8077  *	@dev: device
8078  *
8079  *	Get the combination of flag bits exported through APIs to userspace.
8080  */
8081 unsigned int dev_get_flags(const struct net_device *dev)
8082 {
8083 	unsigned int flags;
8084 
8085 	flags = (dev->flags & ~(IFF_PROMISC |
8086 				IFF_ALLMULTI |
8087 				IFF_RUNNING |
8088 				IFF_LOWER_UP |
8089 				IFF_DORMANT)) |
8090 		(dev->gflags & (IFF_PROMISC |
8091 				IFF_ALLMULTI));
8092 
8093 	if (netif_running(dev)) {
8094 		if (netif_oper_up(dev))
8095 			flags |= IFF_RUNNING;
8096 		if (netif_carrier_ok(dev))
8097 			flags |= IFF_LOWER_UP;
8098 		if (netif_dormant(dev))
8099 			flags |= IFF_DORMANT;
8100 	}
8101 
8102 	return flags;
8103 }
8104 EXPORT_SYMBOL(dev_get_flags);
8105 
8106 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8107 		       struct netlink_ext_ack *extack)
8108 {
8109 	unsigned int old_flags = dev->flags;
8110 	int ret;
8111 
8112 	ASSERT_RTNL();
8113 
8114 	/*
8115 	 *	Set the flags on our device.
8116 	 */
8117 
8118 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8119 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8120 			       IFF_AUTOMEDIA)) |
8121 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8122 				    IFF_ALLMULTI));
8123 
8124 	/*
8125 	 *	Load in the correct multicast list now the flags have changed.
8126 	 */
8127 
8128 	if ((old_flags ^ flags) & IFF_MULTICAST)
8129 		dev_change_rx_flags(dev, IFF_MULTICAST);
8130 
8131 	dev_set_rx_mode(dev);
8132 
8133 	/*
8134 	 *	Have we downed the interface. We handle IFF_UP ourselves
8135 	 *	according to user attempts to set it, rather than blindly
8136 	 *	setting it.
8137 	 */
8138 
8139 	ret = 0;
8140 	if ((old_flags ^ flags) & IFF_UP) {
8141 		if (old_flags & IFF_UP)
8142 			__dev_close(dev);
8143 		else
8144 			ret = __dev_open(dev, extack);
8145 	}
8146 
8147 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8148 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8149 		unsigned int old_flags = dev->flags;
8150 
8151 		dev->gflags ^= IFF_PROMISC;
8152 
8153 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8154 			if (dev->flags != old_flags)
8155 				dev_set_rx_mode(dev);
8156 	}
8157 
8158 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8159 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8160 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8161 	 */
8162 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8163 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8164 
8165 		dev->gflags ^= IFF_ALLMULTI;
8166 		__dev_set_allmulti(dev, inc, false);
8167 	}
8168 
8169 	return ret;
8170 }
8171 
8172 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8173 			unsigned int gchanges)
8174 {
8175 	unsigned int changes = dev->flags ^ old_flags;
8176 
8177 	if (gchanges)
8178 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8179 
8180 	if (changes & IFF_UP) {
8181 		if (dev->flags & IFF_UP)
8182 			call_netdevice_notifiers(NETDEV_UP, dev);
8183 		else
8184 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8185 	}
8186 
8187 	if (dev->flags & IFF_UP &&
8188 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8189 		struct netdev_notifier_change_info change_info = {
8190 			.info = {
8191 				.dev = dev,
8192 			},
8193 			.flags_changed = changes,
8194 		};
8195 
8196 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8197 	}
8198 }
8199 
8200 /**
8201  *	dev_change_flags - change device settings
8202  *	@dev: device
8203  *	@flags: device state flags
8204  *	@extack: netlink extended ack
8205  *
8206  *	Change settings on device based state flags. The flags are
8207  *	in the userspace exported format.
8208  */
8209 int dev_change_flags(struct net_device *dev, unsigned int flags,
8210 		     struct netlink_ext_ack *extack)
8211 {
8212 	int ret;
8213 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8214 
8215 	ret = __dev_change_flags(dev, flags, extack);
8216 	if (ret < 0)
8217 		return ret;
8218 
8219 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8220 	__dev_notify_flags(dev, old_flags, changes);
8221 	return ret;
8222 }
8223 EXPORT_SYMBOL(dev_change_flags);
8224 
8225 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8226 {
8227 	const struct net_device_ops *ops = dev->netdev_ops;
8228 
8229 	if (ops->ndo_change_mtu)
8230 		return ops->ndo_change_mtu(dev, new_mtu);
8231 
8232 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8233 	WRITE_ONCE(dev->mtu, new_mtu);
8234 	return 0;
8235 }
8236 EXPORT_SYMBOL(__dev_set_mtu);
8237 
8238 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8239 		     struct netlink_ext_ack *extack)
8240 {
8241 	/* MTU must be positive, and in range */
8242 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8243 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8244 		return -EINVAL;
8245 	}
8246 
8247 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8248 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8249 		return -EINVAL;
8250 	}
8251 	return 0;
8252 }
8253 
8254 /**
8255  *	dev_set_mtu_ext - Change maximum transfer unit
8256  *	@dev: device
8257  *	@new_mtu: new transfer unit
8258  *	@extack: netlink extended ack
8259  *
8260  *	Change the maximum transfer size of the network device.
8261  */
8262 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8263 		    struct netlink_ext_ack *extack)
8264 {
8265 	int err, orig_mtu;
8266 
8267 	if (new_mtu == dev->mtu)
8268 		return 0;
8269 
8270 	err = dev_validate_mtu(dev, new_mtu, extack);
8271 	if (err)
8272 		return err;
8273 
8274 	if (!netif_device_present(dev))
8275 		return -ENODEV;
8276 
8277 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8278 	err = notifier_to_errno(err);
8279 	if (err)
8280 		return err;
8281 
8282 	orig_mtu = dev->mtu;
8283 	err = __dev_set_mtu(dev, new_mtu);
8284 
8285 	if (!err) {
8286 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8287 						   orig_mtu);
8288 		err = notifier_to_errno(err);
8289 		if (err) {
8290 			/* setting mtu back and notifying everyone again,
8291 			 * so that they have a chance to revert changes.
8292 			 */
8293 			__dev_set_mtu(dev, orig_mtu);
8294 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8295 						     new_mtu);
8296 		}
8297 	}
8298 	return err;
8299 }
8300 
8301 int dev_set_mtu(struct net_device *dev, int new_mtu)
8302 {
8303 	struct netlink_ext_ack extack;
8304 	int err;
8305 
8306 	memset(&extack, 0, sizeof(extack));
8307 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8308 	if (err && extack._msg)
8309 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8310 	return err;
8311 }
8312 EXPORT_SYMBOL(dev_set_mtu);
8313 
8314 /**
8315  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8316  *	@dev: device
8317  *	@new_len: new tx queue length
8318  */
8319 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8320 {
8321 	unsigned int orig_len = dev->tx_queue_len;
8322 	int res;
8323 
8324 	if (new_len != (unsigned int)new_len)
8325 		return -ERANGE;
8326 
8327 	if (new_len != orig_len) {
8328 		dev->tx_queue_len = new_len;
8329 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8330 		res = notifier_to_errno(res);
8331 		if (res)
8332 			goto err_rollback;
8333 		res = dev_qdisc_change_tx_queue_len(dev);
8334 		if (res)
8335 			goto err_rollback;
8336 	}
8337 
8338 	return 0;
8339 
8340 err_rollback:
8341 	netdev_err(dev, "refused to change device tx_queue_len\n");
8342 	dev->tx_queue_len = orig_len;
8343 	return res;
8344 }
8345 
8346 /**
8347  *	dev_set_group - Change group this device belongs to
8348  *	@dev: device
8349  *	@new_group: group this device should belong to
8350  */
8351 void dev_set_group(struct net_device *dev, int new_group)
8352 {
8353 	dev->group = new_group;
8354 }
8355 EXPORT_SYMBOL(dev_set_group);
8356 
8357 /**
8358  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8359  *	@dev: device
8360  *	@addr: new address
8361  *	@extack: netlink extended ack
8362  */
8363 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8364 			      struct netlink_ext_ack *extack)
8365 {
8366 	struct netdev_notifier_pre_changeaddr_info info = {
8367 		.info.dev = dev,
8368 		.info.extack = extack,
8369 		.dev_addr = addr,
8370 	};
8371 	int rc;
8372 
8373 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8374 	return notifier_to_errno(rc);
8375 }
8376 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8377 
8378 /**
8379  *	dev_set_mac_address - Change Media Access Control Address
8380  *	@dev: device
8381  *	@sa: new address
8382  *	@extack: netlink extended ack
8383  *
8384  *	Change the hardware (MAC) address of the device
8385  */
8386 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8387 			struct netlink_ext_ack *extack)
8388 {
8389 	const struct net_device_ops *ops = dev->netdev_ops;
8390 	int err;
8391 
8392 	if (!ops->ndo_set_mac_address)
8393 		return -EOPNOTSUPP;
8394 	if (sa->sa_family != dev->type)
8395 		return -EINVAL;
8396 	if (!netif_device_present(dev))
8397 		return -ENODEV;
8398 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8399 	if (err)
8400 		return err;
8401 	err = ops->ndo_set_mac_address(dev, sa);
8402 	if (err)
8403 		return err;
8404 	dev->addr_assign_type = NET_ADDR_SET;
8405 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8406 	add_device_randomness(dev->dev_addr, dev->addr_len);
8407 	return 0;
8408 }
8409 EXPORT_SYMBOL(dev_set_mac_address);
8410 
8411 /**
8412  *	dev_change_carrier - Change device carrier
8413  *	@dev: device
8414  *	@new_carrier: new value
8415  *
8416  *	Change device carrier
8417  */
8418 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8419 {
8420 	const struct net_device_ops *ops = dev->netdev_ops;
8421 
8422 	if (!ops->ndo_change_carrier)
