xref: /openbmc/linux/net/core/dev.c (revision 01cc2ec6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 #include <linux/pm_runtime.h>
147 
148 #include "net-sysfs.h"
149 
150 #define MAX_GRO_SKBS 8
151 
152 /* This should be increased if a protocol with a bigger head is added. */
153 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 
155 static DEFINE_SPINLOCK(ptype_lock);
156 static DEFINE_SPINLOCK(offload_lock);
157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 struct list_head ptype_all __read_mostly;	/* Taps */
159 static struct list_head offload_base __read_mostly;
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 						       const char *name)
235 {
236 	struct netdev_name_node *name_node;
237 
238 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 	if (!name_node)
240 		return NULL;
241 	INIT_HLIST_NODE(&name_node->hlist);
242 	name_node->dev = dev;
243 	name_node->name = name;
244 	return name_node;
245 }
246 
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250 	struct netdev_name_node *name_node;
251 
252 	name_node = netdev_name_node_alloc(dev, dev->name);
253 	if (!name_node)
254 		return NULL;
255 	INIT_LIST_HEAD(&name_node->list);
256 	return name_node;
257 }
258 
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261 	kfree(name_node);
262 }
263 
264 static void netdev_name_node_add(struct net *net,
265 				 struct netdev_name_node *name_node)
266 {
267 	hlist_add_head_rcu(&name_node->hlist,
268 			   dev_name_hash(net, name_node->name));
269 }
270 
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273 	hlist_del_rcu(&name_node->hlist);
274 }
275 
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 							const char *name)
278 {
279 	struct hlist_head *head = dev_name_hash(net, name);
280 	struct netdev_name_node *name_node;
281 
282 	hlist_for_each_entry(name_node, head, hlist)
283 		if (!strcmp(name_node->name, name))
284 			return name_node;
285 	return NULL;
286 }
287 
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 							    const char *name)
290 {
291 	struct hlist_head *head = dev_name_hash(net, name);
292 	struct netdev_name_node *name_node;
293 
294 	hlist_for_each_entry_rcu(name_node, head, hlist)
295 		if (!strcmp(name_node->name, name))
296 			return name_node;
297 	return NULL;
298 }
299 
300 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301 {
302 	struct netdev_name_node *name_node;
303 	struct net *net = dev_net(dev);
304 
305 	name_node = netdev_name_node_lookup(net, name);
306 	if (name_node)
307 		return -EEXIST;
308 	name_node = netdev_name_node_alloc(dev, name);
309 	if (!name_node)
310 		return -ENOMEM;
311 	netdev_name_node_add(net, name_node);
312 	/* The node that holds dev->name acts as a head of per-device list. */
313 	list_add_tail(&name_node->list, &dev->name_node->list);
314 
315 	return 0;
316 }
317 EXPORT_SYMBOL(netdev_name_node_alt_create);
318 
319 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320 {
321 	list_del(&name_node->list);
322 	netdev_name_node_del(name_node);
323 	kfree(name_node->name);
324 	netdev_name_node_free(name_node);
325 }
326 
327 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (!name_node)
334 		return -ENOENT;
335 	/* lookup might have found our primary name or a name belonging
336 	 * to another device.
337 	 */
338 	if (name_node == dev->name_node || name_node->dev != dev)
339 		return -EINVAL;
340 
341 	__netdev_name_node_alt_destroy(name_node);
342 
343 	return 0;
344 }
345 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346 
347 static void netdev_name_node_alt_flush(struct net_device *dev)
348 {
349 	struct netdev_name_node *name_node, *tmp;
350 
351 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 		__netdev_name_node_alt_destroy(name_node);
353 }
354 
355 /* Device list insertion */
356 static void list_netdevice(struct net_device *dev)
357 {
358 	struct net *net = dev_net(dev);
359 
360 	ASSERT_RTNL();
361 
362 	write_lock_bh(&dev_base_lock);
363 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364 	netdev_name_node_add(net, dev->name_node);
365 	hlist_add_head_rcu(&dev->index_hlist,
366 			   dev_index_hash(net, dev->ifindex));
367 	write_unlock_bh(&dev_base_lock);
368 
369 	dev_base_seq_inc(net);
370 }
371 
372 /* Device list removal
373  * caller must respect a RCU grace period before freeing/reusing dev
374  */
375 static void unlist_netdevice(struct net_device *dev)
376 {
377 	ASSERT_RTNL();
378 
379 	/* Unlink dev from the device chain */
380 	write_lock_bh(&dev_base_lock);
381 	list_del_rcu(&dev->dev_list);
382 	netdev_name_node_del(dev->name_node);
383 	hlist_del_rcu(&dev->index_hlist);
384 	write_unlock_bh(&dev_base_lock);
385 
386 	dev_base_seq_inc(dev_net(dev));
387 }
388 
389 /*
390  *	Our notifier list
391  */
392 
393 static RAW_NOTIFIER_HEAD(netdev_chain);
394 
395 /*
396  *	Device drivers call our routines to queue packets here. We empty the
397  *	queue in the local softnet handler.
398  */
399 
400 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401 EXPORT_PER_CPU_SYMBOL(softnet_data);
402 
403 #ifdef CONFIG_LOCKDEP
404 /*
405  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406  * according to dev->type
407  */
408 static const unsigned short netdev_lock_type[] = {
409 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424 
425 static const char *const netdev_lock_name[] = {
426 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441 
442 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444 
445 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446 {
447 	int i;
448 
449 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 		if (netdev_lock_type[i] == dev_type)
451 			return i;
452 	/* the last key is used by default */
453 	return ARRAY_SIZE(netdev_lock_type) - 1;
454 }
455 
456 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 						 unsigned short dev_type)
458 {
459 	int i;
460 
461 	i = netdev_lock_pos(dev_type);
462 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 				   netdev_lock_name[i]);
464 }
465 
466 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467 {
468 	int i;
469 
470 	i = netdev_lock_pos(dev->type);
471 	lockdep_set_class_and_name(&dev->addr_list_lock,
472 				   &netdev_addr_lock_key[i],
473 				   netdev_lock_name[i]);
474 }
475 #else
476 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 						 unsigned short dev_type)
478 {
479 }
480 
481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482 {
483 }
484 #endif
485 
486 /*******************************************************************************
487  *
488  *		Protocol management and registration routines
489  *
490  *******************************************************************************/
491 
492 
493 /*
494  *	Add a protocol ID to the list. Now that the input handler is
495  *	smarter we can dispense with all the messy stuff that used to be
496  *	here.
497  *
498  *	BEWARE!!! Protocol handlers, mangling input packets,
499  *	MUST BE last in hash buckets and checking protocol handlers
500  *	MUST start from promiscuous ptype_all chain in net_bh.
501  *	It is true now, do not change it.
502  *	Explanation follows: if protocol handler, mangling packet, will
503  *	be the first on list, it is not able to sense, that packet
504  *	is cloned and should be copied-on-write, so that it will
505  *	change it and subsequent readers will get broken packet.
506  *							--ANK (980803)
507  */
508 
509 static inline struct list_head *ptype_head(const struct packet_type *pt)
510 {
511 	if (pt->type == htons(ETH_P_ALL))
512 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513 	else
514 		return pt->dev ? &pt->dev->ptype_specific :
515 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516 }
517 
518 /**
519  *	dev_add_pack - add packet handler
520  *	@pt: packet type declaration
521  *
522  *	Add a protocol handler to the networking stack. The passed &packet_type
523  *	is linked into kernel lists and may not be freed until it has been
524  *	removed from the kernel lists.
525  *
526  *	This call does not sleep therefore it can not
527  *	guarantee all CPU's that are in middle of receiving packets
528  *	will see the new packet type (until the next received packet).
529  */
530 
531 void dev_add_pack(struct packet_type *pt)
532 {
533 	struct list_head *head = ptype_head(pt);
534 
535 	spin_lock(&ptype_lock);
536 	list_add_rcu(&pt->list, head);
537 	spin_unlock(&ptype_lock);
538 }
539 EXPORT_SYMBOL(dev_add_pack);
540 
541 /**
542  *	__dev_remove_pack	 - remove packet handler
543  *	@pt: packet type declaration
544  *
545  *	Remove a protocol handler that was previously added to the kernel
546  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
547  *	from the kernel lists and can be freed or reused once this function
548  *	returns.
549  *
550  *      The packet type might still be in use by receivers
551  *	and must not be freed until after all the CPU's have gone
552  *	through a quiescent state.
553  */
554 void __dev_remove_pack(struct packet_type *pt)
555 {
556 	struct list_head *head = ptype_head(pt);
557 	struct packet_type *pt1;
558 
559 	spin_lock(&ptype_lock);
560 
561 	list_for_each_entry(pt1, head, list) {
562 		if (pt == pt1) {
563 			list_del_rcu(&pt->list);
564 			goto out;
565 		}
566 	}
567 
568 	pr_warn("dev_remove_pack: %p not found\n", pt);
569 out:
570 	spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(__dev_remove_pack);
573 
574 /**
575  *	dev_remove_pack	 - remove packet handler
576  *	@pt: packet type declaration
577  *
578  *	Remove a protocol handler that was previously added to the kernel
579  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *	from the kernel lists and can be freed or reused once this function
581  *	returns.
582  *
583  *	This call sleeps to guarantee that no CPU is looking at the packet
584  *	type after return.
585  */
586 void dev_remove_pack(struct packet_type *pt)
587 {
588 	__dev_remove_pack(pt);
589 
590 	synchronize_net();
591 }
592 EXPORT_SYMBOL(dev_remove_pack);
593 
594 
595 /**
596  *	dev_add_offload - register offload handlers
597  *	@po: protocol offload declaration
598  *
599  *	Add protocol offload handlers to the networking stack. The passed
600  *	&proto_offload is linked into kernel lists and may not be freed until
601  *	it has been removed from the kernel lists.
602  *
603  *	This call does not sleep therefore it can not
604  *	guarantee all CPU's that are in middle of receiving packets
605  *	will see the new offload handlers (until the next received packet).
606  */
607 void dev_add_offload(struct packet_offload *po)
608 {
609 	struct packet_offload *elem;
610 
611 	spin_lock(&offload_lock);
612 	list_for_each_entry(elem, &offload_base, list) {
613 		if (po->priority < elem->priority)
614 			break;
615 	}
616 	list_add_rcu(&po->list, elem->list.prev);
617 	spin_unlock(&offload_lock);
618 }
619 EXPORT_SYMBOL(dev_add_offload);
620 
621 /**
622  *	__dev_remove_offload	 - remove offload handler
623  *	@po: packet offload declaration
624  *
625  *	Remove a protocol offload handler that was previously added to the
626  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
627  *	is removed from the kernel lists and can be freed or reused once this
628  *	function returns.
629  *
630  *      The packet type might still be in use by receivers
631  *	and must not be freed until after all the CPU's have gone
632  *	through a quiescent state.
633  */
634 static void __dev_remove_offload(struct packet_offload *po)
635 {
636 	struct list_head *head = &offload_base;
637 	struct packet_offload *po1;
638 
639 	spin_lock(&offload_lock);
640 
641 	list_for_each_entry(po1, head, list) {
642 		if (po == po1) {
643 			list_del_rcu(&po->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_offload: %p not found\n", po);
649 out:
650 	spin_unlock(&offload_lock);
651 }
652 
653 /**
654  *	dev_remove_offload	 - remove packet offload handler
655  *	@po: packet offload declaration
656  *
657  *	Remove a packet offload handler that was previously added to the kernel
658  *	offload handlers by dev_add_offload(). The passed &offload_type is
659  *	removed from the kernel lists and can be freed or reused once this
660  *	function returns.
661  *
662  *	This call sleeps to guarantee that no CPU is looking at the packet
663  *	type after return.
664  */
665 void dev_remove_offload(struct packet_offload *po)
666 {
667 	__dev_remove_offload(po);
668 
669 	synchronize_net();
670 }
671 EXPORT_SYMBOL(dev_remove_offload);
672 
673 /******************************************************************************
674  *
675  *		      Device Boot-time Settings Routines
676  *
677  ******************************************************************************/
678 
679 /* Boot time configuration table */
680 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681 
682 /**
683  *	netdev_boot_setup_add	- add new setup entry
684  *	@name: name of the device
685  *	@map: configured settings for the device
686  *
687  *	Adds new setup entry to the dev_boot_setup list.  The function
688  *	returns 0 on error and 1 on success.  This is a generic routine to
689  *	all netdevices.
690  */
691 static int netdev_boot_setup_add(char *name, struct ifmap *map)
692 {
693 	struct netdev_boot_setup *s;
694 	int i;
695 
696 	s = dev_boot_setup;
697 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 			memset(s[i].name, 0, sizeof(s[i].name));
700 			strlcpy(s[i].name, name, IFNAMSIZ);
701 			memcpy(&s[i].map, map, sizeof(s[i].map));
702 			break;
703 		}
704 	}
705 
706 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707 }
708 
709 /**
710  * netdev_boot_setup_check	- check boot time settings
711  * @dev: the netdevice
712  *
713  * Check boot time settings for the device.
714  * The found settings are set for the device to be used
715  * later in the device probing.
716  * Returns 0 if no settings found, 1 if they are.
717  */
718 int netdev_boot_setup_check(struct net_device *dev)
719 {
720 	struct netdev_boot_setup *s = dev_boot_setup;
721 	int i;
722 
723 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725 		    !strcmp(dev->name, s[i].name)) {
726 			dev->irq = s[i].map.irq;
727 			dev->base_addr = s[i].map.base_addr;
728 			dev->mem_start = s[i].map.mem_start;
729 			dev->mem_end = s[i].map.mem_end;
730 			return 1;
731 		}
732 	}
733 	return 0;
734 }
735 EXPORT_SYMBOL(netdev_boot_setup_check);
736 
737 
738 /**
739  * netdev_boot_base	- get address from boot time settings
740  * @prefix: prefix for network device
741  * @unit: id for network device
742  *
743  * Check boot time settings for the base address of device.
744  * The found settings are set for the device to be used
745  * later in the device probing.
746  * Returns 0 if no settings found.
747  */
748 unsigned long netdev_boot_base(const char *prefix, int unit)
749 {
750 	const struct netdev_boot_setup *s = dev_boot_setup;
751 	char name[IFNAMSIZ];
752 	int i;
753 
754 	sprintf(name, "%s%d", prefix, unit);
755 
756 	/*
757 	 * If device already registered then return base of 1
758 	 * to indicate not to probe for this interface
759 	 */
760 	if (__dev_get_by_name(&init_net, name))
761 		return 1;
762 
763 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 		if (!strcmp(name, s[i].name))
765 			return s[i].map.base_addr;
766 	return 0;
767 }
768 
769 /*
770  * Saves at boot time configured settings for any netdevice.
771  */
772 int __init netdev_boot_setup(char *str)
773 {
774 	int ints[5];
775 	struct ifmap map;
776 
777 	str = get_options(str, ARRAY_SIZE(ints), ints);
778 	if (!str || !*str)
779 		return 0;
780 
781 	/* Save settings */
782 	memset(&map, 0, sizeof(map));
783 	if (ints[0] > 0)
784 		map.irq = ints[1];
785 	if (ints[0] > 1)
786 		map.base_addr = ints[2];
787 	if (ints[0] > 2)
788 		map.mem_start = ints[3];
789 	if (ints[0] > 3)
790 		map.mem_end = ints[4];
791 
792 	/* Add new entry to the list */
793 	return netdev_boot_setup_add(str, &map);
794 }
795 
796 __setup("netdev=", netdev_boot_setup);
797 
798 /*******************************************************************************
799  *
800  *			    Device Interface Subroutines
801  *
802  *******************************************************************************/
803 
804 /**
805  *	dev_get_iflink	- get 'iflink' value of a interface
806  *	@dev: targeted interface
807  *
808  *	Indicates the ifindex the interface is linked to.
809  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
810  */
811 
812 int dev_get_iflink(const struct net_device *dev)
813 {
814 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 		return dev->netdev_ops->ndo_get_iflink(dev);
816 
817 	return dev->ifindex;
818 }
819 EXPORT_SYMBOL(dev_get_iflink);
820 
821 /**
822  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
823  *	@dev: targeted interface
824  *	@skb: The packet.
825  *
826  *	For better visibility of tunnel traffic OVS needs to retrieve
827  *	egress tunnel information for a packet. Following API allows
828  *	user to get this info.
829  */
830 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831 {
832 	struct ip_tunnel_info *info;
833 
834 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
835 		return -EINVAL;
836 
837 	info = skb_tunnel_info_unclone(skb);
838 	if (!info)
839 		return -ENOMEM;
840 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 		return -EINVAL;
842 
843 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844 }
845 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846 
847 /**
848  *	__dev_get_by_name	- find a device by its name
849  *	@net: the applicable net namespace
850  *	@name: name to find
851  *
852  *	Find an interface by name. Must be called under RTNL semaphore
853  *	or @dev_base_lock. If the name is found a pointer to the device
854  *	is returned. If the name is not found then %NULL is returned. The
855  *	reference counters are not incremented so the caller must be
856  *	careful with locks.
857  */
858 
859 struct net_device *__dev_get_by_name(struct net *net, const char *name)
860 {
861 	struct netdev_name_node *node_name;
862 
863 	node_name = netdev_name_node_lookup(net, name);
864 	return node_name ? node_name->dev : NULL;
865 }
866 EXPORT_SYMBOL(__dev_get_by_name);
867 
868 /**
869  * dev_get_by_name_rcu	- find a device by its name
870  * @net: the applicable net namespace
871  * @name: name to find
872  *
873  * Find an interface by name.
874  * If the name is found a pointer to the device is returned.
875  * If the name is not found then %NULL is returned.
876  * The reference counters are not incremented so the caller must be
877  * careful with locks. The caller must hold RCU lock.
878  */
879 
880 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881 {
882 	struct netdev_name_node *node_name;
883 
884 	node_name = netdev_name_node_lookup_rcu(net, name);
885 	return node_name ? node_name->dev : NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_name_rcu);
888 
889 /**
890  *	dev_get_by_name		- find a device by its name
891  *	@net: the applicable net namespace
892  *	@name: name to find
893  *
894  *	Find an interface by name. This can be called from any
895  *	context and does its own locking. The returned handle has
896  *	the usage count incremented and the caller must use dev_put() to
897  *	release it when it is no longer needed. %NULL is returned if no
898  *	matching device is found.
899  */
900 
901 struct net_device *dev_get_by_name(struct net *net, const char *name)
902 {
903 	struct net_device *dev;
904 
905 	rcu_read_lock();
906 	dev = dev_get_by_name_rcu(net, name);
907 	if (dev)
908 		dev_hold(dev);
909 	rcu_read_unlock();
910 	return dev;
911 }
912 EXPORT_SYMBOL(dev_get_by_name);
913 
914 /**
915  *	__dev_get_by_index - find a device by its ifindex
916  *	@net: the applicable net namespace
917  *	@ifindex: index of device
918  *
919  *	Search for an interface by index. Returns %NULL if the device
920  *	is not found or a pointer to the device. The device has not
921  *	had its reference counter increased so the caller must be careful
922  *	about locking. The caller must hold either the RTNL semaphore
923  *	or @dev_base_lock.
924  */
925 
926 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927 {
928 	struct net_device *dev;
929 	struct hlist_head *head = dev_index_hash(net, ifindex);
930 
931 	hlist_for_each_entry(dev, head, index_hlist)
932 		if (dev->ifindex == ifindex)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_get_by_index);
938 
939 /**
940  *	dev_get_by_index_rcu - find a device by its ifindex
941  *	@net: the applicable net namespace
942  *	@ifindex: index of device
943  *
944  *	Search for an interface by index. Returns %NULL if the device
945  *	is not found or a pointer to the device. The device has not
946  *	had its reference counter increased so the caller must be careful
947  *	about locking. The caller must hold RCU lock.
948  */
949 
950 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951 {
952 	struct net_device *dev;
953 	struct hlist_head *head = dev_index_hash(net, ifindex);
954 
955 	hlist_for_each_entry_rcu(dev, head, index_hlist)
956 		if (dev->ifindex == ifindex)
957 			return dev;
958 
959 	return NULL;
960 }
961 EXPORT_SYMBOL(dev_get_by_index_rcu);
962 
963 
964 /**
965  *	dev_get_by_index - find a device by its ifindex
966  *	@net: the applicable net namespace
967  *	@ifindex: index of device
968  *
969  *	Search for an interface by index. Returns NULL if the device
970  *	is not found or a pointer to the device. The device returned has
971  *	had a reference added and the pointer is safe until the user calls
972  *	dev_put to indicate they have finished with it.
973  */
974 
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	if (dev)
982 		dev_hold(dev);
983 	rcu_read_unlock();
984 	return dev;
985 }
986 EXPORT_SYMBOL(dev_get_by_index);
987 
988 /**
989  *	dev_get_by_napi_id - find a device by napi_id
990  *	@napi_id: ID of the NAPI struct
991  *
992  *	Search for an interface by NAPI ID. Returns %NULL if the device
993  *	is not found or a pointer to the device. The device has not had
994  *	its reference counter increased so the caller must be careful
995  *	about locking. The caller must hold RCU lock.
996  */
997 
998 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999 {
1000 	struct napi_struct *napi;
1001 
1002 	WARN_ON_ONCE(!rcu_read_lock_held());
1003 
1004 	if (napi_id < MIN_NAPI_ID)
1005 		return NULL;
1006 
1007 	napi = napi_by_id(napi_id);
1008 
1009 	return napi ? napi->dev : NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_napi_id);
1012 
1013 /**
1014  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1015  *	@net: network namespace
1016  *	@name: a pointer to the buffer where the name will be stored.
1017  *	@ifindex: the ifindex of the interface to get the name from.
1018  */
1019 int netdev_get_name(struct net *net, char *name, int ifindex)
1020 {
1021 	struct net_device *dev;
1022 	int ret;
1023 
1024 	down_read(&devnet_rename_sem);
1025 	rcu_read_lock();
1026 
1027 	dev = dev_get_by_index_rcu(net, ifindex);
1028 	if (!dev) {
1029 		ret = -ENODEV;
1030 		goto out;
1031 	}
1032 
1033 	strcpy(name, dev->name);
1034 
1035 	ret = 0;
1036 out:
1037 	rcu_read_unlock();
1038 	up_read(&devnet_rename_sem);
1039 	return ret;
1040 }
1041 
1042 /**
1043  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1044  *	@net: the applicable net namespace
1045  *	@type: media type of device
1046  *	@ha: hardware address
1047  *
1048  *	Search for an interface by MAC address. Returns NULL if the device
1049  *	is not found or a pointer to the device.
1050  *	The caller must hold RCU or RTNL.
1051  *	The returned device has not had its ref count increased
1052  *	and the caller must therefore be careful about locking
1053  *
1054  */
1055 
1056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 				       const char *ha)
1058 {
1059 	struct net_device *dev;
1060 
1061 	for_each_netdev_rcu(net, dev)
1062 		if (dev->type == type &&
1063 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1064 			return dev;
1065 
1066 	return NULL;
1067 }
1068 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069 
1070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071 {
1072 	struct net_device *dev;
1073 
1074 	ASSERT_RTNL();
1075 	for_each_netdev(net, dev)
1076 		if (dev->type == type)
1077 			return dev;
1078 
1079 	return NULL;
1080 }
1081 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082 
1083 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084 {
1085 	struct net_device *dev, *ret = NULL;
1086 
1087 	rcu_read_lock();
1088 	for_each_netdev_rcu(net, dev)
1089 		if (dev->type == type) {
1090 			dev_hold(dev);
1091 			ret = dev;
1092 			break;
1093 		}
1094 	rcu_read_unlock();
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098 
1099 /**
1100  *	__dev_get_by_flags - find any device with given flags
1101  *	@net: the applicable net namespace
1102  *	@if_flags: IFF_* values
1103  *	@mask: bitmask of bits in if_flags to check
1104  *
1105  *	Search for any interface with the given flags. Returns NULL if a device
1106  *	is not found or a pointer to the device. Must be called inside
1107  *	rtnl_lock(), and result refcount is unchanged.
1108  */
1109 
1110 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 				      unsigned short mask)
1112 {
1113 	struct net_device *dev, *ret;
1114 
1115 	ASSERT_RTNL();
1116 
1117 	ret = NULL;
1118 	for_each_netdev(net, dev) {
1119 		if (((dev->flags ^ if_flags) & mask) == 0) {
1120 			ret = dev;
1121 			break;
1122 		}
1123 	}
1124 	return ret;
1125 }
1126 EXPORT_SYMBOL(__dev_get_by_flags);
1127 
1128 /**
1129  *	dev_valid_name - check if name is okay for network device
1130  *	@name: name string
1131  *
1132  *	Network device names need to be valid file names to
1133  *	to allow sysfs to work.  We also disallow any kind of
1134  *	whitespace.
1135  */
1136 bool dev_valid_name(const char *name)
1137 {
1138 	if (*name == '\0')
1139 		return false;
1140 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141 		return false;
1142 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1143 		return false;
1144 
1145 	while (*name) {
1146 		if (*name == '/' || *name == ':' || isspace(*name))
1147 			return false;
1148 		name++;
1149 	}
1150 	return true;
1151 }
1152 EXPORT_SYMBOL(dev_valid_name);
1153 
1154 /**
1155  *	__dev_alloc_name - allocate a name for a device
1156  *	@net: network namespace to allocate the device name in
1157  *	@name: name format string
1158  *	@buf:  scratch buffer and result name string
1159  *
1160  *	Passed a format string - eg "lt%d" it will try and find a suitable
1161  *	id. It scans list of devices to build up a free map, then chooses
1162  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1163  *	while allocating the name and adding the device in order to avoid
1164  *	duplicates.
1165  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166  *	Returns the number of the unit assigned or a negative errno code.
1167  */
1168 
1169 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170 {
1171 	int i = 0;
1172 	const char *p;
1173 	const int max_netdevices = 8*PAGE_SIZE;
1174 	unsigned long *inuse;
1175 	struct net_device *d;
1176 
1177 	if (!dev_valid_name(name))
1178 		return -EINVAL;
1179 
1180 	p = strchr(name, '%');
1181 	if (p) {
1182 		/*
1183 		 * Verify the string as this thing may have come from
1184 		 * the user.  There must be either one "%d" and no other "%"
1185 		 * characters.
1186 		 */
1187 		if (p[1] != 'd' || strchr(p + 2, '%'))
1188 			return -EINVAL;
1189 
1190 		/* Use one page as a bit array of possible slots */
1191 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192 		if (!inuse)
1193 			return -ENOMEM;
1194 
1195 		for_each_netdev(net, d) {
1196 			if (!sscanf(d->name, name, &i))
1197 				continue;
1198 			if (i < 0 || i >= max_netdevices)
1199 				continue;
1200 
1201 			/*  avoid cases where sscanf is not exact inverse of printf */
1202 			snprintf(buf, IFNAMSIZ, name, i);
1203 			if (!strncmp(buf, d->name, IFNAMSIZ))
1204 				set_bit(i, inuse);
1205 		}
1206 
1207 		i = find_first_zero_bit(inuse, max_netdevices);
1208 		free_page((unsigned long) inuse);
1209 	}
1210 
1211 	snprintf(buf, IFNAMSIZ, name, i);
1212 	if (!__dev_get_by_name(net, buf))
1213 		return i;
1214 
1215 	/* It is possible to run out of possible slots
1216 	 * when the name is long and there isn't enough space left
1217 	 * for the digits, or if all bits are used.
1218 	 */
1219 	return -ENFILE;
1220 }
1221 
1222 static int dev_alloc_name_ns(struct net *net,
1223 			     struct net_device *dev,
1224 			     const char *name)
1225 {
1226 	char buf[IFNAMSIZ];
1227 	int ret;
1228 
1229 	BUG_ON(!net);
1230 	ret = __dev_alloc_name(net, name, buf);
1231 	if (ret >= 0)
1232 		strlcpy(dev->name, buf, IFNAMSIZ);
1233 	return ret;
1234 }
1235 
1236 /**
1237  *	dev_alloc_name - allocate a name for a device
1238  *	@dev: device
1239  *	@name: name format string
1240  *
1241  *	Passed a format string - eg "lt%d" it will try and find a suitable
1242  *	id. It scans list of devices to build up a free map, then chooses
1243  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1244  *	while allocating the name and adding the device in order to avoid
1245  *	duplicates.
1246  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247  *	Returns the number of the unit assigned or a negative errno code.
1248  */
1249 
1250 int dev_alloc_name(struct net_device *dev, const char *name)
1251 {
1252 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1253 }
1254 EXPORT_SYMBOL(dev_alloc_name);
1255 
1256 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 			      const char *name)
1258 {
1259 	BUG_ON(!net);
1260 
1261 	if (!dev_valid_name(name))
1262 		return -EINVAL;
1263 
1264 	if (strchr(name, '%'))
1265 		return dev_alloc_name_ns(net, dev, name);
1266 	else if (__dev_get_by_name(net, name))
1267 		return -EEXIST;
1268 	else if (dev->name != name)
1269 		strlcpy(dev->name, name, IFNAMSIZ);
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  *	dev_change_name - change name of a device
1276  *	@dev: device
1277  *	@newname: name (or format string) must be at least IFNAMSIZ
1278  *
1279  *	Change name of a device, can pass format strings "eth%d".
1280  *	for wildcarding.
1281  */
1282 int dev_change_name(struct net_device *dev, const char *newname)
1283 {
1284 	unsigned char old_assign_type;
1285 	char oldname[IFNAMSIZ];
1286 	int err = 0;
1287 	int ret;
1288 	struct net *net;
1289 
1290 	ASSERT_RTNL();
1291 	BUG_ON(!dev_net(dev));
1292 
1293 	net = dev_net(dev);
1294 
1295 	/* Some auto-enslaved devices e.g. failover slaves are
1296 	 * special, as userspace might rename the device after
1297 	 * the interface had been brought up and running since
1298 	 * the point kernel initiated auto-enslavement. Allow
1299 	 * live name change even when these slave devices are
1300 	 * up and running.
1301 	 *
1302 	 * Typically, users of these auto-enslaving devices
1303 	 * don't actually care about slave name change, as
1304 	 * they are supposed to operate on master interface
1305 	 * directly.
1306 	 */
1307 	if (dev->flags & IFF_UP &&
1308 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309 		return -EBUSY;
1310 
1311 	down_write(&devnet_rename_sem);
1312 
1313 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314 		up_write(&devnet_rename_sem);
1315 		return 0;
1316 	}
1317 
1318 	memcpy(oldname, dev->name, IFNAMSIZ);
1319 
1320 	err = dev_get_valid_name(net, dev, newname);
1321 	if (err < 0) {
1322 		up_write(&devnet_rename_sem);
1323 		return err;
1324 	}
1325 
1326 	if (oldname[0] && !strchr(oldname, '%'))
1327 		netdev_info(dev, "renamed from %s\n", oldname);
1328 
1329 	old_assign_type = dev->name_assign_type;
1330 	dev->name_assign_type = NET_NAME_RENAMED;
1331 
1332 rollback:
1333 	ret = device_rename(&dev->dev, dev->name);
1334 	if (ret) {
1335 		memcpy(dev->name, oldname, IFNAMSIZ);
1336 		dev->name_assign_type = old_assign_type;
1337 		up_write(&devnet_rename_sem);
1338 		return ret;
1339 	}
1340 
1341 	up_write(&devnet_rename_sem);
1342 
1343 	netdev_adjacent_rename_links(dev, oldname);
1344 
1345 	write_lock_bh(&dev_base_lock);
1346 	netdev_name_node_del(dev->name_node);
1347 	write_unlock_bh(&dev_base_lock);
1348 
1349 	synchronize_rcu();
1350 
1351 	write_lock_bh(&dev_base_lock);
1352 	netdev_name_node_add(net, dev->name_node);
1353 	write_unlock_bh(&dev_base_lock);
1354 
1355 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356 	ret = notifier_to_errno(ret);
1357 
1358 	if (ret) {
1359 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1360 		if (err >= 0) {
1361 			err = ret;
1362 			down_write(&devnet_rename_sem);
1363 			memcpy(dev->name, oldname, IFNAMSIZ);
1364 			memcpy(oldname, newname, IFNAMSIZ);
1365 			dev->name_assign_type = old_assign_type;
1366 			old_assign_type = NET_NAME_RENAMED;
1367 			goto rollback;
1368 		} else {
1369 			pr_err("%s: name change rollback failed: %d\n",
1370 			       dev->name, ret);
1371 		}
1372 	}
1373 
1374 	return err;
1375 }
1376 
1377 /**
1378  *	dev_set_alias - change ifalias of a device
1379  *	@dev: device
1380  *	@alias: name up to IFALIASZ
1381  *	@len: limit of bytes to copy from info
1382  *
1383  *	Set ifalias for a device,
1384  */
1385 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386 {
1387 	struct dev_ifalias *new_alias = NULL;
1388 
1389 	if (len >= IFALIASZ)
1390 		return -EINVAL;
1391 
1392 	if (len) {
1393 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 		if (!new_alias)
1395 			return -ENOMEM;
1396 
1397 		memcpy(new_alias->ifalias, alias, len);
1398 		new_alias->ifalias[len] = 0;
1399 	}
1400 
1401 	mutex_lock(&ifalias_mutex);
1402 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 					mutex_is_locked(&ifalias_mutex));
1404 	mutex_unlock(&ifalias_mutex);
1405 
1406 	if (new_alias)
1407 		kfree_rcu(new_alias, rcuhead);
1408 
1409 	return len;
1410 }
1411 EXPORT_SYMBOL(dev_set_alias);
1412 
1413 /**
1414  *	dev_get_alias - get ifalias of a device
1415  *	@dev: device
1416  *	@name: buffer to store name of ifalias
1417  *	@len: size of buffer
1418  *
1419  *	get ifalias for a device.  Caller must make sure dev cannot go
1420  *	away,  e.g. rcu read lock or own a reference count to device.
1421  */
1422 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423 {
1424 	const struct dev_ifalias *alias;
1425 	int ret = 0;
1426 
1427 	rcu_read_lock();
1428 	alias = rcu_dereference(dev->ifalias);
1429 	if (alias)
1430 		ret = snprintf(name, len, "%s", alias->ifalias);
1431 	rcu_read_unlock();
1432 
1433 	return ret;
1434 }
1435 
1436 /**
1437  *	netdev_features_change - device changes features
1438  *	@dev: device to cause notification
1439  *
1440  *	Called to indicate a device has changed features.
1441  */
1442 void netdev_features_change(struct net_device *dev)
1443 {
1444 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445 }
1446 EXPORT_SYMBOL(netdev_features_change);
1447 
1448 /**
1449  *	netdev_state_change - device changes state
1450  *	@dev: device to cause notification
1451  *
1452  *	Called to indicate a device has changed state. This function calls
1453  *	the notifier chains for netdev_chain and sends a NEWLINK message
1454  *	to the routing socket.
1455  */
1456 void netdev_state_change(struct net_device *dev)
1457 {
1458 	if (dev->flags & IFF_UP) {
1459 		struct netdev_notifier_change_info change_info = {
1460 			.info.dev = dev,
1461 		};
1462 
1463 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1464 					      &change_info.info);
1465 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466 	}
1467 }
1468 EXPORT_SYMBOL(netdev_state_change);
1469 
1470 /**
1471  * netdev_notify_peers - notify network peers about existence of @dev
1472  * @dev: network device
1473  *
1474  * Generate traffic such that interested network peers are aware of
1475  * @dev, such as by generating a gratuitous ARP. This may be used when
1476  * a device wants to inform the rest of the network about some sort of
1477  * reconfiguration such as a failover event or virtual machine
1478  * migration.
1479  */
1480 void netdev_notify_peers(struct net_device *dev)
1481 {
1482 	rtnl_lock();
1483 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485 	rtnl_unlock();
1486 }
1487 EXPORT_SYMBOL(netdev_notify_peers);
1488 
1489 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490 {
1491 	const struct net_device_ops *ops = dev->netdev_ops;
1492 	int ret;
1493 
1494 	ASSERT_RTNL();
1495 
1496 	if (!netif_device_present(dev)) {
1497 		/* may be detached because parent is runtime-suspended */
1498 		if (dev->dev.parent)
1499 			pm_runtime_resume(dev->dev.parent);
1500 		if (!netif_device_present(dev))
1501 			return -ENODEV;
1502 	}
1503 
1504 	/* Block netpoll from trying to do any rx path servicing.
1505 	 * If we don't do this there is a chance ndo_poll_controller
1506 	 * or ndo_poll may be running while we open the device
1507 	 */
1508 	netpoll_poll_disable(dev);
1509 
1510 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511 	ret = notifier_to_errno(ret);
1512 	if (ret)
1513 		return ret;
1514 
1515 	set_bit(__LINK_STATE_START, &dev->state);
1516 
1517 	if (ops->ndo_validate_addr)
1518 		ret = ops->ndo_validate_addr(dev);
1519 
1520 	if (!ret && ops->ndo_open)
1521 		ret = ops->ndo_open(dev);
1522 
1523 	netpoll_poll_enable(dev);
1524 
1525 	if (ret)
1526 		clear_bit(__LINK_STATE_START, &dev->state);
1527 	else {
1528 		dev->flags |= IFF_UP;
1529 		dev_set_rx_mode(dev);
1530 		dev_activate(dev);
1531 		add_device_randomness(dev->dev_addr, dev->addr_len);
1532 	}
1533 
1534 	return ret;
1535 }
1536 
1537 /**
1538  *	dev_open	- prepare an interface for use.
1539  *	@dev: device to open
1540  *	@extack: netlink extended ack
1541  *
1542  *	Takes a device from down to up state. The device's private open
1543  *	function is invoked and then the multicast lists are loaded. Finally
1544  *	the device is moved into the up state and a %NETDEV_UP message is
1545  *	sent to the netdev notifier chain.
1546  *
1547  *	Calling this function on an active interface is a nop. On a failure
1548  *	a negative errno code is returned.
1549  */
1550 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551 {
1552 	int ret;
1553 
1554 	if (dev->flags & IFF_UP)
1555 		return 0;
1556 
1557 	ret = __dev_open(dev, extack);
1558 	if (ret < 0)
1559 		return ret;
1560 
1561 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562 	call_netdevice_notifiers(NETDEV_UP, dev);
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(dev_open);
1567 
1568 static void __dev_close_many(struct list_head *head)
1569 {
1570 	struct net_device *dev;
1571 
1572 	ASSERT_RTNL();
1573 	might_sleep();
1574 
1575 	list_for_each_entry(dev, head, close_list) {
1576 		/* Temporarily disable netpoll until the interface is down */
1577 		netpoll_poll_disable(dev);
1578 
1579 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580 
1581 		clear_bit(__LINK_STATE_START, &dev->state);
1582 
1583 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1584 		 * can be even on different cpu. So just clear netif_running().
1585 		 *
1586 		 * dev->stop() will invoke napi_disable() on all of it's
1587 		 * napi_struct instances on this device.
1588 		 */
1589 		smp_mb__after_atomic(); /* Commit netif_running(). */
1590 	}
1591 
1592 	dev_deactivate_many(head);
1593 
1594 	list_for_each_entry(dev, head, close_list) {
1595 		const struct net_device_ops *ops = dev->netdev_ops;
1596 
1597 		/*
1598 		 *	Call the device specific close. This cannot fail.
1599 		 *	Only if device is UP
1600 		 *
1601 		 *	We allow it to be called even after a DETACH hot-plug
1602 		 *	event.
