xref: /openbmc/linux/net/core/datagram.c (revision 11357f10)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	SUCS NET3:
4  *
5  *	Generic datagram handling routines. These are generic for all
6  *	protocols. Possibly a generic IP version on top of these would
7  *	make sense. Not tonight however 8-).
8  *	This is used because UDP, RAW, PACKET, DDP, IPX, AX.25 and
9  *	NetROM layer all have identical poll code and mostly
10  *	identical recvmsg() code. So we share it here. The poll was
11  *	shared before but buried in udp.c so I moved it.
12  *
13  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>. (datagram_poll() from old
14  *						     udp.c code)
15  *
16  *	Fixes:
17  *		Alan Cox	:	NULL return from skb_peek_copy()
18  *					understood
19  *		Alan Cox	:	Rewrote skb_read_datagram to avoid the
20  *					skb_peek_copy stuff.
21  *		Alan Cox	:	Added support for SOCK_SEQPACKET.
22  *					IPX can no longer use the SO_TYPE hack
23  *					but AX.25 now works right, and SPX is
24  *					feasible.
25  *		Alan Cox	:	Fixed write poll of non IP protocol
26  *					crash.
27  *		Florian  La Roche:	Changed for my new skbuff handling.
28  *		Darryl Miles	:	Fixed non-blocking SOCK_SEQPACKET.
29  *		Linus Torvalds	:	BSD semantic fixes.
30  *		Alan Cox	:	Datagram iovec handling
31  *		Darryl Miles	:	Fixed non-blocking SOCK_STREAM.
32  *		Alan Cox	:	POSIXisms
33  *		Pete Wyckoff    :       Unconnected accept() fix.
34  *
35  */
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/uaccess.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/errno.h>
44 #include <linux/sched.h>
45 #include <linux/inet.h>
46 #include <linux/netdevice.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/poll.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/slab.h>
52 #include <linux/pagemap.h>
53 #include <linux/uio.h>
54 #include <linux/indirect_call_wrapper.h>
55 
56 #include <net/protocol.h>
57 #include <linux/skbuff.h>
58 
59 #include <net/checksum.h>
60 #include <net/sock.h>
61 #include <net/tcp_states.h>
62 #include <trace/events/skb.h>
63 #include <net/busy_poll.h>
64 
65 /*
66  *	Is a socket 'connection oriented' ?
67  */
68 static inline int connection_based(struct sock *sk)
69 {
70 	return sk->sk_type == SOCK_SEQPACKET || sk->sk_type == SOCK_STREAM;
71 }
72 
73 static int receiver_wake_function(wait_queue_entry_t *wait, unsigned int mode, int sync,
74 				  void *key)
75 {
76 	/*
77 	 * Avoid a wakeup if event not interesting for us
78 	 */
79 	if (key && !(key_to_poll(key) & (EPOLLIN | EPOLLERR)))
80 		return 0;
81 	return autoremove_wake_function(wait, mode, sync, key);
82 }
83 /*
84  * Wait for the last received packet to be different from skb
85  */
86 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
87 				int *err, long *timeo_p,
88 				const struct sk_buff *skb)
89 {
90 	int error;
91 	DEFINE_WAIT_FUNC(wait, receiver_wake_function);
92 
93 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
94 
95 	/* Socket errors? */
96 	error = sock_error(sk);
97 	if (error)
98 		goto out_err;
99 
100 	if (READ_ONCE(queue->prev) != skb)
101 		goto out;
102 
103 	/* Socket shut down? */
104 	if (sk->sk_shutdown & RCV_SHUTDOWN)
105 		goto out_noerr;
106 
107 	/* Sequenced packets can come disconnected.