8423 		return -EOPNOTSUPP;
8424 	if (!netif_device_present(dev))
8425 		return -ENODEV;
8426 	return ops->ndo_change_carrier(dev, new_carrier);
8427 }
8428 EXPORT_SYMBOL(dev_change_carrier);
8429 
8430 /**
8431  *	dev_get_phys_port_id - Get device physical port ID
8432  *	@dev: device
8433  *	@ppid: port ID
8434  *
8435  *	Get device physical port ID
8436  */
8437 int dev_get_phys_port_id(struct net_device *dev,
8438 			 struct netdev_phys_item_id *ppid)
8439 {
8440 	const struct net_device_ops *ops = dev->netdev_ops;
8441 
8442 	if (!ops->ndo_get_phys_port_id)
8443 		return -EOPNOTSUPP;
8444 	return ops->ndo_get_phys_port_id(dev, ppid);
8445 }
8446 EXPORT_SYMBOL(dev_get_phys_port_id);
8447 
8448 /**
8449  *	dev_get_phys_port_name - Get device physical port name
8450  *	@dev: device
8451  *	@name: port name
8452  *	@len: limit of bytes to copy to name
8453  *
8454  *	Get device physical port name
8455  */
8456 int dev_get_phys_port_name(struct net_device *dev,
8457 			   char *name, size_t len)
8458 {
8459 	const struct net_device_ops *ops = dev->netdev_ops;
8460 	int err;
8461 
8462 	if (ops->ndo_get_phys_port_name) {
8463 		err = ops->ndo_get_phys_port_name(dev, name, len);
8464 		if (err != -EOPNOTSUPP)
8465 			return err;
8466 	}
8467 	return devlink_compat_phys_port_name_get(dev, name, len);
8468 }
8469 EXPORT_SYMBOL(dev_get_phys_port_name);
8470 
8471 /**
8472  *	dev_get_port_parent_id - Get the device's port parent identifier
8473  *	@dev: network device
8474  *	@ppid: pointer to a storage for the port's parent identifier
8475  *	@recurse: allow/disallow recursion to lower devices
8476  *
8477  *	Get the devices's port parent identifier
8478  */
8479 int dev_get_port_parent_id(struct net_device *dev,
8480 			   struct netdev_phys_item_id *ppid,
8481 			   bool recurse)
8482 {
8483 	const struct net_device_ops *ops = dev->netdev_ops;
8484 	struct netdev_phys_item_id first = { };
8485 	struct net_device *lower_dev;
8486 	struct list_head *iter;
8487 	int err;
8488 
8489 	if (ops->ndo_get_port_parent_id) {
8490 		err = ops->ndo_get_port_parent_id(dev, ppid);
8491 		if (err != -EOPNOTSUPP)
8492 			return err;
8493 	}
8494 
8495 	err = devlink_compat_switch_id_get(dev, ppid);
8496 	if (!err || err != -EOPNOTSUPP)
8497 		return err;
8498 
8499 	if (!recurse)
8500 		return -EOPNOTSUPP;
8501 
8502 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8503 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8504 		if (err)
8505 			break;
8506 		if (!first.id_len)
8507 			first = *ppid;
8508 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8509 			return -ENODATA;
8510 	}
8511 
8512 	return err;
8513 }
8514 EXPORT_SYMBOL(dev_get_port_parent_id);
8515 
8516 /**
8517  *	netdev_port_same_parent_id - Indicate if two network devices have
8518  *	the same port parent identifier
8519  *	@a: first network device
8520  *	@b: second network device
8521  */
8522 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8523 {
8524 	struct netdev_phys_item_id a_id = { };
8525 	struct netdev_phys_item_id b_id = { };
8526 
8527 	if (dev_get_port_parent_id(a, &a_id, true) ||
8528 	    dev_get_port_parent_id(b, &b_id, true))
8529 		return false;
8530 
8531 	return netdev_phys_item_id_same(&a_id, &b_id);
8532 }
8533 EXPORT_SYMBOL(netdev_port_same_parent_id);
8534 
8535 /**
8536  *	dev_change_proto_down - update protocol port state information
8537  *	@dev: device
8538  *	@proto_down: new value
8539  *
8540  *	This info can be used by switch drivers to set the phys state of the
8541  *	port.
8542  */
8543 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8544 {
8545 	const struct net_device_ops *ops = dev->netdev_ops;
8546 
8547 	if (!ops->ndo_change_proto_down)
8548 		return -EOPNOTSUPP;
8549 	if (!netif_device_present(dev))
8550 		return -ENODEV;
8551 	return ops->ndo_change_proto_down(dev, proto_down);
8552 }
8553 EXPORT_SYMBOL(dev_change_proto_down);
8554 
8555 /**
8556  *	dev_change_proto_down_generic - generic implementation for
8557  * 	ndo_change_proto_down that sets carrier according to
8558  * 	proto_down.
8559  *
8560  *	@dev: device
8561  *	@proto_down: new value
8562  */
8563 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8564 {
8565 	if (proto_down)
8566 		netif_carrier_off(dev);
8567 	else
8568 		netif_carrier_on(dev);
8569 	dev->proto_down = proto_down;
8570 	return 0;
8571 }
8572 EXPORT_SYMBOL(dev_change_proto_down_generic);
8573 
8574 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8575 		    enum bpf_netdev_command cmd)
8576 {
8577 	struct netdev_bpf xdp;
8578 
8579 	if (!bpf_op)
8580 		return 0;
8581 
8582 	memset(&xdp, 0, sizeof(xdp));
8583 	xdp.command = cmd;
8584 
8585 	/* Query must always succeed. */
8586 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8587 
8588 	return xdp.prog_id;
8589 }
8590 
8591 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8592 			   struct netlink_ext_ack *extack, u32 flags,
8593 			   struct bpf_prog *prog)
8594 {
8595 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8596 	struct bpf_prog *prev_prog = NULL;
8597 	struct netdev_bpf xdp;
8598 	int err;
8599 
8600 	if (non_hw) {
8601 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8602 							   XDP_QUERY_PROG));
8603 		if (IS_ERR(prev_prog))
8604 			prev_prog = NULL;
8605 	}
8606 
8607 	memset(&xdp, 0, sizeof(xdp));
8608 	if (flags & XDP_FLAGS_HW_MODE)
8609 		xdp.command = XDP_SETUP_PROG_HW;
8610 	else
8611 		xdp.command = XDP_SETUP_PROG;
8612 	xdp.extack = extack;
8613 	xdp.flags = flags;
8614 	xdp.prog = prog;
8615 
8616 	err = bpf_op(dev, &xdp);
8617 	if (!err && non_hw)
8618 		bpf_prog_change_xdp(prev_prog, prog);
8619 
8620 	if (prev_prog)
8621 		bpf_prog_put(prev_prog);
8622 
8623 	return err;
8624 }
8625 
8626 static void dev_xdp_uninstall(struct net_device *dev)
8627 {
8628 	struct netdev_bpf xdp;
8629 	bpf_op_t ndo_bpf;
8630 
8631 	/* Remove generic XDP */
8632 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8633 
8634 	/* Remove from the driver */
8635 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8636 	if (!ndo_bpf)
8637 		return;
8638 
8639 	memset(&xdp, 0, sizeof(xdp));
8640 	xdp.command = XDP_QUERY_PROG;
8641 	WARN_ON(ndo_bpf(dev, &xdp));
8642 	if (xdp.prog_id)
8643 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8644 					NULL));
8645 
8646 	/* Remove HW offload */
8647 	memset(&xdp, 0, sizeof(xdp));
8648 	xdp.command = XDP_QUERY_PROG_HW;
8649 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8650 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8651 					NULL));
8652 }
8653 
8654 /**
8655  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8656  *	@dev: device
8657  *	@extack: netlink extended ack
8658  *	@fd: new program fd or negative value to clear
8659  *	@expected_fd: old program fd that userspace expects to replace or clear
8660  *	@flags: xdp-related flags
8661  *
8662  *	Set or clear a bpf program for a device
8663  */
8664 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8665 		      int fd, int expected_fd, u32 flags)
8666 {
8667 	const struct net_device_ops *ops = dev->netdev_ops;
8668 	enum bpf_netdev_command query;
8669 	u32 prog_id, expected_id = 0;
8670 	bpf_op_t bpf_op, bpf_chk;
8671 	struct bpf_prog *prog;
8672 	bool offload;
8673 	int err;
8674 
8675 	ASSERT_RTNL();
8676 
8677 	offload = flags & XDP_FLAGS_HW_MODE;
8678 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8679 
8680 	bpf_op = bpf_chk = ops->ndo_bpf;
8681 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8682 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8683 		return -EOPNOTSUPP;
8684 	}
8685 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8686 		bpf_op = generic_xdp_install;
8687 	if (bpf_op == bpf_chk)
8688 		bpf_chk = generic_xdp_install;
8689 
8690 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8691 	if (flags & XDP_FLAGS_REPLACE) {
8692 		if (expected_fd >= 0) {
8693 			prog = bpf_prog_get_type_dev(expected_fd,
8694 						     BPF_PROG_TYPE_XDP,
8695 						     bpf_op == ops->ndo_bpf);
8696 			if (IS_ERR(prog))
8697 				return PTR_ERR(prog);
8698 			expected_id = prog->aux->id;
8699 			bpf_prog_put(prog);
8700 		}
8701 
8702 		if (prog_id != expected_id) {
8703 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8704 			return -EEXIST;
8705 		}
8706 	}
8707 	if (fd >= 0) {
8708 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8709 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8710 			return -EEXIST;
8711 		}
8712 
8713 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8714 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8715 			return -EBUSY;
8716 		}
8717 
8718 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8719 					     bpf_op == ops->ndo_bpf);
8720 		if (IS_ERR(prog))
8721 			return PTR_ERR(prog);
8722 
8723 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8724 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8725 			bpf_prog_put(prog);
8726 			return -EINVAL;
8727 		}
8728 
8729 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8730 		if (prog->aux->id && prog->aux->id == prog_id) {
8731 			bpf_prog_put(prog);
8732 			return 0;
8733 		}
8734 	} else {
8735 		if (!prog_id)
8736 			return 0;
8737 		prog = NULL;
8738 	}
8739 
8740 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8741 	if (err < 0 && prog)
8742 		bpf_prog_put(prog);
8743 
8744 	return err;
8745 }
8746 
8747 /**
8748  *	dev_new_index	-	allocate an ifindex
8749  *	@net: the applicable net namespace
8750  *
8751  *	Returns a suitable unique value for a new device interface
8752  *	number.  The caller must hold the rtnl semaphore or the
8753  *	dev_base_lock to be sure it remains unique.