1603 		 */
1604 		if (ops->ndo_stop)
1605 			ops->ndo_stop(dev);
1606 
1607 		dev->flags &= ~IFF_UP;
1608 		netpoll_poll_enable(dev);
1609 	}
1610 }
1611 
1612 static void __dev_close(struct net_device *dev)
1613 {
1614 	LIST_HEAD(single);
1615 
1616 	list_add(&dev->close_list, &single);
1617 	__dev_close_many(&single);
1618 	list_del(&single);
1619 }
1620 
1621 void dev_close_many(struct list_head *head, bool unlink)
1622 {
1623 	struct net_device *dev, *tmp;
1624 
1625 	/* Remove the devices that don't need to be closed */
1626 	list_for_each_entry_safe(dev, tmp, head, close_list)
1627 		if (!(dev->flags & IFF_UP))
1628 			list_del_init(&dev->close_list);
1629 
1630 	__dev_close_many(head);
1631 
1632 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1633 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1635 		if (unlink)
1636 			list_del_init(&dev->close_list);
1637 	}
1638 }
1639 EXPORT_SYMBOL(dev_close_many);
1640 
1641 /**
1642  *	dev_close - shutdown an interface.
1643  *	@dev: device to shutdown
1644  *
1645  *	This function moves an active device into down state. A
1646  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648  *	chain.
1649  */
1650 void dev_close(struct net_device *dev)
1651 {
1652 	if (dev->flags & IFF_UP) {
1653 		LIST_HEAD(single);
1654 
1655 		list_add(&dev->close_list, &single);
1656 		dev_close_many(&single, true);
1657 		list_del(&single);
1658 	}
1659 }
1660 EXPORT_SYMBOL(dev_close);
1661 
1662 
1663 /**
1664  *	dev_disable_lro - disable Large Receive Offload on a device
1665  *	@dev: device
1666  *
1667  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1668  *	called under RTNL.  This is needed if received packets may be
1669  *	forwarded to another interface.
1670  */
1671 void dev_disable_lro(struct net_device *dev)
1672 {
1673 	struct net_device *lower_dev;
1674 	struct list_head *iter;
1675 
1676 	dev->wanted_features &= ~NETIF_F_LRO;
1677 	netdev_update_features(dev);
1678 
1679 	if (unlikely(dev->features & NETIF_F_LRO))
1680 		netdev_WARN(dev, "failed to disable LRO!\n");
1681 
1682 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 		dev_disable_lro(lower_dev);
1684 }
1685 EXPORT_SYMBOL(dev_disable_lro);
1686 
1687 /**
1688  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689  *	@dev: device
1690  *
1691  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1692  *	called under RTNL.  This is needed if Generic XDP is installed on
1693  *	the device.
1694  */
1695 static void dev_disable_gro_hw(struct net_device *dev)
1696 {
1697 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 	netdev_update_features(dev);
1699 
1700 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702 }
1703 
1704 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705 {
1706 #define N(val) 						\
1707 	case NETDEV_##val:				\
1708 		return "NETDEV_" __stringify(val);
1709 	switch (cmd) {
1710 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719 	N(PRE_CHANGEADDR)
1720 	}
1721 #undef N
1722 	return "UNKNOWN_NETDEV_EVENT";
1723 }
1724 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725 
1726 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 				   struct net_device *dev)
1728 {
1729 	struct netdev_notifier_info info = {
1730 		.dev = dev,
1731 	};
1732 
1733 	return nb->notifier_call(nb, val, &info);
1734 }
1735 
1736 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 					     struct net_device *dev)
1738 {
1739 	int err;
1740 
1741 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 	err = notifier_to_errno(err);
1743 	if (err)
1744 		return err;
1745 
1746 	if (!(dev->flags & IFF_UP))
1747 		return 0;
1748 
1749 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 	return 0;
1751 }
1752 
1753 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 						struct net_device *dev)
1755 {
1756 	if (dev->flags & IFF_UP) {
1757 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 					dev);
1759 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 	}
1761 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762 }
1763 
1764 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 						 struct net *net)
1766 {
1767 	struct net_device *dev;
1768 	int err;
1769 
1770 	for_each_netdev(net, dev) {
1771 		err = call_netdevice_register_notifiers(nb, dev);
1772 		if (err)
1773 			goto rollback;
1774 	}
1775 	return 0;
1776 
1777 rollback:
1778 	for_each_netdev_continue_reverse(net, dev)
1779 		call_netdevice_unregister_notifiers(nb, dev);
1780 	return err;
1781 }
1782 
1783 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 						    struct net *net)
1785 {
1786 	struct net_device *dev;
1787 
1788 	for_each_netdev(net, dev)
1789 		call_netdevice_unregister_notifiers(nb, dev);
1790 }
1791 
1792 static int dev_boot_phase = 1;
1793 
1794 /**
1795  * register_netdevice_notifier - register a network notifier block
1796  * @nb: notifier
1797  *
1798  * Register a notifier to be called when network device events occur.
1799  * The notifier passed is linked into the kernel structures and must
1800  * not be reused until it has been unregistered. A negative errno code
1801  * is returned on a failure.
1802  *
1803  * When registered all registration and up events are replayed
1804  * to the new notifier to allow device to have a race free
1805  * view of the network device list.
1806  */
1807 
1808 int register_netdevice_notifier(struct notifier_block *nb)
1809 {
1810 	struct net *net;
1811 	int err;
1812 
1813 	/* Close race with setup_net() and cleanup_net() */
1814 	down_write(&pernet_ops_rwsem);
1815 	rtnl_lock();
1816 	err = raw_notifier_chain_register(&netdev_chain, nb);
1817 	if (err)
1818 		goto unlock;
1819 	if (dev_boot_phase)
1820 		goto unlock;
1821 	for_each_net(net) {
1822 		err = call_netdevice_register_net_notifiers(nb, net);
1823 		if (err)
1824 			goto rollback;
1825 	}
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 
1832 rollback:
1833 	for_each_net_continue_reverse(net)
1834 		call_netdevice_unregister_net_notifiers(nb, net);
1835 
1836 	raw_notifier_chain_unregister(&netdev_chain, nb);
1837 	goto unlock;
1838 }
1839 EXPORT_SYMBOL(register_netdevice_notifier);
1840 
1841 /**
1842  * unregister_netdevice_notifier - unregister a network notifier block
1843  * @nb: notifier
1844  *
1845  * Unregister a notifier previously registered by
1846  * register_netdevice_notifier(). The notifier is unlinked into the
1847  * kernel structures and may then be reused. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * After unregistering unregister and down device events are synthesized
1851  * for all devices on the device list to the removed notifier to remove
1852  * the need for special case cleanup code.
1853  */
1854 
1855 int unregister_netdevice_notifier(struct notifier_block *nb)
1856 {
1857 	struct net *net;
1858 	int err;
1859 
1860 	/* Close race with setup_net() and cleanup_net() */
1861 	down_write(&pernet_ops_rwsem);
1862 	rtnl_lock();
1863 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864 	if (err)
1865 		goto unlock;
1866 
1867 	for_each_net(net)
1868 		call_netdevice_unregister_net_notifiers(nb, net);
1869 
1870 unlock:
1871 	rtnl_unlock();
1872 	up_write(&pernet_ops_rwsem);
1873 	return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier);
1876 
1877 static int __register_netdevice_notifier_net(struct net *net,
1878 					     struct notifier_block *nb,
1879 					     bool ignore_call_fail)
1880 {
1881 	int err;
1882 
1883 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 	if (err)
1885 		return err;
1886 	if (dev_boot_phase)
1887 		return 0;
1888 
1889 	err = call_netdevice_register_net_notifiers(nb, net);
1890 	if (err && !ignore_call_fail)
1891 		goto chain_unregister;
1892 
1893 	return 0;
1894 
1895 chain_unregister:
1896 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 	return err;
1898 }
1899 
1900 static int __unregister_netdevice_notifier_net(struct net *net,
1901 					       struct notifier_block *nb)
1902 {
1903 	int err;
1904 
1905 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 	if (err)
1907 		return err;
1908 
1909 	call_netdevice_unregister_net_notifiers(nb, net);
1910 	return 0;
1911 }
1912 
1913 /**
1914  * register_netdevice_notifier_net - register a per-netns network notifier block
1915  * @net: network namespace
1916  * @nb: notifier
1917  *
1918  * Register a notifier to be called when network device events occur.
1919  * The notifier passed is linked into the kernel structures and must
1920  * not be reused until it has been unregistered. A negative errno code
1921  * is returned on a failure.
1922  *
1923  * When registered all registration and up events are replayed
1924  * to the new notifier to allow device to have a race free
1925  * view of the network device list.
1926  */
1927 
1928 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929 {
1930 	int err;
1931 
1932 	rtnl_lock();
1933 	err = __register_netdevice_notifier_net(net, nb, false);
1934 	rtnl_unlock();
1935 	return err;
1936 }
1937 EXPORT_SYMBOL(register_netdevice_notifier_net);
1938 
1939 /**
1940  * unregister_netdevice_notifier_net - unregister a per-netns
1941  *                                     network notifier block
1942  * @net: network namespace
1943  * @nb: notifier
1944  *
1945  * Unregister a notifier previously registered by
1946  * register_netdevice_notifier(). The notifier is unlinked into the
1947  * kernel structures and may then be reused. A negative errno code
1948  * is returned on a failure.
1949  *
1950  * After unregistering unregister and down device events are synthesized
1951  * for all devices on the device list to the removed notifier to remove
1952  * the need for special case cleanup code.
1953  */
1954 
1955 int unregister_netdevice_notifier_net(struct net *net,
1956 				      struct notifier_block *nb)
1957 {
1958 	int err;
1959 
1960 	rtnl_lock();
1961 	err = __unregister_netdevice_notifier_net(net, nb);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966 
1967 int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 					struct notifier_block *nb,
1969 					struct netdev_net_notifier *nn)
1970 {
1971 	int err;
1972 
1973 	rtnl_lock();
1974 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 	if (!err) {
1976 		nn->nb = nb;
1977 		list_add(&nn->list, &dev->net_notifier_list);
1978 	}
1979 	rtnl_unlock();
1980 	return err;
1981 }
1982 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983 
1984 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 					  struct notifier_block *nb,
1986 					  struct netdev_net_notifier *nn)
1987 {
1988 	int err;
1989 
1990 	rtnl_lock();
1991 	list_del(&nn->list);
1992 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997 
1998 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 					     struct net *net)
2000 {
2001 	struct netdev_net_notifier *nn;
2002 
2003 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 		__register_netdevice_notifier_net(net, nn->nb, true);
2006 	}
2007 }
2008 
2009 /**
2010  *	call_netdevice_notifiers_info - call all network notifier blocks
2011  *	@val: value passed unmodified to notifier function
2012  *	@info: notifier information data
2013  *
2014  *	Call all network notifier blocks.  Parameters and return value
2015  *	are as for raw_notifier_call_chain().
2016  */
2017 
2018 static int call_netdevice_notifiers_info(unsigned long val,
2019 					 struct netdev_notifier_info *info)
2020 {
2021 	struct net *net = dev_net(info->dev);
2022 	int ret;
2023 
2024 	ASSERT_RTNL();
2025 
2026 	/* Run per-netns notifier block chain first, then run the global one.
2027 	 * Hopefully, one day, the global one is going to be removed after
2028 	 * all notifier block registrators get converted to be per-netns.
2029 	 */
2030 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 	if (ret & NOTIFY_STOP_MASK)
2032 		return ret;
2033 	return raw_notifier_call_chain(&netdev_chain, val, info);
2034 }
2035 
2036 static int call_netdevice_notifiers_extack(unsigned long val,
2037 					   struct net_device *dev,
2038 					   struct netlink_ext_ack *extack)
2039 {
2040 	struct netdev_notifier_info info = {
2041 		.dev = dev,
2042 		.extack = extack,
2043 	};
2044 
2045 	return call_netdevice_notifiers_info(val, &info);
2046 }
2047 
2048 /**
2049  *	call_netdevice_notifiers - call all network notifier blocks
2050  *      @val: value passed unmodified to notifier function
2051  *      @dev: net_device pointer passed unmodified to notifier function
2052  *
2053  *	Call all network notifier blocks.  Parameters and return value
2054  *	are as for raw_notifier_call_chain().
2055  */
2056 
2057 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058 {
2059 	return call_netdevice_notifiers_extack(val, dev, NULL);
2060 }
2061 EXPORT_SYMBOL(call_netdevice_notifiers);
2062 
2063 /**
2064  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2065  *	@val: value passed unmodified to notifier function
2066  *	@dev: net_device pointer passed unmodified to notifier function
2067  *	@arg: additional u32 argument passed to the notifier function
2068  *
2069  *	Call all network notifier blocks.  Parameters and return value
2070  *	are as for raw_notifier_call_chain().
2071  */
2072 static int call_netdevice_notifiers_mtu(unsigned long val,
2073 					struct net_device *dev, u32 arg)
2074 {
2075 	struct netdev_notifier_info_ext info = {
2076 		.info.dev = dev,
2077 		.ext.mtu = arg,
2078 	};
2079 
2080 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081 
2082 	return call_netdevice_notifiers_info(val, &info.info);
2083 }
2084 
2085 #ifdef CONFIG_NET_INGRESS
2086 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087 
2088 void net_inc_ingress_queue(void)
2089 {
2090 	static_branch_inc(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093 
2094 void net_dec_ingress_queue(void)
2095 {
2096 	static_branch_dec(&ingress_needed_key);
2097 }
2098 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099 #endif
2100 
2101 #ifdef CONFIG_NET_EGRESS
2102 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103 
2104 void net_inc_egress_queue(void)
2105 {
2106 	static_branch_inc(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109 
2110 void net_dec_egress_queue(void)
2111 {
2112 	static_branch_dec(&egress_needed_key);
2113 }
2114 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115 #endif
2116 
2117 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118 #ifdef CONFIG_JUMP_LABEL
2119 static atomic_t netstamp_needed_deferred;
2120 static atomic_t netstamp_wanted;
2121 static void netstamp_clear(struct work_struct *work)
2122 {
2123 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124 	int wanted;
2125 
2126 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 	if (wanted > 0)
2128 		static_branch_enable(&netstamp_needed_key);
2129 	else
2130 		static_branch_disable(&netstamp_needed_key);
2131 }
2132 static DECLARE_WORK(netstamp_work, netstamp_clear);
2133 #endif
2134 
2135 void net_enable_timestamp(void)
2136 {
2137 #ifdef CONFIG_JUMP_LABEL
2138 	int wanted;
2139 
2140 	while (1) {
2141 		wanted = atomic_read(&netstamp_wanted);
2142 		if (wanted <= 0)
2143 			break;
2144 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 			return;
2146 	}
2147 	atomic_inc(&netstamp_needed_deferred);
2148 	schedule_work(&netstamp_work);
2149 #else
2150 	static_branch_inc(&netstamp_needed_key);
2151 #endif
2152 }
2153 EXPORT_SYMBOL(net_enable_timestamp);
2154 
2155 void net_disable_timestamp(void)
2156 {
2157 #ifdef CONFIG_JUMP_LABEL
2158 	int wanted;
2159 
2160 	while (1) {
2161 		wanted = atomic_read(&netstamp_wanted);
2162 		if (wanted <= 1)
2163 			break;
2164 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 			return;
2166 	}
2167 	atomic_dec(&netstamp_needed_deferred);
2168 	schedule_work(&netstamp_work);
2169 #else
2170 	static_branch_dec(&netstamp_needed_key);
2171 #endif
2172 }
2173 EXPORT_SYMBOL(net_disable_timestamp);
2174 
2175 static inline void net_timestamp_set(struct sk_buff *skb)
2176 {
2177 	skb->tstamp = 0;
2178 	if (static_branch_unlikely(&netstamp_needed_key))
2179 		__net_timestamp(skb);
2180 }
2181 
2182 #define net_timestamp_check(COND, SKB)				\
2183 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2184 		if ((COND) && !(SKB)->tstamp)			\
2185 			__net_timestamp(SKB);			\
2186 	}							\
2187 
2188 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189 {
2190 	unsigned int len;
2191 
2192 	if (!(dev->flags & IFF_UP))
2193 		return false;
2194 
2195 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 	if (skb->len <= len)
2197 		return true;
2198 
2199 	/* if TSO is enabled, we don't care about the length as the packet
2200 	 * could be forwarded without being segmented before
2201 	 */
2202 	if (skb_is_gso(skb))
2203 		return true;
2204 
2205 	return false;
2206 }
2207 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208 
2209 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210 {
2211 	int ret = ____dev_forward_skb(dev, skb);
2212 
2213 	if (likely(!ret)) {
2214 		skb->protocol = eth_type_trans(skb, dev);
2215 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 	}
2217 
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221 
2222 /**
2223  * dev_forward_skb - loopback an skb to another netif
2224  *
2225  * @dev: destination network device
2226  * @skb: buffer to forward
2227  *
2228  * return values:
2229  *	NET_RX_SUCCESS	(no congestion)
2230  *	NET_RX_DROP     (packet was dropped, but freed)
2231  *
2232  * dev_forward_skb can be used for injecting an skb from the
2233  * start_xmit function of one device into the receive queue
2234  * of another device.
2235  *
2236  * The receiving device may be in another namespace, so
2237  * we have to clear all information in the skb that could
2238  * impact namespace isolation.
2239  */
2240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241 {
2242 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243 }
2244 EXPORT_SYMBOL_GPL(dev_forward_skb);
2245 
2246 static inline int deliver_skb(struct sk_buff *skb,
2247 			      struct packet_type *pt_prev,
2248 			      struct net_device *orig_dev)
2249 {
2250 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251 		return -ENOMEM;
2252 	refcount_inc(&skb->users);
2253 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254 }
2255 
2256 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 					  struct packet_type **pt,
2258 					  struct net_device *orig_dev,
2259 					  __be16 type,
2260 					  struct list_head *ptype_list)
2261 {
2262 	struct packet_type *ptype, *pt_prev = *pt;
2263 
2264 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 		if (ptype->type != type)
2266 			continue;
2267 		if (pt_prev)
2268 			deliver_skb(skb, pt_prev, orig_dev);
2269 		pt_prev = ptype;
2270 	}
2271 	*pt = pt_prev;
2272 }
2273 
2274 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275 {
2276 	if (!ptype->af_packet_priv || !skb->sk)
2277 		return false;
2278 
2279 	if (ptype->id_match)
2280 		return ptype->id_match(ptype, skb->sk);
2281 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 		return true;
2283 
2284 	return false;
2285 }
2286 
2287 /**
2288  * dev_nit_active - return true if any network interface taps are in use
2289  *
2290  * @dev: network device to check for the presence of taps
2291  */
2292 bool dev_nit_active(struct net_device *dev)
2293 {
2294 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295 }
2296 EXPORT_SYMBOL_GPL(dev_nit_active);
2297 
2298 /*
2299  *	Support routine. Sends outgoing frames to any network
2300  *	taps currently in use.
2301  */
2302 
2303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304 {
2305 	struct packet_type *ptype;
2306 	struct sk_buff *skb2 = NULL;
2307 	struct packet_type *pt_prev = NULL;
2308 	struct list_head *ptype_list = &ptype_all;
2309 
2310 	rcu_read_lock();
2311 again:
2312 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2313 		if (ptype->ignore_outgoing)
2314 			continue;
2315 
2316 		/* Never send packets back to the socket
2317 		 * they originated from - MvS (miquels@drinkel.ow.org)
2318 		 */
2319 		if (skb_loop_sk(ptype, skb))
2320 			continue;
2321 
2322 		if (pt_prev) {
2323 			deliver_skb(skb2, pt_prev, skb->dev);
2324 			pt_prev = ptype;
2325 			continue;
2326 		}
2327 
2328 		/* need to clone skb, done only once */
2329 		skb2 = skb_clone(skb, GFP_ATOMIC);
2330 		if (!skb2)
2331 			goto out_unlock;
2332 
2333 		net_timestamp_set(skb2);
2334 
2335 		/* skb->nh should be correctly
2336 		 * set by sender, so that the second statement is
2337 		 * just protection against buggy protocols.
2338 		 */
2339 		skb_reset_mac_header(skb2);
2340 
2341 		if (skb_network_header(skb2) < skb2->data ||
2342 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 					     ntohs(skb2->protocol),
2345 					     dev->name);
2346 			skb_reset_network_header(skb2);
2347 		}
2348 
2349 		skb2->transport_header = skb2->network_header;
2350 		skb2->pkt_type = PACKET_OUTGOING;
2351 		pt_prev = ptype;
2352 	}
2353 
2354 	if (ptype_list == &ptype_all) {
2355 		ptype_list = &dev->ptype_all;
2356 		goto again;
2357 	}
2358 out_unlock:
2359 	if (pt_prev) {
2360 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 		else
2363 			kfree_skb(skb2);
2364 	}
2365 	rcu_read_unlock();
2366 }
2367 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368 
2369 /**
2370  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371  * @dev: Network device
2372  * @txq: number of queues available
2373  *
2374  * If real_num_tx_queues is changed the tc mappings may no longer be
2375  * valid. To resolve this verify the tc mapping remains valid and if
2376  * not NULL the mapping. With no priorities mapping to this
2377  * offset/count pair it will no longer be used. In the worst case TC0
2378  * is invalid nothing can be done so disable priority mappings. If is
2379  * expected that drivers will fix this mapping if they can before
2380  * calling netif_set_real_num_tx_queues.
2381  */
2382 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383 {
2384 	int i;
2385 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386 
2387 	/* If TC0 is invalidated disable TC mapping */
2388 	if (tc->offset + tc->count > txq) {
2389 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390 		dev->num_tc = 0;
2391 		return;
2392 	}
2393 
2394 	/* Invalidated prio to tc mappings set to TC0 */
2395 	for (i = 1; i < TC_BITMASK + 1; i++) {
2396 		int q = netdev_get_prio_tc_map(dev, i);
2397 
2398 		tc = &dev->tc_to_txq[q];
2399 		if (tc->offset + tc->count > txq) {
2400 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 				i, q);
2402 			netdev_set_prio_tc_map(dev, i, 0);
2403 		}
2404 	}
2405 }
2406 
2407 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408 {
2409 	if (dev->num_tc) {
2410 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 		int i;
2412 
2413 		/* walk through the TCs and see if it falls into any of them */
2414 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 			if ((txq - tc->offset) < tc->count)
2416 				return i;
2417 		}
2418 
2419 		/* didn't find it, just return -1 to indicate no match */
2420 		return -1;
2421 	}
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(netdev_txq_to_tc);
2426 
2427 #ifdef CONFIG_XPS
2428 struct static_key xps_needed __read_mostly;
2429 EXPORT_SYMBOL(xps_needed);
2430 struct static_key xps_rxqs_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_rxqs_needed);
2432 static DEFINE_MUTEX(xps_map_mutex);
2433 #define xmap_dereference(P)		\
2434 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435 
2436 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 			     int tci, u16 index)
2438 {
2439 	struct xps_map *map = NULL;
2440 	int pos;
2441 
2442 	if (dev_maps)
2443 		map = xmap_dereference(dev_maps->attr_map[tci]);
2444 	if (!map)
2445 		return false;
2446 
2447 	for (pos = map->len; pos--;) {
2448 		if (map->queues[pos] != index)
2449 			continue;
2450 
2451 		if (map->len > 1) {
2452 			map->queues[pos] = map->queues[--map->len];
2453 			break;
2454 		}
2455 
2456 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457 		kfree_rcu(map, rcu);
2458 		return false;
2459 	}
2460 
2461 	return true;
2462 }
2463 
2464 static bool remove_xps_queue_cpu(struct net_device *dev,
2465 				 struct xps_dev_maps *dev_maps,
2466 				 int cpu, u16 offset, u16 count)
2467 {
2468 	int num_tc = dev->num_tc ? : 1;
2469 	bool active = false;
2470 	int tci;
2471 
2472 	for (tci = cpu * num_tc; num_tc--; tci++) {
2473 		int i, j;
2474 
2475 		for (i = count, j = offset; i--; j++) {
2476 			if (!remove_xps_queue(dev_maps, tci, j))
2477 				break;
2478 		}
2479 
2480 		active |= i < 0;
2481 	}
2482 
2483 	return active;
2484 }
2485 
2486 static void reset_xps_maps(struct net_device *dev,
2487 			   struct xps_dev_maps *dev_maps,
2488 			   bool is_rxqs_map)
2489 {
2490 	if (is_rxqs_map) {
2491 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 	} else {
2494 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 	}
2496 	static_key_slow_dec_cpuslocked(&xps_needed);
2497 	kfree_rcu(dev_maps, rcu);
2498 }
2499 
2500 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 			   u16 offset, u16 count, bool is_rxqs_map)
2503 {
2504 	bool active = false;
2505 	int i, j;
2506 
2507 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 	     j < nr_ids;)
2509 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 					       count);
2511 	if (!active)
2512 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513 
2514 	if (!is_rxqs_map) {
2515 		for (i = offset + (count - 1); count--; i--) {
2516 			netdev_queue_numa_node_write(
2517 				netdev_get_tx_queue(dev, i),
2518 				NUMA_NO_NODE);
2519 		}
2520 	}
2521 }
2522 
2523 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 				   u16 count)
2525 {
2526 	const unsigned long *possible_mask = NULL;
2527 	struct xps_dev_maps *dev_maps;
2528 	unsigned int nr_ids;
2529 
2530 	if (!static_key_false(&xps_needed))
2531 		return;
2532 
2533 	cpus_read_lock();
2534 	mutex_lock(&xps_map_mutex);
2535 
2536 	if (static_key_false(&xps_rxqs_needed)) {
2537 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 		if (dev_maps) {
2539 			nr_ids = dev->num_rx_queues;
2540 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 				       offset, count, true);
2542 		}
2543 	}
2544 
2545 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 	if (!dev_maps)
2547 		goto out_no_maps;
2548 
2549 	if (num_possible_cpus() > 1)
2550 		possible_mask = cpumask_bits(cpu_possible_mask);
2551 	nr_ids = nr_cpu_ids;
2552 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 		       false);
2554 
2555 out_no_maps:
2556 	mutex_unlock(&xps_map_mutex);
2557 	cpus_read_unlock();
2558 }
2559 
2560 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561 {
2562 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563 }
2564 
2565 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 				      u16 index, bool is_rxqs_map)
2567 {
2568 	struct xps_map *new_map;
2569 	int alloc_len = XPS_MIN_MAP_ALLOC;
2570 	int i, pos;
2571 
2572 	for (pos = 0; map && pos < map->len; pos++) {
2573 		if (map->queues[pos] != index)
2574 			continue;
2575 		return map;
2576 	}
2577 
2578 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579 	if (map) {
2580 		if (pos < map->alloc_len)
2581 			return map;
2582 
2583 		alloc_len = map->alloc_len * 2;
2584 	}
2585 
2586 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 	 *  map
2588 	 */
2589 	if (is_rxqs_map)
2590 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 	else
2592 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 				       cpu_to_node(attr_index));
2594 	if (!new_map)
2595 		return NULL;
2596 
2597 	for (i = 0; i < pos; i++)
2598 		new_map->queues[i] = map->queues[i];
2599 	new_map->alloc_len = alloc_len;
2600 	new_map->len = pos;
2601 
2602 	return new_map;
2603 }
2604 
2605 /* Must be called under cpus_read_lock */
2606 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 			  u16 index, bool is_rxqs_map)
2608 {
2609 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611 	int i, j, tci, numa_node_id = -2;
2612 	int maps_sz, num_tc = 1, tc = 0;
2613 	struct xps_map *map, *new_map;
2614 	bool active = false;
2615 	unsigned int nr_ids;
2616 
2617 	if (dev->num_tc) {
2618 		/* Do not allow XPS on subordinate device directly */
2619 		num_tc = dev->num_tc;
2620 		if (num_tc < 0)
2621 			return -EINVAL;
2622 
2623 		/* If queue belongs to subordinate dev use its map */
2624 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625 
2626 		tc = netdev_txq_to_tc(dev, index);
2627 		if (tc < 0)
2628 			return -EINVAL;
2629 	}
2630 
2631 	mutex_lock(&xps_map_mutex);
2632 	if (is_rxqs_map) {
2633 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 		nr_ids = dev->num_rx_queues;
2636 	} else {
2637 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 		if (num_possible_cpus() > 1) {
2639 			online_mask = cpumask_bits(cpu_online_mask);
2640 			possible_mask = cpumask_bits(cpu_possible_mask);
2641 		}
2642 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 		nr_ids = nr_cpu_ids;
2644 	}
2645 
2646 	if (maps_sz < L1_CACHE_BYTES)
2647 		maps_sz = L1_CACHE_BYTES;
2648 
2649 	/* allocate memory for queue storage */
2650 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 	     j < nr_ids;) {
2652 		if (!new_dev_maps)
2653 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654 		if (!new_dev_maps) {
2655 			mutex_unlock(&xps_map_mutex);
2656 			return -ENOMEM;
2657 		}
2658 
2659 		tci = j * num_tc + tc;
2660 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661 				 NULL;
2662 
2663 		map = expand_xps_map(map, j, index, is_rxqs_map);
2664 		if (!map)
2665 			goto error;
2666 
2667 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668 	}
2669 
2670 	if (!new_dev_maps)
2671 		goto out_no_new_maps;
2672 
2673 	if (!dev_maps) {
2674 		/* Increment static keys at most once per type */
2675 		static_key_slow_inc_cpuslocked(&xps_needed);
2676 		if (is_rxqs_map)
2677 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 	}
2679 
2680 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 	     j < nr_ids;) {
2682 		/* copy maps belonging to foreign traffic classes */
2683 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684 			/* fill in the new device map from the old device map */
2685 			map = xmap_dereference(dev_maps->attr_map[tci]);
2686 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687 		}
2688 
2689 		/* We need to explicitly update tci as prevous loop
2690 		 * could break out early if dev_maps is NULL.
2691 		 */
2692 		tci = j * num_tc + tc;
2693 
2694 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2696 			/* add tx-queue to CPU/rx-queue maps */
2697 			int pos = 0;
2698 
2699 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 			while ((pos < map->len) && (map->queues[pos] != index))
2701 				pos++;
2702 
2703 			if (pos == map->len)
2704 				map->queues[map->len++] = index;
2705 #ifdef CONFIG_NUMA
2706 			if (!is_rxqs_map) {
2707 				if (numa_node_id == -2)
2708 					numa_node_id = cpu_to_node(j);
2709 				else if (numa_node_id != cpu_to_node(j))
2710 					numa_node_id = -1;
2711 			}
2712 #endif
2713 		} else if (dev_maps) {
2714 			/* fill in the new device map from the old device map */
2715 			map = xmap_dereference(dev_maps->attr_map[tci]);
2716 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717 		}
2718 
2719 		/* copy maps belonging to foreign traffic classes */
2720 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 			/* fill in the new device map from the old device map */
2722 			map = xmap_dereference(dev_maps->attr_map[tci]);
2723 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 		}
2725 	}
2726 
2727 	if (is_rxqs_map)
2728 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 	else
2730 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731 
2732 	/* Cleanup old maps */
2733 	if (!dev_maps)
2734 		goto out_no_old_maps;
2735 
2736 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 	     j < nr_ids;) {
2738 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 			map = xmap_dereference(dev_maps->attr_map[tci]);
2741 			if (map && map != new_map)
2742 				kfree_rcu(map, rcu);
2743 		}
2744 	}
2745 
2746 	kfree_rcu(dev_maps, rcu);
2747 
2748 out_no_old_maps:
2749 	dev_maps = new_dev_maps;
2750 	active = true;
2751 
2752 out_no_new_maps:
2753 	if (!is_rxqs_map) {
2754 		/* update Tx queue numa node */
2755 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 					     (numa_node_id >= 0) ?
2757 					     numa_node_id : NUMA_NO_NODE);
2758 	}
2759 
2760 	if (!dev_maps)
2761 		goto out_no_maps;
2762 
2763 	/* removes tx-queue from unused CPUs/rx-queues */
2764 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 	     j < nr_ids;) {
2766 		for (i = tc, tci = j * num_tc; i--; tci++)
2767 			active |= remove_xps_queue(dev_maps, tci, index);
2768 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 		    !netif_attr_test_online(j, online_mask, nr_ids))
2770 			active |= remove_xps_queue(dev_maps, tci, index);
2771 		for (i = num_tc - tc, tci++; --i; tci++)
2772 			active |= remove_xps_queue(dev_maps, tci, index);
2773 	}
2774 
2775 	/* free map if not active */
2776 	if (!active)
2777 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778 
2779 out_no_maps:
2780 	mutex_unlock(&xps_map_mutex);
2781 
2782 	return 0;
2783 error:
2784 	/* remove any maps that we added */
2785 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 	     j < nr_ids;) {
2787 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789 			map = dev_maps ?
2790 			      xmap_dereference(dev_maps->attr_map[tci]) :
2791 			      NULL;
2792 			if (new_map && new_map != map)
2793 				kfree(new_map);
2794 		}
2795 	}
2796 
2797 	mutex_unlock(&xps_map_mutex);
2798 
2799 	kfree(new_dev_maps);
2800 	return -ENOMEM;
2801 }
2802 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803 
2804 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 			u16 index)
2806 {
2807 	int ret;
2808 
2809 	cpus_read_lock();
2810 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 	cpus_read_unlock();
2812 
2813 	return ret;
2814 }
2815 EXPORT_SYMBOL(netif_set_xps_queue);
2816 
2817 #endif
2818 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819 {
2820 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821 
2822 	/* Unbind any subordinate channels */
2823 	while (txq-- != &dev->_tx[0]) {
2824 		if (txq->sb_dev)
2825 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 	}
2827 }
2828 
2829 void netdev_reset_tc(struct net_device *dev)
2830 {
2831 #ifdef CONFIG_XPS
2832 	netif_reset_xps_queues_gt(dev, 0);
2833 #endif
2834 	netdev_unbind_all_sb_channels(dev);
2835 
2836 	/* Reset TC configuration of device */
2837 	dev->num_tc = 0;
2838 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840 }
2841 EXPORT_SYMBOL(netdev_reset_tc);
2842 
2843 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844 {
2845 	if (tc >= dev->num_tc)
2846 		return -EINVAL;
2847 
2848 #ifdef CONFIG_XPS
2849 	netif_reset_xps_queues(dev, offset, count);
2850 #endif
2851 	dev->tc_to_txq[tc].count = count;
2852 	dev->tc_to_txq[tc].offset = offset;
2853 	return 0;
2854 }
2855 EXPORT_SYMBOL(netdev_set_tc_queue);
2856 
2857 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858 {
2859 	if (num_tc > TC_MAX_QUEUE)
2860 		return -EINVAL;
2861 
2862 #ifdef CONFIG_XPS
2863 	netif_reset_xps_queues_gt(dev, 0);
2864 #endif
2865 	netdev_unbind_all_sb_channels(dev);
2866 
2867 	dev->num_tc = num_tc;
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_set_num_tc);
2871 
2872 void netdev_unbind_sb_channel(struct net_device *dev,
2873 			      struct net_device *sb_dev)
2874 {
2875 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876 
2877 #ifdef CONFIG_XPS
2878 	netif_reset_xps_queues_gt(sb_dev, 0);
2879 #endif
2880 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882 
2883 	while (txq-- != &dev->_tx[0]) {
2884 		if (txq->sb_dev == sb_dev)
2885 			txq->sb_dev = NULL;
2886 	}
2887 }
2888 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889 
2890 int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 				 struct net_device *sb_dev,
2892 				 u8 tc, u16 count, u16 offset)
2893 {
2894 	/* Make certain the sb_dev and dev are already configured */
2895 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 		return -EINVAL;
2897 
2898 	/* We cannot hand out queues we don't have */
2899 	if ((offset + count) > dev->real_num_tx_queues)
2900 		return -EINVAL;
2901 
2902 	/* Record the mapping */
2903 	sb_dev->tc_to_txq[tc].count = count;
2904 	sb_dev->tc_to_txq[tc].offset = offset;
2905 
2906 	/* Provide a way for Tx queue to find the tc_to_txq map or
2907 	 * XPS map for itself.
2908 	 */
2909 	while (count--)
2910 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911 
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915 
2916 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917 {
2918 	/* Do not use a multiqueue device to represent a subordinate channel */
2919 	if (netif_is_multiqueue(dev))
2920 		return -ENODEV;
2921 
2922 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2923 	 * Channel 0 is meant to be "native" mode and used only to represent
2924 	 * the main root device. We allow writing 0 to reset the device back
2925 	 * to normal mode after being used as a subordinate channel.
2926 	 */
2927 	if (channel > S16_MAX)
2928 		return -EINVAL;
2929 
2930 	dev->num_tc = -channel;
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(netdev_set_sb_channel);
2935 
2936 /*
2937  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939  */
2940 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941 {
2942 	bool disabling;
2943 	int rc;
2944 
2945 	disabling = txq < dev->real_num_tx_queues;
2946 
2947 	if (txq < 1 || txq > dev->num_tx_queues)
2948 		return -EINVAL;
2949 
2950 	if (dev->reg_state == NETREG_REGISTERED ||
2951 	    dev->reg_state == NETREG_UNREGISTERING) {
2952 		ASSERT_RTNL();
2953 
2954 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 						  txq);
2956 		if (rc)
2957 			return rc;
2958 
2959 		if (dev->num_tc)
2960 			netif_setup_tc(dev, txq);
2961 
2962 		dev->real_num_tx_queues = txq;
2963 
2964 		if (disabling) {
2965 			synchronize_net();
2966 			qdisc_reset_all_tx_gt(dev, txq);
2967 #ifdef CONFIG_XPS
2968 			netif_reset_xps_queues_gt(dev, txq);
2969 #endif
2970 		}
2971 	} else {
2972 		dev->real_num_tx_queues = txq;
2973 	}
2974 
2975 	return 0;
2976 }
2977 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978 
2979 #ifdef CONFIG_SYSFS
2980 /**
2981  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2982  *	@dev: Network device
2983  *	@rxq: Actual number of RX queues
2984  *
2985  *	This must be called either with the rtnl_lock held or before
2986  *	registration of the net device.  Returns 0 on success, or a
2987  *	negative error code.  If called before registration, it always
2988  *	succeeds.
2989  */
2990 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991 {
2992 	int rc;
2993 
2994 	if (rxq < 1 || rxq > dev->num_rx_queues)
2995 		return -EINVAL;
2996 
2997 	if (dev->reg_state == NETREG_REGISTERED) {
2998 		ASSERT_RTNL();
2999 
3000 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 						  rxq);
3002 		if (rc)
3003 			return rc;
3004 	}
3005 
3006 	dev->real_num_rx_queues = rxq;
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010 #endif
3011 
3012 /**
3013  * netif_get_num_default_rss_queues - default number of RSS queues
3014  *
3015  * This routine should set an upper limit on the number of RSS queues
3016  * used by default by multiqueue devices.
3017  */
3018 int netif_get_num_default_rss_queues(void)
3019 {
3020 	return is_kdump_kernel() ?