108 	 * If so we report the problem
109 	 */
110 	error = -ENOTCONN;
111 	if (connection_based(sk) &&
112 	    !(sk->sk_state == TCP_ESTABLISHED || sk->sk_state == TCP_LISTEN))
113 		goto out_err;
114 
115 	/* handle signals */
116 	if (signal_pending(current))
117 		goto interrupted;
118 
119 	error = 0;
120 	*timeo_p = schedule_timeout(*timeo_p);
121 out:
122 	finish_wait(sk_sleep(sk), &wait);
123 	return error;
124 interrupted:
125 	error = sock_intr_errno(*timeo_p);
126 out_err:
127 	*err = error;
128 	goto out;
129 out_noerr:
130 	*err = 0;
131 	error = 1;
132 	goto out;
133 }
134 EXPORT_SYMBOL(__skb_wait_for_more_packets);
135 
136 static struct sk_buff *skb_set_peeked(struct sk_buff *skb)
137 {
138 	struct sk_buff *nskb;
139 
140 	if (skb->peeked)
141 		return skb;
142 
143 	/* We have to unshare an skb before modifying it. */
144 	if (!skb_shared(skb))
145 		goto done;
146 
147 	nskb = skb_clone(skb, GFP_ATOMIC);
148 	if (!nskb)
149 		return ERR_PTR(-ENOMEM);
150 
151 	skb->prev->next = nskb;
152 	skb->next->prev = nskb;
153 	nskb->prev = skb->prev;
154 	nskb->next = skb->next;
155 
156 	consume_skb(skb);
157 	skb = nskb;
158 
159 done:
160 	skb->peeked = 1;
161 
162 	return skb;
163 }
164 
165 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
166 					  struct sk_buff_head *queue,
167 					  unsigned int flags,
168 					  int *off, int *err,
169 					  struct sk_buff **last)
170 {
171 	bool peek_at_off = false;
172 	struct sk_buff *skb;
173 	int _off = 0;
174 
175 	if (unlikely(flags & MSG_PEEK && *off >= 0)) {
176 		peek_at_off = true;
177 		_off = *off;
178 	}
179 
180 	*last = queue->prev;
181 	skb_queue_walk(queue, skb) {
182 		if (flags & MSG_PEEK) {
183 			if (peek_at_off && _off >= skb->len &&
184 			    (_off || skb->peeked)) {
185 				_off -= skb->len;
186 				continue;
187 			}
188 			if (!skb->len) {
189 				skb = skb_set_peeked(skb);
190 				if (IS_ERR(skb)) {
191 					*err = PTR_ERR(skb);
192 					return NULL;
193 				}
194 			}
195 			refcount_inc(&skb->users);
196 		} else {
197 			__skb_unlink(skb, queue);
198 		}
199 		*off = _off;
200 		return skb;
201 	}
202 	return NULL;
203 }
204 
205 /**
206  *	__skb_try_recv_datagram - Receive a datagram skbuff
207  *	@sk: socket
208  *	@queue: socket queue from which to receive
209  *	@flags: MSG\_ flags
210  *	@off: an offset in bytes to peek skb from. Returns an offset
211  *	      within an skb where data actually starts
212  *	@err: error code returned
213  *	@last: set to last peeked message to inform the wait function
214  *	       what to look for when peeking
215  *
216  *	Get a datagram skbuff, understands the peeking, nonblocking wakeups
217  *	and possible races. This replaces identical code in packet, raw and
218  *	udp, as well as the IPX AX.25 and Appletalk. It also finally fixes
219  *	the long standing peek and read race for datagram sockets. If you
220  *	alter this routine remember it must be re-entrant.
221  *
222  *	This function will lock the socket if a skb is returned, so
223  *	the caller needs to unlock the socket in that case (usually by
224  *	calling skb_free_datagram). Returns NULL with @err set to
225  *	-EAGAIN if no data was available or to some other value if an
226  *	error was detected.
227  *
228  *	* It does not lock socket since today. This function is
229  *	* free of race conditions. This measure should/can improve
230  *	* significantly datagram socket latencies at high loads,
231  *	* when data copying to user space takes lots of time.
232  *	* (BTW I've just killed the last cli() in IP/IPv6/core/netlink/packet
233  *	*  8) Great win.)