8754  */
8755 static int dev_new_index(struct net *net)
8756 {
8757 	int ifindex = net->ifindex;
8758 
8759 	for (;;) {
8760 		if (++ifindex <= 0)
8761 			ifindex = 1;
8762 		if (!__dev_get_by_index(net, ifindex))
8763 			return net->ifindex = ifindex;
8764 	}
8765 }
8766 
8767 /* Delayed registration/unregisteration */
8768 static LIST_HEAD(net_todo_list);
8769 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8770 
8771 static void net_set_todo(struct net_device *dev)
8772 {
8773 	list_add_tail(&dev->todo_list, &net_todo_list);
8774 	dev_net(dev)->dev_unreg_count++;
8775 }
8776 
8777 static void rollback_registered_many(struct list_head *head)
8778 {
8779 	struct net_device *dev, *tmp;
8780 	LIST_HEAD(close_head);
8781 
8782 	BUG_ON(dev_boot_phase);
8783 	ASSERT_RTNL();
8784 
8785 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8786 		/* Some devices call without registering
8787 		 * for initialization unwind. Remove those
8788 		 * devices and proceed with the remaining.
8789 		 */
8790 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8791 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8792 				 dev->name, dev);
8793 
8794 			WARN_ON(1);
8795 			list_del(&dev->unreg_list);
8796 			continue;
8797 		}
8798 		dev->dismantle = true;
8799 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8800 	}
8801 
8802 	/* If device is running, close it first. */
8803 	list_for_each_entry(dev, head, unreg_list)
8804 		list_add_tail(&dev->close_list, &close_head);
8805 	dev_close_many(&close_head, true);
8806 
8807 	list_for_each_entry(dev, head, unreg_list) {
8808 		/* And unlink it from device chain. */
8809 		unlist_netdevice(dev);
8810 
8811 		dev->reg_state = NETREG_UNREGISTERING;
8812 	}
8813 	flush_all_backlogs();
8814 
8815 	synchronize_net();
8816 
8817 	list_for_each_entry(dev, head, unreg_list) {
8818 		struct sk_buff *skb = NULL;
8819 
8820 		/* Shutdown queueing discipline. */
8821 		dev_shutdown(dev);
8822 
8823 		dev_xdp_uninstall(dev);
8824 
8825 		/* Notify protocols, that we are about to destroy
8826 		 * this device. They should clean all the things.
8827 		 */
8828 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8829 
8830 		if (!dev->rtnl_link_ops ||
8831 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8832 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8833 						     GFP_KERNEL, NULL, 0);
8834 
8835 		/*
8836 		 *	Flush the unicast and multicast chains
8837 		 */
8838 		dev_uc_flush(dev);
8839 		dev_mc_flush(dev);
8840 
8841 		netdev_name_node_alt_flush(dev);
8842 		netdev_name_node_free(dev->name_node);
8843 
8844 		if (dev->netdev_ops->ndo_uninit)
8845 			dev->netdev_ops->ndo_uninit(dev);
8846 
8847 		if (skb)
8848 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8849 
8850 		/* Notifier chain MUST detach us all upper devices. */
8851 		WARN_ON(netdev_has_any_upper_dev(dev));
8852 		WARN_ON(netdev_has_any_lower_dev(dev));
8853 
8854 		/* Remove entries from kobject tree */
8855 		netdev_unregister_kobject(dev);
8856 #ifdef CONFIG_XPS
8857 		/* Remove XPS queueing entries */
8858 		netif_reset_xps_queues_gt(dev, 0);
8859 #endif
8860 	}
8861 
8862 	synchronize_net();
8863 
8864 	list_for_each_entry(dev, head, unreg_list)
8865 		dev_put(dev);
8866 }
8867 
8868 static void rollback_registered(struct net_device *dev)
8869 {
8870 	LIST_HEAD(single);
8871 
8872 	list_add(&dev->unreg_list, &single);
8873 	rollback_registered_many(&single);
8874 	list_del(&single);
8875 }
8876 
8877 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8878 	struct net_device *upper, netdev_features_t features)
8879 {
8880 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8881 	netdev_features_t feature;
8882 	int feature_bit;
8883 
8884 	for_each_netdev_feature(upper_disables, feature_bit) {
8885 		feature = __NETIF_F_BIT(feature_bit);
8886 		if (!(upper->wanted_features & feature)
8887 		    && (features & feature)) {
8888 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8889 				   &feature, upper->name);
8890 			features &= ~feature;
8891 		}
8892 	}
8893 
8894 	return features;
8895 }
8896 
8897 static void netdev_sync_lower_features(struct net_device *upper,
8898 	struct net_device *lower, netdev_features_t features)
8899 {
8900 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8901 	netdev_features_t feature;
8902 	int feature_bit;
8903 
8904 	for_each_netdev_feature(upper_disables, feature_bit) {
8905 		feature = __NETIF_F_BIT(feature_bit);
8906 		if (!(features & feature) && (lower->features & feature)) {
8907 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8908 				   &feature, lower->name);
8909 			lower->wanted_features &= ~feature;
8910 			netdev_update_features(lower);
8911 
8912 			if (unlikely(lower->features & feature))
8913 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8914 					    &feature, lower->name);
8915 		}
8916 	}
8917 }
8918 
8919 static netdev_features_t netdev_fix_features(struct net_device *dev,
8920 	netdev_features_t features)
8921 {
8922 	/* Fix illegal checksum combinations */
8923 	if ((features & NETIF_F_HW_CSUM) &&
8924 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8925 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8926 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8927 	}
8928 
8929 	/* TSO requires that SG is present as well. */
8930 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8931 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8932 		features &= ~NETIF_F_ALL_TSO;
8933 	}
8934 
8935 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8936 					!(features & NETIF_F_IP_CSUM)) {
8937 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8938 		features &= ~NETIF_F_TSO;
8939 		features &= ~NETIF_F_TSO_ECN;
8940 	}
8941 
8942 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8943 					 !(features & NETIF_F_IPV6_CSUM)) {
8944 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8945 		features &= ~NETIF_F_TSO6;
8946 	}
8947 
8948 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8949 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8950 		features &= ~NETIF_F_TSO_MANGLEID;
8951 
8952 	/* TSO ECN requires that TSO is present as well. */
8953 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8954 		features &= ~NETIF_F_TSO_ECN;
8955 
8956 	/* Software GSO depends on SG. */
8957 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8958 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8959 		features &= ~NETIF_F_GSO;
8960 	}
8961 
8962 	/* GSO partial features require GSO partial be set */
8963 	if ((features & dev->gso_partial_features) &&
8964 	    !(features & NETIF_F_GSO_PARTIAL)) {
8965 		netdev_dbg(dev,
8966 			   "Dropping partially supported GSO features since no GSO partial.\n");
8967 		features &= ~dev->gso_partial_features;
8968 	}
8969 
8970 	if (!(features & NETIF_F_RXCSUM)) {
8971 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8972 		 * successfully merged by hardware must also have the
8973 		 * checksum verified by hardware.  If the user does not
8974 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8975 		 */
8976 		if (features & NETIF_F_GRO_HW) {
8977 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8978 			features &= ~NETIF_F_GRO_HW;
8979 		}
8980 	}
8981 
8982 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8983 	if (features & NETIF_F_RXFCS) {
8984 		if (features & NETIF_F_LRO) {
8985 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8986 			features &= ~NETIF_F_LRO;
8987 		}
8988 
8989 		if (features & NETIF_F_GRO_HW) {
8990 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8991 			features &= ~NETIF_F_GRO_HW;
8992 		}
8993 	}
8994 
8995 	return features;
8996 }
8997 
8998 int __netdev_update_features(struct net_device *dev)
8999 {
9000 	struct net_device *upper, *lower;
9001 	netdev_features_t features;
9002 	struct list_head *iter;
9003 	int err = -1;
9004 
9005 	ASSERT_RTNL();
9006 
9007 	features = netdev_get_wanted_features(dev);
9008 
9009 	if (dev->netdev_ops->ndo_fix_features)
9010 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9011 
9012 	/* driver might be less strict about feature dependencies */
9013 	features = netdev_fix_features(dev, features);
9014 
9015 	/* some features can't be enabled if they're off an an upper device */
9016 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9017 		features = netdev_sync_upper_features(dev, upper, features);
9018 
9019 	if (dev->features == features)
9020 		goto sync_lower;
9021 
9022 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9023 		&dev->features, &features);
9024 
9025 	if (dev->netdev_ops->ndo_set_features)
9026 		err = dev->netdev_ops->ndo_set_features(dev, features);
9027 	else
9028 		err = 0;
9029 
9030 	if (unlikely(err < 0)) {
9031 		netdev_err(dev,
9032 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9033 			err, &features, &dev->features);
9034 		/* return non-0 since some features might have changed and
9035 		 * it's better to fire a spurious notification than miss it
9036 		 */
9037 		return -1;
9038 	}
9039 
9040 sync_lower:
9041 	/* some features must be disabled on lower devices when disabled
9042 	 * on an upper device (think: bonding master or bridge)
9043 	 */
9044 	netdev_for_each_lower_dev(dev, lower, iter)
9045 		netdev_sync_lower_features(dev, lower, features);
9046 
9047 	if (!err) {
9048 		netdev_features_t diff = features ^ dev->features;
9049 
9050 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9051 			/* udp_tunnel_{get,drop}_rx_info both need
9052 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9053 			 * device, or they won't do anything.