3021 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022 }
3023 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024 
3025 static void __netif_reschedule(struct Qdisc *q)
3026 {
3027 	struct softnet_data *sd;
3028 	unsigned long flags;
3029 
3030 	local_irq_save(flags);
3031 	sd = this_cpu_ptr(&softnet_data);
3032 	q->next_sched = NULL;
3033 	*sd->output_queue_tailp = q;
3034 	sd->output_queue_tailp = &q->next_sched;
3035 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 	local_irq_restore(flags);
3037 }
3038 
3039 void __netif_schedule(struct Qdisc *q)
3040 {
3041 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 		__netif_reschedule(q);
3043 }
3044 EXPORT_SYMBOL(__netif_schedule);
3045 
3046 struct dev_kfree_skb_cb {
3047 	enum skb_free_reason reason;
3048 };
3049 
3050 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051 {
3052 	return (struct dev_kfree_skb_cb *)skb->cb;
3053 }
3054 
3055 void netif_schedule_queue(struct netdev_queue *txq)
3056 {
3057 	rcu_read_lock();
3058 	if (!netif_xmit_stopped(txq)) {
3059 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3060 
3061 		__netif_schedule(q);
3062 	}
3063 	rcu_read_unlock();
3064 }
3065 EXPORT_SYMBOL(netif_schedule_queue);
3066 
3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068 {
3069 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 		struct Qdisc *q;
3071 
3072 		rcu_read_lock();
3073 		q = rcu_dereference(dev_queue->qdisc);
3074 		__netif_schedule(q);
3075 		rcu_read_unlock();
3076 	}
3077 }
3078 EXPORT_SYMBOL(netif_tx_wake_queue);
3079 
3080 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081 {
3082 	unsigned long flags;
3083 
3084 	if (unlikely(!skb))
3085 		return;
3086 
3087 	if (likely(refcount_read(&skb->users) == 1)) {
3088 		smp_rmb();
3089 		refcount_set(&skb->users, 0);
3090 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3091 		return;
3092 	}
3093 	get_kfree_skb_cb(skb)->reason = reason;
3094 	local_irq_save(flags);
3095 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 	__this_cpu_write(softnet_data.completion_queue, skb);
3097 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 	local_irq_restore(flags);
3099 }
3100 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101 
3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103 {
3104 	if (in_irq() || irqs_disabled())
3105 		__dev_kfree_skb_irq(skb, reason);
3106 	else
3107 		dev_kfree_skb(skb);
3108 }
3109 EXPORT_SYMBOL(__dev_kfree_skb_any);
3110 
3111 
3112 /**
3113  * netif_device_detach - mark device as removed
3114  * @dev: network device
3115  *
3116  * Mark device as removed from system and therefore no longer available.
3117  */
3118 void netif_device_detach(struct net_device *dev)
3119 {
3120 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 	    netif_running(dev)) {
3122 		netif_tx_stop_all_queues(dev);
3123 	}
3124 }
3125 EXPORT_SYMBOL(netif_device_detach);
3126 
3127 /**
3128  * netif_device_attach - mark device as attached
3129  * @dev: network device
3130  *
3131  * Mark device as attached from system and restart if needed.
3132  */
3133 void netif_device_attach(struct net_device *dev)
3134 {
3135 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 	    netif_running(dev)) {
3137 		netif_tx_wake_all_queues(dev);
3138 		__netdev_watchdog_up(dev);
3139 	}
3140 }
3141 EXPORT_SYMBOL(netif_device_attach);
3142 
3143 /*
3144  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145  * to be used as a distribution range.
3146  */
3147 static u16 skb_tx_hash(const struct net_device *dev,
3148 		       const struct net_device *sb_dev,
3149 		       struct sk_buff *skb)
3150 {
3151 	u32 hash;
3152 	u16 qoffset = 0;
3153 	u16 qcount = dev->real_num_tx_queues;
3154 
3155 	if (dev->num_tc) {
3156 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157 
3158 		qoffset = sb_dev->tc_to_txq[tc].offset;
3159 		qcount = sb_dev->tc_to_txq[tc].count;
3160 	}
3161 
3162 	if (skb_rx_queue_recorded(skb)) {
3163 		hash = skb_get_rx_queue(skb);
3164 		if (hash >= qoffset)
3165 			hash -= qoffset;
3166 		while (unlikely(hash >= qcount))
3167 			hash -= qcount;
3168 		return hash + qoffset;
3169 	}
3170 
3171 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172 }
3173 
3174 static void skb_warn_bad_offload(const struct sk_buff *skb)
3175 {
3176 	static const netdev_features_t null_features;
3177 	struct net_device *dev = skb->dev;
3178 	const char *name = "";
3179 
3180 	if (!net_ratelimit())
3181 		return;
3182 
3183 	if (dev) {
3184 		if (dev->dev.parent)
3185 			name = dev_driver_string(dev->dev.parent);
3186 		else
3187 			name = netdev_name(dev);
3188 	}
3189 	skb_dump(KERN_WARNING, skb, false);
3190 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 	     name, dev ? &dev->features : &null_features,
3192 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193 }
3194 
3195 /*
3196  * Invalidate hardware checksum when packet is to be mangled, and
3197  * complete checksum manually on outgoing path.
3198  */
3199 int skb_checksum_help(struct sk_buff *skb)
3200 {
3201 	__wsum csum;
3202 	int ret = 0, offset;
3203 
3204 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 		goto out_set_summed;
3206 
3207 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3208 		skb_warn_bad_offload(skb);
3209 		return -EINVAL;
3210 	}
3211 
3212 	/* Before computing a checksum, we should make sure no frag could
3213 	 * be modified by an external entity : checksum could be wrong.
3214 	 */
3215 	if (skb_has_shared_frag(skb)) {
3216 		ret = __skb_linearize(skb);
3217 		if (ret)
3218 			goto out;
3219 	}
3220 
3221 	offset = skb_checksum_start_offset(skb);
3222 	BUG_ON(offset >= skb_headlen(skb));
3223 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224 
3225 	offset += skb->csum_offset;
3226 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227 
3228 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 	if (ret)
3230 		goto out;
3231 
3232 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233 out_set_summed:
3234 	skb->ip_summed = CHECKSUM_NONE;
3235 out:
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL(skb_checksum_help);
3239 
3240 int skb_crc32c_csum_help(struct sk_buff *skb)
3241 {
3242 	__le32 crc32c_csum;
3243 	int ret = 0, offset, start;
3244 
3245 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 		goto out;
3247 
3248 	if (unlikely(skb_is_gso(skb)))
3249 		goto out;
3250 
3251 	/* Before computing a checksum, we should make sure no frag could
3252 	 * be modified by an external entity : checksum could be wrong.
3253 	 */
3254 	if (unlikely(skb_has_shared_frag(skb))) {
3255 		ret = __skb_linearize(skb);
3256 		if (ret)
3257 			goto out;
3258 	}
3259 	start = skb_checksum_start_offset(skb);
3260 	offset = start + offsetof(struct sctphdr, checksum);
3261 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 		ret = -EINVAL;
3263 		goto out;
3264 	}
3265 
3266 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 	if (ret)
3268 		goto out;
3269 
3270 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 						  skb->len - start, ~(__u32)0,
3272 						  crc32c_csum_stub));
3273 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3274 	skb->ip_summed = CHECKSUM_NONE;
3275 	skb->csum_not_inet = 0;
3276 out:
3277 	return ret;
3278 }
3279 
3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281 {
3282 	__be16 type = skb->protocol;
3283 
3284 	/* Tunnel gso handlers can set protocol to ethernet. */
3285 	if (type == htons(ETH_P_TEB)) {
3286 		struct ethhdr *eth;
3287 
3288 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 			return 0;
3290 
3291 		eth = (struct ethhdr *)skb->data;
3292 		type = eth->h_proto;
3293 	}
3294 
3295 	return __vlan_get_protocol(skb, type, depth);
3296 }
3297 
3298 /**
3299  *	skb_mac_gso_segment - mac layer segmentation handler.
3300  *	@skb: buffer to segment
3301  *	@features: features for the output path (see dev->features)
3302  */
3303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 				    netdev_features_t features)
3305 {
3306 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 	struct packet_offload *ptype;
3308 	int vlan_depth = skb->mac_len;
3309 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3310 
3311 	if (unlikely(!type))
3312 		return ERR_PTR(-EINVAL);
3313 
3314 	__skb_pull(skb, vlan_depth);
3315 
3316 	rcu_read_lock();
3317 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3318 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3319 			segs = ptype->callbacks.gso_segment(skb, features);
3320 			break;
3321 		}
3322 	}
3323 	rcu_read_unlock();
3324 
3325 	__skb_push(skb, skb->data - skb_mac_header(skb));
3326 
3327 	return segs;
3328 }
3329 EXPORT_SYMBOL(skb_mac_gso_segment);
3330 
3331 
3332 /* openvswitch calls this on rx path, so we need a different check.
3333  */
3334 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335 {
3336 	if (tx_path)
3337 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3339 
3340 	return skb->ip_summed == CHECKSUM_NONE;
3341 }
3342 
3343 /**
3344  *	__skb_gso_segment - Perform segmentation on skb.
3345  *	@skb: buffer to segment
3346  *	@features: features for the output path (see dev->features)
3347  *	@tx_path: whether it is called in TX path
3348  *
3349  *	This function segments the given skb and returns a list of segments.
3350  *
3351  *	It may return NULL if the skb requires no segmentation.  This is
3352  *	only possible when GSO is used for verifying header integrity.
3353  *
3354  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355  */
3356 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 				  netdev_features_t features, bool tx_path)
3358 {
3359 	struct sk_buff *segs;
3360 
3361 	if (unlikely(skb_needs_check(skb, tx_path))) {
3362 		int err;
3363 
3364 		/* We're going to init ->check field in TCP or UDP header */
3365 		err = skb_cow_head(skb, 0);
3366 		if (err < 0)
3367 			return ERR_PTR(err);
3368 	}
3369 
3370 	/* Only report GSO partial support if it will enable us to
3371 	 * support segmentation on this frame without needing additional
3372 	 * work.
3373 	 */
3374 	if (features & NETIF_F_GSO_PARTIAL) {
3375 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 		struct net_device *dev = skb->dev;
3377 
3378 		partial_features |= dev->features & dev->gso_partial_features;
3379 		if (!skb_gso_ok(skb, features | partial_features))
3380 			features &= ~NETIF_F_GSO_PARTIAL;
3381 	}
3382 
3383 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385 
3386 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387 	SKB_GSO_CB(skb)->encap_level = 0;
3388 
3389 	skb_reset_mac_header(skb);
3390 	skb_reset_mac_len(skb);
3391 
3392 	segs = skb_mac_gso_segment(skb, features);
3393 
3394 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395 		skb_warn_bad_offload(skb);
3396 
3397 	return segs;
3398 }
3399 EXPORT_SYMBOL(__skb_gso_segment);
3400 
3401 /* Take action when hardware reception checksum errors are detected. */
3402 #ifdef CONFIG_BUG
3403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404 {
3405 	if (net_ratelimit()) {
3406 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407 		skb_dump(KERN_ERR, skb, true);
3408 		dump_stack();
3409 	}
3410 }
3411 EXPORT_SYMBOL(netdev_rx_csum_fault);
3412 #endif
3413 
3414 /* XXX: check that highmem exists at all on the given machine. */
3415 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 #ifdef CONFIG_HIGHMEM
3418 	int i;
3419 
3420 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3421 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423 
3424 			if (PageHighMem(skb_frag_page(frag)))
3425 				return 1;
3426 		}
3427 	}
3428 #endif
3429 	return 0;
3430 }
3431 
3432 /* If MPLS offload request, verify we are testing hardware MPLS features
3433  * instead of standard features for the netdev.
3434  */
3435 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 					   netdev_features_t features,
3438 					   __be16 type)
3439 {
3440 	if (eth_p_mpls(type))
3441 		features &= skb->dev->mpls_features;
3442 
3443 	return features;
3444 }
3445 #else
3446 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 					   netdev_features_t features,
3448 					   __be16 type)
3449 {
3450 	return features;
3451 }
3452 #endif
3453 
3454 static netdev_features_t harmonize_features(struct sk_buff *skb,
3455 	netdev_features_t features)
3456 {
3457 	__be16 type;
3458 
3459 	type = skb_network_protocol(skb, NULL);
3460 	features = net_mpls_features(skb, features, type);
3461 
3462 	if (skb->ip_summed != CHECKSUM_NONE &&
3463 	    !can_checksum_protocol(features, type)) {
3464 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3465 	}
3466 	if (illegal_highdma(skb->dev, skb))
3467 		features &= ~NETIF_F_SG;
3468 
3469 	return features;
3470 }
3471 
3472 netdev_features_t passthru_features_check(struct sk_buff *skb,
3473 					  struct net_device *dev,
3474 					  netdev_features_t features)
3475 {
3476 	return features;
3477 }
3478 EXPORT_SYMBOL(passthru_features_check);
3479 
3480 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3481 					     struct net_device *dev,
3482 					     netdev_features_t features)
3483 {
3484 	return vlan_features_check(skb, features);
3485 }
3486 
3487 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3488 					    struct net_device *dev,
3489 					    netdev_features_t features)
3490 {
3491 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3492 
3493 	if (gso_segs > dev->gso_max_segs)
3494 		return features & ~NETIF_F_GSO_MASK;
3495 
3496 	/* Support for GSO partial features requires software
3497 	 * intervention before we can actually process the packets
3498 	 * so we need to strip support for any partial features now
3499 	 * and we can pull them back in after we have partially
3500 	 * segmented the frame.
3501 	 */
3502 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3503 		features &= ~dev->gso_partial_features;
3504 
3505 	/* Make sure to clear the IPv4 ID mangling feature if the
3506 	 * IPv4 header has the potential to be fragmented.
3507 	 */
3508 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3509 		struct iphdr *iph = skb->encapsulation ?
3510 				    inner_ip_hdr(skb) : ip_hdr(skb);
3511 
3512 		if (!(iph->frag_off & htons(IP_DF)))
3513 			features &= ~NETIF_F_TSO_MANGLEID;
3514 	}
3515 
3516 	return features;
3517 }
3518 
3519 netdev_features_t netif_skb_features(struct sk_buff *skb)
3520 {
3521 	struct net_device *dev = skb->dev;
3522 	netdev_features_t features = dev->features;
3523 
3524 	if (skb_is_gso(skb))
3525 		features = gso_features_check(skb, dev, features);
3526 
3527 	/* If encapsulation offload request, verify we are testing
3528 	 * hardware encapsulation features instead of standard
3529 	 * features for the netdev
3530 	 */
3531 	if (skb->encapsulation)
3532 		features &= dev->hw_enc_features;
3533 
3534 	if (skb_vlan_tagged(skb))
3535 		features = netdev_intersect_features(features,
3536 						     dev->vlan_features |
3537 						     NETIF_F_HW_VLAN_CTAG_TX |
3538 						     NETIF_F_HW_VLAN_STAG_TX);
3539 
3540 	if (dev->netdev_ops->ndo_features_check)
3541 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3542 								features);
3543 	else
3544 		features &= dflt_features_check(skb, dev, features);
3545 
3546 	return harmonize_features(skb, features);
3547 }
3548 EXPORT_SYMBOL(netif_skb_features);
3549 
3550 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3551 		    struct netdev_queue *txq, bool more)
3552 {
3553 	unsigned int len;
3554 	int rc;
3555 
3556 	if (dev_nit_active(dev))
3557 		dev_queue_xmit_nit(skb, dev);
3558 
3559 	len = skb->len;
3560 	trace_net_dev_start_xmit(skb, dev);
3561 	rc = netdev_start_xmit(skb, dev, txq, more);
3562 	trace_net_dev_xmit(skb, rc, dev, len);
3563 
3564 	return rc;
3565 }
3566 
3567 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3568 				    struct netdev_queue *txq, int *ret)
3569 {
3570 	struct sk_buff *skb = first;
3571 	int rc = NETDEV_TX_OK;
3572 
3573 	while (skb) {
3574 		struct sk_buff *next = skb->next;
3575 
3576 		skb_mark_not_on_list(skb);
3577 		rc = xmit_one(skb, dev, txq, next != NULL);
3578 		if (unlikely(!dev_xmit_complete(rc))) {
3579 			skb->next = next;
3580 			goto out;
3581 		}
3582 
3583 		skb = next;
3584 		if (netif_tx_queue_stopped(txq) && skb) {
3585 			rc = NETDEV_TX_BUSY;
3586 			break;
3587 		}
3588 	}
3589 
3590 out:
3591 	*ret = rc;
3592 	return skb;
3593 }
3594 
3595 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3596 					  netdev_features_t features)
3597 {
3598 	if (skb_vlan_tag_present(skb) &&
3599 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3600 		skb = __vlan_hwaccel_push_inside(skb);
3601 	return skb;
3602 }
3603 
3604 int skb_csum_hwoffload_help(struct sk_buff *skb,
3605 			    const netdev_features_t features)
3606 {
3607 	if (unlikely(skb->csum_not_inet))
3608 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3609 			skb_crc32c_csum_help(skb);
3610 
3611 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3612 }
3613 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3614 
3615 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3616 {
3617 	netdev_features_t features;
3618 
3619 	features = netif_skb_features(skb);
3620 	skb = validate_xmit_vlan(skb, features);
3621 	if (unlikely(!skb))
3622 		goto out_null;
3623 
3624 	skb = sk_validate_xmit_skb(skb, dev);
3625 	if (unlikely(!skb))
3626 		goto out_null;
3627 
3628 	if (netif_needs_gso(skb, features)) {
3629 		struct sk_buff *segs;
3630 
3631 		segs = skb_gso_segment(skb, features);
3632 		if (IS_ERR(segs)) {
3633 			goto out_kfree_skb;
3634 		} else if (segs) {
3635 			consume_skb(skb);
3636 			skb = segs;
3637 		}
3638 	} else {
3639 		if (skb_needs_linearize(skb, features) &&
3640 		    __skb_linearize(skb))
3641 			goto out_kfree_skb;
3642 
3643 		/* If packet is not checksummed and device does not
3644 		 * support checksumming for this protocol, complete
3645 		 * checksumming here.
3646 		 */
3647 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3648 			if (skb->encapsulation)
3649 				skb_set_inner_transport_header(skb,
3650 							       skb_checksum_start_offset(skb));
3651 			else
3652 				skb_set_transport_header(skb,
3653 							 skb_checksum_start_offset(skb));
3654 			if (skb_csum_hwoffload_help(skb, features))
3655 				goto out_kfree_skb;
3656 		}
3657 	}
3658 
3659 	skb = validate_xmit_xfrm(skb, features, again);
3660 
3661 	return skb;
3662 
3663 out_kfree_skb:
3664 	kfree_skb(skb);
3665 out_null:
3666 	atomic_long_inc(&dev->tx_dropped);
3667 	return NULL;
3668 }
3669 
3670 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3671 {
3672 	struct sk_buff *next, *head = NULL, *tail;
3673 
3674 	for (; skb != NULL; skb = next) {
3675 		next = skb->next;
3676 		skb_mark_not_on_list(skb);
3677 
3678 		/* in case skb wont be segmented, point to itself */
3679 		skb->prev = skb;
3680 
3681 		skb = validate_xmit_skb(skb, dev, again);
3682 		if (!skb)
3683 			continue;
3684 
3685 		if (!head)
3686 			head = skb;
3687 		else
3688 			tail->next = skb;
3689 		/* If skb was segmented, skb->prev points to
3690 		 * the last segment. If not, it still contains skb.
3691 		 */
3692 		tail = skb->prev;
3693 	}
3694 	return head;
3695 }
3696 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3697 
3698 static void qdisc_pkt_len_init(struct sk_buff *skb)
3699 {
3700 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3701 
3702 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3703 
3704 	/* To get more precise estimation of bytes sent on wire,
3705 	 * we add to pkt_len the headers size of all segments
3706 	 */
3707 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3708 		unsigned int hdr_len;
3709 		u16 gso_segs = shinfo->gso_segs;
3710 
3711 		/* mac layer + network layer */
3712 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3713 
3714 		/* + transport layer */
3715 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3716 			const struct tcphdr *th;
3717 			struct tcphdr _tcphdr;
3718 
3719 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3720 						sizeof(_tcphdr), &_tcphdr);
3721 			if (likely(th))
3722 				hdr_len += __tcp_hdrlen(th);
3723 		} else {
3724 			struct udphdr _udphdr;
3725 
3726 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3727 					       sizeof(_udphdr), &_udphdr))
3728 				hdr_len += sizeof(struct udphdr);
3729 		}
3730 
3731 		if (shinfo->gso_type & SKB_GSO_DODGY)
3732 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3733 						shinfo->gso_size);
3734 
3735 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3736 	}
3737 }
3738 
3739 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3740 				 struct net_device *dev,
3741 				 struct netdev_queue *txq)
3742 {
3743 	spinlock_t *root_lock = qdisc_lock(q);
3744 	struct sk_buff *to_free = NULL;
3745 	bool contended;
3746 	int rc;
3747 
3748 	qdisc_calculate_pkt_len(skb, q);
3749 
3750 	if (q->flags & TCQ_F_NOLOCK) {
3751 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3752 		qdisc_run(q);
3753 
3754 		if (unlikely(to_free))
3755 			kfree_skb_list(to_free);
3756 		return rc;
3757 	}
3758 
3759 	/*
3760 	 * Heuristic to force contended enqueues to serialize on a
3761 	 * separate lock before trying to get qdisc main lock.
3762 	 * This permits qdisc->running owner to get the lock more
3763 	 * often and dequeue packets faster.
3764 	 */
3765 	contended = qdisc_is_running(q);
3766 	if (unlikely(contended))
3767 		spin_lock(&q->busylock);
3768 
3769 	spin_lock(root_lock);
3770 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3771 		__qdisc_drop(skb, &to_free);
3772 		rc = NET_XMIT_DROP;
3773 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3774 		   qdisc_run_begin(q)) {
3775 		/*
3776 		 * This is a work-conserving queue; there are no old skbs
3777 		 * waiting to be sent out; and the qdisc is not running -
3778 		 * xmit the skb directly.
3779 		 */
3780 
3781 		qdisc_bstats_update(q, skb);
3782 
3783 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3784 			if (unlikely(contended)) {
3785 				spin_unlock(&q->busylock);
3786 				contended = false;
3787 			}
3788 			__qdisc_run(q);
3789 		}
3790 
3791 		qdisc_run_end(q);
3792 		rc = NET_XMIT_SUCCESS;
3793 	} else {
3794 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 		if (qdisc_run_begin(q)) {
3796 			if (unlikely(contended)) {
3797 				spin_unlock(&q->busylock);
3798 				contended = false;
3799 			}
3800 			__qdisc_run(q);
3801 			qdisc_run_end(q);
3802 		}
3803 	}
3804 	spin_unlock(root_lock);
3805 	if (unlikely(to_free))
3806 		kfree_skb_list(to_free);
3807 	if (unlikely(contended))
3808 		spin_unlock(&q->busylock);
3809 	return rc;
3810 }
3811 
3812 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3813 static void skb_update_prio(struct sk_buff *skb)
3814 {
3815 	const struct netprio_map *map;
3816 	const struct sock *sk;
3817 	unsigned int prioidx;
3818 
3819 	if (skb->priority)
3820 		return;
3821 	map = rcu_dereference_bh(skb->dev->priomap);
3822 	if (!map)
3823 		return;
3824 	sk = skb_to_full_sk(skb);
3825 	if (!sk)
3826 		return;
3827 
3828 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3829 
3830 	if (prioidx < map->priomap_len)
3831 		skb->priority = map->priomap[prioidx];
3832 }
3833 #else
3834 #define skb_update_prio(skb)
3835 #endif
3836 
3837 /**
3838  *	dev_loopback_xmit - loop back @skb
3839  *	@net: network namespace this loopback is happening in
3840  *	@sk:  sk needed to be a netfilter okfn
3841  *	@skb: buffer to transmit
3842  */
3843 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3844 {
3845 	skb_reset_mac_header(skb);
3846 	__skb_pull(skb, skb_network_offset(skb));
3847 	skb->pkt_type = PACKET_LOOPBACK;
3848 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3849 	WARN_ON(!skb_dst(skb));
3850 	skb_dst_force(skb);
3851 	netif_rx_ni(skb);
3852 	return 0;
3853 }
3854 EXPORT_SYMBOL(dev_loopback_xmit);
3855 
3856 #ifdef CONFIG_NET_EGRESS
3857 static struct sk_buff *
3858 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3859 {
3860 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3861 	struct tcf_result cl_res;
3862 
3863 	if (!miniq)
3864 		return skb;
3865 
3866 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3867 	mini_qdisc_bstats_cpu_update(miniq, skb);
3868 
3869 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3870 	case TC_ACT_OK:
3871 	case TC_ACT_RECLASSIFY:
3872 		skb->tc_index = TC_H_MIN(cl_res.classid);
3873 		break;
3874 	case TC_ACT_SHOT:
3875 		mini_qdisc_qstats_cpu_drop(miniq);
3876 		*ret = NET_XMIT_DROP;
3877 		kfree_skb(skb);
3878 		return NULL;
3879 	case TC_ACT_STOLEN:
3880 	case TC_ACT_QUEUED:
3881 	case TC_ACT_TRAP:
3882 		*ret = NET_XMIT_SUCCESS;
3883 		consume_skb(skb);
3884 		return NULL;
3885 	case TC_ACT_REDIRECT:
3886 		/* No need to push/pop skb's mac_header here on egress! */
3887 		skb_do_redirect(skb);
3888 		*ret = NET_XMIT_SUCCESS;
3889 		return NULL;
3890 	default:
3891 		break;
3892 	}
3893 
3894 	return skb;
3895 }
3896 #endif /* CONFIG_NET_EGRESS */
3897 
3898 #ifdef CONFIG_XPS
3899 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3900 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3901 {
3902 	struct xps_map *map;
3903 	int queue_index = -1;
3904 
3905 	if (dev->num_tc) {
3906 		tci *= dev->num_tc;
3907 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3908 	}
3909 
3910 	map = rcu_dereference(dev_maps->attr_map[tci]);
3911 	if (map) {
3912 		if (map->len == 1)
3913 			queue_index = map->queues[0];
3914 		else
3915 			queue_index = map->queues[reciprocal_scale(
3916 						skb_get_hash(skb), map->len)];
3917 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3918 			queue_index = -1;
3919 	}
3920 	return queue_index;
3921 }
3922 #endif
3923 
3924 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3925 			 struct sk_buff *skb)
3926 {
3927 #ifdef CONFIG_XPS
3928 	struct xps_dev_maps *dev_maps;
3929 	struct sock *sk = skb->sk;
3930 	int queue_index = -1;
3931 
3932 	if (!static_key_false(&xps_needed))
3933 		return -1;
3934 
3935 	rcu_read_lock();
3936 	if (!static_key_false(&xps_rxqs_needed))
3937 		goto get_cpus_map;
3938 
3939 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3940 	if (dev_maps) {
3941 		int tci = sk_rx_queue_get(sk);
3942 
3943 		if (tci >= 0 && tci < dev->num_rx_queues)
3944 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3945 							  tci);
3946 	}
3947 
3948 get_cpus_map:
3949 	if (queue_index < 0) {
3950 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3951 		if (dev_maps) {
3952 			unsigned int tci = skb->sender_cpu - 1;
3953 
3954 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3955 							  tci);
3956 		}
3957 	}
3958 	rcu_read_unlock();
3959 
3960 	return queue_index;
3961 #else
3962 	return -1;
3963 #endif
3964 }
3965 
3966 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3967 		     struct net_device *sb_dev)
3968 {
3969 	return 0;
3970 }
3971 EXPORT_SYMBOL(dev_pick_tx_zero);
3972 
3973 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3974 		       struct net_device *sb_dev)
3975 {
3976 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3977 }
3978 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3979 
3980 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3981 		     struct net_device *sb_dev)
3982 {
3983 	struct sock *sk = skb->sk;
3984 	int queue_index = sk_tx_queue_get(sk);
3985 
3986 	sb_dev = sb_dev ? : dev;
3987 
3988 	if (queue_index < 0 || skb->ooo_okay ||
3989 	    queue_index >= dev->real_num_tx_queues) {
3990 		int new_index = get_xps_queue(dev, sb_dev, skb);
3991 
3992 		if (new_index < 0)
3993 			new_index = skb_tx_hash(dev, sb_dev, skb);
3994 
3995 		if (queue_index != new_index && sk &&
3996 		    sk_fullsock(sk) &&
3997 		    rcu_access_pointer(sk->sk_dst_cache))
3998 			sk_tx_queue_set(sk, new_index);
3999 
4000 		queue_index = new_index;
4001 	}
4002 
4003 	return queue_index;
4004 }
4005 EXPORT_SYMBOL(netdev_pick_tx);
4006 
4007 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4008 					 struct sk_buff *skb,
4009 					 struct net_device *sb_dev)
4010 {
4011 	int queue_index = 0;
4012 
4013 #ifdef CONFIG_XPS
4014 	u32 sender_cpu = skb->sender_cpu - 1;
4015 
4016 	if (sender_cpu >= (u32)NR_CPUS)
4017 		skb->sender_cpu = raw_smp_processor_id() + 1;
4018 #endif
4019 
4020 	if (dev->real_num_tx_queues != 1) {
4021 		const struct net_device_ops *ops = dev->netdev_ops;
4022 
4023 		if (ops->ndo_select_queue)
4024 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4025 		else
4026 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4027 
4028 		queue_index = netdev_cap_txqueue(dev, queue_index);
4029 	}
4030 
4031 	skb_set_queue_mapping(skb, queue_index);
4032 	return netdev_get_tx_queue(dev, queue_index);
4033 }
4034 
4035 /**
4036  *	__dev_queue_xmit - transmit a buffer
4037  *	@skb: buffer to transmit
4038  *	@sb_dev: suboordinate device used for L2 forwarding offload
4039  *
4040  *	Queue a buffer for transmission to a network device. The caller must
4041  *	have set the device and priority and built the buffer before calling
4042  *	this function. The function can be called from an interrupt.
4043  *
4044  *	A negative errno code is returned on a failure. A success does not
4045  *	guarantee the frame will be transmitted as it may be dropped due
4046  *	to congestion or traffic shaping.
4047  *
4048  * -----------------------------------------------------------------------------------
4049  *      I notice this method can also return errors from the queue disciplines,
4050  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4051  *      be positive.
4052  *
4053  *      Regardless of the return value, the skb is consumed, so it is currently
4054  *      difficult to retry a send to this method.  (You can bump the ref count
4055  *      before sending to hold a reference for retry if you are careful.)
4056  *
4057  *      When calling this method, interrupts MUST be enabled.  This is because
4058  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4059  *          --BLG
4060  */
4061 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4062 {
4063 	struct net_device *dev = skb->dev;
4064 	struct netdev_queue *txq;
4065 	struct Qdisc *q;
4066 	int rc = -ENOMEM;
4067 	bool again = false;
4068 
4069 	skb_reset_mac_header(skb);
4070 
4071 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4072 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4073 
4074 	/* Disable soft irqs for various locks below. Also
4075 	 * stops preemption for RCU.
4076 	 */
4077 	rcu_read_lock_bh();
4078 
4079 	skb_update_prio(skb);
4080 
4081 	qdisc_pkt_len_init(skb);
4082 #ifdef CONFIG_NET_CLS_ACT
4083 	skb->tc_at_ingress = 0;
4084 # ifdef CONFIG_NET_EGRESS
4085 	if (static_branch_unlikely(&egress_needed_key)) {
4086 		skb = sch_handle_egress(skb, &rc, dev);
4087 		if (!skb)
4088 			goto out;
4089 	}
4090 # endif
4091 #endif
4092 	/* If device/qdisc don't need skb->dst, release it right now while
4093 	 * its hot in this cpu cache.
4094 	 */
4095 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4096 		skb_dst_drop(skb);
4097 	else
4098 		skb_dst_force(skb);
4099 
4100 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4101 	q = rcu_dereference_bh(txq->qdisc);
4102 
4103 	trace_net_dev_queue(skb);
4104 	if (q->enqueue) {
4105 		rc = __dev_xmit_skb(skb, q, dev, txq);
4106 		goto out;
4107 	}
4108 
4109 	/* The device has no queue. Common case for software devices:
4110 	 * loopback, all the sorts of tunnels...
4111 
4112 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4113 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4114 	 * counters.)
4115 	 * However, it is possible, that they rely on protection
4116 	 * made by us here.
4117 
4118 	 * Check this and shot the lock. It is not prone from deadlocks.
4119 	 *Either shot noqueue qdisc, it is even simpler 8)
4120 	 */
4121 	if (dev->flags & IFF_UP) {
4122 		int cpu = smp_processor_id(); /* ok because BHs are off */
4123 
4124 		if (txq->xmit_lock_owner != cpu) {
4125 			if (dev_xmit_recursion())
4126 				goto recursion_alert;
4127 
4128 			skb = validate_xmit_skb(skb, dev, &again);
4129 			if (!skb)
4130 				goto out;
4131 
4132 			HARD_TX_LOCK(dev, txq, cpu);
4133 
4134 			if (!netif_xmit_stopped(txq)) {
4135 				dev_xmit_recursion_inc();
4136 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137 				dev_xmit_recursion_dec();
4138 				if (dev_xmit_complete(rc)) {
4139 					HARD_TX_UNLOCK(dev, txq);
4140 					goto out;
4141 				}
4142 			}
4143 			HARD_TX_UNLOCK(dev, txq);
4144 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145 					     dev->name);
4146 		} else {
4147 			/* Recursion is detected! It is possible,
4148 			 * unfortunately
4149 			 */
4150 recursion_alert:
4151 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152 					     dev->name);
4153 		}
4154 	}
4155 
4156 	rc = -ENETDOWN;
4157 	rcu_read_unlock_bh();
4158 
4159 	atomic_long_inc(&dev->tx_dropped);
4160 	kfree_skb_list(skb);
4161 	return rc;
4162 out:
4163 	rcu_read_unlock_bh();
4164 	return rc;
4165 }
4166 
4167 int dev_queue_xmit(struct sk_buff *skb)
4168 {
4169 	return __dev_queue_xmit(skb, NULL);
4170 }
4171 EXPORT_SYMBOL(dev_queue_xmit);
4172 
4173 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4174 {
4175 	return __dev_queue_xmit(skb, sb_dev);
4176 }
4177 EXPORT_SYMBOL(dev_queue_xmit_accel);
4178 
4179 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180 {
4181 	struct net_device *dev = skb->dev;
4182 	struct sk_buff *orig_skb = skb;
4183 	struct netdev_queue *txq;
4184 	int ret = NETDEV_TX_BUSY;
4185 	bool again = false;
4186 
4187 	if (unlikely(!netif_running(dev) ||
4188 		     !netif_carrier_ok(dev)))
4189 		goto drop;
4190 
4191 	skb = validate_xmit_skb_list(skb, dev, &again);
4192 	if (skb != orig_skb)
4193 		goto drop;
4194 
4195 	skb_set_queue_mapping(skb, queue_id);
4196 	txq = skb_get_tx_queue(dev, skb);
4197 
4198 	local_bh_disable();
4199 
4200 	dev_xmit_recursion_inc();
4201 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4202 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4203 		ret = netdev_start_xmit(skb, dev, txq, false);
4204 	HARD_TX_UNLOCK(dev, txq);
4205 	dev_xmit_recursion_dec();
4206 
4207 	local_bh_enable();
4208 
4209 	if (!dev_xmit_complete(ret))
4210 		kfree_skb(skb);
4211 
4212 	return ret;
4213 drop:
4214 	atomic_long_inc(&dev->tx_dropped);
4215 	kfree_skb_list(skb);
4216 	return NET_XMIT_DROP;
4217 }
4218 EXPORT_SYMBOL(dev_direct_xmit);
4219 
4220 /*************************************************************************
4221  *			Receiver routines
4222  *************************************************************************/
4223 
4224 int netdev_max_backlog __read_mostly = 1000;
4225 EXPORT_SYMBOL(netdev_max_backlog);
4226 
4227 int netdev_tstamp_prequeue __read_mostly = 1;
4228 int netdev_budget __read_mostly = 300;
4229 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4230 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4231 int weight_p __read_mostly = 64;           /* old backlog weight */
4232 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4233 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4234 int dev_rx_weight __read_mostly = 64;
4235 int dev_tx_weight __read_mostly = 64;
4236 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4237 int gro_normal_batch __read_mostly = 8;
4238 
4239 /* Called with irq disabled */
4240 static inline void ____napi_schedule(struct softnet_data *sd,
4241 				     struct napi_struct *napi)
4242 {
4243 	list_add_tail(&napi->poll_list, &sd->poll_list);
4244 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4245 }
4246 
4247 #ifdef CONFIG_RPS
4248 
4249 /* One global table that all flow-based protocols share. */
4250 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4251 EXPORT_SYMBOL(rps_sock_flow_table);
4252 u32 rps_cpu_mask __read_mostly;
4253 EXPORT_SYMBOL(rps_cpu_mask);
4254 
4255 struct static_key_false rps_needed __read_mostly;
4256 EXPORT_SYMBOL(rps_needed);
4257 struct static_key_false rfs_needed __read_mostly;
4258 EXPORT_SYMBOL(rfs_needed);
4259 
4260 static struct rps_dev_flow *
4261 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4262 	    struct rps_dev_flow *rflow, u16 next_cpu)
4263 {
4264 	if (next_cpu < nr_cpu_ids) {
4265 #ifdef CONFIG_RFS_ACCEL
4266 		struct netdev_rx_queue *rxqueue;
4267 		struct rps_dev_flow_table *flow_table;
4268 		struct rps_dev_flow *old_rflow;
4269 		u32 flow_id;
4270 		u16 rxq_index;
4271 		int rc;
4272 
4273 		/* Should we steer this flow to a different hardware queue? */
4274 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4275 		    !(dev->features & NETIF_F_NTUPLE))
4276 			goto out;
4277 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4278 		if (rxq_index == skb_get_rx_queue(skb))
4279 			goto out;
4280 
4281 		rxqueue = dev->_rx + rxq_index;
4282 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4283 		if (!flow_table)
4284 			goto out;
4285 		flow_id = skb_get_hash(skb) & flow_table->mask;
4286 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4287 							rxq_index, flow_id);
4288 		if (rc < 0)
4289 			goto out;
4290 		old_rflow = rflow;
4291 		rflow = &flow_table->flows[flow_id];
4292 		rflow->filter = rc;
4293 		if (old_rflow->filter == rflow->filter)
4294 			old_rflow->filter = RPS_NO_FILTER;
4295 	out:
4296 #endif
4297 		rflow->last_qtail =
4298 			per_cpu(softnet_data, next_cpu).input_queue_head;
4299 	}
4300 
4301 	rflow->cpu = next_cpu;
4302 	return rflow;
4303 }
4304 
4305 /*
4306  * get_rps_cpu is called from netif_receive_skb and returns the target
4307  * CPU from the RPS map of the receiving queue for a given skb.
4308  * rcu_read_lock must be held on entry.
4309  */
4310 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311 		       struct rps_dev_flow **rflowp)
4312 {
4313 	const struct rps_sock_flow_table *sock_flow_table;
4314 	struct netdev_rx_queue *rxqueue = dev->_rx;
4315 	struct rps_dev_flow_table *flow_table;
4316 	struct rps_map *map;
4317 	int cpu = -1;
4318 	u32 tcpu;
4319 	u32 hash;
4320 
4321 	if (skb_rx_queue_recorded(skb)) {
4322 		u16 index = skb_get_rx_queue(skb);
4323 
4324 		if (unlikely(index >= dev->real_num_rx_queues)) {
4325 			WARN_ONCE(dev->real_num_rx_queues > 1,
4326 				  "%s received packet on queue %u, but number "
4327 				  "of RX queues is %u\n",
4328 				  dev->name, index, dev->real_num_rx_queues);
4329 			goto done;
4330 		}
4331 		rxqueue += index;
4332 	}
4333 
4334 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4335 
4336 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4337 	map = rcu_dereference(rxqueue->rps_map);
4338 	if (!flow_table && !map)
4339 		goto done;
4340 
4341 	skb_reset_network_header(skb);
4342 	hash = skb_get_hash(skb);
4343 	if (!hash)
4344 		goto done;
4345 
4346 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4347 	if (flow_table && sock_flow_table) {
4348 		struct rps_dev_flow *rflow;
4349 		u32 next_cpu;
4350 		u32 ident;
4351 
4352 		/* First check into global flow table if there is a match */
4353 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4354 		if ((ident ^ hash) & ~rps_cpu_mask)
4355 			goto try_rps;
4356 
4357 		next_cpu = ident & rps_cpu_mask;
4358 
4359 		/* OK, now we know there is a match,
4360 		 * we can look at the local (per receive queue) flow table
4361 		 */
4362 		rflow = &flow_table->flows[hash & flow_table->mask];
4363 		tcpu = rflow->cpu;
4364 
4365 		/*
4366 		 * If the desired CPU (where last recvmsg was done) is
4367 		 * different from current CPU (one in the rx-queue flow
4368 		 * table entry), switch if one of the following holds:
4369 		 *   - Current CPU is unset (>= nr_cpu_ids).