234  *	*			                    --ANK (980729)
235  *
236  *	The order of the tests when we find no data waiting are specified
237  *	quite explicitly by POSIX 1003.1g, don't change them without having
238  *	the standard around please.
239  */
240 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
241 					struct sk_buff_head *queue,
242 					unsigned int flags, int *off, int *err,
243 					struct sk_buff **last)
244 {
245 	struct sk_buff *skb;
246 	unsigned long cpu_flags;
247 	/*
248 	 * Caller is allowed not to check sk->sk_err before skb_recv_datagram()
249 	 */
250 	int error = sock_error(sk);
251 
252 	if (error)
253 		goto no_packet;
254 
255 	do {
256 		/* Again only user level code calls this function, so nothing
257 		 * interrupt level will suddenly eat the receive_queue.
258 		 *
259 		 * Look at current nfs client by the way...
260 		 * However, this function was correct in any case. 8)
261 		 */
262 		spin_lock_irqsave(&queue->lock, cpu_flags);
263 		skb = __skb_try_recv_from_queue(sk, queue, flags, off, &error,
264 						last);
265 		spin_unlock_irqrestore(&queue->lock, cpu_flags);
266 		if (error)
267 			goto no_packet;
268 		if (skb)
269 			return skb;
270 
271 		if (!sk_can_busy_loop(sk))
272 			break;
273 
274 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
275 	} while (READ_ONCE(queue->prev) != *last);
276 
277 	error = -EAGAIN;
278 
279 no_packet:
280 	*err = error;
281 	return NULL;
282 }
283 EXPORT_SYMBOL(__skb_try_recv_datagram);
284 
285 struct sk_buff *__skb_recv_datagram(struct sock *sk,
286 				    struct sk_buff_head *sk_queue,
287 				    unsigned int flags, int *off, int *err)
288 {
289 	struct sk_buff *skb, *last;
290 	long timeo;
291 
292 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
293 
294 	do {
295 		skb = __skb_try_recv_datagram(sk, sk_queue, flags, off, err,
296 					      &last);
297 		if (skb)
298 			return skb;
299 
300 		if (*err != -EAGAIN)
301 			break;
302 	} while (timeo &&
303 		 !__skb_wait_for_more_packets(sk, sk_queue, err,
304 					      &timeo, last));
305 
306 	return NULL;
307 }
308 EXPORT_SYMBOL(__skb_recv_datagram);
309 
310 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags,
311 				  int *err)
312 {
313 	int off = 0;
314 
315 	return __skb_recv_datagram(sk, &sk->sk_receive_queue, flags,
316 				   &off, err);
317 }
318 EXPORT_SYMBOL(skb_recv_datagram);
319 
320 void skb_free_datagram(struct sock *sk, struct sk_buff *skb)
321 {
322 	consume_skb(skb);
323 	sk_mem_reclaim_partial(sk);
324 }
325 EXPORT_SYMBOL(skb_free_datagram);
326 
327 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len)
328 {
329 	bool slow;
330 
331 	if (!skb_unref(skb)) {
332 		sk_peek_offset_bwd(sk, len);
333 		return;
334 	}
335 
336 	slow = lock_sock_fast(sk);
337 	sk_peek_offset_bwd(sk, len);
338 	skb_orphan(skb);
339 	sk_mem_reclaim_partial(sk);
340 	unlock_sock_fast(sk, slow);
341 
342 	/* skb is now orphaned, can be freed outside of locked section */
343 	__kfree_skb(skb);
344 }
345 EXPORT_SYMBOL(__skb_free_datagram_locked);
346 
347 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
348 			struct sk_buff *skb, unsigned int flags,
349 			void (*destructor)(struct sock *sk,
350 					   struct sk_buff *skb))
351 {
352 	int err = 0;
353 
354 	if (flags & MSG_PEEK) {
355 		err = -ENOENT;
356 		spin_lock_bh(&sk_queue->lock);
357 		if (skb->next) {
358 			__skb_unlink(skb, sk_queue);
359 			refcount_dec(&skb->users);
360 			if (destructor)
361 				destructor(sk, skb);
362 			err = 0;
363 		}
364 		spin_unlock_bh(&sk_queue->lock);
365 	}
366 
367 	atomic_inc(&sk->sk_drops);
368 	return err;
369 }
370 EXPORT_SYMBOL(__sk_queue_drop_skb);
371 
372 /**
373  *	skb_kill_datagram - Free a datagram skbuff forcibly
374  *	@sk: socket
375  *	@skb: datagram skbuff
376  *	@flags: MSG\_ flags
377  *
378  *	This function frees a datagram skbuff that was received by
379  *	skb_recv_datagram.  The flags argument must match the one
380  *	used for skb_recv_datagram.