9054 			 * Thus we need to update dev->features
9055 			 * *before* calling udp_tunnel_get_rx_info,
9056 			 * but *after* calling udp_tunnel_drop_rx_info.
9057 			 */
9058 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9059 				dev->features = features;
9060 				udp_tunnel_get_rx_info(dev);
9061 			} else {
9062 				udp_tunnel_drop_rx_info(dev);
9063 			}
9064 		}
9065 
9066 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9067 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9068 				dev->features = features;
9069 				err |= vlan_get_rx_ctag_filter_info(dev);
9070 			} else {
9071 				vlan_drop_rx_ctag_filter_info(dev);
9072 			}
9073 		}
9074 
9075 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9076 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9077 				dev->features = features;
9078 				err |= vlan_get_rx_stag_filter_info(dev);
9079 			} else {
9080 				vlan_drop_rx_stag_filter_info(dev);
9081 			}
9082 		}
9083 
9084 		dev->features = features;
9085 	}
9086 
9087 	return err < 0 ? 0 : 1;
9088 }
9089 
9090 /**
9091  *	netdev_update_features - recalculate device features
9092  *	@dev: the device to check
9093  *
9094  *	Recalculate dev->features set and send notifications if it
9095  *	has changed. Should be called after driver or hardware dependent
9096  *	conditions might have changed that influence the features.
9097  */
9098 void netdev_update_features(struct net_device *dev)
9099 {
9100 	if (__netdev_update_features(dev))
9101 		netdev_features_change(dev);
9102 }
9103 EXPORT_SYMBOL(netdev_update_features);
9104 
9105 /**
9106  *	netdev_change_features - recalculate device features
9107  *	@dev: the device to check
9108  *
9109  *	Recalculate dev->features set and send notifications even
9110  *	if they have not changed. Should be called instead of
9111  *	netdev_update_features() if also dev->vlan_features might
9112  *	have changed to allow the changes to be propagated to stacked
9113  *	VLAN devices.
9114  */
9115 void netdev_change_features(struct net_device *dev)
9116 {
9117 	__netdev_update_features(dev);
9118 	netdev_features_change(dev);
9119 }
9120 EXPORT_SYMBOL(netdev_change_features);
9121 
9122 /**
9123  *	netif_stacked_transfer_operstate -	transfer operstate
9124  *	@rootdev: the root or lower level device to transfer state from
9125  *	@dev: the device to transfer operstate to
9126  *
9127  *	Transfer operational state from root to device. This is normally
9128  *	called when a stacking relationship exists between the root
9129  *	device and the device(a leaf device).
9130  */
9131 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9132 					struct net_device *dev)
9133 {
9134 	if (rootdev->operstate == IF_OPER_DORMANT)
9135 		netif_dormant_on(dev);
9136 	else
9137 		netif_dormant_off(dev);
9138 
9139 	if (netif_carrier_ok(rootdev))
9140 		netif_carrier_on(dev);
9141 	else
9142 		netif_carrier_off(dev);
9143 }
9144 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9145 
9146 static int netif_alloc_rx_queues(struct net_device *dev)
9147 {
9148 	unsigned int i, count = dev->num_rx_queues;
9149 	struct netdev_rx_queue *rx;
9150 	size_t sz = count * sizeof(*rx);
9151 	int err = 0;
9152 
9153 	BUG_ON(count < 1);
9154 
9155 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9156 	if (!rx)
9157 		return -ENOMEM;
9158 
9159 	dev->_rx = rx;
9160 
9161 	for (i = 0; i < count; i++) {
9162 		rx[i].dev = dev;
9163 
9164 		/* XDP RX-queue setup */
9165 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9166 		if (err < 0)
9167 			goto err_rxq_info;
9168 	}
9169 	return 0;
9170 
9171 err_rxq_info:
9172 	/* Rollback successful reg's and free other resources */
9173 	while (i--)
9174 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9175 	kvfree(dev->_rx);
9176 	dev->_rx = NULL;
9177 	return err;
9178 }
9179 
9180 static void netif_free_rx_queues(struct net_device *dev)
9181 {
9182 	unsigned int i, count = dev->num_rx_queues;
9183 
9184 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9185 	if (!dev->_rx)
9186 		return;
9187 
9188 	for (i = 0; i < count; i++)
9189 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9190 
9191 	kvfree(dev->_rx);
9192 }
9193 
9194 static void netdev_init_one_queue(struct net_device *dev,
9195 				  struct netdev_queue *queue, void *_unused)
9196 {
9197 	/* Initialize queue lock */
9198 	spin_lock_init(&queue->_xmit_lock);
9199 	lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9200 	queue->xmit_lock_owner = -1;
9201 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9202 	queue->dev = dev;
9203 #ifdef CONFIG_BQL
9204 	dql_init(&queue->dql, HZ);
9205 #endif
9206 }
9207 
9208 static void netif_free_tx_queues(struct net_device *dev)
9209 {
9210 	kvfree(dev->_tx);
9211 }
9212 
9213 static int netif_alloc_netdev_queues(struct net_device *dev)
9214 {
9215 	unsigned int count = dev->num_tx_queues;
9216 	struct netdev_queue *tx;
9217 	size_t sz = count * sizeof(*tx);
9218 
9219 	if (count < 1 || count > 0xffff)
9220 		return -EINVAL;
9221 
9222 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9223 	if (!tx)
9224 		return -ENOMEM;
9225 
9226 	dev->_tx = tx;
9227 
9228 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9229 	spin_lock_init(&dev->tx_global_lock);
9230 
9231 	return 0;
9232 }
9233 
9234 void netif_tx_stop_all_queues(struct net_device *dev)
9235 {
9236 	unsigned int i;
9237 
9238 	for (i = 0; i < dev->num_tx_queues; i++) {
9239 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9240 
9241 		netif_tx_stop_queue(txq);
9242 	}
9243 }
9244 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9245 
9246 static void netdev_register_lockdep_key(struct net_device *dev)
9247 {
9248 	lockdep_register_key(&dev->qdisc_tx_busylock_key);
9249 	lockdep_register_key(&dev->qdisc_running_key);
9250 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
9251 	lockdep_register_key(&dev->addr_list_lock_key);
9252 }
9253 
9254 static void netdev_unregister_lockdep_key(struct net_device *dev)
9255 {
9256 	lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9257 	lockdep_unregister_key(&dev->qdisc_running_key);
9258 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9259 	lockdep_unregister_key(&dev->addr_list_lock_key);
9260 }
9261 
9262 void netdev_update_lockdep_key(struct net_device *dev)
9263 {
9264 	lockdep_unregister_key(&dev->addr_list_lock_key);
9265 	lockdep_register_key(&dev->addr_list_lock_key);
9266 
9267 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9268 }
9269 EXPORT_SYMBOL(netdev_update_lockdep_key);
9270 
9271 /**
9272  *	register_netdevice	- register a network device
9273  *	@dev: device to register
9274  *
9275  *	Take a completed network device structure and add it to the kernel
9276  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9277  *	chain. 0 is returned on success. A negative errno code is returned
9278  *	on a failure to set up the device, or if the name is a duplicate.
9279  *
9280  *	Callers must hold the rtnl semaphore. You may want
9281  *	register_netdev() instead of this.
9282  *
9283  *	BUGS:
9284  *	The locking appears insufficient to guarantee two parallel registers
9285  *	will not get the same name.
9286  */
9287 
9288 int register_netdevice(struct net_device *dev)
9289 {
9290 	int ret;
9291 	struct net *net = dev_net(dev);
9292 
9293 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9294 		     NETDEV_FEATURE_COUNT);
9295 	BUG_ON(dev_boot_phase);
9296 	ASSERT_RTNL();
9297 
9298 	might_sleep();
9299 
9300 	/* When net_device's are persistent, this will be fatal. */
9301 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9302 	BUG_ON(!net);
9303 
9304 	ret = ethtool_check_ops(dev->ethtool_ops);
9305 	if (ret)
9306 		return ret;
9307 
9308 	spin_lock_init(&dev->addr_list_lock);
9309 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9310 
9311 	ret = dev_get_valid_name(net, dev, dev->name);
9312 	if (ret < 0)
9313 		goto out;
9314 
9315 	ret = -ENOMEM;
9316 	dev->name_node = netdev_name_node_head_alloc(dev);
9317 	if (!dev->name_node)
9318 		goto out;
9319 
9320 	/* Init, if this function is available */
9321 	if (dev->netdev_ops->ndo_init) {
9322 		ret = dev->netdev_ops->ndo_init(dev);
9323 		if (ret) {
9324 			if (ret > 0)
9325 				ret = -EIO;
9326 			goto err_free_name;
9327 		}
9328 	}
9329 
9330 	if (((dev->hw_features | dev->features) &
9331 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9332 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9333 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9334 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9335 		ret = -EINVAL;
9336 		goto err_uninit;
9337 	}
9338 
9339 	ret = -EBUSY;
9340 	if (!dev->ifindex)
9341 		dev->ifindex = dev_new_index(net);
9342 	else if (__dev_get_by_index(net, dev->ifindex))
9343 		goto err_uninit;
9344 
9345 	/* Transfer changeable features to wanted_features and enable
9346 	 * software offloads (GSO and GRO).
9347 	 */
9348 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9349 	dev->features |= NETIF_F_SOFT_FEATURES;
9350 
9351 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9352 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9353 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9354 	}
9355 
9356 	dev->wanted_features = dev->features & dev->hw_features;
9357 
9358 	if (!(dev->flags & IFF_LOOPBACK))
9359 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9360 
9361 	/* If IPv4 TCP segmentation offload is supported we should also
9362 	 * allow the device to enable segmenting the frame with the option
9363 	 * of ignoring a static IP ID value.  This doesn't enable the
9364 	 * feature itself but allows the user to enable it later.