4370 		 *   - Current CPU is offline.
4371 		 *   - The current CPU's queue tail has advanced beyond the
4372 		 *     last packet that was enqueued using this table entry.
4373 		 *     This guarantees that all previous packets for the flow
4374 		 *     have been dequeued, thus preserving in order delivery.
4375 		 */
4376 		if (unlikely(tcpu != next_cpu) &&
4377 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4378 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4379 		      rflow->last_qtail)) >= 0)) {
4380 			tcpu = next_cpu;
4381 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4382 		}
4383 
4384 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4385 			*rflowp = rflow;
4386 			cpu = tcpu;
4387 			goto done;
4388 		}
4389 	}
4390 
4391 try_rps:
4392 
4393 	if (map) {
4394 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4395 		if (cpu_online(tcpu)) {
4396 			cpu = tcpu;
4397 			goto done;
4398 		}
4399 	}
4400 
4401 done:
4402 	return cpu;
4403 }
4404 
4405 #ifdef CONFIG_RFS_ACCEL
4406 
4407 /**
4408  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4409  * @dev: Device on which the filter was set
4410  * @rxq_index: RX queue index
4411  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4412  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4413  *
4414  * Drivers that implement ndo_rx_flow_steer() should periodically call
4415  * this function for each installed filter and remove the filters for
4416  * which it returns %true.
4417  */
4418 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4419 			 u32 flow_id, u16 filter_id)
4420 {
4421 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4422 	struct rps_dev_flow_table *flow_table;
4423 	struct rps_dev_flow *rflow;
4424 	bool expire = true;
4425 	unsigned int cpu;
4426 
4427 	rcu_read_lock();
4428 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4429 	if (flow_table && flow_id <= flow_table->mask) {
4430 		rflow = &flow_table->flows[flow_id];
4431 		cpu = READ_ONCE(rflow->cpu);
4432 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4433 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4434 			   rflow->last_qtail) <
4435 		     (int)(10 * flow_table->mask)))
4436 			expire = false;
4437 	}
4438 	rcu_read_unlock();
4439 	return expire;
4440 }
4441 EXPORT_SYMBOL(rps_may_expire_flow);
4442 
4443 #endif /* CONFIG_RFS_ACCEL */
4444 
4445 /* Called from hardirq (IPI) context */
4446 static void rps_trigger_softirq(void *data)
4447 {
4448 	struct softnet_data *sd = data;
4449 
4450 	____napi_schedule(sd, &sd->backlog);
4451 	sd->received_rps++;
4452 }
4453 
4454 #endif /* CONFIG_RPS */
4455 
4456 /*
4457  * Check if this softnet_data structure is another cpu one
4458  * If yes, queue it to our IPI list and return 1
4459  * If no, return 0
4460  */
4461 static int rps_ipi_queued(struct softnet_data *sd)
4462 {
4463 #ifdef CONFIG_RPS
4464 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4465 
4466 	if (sd != mysd) {
4467 		sd->rps_ipi_next = mysd->rps_ipi_list;
4468 		mysd->rps_ipi_list = sd;
4469 
4470 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4471 		return 1;
4472 	}
4473 #endif /* CONFIG_RPS */
4474 	return 0;
4475 }
4476 
4477 #ifdef CONFIG_NET_FLOW_LIMIT
4478 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4479 #endif
4480 
4481 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4482 {
4483 #ifdef CONFIG_NET_FLOW_LIMIT
4484 	struct sd_flow_limit *fl;
4485 	struct softnet_data *sd;
4486 	unsigned int old_flow, new_flow;
4487 
4488 	if (qlen < (netdev_max_backlog >> 1))
4489 		return false;
4490 
4491 	sd = this_cpu_ptr(&softnet_data);
4492 
4493 	rcu_read_lock();
4494 	fl = rcu_dereference(sd->flow_limit);
4495 	if (fl) {
4496 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4497 		old_flow = fl->history[fl->history_head];
4498 		fl->history[fl->history_head] = new_flow;
4499 
4500 		fl->history_head++;
4501 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4502 
4503 		if (likely(fl->buckets[old_flow]))
4504 			fl->buckets[old_flow]--;
4505 
4506 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4507 			fl->count++;
4508 			rcu_read_unlock();
4509 			return true;
4510 		}
4511 	}
4512 	rcu_read_unlock();
4513 #endif
4514 	return false;
4515 }
4516 
4517 /*
4518  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4519  * queue (may be a remote CPU queue).
4520  */
4521 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4522 			      unsigned int *qtail)
4523 {
4524 	struct softnet_data *sd;
4525 	unsigned long flags;
4526 	unsigned int qlen;
4527 
4528 	sd = &per_cpu(softnet_data, cpu);
4529 
4530 	local_irq_save(flags);
4531 
4532 	rps_lock(sd);
4533 	if (!netif_running(skb->dev))
4534 		goto drop;
4535 	qlen = skb_queue_len(&sd->input_pkt_queue);
4536 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4537 		if (qlen) {
4538 enqueue:
4539 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4540 			input_queue_tail_incr_save(sd, qtail);
4541 			rps_unlock(sd);
4542 			local_irq_restore(flags);
4543 			return NET_RX_SUCCESS;
4544 		}
4545 
4546 		/* Schedule NAPI for backlog device
4547 		 * We can use non atomic operation since we own the queue lock
4548 		 */
4549 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4550 			if (!rps_ipi_queued(sd))
4551 				____napi_schedule(sd, &sd->backlog);
4552 		}
4553 		goto enqueue;
4554 	}
4555 
4556 drop:
4557 	sd->dropped++;
4558 	rps_unlock(sd);
4559 
4560 	local_irq_restore(flags);
4561 
4562 	atomic_long_inc(&skb->dev->rx_dropped);
4563 	kfree_skb(skb);
4564 	return NET_RX_DROP;
4565 }
4566 
4567 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4568 {
4569 	struct net_device *dev = skb->dev;
4570 	struct netdev_rx_queue *rxqueue;
4571 
4572 	rxqueue = dev->_rx;
4573 
4574 	if (skb_rx_queue_recorded(skb)) {
4575 		u16 index = skb_get_rx_queue(skb);
4576 
4577 		if (unlikely(index >= dev->real_num_rx_queues)) {
4578 			WARN_ONCE(dev->real_num_rx_queues > 1,
4579 				  "%s received packet on queue %u, but number "
4580 				  "of RX queues is %u\n",
4581 				  dev->name, index, dev->real_num_rx_queues);
4582 
4583 			return rxqueue; /* Return first rxqueue */
4584 		}
4585 		rxqueue += index;
4586 	}
4587 	return rxqueue;
4588 }
4589 
4590 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4591 				     struct xdp_buff *xdp,
4592 				     struct bpf_prog *xdp_prog)
4593 {
4594 	struct netdev_rx_queue *rxqueue;
4595 	void *orig_data, *orig_data_end;
4596 	u32 metalen, act = XDP_DROP;
4597 	__be16 orig_eth_type;
4598 	struct ethhdr *eth;
4599 	bool orig_bcast;
4600 	int hlen, off;
4601 	u32 mac_len;
4602 
4603 	/* Reinjected packets coming from act_mirred or similar should
4604 	 * not get XDP generic processing.
4605 	 */
4606 	if (skb_is_redirected(skb))
4607 		return XDP_PASS;
4608 
4609 	/* XDP packets must be linear and must have sufficient headroom
4610 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4611 	 * native XDP provides, thus we need to do it here as well.
4612 	 */
4613 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4614 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4615 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4616 		int troom = skb->tail + skb->data_len - skb->end;
4617 
4618 		/* In case we have to go down the path and also linearize,
4619 		 * then lets do the pskb_expand_head() work just once here.
4620 		 */
4621 		if (pskb_expand_head(skb,
4622 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4623 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4624 			goto do_drop;
4625 		if (skb_linearize(skb))
4626 			goto do_drop;
4627 	}
4628 
4629 	/* The XDP program wants to see the packet starting at the MAC
4630 	 * header.
4631 	 */
4632 	mac_len = skb->data - skb_mac_header(skb);
4633 	hlen = skb_headlen(skb) + mac_len;
4634 	xdp->data = skb->data - mac_len;
4635 	xdp->data_meta = xdp->data;
4636 	xdp->data_end = xdp->data + hlen;
4637 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4638 
4639 	/* SKB "head" area always have tailroom for skb_shared_info */
4640 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4641 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4642 
4643 	orig_data_end = xdp->data_end;
4644 	orig_data = xdp->data;
4645 	eth = (struct ethhdr *)xdp->data;
4646 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4647 	orig_eth_type = eth->h_proto;
4648 
4649 	rxqueue = netif_get_rxqueue(skb);
4650 	xdp->rxq = &rxqueue->xdp_rxq;
4651 
4652 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4653 
4654 	/* check if bpf_xdp_adjust_head was used */
4655 	off = xdp->data - orig_data;
4656 	if (off) {
4657 		if (off > 0)
4658 			__skb_pull(skb, off);
4659 		else if (off < 0)
4660 			__skb_push(skb, -off);
4661 
4662 		skb->mac_header += off;
4663 		skb_reset_network_header(skb);
4664 	}
4665 
4666 	/* check if bpf_xdp_adjust_tail was used */
4667 	off = xdp->data_end - orig_data_end;
4668 	if (off != 0) {
4669 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4670 		skb->len += off; /* positive on grow, negative on shrink */
4671 	}
4672 
4673 	/* check if XDP changed eth hdr such SKB needs update */
4674 	eth = (struct ethhdr *)xdp->data;
4675 	if ((orig_eth_type != eth->h_proto) ||
4676 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4677 		__skb_push(skb, ETH_HLEN);
4678 		skb->protocol = eth_type_trans(skb, skb->dev);
4679 	}
4680 
4681 	switch (act) {
4682 	case XDP_REDIRECT:
4683 	case XDP_TX:
4684 		__skb_push(skb, mac_len);
4685 		break;
4686 	case XDP_PASS:
4687 		metalen = xdp->data - xdp->data_meta;
4688 		if (metalen)
4689 			skb_metadata_set(skb, metalen);
4690 		break;
4691 	default:
4692 		bpf_warn_invalid_xdp_action(act);
4693 		fallthrough;
4694 	case XDP_ABORTED:
4695 		trace_xdp_exception(skb->dev, xdp_prog, act);
4696 		fallthrough;
4697 	case XDP_DROP:
4698 	do_drop:
4699 		kfree_skb(skb);
4700 		break;
4701 	}
4702 
4703 	return act;
4704 }
4705 
4706 /* When doing generic XDP we have to bypass the qdisc layer and the
4707  * network taps in order to match in-driver-XDP behavior.
4708  */
4709 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4710 {
4711 	struct net_device *dev = skb->dev;
4712 	struct netdev_queue *txq;
4713 	bool free_skb = true;
4714 	int cpu, rc;
4715 
4716 	txq = netdev_core_pick_tx(dev, skb, NULL);
4717 	cpu = smp_processor_id();
4718 	HARD_TX_LOCK(dev, txq, cpu);
4719 	if (!netif_xmit_stopped(txq)) {
4720 		rc = netdev_start_xmit(skb, dev, txq, 0);
4721 		if (dev_xmit_complete(rc))
4722 			free_skb = false;
4723 	}
4724 	HARD_TX_UNLOCK(dev, txq);
4725 	if (free_skb) {
4726 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4727 		kfree_skb(skb);
4728 	}
4729 }
4730 
4731 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4732 
4733 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4734 {
4735 	if (xdp_prog) {
4736 		struct xdp_buff xdp;
4737 		u32 act;
4738 		int err;
4739 
4740 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4741 		if (act != XDP_PASS) {
4742 			switch (act) {
4743 			case XDP_REDIRECT:
4744 				err = xdp_do_generic_redirect(skb->dev, skb,
4745 							      &xdp, xdp_prog);
4746 				if (err)
4747 					goto out_redir;
4748 				break;
4749 			case XDP_TX:
4750 				generic_xdp_tx(skb, xdp_prog);
4751 				break;
4752 			}
4753 			return XDP_DROP;
4754 		}
4755 	}
4756 	return XDP_PASS;
4757 out_redir:
4758 	kfree_skb(skb);
4759 	return XDP_DROP;
4760 }
4761 EXPORT_SYMBOL_GPL(do_xdp_generic);
4762 
4763 static int netif_rx_internal(struct sk_buff *skb)
4764 {
4765 	int ret;
4766 
4767 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4768 
4769 	trace_netif_rx(skb);
4770 
4771 #ifdef CONFIG_RPS
4772 	if (static_branch_unlikely(&rps_needed)) {
4773 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4774 		int cpu;
4775 
4776 		preempt_disable();
4777 		rcu_read_lock();
4778 
4779 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4780 		if (cpu < 0)
4781 			cpu = smp_processor_id();
4782 
4783 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4784 
4785 		rcu_read_unlock();
4786 		preempt_enable();
4787 	} else
4788 #endif
4789 	{
4790 		unsigned int qtail;
4791 
4792 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4793 		put_cpu();
4794 	}
4795 	return ret;
4796 }
4797 
4798 /**
4799  *	netif_rx	-	post buffer to the network code
4800  *	@skb: buffer to post
4801  *
4802  *	This function receives a packet from a device driver and queues it for
4803  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4804  *	may be dropped during processing for congestion control or by the
4805  *	protocol layers.
4806  *
4807  *	return values:
4808  *	NET_RX_SUCCESS	(no congestion)
4809  *	NET_RX_DROP     (packet was dropped)
4810  *
4811  */
4812 
4813 int netif_rx(struct sk_buff *skb)
4814 {
4815 	int ret;
4816 
4817 	trace_netif_rx_entry(skb);
4818 
4819 	ret = netif_rx_internal(skb);
4820 	trace_netif_rx_exit(ret);
4821 
4822 	return ret;
4823 }
4824 EXPORT_SYMBOL(netif_rx);
4825 
4826 int netif_rx_ni(struct sk_buff *skb)
4827 {
4828 	int err;
4829 
4830 	trace_netif_rx_ni_entry(skb);
4831 
4832 	preempt_disable();
4833 	err = netif_rx_internal(skb);
4834 	if (local_softirq_pending())
4835 		do_softirq();
4836 	preempt_enable();
4837 	trace_netif_rx_ni_exit(err);
4838 
4839 	return err;
4840 }
4841 EXPORT_SYMBOL(netif_rx_ni);
4842 
4843 static __latent_entropy void net_tx_action(struct softirq_action *h)
4844 {
4845 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4846 
4847 	if (sd->completion_queue) {
4848 		struct sk_buff *clist;
4849 
4850 		local_irq_disable();
4851 		clist = sd->completion_queue;
4852 		sd->completion_queue = NULL;
4853 		local_irq_enable();
4854 
4855 		while (clist) {
4856 			struct sk_buff *skb = clist;
4857 
4858 			clist = clist->next;
4859 
4860 			WARN_ON(refcount_read(&skb->users));
4861 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4862 				trace_consume_skb(skb);
4863 			else
4864 				trace_kfree_skb(skb, net_tx_action);
4865 
4866 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4867 				__kfree_skb(skb);
4868 			else
4869 				__kfree_skb_defer(skb);
4870 		}
4871 
4872 		__kfree_skb_flush();
4873 	}
4874 
4875 	if (sd->output_queue) {
4876 		struct Qdisc *head;
4877 
4878 		local_irq_disable();
4879 		head = sd->output_queue;
4880 		sd->output_queue = NULL;
4881 		sd->output_queue_tailp = &sd->output_queue;
4882 		local_irq_enable();
4883 
4884 		while (head) {
4885 			struct Qdisc *q = head;
4886 			spinlock_t *root_lock = NULL;
4887 
4888 			head = head->next_sched;
4889 
4890 			if (!(q->flags & TCQ_F_NOLOCK)) {
4891 				root_lock = qdisc_lock(q);
4892 				spin_lock(root_lock);
4893 			}
4894 			/* We need to make sure head->next_sched is read
4895 			 * before clearing __QDISC_STATE_SCHED
4896 			 */
4897 			smp_mb__before_atomic();
4898 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4899 			qdisc_run(q);
4900 			if (root_lock)
4901 				spin_unlock(root_lock);
4902 		}
4903 	}
4904 
4905 	xfrm_dev_backlog(sd);
4906 }
4907 
4908 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4909 /* This hook is defined here for ATM LANE */
4910 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4911 			     unsigned char *addr) __read_mostly;
4912 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4913 #endif
4914 
4915 static inline struct sk_buff *
4916 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4917 		   struct net_device *orig_dev)
4918 {
4919 #ifdef CONFIG_NET_CLS_ACT
4920 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4921 	struct tcf_result cl_res;
4922 
4923 	/* If there's at least one ingress present somewhere (so
4924 	 * we get here via enabled static key), remaining devices
4925 	 * that are not configured with an ingress qdisc will bail
4926 	 * out here.
4927 	 */
4928 	if (!miniq)
4929 		return skb;
4930 
4931 	if (*pt_prev) {
4932 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4933 		*pt_prev = NULL;
4934 	}
4935 
4936 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4937 	skb->tc_at_ingress = 1;
4938 	mini_qdisc_bstats_cpu_update(miniq, skb);
4939 
4940 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4941 				     &cl_res, false)) {
4942 	case TC_ACT_OK:
4943 	case TC_ACT_RECLASSIFY:
4944 		skb->tc_index = TC_H_MIN(cl_res.classid);
4945 		break;
4946 	case TC_ACT_SHOT:
4947 		mini_qdisc_qstats_cpu_drop(miniq);
4948 		kfree_skb(skb);
4949 		return NULL;
4950 	case TC_ACT_STOLEN:
4951 	case TC_ACT_QUEUED:
4952 	case TC_ACT_TRAP:
4953 		consume_skb(skb);
4954 		return NULL;
4955 	case TC_ACT_REDIRECT:
4956 		/* skb_mac_header check was done by cls/act_bpf, so
4957 		 * we can safely push the L2 header back before
4958 		 * redirecting to another netdev
4959 		 */
4960 		__skb_push(skb, skb->mac_len);
4961 		skb_do_redirect(skb);
4962 		return NULL;
4963 	case TC_ACT_CONSUMED:
4964 		return NULL;
4965 	default:
4966 		break;
4967 	}
4968 #endif /* CONFIG_NET_CLS_ACT */
4969 	return skb;
4970 }
4971 
4972 /**
4973  *	netdev_is_rx_handler_busy - check if receive handler is registered
4974  *	@dev: device to check
4975  *
4976  *	Check if a receive handler is already registered for a given device.
4977  *	Return true if there one.
4978  *
4979  *	The caller must hold the rtnl_mutex.
4980  */
4981 bool netdev_is_rx_handler_busy(struct net_device *dev)
4982 {
4983 	ASSERT_RTNL();
4984 	return dev && rtnl_dereference(dev->rx_handler);
4985 }
4986 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4987 
4988 /**
4989  *	netdev_rx_handler_register - register receive handler
4990  *	@dev: device to register a handler for
4991  *	@rx_handler: receive handler to register
4992  *	@rx_handler_data: data pointer that is used by rx handler
4993  *
4994  *	Register a receive handler for a device. This handler will then be
4995  *	called from __netif_receive_skb. A negative errno code is returned
4996  *	on a failure.
4997  *
4998  *	The caller must hold the rtnl_mutex.
4999  *
5000  *	For a general description of rx_handler, see enum rx_handler_result.
5001  */
5002 int netdev_rx_handler_register(struct net_device *dev,
5003 			       rx_handler_func_t *rx_handler,
5004 			       void *rx_handler_data)
5005 {
5006 	if (netdev_is_rx_handler_busy(dev))
5007 		return -EBUSY;
5008 
5009 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5010 		return -EINVAL;
5011 
5012 	/* Note: rx_handler_data must be set before rx_handler */
5013 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5014 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5015 
5016 	return 0;
5017 }
5018 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5019 
5020 /**
5021  *	netdev_rx_handler_unregister - unregister receive handler
5022  *	@dev: device to unregister a handler from
5023  *
5024  *	Unregister a receive handler from a device.
5025  *
5026  *	The caller must hold the rtnl_mutex.
5027  */
5028 void netdev_rx_handler_unregister(struct net_device *dev)
5029 {
5030 
5031 	ASSERT_RTNL();
5032 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5033 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5034 	 * section has a guarantee to see a non NULL rx_handler_data
5035 	 * as well.
5036 	 */
5037 	synchronize_net();
5038 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5039 }
5040 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5041 
5042 /*
5043  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5044  * the special handling of PFMEMALLOC skbs.
5045  */
5046 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5047 {
5048 	switch (skb->protocol) {
5049 	case htons(ETH_P_ARP):
5050 	case htons(ETH_P_IP):
5051 	case htons(ETH_P_IPV6):
5052 	case htons(ETH_P_8021Q):
5053 	case htons(ETH_P_8021AD):
5054 		return true;
5055 	default:
5056 		return false;
5057 	}
5058 }
5059 
5060 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5061 			     int *ret, struct net_device *orig_dev)
5062 {
5063 	if (nf_hook_ingress_active(skb)) {
5064 		int ingress_retval;
5065 
5066 		if (*pt_prev) {
5067 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5068 			*pt_prev = NULL;
5069 		}
5070 
5071 		rcu_read_lock();
5072 		ingress_retval = nf_hook_ingress(skb);
5073 		rcu_read_unlock();
5074 		return ingress_retval;
5075 	}
5076 	return 0;
5077 }
5078 
5079 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5080 				    struct packet_type **ppt_prev)
5081 {
5082 	struct packet_type *ptype, *pt_prev;
5083 	rx_handler_func_t *rx_handler;
5084 	struct sk_buff *skb = *pskb;
5085 	struct net_device *orig_dev;
5086 	bool deliver_exact = false;
5087 	int ret = NET_RX_DROP;
5088 	__be16 type;
5089 
5090 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5091 
5092 	trace_netif_receive_skb(skb);
5093 
5094 	orig_dev = skb->dev;
5095 
5096 	skb_reset_network_header(skb);
5097 	if (!skb_transport_header_was_set(skb))
5098 		skb_reset_transport_header(skb);
5099 	skb_reset_mac_len(skb);
5100 
5101 	pt_prev = NULL;
5102 
5103 another_round:
5104 	skb->skb_iif = skb->dev->ifindex;
5105 
5106 	__this_cpu_inc(softnet_data.processed);
5107 
5108 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5109 		int ret2;
5110 
5111 		preempt_disable();
5112 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5113 		preempt_enable();
5114 
5115 		if (ret2 != XDP_PASS) {
5116 			ret = NET_RX_DROP;
5117 			goto out;
5118 		}
5119 		skb_reset_mac_len(skb);
5120 	}
5121 
5122 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5124 		skb = skb_vlan_untag(skb);
5125 		if (unlikely(!skb))
5126 			goto out;
5127 	}
5128 
5129 	if (skb_skip_tc_classify(skb))
5130 		goto skip_classify;
5131 
5132 	if (pfmemalloc)
5133 		goto skip_taps;
5134 
5135 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5136 		if (pt_prev)
5137 			ret = deliver_skb(skb, pt_prev, orig_dev);
5138 		pt_prev = ptype;
5139 	}
5140 
5141 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5142 		if (pt_prev)
5143 			ret = deliver_skb(skb, pt_prev, orig_dev);
5144 		pt_prev = ptype;
5145 	}
5146 
5147 skip_taps:
5148 #ifdef CONFIG_NET_INGRESS
5149 	if (static_branch_unlikely(&ingress_needed_key)) {
5150 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5151 		if (!skb)
5152 			goto out;
5153 
5154 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5155 			goto out;
5156 	}
5157 #endif
5158 	skb_reset_redirect(skb);
5159 skip_classify:
5160 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5161 		goto drop;
5162 
5163 	if (skb_vlan_tag_present(skb)) {
5164 		if (pt_prev) {
5165 			ret = deliver_skb(skb, pt_prev, orig_dev);
5166 			pt_prev = NULL;
5167 		}
5168 		if (vlan_do_receive(&skb))
5169 			goto another_round;
5170 		else if (unlikely(!skb))
5171 			goto out;
5172 	}
5173 
5174 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5175 	if (rx_handler) {
5176 		if (pt_prev) {
5177 			ret = deliver_skb(skb, pt_prev, orig_dev);
5178 			pt_prev = NULL;
5179 		}
5180 		switch (rx_handler(&skb)) {
5181 		case RX_HANDLER_CONSUMED:
5182 			ret = NET_RX_SUCCESS;
5183 			goto out;
5184 		case RX_HANDLER_ANOTHER:
5185 			goto another_round;
5186 		case RX_HANDLER_EXACT:
5187 			deliver_exact = true;
5188 		case RX_HANDLER_PASS:
5189 			break;
5190 		default:
5191 			BUG();
5192 		}
5193 	}
5194 
5195 	if (unlikely(skb_vlan_tag_present(skb))) {
5196 check_vlan_id:
5197 		if (skb_vlan_tag_get_id(skb)) {
5198 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5199 			 * find vlan device.
5200 			 */
5201 			skb->pkt_type = PACKET_OTHERHOST;
5202 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5203 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5204 			/* Outer header is 802.1P with vlan 0, inner header is
5205 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5206 			 * not find vlan dev for vlan id 0.
5207 			 */
5208 			__vlan_hwaccel_clear_tag(skb);
5209 			skb = skb_vlan_untag(skb);
5210 			if (unlikely(!skb))
5211 				goto out;
5212 			if (vlan_do_receive(&skb))
5213 				/* After stripping off 802.1P header with vlan 0
5214 				 * vlan dev is found for inner header.
5215 				 */
5216 				goto another_round;
5217 			else if (unlikely(!skb))
5218 				goto out;
5219 			else
5220 				/* We have stripped outer 802.1P vlan 0 header.
5221 				 * But could not find vlan dev.
5222 				 * check again for vlan id to set OTHERHOST.
5223 				 */
5224 				goto check_vlan_id;
5225 		}
5226 		/* Note: we might in the future use prio bits
5227 		 * and set skb->priority like in vlan_do_receive()
5228 		 * For the time being, just ignore Priority Code Point
5229 		 */
5230 		__vlan_hwaccel_clear_tag(skb);
5231 	}
5232 
5233 	type = skb->protocol;
5234 
5235 	/* deliver only exact match when indicated */
5236 	if (likely(!deliver_exact)) {
5237 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238 				       &ptype_base[ntohs(type) &
5239 						   PTYPE_HASH_MASK]);
5240 	}
5241 
5242 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5243 			       &orig_dev->ptype_specific);
5244 
5245 	if (unlikely(skb->dev != orig_dev)) {
5246 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5247 				       &skb->dev->ptype_specific);
5248 	}
5249 
5250 	if (pt_prev) {
5251 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5252 			goto drop;
5253 		*ppt_prev = pt_prev;
5254 	} else {
5255 drop:
5256 		if (!deliver_exact)
5257 			atomic_long_inc(&skb->dev->rx_dropped);
5258 		else
5259 			atomic_long_inc(&skb->dev->rx_nohandler);
5260 		kfree_skb(skb);
5261 		/* Jamal, now you will not able to escape explaining
5262 		 * me how you were going to use this. :-)
5263 		 */
5264 		ret = NET_RX_DROP;
5265 	}
5266 
5267 out:
5268 	/* The invariant here is that if *ppt_prev is not NULL
5269 	 * then skb should also be non-NULL.
5270 	 *
5271 	 * Apparently *ppt_prev assignment above holds this invariant due to
5272 	 * skb dereferencing near it.
5273 	 */
5274 	*pskb = skb;
5275 	return ret;
5276 }
5277 
5278 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5279 {
5280 	struct net_device *orig_dev = skb->dev;
5281 	struct packet_type *pt_prev = NULL;
5282 	int ret;
5283 
5284 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5285 	if (pt_prev)
5286 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5287 					 skb->dev, pt_prev, orig_dev);
5288 	return ret;
5289 }
5290 
5291 /**
5292  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5293  *	@skb: buffer to process
5294  *
5295  *	More direct receive version of netif_receive_skb().  It should
5296  *	only be used by callers that have a need to skip RPS and Generic XDP.
5297  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5298  *
5299  *	This function may only be called from softirq context and interrupts
5300  *	should be enabled.
5301  *
5302  *	Return values (usually ignored):
5303  *	NET_RX_SUCCESS: no congestion
5304  *	NET_RX_DROP: packet was dropped
5305  */
5306 int netif_receive_skb_core(struct sk_buff *skb)
5307 {
5308 	int ret;
5309 
5310 	rcu_read_lock();
5311 	ret = __netif_receive_skb_one_core(skb, false);
5312 	rcu_read_unlock();
5313 
5314 	return ret;
5315 }
5316 EXPORT_SYMBOL(netif_receive_skb_core);
5317 
5318 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5319 						  struct packet_type *pt_prev,
5320 						  struct net_device *orig_dev)
5321 {
5322 	struct sk_buff *skb, *next;
5323 
5324 	if (!pt_prev)
5325 		return;
5326 	if (list_empty(head))
5327 		return;
5328 	if (pt_prev->list_func != NULL)
5329 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5330 				   ip_list_rcv, head, pt_prev, orig_dev);
5331 	else
5332 		list_for_each_entry_safe(skb, next, head, list) {
5333 			skb_list_del_init(skb);
5334 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5335 		}
5336 }
5337 
5338 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5339 {
5340 	/* Fast-path assumptions:
5341 	 * - There is no RX handler.
5342 	 * - Only one packet_type matches.
5343 	 * If either of these fails, we will end up doing some per-packet
5344 	 * processing in-line, then handling the 'last ptype' for the whole
5345 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5346 	 * because the 'last ptype' must be constant across the sublist, and all
5347 	 * other ptypes are handled per-packet.
5348 	 */
5349 	/* Current (common) ptype of sublist */
5350 	struct packet_type *pt_curr = NULL;
5351 	/* Current (common) orig_dev of sublist */
5352 	struct net_device *od_curr = NULL;
5353 	struct list_head sublist;
5354 	struct sk_buff *skb, *next;
5355 
5356 	INIT_LIST_HEAD(&sublist);
5357 	list_for_each_entry_safe(skb, next, head, list) {
5358 		struct net_device *orig_dev = skb->dev;
5359 		struct packet_type *pt_prev = NULL;
5360 
5361 		skb_list_del_init(skb);
5362 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5363 		if (!pt_prev)
5364 			continue;
5365 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5366 			/* dispatch old sublist */
5367 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5368 			/* start new sublist */
5369 			INIT_LIST_HEAD(&sublist);
5370 			pt_curr = pt_prev;
5371 			od_curr = orig_dev;
5372 		}
5373 		list_add_tail(&skb->list, &sublist);
5374 	}
5375 
5376 	/* dispatch final sublist */
5377 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5378 }
5379 
5380 static int __netif_receive_skb(struct sk_buff *skb)
5381 {
5382 	int ret;
5383 
5384 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5385 		unsigned int noreclaim_flag;
5386 
5387 		/*
5388 		 * PFMEMALLOC skbs are special, they should
5389 		 * - be delivered to SOCK_MEMALLOC sockets only
5390 		 * - stay away from userspace
5391 		 * - have bounded memory usage
5392 		 *
5393 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5394 		 * context down to all allocation sites.
5395 		 */
5396 		noreclaim_flag = memalloc_noreclaim_save();
5397 		ret = __netif_receive_skb_one_core(skb, true);
5398 		memalloc_noreclaim_restore(noreclaim_flag);
5399 	} else
5400 		ret = __netif_receive_skb_one_core(skb, false);
5401 
5402 	return ret;
5403 }
5404 
5405 static void __netif_receive_skb_list(struct list_head *head)
5406 {
5407 	unsigned long noreclaim_flag = 0;
5408 	struct sk_buff *skb, *next;
5409 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5410 
5411 	list_for_each_entry_safe(skb, next, head, list) {
5412 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5413 			struct list_head sublist;
5414 
5415 			/* Handle the previous sublist */
5416 			list_cut_before(&sublist, head, &skb->list);
5417 			if (!list_empty(&sublist))
5418 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5419 			pfmemalloc = !pfmemalloc;
5420 			/* See comments in __netif_receive_skb */
5421 			if (pfmemalloc)
5422 				noreclaim_flag = memalloc_noreclaim_save();
5423 			else
5424 				memalloc_noreclaim_restore(noreclaim_flag);
5425 		}
5426 	}
5427 	/* Handle the remaining sublist */
5428 	if (!list_empty(head))
5429 		__netif_receive_skb_list_core(head, pfmemalloc);
5430 	/* Restore pflags */
5431 	if (pfmemalloc)
5432 		memalloc_noreclaim_restore(noreclaim_flag);
5433 }
5434 
5435 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5436 {
5437 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5438 	struct bpf_prog *new = xdp->prog;
5439 	int ret = 0;
5440 
5441 	if (new) {
5442 		u32 i;
5443 
5444 		/* generic XDP does not work with DEVMAPs that can
5445 		 * have a bpf_prog installed on an entry
5446 		 */
5447 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5448 			if (dev_map_can_have_prog(new->aux->used_maps[i]))
5449 				return -EINVAL;
5450 			if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5451 				return -EINVAL;
5452 		}
5453 	}
5454 
5455 	switch (xdp->command) {
5456 	case XDP_SETUP_PROG:
5457 		rcu_assign_pointer(dev->xdp_prog, new);
5458 		if (old)
5459 			bpf_prog_put(old);
5460 
5461 		if (old && !new) {
5462 			static_branch_dec(&generic_xdp_needed_key);
5463 		} else if (new && !old) {
5464 			static_branch_inc(&generic_xdp_needed_key);
5465 			dev_disable_lro(dev);
5466 			dev_disable_gro_hw(dev);
5467 		}
5468 		break;
5469 
5470 	default:
5471 		ret = -EINVAL;
5472 		break;
5473 	}
5474 
5475 	return ret;
5476 }
5477 
5478 static int netif_receive_skb_internal(struct sk_buff *skb)
5479 {
5480 	int ret;
5481 
5482 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5483 
5484 	if (skb_defer_rx_timestamp(skb))
5485 		return NET_RX_SUCCESS;
5486 
5487 	rcu_read_lock();
5488 #ifdef CONFIG_RPS
5489 	if (static_branch_unlikely(&rps_needed)) {
5490 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5491 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492 
5493 		if (cpu >= 0) {
5494 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5495 			rcu_read_unlock();
5496 			return ret;
5497 		}
5498 	}
5499 #endif
5500 	ret = __netif_receive_skb(skb);
5501 	rcu_read_unlock();
5502 	return ret;
5503 }
5504 
5505 static void netif_receive_skb_list_internal(struct list_head *head)
5506 {
5507 	struct sk_buff *skb, *next;
5508 	struct list_head sublist;
5509 
5510 	INIT_LIST_HEAD(&sublist);
5511 	list_for_each_entry_safe(skb, next, head, list) {
5512 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5513 		skb_list_del_init(skb);
5514 		if (!skb_defer_rx_timestamp(skb))
5515 			list_add_tail(&skb->list, &sublist);
5516 	}
5517 	list_splice_init(&sublist, head);
5518 
5519 	rcu_read_lock();
5520 #ifdef CONFIG_RPS
5521 	if (static_branch_unlikely(&rps_needed)) {
5522 		list_for_each_entry_safe(skb, next, head, list) {
5523 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5524 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5525 
5526 			if (cpu >= 0) {
5527 				/* Will be handled, remove from list */
5528 				skb_list_del_init(skb);
5529 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5530 			}
5531 		}
5532 	}
5533 #endif
5534 	__netif_receive_skb_list(head);
5535 	rcu_read_unlock();
5536 }
5537 
5538 /**
5539  *	netif_receive_skb - process receive buffer from network
5540  *	@skb: buffer to process
5541  *
5542  *	netif_receive_skb() is the main receive data processing function.
5543  *	It always succeeds. The buffer may be dropped during processing
5544  *	for congestion control or by the protocol layers.
5545  *
5546  *	This function may only be called from softirq context and interrupts
5547  *	should be enabled.
5548  *
5549  *	Return values (usually ignored):
5550  *	NET_RX_SUCCESS: no congestion
5551  *	NET_RX_DROP: packet was dropped
5552  */
5553 int netif_receive_skb(struct sk_buff *skb)
5554 {
5555 	int ret;
5556 
5557 	trace_netif_receive_skb_entry(skb);
5558 
5559 	ret = netif_receive_skb_internal(skb);
5560 	trace_netif_receive_skb_exit(ret);
5561 
5562 	return ret;
5563 }
5564 EXPORT_SYMBOL(netif_receive_skb);
5565 
5566 /**
5567  *	netif_receive_skb_list - process many receive buffers from network
5568  *	@head: list of skbs to process.
5569  *
5570  *	Since return value of netif_receive_skb() is normally ignored, and
5571  *	wouldn't be meaningful for a list, this function returns void.
5572  *
5573  *	This function may only be called from softirq context and interrupts
5574  *	should be enabled.
5575  */
5576 void netif_receive_skb_list(struct list_head *head)
5577 {
5578 	struct sk_buff *skb;
5579 
5580 	if (list_empty(head))
5581 		return;
5582 	if (trace_netif_receive_skb_list_entry_enabled()) {
5583 		list_for_each_entry(skb, head, list)
5584 			trace_netif_receive_skb_list_entry(skb);
5585 	}
5586 	netif_receive_skb_list_internal(head);
5587 	trace_netif_receive_skb_list_exit(0);
5588 }
5589 EXPORT_SYMBOL(netif_receive_skb_list);
5590 
5591 static DEFINE_PER_CPU(struct work_struct, flush_works);
5592 
5593 /* Network device is going away, flush any packets still pending */
5594 static void flush_backlog(struct work_struct *work)
5595 {
5596 	struct sk_buff *skb, *tmp;
5597 	struct softnet_data *sd;
5598 
5599 	local_bh_disable();
5600 	sd = this_cpu_ptr(&softnet_data);
5601 
5602 	local_irq_disable();
5603 	rps_lock(sd);
5604 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5605 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5606 			__skb_unlink(skb, &sd->input_pkt_queue);
5607 			dev_kfree_skb_irq(skb);
5608 			input_queue_head_incr(sd);
5609 		}
5610 	}
5611 	rps_unlock(sd);
5612 	local_irq_enable();
5613 
5614 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5615 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5616 			__skb_unlink(skb, &sd->process_queue);
5617 			kfree_skb(skb);
5618 			input_queue_head_incr(sd);
5619 		}
5620 	}
5621 	local_bh_enable();
5622 }
5623 
5624 static void flush_all_backlogs(void)
5625 {
5626 	unsigned int cpu;
5627 
5628 	get_online_cpus();
5629 
5630 	for_each_online_cpu(cpu)
5631 		queue_work_on(cpu, system_highpri_wq,
5632 			      per_cpu_ptr(&flush_works, cpu));
5633 
5634 	for_each_online_cpu(cpu)
5635 		flush_work(per_cpu_ptr(&flush_works, cpu));
5636 
5637 	put_online_cpus();
5638 }
5639 
5640 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5641 static void gro_normal_list(struct napi_struct *napi)
5642 {
5643 	if (!napi->rx_count)
5644 		return;
5645 	netif_receive_skb_list_internal(&napi->rx_list);
5646 	INIT_LIST_HEAD(&napi->rx_list);
5647 	napi->rx_count = 0;
5648 }
5649 
5650 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5651  * pass the whole batch up to the stack.