381  *
382  *	If the MSG_PEEK flag is set, and the packet is still on the
383  *	receive queue of the socket, it will be taken off the queue
384  *	before it is freed.
385  *
386  *	This function currently only disables BH when acquiring the
387  *	sk_receive_queue lock.  Therefore it must not be used in a
388  *	context where that lock is acquired in an IRQ context.
389  *
390  *	It returns 0 if the packet was removed by us.
391  */
392 
393 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags)
394 {
395 	int err = __sk_queue_drop_skb(sk, &sk->sk_receive_queue, skb, flags,
396 				      NULL);
397 
398 	kfree_skb(skb);
399 	sk_mem_reclaim_partial(sk);
400 	return err;
401 }
402 EXPORT_SYMBOL(skb_kill_datagram);
403 
404 INDIRECT_CALLABLE_DECLARE(static size_t simple_copy_to_iter(const void *addr,
405 						size_t bytes,
406 						void *data __always_unused,
407 						struct iov_iter *i));
408 
409 static int __skb_datagram_iter(const struct sk_buff *skb, int offset,
410 			       struct iov_iter *to, int len, bool fault_short,
411 			       size_t (*cb)(const void *, size_t, void *,
412 					    struct iov_iter *), void *data)
413 {
414 	int start = skb_headlen(skb);
415 	int i, copy = start - offset, start_off = offset, n;
416 	struct sk_buff *frag_iter;
417 
418 	/* Copy header. */
419 	if (copy > 0) {
420 		if (copy > len)
421 			copy = len;
422 		n = INDIRECT_CALL_1(cb, simple_copy_to_iter,
423 				    skb->data + offset, copy, data, to);
424 		offset += n;
425 		if (n != copy)
426 			goto short_copy;
427 		if ((len -= copy) == 0)
428 			return 0;
429 	}
430 
431 	/* Copy paged appendix. Hmm... why does this look so complicated? */
432 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
433 		int end;
434 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
435 
436 		WARN_ON(start > offset + len);
437 
438 		end = start + skb_frag_size(frag);
439 		if ((copy = end - offset) > 0) {
440 			struct page *page = skb_frag_page(frag);
441 			u8 *vaddr = kmap(page);
442 
443 			if (copy > len)
444 				copy = len;
445 			n = INDIRECT_CALL_1(cb, simple_copy_to_iter,
446 					vaddr + skb_frag_off(frag) + offset - start,
447 					copy, data, to);
448 			kunmap(page);
449 			offset += n;
450 			if (n != copy)
451 				goto short_copy;
452 			if (!(len -= copy))
453 				return 0;
454 		}
455 		start = end;
456 	}
457 
458 	skb_walk_frags(skb, frag_iter) {
459 		int end;
460 
461 		WARN_ON(start > offset + len);
462 
463 		end = start + frag_iter->len;
464 		if ((copy = end - offset) > 0) {
465 			if (copy > len)
466 				copy = len;
467 			if (__skb_datagram_iter(frag_iter, offset - start,
468 						to, copy, fault_short, cb, data))
469 				goto fault;
470 			if ((len -= copy) == 0)
471 				return 0;
472 			offset += copy;
473 		}
474 		start = end;
475 	}
476 	if (!len)
477 		return 0;
478 
479 	/* This is not really a user copy fault, but rather someone
480 	 * gave us a bogus length on the skb.  We should probably
481 	 * print a warning here as it may indicate a kernel bug.