9365 	 */
9366 	if (dev->hw_features & NETIF_F_TSO)
9367 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9368 	if (dev->vlan_features & NETIF_F_TSO)
9369 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9370 	if (dev->mpls_features & NETIF_F_TSO)
9371 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9372 	if (dev->hw_enc_features & NETIF_F_TSO)
9373 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9374 
9375 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9376 	 */
9377 	dev->vlan_features |= NETIF_F_HIGHDMA;
9378 
9379 	/* Make NETIF_F_SG inheritable to tunnel devices.
9380 	 */
9381 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9382 
9383 	/* Make NETIF_F_SG inheritable to MPLS.
9384 	 */
9385 	dev->mpls_features |= NETIF_F_SG;
9386 
9387 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9388 	ret = notifier_to_errno(ret);
9389 	if (ret)
9390 		goto err_uninit;
9391 
9392 	ret = netdev_register_kobject(dev);
9393 	if (ret) {
9394 		dev->reg_state = NETREG_UNREGISTERED;
9395 		goto err_uninit;
9396 	}
9397 	dev->reg_state = NETREG_REGISTERED;
9398 
9399 	__netdev_update_features(dev);
9400 
9401 	/*
9402 	 *	Default initial state at registry is that the
9403 	 *	device is present.
9404 	 */
9405 
9406 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9407 
9408 	linkwatch_init_dev(dev);
9409 
9410 	dev_init_scheduler(dev);
9411 	dev_hold(dev);
9412 	list_netdevice(dev);
9413 	add_device_randomness(dev->dev_addr, dev->addr_len);
9414 
9415 	/* If the device has permanent device address, driver should
9416 	 * set dev_addr and also addr_assign_type should be set to
9417 	 * NET_ADDR_PERM (default value).
9418 	 */
9419 	if (dev->addr_assign_type == NET_ADDR_PERM)
9420 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9421 
9422 	/* Notify protocols, that a new device appeared. */
9423 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9424 	ret = notifier_to_errno(ret);
9425 	if (ret) {
9426 		rollback_registered(dev);
9427 		rcu_barrier();
9428 
9429 		dev->reg_state = NETREG_UNREGISTERED;
9430 	}
9431 	/*
9432 	 *	Prevent userspace races by waiting until the network
9433 	 *	device is fully setup before sending notifications.
9434 	 */
9435 	if (!dev->rtnl_link_ops ||
9436 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9437 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9438 
9439 out:
9440 	return ret;
9441 
9442 err_uninit:
9443 	if (dev->netdev_ops->ndo_uninit)
9444 		dev->netdev_ops->ndo_uninit(dev);
9445 	if (dev->priv_destructor)
9446 		dev->priv_destructor(dev);
9447 err_free_name:
9448 	netdev_name_node_free(dev->name_node);
9449 	goto out;
9450 }
9451 EXPORT_SYMBOL(register_netdevice);
9452 
9453 /**
9454  *	init_dummy_netdev	- init a dummy network device for NAPI
9455  *	@dev: device to init
9456  *
9457  *	This takes a network device structure and initialize the minimum
9458  *	amount of fields so it can be used to schedule NAPI polls without
9459  *	registering a full blown interface. This is to be used by drivers
9460  *	that need to tie several hardware interfaces to a single NAPI
9461  *	poll scheduler due to HW limitations.
9462  */
9463 int init_dummy_netdev(struct net_device *dev)
9464 {
9465 	/* Clear everything. Note we don't initialize spinlocks
9466 	 * are they aren't supposed to be taken by any of the
9467 	 * NAPI code and this dummy netdev is supposed to be
9468 	 * only ever used for NAPI polls
9469 	 */
9470 	memset(dev, 0, sizeof(struct net_device));
9471 
9472 	/* make sure we BUG if trying to hit standard
9473 	 * register/unregister code path
9474 	 */
9475 	dev->reg_state = NETREG_DUMMY;
9476 
9477 	/* NAPI wants this */
9478 	INIT_LIST_HEAD(&dev->napi_list);
9479 
9480 	/* a dummy interface is started by default */
9481 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9482 	set_bit(__LINK_STATE_START, &dev->state);
9483 
9484 	/* napi_busy_loop stats accounting wants this */
9485 	dev_net_set(dev, &init_net);
9486 
9487 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9488 	 * because users of this 'device' dont need to change
9489 	 * its refcount.
9490 	 */
9491 
9492 	return 0;
9493 }
9494 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9495 
9496 
9497 /**
9498  *	register_netdev	- register a network device
9499  *	@dev: device to register
9500  *
9501  *	Take a completed network device structure and add it to the kernel
9502  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9503  *	chain. 0 is returned on success. A negative errno code is returned
9504  *	on a failure to set up the device, or if the name is a duplicate.
9505  *
9506  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9507  *	and expands the device name if you passed a format string to
9508  *	alloc_netdev.
9509  */
9510 int register_netdev(struct net_device *dev)
9511 {
9512 	int err;
9513 
9514 	if (rtnl_lock_killable())
9515 		return -EINTR;
9516 	err = register_netdevice(dev);
9517 	rtnl_unlock();
9518 	return err;
9519 }
9520 EXPORT_SYMBOL(register_netdev);
9521 
9522 int netdev_refcnt_read(const struct net_device *dev)
9523 {
9524 	int i, refcnt = 0;
9525 
9526 	for_each_possible_cpu(i)
9527 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9528 	return refcnt;
9529 }
9530 EXPORT_SYMBOL(netdev_refcnt_read);
9531 
9532 /**
9533  * netdev_wait_allrefs - wait until all references are gone.
9534  * @dev: target net_device
9535  *
9536  * This is called when unregistering network devices.
9537  *
9538  * Any protocol or device that holds a reference should register
9539  * for netdevice notification, and cleanup and put back the
9540  * reference if they receive an UNREGISTER event.
9541  * We can get stuck here if buggy protocols don't correctly
9542  * call dev_put.
9543  */
9544 static void netdev_wait_allrefs(struct net_device *dev)
9545 {
9546 	unsigned long rebroadcast_time, warning_time;
9547 	int refcnt;
9548 
9549 	linkwatch_forget_dev(dev);
9550 
9551 	rebroadcast_time = warning_time = jiffies;
9552 	refcnt = netdev_refcnt_read(dev);
9553 
9554 	while (refcnt != 0) {
9555 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9556 			rtnl_lock();
9557 
9558 			/* Rebroadcast unregister notification */
9559 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9560 
9561 			__rtnl_unlock();
9562 			rcu_barrier();
9563 			rtnl_lock();
9564 
9565 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9566 				     &dev->state)) {
9567 				/* We must not have linkwatch events
9568 				 * pending on unregister. If this
9569 				 * happens, we simply run the queue
9570 				 * unscheduled, resulting in a noop
9571 				 * for this device.
9572 				 */
9573 				linkwatch_run_queue();
9574 			}
9575 
9576 			__rtnl_unlock();
9577 
9578 			rebroadcast_time = jiffies;
9579 		}
9580 
9581 		msleep(250);
9582 
9583 		refcnt = netdev_refcnt_read(dev);
9584 
9585 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9586 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9587 				 dev->name, refcnt);
9588 			warning_time = jiffies;
9589 		}
9590 	}
9591 }
9592 
9593 /* The sequence is:
9594  *
9595  *	rtnl_lock();
9596  *	...
9597  *	register_netdevice(x1);
9598  *	register_netdevice(x2);
9599  *	...
9600  *	unregister_netdevice(y1);
9601  *	unregister_netdevice(y2);
9602  *      ...
9603  *	rtnl_unlock();
9604  *	free_netdev(y1);
9605  *	free_netdev(y2);
9606  *
9607  * We are invoked by rtnl_unlock().
9608  * This allows us to deal with problems:
9609  * 1) We can delete sysfs objects which invoke hotplug
9610  *    without deadlocking with linkwatch via keventd.
9611  * 2) Since we run with the RTNL semaphore not held, we can sleep
9612  *    safely in order to wait for the netdev refcnt to drop to zero.
9613  *
9614  * We must not return until all unregister events added during
9615  * the interval the lock was held have been completed.
9616  */
9617 void netdev_run_todo(void)
9618 {
9619 	struct list_head list;
9620 
9621 	/* Snapshot list, allow later requests */
9622 	list_replace_init(&net_todo_list, &list);
9623 
9624 	__rtnl_unlock();
9625 
9626 
9627 	/* Wait for rcu callbacks to finish before next phase */
9628 	if (!list_empty(&list))
9629 		rcu_barrier();
9630 
9631 	while (!list_empty(&list)) {
9632 		struct net_device *dev
9633 			= list_first_entry(&list, struct net_device, todo_list);
9634 		list_del(&dev->todo_list);
9635 
9636 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9637 			pr_err("network todo '%s' but state %d\n",
9638 			       dev->name, dev->reg_state);
9639 			dump_stack();
9640 			continue;
9641 		}
9642 
9643 		dev->reg_state = NETREG_UNREGISTERED;
9644 
9645 		netdev_wait_allrefs(dev);
9646 
9647 		/* paranoia */
9648 		BUG_ON(netdev_refcnt_read(dev));
9649 		BUG_ON(!list_empty(&dev->ptype_all));
9650 		BUG_ON(!list_empty(&dev->ptype_specific));
9651 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9652 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9653 #if IS_ENABLED(CONFIG_DECNET)
9654 		WARN_ON(dev->dn_ptr);
9655 #endif
9656 		if (dev->priv_destructor)
9657 			dev->priv_destructor(dev);
9658 		if (dev->needs_free_netdev)
9659 			free_netdev(dev);
9660 
9661 		/* Report a network device has been unregistered */
9662 		rtnl_lock();
9663 		dev_net(dev)->dev_unreg_count--;
9664 		__rtnl_unlock();
9665 		wake_up(&netdev_unregistering_wq);
9666 
9667 		/* Free network device */
9668 		kobject_put(&dev->dev.kobj);
9669 	}
9670 }
9671 
9672 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9673  * all the same fields in the same order as net_device_stats, with only
9674  * the type differing, but rtnl_link_stats64 may have additional fields
9675  * at the end for newer counters.