5652  */
5653 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5654 {
5655 	list_add_tail(&skb->list, &napi->rx_list);
5656 	if (++napi->rx_count >= gro_normal_batch)
5657 		gro_normal_list(napi);
5658 }
5659 
5660 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5661 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5662 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5663 {
5664 	struct packet_offload *ptype;
5665 	__be16 type = skb->protocol;
5666 	struct list_head *head = &offload_base;
5667 	int err = -ENOENT;
5668 
5669 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5670 
5671 	if (NAPI_GRO_CB(skb)->count == 1) {
5672 		skb_shinfo(skb)->gso_size = 0;
5673 		goto out;
5674 	}
5675 
5676 	rcu_read_lock();
5677 	list_for_each_entry_rcu(ptype, head, list) {
5678 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5679 			continue;
5680 
5681 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5682 					 ipv6_gro_complete, inet_gro_complete,
5683 					 skb, 0);
5684 		break;
5685 	}
5686 	rcu_read_unlock();
5687 
5688 	if (err) {
5689 		WARN_ON(&ptype->list == head);
5690 		kfree_skb(skb);
5691 		return NET_RX_SUCCESS;
5692 	}
5693 
5694 out:
5695 	gro_normal_one(napi, skb);
5696 	return NET_RX_SUCCESS;
5697 }
5698 
5699 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5700 				   bool flush_old)
5701 {
5702 	struct list_head *head = &napi->gro_hash[index].list;
5703 	struct sk_buff *skb, *p;
5704 
5705 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5706 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5707 			return;
5708 		skb_list_del_init(skb);
5709 		napi_gro_complete(napi, skb);
5710 		napi->gro_hash[index].count--;
5711 	}
5712 
5713 	if (!napi->gro_hash[index].count)
5714 		__clear_bit(index, &napi->gro_bitmask);
5715 }
5716 
5717 /* napi->gro_hash[].list contains packets ordered by age.
5718  * youngest packets at the head of it.
5719  * Complete skbs in reverse order to reduce latencies.
5720  */
5721 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5722 {
5723 	unsigned long bitmask = napi->gro_bitmask;
5724 	unsigned int i, base = ~0U;
5725 
5726 	while ((i = ffs(bitmask)) != 0) {
5727 		bitmask >>= i;
5728 		base += i;
5729 		__napi_gro_flush_chain(napi, base, flush_old);
5730 	}
5731 }
5732 EXPORT_SYMBOL(napi_gro_flush);
5733 
5734 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5735 					  struct sk_buff *skb)
5736 {
5737 	unsigned int maclen = skb->dev->hard_header_len;
5738 	u32 hash = skb_get_hash_raw(skb);
5739 	struct list_head *head;
5740 	struct sk_buff *p;
5741 
5742 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5743 	list_for_each_entry(p, head, list) {
5744 		unsigned long diffs;
5745 
5746 		NAPI_GRO_CB(p)->flush = 0;
5747 
5748 		if (hash != skb_get_hash_raw(p)) {
5749 			NAPI_GRO_CB(p)->same_flow = 0;
5750 			continue;
5751 		}
5752 
5753 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5754 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5755 		if (skb_vlan_tag_present(p))
5756 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5757 		diffs |= skb_metadata_dst_cmp(p, skb);
5758 		diffs |= skb_metadata_differs(p, skb);
5759 		if (maclen == ETH_HLEN)
5760 			diffs |= compare_ether_header(skb_mac_header(p),
5761 						      skb_mac_header(skb));
5762 		else if (!diffs)
5763 			diffs = memcmp(skb_mac_header(p),
5764 				       skb_mac_header(skb),
5765 				       maclen);
5766 		NAPI_GRO_CB(p)->same_flow = !diffs;
5767 	}
5768 
5769 	return head;
5770 }
5771 
5772 static void skb_gro_reset_offset(struct sk_buff *skb)
5773 {
5774 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5775 	const skb_frag_t *frag0 = &pinfo->frags[0];
5776 
5777 	NAPI_GRO_CB(skb)->data_offset = 0;
5778 	NAPI_GRO_CB(skb)->frag0 = NULL;
5779 	NAPI_GRO_CB(skb)->frag0_len = 0;
5780 
5781 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5782 	    !PageHighMem(skb_frag_page(frag0))) {
5783 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5784 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5785 						    skb_frag_size(frag0),
5786 						    skb->end - skb->tail);
5787 	}
5788 }
5789 
5790 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5791 {
5792 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5793 
5794 	BUG_ON(skb->end - skb->tail < grow);
5795 
5796 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5797 
5798 	skb->data_len -= grow;
5799 	skb->tail += grow;
5800 
5801 	skb_frag_off_add(&pinfo->frags[0], grow);
5802 	skb_frag_size_sub(&pinfo->frags[0], grow);
5803 
5804 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5805 		skb_frag_unref(skb, 0);
5806 		memmove(pinfo->frags, pinfo->frags + 1,
5807 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5808 	}
5809 }
5810 
5811 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5812 {
5813 	struct sk_buff *oldest;
5814 
5815 	oldest = list_last_entry(head, struct sk_buff, list);
5816 
5817 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5818 	 * impossible.
5819 	 */
5820 	if (WARN_ON_ONCE(!oldest))
5821 		return;
5822 
5823 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5824 	 * SKB to the chain.
5825 	 */
5826 	skb_list_del_init(oldest);
5827 	napi_gro_complete(napi, oldest);
5828 }
5829 
5830 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5831 							   struct sk_buff *));
5832 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5833 							   struct sk_buff *));
5834 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5835 {
5836 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5837 	struct list_head *head = &offload_base;
5838 	struct packet_offload *ptype;
5839 	__be16 type = skb->protocol;
5840 	struct list_head *gro_head;
5841 	struct sk_buff *pp = NULL;
5842 	enum gro_result ret;
5843 	int same_flow;
5844 	int grow;
5845 
5846 	if (netif_elide_gro(skb->dev))
5847 		goto normal;
5848 
5849 	gro_head = gro_list_prepare(napi, skb);
5850 
5851 	rcu_read_lock();
5852 	list_for_each_entry_rcu(ptype, head, list) {
5853 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5854 			continue;
5855 
5856 		skb_set_network_header(skb, skb_gro_offset(skb));
5857 		skb_reset_mac_len(skb);
5858 		NAPI_GRO_CB(skb)->same_flow = 0;
5859 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5860 		NAPI_GRO_CB(skb)->free = 0;
5861 		NAPI_GRO_CB(skb)->encap_mark = 0;
5862 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5863 		NAPI_GRO_CB(skb)->is_fou = 0;
5864 		NAPI_GRO_CB(skb)->is_atomic = 1;
5865 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5866 
5867 		/* Setup for GRO checksum validation */
5868 		switch (skb->ip_summed) {
5869 		case CHECKSUM_COMPLETE:
5870 			NAPI_GRO_CB(skb)->csum = skb->csum;
5871 			NAPI_GRO_CB(skb)->csum_valid = 1;
5872 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5873 			break;
5874 		case CHECKSUM_UNNECESSARY:
5875 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5876 			NAPI_GRO_CB(skb)->csum_valid = 0;
5877 			break;
5878 		default:
5879 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5880 			NAPI_GRO_CB(skb)->csum_valid = 0;
5881 		}
5882 
5883 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5884 					ipv6_gro_receive, inet_gro_receive,
5885 					gro_head, skb);
5886 		break;
5887 	}
5888 	rcu_read_unlock();
5889 
5890 	if (&ptype->list == head)
5891 		goto normal;
5892 
5893 	if (PTR_ERR(pp) == -EINPROGRESS) {
5894 		ret = GRO_CONSUMED;
5895 		goto ok;
5896 	}
5897 
5898 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5899 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5900 
5901 	if (pp) {
5902 		skb_list_del_init(pp);
5903 		napi_gro_complete(napi, pp);
5904 		napi->gro_hash[hash].count--;
5905 	}
5906 
5907 	if (same_flow)
5908 		goto ok;
5909 
5910 	if (NAPI_GRO_CB(skb)->flush)
5911 		goto normal;
5912 
5913 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5914 		gro_flush_oldest(napi, gro_head);
5915 	} else {
5916 		napi->gro_hash[hash].count++;
5917 	}
5918 	NAPI_GRO_CB(skb)->count = 1;
5919 	NAPI_GRO_CB(skb)->age = jiffies;
5920 	NAPI_GRO_CB(skb)->last = skb;
5921 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5922 	list_add(&skb->list, gro_head);
5923 	ret = GRO_HELD;
5924 
5925 pull:
5926 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5927 	if (grow > 0)
5928 		gro_pull_from_frag0(skb, grow);
5929 ok:
5930 	if (napi->gro_hash[hash].count) {
5931 		if (!test_bit(hash, &napi->gro_bitmask))
5932 			__set_bit(hash, &napi->gro_bitmask);
5933 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5934 		__clear_bit(hash, &napi->gro_bitmask);
5935 	}
5936 
5937 	return ret;
5938 
5939 normal:
5940 	ret = GRO_NORMAL;
5941 	goto pull;
5942 }
5943 
5944 struct packet_offload *gro_find_receive_by_type(__be16 type)
5945 {
5946 	struct list_head *offload_head = &offload_base;
5947 	struct packet_offload *ptype;
5948 
5949 	list_for_each_entry_rcu(ptype, offload_head, list) {
5950 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5951 			continue;
5952 		return ptype;
5953 	}
5954 	return NULL;
5955 }
5956 EXPORT_SYMBOL(gro_find_receive_by_type);
5957 
5958 struct packet_offload *gro_find_complete_by_type(__be16 type)
5959 {
5960 	struct list_head *offload_head = &offload_base;
5961 	struct packet_offload *ptype;
5962 
5963 	list_for_each_entry_rcu(ptype, offload_head, list) {
5964 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5965 			continue;
5966 		return ptype;
5967 	}
5968 	return NULL;
5969 }
5970 EXPORT_SYMBOL(gro_find_complete_by_type);
5971 
5972 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5973 {
5974 	skb_dst_drop(skb);
5975 	skb_ext_put(skb);
5976 	kmem_cache_free(skbuff_head_cache, skb);
5977 }
5978 
5979 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5980 				    struct sk_buff *skb,
5981 				    gro_result_t ret)
5982 {
5983 	switch (ret) {
5984 	case GRO_NORMAL:
5985 		gro_normal_one(napi, skb);
5986 		break;
5987 
5988 	case GRO_DROP:
5989 		kfree_skb(skb);
5990 		break;
5991 
5992 	case GRO_MERGED_FREE:
5993 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5994 			napi_skb_free_stolen_head(skb);
5995 		else
5996 			__kfree_skb(skb);
5997 		break;
5998 
5999 	case GRO_HELD:
6000 	case GRO_MERGED:
6001 	case GRO_CONSUMED:
6002 		break;
6003 	}
6004 
6005 	return ret;
6006 }
6007 
6008 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6009 {
6010 	gro_result_t ret;
6011 
6012 	skb_mark_napi_id(skb, napi);
6013 	trace_napi_gro_receive_entry(skb);
6014 
6015 	skb_gro_reset_offset(skb);
6016 
6017 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6018 	trace_napi_gro_receive_exit(ret);
6019 
6020 	return ret;
6021 }
6022 EXPORT_SYMBOL(napi_gro_receive);
6023 
6024 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6025 {
6026 	if (unlikely(skb->pfmemalloc)) {
6027 		consume_skb(skb);
6028 		return;
6029 	}
6030 	__skb_pull(skb, skb_headlen(skb));
6031 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6032 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6033 	__vlan_hwaccel_clear_tag(skb);
6034 	skb->dev = napi->dev;
6035 	skb->skb_iif = 0;
6036 
6037 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6038 	skb->pkt_type = PACKET_HOST;
6039 
6040 	skb->encapsulation = 0;
6041 	skb_shinfo(skb)->gso_type = 0;
6042 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6043 	skb_ext_reset(skb);
6044 
6045 	napi->skb = skb;
6046 }
6047 
6048 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6049 {
6050 	struct sk_buff *skb = napi->skb;
6051 
6052 	if (!skb) {
6053 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6054 		if (skb) {
6055 			napi->skb = skb;
6056 			skb_mark_napi_id(skb, napi);
6057 		}
6058 	}
6059 	return skb;
6060 }
6061 EXPORT_SYMBOL(napi_get_frags);
6062 
6063 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6064 				      struct sk_buff *skb,
6065 				      gro_result_t ret)
6066 {
6067 	switch (ret) {
6068 	case GRO_NORMAL:
6069 	case GRO_HELD:
6070 		__skb_push(skb, ETH_HLEN);
6071 		skb->protocol = eth_type_trans(skb, skb->dev);
6072 		if (ret == GRO_NORMAL)
6073 			gro_normal_one(napi, skb);
6074 		break;
6075 
6076 	case GRO_DROP:
6077 		napi_reuse_skb(napi, skb);
6078 		break;
6079 
6080 	case GRO_MERGED_FREE:
6081 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6082 			napi_skb_free_stolen_head(skb);
6083 		else
6084 			napi_reuse_skb(napi, skb);
6085 		break;
6086 
6087 	case GRO_MERGED:
6088 	case GRO_CONSUMED:
6089 		break;
6090 	}
6091 
6092 	return ret;
6093 }
6094 
6095 /* Upper GRO stack assumes network header starts at gro_offset=0
6096  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6097  * We copy ethernet header into skb->data to have a common layout.
6098  */
6099 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6100 {
6101 	struct sk_buff *skb = napi->skb;
6102 	const struct ethhdr *eth;
6103 	unsigned int hlen = sizeof(*eth);
6104 
6105 	napi->skb = NULL;
6106 
6107 	skb_reset_mac_header(skb);
6108 	skb_gro_reset_offset(skb);
6109 
6110 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6111 		eth = skb_gro_header_slow(skb, hlen, 0);
6112 		if (unlikely(!eth)) {
6113 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6114 					     __func__, napi->dev->name);
6115 			napi_reuse_skb(napi, skb);
6116 			return NULL;
6117 		}
6118 	} else {
6119 		eth = (const struct ethhdr *)skb->data;
6120 		gro_pull_from_frag0(skb, hlen);
6121 		NAPI_GRO_CB(skb)->frag0 += hlen;
6122 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6123 	}
6124 	__skb_pull(skb, hlen);
6125 
6126 	/*
6127 	 * This works because the only protocols we care about don't require
6128 	 * special handling.
6129 	 * We'll fix it up properly in napi_frags_finish()
6130 	 */
6131 	skb->protocol = eth->h_proto;
6132 
6133 	return skb;
6134 }
6135 
6136 gro_result_t napi_gro_frags(struct napi_struct *napi)
6137 {
6138 	gro_result_t ret;
6139 	struct sk_buff *skb = napi_frags_skb(napi);
6140 
6141 	if (!skb)
6142 		return GRO_DROP;
6143 
6144 	trace_napi_gro_frags_entry(skb);
6145 
6146 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6147 	trace_napi_gro_frags_exit(ret);
6148 
6149 	return ret;
6150 }
6151 EXPORT_SYMBOL(napi_gro_frags);
6152 
6153 /* Compute the checksum from gro_offset and return the folded value
6154  * after adding in any pseudo checksum.
6155  */
6156 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6157 {
6158 	__wsum wsum;
6159 	__sum16 sum;
6160 
6161 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6162 
6163 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6164 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6165 	/* See comments in __skb_checksum_complete(). */
6166 	if (likely(!sum)) {
6167 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6168 		    !skb->csum_complete_sw)
6169 			netdev_rx_csum_fault(skb->dev, skb);
6170 	}
6171 
6172 	NAPI_GRO_CB(skb)->csum = wsum;
6173 	NAPI_GRO_CB(skb)->csum_valid = 1;
6174 
6175 	return sum;
6176 }
6177 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6178 
6179 static void net_rps_send_ipi(struct softnet_data *remsd)
6180 {
6181 #ifdef CONFIG_RPS
6182 	while (remsd) {
6183 		struct softnet_data *next = remsd->rps_ipi_next;
6184 
6185 		if (cpu_online(remsd->cpu))
6186 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6187 		remsd = next;
6188 	}
6189 #endif
6190 }
6191 
6192 /*
6193  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6194  * Note: called with local irq disabled, but exits with local irq enabled.
6195  */
6196 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6197 {
6198 #ifdef CONFIG_RPS
6199 	struct softnet_data *remsd = sd->rps_ipi_list;
6200 
6201 	if (remsd) {
6202 		sd->rps_ipi_list = NULL;
6203 
6204 		local_irq_enable();
6205 
6206 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6207 		net_rps_send_ipi(remsd);
6208 	} else
6209 #endif
6210 		local_irq_enable();
6211 }
6212 
6213 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6214 {
6215 #ifdef CONFIG_RPS
6216 	return sd->rps_ipi_list != NULL;
6217 #else
6218 	return false;
6219 #endif
6220 }
6221 
6222 static int process_backlog(struct napi_struct *napi, int quota)
6223 {
6224 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6225 	bool again = true;
6226 	int work = 0;
6227 
6228 	/* Check if we have pending ipi, its better to send them now,
6229 	 * not waiting net_rx_action() end.
6230 	 */
6231 	if (sd_has_rps_ipi_waiting(sd)) {
6232 		local_irq_disable();
6233 		net_rps_action_and_irq_enable(sd);
6234 	}
6235 
6236 	napi->weight = dev_rx_weight;
6237 	while (again) {
6238 		struct sk_buff *skb;
6239 
6240 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6241 			rcu_read_lock();
6242 			__netif_receive_skb(skb);
6243 			rcu_read_unlock();
6244 			input_queue_head_incr(sd);
6245 			if (++work >= quota)
6246 				return work;
6247 
6248 		}
6249 
6250 		local_irq_disable();
6251 		rps_lock(sd);
6252 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6253 			/*
6254 			 * Inline a custom version of __napi_complete().
6255 			 * only current cpu owns and manipulates this napi,
6256 			 * and NAPI_STATE_SCHED is the only possible flag set
6257 			 * on backlog.
6258 			 * We can use a plain write instead of clear_bit(),
6259 			 * and we dont need an smp_mb() memory barrier.
6260 			 */
6261 			napi->state = 0;
6262 			again = false;
6263 		} else {
6264 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6265 						   &sd->process_queue);
6266 		}
6267 		rps_unlock(sd);
6268 		local_irq_enable();
6269 	}
6270 
6271 	return work;
6272 }
6273 
6274 /**
6275  * __napi_schedule - schedule for receive
6276  * @n: entry to schedule
6277  *
6278  * The entry's receive function will be scheduled to run.
6279  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6280  */
6281 void __napi_schedule(struct napi_struct *n)
6282 {
6283 	unsigned long flags;
6284 
6285 	local_irq_save(flags);
6286 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6287 	local_irq_restore(flags);
6288 }
6289 EXPORT_SYMBOL(__napi_schedule);
6290 
6291 /**
6292  *	napi_schedule_prep - check if napi can be scheduled
6293  *	@n: napi context
6294  *
6295  * Test if NAPI routine is already running, and if not mark
6296  * it as running.  This is used as a condition variable
6297  * insure only one NAPI poll instance runs.  We also make
6298  * sure there is no pending NAPI disable.
6299  */
6300 bool napi_schedule_prep(struct napi_struct *n)
6301 {
6302 	unsigned long val, new;
6303 
6304 	do {
6305 		val = READ_ONCE(n->state);
6306 		if (unlikely(val & NAPIF_STATE_DISABLE))
6307 			return false;
6308 		new = val | NAPIF_STATE_SCHED;
6309 
6310 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6311 		 * This was suggested by Alexander Duyck, as compiler
6312 		 * emits better code than :
6313 		 * if (val & NAPIF_STATE_SCHED)
6314 		 *     new |= NAPIF_STATE_MISSED;
6315 		 */
6316 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6317 						   NAPIF_STATE_MISSED;
6318 	} while (cmpxchg(&n->state, val, new) != val);
6319 
6320 	return !(val & NAPIF_STATE_SCHED);
6321 }
6322 EXPORT_SYMBOL(napi_schedule_prep);
6323 
6324 /**
6325  * __napi_schedule_irqoff - schedule for receive
6326  * @n: entry to schedule
6327  *
6328  * Variant of __napi_schedule() assuming hard irqs are masked
6329  */
6330 void __napi_schedule_irqoff(struct napi_struct *n)
6331 {
6332 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6333 }
6334 EXPORT_SYMBOL(__napi_schedule_irqoff);
6335 
6336 bool napi_complete_done(struct napi_struct *n, int work_done)
6337 {
6338 	unsigned long flags, val, new, timeout = 0;
6339 	bool ret = true;
6340 
6341 	/*
6342 	 * 1) Don't let napi dequeue from the cpu poll list
6343 	 *    just in case its running on a different cpu.
6344 	 * 2) If we are busy polling, do nothing here, we have
6345 	 *    the guarantee we will be called later.
6346 	 */
6347 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6348 				 NAPIF_STATE_IN_BUSY_POLL)))
6349 		return false;
6350 
6351 	if (work_done) {
6352 		if (n->gro_bitmask)
6353 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6355 	}
6356 	if (n->defer_hard_irqs_count > 0) {
6357 		n->defer_hard_irqs_count--;
6358 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359 		if (timeout)
6360 			ret = false;
6361 	}
6362 	if (n->gro_bitmask) {
6363 		/* When the NAPI instance uses a timeout and keeps postponing
6364 		 * it, we need to bound somehow the time packets are kept in
6365 		 * the GRO layer
6366 		 */
6367 		napi_gro_flush(n, !!timeout);
6368 	}
6369 
6370 	gro_normal_list(n);
6371 
6372 	if (unlikely(!list_empty(&n->poll_list))) {
6373 		/* If n->poll_list is not empty, we need to mask irqs */
6374 		local_irq_save(flags);
6375 		list_del_init(&n->poll_list);
6376 		local_irq_restore(flags);
6377 	}
6378 
6379 	do {
6380 		val = READ_ONCE(n->state);
6381 
6382 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6383 
6384 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6385 
6386 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6387 		 * because we will call napi->poll() one more time.
6388 		 * This C code was suggested by Alexander Duyck to help gcc.
6389 		 */
6390 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6391 						    NAPIF_STATE_SCHED;
6392 	} while (cmpxchg(&n->state, val, new) != val);
6393 
6394 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6395 		__napi_schedule(n);
6396 		return false;
6397 	}
6398 
6399 	if (timeout)
6400 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6401 			      HRTIMER_MODE_REL_PINNED);
6402 	return ret;
6403 }
6404 EXPORT_SYMBOL(napi_complete_done);
6405 
6406 /* must be called under rcu_read_lock(), as we dont take a reference */
6407 static struct napi_struct *napi_by_id(unsigned int napi_id)
6408 {
6409 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6410 	struct napi_struct *napi;
6411 
6412 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6413 		if (napi->napi_id == napi_id)
6414 			return napi;
6415 
6416 	return NULL;
6417 }
6418 
6419 #if defined(CONFIG_NET_RX_BUSY_POLL)
6420 
6421 #define BUSY_POLL_BUDGET 8
6422 
6423 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6424 {
6425 	int rc;
6426 
6427 	/* Busy polling means there is a high chance device driver hard irq
6428 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6429 	 * set in napi_schedule_prep().
6430 	 * Since we are about to call napi->poll() once more, we can safely
6431 	 * clear NAPI_STATE_MISSED.
6432 	 *
6433 	 * Note: x86 could use a single "lock and ..." instruction
6434 	 * to perform these two clear_bit()
6435 	 */
6436 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6437 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6438 
6439 	local_bh_disable();
6440 
6441 	/* All we really want here is to re-enable device interrupts.
6442 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6443 	 */
6444 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6445 	/* We can't gro_normal_list() here, because napi->poll() might have
6446 	 * rearmed the napi (napi_complete_done()) in which case it could
6447 	 * already be running on another CPU.
6448 	 */
6449 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6450 	netpoll_poll_unlock(have_poll_lock);
6451 	if (rc == BUSY_POLL_BUDGET) {
6452 		/* As the whole budget was spent, we still own the napi so can
6453 		 * safely handle the rx_list.
6454 		 */
6455 		gro_normal_list(napi);
6456 		__napi_schedule(napi);
6457 	}
6458 	local_bh_enable();
6459 }
6460 
6461 void napi_busy_loop(unsigned int napi_id,
6462 		    bool (*loop_end)(void *, unsigned long),
6463 		    void *loop_end_arg)
6464 {
6465 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6466 	int (*napi_poll)(struct napi_struct *napi, int budget);
6467 	void *have_poll_lock = NULL;
6468 	struct napi_struct *napi;
6469 
6470 restart:
6471 	napi_poll = NULL;
6472 
6473 	rcu_read_lock();
6474 
6475 	napi = napi_by_id(napi_id);
6476 	if (!napi)
6477 		goto out;
6478 
6479 	preempt_disable();
6480 	for (;;) {
6481 		int work = 0;
6482 
6483 		local_bh_disable();
6484 		if (!napi_poll) {
6485 			unsigned long val = READ_ONCE(napi->state);
6486 
6487 			/* If multiple threads are competing for this napi,
6488 			 * we avoid dirtying napi->state as much as we can.
6489 			 */
6490 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6491 				   NAPIF_STATE_IN_BUSY_POLL))
6492 				goto count;
6493 			if (cmpxchg(&napi->state, val,
6494 				    val | NAPIF_STATE_IN_BUSY_POLL |
6495 					  NAPIF_STATE_SCHED) != val)
6496 				goto count;
6497 			have_poll_lock = netpoll_poll_lock(napi);
6498 			napi_poll = napi->poll;
6499 		}
6500 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6501 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6502 		gro_normal_list(napi);
6503 count:
6504 		if (work > 0)
6505 			__NET_ADD_STATS(dev_net(napi->dev),
6506 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6507 		local_bh_enable();
6508 
6509 		if (!loop_end || loop_end(loop_end_arg, start_time))
6510 			break;
6511 
6512 		if (unlikely(need_resched())) {
6513 			if (napi_poll)
6514 				busy_poll_stop(napi, have_poll_lock);
6515 			preempt_enable();
6516 			rcu_read_unlock();
6517 			cond_resched();
6518 			if (loop_end(loop_end_arg, start_time))
6519 				return;
6520 			goto restart;
6521 		}
6522 		cpu_relax();
6523 	}
6524 	if (napi_poll)
6525 		busy_poll_stop(napi, have_poll_lock);
6526 	preempt_enable();
6527 out:
6528 	rcu_read_unlock();
6529 }
6530 EXPORT_SYMBOL(napi_busy_loop);
6531 
6532 #endif /* CONFIG_NET_RX_BUSY_POLL */
6533 
6534 static void napi_hash_add(struct napi_struct *napi)
6535 {
6536 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6537 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6538 		return;
6539 
6540 	spin_lock(&napi_hash_lock);
6541 
6542 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6543 	do {
6544 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6545 			napi_gen_id = MIN_NAPI_ID;
6546 	} while (napi_by_id(napi_gen_id));
6547 	napi->napi_id = napi_gen_id;
6548 
6549 	hlist_add_head_rcu(&napi->napi_hash_node,
6550 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6551 
6552 	spin_unlock(&napi_hash_lock);
6553 }
6554 
6555 /* Warning : caller is responsible to make sure rcu grace period
6556  * is respected before freeing memory containing @napi
6557  */
6558 bool napi_hash_del(struct napi_struct *napi)
6559 {
6560 	bool rcu_sync_needed = false;
6561 
6562 	spin_lock(&napi_hash_lock);
6563 
6564 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6565 		rcu_sync_needed = true;
6566 		hlist_del_rcu(&napi->napi_hash_node);
6567 	}
6568 	spin_unlock(&napi_hash_lock);
6569 	return rcu_sync_needed;
6570 }
6571 EXPORT_SYMBOL_GPL(napi_hash_del);
6572 
6573 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6574 {
6575 	struct napi_struct *napi;
6576 
6577 	napi = container_of(timer, struct napi_struct, timer);
6578 
6579 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6580 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6581 	 */
6582 	if (!napi_disable_pending(napi) &&
6583 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6584 		__napi_schedule_irqoff(napi);
6585 
6586 	return HRTIMER_NORESTART;
6587 }
6588 
6589 static void init_gro_hash(struct napi_struct *napi)
6590 {
6591 	int i;
6592 
6593 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6594 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6595 		napi->gro_hash[i].count = 0;
6596 	}
6597 	napi->gro_bitmask = 0;
6598 }
6599 
6600 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6601 		    int (*poll)(struct napi_struct *, int), int weight)
6602 {
6603 	INIT_LIST_HEAD(&napi->poll_list);
6604 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6605 	napi->timer.function = napi_watchdog;
6606 	init_gro_hash(napi);
6607 	napi->skb = NULL;
6608 	INIT_LIST_HEAD(&napi->rx_list);
6609 	napi->rx_count = 0;
6610 	napi->poll = poll;
6611 	if (weight > NAPI_POLL_WEIGHT)
6612 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6613 				weight);
6614 	napi->weight = weight;
6615 	napi->dev = dev;
6616 #ifdef CONFIG_NETPOLL
6617 	napi->poll_owner = -1;
6618 #endif
6619 	set_bit(NAPI_STATE_SCHED, &napi->state);
6620 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6621 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6622 	napi_hash_add(napi);
6623 }
6624 EXPORT_SYMBOL(netif_napi_add);
6625 
6626 void napi_disable(struct napi_struct *n)
6627 {
6628 	might_sleep();
6629 	set_bit(NAPI_STATE_DISABLE, &n->state);
6630 
6631 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6632 		msleep(1);
6633 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6634 		msleep(1);
6635 
6636 	hrtimer_cancel(&n->timer);
6637 
6638 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6639 }
6640 EXPORT_SYMBOL(napi_disable);
6641 
6642 static void flush_gro_hash(struct napi_struct *napi)
6643 {
6644 	int i;
6645 
6646 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6647 		struct sk_buff *skb, *n;
6648 
6649 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6650 			kfree_skb(skb);
6651 		napi->gro_hash[i].count = 0;
6652 	}
6653 }
6654 
6655 /* Must be called in process context */
6656 void netif_napi_del(struct napi_struct *napi)
6657 {
6658 	might_sleep();
6659 	if (napi_hash_del(napi))
6660 		synchronize_net();
6661 	list_del_init(&napi->dev_list);
6662 	napi_free_frags(napi);
6663 
6664 	flush_gro_hash(napi);
6665 	napi->gro_bitmask = 0;
6666 }
6667 EXPORT_SYMBOL(netif_napi_del);
6668 
6669 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6670 {
6671 	void *have;
6672 	int work, weight;
6673 
6674 	list_del_init(&n->poll_list);
6675 
6676 	have = netpoll_poll_lock(n);
6677 
6678 	weight = n->weight;
6679 
6680 	/* This NAPI_STATE_SCHED test is for avoiding a race
6681 	 * with netpoll's poll_napi().  Only the entity which
6682 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6683 	 * actually make the ->poll() call.  Therefore we avoid
6684 	 * accidentally calling ->poll() when NAPI is not scheduled.
6685 	 */
6686 	work = 0;
6687 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6688 		work = n->poll(n, weight);
6689 		trace_napi_poll(n, work, weight);
6690 	}
6691 
6692 	if (unlikely(work > weight))
6693 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6694 			    n->poll, work, weight);
6695 
6696 	if (likely(work < weight))
6697 		goto out_unlock;
6698 
6699 	/* Drivers must not modify the NAPI state if they
6700 	 * consume the entire weight.  In such cases this code
6701 	 * still "owns" the NAPI instance and therefore can
6702 	 * move the instance around on the list at-will.
6703 	 */
6704 	if (unlikely(napi_disable_pending(n))) {
6705 		napi_complete(n);
6706 		goto out_unlock;
6707 	}
6708 
6709 	if (n->gro_bitmask) {
6710 		/* flush too old packets
6711 		 * If HZ < 1000, flush all packets.
6712 		 */
6713 		napi_gro_flush(n, HZ >= 1000);
6714 	}
6715 
6716 	gro_normal_list(n);
6717 
6718 	/* Some drivers may have called napi_schedule
6719 	 * prior to exhausting their budget.
6720 	 */
6721 	if (unlikely(!list_empty(&n->poll_list))) {
6722 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6723 			     n->dev ? n->dev->name : "backlog");
6724 		goto out_unlock;
6725 	}
6726 
6727 	list_add_tail(&n->poll_list, repoll);
6728 
6729 out_unlock:
6730 	netpoll_poll_unlock(have);
6731 
6732 	return work;
6733 }
6734 
6735 static __latent_entropy void net_rx_action(struct softirq_action *h)
6736 {
6737 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6738 	unsigned long time_limit = jiffies +
6739 		usecs_to_jiffies(netdev_budget_usecs);
6740 	int budget = netdev_budget;
6741 	LIST_HEAD(list);
6742 	LIST_HEAD(repoll);
6743 
6744 	local_irq_disable();
6745 	list_splice_init(&sd->poll_list, &list);
6746 	local_irq_enable();
6747 
6748 	for (;;) {
6749 		struct napi_struct *n;
6750 
6751 		if (list_empty(&list)) {
6752 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6753 				goto out;
6754 			break;
6755 		}
6756 
6757 		n = list_first_entry(&list, struct napi_struct, poll_list);
6758 		budget -= napi_poll(n, &repoll);
6759 
6760 		/* If softirq window is exhausted then punt.
6761 		 * Allow this to run for 2 jiffies since which will allow
6762 		 * an average latency of 1.5/HZ.
6763 		 */
6764 		if (unlikely(budget <= 0 ||
6765 			     time_after_eq(jiffies, time_limit))) {
6766 			sd->time_squeeze++;
6767 			break;
6768 		}
6769 	}
6770 
6771 	local_irq_disable();
6772 
6773 	list_splice_tail_init(&sd->poll_list, &list);
6774 	list_splice_tail(&repoll, &list);
6775 	list_splice(&list, &sd->poll_list);
6776 	if (!list_empty(&sd->poll_list))
6777 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6778 
6779 	net_rps_action_and_irq_enable(sd);
6780 out:
6781 	__kfree_skb_flush();
6782 }
6783 
6784 struct netdev_adjacent {
6785 	struct net_device *dev;
6786 
6787 	/* upper master flag, there can only be one master device per list */
6788 	bool master;
6789 
6790 	/* lookup ignore flag */
6791 	bool ignore;
6792 
6793 	/* counter for the number of times this device was added to us */
6794 	u16 ref_nr;
6795 
6796 	/* private field for the users */
6797 	void *private;
6798 
6799 	struct list_head list;
6800 	struct rcu_head rcu;
6801 };
6802 
6803 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6804 						 struct list_head *adj_list)
6805 {
6806 	struct netdev_adjacent *adj;
6807 
6808 	list_for_each_entry(adj, adj_list, list) {
6809 		if (adj->dev == adj_dev)
6810 			return adj;
6811 	}
6812 	return NULL;
6813 }
6814 
6815 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6816 {
6817 	struct net_device *dev = data;
6818 
6819 	return upper_dev == dev;
6820 }
6821 
6822 /**
6823  * netdev_has_upper_dev - Check if device is linked to an upper device
6824  * @dev: device
6825  * @upper_dev: upper device to check
6826  *
6827  * Find out if a device is linked to specified upper device and return true
6828  * in case it is. Note that this checks only immediate upper device,
6829  * not through a complete stack of devices. The caller must hold the RTNL lock.
6830  */
6831 bool netdev_has_upper_dev(struct net_device *dev,
6832 			  struct net_device *upper_dev)
6833 {
6834 	ASSERT_RTNL();
6835 
6836 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6837 					     upper_dev);
6838 }
6839 EXPORT_SYMBOL(netdev_has_upper_dev);
6840 
6841 /**
6842  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6843  * @dev: device
6844  * @upper_dev: upper device to check
6845  *
6846  * Find out if a device is linked to specified upper device and return true
6847  * in case it is. Note that this checks the entire upper device chain.
6848  * The caller must hold rcu lock.
6849  */
6850 
6851 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6852 				  struct net_device *upper_dev)
6853 {
6854 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6855 					       upper_dev);
6856 }
6857 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6858 
6859 /**
6860  * netdev_has_any_upper_dev - Check if device is linked to some device
6861  * @dev: device
6862  *
6863  * Find out if a device is linked to an upper device and return true in case
6864  * it is. The caller must hold the RTNL lock.
6865  */
6866 bool netdev_has_any_upper_dev(struct net_device *dev)
6867 {
6868 	ASSERT_RTNL();
6869 
6870 	return !list_empty(&dev->adj_list.upper);
6871 }
6872 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6873 
6874 /**
6875  * netdev_master_upper_dev_get - Get master upper device
6876  * @dev: device
6877  *
6878  * Find a master upper device and return pointer to it or NULL in case
6879  * it's not there. The caller must hold the RTNL lock.
6880  */
6881 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6882 {
6883 	struct netdev_adjacent *upper;
6884 
6885 	ASSERT_RTNL();
6886 
6887 	if (list_empty(&dev->adj_list.upper))
6888 		return NULL;
6889 
6890 	upper = list_first_entry(&dev->adj_list.upper,
6891 				 struct netdev_adjacent, list);
6892 	if (likely(upper->master))
6893 		return upper->dev;
6894 	return NULL;
6895 }
6896 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6897 
6898 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6899 {
6900 	struct netdev_adjacent *upper;
6901 
6902 	ASSERT_RTNL();
6903 
6904 	if (list_empty(&dev->adj_list.upper))
6905 		return NULL;
6906 
6907 	upper = list_first_entry(&dev->adj_list.upper,
6908 				 struct netdev_adjacent, list);
6909 	if (likely(upper->master) && !upper->ignore)
6910 		return upper->dev;
6911 	return NULL;
6912 }
6913 
6914 /**
6915  * netdev_has_any_lower_dev - Check if device is linked to some device
6916  * @dev: device
6917  *
6918  * Find out if a device is linked to a lower device and return true in case
6919  * it is. The caller must hold the RTNL lock.
6920  */
6921 static bool netdev_has_any_lower_dev(struct net_device *dev)
6922 {
6923 	ASSERT_RTNL();
6924 
6925 	return !list_empty(&dev->adj_list.lower);
6926 }
6927 
6928 void *netdev_adjacent_get_private(struct list_head *adj_list)
6929 {
6930 	struct netdev_adjacent *adj;
6931 
6932 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6933 
6934 	return adj->private;
6935 }
6936 EXPORT_SYMBOL(netdev_adjacent_get_private);
6937 
6938 /**
6939  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6940  * @dev: device
6941  * @iter: list_head ** of the current position
6942  *
6943  * Gets the next device from the dev's upper list, starting from iter
6944  * position. The caller must hold RCU read lock.