482 	 */
483 
484 fault:
485 	iov_iter_revert(to, offset - start_off);
486 	return -EFAULT;
487 
488 short_copy:
489 	if (fault_short || iov_iter_count(to))
490 		goto fault;
491 
492 	return 0;
493 }
494 
495 /**
496  *	skb_copy_and_hash_datagram_iter - Copy datagram to an iovec iterator
497  *          and update a hash.
498  *	@skb: buffer to copy
499  *	@offset: offset in the buffer to start copying from
500  *	@to: iovec iterator to copy to
501  *	@len: amount of data to copy from buffer to iovec
502  *      @hash: hash request to update
503  */
504 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
505 			   struct iov_iter *to, int len,
506 			   struct ahash_request *hash)
507 {
508 	return __skb_datagram_iter(skb, offset, to, len, true,
509 			hash_and_copy_to_iter, hash);
510 }
511 EXPORT_SYMBOL(skb_copy_and_hash_datagram_iter);
512 
513 static size_t simple_copy_to_iter(const void *addr, size_t bytes,
514 		void *data __always_unused, struct iov_iter *i)
515 {
516 	return copy_to_iter(addr, bytes, i);
517 }
518 
519 /**
520  *	skb_copy_datagram_iter - Copy a datagram to an iovec iterator.
521  *	@skb: buffer to copy
522  *	@offset: offset in the buffer to start copying from
523  *	@to: iovec iterator to copy to
524  *	@len: amount of data to copy from buffer to iovec
525  */
526 int skb_copy_datagram_iter(const struct sk_buff *skb, int offset,
527 			   struct iov_iter *to, int len)
528 {
529 	trace_skb_copy_datagram_iovec(skb, len);
530 	return __skb_datagram_iter(skb, offset, to, len, false,
531 			simple_copy_to_iter, NULL);
532 }
533 EXPORT_SYMBOL(skb_copy_datagram_iter);
534 
535 /**
536  *	skb_copy_datagram_from_iter - Copy a datagram from an iov_iter.
537  *	@skb: buffer to copy
538  *	@offset: offset in the buffer to start copying to
539  *	@from: the copy source
540  *	@len: amount of data to copy to buffer from iovec
541  *
542  *	Returns 0 or -EFAULT.
543  */
544 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
545 				 struct iov_iter *from,
546 				 int len)
547 {
548 	int start = skb_headlen(skb);
549 	int i, copy = start - offset;
550 	struct sk_buff *frag_iter;
551 
552 	/* Copy header. */
553 	if (copy > 0) {
554 		if (copy > len)
555 			copy = len;
556 		if (copy_from_iter(skb->data + offset, copy, from) != copy)
557 			goto fault;
558 		if ((len -= copy) == 0)
559 			return 0;
560 		offset += copy;
561 	}
562 
563 	/* Copy paged appendix. Hmm... why does this look so complicated? */
564 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
565 		int end;
566 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
567 
568 		WARN_ON(start > offset + len);
569 
570 		end = start + skb_frag_size(frag);
571 		if ((copy = end - offset) > 0) {
572 			size_t copied;
573 
574 			if (copy > len)
575 				copy = len;
576 			copied = copy_page_from_iter(skb_frag_page(frag),
577 					  skb_frag_off(frag) + offset - start,
578 					  copy, from);
579 			if (copied != copy)
580 				goto fault;
581 
582 			if (!(len -= copy))
583 				return 0;
584 			offset += copy;
585 		}
586 		start = end;
587 	}
588 
589 	skb_walk_frags(skb, frag_iter) {
590 		int end;
591 
592 		WARN_ON(start > offset + len);
593 
594 		end = start + frag_iter->len;
595 		if ((copy = end - offset) > 0) {
596 			if (copy > len)
597 				copy = len;