9676  */
9677 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9678 			     const struct net_device_stats *netdev_stats)
9679 {
9680 #if BITS_PER_LONG == 64
9681 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9682 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9683 	/* zero out counters that only exist in rtnl_link_stats64 */
9684 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9685 	       sizeof(*stats64) - sizeof(*netdev_stats));
9686 #else
9687 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9688 	const unsigned long *src = (const unsigned long *)netdev_stats;
9689 	u64 *dst = (u64 *)stats64;
9690 
9691 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9692 	for (i = 0; i < n; i++)
9693 		dst[i] = src[i];
9694 	/* zero out counters that only exist in rtnl_link_stats64 */
9695 	memset((char *)stats64 + n * sizeof(u64), 0,
9696 	       sizeof(*stats64) - n * sizeof(u64));
9697 #endif
9698 }
9699 EXPORT_SYMBOL(netdev_stats_to_stats64);
9700 
9701 /**
9702  *	dev_get_stats	- get network device statistics
9703  *	@dev: device to get statistics from
9704  *	@storage: place to store stats
9705  *
9706  *	Get network statistics from device. Return @storage.
9707  *	The device driver may provide its own method by setting
9708  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9709  *	otherwise the internal statistics structure is used.
9710  */
9711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9712 					struct rtnl_link_stats64 *storage)
9713 {
9714 	const struct net_device_ops *ops = dev->netdev_ops;
9715 
9716 	if (ops->ndo_get_stats64) {
9717 		memset(storage, 0, sizeof(*storage));
9718 		ops->ndo_get_stats64(dev, storage);
9719 	} else if (ops->ndo_get_stats) {
9720 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9721 	} else {
9722 		netdev_stats_to_stats64(storage, &dev->stats);
9723 	}
9724 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9725 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9726 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9727 	return storage;
9728 }
9729 EXPORT_SYMBOL(dev_get_stats);
9730 
9731 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9732 {
9733 	struct netdev_queue *queue = dev_ingress_queue(dev);
9734 
9735 #ifdef CONFIG_NET_CLS_ACT
9736 	if (queue)
9737 		return queue;
9738 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9739 	if (!queue)
9740 		return NULL;
9741 	netdev_init_one_queue(dev, queue, NULL);
9742 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9743 	queue->qdisc_sleeping = &noop_qdisc;
9744 	rcu_assign_pointer(dev->ingress_queue, queue);
9745 #endif
9746 	return queue;
9747 }
9748 
9749 static const struct ethtool_ops default_ethtool_ops;
9750 
9751 void netdev_set_default_ethtool_ops(struct net_device *dev,
9752 				    const struct ethtool_ops *ops)
9753 {
9754 	if (dev->ethtool_ops == &default_ethtool_ops)
9755 		dev->ethtool_ops = ops;
9756 }
9757 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9758 
9759 void netdev_freemem(struct net_device *dev)
9760 {
9761 	char *addr = (char *)dev - dev->padded;
9762 
9763 	kvfree(addr);
9764 }
9765 
9766 /**
9767  * alloc_netdev_mqs - allocate network device
9768  * @sizeof_priv: size of private data to allocate space for
9769  * @name: device name format string
9770  * @name_assign_type: origin of device name
9771  * @setup: callback to initialize device
9772  * @txqs: the number of TX subqueues to allocate
9773  * @rxqs: the number of RX subqueues to allocate
9774  *
9775  * Allocates a struct net_device with private data area for driver use
9776  * and performs basic initialization.  Also allocates subqueue structs
9777  * for each queue on the device.
9778  */
9779 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9780 		unsigned char name_assign_type,
9781 		void (*setup)(struct net_device *),
9782 		unsigned int txqs, unsigned int rxqs)
9783 {
9784 	struct net_device *dev;
9785 	unsigned int alloc_size;
9786 	struct net_device *p;
9787 
9788 	BUG_ON(strlen(name) >= sizeof(dev->name));
9789 
9790 	if (txqs < 1) {
9791 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9792 		return NULL;
9793 	}
9794 
9795 	if (rxqs < 1) {
9796 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9797 		return NULL;
9798 	}
9799 
9800 	alloc_size = sizeof(struct net_device);
9801 	if (sizeof_priv) {
9802 		/* ensure 32-byte alignment of private area */
9803 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9804 		alloc_size += sizeof_priv;
9805 	}
9806 	/* ensure 32-byte alignment of whole construct */
9807 	alloc_size += NETDEV_ALIGN - 1;
9808 
9809 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9810 	if (!p)
9811 		return NULL;
9812 
9813 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9814 	dev->padded = (char *)dev - (char *)p;
9815 
9816 	dev->pcpu_refcnt = alloc_percpu(int);
9817 	if (!dev->pcpu_refcnt)
9818 		goto free_dev;
9819 
9820 	if (dev_addr_init(dev))
9821 		goto free_pcpu;
9822 
9823 	dev_mc_init(dev);
9824 	dev_uc_init(dev);
9825 
9826 	dev_net_set(dev, &init_net);
9827 
9828 	netdev_register_lockdep_key(dev);
9829 
9830 	dev->gso_max_size = GSO_MAX_SIZE;
9831 	dev->gso_max_segs = GSO_MAX_SEGS;
9832 	dev->upper_level = 1;
9833 	dev->lower_level = 1;
9834 
9835 	INIT_LIST_HEAD(&dev->napi_list);
9836 	INIT_LIST_HEAD(&dev->unreg_list);
9837 	INIT_LIST_HEAD(&dev->close_list);
9838 	INIT_LIST_HEAD(&dev->link_watch_list);
9839 	INIT_LIST_HEAD(&dev->adj_list.upper);
9840 	INIT_LIST_HEAD(&dev->adj_list.lower);
9841 	INIT_LIST_HEAD(&dev->ptype_all);
9842 	INIT_LIST_HEAD(&dev->ptype_specific);
9843 	INIT_LIST_HEAD(&dev->net_notifier_list);
9844 #ifdef CONFIG_NET_SCHED
9845 	hash_init(dev->qdisc_hash);
9846 #endif
9847 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9848 	setup(dev);
9849 
9850 	if (!dev->tx_queue_len) {
9851 		dev->priv_flags |= IFF_NO_QUEUE;
9852 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9853 	}
9854 
9855 	dev->num_tx_queues = txqs;
9856 	dev->real_num_tx_queues = txqs;
9857 	if (netif_alloc_netdev_queues(dev))
9858 		goto free_all;
9859 
9860 	dev->num_rx_queues = rxqs;
9861 	dev->real_num_rx_queues = rxqs;
9862 	if (netif_alloc_rx_queues(dev))
9863 		goto free_all;
9864 
9865 	strcpy(dev->name, name);
9866 	dev->name_assign_type = name_assign_type;
9867 	dev->group = INIT_NETDEV_GROUP;
9868 	if (!dev->ethtool_ops)
9869 		dev->ethtool_ops = &default_ethtool_ops;
9870 
9871 	nf_hook_ingress_init(dev);
9872 
9873 	return dev;
9874 
9875 free_all:
9876 	free_netdev(dev);
9877 	return NULL;
9878 
9879 free_pcpu:
9880 	free_percpu(dev->pcpu_refcnt);
9881 free_dev:
9882 	netdev_freemem(dev);
9883 	return NULL;
9884 }
9885 EXPORT_SYMBOL(alloc_netdev_mqs);
9886 
9887 /**
9888  * free_netdev - free network device
9889  * @dev: device
9890  *
9891  * This function does the last stage of destroying an allocated device
9892  * interface. The reference to the device object is released. If this
9893  * is the last reference then it will be freed.Must be called in process
9894  * context.
9895  */
9896 void free_netdev(struct net_device *dev)
9897 {
9898 	struct napi_struct *p, *n;
9899 
9900 	might_sleep();
9901 	netif_free_tx_queues(dev);
9902 	netif_free_rx_queues(dev);
9903 
9904 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9905 
9906 	/* Flush device addresses */
9907 	dev_addr_flush(dev);
9908 
9909 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9910 		netif_napi_del(p);
9911 
9912 	free_percpu(dev->pcpu_refcnt);
9913 	dev->pcpu_refcnt = NULL;
9914 	free_percpu(dev->xdp_bulkq);
9915 	dev->xdp_bulkq = NULL;
9916 
9917 	netdev_unregister_lockdep_key(dev);
9918 
9919 	/*  Compatibility with error handling in drivers */
9920 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9921 		netdev_freemem(dev);
9922 		return;
9923 	}
9924 
9925 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9926 	dev->reg_state = NETREG_RELEASED;
9927 
9928 	/* will free via device release */
9929 	put_device(&dev->dev);
9930 }
9931 EXPORT_SYMBOL(free_netdev);
9932 
9933 /**
9934  *	synchronize_net -  Synchronize with packet receive processing
9935  *
9936  *	Wait for packets currently being received to be done.
9937  *	Does not block later packets from starting.
9938  */
9939 void synchronize_net(void)
9940 {
9941 	might_sleep();
9942 	if (rtnl_is_locked())
9943 		synchronize_rcu_expedited();
9944 	else
9945 		synchronize_rcu();
9946 }
9947 EXPORT_SYMBOL(synchronize_net);
9948 
9949 /**
9950  *	unregister_netdevice_queue - remove device from the kernel
9951  *	@dev: device
9952  *	@head: list
9953  *
9954  *	This function shuts down a device interface and removes it
9955  *	from the kernel tables.
9956  *	If head not NULL, device is queued to be unregistered later.