6945  */
6946 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6947 						 struct list_head **iter)
6948 {
6949 	struct netdev_adjacent *upper;
6950 
6951 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6952 
6953 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6954 
6955 	if (&upper->list == &dev->adj_list.upper)
6956 		return NULL;
6957 
6958 	*iter = &upper->list;
6959 
6960 	return upper->dev;
6961 }
6962 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6963 
6964 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6965 						  struct list_head **iter,
6966 						  bool *ignore)
6967 {
6968 	struct netdev_adjacent *upper;
6969 
6970 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6971 
6972 	if (&upper->list == &dev->adj_list.upper)
6973 		return NULL;
6974 
6975 	*iter = &upper->list;
6976 	*ignore = upper->ignore;
6977 
6978 	return upper->dev;
6979 }
6980 
6981 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6982 						    struct list_head **iter)
6983 {
6984 	struct netdev_adjacent *upper;
6985 
6986 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6987 
6988 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6989 
6990 	if (&upper->list == &dev->adj_list.upper)
6991 		return NULL;
6992 
6993 	*iter = &upper->list;
6994 
6995 	return upper->dev;
6996 }
6997 
6998 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6999 				       int (*fn)(struct net_device *dev,
7000 						 void *data),
7001 				       void *data)
7002 {
7003 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7004 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7005 	int ret, cur = 0;
7006 	bool ignore;
7007 
7008 	now = dev;
7009 	iter = &dev->adj_list.upper;
7010 
7011 	while (1) {
7012 		if (now != dev) {
7013 			ret = fn(now, data);
7014 			if (ret)
7015 				return ret;
7016 		}
7017 
7018 		next = NULL;
7019 		while (1) {
7020 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7021 			if (!udev)
7022 				break;
7023 			if (ignore)
7024 				continue;
7025 
7026 			next = udev;
7027 			niter = &udev->adj_list.upper;
7028 			dev_stack[cur] = now;
7029 			iter_stack[cur++] = iter;
7030 			break;
7031 		}
7032 
7033 		if (!next) {
7034 			if (!cur)
7035 				return 0;
7036 			next = dev_stack[--cur];
7037 			niter = iter_stack[cur];
7038 		}
7039 
7040 		now = next;
7041 		iter = niter;
7042 	}
7043 
7044 	return 0;
7045 }
7046 
7047 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7048 				  int (*fn)(struct net_device *dev,
7049 					    void *data),
7050 				  void *data)
7051 {
7052 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7053 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7054 	int ret, cur = 0;
7055 
7056 	now = dev;
7057 	iter = &dev->adj_list.upper;
7058 
7059 	while (1) {
7060 		if (now != dev) {
7061 			ret = fn(now, data);
7062 			if (ret)
7063 				return ret;
7064 		}
7065 
7066 		next = NULL;
7067 		while (1) {
7068 			udev = netdev_next_upper_dev_rcu(now, &iter);
7069 			if (!udev)
7070 				break;
7071 
7072 			next = udev;
7073 			niter = &udev->adj_list.upper;
7074 			dev_stack[cur] = now;
7075 			iter_stack[cur++] = iter;
7076 			break;
7077 		}
7078 
7079 		if (!next) {
7080 			if (!cur)
7081 				return 0;
7082 			next = dev_stack[--cur];
7083 			niter = iter_stack[cur];
7084 		}
7085 
7086 		now = next;
7087 		iter = niter;
7088 	}
7089 
7090 	return 0;
7091 }
7092 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7093 
7094 static bool __netdev_has_upper_dev(struct net_device *dev,
7095 				   struct net_device *upper_dev)
7096 {
7097 	ASSERT_RTNL();
7098 
7099 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7100 					   upper_dev);
7101 }
7102 
7103 /**
7104  * netdev_lower_get_next_private - Get the next ->private from the
7105  *				   lower neighbour list
7106  * @dev: device
7107  * @iter: list_head ** of the current position
7108  *
7109  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7110  * list, starting from iter position. The caller must hold either hold the
7111  * RTNL lock or its own locking that guarantees that the neighbour lower
7112  * list will remain unchanged.
7113  */
7114 void *netdev_lower_get_next_private(struct net_device *dev,
7115 				    struct list_head **iter)
7116 {
7117 	struct netdev_adjacent *lower;
7118 
7119 	lower = list_entry(*iter, struct netdev_adjacent, list);
7120 
7121 	if (&lower->list == &dev->adj_list.lower)
7122 		return NULL;
7123 
7124 	*iter = lower->list.next;
7125 
7126 	return lower->private;
7127 }
7128 EXPORT_SYMBOL(netdev_lower_get_next_private);
7129 
7130 /**
7131  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7132  *				       lower neighbour list, RCU
7133  *				       variant
7134  * @dev: device
7135  * @iter: list_head ** of the current position
7136  *
7137  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7138  * list, starting from iter position. The caller must hold RCU read lock.
7139  */
7140 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7141 					struct list_head **iter)
7142 {
7143 	struct netdev_adjacent *lower;
7144 
7145 	WARN_ON_ONCE(!rcu_read_lock_held());
7146 
7147 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7148 
7149 	if (&lower->list == &dev->adj_list.lower)
7150 		return NULL;
7151 
7152 	*iter = &lower->list;
7153 
7154 	return lower->private;
7155 }
7156 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7157 
7158 /**
7159  * netdev_lower_get_next - Get the next device from the lower neighbour
7160  *                         list
7161  * @dev: device
7162  * @iter: list_head ** of the current position
7163  *
7164  * Gets the next netdev_adjacent from the dev's lower neighbour
7165  * list, starting from iter position. The caller must hold RTNL lock or
7166  * its own locking that guarantees that the neighbour lower
7167  * list will remain unchanged.
7168  */
7169 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7170 {
7171 	struct netdev_adjacent *lower;
7172 
7173 	lower = list_entry(*iter, struct netdev_adjacent, list);
7174 
7175 	if (&lower->list == &dev->adj_list.lower)
7176 		return NULL;
7177 
7178 	*iter = lower->list.next;
7179 
7180 	return lower->dev;
7181 }
7182 EXPORT_SYMBOL(netdev_lower_get_next);
7183 
7184 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7185 						struct list_head **iter)
7186 {
7187 	struct netdev_adjacent *lower;
7188 
7189 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7190 
7191 	if (&lower->list == &dev->adj_list.lower)
7192 		return NULL;
7193 
7194 	*iter = &lower->list;
7195 
7196 	return lower->dev;
7197 }
7198 
7199 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7200 						  struct list_head **iter,
7201 						  bool *ignore)
7202 {
7203 	struct netdev_adjacent *lower;
7204 
7205 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7206 
7207 	if (&lower->list == &dev->adj_list.lower)
7208 		return NULL;
7209 
7210 	*iter = &lower->list;
7211 	*ignore = lower->ignore;
7212 
7213 	return lower->dev;
7214 }
7215 
7216 int netdev_walk_all_lower_dev(struct net_device *dev,
7217 			      int (*fn)(struct net_device *dev,
7218 					void *data),
7219 			      void *data)
7220 {
7221 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7222 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7223 	int ret, cur = 0;
7224 
7225 	now = dev;
7226 	iter = &dev->adj_list.lower;
7227 
7228 	while (1) {
7229 		if (now != dev) {
7230 			ret = fn(now, data);
7231 			if (ret)
7232 				return ret;
7233 		}
7234 
7235 		next = NULL;
7236 		while (1) {
7237 			ldev = netdev_next_lower_dev(now, &iter);
7238 			if (!ldev)
7239 				break;
7240 
7241 			next = ldev;
7242 			niter = &ldev->adj_list.lower;
7243 			dev_stack[cur] = now;
7244 			iter_stack[cur++] = iter;
7245 			break;
7246 		}
7247 
7248 		if (!next) {
7249 			if (!cur)
7250 				return 0;
7251 			next = dev_stack[--cur];
7252 			niter = iter_stack[cur];
7253 		}
7254 
7255 		now = next;
7256 		iter = niter;
7257 	}
7258 
7259 	return 0;
7260 }
7261 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7262 
7263 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7264 				       int (*fn)(struct net_device *dev,
7265 						 void *data),
7266 				       void *data)
7267 {
7268 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7269 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7270 	int ret, cur = 0;
7271 	bool ignore;
7272 
7273 	now = dev;
7274 	iter = &dev->adj_list.lower;
7275 
7276 	while (1) {
7277 		if (now != dev) {
7278 			ret = fn(now, data);
7279 			if (ret)
7280 				return ret;
7281 		}
7282 
7283 		next = NULL;
7284 		while (1) {
7285 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7286 			if (!ldev)
7287 				break;
7288 			if (ignore)
7289 				continue;
7290 
7291 			next = ldev;
7292 			niter = &ldev->adj_list.lower;
7293 			dev_stack[cur] = now;
7294 			iter_stack[cur++] = iter;
7295 			break;
7296 		}
7297 
7298 		if (!next) {
7299 			if (!cur)
7300 				return 0;
7301 			next = dev_stack[--cur];
7302 			niter = iter_stack[cur];
7303 		}
7304 
7305 		now = next;
7306 		iter = niter;
7307 	}
7308 
7309 	return 0;
7310 }
7311 
7312 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7313 					     struct list_head **iter)
7314 {
7315 	struct netdev_adjacent *lower;
7316 
7317 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7318 	if (&lower->list == &dev->adj_list.lower)
7319 		return NULL;
7320 
7321 	*iter = &lower->list;
7322 
7323 	return lower->dev;
7324 }
7325 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7326 
7327 static u8 __netdev_upper_depth(struct net_device *dev)
7328 {
7329 	struct net_device *udev;
7330 	struct list_head *iter;
7331 	u8 max_depth = 0;
7332 	bool ignore;
7333 
7334 	for (iter = &dev->adj_list.upper,
7335 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7336 	     udev;
7337 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7338 		if (ignore)
7339 			continue;
7340 		if (max_depth < udev->upper_level)
7341 			max_depth = udev->upper_level;
7342 	}
7343 
7344 	return max_depth;
7345 }
7346 
7347 static u8 __netdev_lower_depth(struct net_device *dev)
7348 {
7349 	struct net_device *ldev;
7350 	struct list_head *iter;
7351 	u8 max_depth = 0;
7352 	bool ignore;
7353 
7354 	for (iter = &dev->adj_list.lower,
7355 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7356 	     ldev;
7357 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7358 		if (ignore)
7359 			continue;
7360 		if (max_depth < ldev->lower_level)
7361 			max_depth = ldev->lower_level;
7362 	}
7363 
7364 	return max_depth;
7365 }
7366 
7367 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7368 {
7369 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7370 	return 0;
7371 }
7372 
7373 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7374 {
7375 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7376 	return 0;
7377 }
7378 
7379 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7380 				  int (*fn)(struct net_device *dev,
7381 					    void *data),
7382 				  void *data)
7383 {
7384 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7385 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7386 	int ret, cur = 0;
7387 
7388 	now = dev;
7389 	iter = &dev->adj_list.lower;
7390 
7391 	while (1) {
7392 		if (now != dev) {
7393 			ret = fn(now, data);
7394 			if (ret)
7395 				return ret;
7396 		}
7397 
7398 		next = NULL;
7399 		while (1) {
7400 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7401 			if (!ldev)
7402 				break;
7403 
7404 			next = ldev;
7405 			niter = &ldev->adj_list.lower;
7406 			dev_stack[cur] = now;
7407 			iter_stack[cur++] = iter;
7408 			break;
7409 		}
7410 
7411 		if (!next) {
7412 			if (!cur)
7413 				return 0;
7414 			next = dev_stack[--cur];
7415 			niter = iter_stack[cur];
7416 		}
7417 
7418 		now = next;
7419 		iter = niter;
7420 	}
7421 
7422 	return 0;
7423 }
7424 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7425 
7426 /**
7427  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7428  *				       lower neighbour list, RCU
7429  *				       variant
7430  * @dev: device
7431  *
7432  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7433  * list. The caller must hold RCU read lock.
7434  */
7435 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7436 {
7437 	struct netdev_adjacent *lower;
7438 
7439 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7440 			struct netdev_adjacent, list);
7441 	if (lower)
7442 		return lower->private;
7443 	return NULL;
7444 }
7445 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7446 
7447 /**
7448  * netdev_master_upper_dev_get_rcu - Get master upper device
7449  * @dev: device
7450  *
7451  * Find a master upper device and return pointer to it or NULL in case
7452  * it's not there. The caller must hold the RCU read lock.
7453  */
7454 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7455 {
7456 	struct netdev_adjacent *upper;
7457 
7458 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7459 				       struct netdev_adjacent, list);
7460 	if (upper && likely(upper->master))
7461 		return upper->dev;
7462 	return NULL;
7463 }
7464 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7465 
7466 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7467 			      struct net_device *adj_dev,
7468 			      struct list_head *dev_list)
7469 {
7470 	char linkname[IFNAMSIZ+7];
7471 
7472 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7473 		"upper_%s" : "lower_%s", adj_dev->name);
7474 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7475 				 linkname);
7476 }
7477 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7478 			       char *name,
7479 			       struct list_head *dev_list)
7480 {
7481 	char linkname[IFNAMSIZ+7];
7482 
7483 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7484 		"upper_%s" : "lower_%s", name);
7485 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7486 }
7487 
7488 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7489 						 struct net_device *adj_dev,
7490 						 struct list_head *dev_list)
7491 {
7492 	return (dev_list == &dev->adj_list.upper ||
7493 		dev_list == &dev->adj_list.lower) &&
7494 		net_eq(dev_net(dev), dev_net(adj_dev));
7495 }
7496 
7497 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7498 					struct net_device *adj_dev,
7499 					struct list_head *dev_list,
7500 					void *private, bool master)
7501 {
7502 	struct netdev_adjacent *adj;
7503 	int ret;
7504 
7505 	adj = __netdev_find_adj(adj_dev, dev_list);
7506 
7507 	if (adj) {
7508 		adj->ref_nr += 1;
7509 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7510 			 dev->name, adj_dev->name, adj->ref_nr);
7511 
7512 		return 0;
7513 	}
7514 
7515 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7516 	if (!adj)
7517 		return -ENOMEM;
7518 
7519 	adj->dev = adj_dev;
7520 	adj->master = master;
7521 	adj->ref_nr = 1;
7522 	adj->private = private;
7523 	adj->ignore = false;
7524 	dev_hold(adj_dev);
7525 
7526 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7527 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7528 
7529 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7530 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7531 		if (ret)
7532 			goto free_adj;
7533 	}
7534 
7535 	/* Ensure that master link is always the first item in list. */
7536 	if (master) {
7537 		ret = sysfs_create_link(&(dev->dev.kobj),
7538 					&(adj_dev->dev.kobj), "master");
7539 		if (ret)
7540 			goto remove_symlinks;
7541 
7542 		list_add_rcu(&adj->list, dev_list);
7543 	} else {
7544 		list_add_tail_rcu(&adj->list, dev_list);
7545 	}
7546 
7547 	return 0;
7548 
7549 remove_symlinks:
7550 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7551 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7552 free_adj:
7553 	kfree(adj);
7554 	dev_put(adj_dev);
7555 
7556 	return ret;
7557 }
7558 
7559 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7560 					 struct net_device *adj_dev,
7561 					 u16 ref_nr,
7562 					 struct list_head *dev_list)
7563 {
7564 	struct netdev_adjacent *adj;
7565 
7566 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7567 		 dev->name, adj_dev->name, ref_nr);
7568 
7569 	adj = __netdev_find_adj(adj_dev, dev_list);
7570 
7571 	if (!adj) {
7572 		pr_err("Adjacency does not exist for device %s from %s\n",
7573 		       dev->name, adj_dev->name);
7574 		WARN_ON(1);
7575 		return;
7576 	}
7577 
7578 	if (adj->ref_nr > ref_nr) {
7579 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7580 			 dev->name, adj_dev->name, ref_nr,
7581 			 adj->ref_nr - ref_nr);
7582 		adj->ref_nr -= ref_nr;
7583 		return;
7584 	}
7585 
7586 	if (adj->master)
7587 		sysfs_remove_link(&(dev->dev.kobj), "master");
7588 
7589 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7590 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7591 
7592 	list_del_rcu(&adj->list);
7593 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7594 		 adj_dev->name, dev->name, adj_dev->name);
7595 	dev_put(adj_dev);
7596 	kfree_rcu(adj, rcu);
7597 }
7598 
7599 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7600 					    struct net_device *upper_dev,
7601 					    struct list_head *up_list,
7602 					    struct list_head *down_list,
7603 					    void *private, bool master)
7604 {
7605 	int ret;
7606 
7607 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7608 					   private, master);
7609 	if (ret)
7610 		return ret;
7611 
7612 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7613 					   private, false);
7614 	if (ret) {
7615 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7616 		return ret;
7617 	}
7618 
7619 	return 0;
7620 }
7621 
7622 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7623 					       struct net_device *upper_dev,
7624 					       u16 ref_nr,
7625 					       struct list_head *up_list,
7626 					       struct list_head *down_list)
7627 {
7628 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7629 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7630 }
7631 
7632 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7633 						struct net_device *upper_dev,
7634 						void *private, bool master)
7635 {
7636 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7637 						&dev->adj_list.upper,
7638 						&upper_dev->adj_list.lower,
7639 						private, master);
7640 }
7641 
7642 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7643 						   struct net_device *upper_dev)
7644 {
7645 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7646 					   &dev->adj_list.upper,
7647 					   &upper_dev->adj_list.lower);
7648 }
7649 
7650 static int __netdev_upper_dev_link(struct net_device *dev,
7651 				   struct net_device *upper_dev, bool master,
7652 				   void *upper_priv, void *upper_info,
7653 				   struct netlink_ext_ack *extack)
7654 {
7655 	struct netdev_notifier_changeupper_info changeupper_info = {
7656 		.info = {
7657 			.dev = dev,
7658 			.extack = extack,
7659 		},
7660 		.upper_dev = upper_dev,
7661 		.master = master,
7662 		.linking = true,
7663 		.upper_info = upper_info,
7664 	};
7665 	struct net_device *master_dev;
7666 	int ret = 0;
7667 
7668 	ASSERT_RTNL();
7669 
7670 	if (dev == upper_dev)
7671 		return -EBUSY;
7672 
7673 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7674 	if (__netdev_has_upper_dev(upper_dev, dev))
7675 		return -EBUSY;
7676 
7677 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7678 		return -EMLINK;
7679 
7680 	if (!master) {
7681 		if (__netdev_has_upper_dev(dev, upper_dev))
7682 			return -EEXIST;
7683 	} else {
7684 		master_dev = __netdev_master_upper_dev_get(dev);
7685 		if (master_dev)
7686 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7687 	}
7688 
7689 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7690 					    &changeupper_info.info);
7691 	ret = notifier_to_errno(ret);
7692 	if (ret)
7693 		return ret;
7694 
7695 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7696 						   master);
7697 	if (ret)
7698 		return ret;
7699 
7700 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7701 					    &changeupper_info.info);
7702 	ret = notifier_to_errno(ret);
7703 	if (ret)
7704 		goto rollback;
7705 
7706 	__netdev_update_upper_level(dev, NULL);
7707 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7708 
7709 	__netdev_update_lower_level(upper_dev, NULL);
7710 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7711 				    NULL);
7712 
7713 	return 0;
7714 
7715 rollback:
7716 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7717 
7718 	return ret;
7719 }
7720 
7721 /**
7722  * netdev_upper_dev_link - Add a link to the upper device
7723  * @dev: device
7724  * @upper_dev: new upper device
7725  * @extack: netlink extended ack
7726  *
7727  * Adds a link to device which is upper to this one. The caller must hold
7728  * the RTNL lock. On a failure a negative errno code is returned.
7729  * On success the reference counts are adjusted and the function
7730  * returns zero.
7731  */
7732 int netdev_upper_dev_link(struct net_device *dev,
7733 			  struct net_device *upper_dev,
7734 			  struct netlink_ext_ack *extack)
7735 {
7736 	return __netdev_upper_dev_link(dev, upper_dev, false,
7737 				       NULL, NULL, extack);
7738 }
7739 EXPORT_SYMBOL(netdev_upper_dev_link);
7740 
7741 /**
7742  * netdev_master_upper_dev_link - Add a master link to the upper device
7743  * @dev: device
7744  * @upper_dev: new upper device
7745  * @upper_priv: upper device private
7746  * @upper_info: upper info to be passed down via notifier
7747  * @extack: netlink extended ack
7748  *
7749  * Adds a link to device which is upper to this one. In this case, only
7750  * one master upper device can be linked, although other non-master devices
7751  * might be linked as well. The caller must hold the RTNL lock.
7752  * On a failure a negative errno code is returned. On success the reference
7753  * counts are adjusted and the function returns zero.
7754  */
7755 int netdev_master_upper_dev_link(struct net_device *dev,
7756 				 struct net_device *upper_dev,
7757 				 void *upper_priv, void *upper_info,
7758 				 struct netlink_ext_ack *extack)
7759 {
7760 	return __netdev_upper_dev_link(dev, upper_dev, true,
7761 				       upper_priv, upper_info, extack);
7762 }
7763 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7764 
7765 /**
7766  * netdev_upper_dev_unlink - Removes a link to upper device
7767  * @dev: device
7768  * @upper_dev: new upper device
7769  *
7770  * Removes a link to device which is upper to this one. The caller must hold
7771  * the RTNL lock.
7772  */
7773 void netdev_upper_dev_unlink(struct net_device *dev,
7774 			     struct net_device *upper_dev)
7775 {
7776 	struct netdev_notifier_changeupper_info changeupper_info = {
7777 		.info = {
7778 			.dev = dev,
7779 		},
7780 		.upper_dev = upper_dev,
7781 		.linking = false,
7782 	};
7783 
7784 	ASSERT_RTNL();
7785 
7786 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7787 
7788 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7789 				      &changeupper_info.info);
7790 
7791 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7792 
7793 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7794 				      &changeupper_info.info);
7795 
7796 	__netdev_update_upper_level(dev, NULL);
7797 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7798 
7799 	__netdev_update_lower_level(upper_dev, NULL);
7800 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7801 				    NULL);
7802 }
7803 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7804 
7805 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7806 				      struct net_device *lower_dev,
7807 				      bool val)
7808 {
7809 	struct netdev_adjacent *adj;
7810 
7811 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7812 	if (adj)
7813 		adj->ignore = val;
7814 
7815 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7816 	if (adj)
7817 		adj->ignore = val;
7818 }
7819 
7820 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7821 					struct net_device *lower_dev)
7822 {
7823 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7824 }
7825 
7826 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7827 				       struct net_device *lower_dev)
7828 {
7829 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7830 }
7831 
7832 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7833 				   struct net_device *new_dev,
7834 				   struct net_device *dev,
7835 				   struct netlink_ext_ack *extack)
7836 {
7837 	int err;
7838 
7839 	if (!new_dev)
7840 		return 0;
7841 
7842 	if (old_dev && new_dev != old_dev)
7843 		netdev_adjacent_dev_disable(dev, old_dev);
7844 
7845 	err = netdev_upper_dev_link(new_dev, dev, extack);
7846 	if (err) {
7847 		if (old_dev && new_dev != old_dev)
7848 			netdev_adjacent_dev_enable(dev, old_dev);
7849 		return err;
7850 	}
7851 
7852 	return 0;
7853 }
7854 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7855 
7856 void netdev_adjacent_change_commit(struct net_device *old_dev,
7857 				   struct net_device *new_dev,
7858 				   struct net_device *dev)
7859 {
7860 	if (!new_dev || !old_dev)
7861 		return;
7862 
7863 	if (new_dev == old_dev)
7864 		return;
7865 
7866 	netdev_adjacent_dev_enable(dev, old_dev);
7867 	netdev_upper_dev_unlink(old_dev, dev);
7868 }
7869 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7870 
7871 void netdev_adjacent_change_abort(struct net_device *old_dev,
7872 				  struct net_device *new_dev,
7873 				  struct net_device *dev)
7874 {
7875 	if (!new_dev)
7876 		return;
7877 
7878 	if (old_dev && new_dev != old_dev)
7879 		netdev_adjacent_dev_enable(dev, old_dev);
7880 
7881 	netdev_upper_dev_unlink(new_dev, dev);
7882 }
7883 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7884 
7885 /**
7886  * netdev_bonding_info_change - Dispatch event about slave change
7887  * @dev: device
7888  * @bonding_info: info to dispatch
7889  *
7890  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7891  * The caller must hold the RTNL lock.
7892  */
7893 void netdev_bonding_info_change(struct net_device *dev,
7894 				struct netdev_bonding_info *bonding_info)
7895 {
7896 	struct netdev_notifier_bonding_info info = {
7897 		.info.dev = dev,
7898 	};
7899 
7900 	memcpy(&info.bonding_info, bonding_info,
7901 	       sizeof(struct netdev_bonding_info));
7902 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7903 				      &info.info);
7904 }
7905 EXPORT_SYMBOL(netdev_bonding_info_change);
7906 
7907 /**
7908  * netdev_get_xmit_slave - Get the xmit slave of master device
7909  * @dev: device
7910  * @skb: The packet
7911  * @all_slaves: assume all the slaves are active
7912  *
7913  * The reference counters are not incremented so the caller must be
7914  * careful with locks. The caller must hold RCU lock.
7915  * %NULL is returned if no slave is found.
7916  */
7917 
7918 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7919 					 struct sk_buff *skb,
7920 					 bool all_slaves)
7921 {
7922 	const struct net_device_ops *ops = dev->netdev_ops;
7923 
7924 	if (!ops->ndo_get_xmit_slave)
7925 		return NULL;
7926 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7927 }
7928 EXPORT_SYMBOL(netdev_get_xmit_slave);
7929 
7930 static void netdev_adjacent_add_links(struct net_device *dev)
7931 {
7932 	struct netdev_adjacent *iter;
7933 
7934 	struct net *net = dev_net(dev);
7935 
7936 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7937 		if (!net_eq(net, dev_net(iter->dev)))
7938 			continue;
7939 		netdev_adjacent_sysfs_add(iter->dev, dev,
7940 					  &iter->dev->adj_list.lower);
7941 		netdev_adjacent_sysfs_add(dev, iter->dev,
7942 					  &dev->adj_list.upper);
7943 	}
7944 
7945 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7946 		if (!net_eq(net, dev_net(iter->dev)))
7947 			continue;
7948 		netdev_adjacent_sysfs_add(iter->dev, dev,
7949 					  &iter->dev->adj_list.upper);
7950 		netdev_adjacent_sysfs_add(dev, iter->dev,
7951 					  &dev->adj_list.lower);
7952 	}
7953 }
7954 
7955 static void netdev_adjacent_del_links(struct net_device *dev)
7956 {
7957 	struct netdev_adjacent *iter;
7958 
7959 	struct net *net = dev_net(dev);
7960 
7961 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7962 		if (!net_eq(net, dev_net(iter->dev)))
7963 			continue;
7964 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7965 					  &iter->dev->adj_list.lower);
7966 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7967 					  &dev->adj_list.upper);
7968 	}
7969 
7970 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7971 		if (!net_eq(net, dev_net(iter->dev)))
7972 			continue;
7973 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7974 					  &iter->dev->adj_list.upper);
7975 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7976 					  &dev->adj_list.lower);
7977 	}
7978 }
7979 
7980 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7981 {
7982 	struct netdev_adjacent *iter;
7983 
7984 	struct net *net = dev_net(dev);
7985 
7986 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7987 		if (!net_eq(net, dev_net(iter->dev)))
7988 			continue;
7989 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7990 					  &iter->dev->adj_list.lower);
7991 		netdev_adjacent_sysfs_add(iter->dev, dev,
7992 					  &iter->dev->adj_list.lower);
7993 	}
7994 
7995 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7996 		if (!net_eq(net, dev_net(iter->dev)))
7997 			continue;
7998 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7999 					  &iter->dev->adj_list.upper);
8000 		netdev_adjacent_sysfs_add(iter->dev, dev,
8001 					  &iter->dev->adj_list.upper);
8002 	}
8003 }
8004 
8005 void *netdev_lower_dev_get_private(struct net_device *dev,
8006 				   struct net_device *lower_dev)
8007 {
8008 	struct netdev_adjacent *lower;
8009 
8010 	if (!lower_dev)
8011 		return NULL;
8012 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8013 	if (!lower)
8014 		return NULL;
8015 
8016 	return lower->private;
8017 }
8018 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8019 
8020 
8021 /**
8022  * netdev_lower_change - Dispatch event about lower device state change
8023  * @lower_dev: device
8024  * @lower_state_info: state to dispatch
8025  *
8026  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8027  * The caller must hold the RTNL lock.
8028  */
8029 void netdev_lower_state_changed(struct net_device *lower_dev,
8030 				void *lower_state_info)
8031 {
8032 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8033 		.info.dev = lower_dev,
8034 	};
8035 
8036 	ASSERT_RTNL();
8037 	changelowerstate_info.lower_state_info = lower_state_info;
8038 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8039 				      &changelowerstate_info.info);
8040 }
8041 EXPORT_SYMBOL(netdev_lower_state_changed);
8042 
8043 static void dev_change_rx_flags(struct net_device *dev, int flags)
8044 {
8045 	const struct net_device_ops *ops = dev->netdev_ops;
8046 
8047 	if (ops->ndo_change_rx_flags)
8048 		ops->ndo_change_rx_flags(dev, flags);
8049 }
8050 
8051 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8052 {
8053 	unsigned int old_flags = dev->flags;
8054 	kuid_t uid;
8055 	kgid_t gid;
8056 
8057 	ASSERT_RTNL();
8058 
8059 	dev->flags |= IFF_PROMISC;
8060 	dev->promiscuity += inc;
8061 	if (dev->promiscuity == 0) {
8062 		/*
8063 		 * Avoid overflow.
8064 		 * If inc causes overflow, untouch promisc and return error.
8065 		 */
8066 		if (inc < 0)
8067 			dev->flags &= ~IFF_PROMISC;
8068 		else {
8069 			dev->promiscuity -= inc;
8070 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8071 				dev->name);
8072 			return -EOVERFLOW;
8073 		}
8074 	}
8075 	if (dev->flags != old_flags) {
8076 		pr_info("device %s %s promiscuous mode\n",
8077 			dev->name,
8078 			dev->flags & IFF_PROMISC ? "entered" : "left");
8079 		if (audit_enabled) {
8080 			current_uid_gid(&uid, &gid);
8081 			audit_log(audit_context(), GFP_ATOMIC,
8082 				  AUDIT_ANOM_PROMISCUOUS,
8083 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8084 				  dev->name, (dev->flags & IFF_PROMISC),
8085 				  (old_flags & IFF_PROMISC),
8086 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8087 				  from_kuid(&init_user_ns, uid),
8088 				  from_kgid(&init_user_ns, gid),
8089 				  audit_get_sessionid(current));
8090 		}
8091 
8092 		dev_change_rx_flags(dev, IFF_PROMISC);
8093 	}
8094 	if (notify)
8095 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8096 	return 0;
8097 }
8098 
8099 /**
8100  *	dev_set_promiscuity	- update promiscuity count on a device
8101  *	@dev: device
8102  *	@inc: modifier
8103  *
8104  *	Add or remove promiscuity from a device. While the count in the device
8105  *	remains above zero the interface remains promiscuous. Once it hits zero
8106  *	the device reverts back to normal filtering operation. A negative inc
8107  *	value is used to drop promiscuity on the device.
8108  *	Return 0 if successful or a negative errno code on error.
8109  */
8110 int dev_set_promiscuity(struct net_device *dev, int inc)
8111 {
8112 	unsigned int old_flags = dev->flags;
8113 	int err;
8114 
8115 	err = __dev_set_promiscuity(dev, inc, true);
8116 	if (err < 0)
8117 		return err;
8118 	if (dev->flags != old_flags)
8119 		dev_set_rx_mode(dev);
8120 	return err;
8121 }
8122 EXPORT_SYMBOL(dev_set_promiscuity);
8123 
8124 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8125 {
8126 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8127 
8128 	ASSERT_RTNL();
8129 
8130 	dev->flags |= IFF_ALLMULTI;
8131 	dev->allmulti += inc;
8132 	if (dev->allmulti == 0) {
8133 		/*
8134 		 * Avoid overflow.
8135 		 * If inc causes overflow, untouch allmulti and return error.
8136 		 */
8137 		if (inc < 0)
8138 			dev->flags &= ~IFF_ALLMULTI;
8139 		else {
8140 			dev->allmulti -= inc;
8141 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8142 				dev->name);
8143 			return -EOVERFLOW;
8144 		}
8145 	}
8146 	if (dev->flags ^ old_flags) {
8147 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8148 		dev_set_rx_mode(dev);
8149 		if (notify)
8150 			__dev_notify_flags(dev, old_flags,
8151 					   dev->gflags ^ old_gflags);
8152 	}
8153 	return 0;
8154 }
8155 
8156 /**
8157  *	dev_set_allmulti	- update allmulti count on a device
8158  *	@dev: device
8159  *	@inc: modifier
8160  *
8161  *	Add or remove reception of all multicast frames to a device. While the
8162  *	count in the device remains above zero the interface remains listening
8163  *	to all interfaces. Once it hits zero the device reverts back to normal
8164  *	filtering operation. A negative @inc value is used to drop the counter
8165  *	when releasing a resource needing all multicasts.
8166  *	Return 0 if successful or a negative errno code on error.
8167  */
8168 
8169 int dev_set_allmulti(struct net_device *dev, int inc)
8170 {
8171 	return __dev_set_allmulti(dev, inc, true);
8172 }
8173 EXPORT_SYMBOL(dev_set_allmulti);
8174 
8175 /*
8176  *	Upload unicast and multicast address lists to device and
8177  *	configure RX filtering. When the device doesn't support unicast
8178  *	filtering it is put in promiscuous mode while unicast addresses
8179  *	are present.
8180  */
8181 void __dev_set_rx_mode(struct net_device *dev)
8182 {
8183 	const struct net_device_ops *ops = dev->netdev_ops;
8184 
8185 	/* dev_open will call this function so the list will stay sane. */
8186 	if (!(dev->flags&IFF_UP))
8187 		return;
8188 
8189 	if (!netif_device_present(dev))
8190 		return;
8191 
8192 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8193 		/* Unicast addresses changes may only happen under the rtnl,
8194 		 * therefore calling __dev_set_promiscuity here is safe.
8195 		 */
8196 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8197 			__dev_set_promiscuity(dev, 1, false);
8198 			dev->uc_promisc = true;
8199 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8200 			__dev_set_promiscuity(dev, -1, false);
8201 			dev->uc_promisc = false;
8202 		}
8203 	}
8204 
8205 	if (ops->ndo_set_rx_mode)
8206 		ops->ndo_set_rx_mode(dev);
8207 }
8208 
8209 void dev_set_rx_mode(struct net_device *dev)
8210 {
8211 	netif_addr_lock_bh(dev);
8212 	__dev_set_rx_mode(dev);
8213 	netif_addr_unlock_bh(dev);
8214 }
8215 
8216 /**
8217  *	dev_get_flags - get flags reported to userspace
8218  *	@dev: device
8219  *
8220  *	Get the combination of flag bits exported through APIs to userspace.
8221  */
8222 unsigned int dev_get_flags(const struct net_device *dev)
8223 {
8224 	unsigned int flags;
8225 
8226 	flags = (dev->flags & ~(IFF_PROMISC |
8227 				IFF_ALLMULTI |
8228 				IFF_RUNNING |
8229 				IFF_LOWER_UP |
8230 				IFF_DORMANT)) |
8231 		(dev->gflags & (IFF_PROMISC |
8232 				IFF_ALLMULTI));
8233 
8234 	if (netif_running(dev)) {
8235 		if (netif_oper_up(dev))
8236 			flags |= IFF_RUNNING;
8237 		if (netif_carrier_ok(dev))
8238 			flags |= IFF_LOWER_UP;
8239 		if (netif_dormant(dev))
8240 			flags |= IFF_DORMANT;
8241 	}
8242 
8243 	return flags;
8244 }
8245 EXPORT_SYMBOL(dev_get_flags);
8246 
8247 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8248 		       struct netlink_ext_ack *extack)
8249 {
8250 	unsigned int old_flags = dev->flags;
8251 	int ret;
8252 
8253 	ASSERT_RTNL();
8254 
8255 	/*
8256 	 *	Set the flags on our device.
8257 	 */
8258 
8259 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8260 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8261 			       IFF_AUTOMEDIA)) |
8262 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8263 				    IFF_ALLMULTI));
8264 
8265 	/*
8266 	 *	Load in the correct multicast list now the flags have changed.
8267 	 */
8268 
8269 	if ((old_flags ^ flags) & IFF_MULTICAST)
8270 		dev_change_rx_flags(dev, IFF_MULTICAST);
8271 
8272 	dev_set_rx_mode(dev);
8273 
8274 	/*
8275 	 *	Have we downed the interface. We handle IFF_UP ourselves
8276 	 *	according to user attempts to set it, rather than blindly
8277 	 *	setting it.
8278 	 */
8279 
8280 	ret = 0;
8281 	if ((old_flags ^ flags) & IFF_UP) {
8282 		if (old_flags & IFF_UP)
8283 			__dev_close(dev);
8284 		else
8285 			ret = __dev_open(dev, extack);
8286 	}
8287 
8288 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8289 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8290 		unsigned int old_flags = dev->flags;
8291 
8292 		dev->gflags ^= IFF_PROMISC;
8293 
8294 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8295 			if (dev->flags != old_flags)
8296 				dev_set_rx_mode(dev);
8297 	}
8298 
8299 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8300 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8301 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8302 	 */
8303 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8304 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8305 
8306 		dev->gflags ^= IFF_ALLMULTI;
8307 		__dev_set_allmulti(dev, inc, false);
8308 	}
8309 
8310 	return ret;
8311 }
8312 
8313 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8314 			unsigned int gchanges)
8315 {
8316 	unsigned int changes = dev->flags ^ old_flags;
8317 
8318 	if (gchanges)
8319 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8320 
8321 	if (changes & IFF_UP) {
8322 		if (dev->flags & IFF_UP)
8323 			call_netdevice_notifiers(NETDEV_UP, dev);
8324 		else
8325 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8326 	}
8327 
8328 	if (dev->flags & IFF_UP &&
8329 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8330 		struct netdev_notifier_change_info change_info = {
8331 			.info = {
8332 				.dev = dev,
8333 			},
8334 			.flags_changed = changes,
8335 		};
8336 
8337 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8338 	}
8339 }
8340 
8341 /**
8342  *	dev_change_flags - change device settings
8343  *	@dev: device
8344  *	@flags: device state flags
8345  *	@extack: netlink extended ack
8346  *
8347  *	Change settings on device based state flags. The flags are
8348  *	in the userspace exported format.
8349  */
8350 int dev_change_flags(struct net_device *dev, unsigned int flags,
8351 		     struct netlink_ext_ack *extack)
8352 {
8353 	int ret;
8354 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8355 
8356 	ret = __dev_change_flags(dev, flags, extack);
8357 	if (ret < 0)
8358 		return ret;
8359 
8360 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8361 	__dev_notify_flags(dev, old_flags, changes);
8362 	return ret;
8363 }
8364 EXPORT_SYMBOL(dev_change_flags);
8365 
8366 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8367 {
8368 	const struct net_device_ops *ops = dev->netdev_ops;
8369 
8370 	if (ops->ndo_change_mtu)
8371 		return ops->ndo_change_mtu(dev, new_mtu);
8372 
8373 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8374 	WRITE_ONCE(dev->mtu, new_mtu);
8375 	return 0;
8376 }
8377 EXPORT_SYMBOL(__dev_set_mtu);
8378 
8379 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8380 		     struct netlink_ext_ack *extack)
8381 {
8382 	/* MTU must be positive, and in range */
8383 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8384 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8385 		return -EINVAL;
8386 	}
8387 
8388 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8389 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8390 		return -EINVAL;
8391 	}
8392 	return 0;
8393 }
8394 
8395 /**
8396  *	dev_set_mtu_ext - Change maximum transfer unit
8397  *	@dev: device
8398  *	@new_mtu: new transfer unit
8399  *	@extack: netlink extended ack
8400  *
8401  *	Change the maximum transfer size of the network device.
8402  */
8403 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8404 		    struct netlink_ext_ack *extack)
8405 {
8406 	int err, orig_mtu;
8407 
8408 	if (new_mtu == dev->mtu)
8409 		return 0;
8410 
8411 	err = dev_validate_mtu(dev, new_mtu, extack);
8412 	if (err)
8413 		return err;
8414 
8415 	if (!netif_device_present(dev))
8416 		return -ENODEV;
8417 
8418 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8419 	err = notifier_to_errno(err);
8420 	if (err)
8421 		return err;
8422 
8423 	orig_mtu = dev->mtu;
8424 	err = __dev_set_mtu(dev, new_mtu);
8425 
8426 	if (!err) {
8427 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8428 						   orig_mtu);
8429 		err = notifier_to_errno(err);
8430 		if (err) {
8431 			/* setting mtu back and notifying everyone again,
8432 			 * so that they have a chance to revert changes.