598 			if (skb_copy_datagram_from_iter(frag_iter,
599 							offset - start,
600 							from, copy))
601 				goto fault;
602 			if ((len -= copy) == 0)
603 				return 0;
604 			offset += copy;
605 		}
606 		start = end;
607 	}
608 	if (!len)
609 		return 0;
610 
611 fault:
612 	return -EFAULT;
613 }
614 EXPORT_SYMBOL(skb_copy_datagram_from_iter);
615 
616 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
617 			    struct iov_iter *from, size_t length)
618 {
619 	int frag = skb_shinfo(skb)->nr_frags;
620 
621 	while (length && iov_iter_count(from)) {
622 		struct page *pages[MAX_SKB_FRAGS];
623 		struct page *last_head = NULL;
624 		size_t start;
625 		ssize_t copied;
626 		unsigned long truesize;
627 		int refs, n = 0;
628 
629 		if (frag == MAX_SKB_FRAGS)
630 			return -EMSGSIZE;
631 
632 		copied = iov_iter_get_pages(from, pages, length,
633 					    MAX_SKB_FRAGS - frag, &start);
634 		if (copied < 0)
635 			return -EFAULT;
636 
637 		iov_iter_advance(from, copied);
638 		length -= copied;
639 
640 		truesize = PAGE_ALIGN(copied + start);
641 		skb->data_len += copied;
642 		skb->len += copied;
643 		skb->truesize += truesize;
644 		if (sk && sk->sk_type == SOCK_STREAM) {
645 			sk_wmem_queued_add(sk, truesize);
646 			if (!skb_zcopy_pure(skb))
647 				sk_mem_charge(sk, truesize);
648 		} else {
649 			refcount_add(truesize, &skb->sk->sk_wmem_alloc);
650 		}
651 		for (refs = 0; copied != 0; start = 0) {
652 			int size = min_t(int, copied, PAGE_SIZE - start);
653 			struct page *head = compound_head(pages[n]);
654 
655 			start += (pages[n] - head) << PAGE_SHIFT;
656 			copied -= size;
657 			n++;
658 			if (frag) {
659 				skb_frag_t *last = &skb_shinfo(skb)->frags[frag - 1];
660 
661 				if (head == skb_frag_page(last) &&
662 				    start == skb_frag_off(last) + skb_frag_size(last)) {
663 					skb_frag_size_add(last, size);
664 					/* We combined this page, we need to release
665 					 * a reference. Since compound pages refcount
666 					 * is shared among many pages, batch the refcount
667 					 * adjustments to limit false sharing.
668 					 */
669 					last_head = head;
670 					refs++;
671 					continue;
672 				}
673 			}
674 			if (refs) {
675 				page_ref_sub(last_head, refs);
676 				refs = 0;
677 			}
678 			skb_fill_page_desc(skb, frag++, head, start, size);
679 		}
680 		if (refs)
681 			page_ref_sub(last_head, refs);
682 	}
683 	return 0;
684 }
685 EXPORT_SYMBOL(__zerocopy_sg_from_iter);
686 
687 /**
688  *	zerocopy_sg_from_iter - Build a zerocopy datagram from an iov_iter
689  *	@skb: buffer to copy
690  *	@from: the source to copy from
691  *
692  *	The function will first copy up to headlen, and then pin the userspace
693  *	pages and build frags through them.
694  *
695  *	Returns 0, -EFAULT or -EMSGSIZE.
696  */
697 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *from)
698 {
699 	int copy = min_t(int, skb_headlen(skb), iov_iter_count(from));
700 
701 	/* copy up to skb headlen */
702 	if (skb_copy_datagram_from_iter(skb, 0, from, copy))
703 		return -EFAULT;
704 
705 	return __zerocopy_sg_from_iter(NULL, skb, from, ~0U);
706 }
707 EXPORT_SYMBOL(zerocopy_sg_from_iter);
708 
709 /**
710  *	skb_copy_and_csum_datagram - Copy datagram to an iovec iterator
711  *          and update a checksum.