9957  *
9958  *	Callers must hold the rtnl semaphore.  You may want
9959  *	unregister_netdev() instead of this.
9960  */
9961 
9962 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9963 {
9964 	ASSERT_RTNL();
9965 
9966 	if (head) {
9967 		list_move_tail(&dev->unreg_list, head);
9968 	} else {
9969 		rollback_registered(dev);
9970 		/* Finish processing unregister after unlock */
9971 		net_set_todo(dev);
9972 	}
9973 }
9974 EXPORT_SYMBOL(unregister_netdevice_queue);
9975 
9976 /**
9977  *	unregister_netdevice_many - unregister many devices
9978  *	@head: list of devices
9979  *
9980  *  Note: As most callers use a stack allocated list_head,
9981  *  we force a list_del() to make sure stack wont be corrupted later.
9982  */
9983 void unregister_netdevice_many(struct list_head *head)
9984 {
9985 	struct net_device *dev;
9986 
9987 	if (!list_empty(head)) {
9988 		rollback_registered_many(head);
9989 		list_for_each_entry(dev, head, unreg_list)
9990 			net_set_todo(dev);
9991 		list_del(head);
9992 	}
9993 }
9994 EXPORT_SYMBOL(unregister_netdevice_many);
9995 
9996 /**
9997  *	unregister_netdev - remove device from the kernel
9998  *	@dev: device
9999  *
10000  *	This function shuts down a device interface and removes it
10001  *	from the kernel tables.
10002  *
10003  *	This is just a wrapper for unregister_netdevice that takes
10004  *	the rtnl semaphore.  In general you want to use this and not
10005  *	unregister_netdevice.
10006  */
10007 void unregister_netdev(struct net_device *dev)
10008 {
10009 	rtnl_lock();
10010 	unregister_netdevice(dev);
10011 	rtnl_unlock();
10012 }
10013 EXPORT_SYMBOL(unregister_netdev);
10014 
10015 /**
10016  *	dev_change_net_namespace - move device to different nethost namespace
10017  *	@dev: device
10018  *	@net: network namespace
10019  *	@pat: If not NULL name pattern to try if the current device name
10020  *	      is already taken in the destination network namespace.
10021  *
10022  *	This function shuts down a device interface and moves it
10023  *	to a new network namespace. On success 0 is returned, on
10024  *	a failure a netagive errno code is returned.
10025  *
10026  *	Callers must hold the rtnl semaphore.
10027  */
10028 
10029 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10030 {
10031 	struct net *net_old = dev_net(dev);
10032 	int err, new_nsid, new_ifindex;
10033 
10034 	ASSERT_RTNL();
10035 
10036 	/* Don't allow namespace local devices to be moved. */
10037 	err = -EINVAL;
10038 	if (dev->features & NETIF_F_NETNS_LOCAL)
10039 		goto out;
10040 
10041 	/* Ensure the device has been registrered */
10042 	if (dev->reg_state != NETREG_REGISTERED)
10043 		goto out;
10044 
10045 	/* Get out if there is nothing todo */
10046 	err = 0;
10047 	if (net_eq(net_old, net))
10048 		goto out;
10049 
10050 	/* Pick the destination device name, and ensure
10051 	 * we can use it in the destination network namespace.
10052 	 */
10053 	err = -EEXIST;
10054 	if (__dev_get_by_name(net, dev->name)) {
10055 		/* We get here if we can't use the current device name */
10056 		if (!pat)
10057 			goto out;
10058 		err = dev_get_valid_name(net, dev, pat);
10059 		if (err < 0)
10060 			goto out;
10061 	}
10062 
10063 	/*
10064 	 * And now a mini version of register_netdevice unregister_netdevice.
10065 	 */
10066 
10067 	/* If device is running close it first. */
10068 	dev_close(dev);
10069 
10070 	/* And unlink it from device chain */
10071 	unlist_netdevice(dev);
10072 
10073 	synchronize_net();
10074 
10075 	/* Shutdown queueing discipline. */
10076 	dev_shutdown(dev);
10077 
10078 	/* Notify protocols, that we are about to destroy
10079 	 * this device. They should clean all the things.
10080 	 *
10081 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10082 	 * This is wanted because this way 8021q and macvlan know
10083 	 * the device is just moving and can keep their slaves up.
10084 	 */
10085 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10086 	rcu_barrier();
10087 
10088 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10089 	/* If there is an ifindex conflict assign a new one */
10090 	if (__dev_get_by_index(net, dev->ifindex))
10091 		new_ifindex = dev_new_index(net);
10092 	else
10093 		new_ifindex = dev->ifindex;
10094 
10095 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10096 			    new_ifindex);
10097 
10098 	/*
10099 	 *	Flush the unicast and multicast chains
10100 	 */
10101 	dev_uc_flush(dev);
10102 	dev_mc_flush(dev);
10103 
10104 	/* Send a netdev-removed uevent to the old namespace */
10105 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10106 	netdev_adjacent_del_links(dev);
10107 
10108 	/* Move per-net netdevice notifiers that are following the netdevice */
10109 	move_netdevice_notifiers_dev_net(dev, net);
10110 
10111 	/* Actually switch the network namespace */
10112 	dev_net_set(dev, net);
10113 	dev->ifindex = new_ifindex;
10114 
10115 	/* Send a netdev-add uevent to the new namespace */
10116 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10117 	netdev_adjacent_add_links(dev);
10118 
10119 	/* Fixup kobjects */
10120 	err = device_rename(&dev->dev, dev->name);
10121 	WARN_ON(err);
10122 
10123 	/* Adapt owner in case owning user namespace of target network
10124 	 * namespace is different from the original one.
10125 	 */
10126 	err = netdev_change_owner(dev, net_old, net);
10127 	WARN_ON(err);
10128 
10129 	/* Add the device back in the hashes */
10130 	list_netdevice(dev);
10131 
10132 	/* Notify protocols, that a new device appeared. */
10133 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10134 
10135 	/*
10136 	 *	Prevent userspace races by waiting until the network
10137 	 *	device is fully setup before sending notifications.
10138 	 */
10139 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10140 
10141 	synchronize_net();
10142 	err = 0;
10143 out:
10144 	return err;
10145 }
10146 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10147 
10148 static int dev_cpu_dead(unsigned int oldcpu)
10149 {
10150 	struct sk_buff **list_skb;
10151 	struct sk_buff *skb;
10152 	unsigned int cpu;
10153 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10154 
10155 	local_irq_disable();
10156 	cpu = smp_processor_id();
10157 	sd = &per_cpu(softnet_data, cpu);
10158 	oldsd = &per_cpu(softnet_data, oldcpu);
10159 
10160 	/* Find end of our completion_queue. */
10161 	list_skb = &sd->completion_queue;
10162 	while (*list_skb)
10163 		list_skb = &(*list_skb)->next;
10164 	/* Append completion queue from offline CPU. */
10165 	*list_skb = oldsd->completion_queue;
10166 	oldsd->completion_queue = NULL;
10167 
10168 	/* Append output queue from offline CPU. */
10169 	if (oldsd->output_queue) {
10170 		*sd->output_queue_tailp = oldsd->output_queue;
10171 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10172 		oldsd->output_queue = NULL;
10173 		oldsd->output_queue_tailp = &oldsd->output_queue;
10174 	}
10175 	/* Append NAPI poll list from offline CPU, with one exception :
10176 	 * process_backlog() must be called by cpu owning percpu backlog.
10177 	 * We properly handle process_queue & input_pkt_queue later.
10178 	 */
10179 	while (!list_empty(&oldsd->poll_list)) {
10180 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10181 							    struct napi_struct,
10182 							    poll_list);
10183 
10184 		list_del_init(&napi->poll_list);
10185 		if (napi->poll == process_backlog)
10186 			napi->state = 0;
10187 		else
10188 			____napi_schedule(sd, napi);
10189 	}
10190 
10191 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10192 	local_irq_enable();
10193 
10194 #ifdef CONFIG_RPS
10195 	remsd = oldsd->rps_ipi_list;
10196 	oldsd->rps_ipi_list = NULL;
10197 #endif
10198 	/* send out pending IPI's on offline CPU */
10199 	net_rps_send_ipi(remsd);
10200 
10201 	/* Process offline CPU's input_pkt_queue */
10202 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10203 		netif_rx_ni(skb);
10204 		input_queue_head_incr(oldsd);
10205 	}
10206 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10207 		netif_rx_ni(skb);
10208 		input_queue_head_incr(oldsd);
10209 	}
10210 
10211 	return 0;
10212 }
10213 
10214 /**
10215  *	netdev_increment_features - increment feature set by one
10216  *	@all: current feature set
10217  *	@one: new feature set
10218  *	@mask: mask feature set
10219  *
10220  *	Computes a new feature set after adding a device with feature set
10221  *	@one to the master device with current feature set @all.  Will not
10222  *	enable anything that is off in @mask. Returns the new feature set.
10223  */
10224 netdev_features_t netdev_increment_features(netdev_features_t all,
10225 	netdev_features_t one, netdev_features_t mask)
10226 {
10227 	if (mask & NETIF_F_HW_CSUM)
10228 		mask |= NETIF_F_CSUM_MASK;
10229 	mask |= NETIF_F_VLAN_CHALLENGED;
10230 
10231 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10232 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10233 
10234 	/* If one device supports hw checksumming, set for all. */
10235 	if (all & NETIF_F_HW_CSUM)
10236 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10237 
10238 	return all;
10239 }
10240 EXPORT_SYMBOL(netdev_increment_features);
10241 
10242 static struct hlist_head * __net_init netdev_create_hash(void)
10243 {
10244 	int i;
10245 	struct hlist_head *hash;
10246 
10247 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10248 	if (hash != NULL)
10249 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10250 			INIT_HLIST_HEAD(&hash[i]);
10251 
10252 	return hash;
10253 }
10254 
10255 /* Initialize per network namespace state */
10256 static int __net_init netdev_init(struct net *net)
10257 {
10258 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10259 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10260 
10261 	if (net != &init_net)
10262 		INIT_LIST_HEAD(&net->dev_base_head);
10263 
10264 	net->dev_name_head = netdev_create_hash();
10265 	if (net->dev_name_head == NULL)
10266 		goto err_name;
10267 
10268 	net->dev_index_head = netdev_create_hash();
10269 	if (net->dev_index_head == NULL)
10270 		goto err_idx;
10271 
10272 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10273 
10274 	return 0;
10275 
10276 err_idx:
10277 	kfree(net->dev_name_head);
10278 err_name:
10279 	return -ENOMEM;
10280 }
10281 
10282 /**
10283  *	netdev_drivername - network driver for the device
10284  *	@dev: network device
10285  *
10286  *	Determine network driver for device.