8433 			 */
8434 			__dev_set_mtu(dev, orig_mtu);
8435 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8436 						     new_mtu);
8437 		}
8438 	}
8439 	return err;
8440 }
8441 
8442 int dev_set_mtu(struct net_device *dev, int new_mtu)
8443 {
8444 	struct netlink_ext_ack extack;
8445 	int err;
8446 
8447 	memset(&extack, 0, sizeof(extack));
8448 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8449 	if (err && extack._msg)
8450 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8451 	return err;
8452 }
8453 EXPORT_SYMBOL(dev_set_mtu);
8454 
8455 /**
8456  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8457  *	@dev: device
8458  *	@new_len: new tx queue length
8459  */
8460 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8461 {
8462 	unsigned int orig_len = dev->tx_queue_len;
8463 	int res;
8464 
8465 	if (new_len != (unsigned int)new_len)
8466 		return -ERANGE;
8467 
8468 	if (new_len != orig_len) {
8469 		dev->tx_queue_len = new_len;
8470 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8471 		res = notifier_to_errno(res);
8472 		if (res)
8473 			goto err_rollback;
8474 		res = dev_qdisc_change_tx_queue_len(dev);
8475 		if (res)
8476 			goto err_rollback;
8477 	}
8478 
8479 	return 0;
8480 
8481 err_rollback:
8482 	netdev_err(dev, "refused to change device tx_queue_len\n");
8483 	dev->tx_queue_len = orig_len;
8484 	return res;
8485 }
8486 
8487 /**
8488  *	dev_set_group - Change group this device belongs to
8489  *	@dev: device
8490  *	@new_group: group this device should belong to
8491  */
8492 void dev_set_group(struct net_device *dev, int new_group)
8493 {
8494 	dev->group = new_group;
8495 }
8496 EXPORT_SYMBOL(dev_set_group);
8497 
8498 /**
8499  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8500  *	@dev: device
8501  *	@addr: new address
8502  *	@extack: netlink extended ack
8503  */
8504 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8505 			      struct netlink_ext_ack *extack)
8506 {
8507 	struct netdev_notifier_pre_changeaddr_info info = {
8508 		.info.dev = dev,
8509 		.info.extack = extack,
8510 		.dev_addr = addr,
8511 	};
8512 	int rc;
8513 
8514 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8515 	return notifier_to_errno(rc);
8516 }
8517 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8518 
8519 /**
8520  *	dev_set_mac_address - Change Media Access Control Address
8521  *	@dev: device
8522  *	@sa: new address
8523  *	@extack: netlink extended ack
8524  *
8525  *	Change the hardware (MAC) address of the device
8526  */
8527 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8528 			struct netlink_ext_ack *extack)
8529 {
8530 	const struct net_device_ops *ops = dev->netdev_ops;
8531 	int err;
8532 
8533 	if (!ops->ndo_set_mac_address)
8534 		return -EOPNOTSUPP;
8535 	if (sa->sa_family != dev->type)
8536 		return -EINVAL;
8537 	if (!netif_device_present(dev))
8538 		return -ENODEV;
8539 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8540 	if (err)
8541 		return err;
8542 	err = ops->ndo_set_mac_address(dev, sa);
8543 	if (err)
8544 		return err;
8545 	dev->addr_assign_type = NET_ADDR_SET;
8546 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8547 	add_device_randomness(dev->dev_addr, dev->addr_len);
8548 	return 0;
8549 }
8550 EXPORT_SYMBOL(dev_set_mac_address);
8551 
8552 /**
8553  *	dev_change_carrier - Change device carrier
8554  *	@dev: device
8555  *	@new_carrier: new value
8556  *
8557  *	Change device carrier
8558  */
8559 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8560 {
8561 	const struct net_device_ops *ops = dev->netdev_ops;
8562 
8563 	if (!ops->ndo_change_carrier)
8564 		return -EOPNOTSUPP;
8565 	if (!netif_device_present(dev))
8566 		return -ENODEV;
8567 	return ops->ndo_change_carrier(dev, new_carrier);
8568 }
8569 EXPORT_SYMBOL(dev_change_carrier);
8570 
8571 /**
8572  *	dev_get_phys_port_id - Get device physical port ID
8573  *	@dev: device
8574  *	@ppid: port ID
8575  *
8576  *	Get device physical port ID
8577  */
8578 int dev_get_phys_port_id(struct net_device *dev,
8579 			 struct netdev_phys_item_id *ppid)
8580 {
8581 	const struct net_device_ops *ops = dev->netdev_ops;
8582 
8583 	if (!ops->ndo_get_phys_port_id)
8584 		return -EOPNOTSUPP;
8585 	return ops->ndo_get_phys_port_id(dev, ppid);
8586 }
8587 EXPORT_SYMBOL(dev_get_phys_port_id);
8588 
8589 /**
8590  *	dev_get_phys_port_name - Get device physical port name
8591  *	@dev: device
8592  *	@name: port name
8593  *	@len: limit of bytes to copy to name
8594  *
8595  *	Get device physical port name
8596  */
8597 int dev_get_phys_port_name(struct net_device *dev,
8598 			   char *name, size_t len)
8599 {
8600 	const struct net_device_ops *ops = dev->netdev_ops;
8601 	int err;
8602 
8603 	if (ops->ndo_get_phys_port_name) {
8604 		err = ops->ndo_get_phys_port_name(dev, name, len);
8605 		if (err != -EOPNOTSUPP)
8606 			return err;
8607 	}
8608 	return devlink_compat_phys_port_name_get(dev, name, len);
8609 }
8610 EXPORT_SYMBOL(dev_get_phys_port_name);
8611 
8612 /**
8613  *	dev_get_port_parent_id - Get the device's port parent identifier
8614  *	@dev: network device
8615  *	@ppid: pointer to a storage for the port's parent identifier
8616  *	@recurse: allow/disallow recursion to lower devices
8617  *
8618  *	Get the devices's port parent identifier
8619  */
8620 int dev_get_port_parent_id(struct net_device *dev,
8621 			   struct netdev_phys_item_id *ppid,
8622 			   bool recurse)
8623 {
8624 	const struct net_device_ops *ops = dev->netdev_ops;
8625 	struct netdev_phys_item_id first = { };
8626 	struct net_device *lower_dev;
8627 	struct list_head *iter;
8628 	int err;
8629 
8630 	if (ops->ndo_get_port_parent_id) {
8631 		err = ops->ndo_get_port_parent_id(dev, ppid);
8632 		if (err != -EOPNOTSUPP)
8633 			return err;
8634 	}
8635 
8636 	err = devlink_compat_switch_id_get(dev, ppid);
8637 	if (!err || err != -EOPNOTSUPP)
8638 		return err;
8639 
8640 	if (!recurse)
8641 		return -EOPNOTSUPP;
8642 
8643 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8644 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8645 		if (err)
8646 			break;
8647 		if (!first.id_len)
8648 			first = *ppid;
8649 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8650 			return -ENODATA;
8651 	}
8652 
8653 	return err;
8654 }
8655 EXPORT_SYMBOL(dev_get_port_parent_id);
8656 
8657 /**
8658  *	netdev_port_same_parent_id - Indicate if two network devices have
8659  *	the same port parent identifier
8660  *	@a: first network device
8661  *	@b: second network device
8662  */
8663 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8664 {
8665 	struct netdev_phys_item_id a_id = { };
8666 	struct netdev_phys_item_id b_id = { };
8667 
8668 	if (dev_get_port_parent_id(a, &a_id, true) ||
8669 	    dev_get_port_parent_id(b, &b_id, true))
8670 		return false;
8671 
8672 	return netdev_phys_item_id_same(&a_id, &b_id);
8673 }
8674 EXPORT_SYMBOL(netdev_port_same_parent_id);
8675 
8676 /**
8677  *	dev_change_proto_down - update protocol port state information
8678  *	@dev: device
8679  *	@proto_down: new value
8680  *
8681  *	This info can be used by switch drivers to set the phys state of the
8682  *	port.
8683  */
8684 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8685 {
8686 	const struct net_device_ops *ops = dev->netdev_ops;
8687 
8688 	if (!ops->ndo_change_proto_down)
8689 		return -EOPNOTSUPP;
8690 	if (!netif_device_present(dev))
8691 		return -ENODEV;
8692 	return ops->ndo_change_proto_down(dev, proto_down);
8693 }
8694 EXPORT_SYMBOL(dev_change_proto_down);
8695 
8696 /**
8697  *	dev_change_proto_down_generic - generic implementation for
8698  * 	ndo_change_proto_down that sets carrier according to
8699  * 	proto_down.
8700  *
8701  *	@dev: device
8702  *	@proto_down: new value
8703  */
8704 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8705 {
8706 	if (proto_down)
8707 		netif_carrier_off(dev);
8708 	else
8709 		netif_carrier_on(dev);
8710 	dev->proto_down = proto_down;
8711 	return 0;
8712 }
8713 EXPORT_SYMBOL(dev_change_proto_down_generic);
8714 
8715 /**
8716  *	dev_change_proto_down_reason - proto down reason
8717  *
8718  *	@dev: device
8719  *	@mask: proto down mask
8720  *	@value: proto down value
8721  */
8722 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8723 				  u32 value)
8724 {
8725 	int b;
8726 
8727 	if (!mask) {
8728 		dev->proto_down_reason = value;
8729 	} else {
8730 		for_each_set_bit(b, &mask, 32) {
8731 			if (value & (1 << b))
8732 				dev->proto_down_reason |= BIT(b);
8733 			else
8734 				dev->proto_down_reason &= ~BIT(b);
8735 		}
8736 	}
8737 }
8738 EXPORT_SYMBOL(dev_change_proto_down_reason);
8739 
8740 struct bpf_xdp_link {
8741 	struct bpf_link link;
8742 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8743 	int flags;
8744 };
8745 
8746 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8747 {
8748 	if (flags & XDP_FLAGS_HW_MODE)
8749 		return XDP_MODE_HW;
8750 	if (flags & XDP_FLAGS_DRV_MODE)
8751 		return XDP_MODE_DRV;
8752 	if (flags & XDP_FLAGS_SKB_MODE)
8753 		return XDP_MODE_SKB;
8754 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8755 }
8756 
8757 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8758 {
8759 	switch (mode) {
8760 	case XDP_MODE_SKB:
8761 		return generic_xdp_install;
8762 	case XDP_MODE_DRV:
8763 	case XDP_MODE_HW:
8764 		return dev->netdev_ops->ndo_bpf;
8765 	default:
8766 		return NULL;
8767 	};
8768 }
8769 
8770 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8771 					 enum bpf_xdp_mode mode)
8772 {
8773 	return dev->xdp_state[mode].link;
8774 }
8775 
8776 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8777 				     enum bpf_xdp_mode mode)
8778 {
8779 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8780 
8781 	if (link)
8782 		return link->link.prog;
8783 	return dev->xdp_state[mode].prog;
8784 }
8785 
8786 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8787 {
8788 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8789 
8790 	return prog ? prog->aux->id : 0;
8791 }
8792 
8793 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8794 			     struct bpf_xdp_link *link)
8795 {
8796 	dev->xdp_state[mode].link = link;
8797 	dev->xdp_state[mode].prog = NULL;
8798 }
8799 
8800 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8801 			     struct bpf_prog *prog)
8802 {
8803 	dev->xdp_state[mode].link = NULL;
8804 	dev->xdp_state[mode].prog = prog;
8805 }
8806 
8807 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8808 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8809 			   u32 flags, struct bpf_prog *prog)
8810 {
8811 	struct netdev_bpf xdp;
8812 	int err;
8813 
8814 	memset(&xdp, 0, sizeof(xdp));
8815 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8816 	xdp.extack = extack;
8817 	xdp.flags = flags;
8818 	xdp.prog = prog;
8819 
8820 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8821 	 * "moved" into driver), so they don't increment it on their own, but
8822 	 * they do decrement refcnt when program is detached or replaced.
8823 	 * Given net_device also owns link/prog, we need to bump refcnt here
8824 	 * to prevent drivers from underflowing it.
8825 	 */
8826 	if (prog)
8827 		bpf_prog_inc(prog);
8828 	err = bpf_op(dev, &xdp);
8829 	if (err) {
8830 		if (prog)
8831 			bpf_prog_put(prog);
8832 		return err;
8833 	}
8834 
8835 	if (mode != XDP_MODE_HW)
8836 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8837 
8838 	return 0;
8839 }
8840 
8841 static void dev_xdp_uninstall(struct net_device *dev)
8842 {
8843 	struct bpf_xdp_link *link;
8844 	struct bpf_prog *prog;
8845 	enum bpf_xdp_mode mode;
8846 	bpf_op_t bpf_op;
8847 
8848 	ASSERT_RTNL();
8849 
8850 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8851 		prog = dev_xdp_prog(dev, mode);
8852 		if (!prog)
8853 			continue;
8854 
8855 		bpf_op = dev_xdp_bpf_op(dev, mode);
8856 		if (!bpf_op)
8857 			continue;
8858 
8859 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8860 
8861 		/* auto-detach link from net device */
8862 		link = dev_xdp_link(dev, mode);
8863 		if (link)
8864 			link->dev = NULL;
8865 		else
8866 			bpf_prog_put(prog);
8867 
8868 		dev_xdp_set_link(dev, mode, NULL);
8869 	}
8870 }
8871 
8872 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8873 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8874 			  struct bpf_prog *old_prog, u32 flags)
8875 {
8876 	struct bpf_prog *cur_prog;
8877 	enum bpf_xdp_mode mode;
8878 	bpf_op_t bpf_op;
8879 	int err;
8880 
8881 	ASSERT_RTNL();
8882 
8883 	/* either link or prog attachment, never both */
8884 	if (link && (new_prog || old_prog))
8885 		return -EINVAL;
8886 	/* link supports only XDP mode flags */
8887 	if (link && (flags & ~XDP_FLAGS_MODES)) {
8888 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8889 		return -EINVAL;
8890 	}
8891 	/* just one XDP mode bit should be set, zero defaults to SKB mode */
8892 	if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8893 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8894 		return -EINVAL;
8895 	}
8896 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8897 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8898 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8899 		return -EINVAL;
8900 	}
8901 
8902 	mode = dev_xdp_mode(dev, flags);
8903 	/* can't replace attached link */
8904 	if (dev_xdp_link(dev, mode)) {
8905 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8906 		return -EBUSY;
8907 	}
8908 
8909 	cur_prog = dev_xdp_prog(dev, mode);
8910 	/* can't replace attached prog with link */
8911 	if (link && cur_prog) {
8912 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8913 		return -EBUSY;
8914 	}
8915 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8916 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
8917 		return -EEXIST;
8918 	}
8919 
8920 	/* put effective new program into new_prog */
8921 	if (link)
8922 		new_prog = link->link.prog;
8923 
8924 	if (new_prog) {
8925 		bool offload = mode == XDP_MODE_HW;
8926 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8927 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
8928 
8929 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8930 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8931 			return -EBUSY;
8932 		}
8933 		if (!offload && dev_xdp_prog(dev, other_mode)) {
8934 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8935 			return -EEXIST;
8936 		}
8937 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8938 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8939 			return -EINVAL;
8940 		}
8941 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8942 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8943 			return -EINVAL;
8944 		}
8945 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8946 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8947 			return -EINVAL;
8948 		}
8949 	}
8950 
8951 	/* don't call drivers if the effective program didn't change */
8952 	if (new_prog != cur_prog) {
8953 		bpf_op = dev_xdp_bpf_op(dev, mode);
8954 		if (!bpf_op) {
8955 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8956 			return -EOPNOTSUPP;
8957 		}
8958 
8959 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8960 		if (err)
8961 			return err;
8962 	}
8963 
8964 	if (link)
8965 		dev_xdp_set_link(dev, mode, link);
8966 	else
8967 		dev_xdp_set_prog(dev, mode, new_prog);
8968 	if (cur_prog)
8969 		bpf_prog_put(cur_prog);
8970 
8971 	return 0;
8972 }
8973 
8974 static int dev_xdp_attach_link(struct net_device *dev,
8975 			       struct netlink_ext_ack *extack,
8976 			       struct bpf_xdp_link *link)
8977 {
8978 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8979 }
8980 
8981 static int dev_xdp_detach_link(struct net_device *dev,
8982 			       struct netlink_ext_ack *extack,
8983 			       struct bpf_xdp_link *link)
8984 {
8985 	enum bpf_xdp_mode mode;
8986 	bpf_op_t bpf_op;
8987 
8988 	ASSERT_RTNL();
8989 
8990 	mode = dev_xdp_mode(dev, link->flags);
8991 	if (dev_xdp_link(dev, mode) != link)
8992 		return -EINVAL;
8993 
8994 	bpf_op = dev_xdp_bpf_op(dev, mode);
8995 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8996 	dev_xdp_set_link(dev, mode, NULL);
8997 	return 0;
8998 }
8999 
9000 static void bpf_xdp_link_release(struct bpf_link *link)
9001 {
9002 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9003 
9004 	rtnl_lock();
9005 
9006 	/* if racing with net_device's tear down, xdp_link->dev might be
9007 	 * already NULL, in which case link was already auto-detached
9008 	 */
9009 	if (xdp_link->dev) {
9010 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9011 		xdp_link->dev = NULL;
9012 	}
9013 
9014 	rtnl_unlock();
9015 }
9016 
9017 static int bpf_xdp_link_detach(struct bpf_link *link)
9018 {
9019 	bpf_xdp_link_release(link);
9020 	return 0;
9021 }
9022 
9023 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9024 {
9025 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9026 
9027 	kfree(xdp_link);
9028 }
9029 
9030 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9031 				     struct seq_file *seq)
9032 {
9033 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9034 	u32 ifindex = 0;
9035 
9036 	rtnl_lock();
9037 	if (xdp_link->dev)
9038 		ifindex = xdp_link->dev->ifindex;
9039 	rtnl_unlock();
9040 
9041 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9042 }
9043 
9044 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9045 				       struct bpf_link_info *info)
9046 {
9047 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9048 	u32 ifindex = 0;
9049 
9050 	rtnl_lock();
9051 	if (xdp_link->dev)
9052 		ifindex = xdp_link->dev->ifindex;
9053 	rtnl_unlock();
9054 
9055 	info->xdp.ifindex = ifindex;
9056 	return 0;
9057 }
9058 
9059 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9060 			       struct bpf_prog *old_prog)
9061 {
9062 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9063 	enum bpf_xdp_mode mode;
9064 	bpf_op_t bpf_op;
9065 	int err = 0;
9066 
9067 	rtnl_lock();
9068 
9069 	/* link might have been auto-released already, so fail */
9070 	if (!xdp_link->dev) {
9071 		err = -ENOLINK;
9072 		goto out_unlock;
9073 	}
9074 
9075 	if (old_prog && link->prog != old_prog) {
9076 		err = -EPERM;
9077 		goto out_unlock;
9078 	}
9079 	old_prog = link->prog;
9080 	if (old_prog == new_prog) {
9081 		/* no-op, don't disturb drivers */
9082 		bpf_prog_put(new_prog);
9083 		goto out_unlock;
9084 	}
9085 
9086 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9087 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9088 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9089 			      xdp_link->flags, new_prog);
9090 	if (err)
9091 		goto out_unlock;
9092 
9093 	old_prog = xchg(&link->prog, new_prog);
9094 	bpf_prog_put(old_prog);
9095 
9096 out_unlock:
9097 	rtnl_unlock();
9098 	return err;
9099 }
9100 
9101 static const struct bpf_link_ops bpf_xdp_link_lops = {
9102 	.release = bpf_xdp_link_release,
9103 	.dealloc = bpf_xdp_link_dealloc,
9104 	.detach = bpf_xdp_link_detach,
9105 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9106 	.fill_link_info = bpf_xdp_link_fill_link_info,
9107 	.update_prog = bpf_xdp_link_update,
9108 };
9109 
9110 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9111 {
9112 	struct net *net = current->nsproxy->net_ns;
9113 	struct bpf_link_primer link_primer;
9114 	struct bpf_xdp_link *link;
9115 	struct net_device *dev;
9116 	int err, fd;
9117 
9118 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9119 	if (!dev)
9120 		return -EINVAL;
9121 
9122 	link = kzalloc(sizeof(*link), GFP_USER);
9123 	if (!link) {
9124 		err = -ENOMEM;
9125 		goto out_put_dev;
9126 	}
9127 
9128 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9129 	link->dev = dev;
9130 	link->flags = attr->link_create.flags;
9131 
9132 	err = bpf_link_prime(&link->link, &link_primer);
9133 	if (err) {
9134 		kfree(link);
9135 		goto out_put_dev;
9136 	}
9137 
9138 	rtnl_lock();
9139 	err = dev_xdp_attach_link(dev, NULL, link);
9140 	rtnl_unlock();
9141 
9142 	if (err) {
9143 		bpf_link_cleanup(&link_primer);
9144 		goto out_put_dev;
9145 	}
9146 
9147 	fd = bpf_link_settle(&link_primer);
9148 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9149 	dev_put(dev);
9150 	return fd;
9151 
9152 out_put_dev:
9153 	dev_put(dev);
9154 	return err;
9155 }
9156 
9157 /**
9158  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9159  *	@dev: device
9160  *	@extack: netlink extended ack
9161  *	@fd: new program fd or negative value to clear
9162  *	@expected_fd: old program fd that userspace expects to replace or clear
9163  *	@flags: xdp-related flags
9164  *
9165  *	Set or clear a bpf program for a device
9166  */
9167 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9168 		      int fd, int expected_fd, u32 flags)
9169 {
9170 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9171 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9172 	int err;
9173 
9174 	ASSERT_RTNL();
9175 
9176 	if (fd >= 0) {
9177 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9178 						 mode != XDP_MODE_SKB);
9179 		if (IS_ERR(new_prog))
9180 			return PTR_ERR(new_prog);
9181 	}
9182 
9183 	if (expected_fd >= 0) {
9184 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9185 						 mode != XDP_MODE_SKB);
9186 		if (IS_ERR(old_prog)) {
9187 			err = PTR_ERR(old_prog);
9188 			old_prog = NULL;
9189 			goto err_out;
9190 		}
9191 	}
9192 
9193 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9194 
9195 err_out:
9196 	if (err && new_prog)
9197 		bpf_prog_put(new_prog);
9198 	if (old_prog)
9199 		bpf_prog_put(old_prog);
9200 	return err;
9201 }
9202 
9203 /**
9204  *	dev_new_index	-	allocate an ifindex
9205  *	@net: the applicable net namespace
9206  *
9207  *	Returns a suitable unique value for a new device interface
9208  *	number.  The caller must hold the rtnl semaphore or the
9209  *	dev_base_lock to be sure it remains unique.
9210  */
9211 static int dev_new_index(struct net *net)
9212 {
9213 	int ifindex = net->ifindex;
9214 
9215 	for (;;) {
9216 		if (++ifindex <= 0)
9217 			ifindex = 1;
9218 		if (!__dev_get_by_index(net, ifindex))
9219 			return net->ifindex = ifindex;
9220 	}
9221 }
9222 
9223 /* Delayed registration/unregisteration */
9224 static LIST_HEAD(net_todo_list);
9225 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9226 
9227 static void net_set_todo(struct net_device *dev)
9228 {
9229 	list_add_tail(&dev->todo_list, &net_todo_list);
9230 	dev_net(dev)->dev_unreg_count++;
9231 }
9232 
9233 static void rollback_registered_many(struct list_head *head)
9234 {
9235 	struct net_device *dev, *tmp;
9236 	LIST_HEAD(close_head);
9237 
9238 	BUG_ON(dev_boot_phase);
9239 	ASSERT_RTNL();
9240 
9241 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9242 		/* Some devices call without registering
9243 		 * for initialization unwind. Remove those
9244 		 * devices and proceed with the remaining.
9245 		 */
9246 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9247 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9248 				 dev->name, dev);
9249 
9250 			WARN_ON(1);
9251 			list_del(&dev->unreg_list);
9252 			continue;
9253 		}
9254 		dev->dismantle = true;
9255 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9256 	}
9257 
9258 	/* If device is running, close it first. */
9259 	list_for_each_entry(dev, head, unreg_list)
9260 		list_add_tail(&dev->close_list, &close_head);
9261 	dev_close_many(&close_head, true);
9262 
9263 	list_for_each_entry(dev, head, unreg_list) {
9264 		/* And unlink it from device chain. */
9265 		unlist_netdevice(dev);
9266 
9267 		dev->reg_state = NETREG_UNREGISTERING;
9268 	}
9269 	flush_all_backlogs();
9270 
9271 	synchronize_net();
9272 
9273 	list_for_each_entry(dev, head, unreg_list) {
9274 		struct sk_buff *skb = NULL;
9275 
9276 		/* Shutdown queueing discipline. */
9277 		dev_shutdown(dev);
9278 
9279 		dev_xdp_uninstall(dev);
9280 
9281 		/* Notify protocols, that we are about to destroy
9282 		 * this device. They should clean all the things.
9283 		 */
9284 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9285 
9286 		if (!dev->rtnl_link_ops ||
9287 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9288 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9289 						     GFP_KERNEL, NULL, 0);
9290 
9291 		/*
9292 		 *	Flush the unicast and multicast chains
9293 		 */
9294 		dev_uc_flush(dev);
9295 		dev_mc_flush(dev);
9296 
9297 		netdev_name_node_alt_flush(dev);
9298 		netdev_name_node_free(dev->name_node);
9299 
9300 		if (dev->netdev_ops->ndo_uninit)
9301 			dev->netdev_ops->ndo_uninit(dev);
9302 
9303 		if (skb)
9304 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9305 
9306 		/* Notifier chain MUST detach us all upper devices. */
9307 		WARN_ON(netdev_has_any_upper_dev(dev));
9308 		WARN_ON(netdev_has_any_lower_dev(dev));
9309 
9310 		/* Remove entries from kobject tree */
9311 		netdev_unregister_kobject(dev);
9312 #ifdef CONFIG_XPS
9313 		/* Remove XPS queueing entries */
9314 		netif_reset_xps_queues_gt(dev, 0);
9315 #endif
9316 	}
9317 
9318 	synchronize_net();
9319 
9320 	list_for_each_entry(dev, head, unreg_list)
9321 		dev_put(dev);
9322 }
9323 
9324 static void rollback_registered(struct net_device *dev)
9325 {
9326 	LIST_HEAD(single);
9327 
9328 	list_add(&dev->unreg_list, &single);
9329 	rollback_registered_many(&single);
9330 	list_del(&single);
9331 }
9332 
9333 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9334 	struct net_device *upper, netdev_features_t features)
9335 {
9336 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9337 	netdev_features_t feature;
9338 	int feature_bit;
9339 
9340 	for_each_netdev_feature(upper_disables, feature_bit) {
9341 		feature = __NETIF_F_BIT(feature_bit);
9342 		if (!(upper->wanted_features & feature)
9343 		    && (features & feature)) {
9344 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9345 				   &feature, upper->name);
9346 			features &= ~feature;
9347 		}
9348 	}
9349 
9350 	return features;
9351 }
9352 
9353 static void netdev_sync_lower_features(struct net_device *upper,
9354 	struct net_device *lower, netdev_features_t features)
9355 {
9356 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9357 	netdev_features_t feature;
9358 	int feature_bit;
9359 
9360 	for_each_netdev_feature(upper_disables, feature_bit) {
9361 		feature = __NETIF_F_BIT(feature_bit);
9362 		if (!(features & feature) && (lower->features & feature)) {
9363 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9364 				   &feature, lower->name);
9365 			lower->wanted_features &= ~feature;
9366 			__netdev_update_features(lower);
9367 
9368 			if (unlikely(lower->features & feature))
9369 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9370 					    &feature, lower->name);
9371 			else
9372 				netdev_features_change(lower);
9373 		}
9374 	}
9375 }
9376 
9377 static netdev_features_t netdev_fix_features(struct net_device *dev,
9378 	netdev_features_t features)
9379 {
9380 	/* Fix illegal checksum combinations */
9381 	if ((features & NETIF_F_HW_CSUM) &&
9382 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9383 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9384 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9385 	}
9386 
9387 	/* TSO requires that SG is present as well. */
9388 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9389 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9390 		features &= ~NETIF_F_ALL_TSO;
9391 	}
9392 
9393 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9394 					!(features & NETIF_F_IP_CSUM)) {
9395 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9396 		features &= ~NETIF_F_TSO;
9397 		features &= ~NETIF_F_TSO_ECN;
9398 	}
9399 
9400 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9401 					 !(features & NETIF_F_IPV6_CSUM)) {
9402 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9403 		features &= ~NETIF_F_TSO6;
9404 	}
9405 
9406 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9407 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9408 		features &= ~NETIF_F_TSO_MANGLEID;
9409 
9410 	/* TSO ECN requires that TSO is present as well. */
9411 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9412 		features &= ~NETIF_F_TSO_ECN;
9413 
9414 	/* Software GSO depends on SG. */
9415 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9416 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9417 		features &= ~NETIF_F_GSO;
9418 	}
9419 
9420 	/* GSO partial features require GSO partial be set */
9421 	if ((features & dev->gso_partial_features) &&
9422 	    !(features & NETIF_F_GSO_PARTIAL)) {
9423 		netdev_dbg(dev,
9424 			   "Dropping partially supported GSO features since no GSO partial.\n");
9425 		features &= ~dev->gso_partial_features;
9426 	}
9427 
9428 	if (!(features & NETIF_F_RXCSUM)) {
9429 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9430 		 * successfully merged by hardware must also have the
9431 		 * checksum verified by hardware.  If the user does not
9432 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9433 		 */
9434 		if (features & NETIF_F_GRO_HW) {
9435 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9436 			features &= ~NETIF_F_GRO_HW;
9437 		}
9438 	}
9439 
9440 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9441 	if (features & NETIF_F_RXFCS) {
9442 		if (features & NETIF_F_LRO) {
9443 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9444 			features &= ~NETIF_F_LRO;
9445 		}
9446 
9447 		if (features & NETIF_F_GRO_HW) {
9448 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9449 			features &= ~NETIF_F_GRO_HW;
9450 		}
9451 	}
9452 
9453 	return features;
9454 }
9455 
9456 int __netdev_update_features(struct net_device *dev)
9457 {
9458 	struct net_device *upper, *lower;
9459 	netdev_features_t features;
9460 	struct list_head *iter;
9461 	int err = -1;
9462 
9463 	ASSERT_RTNL();
9464 
9465 	features = netdev_get_wanted_features(dev);
9466 
9467 	if (dev->netdev_ops->ndo_fix_features)
9468 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9469 
9470 	/* driver might be less strict about feature dependencies */
9471 	features = netdev_fix_features(dev, features);
9472 
9473 	/* some features can't be enabled if they're off an an upper device */
9474 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9475 		features = netdev_sync_upper_features(dev, upper, features);
9476 
9477 	if (dev->features == features)
9478 		goto sync_lower;
9479 
9480 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9481 		&dev->features, &features);
9482 
9483 	if (dev->netdev_ops->ndo_set_features)
9484 		err = dev->netdev_ops->ndo_set_features(dev, features);
9485 	else
9486 		err = 0;
9487 
9488 	if (unlikely(err < 0)) {
9489 		netdev_err(dev,
9490 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9491 			err, &features, &dev->features);
9492 		/* return non-0 since some features might have changed and
9493 		 * it's better to fire a spurious notification than miss it
9494 		 */
9495 		return -1;
9496 	}
9497 
9498 sync_lower:
9499 	/* some features must be disabled on lower devices when disabled
9500 	 * on an upper device (think: bonding master or bridge)
9501 	 */
9502 	netdev_for_each_lower_dev(dev, lower, iter)
9503 		netdev_sync_lower_features(dev, lower, features);
9504 
9505 	if (!err) {
9506 		netdev_features_t diff = features ^ dev->features;
9507 
9508 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9509 			/* udp_tunnel_{get,drop}_rx_info both need
9510 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9511 			 * device, or they won't do anything.
9512 			 * Thus we need to update dev->features
9513 			 * *before* calling udp_tunnel_get_rx_info,
9514 			 * but *after* calling udp_tunnel_drop_rx_info.
9515 			 */
9516 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9517 				dev->features = features;
9518 				udp_tunnel_get_rx_info(dev);
9519 			} else {
9520 				udp_tunnel_drop_rx_info(dev);
9521 			}
9522 		}
9523 
9524 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9525 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9526 				dev->features = features;
9527 				err |= vlan_get_rx_ctag_filter_info(dev);
9528 			} else {
9529 				vlan_drop_rx_ctag_filter_info(dev);
9530 			}
9531 		}
9532 
9533 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9534 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9535 				dev->features = features;
9536 				err |= vlan_get_rx_stag_filter_info(dev);
9537 			} else {
9538 				vlan_drop_rx_stag_filter_info(dev);
9539 			}
9540 		}
9541 
9542 		dev->features = features;
9543 	}
9544 
9545 	return err < 0 ? 0 : 1;
9546 }
9547 
9548 /**
9549  *	netdev_update_features - recalculate device features
9550  *	@dev: the device to check
9551  *
9552  *	Recalculate dev->features set and send notifications if it
9553  *	has changed. Should be called after driver or hardware dependent
9554  *	conditions might have changed that influence the features.
9555  */
9556 void netdev_update_features(struct net_device *dev)
9557 {
9558 	if (__netdev_update_features(dev))
9559 		netdev_features_change(dev);
9560 }
9561 EXPORT_SYMBOL(netdev_update_features);
9562 
9563 /**
9564  *	netdev_change_features - recalculate device features
9565  *	@dev: the device to check
9566  *
9567  *	Recalculate dev->features set and send notifications even
9568  *	if they have not changed. Should be called instead of
9569  *	netdev_update_features() if also dev->vlan_features might
9570  *	have changed to allow the changes to be propagated to stacked
9571  *	VLAN devices.
9572  */
9573 void netdev_change_features(struct net_device *dev)
9574 {
9575 	__netdev_update_features(dev);
9576 	netdev_features_change(dev);
9577 }
9578 EXPORT_SYMBOL(netdev_change_features);
9579 
9580 /**
9581  *	netif_stacked_transfer_operstate -	transfer operstate
9582  *	@rootdev: the root or lower level device to transfer state from
9583  *	@dev: the device to transfer operstate to
9584  *
9585  *	Transfer operational state from root to device. This is normally
9586  *	called when a stacking relationship exists between the root
9587  *	device and the device(a leaf device).
9588  */
9589 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9590 					struct net_device *dev)
9591 {
9592 	if (rootdev->operstate == IF_OPER_DORMANT)
9593 		netif_dormant_on(dev);
9594 	else
9595 		netif_dormant_off(dev);
9596 
9597 	if (rootdev->operstate == IF_OPER_TESTING)
9598 		netif_testing_on(dev);
9599 	else
9600 		netif_testing_off(dev);
9601 
9602 	if (netif_carrier_ok(rootdev))
9603 		netif_carrier_on(dev);
9604 	else
9605 		netif_carrier_off(dev);
9606 }
9607 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9608 
9609 static int netif_alloc_rx_queues(struct net_device *dev)
9610 {
9611 	unsigned int i, count = dev->num_rx_queues;
9612 	struct netdev_rx_queue *rx;
9613 	size_t sz = count * sizeof(*rx);
9614 	int err = 0;
9615 
9616 	BUG_ON(count < 1);
9617 
9618 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9619 	if (!rx)
9620 		return -ENOMEM;
9621 
9622 	dev->_rx = rx;
9623 
9624 	for (i = 0; i < count; i++) {
9625 		rx[i].dev = dev;
9626 
9627 		/* XDP RX-queue setup */
9628 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9629 		if (err < 0)
9630 			goto err_rxq_info;
9631 	}
9632 	return 0;
9633 
9634 err_rxq_info:
9635 	/* Rollback successful reg's and free other resources */
9636 	while (i--)
9637 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9638 	kvfree(dev->_rx);
9639 	dev->_rx = NULL;
9640 	return err;
9641 }
9642 
9643 static void netif_free_rx_queues(struct net_device *dev)
9644 {
9645 	unsigned int i, count = dev->num_rx_queues;
9646 
9647 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9648 	if (!dev->_rx)
9649 		return;
9650 
9651 	for (i = 0; i < count; i++)
9652 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9653 
9654 	kvfree(dev->_rx);
9655 }
9656 
9657 static void netdev_init_one_queue(struct net_device *dev,
9658 				  struct netdev_queue *queue, void *_unused)
9659 {
9660 	/* Initialize queue lock */
9661 	spin_lock_init(&queue->_xmit_lock);
9662 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9663 	queue->xmit_lock_owner = -1;
9664 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9665 	queue->dev = dev;
9666 #ifdef CONFIG_BQL
9667 	dql_init(&queue->dql, HZ);
9668 #endif
9669 }
9670 
9671 static void netif_free_tx_queues(struct net_device *dev)
9672 {
9673 	kvfree(dev->_tx);
9674 }
9675 
9676 static int netif_alloc_netdev_queues(struct net_device *dev)
9677 {
9678 	unsigned int count = dev->num_tx_queues;
9679 	struct netdev_queue *tx;
9680 	size_t sz = count * sizeof(*tx);
9681 
9682 	if (count < 1 || count > 0xffff)
9683 		return -EINVAL;
9684 
9685 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9686 	if (!tx)
9687 		return -ENOMEM;
9688 
9689 	dev->_tx = tx;
9690 
9691 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9692 	spin_lock_init(&dev->tx_global_lock);
9693 
9694 	return 0;
9695 }
9696 
9697 void netif_tx_stop_all_queues(struct net_device *dev)
9698 {
9699 	unsigned int i;
9700 
9701 	for (i = 0; i < dev->num_tx_queues; i++) {
9702 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9703 
9704 		netif_tx_stop_queue(txq);
9705 	}
9706 }
9707 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9708 
9709 /**
9710  *	register_netdevice	- register a network device
9711  *	@dev: device to register
9712  *
9713  *	Take a completed network device structure and add it to the kernel
9714  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9715  *	chain. 0 is returned on success. A negative errno code is returned
9716  *	on a failure to set up the device, or if the name is a duplicate.
9717  *
9718  *	Callers must hold the rtnl semaphore. You may want
9719  *	register_netdev() instead of this.
9720  *
9721  *	BUGS:
9722  *	The locking appears insufficient to guarantee two parallel registers
9723  *	will not get the same name.
9724  */
9725 
9726 int register_netdevice(struct net_device *dev)
9727 {
9728 	int ret;
9729 	struct net *net = dev_net(dev);
9730 
9731 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9732 		     NETDEV_FEATURE_COUNT);
9733 	BUG_ON(dev_boot_phase);
9734 	ASSERT_RTNL();
9735 
9736 	might_sleep();
9737 
9738 	/* When net_device's are persistent, this will be fatal. */
9739 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9740 	BUG_ON(!net);
9741 
9742 	ret = ethtool_check_ops(dev->ethtool_ops);
9743 	if (ret)
9744 		return ret;
9745 
9746 	spin_lock_init(&dev->addr_list_lock);
9747 	netdev_set_addr_lockdep_class(dev);
9748 
9749 	ret = dev_get_valid_name(net, dev, dev->name);
9750 	if (ret < 0)
9751 		goto out;
9752 
9753 	ret = -ENOMEM;
9754 	dev->name_node = netdev_name_node_head_alloc(dev);
9755 	if (!dev->name_node)
9756 		goto out;
9757 
9758 	/* Init, if this function is available */
9759 	if (dev->netdev_ops->ndo_init) {
9760 		ret = dev->netdev_ops->ndo_init(dev);
9761 		if (ret) {
9762 			if (ret > 0)
9763 				ret = -EIO;
9764 			goto err_free_name;
9765 		}
9766 	}
9767 
9768 	if (((dev->hw_features | dev->features) &
9769 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9770 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9771 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9772 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9773 		ret = -EINVAL;
9774 		goto err_uninit;
9775 	}
9776 
9777 	ret = -EBUSY;
9778 	if (!dev->ifindex)
9779 		dev->ifindex = dev_new_index(net);
9780 	else if (__dev_get_by_index(net, dev->ifindex))
9781 		goto err_uninit;
9782 
9783 	/* Transfer changeable features to wanted_features and enable
9784 	 * software offloads (GSO and GRO).