712  *	@skb: buffer to copy
713  *	@offset: offset in the buffer to start copying from
714  *	@to: iovec iterator to copy to
715  *	@len: amount of data to copy from buffer to iovec
716  *      @csump: checksum pointer
717  */
718 static int skb_copy_and_csum_datagram(const struct sk_buff *skb, int offset,
719 				      struct iov_iter *to, int len,
720 				      __wsum *csump)
721 {
722 	struct csum_state csdata = { .csum = *csump };
723 	int ret;
724 
725 	ret = __skb_datagram_iter(skb, offset, to, len, true,
726 				  csum_and_copy_to_iter, &csdata);
727 	if (ret)
728 		return ret;
729 
730 	*csump = csdata.csum;
731 	return 0;
732 }
733 
734 /**
735  *	skb_copy_and_csum_datagram_msg - Copy and checksum skb to user iovec.
736  *	@skb: skbuff
737  *	@hlen: hardware length
738  *	@msg: destination
739  *
740  *	Caller _must_ check that skb will fit to this iovec.
741  *
742  *	Returns: 0       - success.
743  *		 -EINVAL - checksum failure.
744  *		 -EFAULT - fault during copy.
745  */
746 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb,
747 				   int hlen, struct msghdr *msg)
748 {
749 	__wsum csum;
750 	int chunk = skb->len - hlen;
751 
752 	if (!chunk)
753 		return 0;
754 
755 	if (msg_data_left(msg) < chunk) {
756 		if (__skb_checksum_complete(skb))
757 			return -EINVAL;
758 		if (skb_copy_datagram_msg(skb, hlen, msg, chunk))
759 			goto fault;
760 	} else {
761 		csum = csum_partial(skb->data, hlen, skb->csum);
762 		if (skb_copy_and_csum_datagram(skb, hlen, &msg->msg_iter,
763 					       chunk, &csum))
764 			goto fault;
765 
766 		if (csum_fold(csum)) {
767 			iov_iter_revert(&msg->msg_iter, chunk);
768 			return -EINVAL;
769 		}
770 
771 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
772 		    !skb->csum_complete_sw)
773 			netdev_rx_csum_fault(NULL, skb);
774 	}
775 	return 0;
776 fault:
777 	return -EFAULT;
778 }
779 EXPORT_SYMBOL(skb_copy_and_csum_datagram_msg);
780 
781 /**
782  * 	datagram_poll - generic datagram poll
783  *	@file: file struct
784  *	@sock: socket
785  *	@wait: poll table
786  *
787  *	Datagram poll: Again totally generic. This also handles
788  *	sequenced packet sockets providing the socket receive queue
789  *	is only ever holding data ready to receive.
790  *
791  *	Note: when you *don't* use this routine for this protocol,
792  *	and you use a different write policy from sock_writeable()
793  *	then please supply your own write_space callback.
794  */
795 __poll_t datagram_poll(struct file *file, struct socket *sock,
796 			   poll_table *wait)
797 {
798 	struct sock *sk = sock->sk;
799 	__poll_t mask;
800 
801 	sock_poll_wait(file, sock, wait);
802 	mask = 0;
803 
804 	/* exceptional events? */
805 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
806 		mask |= EPOLLERR |
807 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
808 
809 	if (sk->sk_shutdown & RCV_SHUTDOWN)
810 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
811 	if (sk->sk_shutdown == SHUTDOWN_MASK)
812 		mask |= EPOLLHUP;
813 
814 	/* readable? */
815 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
816 		mask |= EPOLLIN | EPOLLRDNORM;
817 
818 	/* Connection-based need to check for termination and startup */
819 	if (connection_based(sk)) {
820 		if (sk->sk_state == TCP_CLOSE)
821 			mask |= EPOLLHUP;
822 		/* connection hasn't started yet? */
823 		if (sk->sk_state == TCP_SYN_SENT)
824 			return mask;
825 	}
826 
827 	/* writable? */
828 	if (sock_writeable(sk))
829 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
830 	else
831 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
832 
833 	return mask;
834 }
835 EXPORT_SYMBOL(datagram_poll);
836