10287  */
10288 const char *netdev_drivername(const struct net_device *dev)
10289 {
10290 	const struct device_driver *driver;
10291 	const struct device *parent;
10292 	const char *empty = "";
10293 
10294 	parent = dev->dev.parent;
10295 	if (!parent)
10296 		return empty;
10297 
10298 	driver = parent->driver;
10299 	if (driver && driver->name)
10300 		return driver->name;
10301 	return empty;
10302 }
10303 
10304 static void __netdev_printk(const char *level, const struct net_device *dev,
10305 			    struct va_format *vaf)
10306 {
10307 	if (dev && dev->dev.parent) {
10308 		dev_printk_emit(level[1] - '0',
10309 				dev->dev.parent,
10310 				"%s %s %s%s: %pV",
10311 				dev_driver_string(dev->dev.parent),
10312 				dev_name(dev->dev.parent),
10313 				netdev_name(dev), netdev_reg_state(dev),
10314 				vaf);
10315 	} else if (dev) {
10316 		printk("%s%s%s: %pV",
10317 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10318 	} else {
10319 		printk("%s(NULL net_device): %pV", level, vaf);
10320 	}
10321 }
10322 
10323 void netdev_printk(const char *level, const struct net_device *dev,
10324 		   const char *format, ...)
10325 {
10326 	struct va_format vaf;
10327 	va_list args;
10328 
10329 	va_start(args, format);
10330 
10331 	vaf.fmt = format;
10332 	vaf.va = &args;
10333 
10334 	__netdev_printk(level, dev, &vaf);
10335 
10336 	va_end(args);
10337 }
10338 EXPORT_SYMBOL(netdev_printk);
10339 
10340 #define define_netdev_printk_level(func, level)			\
10341 void func(const struct net_device *dev, const char *fmt, ...)	\
10342 {								\
10343 	struct va_format vaf;					\
10344 	va_list args;						\
10345 								\
10346 	va_start(args, fmt);					\
10347 								\
10348 	vaf.fmt = fmt;						\
10349 	vaf.va = &args;						\
10350 								\
10351 	__netdev_printk(level, dev, &vaf);			\
10352 								\
10353 	va_end(args);						\
10354 }								\
10355 EXPORT_SYMBOL(func);
10356 
10357 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10358 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10359 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10360 define_netdev_printk_level(netdev_err, KERN_ERR);
10361 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10362 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10363 define_netdev_printk_level(netdev_info, KERN_INFO);
10364 
10365 static void __net_exit netdev_exit(struct net *net)
10366 {
10367 	kfree(net->dev_name_head);
10368 	kfree(net->dev_index_head);
10369 	if (net != &init_net)
10370 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10371 }
10372 
10373 static struct pernet_operations __net_initdata netdev_net_ops = {
10374 	.init = netdev_init,
10375 	.exit = netdev_exit,
10376 };
10377 
10378 static void __net_exit default_device_exit(struct net *net)
10379 {
10380 	struct net_device *dev, *aux;
10381 	/*
10382 	 * Push all migratable network devices back to the
10383 	 * initial network namespace
10384 	 */
10385 	rtnl_lock();
10386 	for_each_netdev_safe(net, dev, aux) {
10387 		int err;
10388 		char fb_name[IFNAMSIZ];
10389 
10390 		/* Ignore unmoveable devices (i.e. loopback) */
10391 		if (dev->features & NETIF_F_NETNS_LOCAL)
10392 			continue;
10393 
10394 		/* Leave virtual devices for the generic cleanup */
10395 		if (dev->rtnl_link_ops)
10396 			continue;
10397 
10398 		/* Push remaining network devices to init_net */
10399 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10400 		if (__dev_get_by_name(&init_net, fb_name))
10401 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10402 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10403 		if (err) {
10404 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10405 				 __func__, dev->name, err);
10406 			BUG();
10407 		}
10408 	}
10409 	rtnl_unlock();
10410 }
10411 
10412 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10413 {
10414 	/* Return with the rtnl_lock held when there are no network
10415 	 * devices unregistering in any network namespace in net_list.
10416 	 */
10417 	struct net *net;
10418 	bool unregistering;
10419 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10420 
10421 	add_wait_queue(&netdev_unregistering_wq, &wait);
10422 	for (;;) {
10423 		unregistering = false;
10424 		rtnl_lock();
10425 		list_for_each_entry(net, net_list, exit_list) {
10426 			if (net->dev_unreg_count > 0) {
10427 				unregistering = true;
10428 				break;
10429 			}
10430 		}
10431 		if (!unregistering)
10432 			break;
10433 		__rtnl_unlock();
10434 
10435 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10436 	}
10437 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10438 }
10439 
10440 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10441 {
10442 	/* At exit all network devices most be removed from a network
10443 	 * namespace.  Do this in the reverse order of registration.
10444 	 * Do this across as many network namespaces as possible to
10445 	 * improve batching efficiency.
10446 	 */
10447 	struct net_device *dev;
10448 	struct net *net;
10449 	LIST_HEAD(dev_kill_list);
10450 
10451 	/* To prevent network device cleanup code from dereferencing
10452 	 * loopback devices or network devices that have been freed
10453 	 * wait here for all pending unregistrations to complete,
10454 	 * before unregistring the loopback device and allowing the
10455 	 * network namespace be freed.
10456 	 *
10457 	 * The netdev todo list containing all network devices
10458 	 * unregistrations that happen in default_device_exit_batch
10459 	 * will run in the rtnl_unlock() at the end of
10460 	 * default_device_exit_batch.
10461 	 */
10462 	rtnl_lock_unregistering(net_list);
10463 	list_for_each_entry(net, net_list, exit_list) {
10464 		for_each_netdev_reverse(net, dev) {
10465 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10466 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10467 			else
10468 				unregister_netdevice_queue(dev, &dev_kill_list);
10469 		}
10470 	}
10471 	unregister_netdevice_many(&dev_kill_list);
10472 	rtnl_unlock();
10473 }
10474 
10475 static struct pernet_operations __net_initdata default_device_ops = {
10476 	.exit = default_device_exit,
10477 	.exit_batch = default_device_exit_batch,
10478 };
10479 
10480 /*
10481  *	Initialize the DEV module. At boot time this walks the device list and
10482  *	unhooks any devices that fail to initialise (normally hardware not
10483  *	present) and leaves us with a valid list of present and active devices.
10484  *
10485  */
10486 
10487 /*
10488  *       This is called single threaded during boot, so no need
10489  *       to take the rtnl semaphore.
10490  */
10491 static int __init net_dev_init(void)
10492 {
10493 	int i, rc = -ENOMEM;
10494 
10495 	BUG_ON(!dev_boot_phase);
10496 
10497 	if (dev_proc_init())
10498 		goto out;
10499 
10500 	if (netdev_kobject_init())
10501 		goto out;
10502 
10503 	INIT_LIST_HEAD(&ptype_all);
10504 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10505 		INIT_LIST_HEAD(&ptype_base[i]);
10506 
10507 	INIT_LIST_HEAD(&offload_base);
10508 
10509 	if (register_pernet_subsys(&netdev_net_ops))
10510 		goto out;
10511 
10512 	/*
10513 	 *	Initialise the packet receive queues.
10514 	 */
10515 
10516 	for_each_possible_cpu(i) {
10517 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10518 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10519 
10520 		INIT_WORK(flush, flush_backlog);
10521 
10522 		skb_queue_head_init(&sd->input_pkt_queue);
10523 		skb_queue_head_init(&sd->process_queue);
10524 #ifdef CONFIG_XFRM_OFFLOAD
10525 		skb_queue_head_init(&sd->xfrm_backlog);
10526 #endif
10527 		INIT_LIST_HEAD(&sd->poll_list);
10528 		sd->output_queue_tailp = &sd->output_queue;
10529 #ifdef CONFIG_RPS
10530 		sd->csd.func = rps_trigger_softirq;
10531 		sd->csd.info = sd;
10532 		sd->cpu = i;
10533 #endif
10534 
10535 		init_gro_hash(&sd->backlog);
10536 		sd->backlog.poll = process_backlog;
10537 		sd->backlog.weight = weight_p;
10538 	}
10539 
10540 	dev_boot_phase = 0;
10541 
10542 	/* The loopback device is special if any other network devices
10543 	 * is present in a network namespace the loopback device must
10544 	 * be present. Since we now dynamically allocate and free the
10545 	 * loopback device ensure this invariant is maintained by
10546 	 * keeping the loopback device as the first device on the
10547 	 * list of network devices.  Ensuring the loopback devices
10548 	 * is the first device that appears and the last network device
10549 	 * that disappears.
10550 	 */
10551 	if (register_pernet_device(&loopback_net_ops))
10552 		goto out;
10553 
10554 	if (register_pernet_device(&default_device_ops))
10555 		goto out;
10556 
10557 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10558 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10559 
10560 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10561 				       NULL, dev_cpu_dead);
10562 	WARN_ON(rc < 0);
10563 	rc = 0;
10564 out:
10565 	return rc;
10566 }
10567 
10568 subsys_initcall(net_dev_init);
10569