9785 	 */
9786 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9787 	dev->features |= NETIF_F_SOFT_FEATURES;
9788 
9789 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9790 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9791 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9792 	}
9793 
9794 	dev->wanted_features = dev->features & dev->hw_features;
9795 
9796 	if (!(dev->flags & IFF_LOOPBACK))
9797 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9798 
9799 	/* If IPv4 TCP segmentation offload is supported we should also
9800 	 * allow the device to enable segmenting the frame with the option
9801 	 * of ignoring a static IP ID value.  This doesn't enable the
9802 	 * feature itself but allows the user to enable it later.
9803 	 */
9804 	if (dev->hw_features & NETIF_F_TSO)
9805 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9806 	if (dev->vlan_features & NETIF_F_TSO)
9807 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9808 	if (dev->mpls_features & NETIF_F_TSO)
9809 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9810 	if (dev->hw_enc_features & NETIF_F_TSO)
9811 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9812 
9813 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9814 	 */
9815 	dev->vlan_features |= NETIF_F_HIGHDMA;
9816 
9817 	/* Make NETIF_F_SG inheritable to tunnel devices.
9818 	 */
9819 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9820 
9821 	/* Make NETIF_F_SG inheritable to MPLS.
9822 	 */
9823 	dev->mpls_features |= NETIF_F_SG;
9824 
9825 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9826 	ret = notifier_to_errno(ret);
9827 	if (ret)
9828 		goto err_uninit;
9829 
9830 	ret = netdev_register_kobject(dev);
9831 	if (ret) {
9832 		dev->reg_state = NETREG_UNREGISTERED;
9833 		goto err_uninit;
9834 	}
9835 	dev->reg_state = NETREG_REGISTERED;
9836 
9837 	__netdev_update_features(dev);
9838 
9839 	/*
9840 	 *	Default initial state at registry is that the
9841 	 *	device is present.
9842 	 */
9843 
9844 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9845 
9846 	linkwatch_init_dev(dev);
9847 
9848 	dev_init_scheduler(dev);
9849 	dev_hold(dev);
9850 	list_netdevice(dev);
9851 	add_device_randomness(dev->dev_addr, dev->addr_len);
9852 
9853 	/* If the device has permanent device address, driver should
9854 	 * set dev_addr and also addr_assign_type should be set to
9855 	 * NET_ADDR_PERM (default value).
9856 	 */
9857 	if (dev->addr_assign_type == NET_ADDR_PERM)
9858 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9859 
9860 	/* Notify protocols, that a new device appeared. */
9861 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9862 	ret = notifier_to_errno(ret);
9863 	if (ret) {
9864 		rollback_registered(dev);
9865 		rcu_barrier();
9866 
9867 		dev->reg_state = NETREG_UNREGISTERED;
9868 		/* We should put the kobject that hold in
9869 		 * netdev_unregister_kobject(), otherwise
9870 		 * the net device cannot be freed when
9871 		 * driver calls free_netdev(), because the
9872 		 * kobject is being hold.
9873 		 */
9874 		kobject_put(&dev->dev.kobj);
9875 	}
9876 	/*
9877 	 *	Prevent userspace races by waiting until the network
9878 	 *	device is fully setup before sending notifications.
9879 	 */
9880 	if (!dev->rtnl_link_ops ||
9881 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9882 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9883 
9884 out:
9885 	return ret;
9886 
9887 err_uninit:
9888 	if (dev->netdev_ops->ndo_uninit)
9889 		dev->netdev_ops->ndo_uninit(dev);
9890 	if (dev->priv_destructor)
9891 		dev->priv_destructor(dev);
9892 err_free_name:
9893 	netdev_name_node_free(dev->name_node);
9894 	goto out;
9895 }
9896 EXPORT_SYMBOL(register_netdevice);
9897 
9898 /**
9899  *	init_dummy_netdev	- init a dummy network device for NAPI
9900  *	@dev: device to init
9901  *
9902  *	This takes a network device structure and initialize the minimum
9903  *	amount of fields so it can be used to schedule NAPI polls without
9904  *	registering a full blown interface. This is to be used by drivers
9905  *	that need to tie several hardware interfaces to a single NAPI
9906  *	poll scheduler due to HW limitations.
9907  */
9908 int init_dummy_netdev(struct net_device *dev)
9909 {
9910 	/* Clear everything. Note we don't initialize spinlocks
9911 	 * are they aren't supposed to be taken by any of the
9912 	 * NAPI code and this dummy netdev is supposed to be
9913 	 * only ever used for NAPI polls
9914 	 */
9915 	memset(dev, 0, sizeof(struct net_device));
9916 
9917 	/* make sure we BUG if trying to hit standard
9918 	 * register/unregister code path
9919 	 */
9920 	dev->reg_state = NETREG_DUMMY;
9921 
9922 	/* NAPI wants this */
9923 	INIT_LIST_HEAD(&dev->napi_list);
9924 
9925 	/* a dummy interface is started by default */
9926 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9927 	set_bit(__LINK_STATE_START, &dev->state);
9928 
9929 	/* napi_busy_loop stats accounting wants this */
9930 	dev_net_set(dev, &init_net);
9931 
9932 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9933 	 * because users of this 'device' dont need to change
9934 	 * its refcount.
9935 	 */
9936 
9937 	return 0;
9938 }
9939 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9940 
9941 
9942 /**
9943  *	register_netdev	- register a network device
9944  *	@dev: device to register
9945  *
9946  *	Take a completed network device structure and add it to the kernel
9947  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9948  *	chain. 0 is returned on success. A negative errno code is returned
9949  *	on a failure to set up the device, or if the name is a duplicate.
9950  *
9951  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9952  *	and expands the device name if you passed a format string to
9953  *	alloc_netdev.
9954  */
9955 int register_netdev(struct net_device *dev)
9956 {
9957 	int err;
9958 
9959 	if (rtnl_lock_killable())
9960 		return -EINTR;
9961 	err = register_netdevice(dev);
9962 	rtnl_unlock();
9963 	return err;
9964 }
9965 EXPORT_SYMBOL(register_netdev);
9966 
9967 int netdev_refcnt_read(const struct net_device *dev)
9968 {
9969 	int i, refcnt = 0;
9970 
9971 	for_each_possible_cpu(i)
9972 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9973 	return refcnt;
9974 }
9975 EXPORT_SYMBOL(netdev_refcnt_read);
9976 
9977 /**
9978  * netdev_wait_allrefs - wait until all references are gone.
9979  * @dev: target net_device
9980  *
9981  * This is called when unregistering network devices.
9982  *
9983  * Any protocol or device that holds a reference should register
9984  * for netdevice notification, and cleanup and put back the
9985  * reference if they receive an UNREGISTER event.
9986  * We can get stuck here if buggy protocols don't correctly
9987  * call dev_put.
9988  */
9989 static void netdev_wait_allrefs(struct net_device *dev)
9990 {
9991 	unsigned long rebroadcast_time, warning_time;
9992 	int refcnt;
9993 
9994 	linkwatch_forget_dev(dev);
9995 
9996 	rebroadcast_time = warning_time = jiffies;
9997 	refcnt = netdev_refcnt_read(dev);
9998 
9999 	while (refcnt != 0) {
10000 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10001 			rtnl_lock();
10002 
10003 			/* Rebroadcast unregister notification */
10004 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10005 
10006 			__rtnl_unlock();
10007 			rcu_barrier();
10008 			rtnl_lock();
10009 
10010 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10011 				     &dev->state)) {
10012 				/* We must not have linkwatch events
10013 				 * pending on unregister. If this
10014 				 * happens, we simply run the queue
10015 				 * unscheduled, resulting in a noop
10016 				 * for this device.
10017 				 */
10018 				linkwatch_run_queue();
10019 			}
10020 
10021 			__rtnl_unlock();
10022 
10023 			rebroadcast_time = jiffies;
10024 		}
10025 
10026 		msleep(250);
10027 
10028 		refcnt = netdev_refcnt_read(dev);
10029 
10030 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10031 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10032 				 dev->name, refcnt);
10033 			warning_time = jiffies;
10034 		}
10035 	}
10036 }
10037 
10038 /* The sequence is:
10039  *
10040  *	rtnl_lock();
10041  *	...
10042  *	register_netdevice(x1);
10043  *	register_netdevice(x2);
10044  *	...
10045  *	unregister_netdevice(y1);
10046  *	unregister_netdevice(y2);
10047  *      ...
10048  *	rtnl_unlock();
10049  *	free_netdev(y1);
10050  *	free_netdev(y2);
10051  *
10052  * We are invoked by rtnl_unlock().
10053  * This allows us to deal with problems:
10054  * 1) We can delete sysfs objects which invoke hotplug
10055  *    without deadlocking with linkwatch via keventd.
10056  * 2) Since we run with the RTNL semaphore not held, we can sleep
10057  *    safely in order to wait for the netdev refcnt to drop to zero.
10058  *
10059  * We must not return until all unregister events added during
10060  * the interval the lock was held have been completed.
10061  */
10062 void netdev_run_todo(void)
10063 {
10064 	struct list_head list;
10065 
10066 	/* Snapshot list, allow later requests */
10067 	list_replace_init(&net_todo_list, &list);
10068 
10069 	__rtnl_unlock();
10070 
10071 
10072 	/* Wait for rcu callbacks to finish before next phase */
10073 	if (!list_empty(&list))
10074 		rcu_barrier();
10075 
10076 	while (!list_empty(&list)) {
10077 		struct net_device *dev
10078 			= list_first_entry(&list, struct net_device, todo_list);
10079 		list_del(&dev->todo_list);
10080 
10081 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10082 			pr_err("network todo '%s' but state %d\n",
10083 			       dev->name, dev->reg_state);
10084 			dump_stack();
10085 			continue;
10086 		}
10087 
10088 		dev->reg_state = NETREG_UNREGISTERED;
10089 
10090 		netdev_wait_allrefs(dev);
10091 
10092 		/* paranoia */
10093 		BUG_ON(netdev_refcnt_read(dev));
10094 		BUG_ON(!list_empty(&dev->ptype_all));
10095 		BUG_ON(!list_empty(&dev->ptype_specific));
10096 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10097 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10098 #if IS_ENABLED(CONFIG_DECNET)
10099 		WARN_ON(dev->dn_ptr);
10100 #endif
10101 		if (dev->priv_destructor)
10102 			dev->priv_destructor(dev);
10103 		if (dev->needs_free_netdev)
10104 			free_netdev(dev);
10105 
10106 		/* Report a network device has been unregistered */
10107 		rtnl_lock();
10108 		dev_net(dev)->dev_unreg_count--;
10109 		__rtnl_unlock();
10110 		wake_up(&netdev_unregistering_wq);
10111 
10112 		/* Free network device */
10113 		kobject_put(&dev->dev.kobj);
10114 	}
10115 }
10116 
10117 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10118  * all the same fields in the same order as net_device_stats, with only
10119  * the type differing, but rtnl_link_stats64 may have additional fields
10120  * at the end for newer counters.
10121  */
10122 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10123 			     const struct net_device_stats *netdev_stats)
10124 {
10125 #if BITS_PER_LONG == 64
10126 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10127 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10128 	/* zero out counters that only exist in rtnl_link_stats64 */
10129 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10130 	       sizeof(*stats64) - sizeof(*netdev_stats));
10131 #else
10132 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10133 	const unsigned long *src = (const unsigned long *)netdev_stats;
10134 	u64 *dst = (u64 *)stats64;
10135 
10136 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10137 	for (i = 0; i < n; i++)
10138 		dst[i] = src[i];
10139 	/* zero out counters that only exist in rtnl_link_stats64 */
10140 	memset((char *)stats64 + n * sizeof(u64), 0,
10141 	       sizeof(*stats64) - n * sizeof(u64));
10142 #endif
10143 }
10144 EXPORT_SYMBOL(netdev_stats_to_stats64);
10145 
10146 /**
10147  *	dev_get_stats	- get network device statistics
10148  *	@dev: device to get statistics from
10149  *	@storage: place to store stats
10150  *
10151  *	Get network statistics from device. Return @storage.
10152  *	The device driver may provide its own method by setting
10153  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10154  *	otherwise the internal statistics structure is used.
10155  */
10156 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10157 					struct rtnl_link_stats64 *storage)
10158 {
10159 	const struct net_device_ops *ops = dev->netdev_ops;
10160 
10161 	if (ops->ndo_get_stats64) {
10162 		memset(storage, 0, sizeof(*storage));
10163 		ops->ndo_get_stats64(dev, storage);
10164 	} else if (ops->ndo_get_stats) {
10165 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10166 	} else {
10167 		netdev_stats_to_stats64(storage, &dev->stats);
10168 	}
10169 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10170 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10171 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10172 	return storage;
10173 }
10174 EXPORT_SYMBOL(dev_get_stats);
10175 
10176 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10177 {
10178 	struct netdev_queue *queue = dev_ingress_queue(dev);
10179 
10180 #ifdef CONFIG_NET_CLS_ACT
10181 	if (queue)
10182 		return queue;
10183 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10184 	if (!queue)
10185 		return NULL;
10186 	netdev_init_one_queue(dev, queue, NULL);
10187 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10188 	queue->qdisc_sleeping = &noop_qdisc;
10189 	rcu_assign_pointer(dev->ingress_queue, queue);
10190 #endif
10191 	return queue;
10192 }
10193 
10194 static const struct ethtool_ops default_ethtool_ops;
10195 
10196 void netdev_set_default_ethtool_ops(struct net_device *dev,
10197 				    const struct ethtool_ops *ops)
10198 {
10199 	if (dev->ethtool_ops == &default_ethtool_ops)
10200 		dev->ethtool_ops = ops;
10201 }
10202 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10203 
10204 void netdev_freemem(struct net_device *dev)
10205 {
10206 	char *addr = (char *)dev - dev->padded;
10207 
10208 	kvfree(addr);
10209 }
10210 
10211 /**
10212  * alloc_netdev_mqs - allocate network device
10213  * @sizeof_priv: size of private data to allocate space for
10214  * @name: device name format string
10215  * @name_assign_type: origin of device name
10216  * @setup: callback to initialize device
10217  * @txqs: the number of TX subqueues to allocate
10218  * @rxqs: the number of RX subqueues to allocate
10219  *
10220  * Allocates a struct net_device with private data area for driver use
10221  * and performs basic initialization.  Also allocates subqueue structs
10222  * for each queue on the device.
10223  */
10224 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10225 		unsigned char name_assign_type,
10226 		void (*setup)(struct net_device *),
10227 		unsigned int txqs, unsigned int rxqs)
10228 {
10229 	struct net_device *dev;
10230 	unsigned int alloc_size;
10231 	struct net_device *p;
10232 
10233 	BUG_ON(strlen(name) >= sizeof(dev->name));
10234 
10235 	if (txqs < 1) {
10236 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10237 		return NULL;
10238 	}
10239 
10240 	if (rxqs < 1) {
10241 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10242 		return NULL;
10243 	}
10244 
10245 	alloc_size = sizeof(struct net_device);
10246 	if (sizeof_priv) {
10247 		/* ensure 32-byte alignment of private area */
10248 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10249 		alloc_size += sizeof_priv;
10250 	}
10251 	/* ensure 32-byte alignment of whole construct */
10252 	alloc_size += NETDEV_ALIGN - 1;
10253 
10254 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10255 	if (!p)
10256 		return NULL;
10257 
10258 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10259 	dev->padded = (char *)dev - (char *)p;
10260 
10261 	dev->pcpu_refcnt = alloc_percpu(int);
10262 	if (!dev->pcpu_refcnt)
10263 		goto free_dev;
10264 
10265 	if (dev_addr_init(dev))
10266 		goto free_pcpu;
10267 
10268 	dev_mc_init(dev);
10269 	dev_uc_init(dev);
10270 
10271 	dev_net_set(dev, &init_net);
10272 
10273 	dev->gso_max_size = GSO_MAX_SIZE;
10274 	dev->gso_max_segs = GSO_MAX_SEGS;
10275 	dev->upper_level = 1;
10276 	dev->lower_level = 1;
10277 
10278 	INIT_LIST_HEAD(&dev->napi_list);
10279 	INIT_LIST_HEAD(&dev->unreg_list);
10280 	INIT_LIST_HEAD(&dev->close_list);
10281 	INIT_LIST_HEAD(&dev->link_watch_list);
10282 	INIT_LIST_HEAD(&dev->adj_list.upper);
10283 	INIT_LIST_HEAD(&dev->adj_list.lower);
10284 	INIT_LIST_HEAD(&dev->ptype_all);
10285 	INIT_LIST_HEAD(&dev->ptype_specific);
10286 	INIT_LIST_HEAD(&dev->net_notifier_list);
10287 #ifdef CONFIG_NET_SCHED
10288 	hash_init(dev->qdisc_hash);
10289 #endif
10290 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10291 	setup(dev);
10292 
10293 	if (!dev->tx_queue_len) {
10294 		dev->priv_flags |= IFF_NO_QUEUE;
10295 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10296 	}
10297 
10298 	dev->num_tx_queues = txqs;
10299 	dev->real_num_tx_queues = txqs;
10300 	if (netif_alloc_netdev_queues(dev))
10301 		goto free_all;
10302 
10303 	dev->num_rx_queues = rxqs;
10304 	dev->real_num_rx_queues = rxqs;
10305 	if (netif_alloc_rx_queues(dev))
10306 		goto free_all;
10307 
10308 	strcpy(dev->name, name);
10309 	dev->name_assign_type = name_assign_type;
10310 	dev->group = INIT_NETDEV_GROUP;
10311 	if (!dev->ethtool_ops)
10312 		dev->ethtool_ops = &default_ethtool_ops;
10313 
10314 	nf_hook_ingress_init(dev);
10315 
10316 	return dev;
10317 
10318 free_all:
10319 	free_netdev(dev);
10320 	return NULL;
10321 
10322 free_pcpu:
10323 	free_percpu(dev->pcpu_refcnt);
10324 free_dev:
10325 	netdev_freemem(dev);
10326 	return NULL;
10327 }
10328 EXPORT_SYMBOL(alloc_netdev_mqs);
10329 
10330 /**
10331  * free_netdev - free network device
10332  * @dev: device
10333  *
10334  * This function does the last stage of destroying an allocated device
10335  * interface. The reference to the device object is released. If this
10336  * is the last reference then it will be freed.Must be called in process
10337  * context.
10338  */
10339 void free_netdev(struct net_device *dev)
10340 {
10341 	struct napi_struct *p, *n;
10342 
10343 	might_sleep();
10344 	netif_free_tx_queues(dev);
10345 	netif_free_rx_queues(dev);
10346 
10347 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10348 
10349 	/* Flush device addresses */
10350 	dev_addr_flush(dev);
10351 
10352 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10353 		netif_napi_del(p);
10354 
10355 	free_percpu(dev->pcpu_refcnt);
10356 	dev->pcpu_refcnt = NULL;
10357 	free_percpu(dev->xdp_bulkq);
10358 	dev->xdp_bulkq = NULL;
10359 
10360 	/*  Compatibility with error handling in drivers */
10361 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10362 		netdev_freemem(dev);
10363 		return;
10364 	}
10365 
10366 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10367 	dev->reg_state = NETREG_RELEASED;
10368 
10369 	/* will free via device release */
10370 	put_device(&dev->dev);
10371 }
10372 EXPORT_SYMBOL(free_netdev);
10373 
10374 /**
10375  *	synchronize_net -  Synchronize with packet receive processing
10376  *
10377  *	Wait for packets currently being received to be done.
10378  *	Does not block later packets from starting.
10379  */
10380 void synchronize_net(void)
10381 {
10382 	might_sleep();
10383 	if (rtnl_is_locked())
10384 		synchronize_rcu_expedited();
10385 	else
10386 		synchronize_rcu();
10387 }
10388 EXPORT_SYMBOL(synchronize_net);
10389 
10390 /**
10391  *	unregister_netdevice_queue - remove device from the kernel
10392  *	@dev: device
10393  *	@head: list
10394  *
10395  *	This function shuts down a device interface and removes it
10396  *	from the kernel tables.
10397  *	If head not NULL, device is queued to be unregistered later.
10398  *
10399  *	Callers must hold the rtnl semaphore.  You may want
10400  *	unregister_netdev() instead of this.
10401  */
10402 
10403 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10404 {
10405 	ASSERT_RTNL();
10406 
10407 	if (head) {
10408 		list_move_tail(&dev->unreg_list, head);
10409 	} else {
10410 		rollback_registered(dev);
10411 		/* Finish processing unregister after unlock */
10412 		net_set_todo(dev);
10413 	}
10414 }
10415 EXPORT_SYMBOL(unregister_netdevice_queue);
10416 
10417 /**
10418  *	unregister_netdevice_many - unregister many devices
10419  *	@head: list of devices
10420  *
10421  *  Note: As most callers use a stack allocated list_head,
10422  *  we force a list_del() to make sure stack wont be corrupted later.
10423  */
10424 void unregister_netdevice_many(struct list_head *head)
10425 {
10426 	struct net_device *dev;
10427 
10428 	if (!list_empty(head)) {
10429 		rollback_registered_many(head);
10430 		list_for_each_entry(dev, head, unreg_list)
10431 			net_set_todo(dev);
10432 		list_del(head);
10433 	}
10434 }
10435 EXPORT_SYMBOL(unregister_netdevice_many);
10436 
10437 /**
10438  *	unregister_netdev - remove device from the kernel
10439  *	@dev: device
10440  *
10441  *	This function shuts down a device interface and removes it
10442  *	from the kernel tables.
10443  *
10444  *	This is just a wrapper for unregister_netdevice that takes
10445  *	the rtnl semaphore.  In general you want to use this and not
10446  *	unregister_netdevice.
10447  */
10448 void unregister_netdev(struct net_device *dev)
10449 {
10450 	rtnl_lock();
10451 	unregister_netdevice(dev);
10452 	rtnl_unlock();
10453 }
10454 EXPORT_SYMBOL(unregister_netdev);
10455 
10456 /**
10457  *	dev_change_net_namespace - move device to different nethost namespace
10458  *	@dev: device
10459  *	@net: network namespace
10460  *	@pat: If not NULL name pattern to try if the current device name
10461  *	      is already taken in the destination network namespace.
10462  *
10463  *	This function shuts down a device interface and moves it
10464  *	to a new network namespace. On success 0 is returned, on
10465  *	a failure a netagive errno code is returned.
10466  *
10467  *	Callers must hold the rtnl semaphore.
10468  */
10469 
10470 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10471 {
10472 	struct net *net_old = dev_net(dev);
10473 	int err, new_nsid, new_ifindex;
10474 
10475 	ASSERT_RTNL();
10476 
10477 	/* Don't allow namespace local devices to be moved. */
10478 	err = -EINVAL;
10479 	if (dev->features & NETIF_F_NETNS_LOCAL)
10480 		goto out;
10481 
10482 	/* Ensure the device has been registrered */
10483 	if (dev->reg_state != NETREG_REGISTERED)
10484 		goto out;
10485 
10486 	/* Get out if there is nothing todo */
10487 	err = 0;
10488 	if (net_eq(net_old, net))
10489 		goto out;
10490 
10491 	/* Pick the destination device name, and ensure
10492 	 * we can use it in the destination network namespace.
10493 	 */
10494 	err = -EEXIST;
10495 	if (__dev_get_by_name(net, dev->name)) {
10496 		/* We get here if we can't use the current device name */
10497 		if (!pat)
10498 			goto out;
10499 		err = dev_get_valid_name(net, dev, pat);
10500 		if (err < 0)
10501 			goto out;
10502 	}
10503 
10504 	/*
10505 	 * And now a mini version of register_netdevice unregister_netdevice.
10506 	 */
10507 
10508 	/* If device is running close it first. */
10509 	dev_close(dev);
10510 
10511 	/* And unlink it from device chain */
10512 	unlist_netdevice(dev);
10513 
10514 	synchronize_net();
10515 
10516 	/* Shutdown queueing discipline. */
10517 	dev_shutdown(dev);
10518 
10519 	/* Notify protocols, that we are about to destroy
10520 	 * this device. They should clean all the things.
10521 	 *
10522 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10523 	 * This is wanted because this way 8021q and macvlan know
10524 	 * the device is just moving and can keep their slaves up.
10525 	 */
10526 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10527 	rcu_barrier();
10528 
10529 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10530 	/* If there is an ifindex conflict assign a new one */
10531 	if (__dev_get_by_index(net, dev->ifindex))
10532 		new_ifindex = dev_new_index(net);
10533 	else
10534 		new_ifindex = dev->ifindex;
10535 
10536 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10537 			    new_ifindex);
10538 
10539 	/*
10540 	 *	Flush the unicast and multicast chains
10541 	 */
10542 	dev_uc_flush(dev);
10543 	dev_mc_flush(dev);
10544 
10545 	/* Send a netdev-removed uevent to the old namespace */
10546 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10547 	netdev_adjacent_del_links(dev);
10548 
10549 	/* Move per-net netdevice notifiers that are following the netdevice */
10550 	move_netdevice_notifiers_dev_net(dev, net);
10551 
10552 	/* Actually switch the network namespace */
10553 	dev_net_set(dev, net);
10554 	dev->ifindex = new_ifindex;
10555 
10556 	/* Send a netdev-add uevent to the new namespace */
10557 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10558 	netdev_adjacent_add_links(dev);
10559 
10560 	/* Fixup kobjects */
10561 	err = device_rename(&dev->dev, dev->name);
10562 	WARN_ON(err);
10563 
10564 	/* Adapt owner in case owning user namespace of target network
10565 	 * namespace is different from the original one.
10566 	 */
10567 	err = netdev_change_owner(dev, net_old, net);
10568 	WARN_ON(err);
10569 
10570 	/* Add the device back in the hashes */
10571 	list_netdevice(dev);
10572 
10573 	/* Notify protocols, that a new device appeared. */
10574 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10575 
10576 	/*
10577 	 *	Prevent userspace races by waiting until the network
10578 	 *	device is fully setup before sending notifications.
10579 	 */
10580 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10581 
10582 	synchronize_net();
10583 	err = 0;
10584 out:
10585 	return err;
10586 }
10587 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10588 
10589 static int dev_cpu_dead(unsigned int oldcpu)
10590 {
10591 	struct sk_buff **list_skb;
10592 	struct sk_buff *skb;
10593 	unsigned int cpu;
10594 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10595 
10596 	local_irq_disable();
10597 	cpu = smp_processor_id();
10598 	sd = &per_cpu(softnet_data, cpu);
10599 	oldsd = &per_cpu(softnet_data, oldcpu);
10600 
10601 	/* Find end of our completion_queue. */
10602 	list_skb = &sd->completion_queue;
10603 	while (*list_skb)
10604 		list_skb = &(*list_skb)->next;
10605 	/* Append completion queue from offline CPU. */
10606 	*list_skb = oldsd->completion_queue;
10607 	oldsd->completion_queue = NULL;
10608 
10609 	/* Append output queue from offline CPU. */
10610 	if (oldsd->output_queue) {
10611 		*sd->output_queue_tailp = oldsd->output_queue;
10612 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10613 		oldsd->output_queue = NULL;
10614 		oldsd->output_queue_tailp = &oldsd->output_queue;
10615 	}
10616 	/* Append NAPI poll list from offline CPU, with one exception :
10617 	 * process_backlog() must be called by cpu owning percpu backlog.
10618 	 * We properly handle process_queue & input_pkt_queue later.
10619 	 */
10620 	while (!list_empty(&oldsd->poll_list)) {
10621 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10622 							    struct napi_struct,
10623 							    poll_list);
10624 
10625 		list_del_init(&napi->poll_list);
10626 		if (napi->poll == process_backlog)
10627 			napi->state = 0;
10628 		else
10629 			____napi_schedule(sd, napi);
10630 	}
10631 
10632 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10633 	local_irq_enable();
10634 
10635 #ifdef CONFIG_RPS
10636 	remsd = oldsd->rps_ipi_list;
10637 	oldsd->rps_ipi_list = NULL;
10638 #endif
10639 	/* send out pending IPI's on offline CPU */
10640 	net_rps_send_ipi(remsd);
10641 
10642 	/* Process offline CPU's input_pkt_queue */
10643 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10644 		netif_rx_ni(skb);
10645 		input_queue_head_incr(oldsd);
10646 	}
10647 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10648 		netif_rx_ni(skb);
10649 		input_queue_head_incr(oldsd);
10650 	}
10651 
10652 	return 0;
10653 }
10654 
10655 /**
10656  *	netdev_increment_features - increment feature set by one
10657  *	@all: current feature set
10658  *	@one: new feature set
10659  *	@mask: mask feature set
10660  *
10661  *	Computes a new feature set after adding a device with feature set
10662  *	@one to the master device with current feature set @all.  Will not
10663  *	enable anything that is off in @mask. Returns the new feature set.
10664  */
10665 netdev_features_t netdev_increment_features(netdev_features_t all,
10666 	netdev_features_t one, netdev_features_t mask)
10667 {
10668 	if (mask & NETIF_F_HW_CSUM)
10669 		mask |= NETIF_F_CSUM_MASK;
10670 	mask |= NETIF_F_VLAN_CHALLENGED;
10671 
10672 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10673 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10674 
10675 	/* If one device supports hw checksumming, set for all. */
10676 	if (all & NETIF_F_HW_CSUM)
10677 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10678 
10679 	return all;
10680 }
10681 EXPORT_SYMBOL(netdev_increment_features);
10682 
10683 static struct hlist_head * __net_init netdev_create_hash(void)
10684 {
10685 	int i;
10686 	struct hlist_head *hash;
10687 
10688 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10689 	if (hash != NULL)
10690 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10691 			INIT_HLIST_HEAD(&hash[i]);
10692 
10693 	return hash;
10694 }
10695 
10696 /* Initialize per network namespace state */
10697 static int __net_init netdev_init(struct net *net)
10698 {
10699 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10700 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10701 
10702 	if (net != &init_net)
10703 		INIT_LIST_HEAD(&net->dev_base_head);
10704 
10705 	net->dev_name_head = netdev_create_hash();
10706 	if (net->dev_name_head == NULL)
10707 		goto err_name;
10708 
10709 	net->dev_index_head = netdev_create_hash();
10710 	if (net->dev_index_head == NULL)
10711 		goto err_idx;
10712 
10713 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10714 
10715 	return 0;
10716 
10717 err_idx:
10718 	kfree(net->dev_name_head);
10719 err_name:
10720 	return -ENOMEM;
10721 }
10722 
10723 /**
10724  *	netdev_drivername - network driver for the device
10725  *	@dev: network device
10726  *
10727  *	Determine network driver for device.
10728  */
10729 const char *netdev_drivername(const struct net_device *dev)
10730 {
10731 	const struct device_driver *driver;
10732 	const struct device *parent;
10733 	const char *empty = "";
10734 
10735 	parent = dev->dev.parent;
10736 	if (!parent)
10737 		return empty;
10738 
10739 	driver = parent->driver;
10740 	if (driver && driver->name)
10741 		return driver->name;
10742 	return empty;
10743 }
10744 
10745 static void __netdev_printk(const char *level, const struct net_device *dev,
10746 			    struct va_format *vaf)
10747 {
10748 	if (dev && dev->dev.parent) {
10749 		dev_printk_emit(level[1] - '0',
10750 				dev->dev.parent,
10751 				"%s %s %s%s: %pV",
10752 				dev_driver_string(dev->dev.parent),
10753 				dev_name(dev->dev.parent),
10754 				netdev_name(dev), netdev_reg_state(dev),
10755 				vaf);
10756 	} else if (dev) {
10757 		printk("%s%s%s: %pV",
10758 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10759 	} else {
10760 		printk("%s(NULL net_device): %pV", level, vaf);
10761 	}
10762 }
10763 
10764 void netdev_printk(const char *level, const struct net_device *dev,
10765 		   const char *format, ...)
10766 {
10767 	struct va_format vaf;
10768 	va_list args;
10769 
10770 	va_start(args, format);
10771 
10772 	vaf.fmt = format;
10773 	vaf.va = &args;
10774 
10775 	__netdev_printk(level, dev, &vaf);
10776 
10777 	va_end(args);
10778 }
10779 EXPORT_SYMBOL(netdev_printk);
10780 
10781 #define define_netdev_printk_level(func, level)			\
10782 void func(const struct net_device *dev, const char *fmt, ...)	\
10783 {								\
10784 	struct va_format vaf;					\
10785 	va_list args;						\
10786 								\
10787 	va_start(args, fmt);					\
10788 								\
10789 	vaf.fmt = fmt;						\
10790 	vaf.va = &args;						\
10791 								\
10792 	__netdev_printk(level, dev, &vaf);			\
10793 								\
10794 	va_end(args);						\
10795 }								\
10796 EXPORT_SYMBOL(func);
10797 
10798 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10799 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10800 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10801 define_netdev_printk_level(netdev_err, KERN_ERR);
10802 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10803 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10804 define_netdev_printk_level(netdev_info, KERN_INFO);
10805 
10806 static void __net_exit netdev_exit(struct net *net)
10807 {
10808 	kfree(net->dev_name_head);
10809 	kfree(net->dev_index_head);
10810 	if (net != &init_net)
10811 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10812 }
10813 
10814 static struct pernet_operations __net_initdata netdev_net_ops = {
10815 	.init = netdev_init,
10816 	.exit = netdev_exit,
10817 };
10818 
10819 static void __net_exit default_device_exit(struct net *net)
10820 {
10821 	struct net_device *dev, *aux;
10822 	/*
10823 	 * Push all migratable network devices back to the
10824 	 * initial network namespace
10825 	 */
10826 	rtnl_lock();
10827 	for_each_netdev_safe(net, dev, aux) {
10828 		int err;
10829 		char fb_name[IFNAMSIZ];
10830 
10831 		/* Ignore unmoveable devices (i.e. loopback) */
10832 		if (dev->features & NETIF_F_NETNS_LOCAL)
10833 			continue;
10834 
10835 		/* Leave virtual devices for the generic cleanup */
10836 		if (dev->rtnl_link_ops)
10837 			continue;
10838 
10839 		/* Push remaining network devices to init_net */
10840 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10841 		if (__dev_get_by_name(&init_net, fb_name))
10842 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10843 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10844 		if (err) {
10845 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10846 				 __func__, dev->name, err);
10847 			BUG();
10848 		}
10849 	}
10850 	rtnl_unlock();
10851 }
10852 
10853 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10854 {
10855 	/* Return with the rtnl_lock held when there are no network
10856 	 * devices unregistering in any network namespace in net_list.
10857 	 */
10858 	struct net *net;
10859 	bool unregistering;
10860 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10861 
10862 	add_wait_queue(&netdev_unregistering_wq, &wait);
10863 	for (;;) {
10864 		unregistering = false;
10865 		rtnl_lock();
10866 		list_for_each_entry(net, net_list, exit_list) {
10867 			if (net->dev_unreg_count > 0) {
10868 				unregistering = true;
10869 				break;
10870 			}
10871 		}
10872 		if (!unregistering)
10873 			break;
10874 		__rtnl_unlock();
10875 
10876 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10877 	}
10878 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10879 }
10880 
10881 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10882 {
10883 	/* At exit all network devices most be removed from a network
10884 	 * namespace.  Do this in the reverse order of registration.
10885 	 * Do this across as many network namespaces as possible to
10886 	 * improve batching efficiency.
10887 	 */
10888 	struct net_device *dev;
10889 	struct net *net;
10890 	LIST_HEAD(dev_kill_list);
10891 
10892 	/* To prevent network device cleanup code from dereferencing
10893 	 * loopback devices or network devices that have been freed
10894 	 * wait here for all pending unregistrations to complete,
10895 	 * before unregistring the loopback device and allowing the
10896 	 * network namespace be freed.
10897 	 *
10898 	 * The netdev todo list containing all network devices
10899 	 * unregistrations that happen in default_device_exit_batch
10900 	 * will run in the rtnl_unlock() at the end of
10901 	 * default_device_exit_batch.
10902 	 */
10903 	rtnl_lock_unregistering(net_list);
10904 	list_for_each_entry(net, net_list, exit_list) {
10905 		for_each_netdev_reverse(net, dev) {
10906 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10907 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10908 			else
10909 				unregister_netdevice_queue(dev, &dev_kill_list);
10910 		}
10911 	}
10912 	unregister_netdevice_many(&dev_kill_list);
10913 	rtnl_unlock();
10914 }
10915 
10916 static struct pernet_operations __net_initdata default_device_ops = {
10917 	.exit = default_device_exit,
10918 	.exit_batch = default_device_exit_batch,
10919 };
10920 
10921 /*
10922  *	Initialize the DEV module. At boot time this walks the device list and
10923  *	unhooks any devices that fail to initialise (normally hardware not
10924  *	present) and leaves us with a valid list of present and active devices.
10925  *
10926  */
10927 
10928 /*
10929  *       This is called single threaded during boot, so no need
10930  *       to take the rtnl semaphore.
10931  */
10932 static int __init net_dev_init(void)
10933 {
10934 	int i, rc = -ENOMEM;
10935 
10936 	BUG_ON(!dev_boot_phase);
10937 
10938 	if (dev_proc_init())
10939 		goto out;
10940 
10941 	if (netdev_kobject_init())
10942 		goto out;
10943 
10944 	INIT_LIST_HEAD(&ptype_all);
10945 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10946 		INIT_LIST_HEAD(&ptype_base[i]);
10947 
10948 	INIT_LIST_HEAD(&offload_base);
10949 
10950 	if (register_pernet_subsys(&netdev_net_ops))
10951 		goto out;
10952 
10953 	/*
10954 	 *	Initialise the packet receive queues.
10955 	 */
10956 
10957 	for_each_possible_cpu(i) {
10958 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10959 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10960 
10961 		INIT_WORK(flush, flush_backlog);
10962 
10963 		skb_queue_head_init(&sd->input_pkt_queue);
10964 		skb_queue_head_init(&sd->process_queue);
10965 #ifdef CONFIG_XFRM_OFFLOAD
10966 		skb_queue_head_init(&sd->xfrm_backlog);
10967 #endif
10968 		INIT_LIST_HEAD(&sd->poll_list);
10969 		sd->output_queue_tailp = &sd->output_queue;
10970 #ifdef CONFIG_RPS
10971 		sd->csd.func = rps_trigger_softirq;
10972 		sd->csd.info = sd;
10973 		sd->cpu = i;
10974 #endif
10975 
10976 		init_gro_hash(&sd->backlog);
10977 		sd->backlog.poll = process_backlog;
10978 		sd->backlog.weight = weight_p;
10979 	}
10980 
10981 	dev_boot_phase = 0;
10982 
10983 	/* The loopback device is special if any other network devices
10984 	 * is present in a network namespace the loopback device must
10985 	 * be present. Since we now dynamically allocate and free the
10986 	 * loopback device ensure this invariant is maintained by
10987 	 * keeping the loopback device as the first device on the
10988 	 * list of network devices.  Ensuring the loopback devices
10989 	 * is the first device that appears and the last network device
10990 	 * that disappears.
10991 	 */
10992 	if (register_pernet_device(&loopback_net_ops))
10993 		goto out;
10994 
10995 	if (register_pernet_device(&default_device_ops))
10996 		goto out;
10997 
10998 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10999 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11000 
11001 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11002 				       NULL, dev_cpu_dead);
11003 	WARN_ON(rc < 0);
11004 	rc = 0;
11005 out:
11006 	return rc;
11007 }
11008 
11009 subsys_initcall(net_dev_init);
11010