xref: /openbmc/linux/net/ceph/osdmap.c (revision ab589bac)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/ceph/ceph_debug.h>
4 
5 #include <linux/module.h>
6 #include <linux/slab.h>
7 
8 #include <linux/ceph/libceph.h>
9 #include <linux/ceph/osdmap.h>
10 #include <linux/ceph/decode.h>
11 #include <linux/crush/hash.h>
12 #include <linux/crush/mapper.h>
13 
14 char *ceph_osdmap_state_str(char *str, int len, u32 state)
15 {
16 	if (!len)
17 		return str;
18 
19 	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
20 		snprintf(str, len, "exists, up");
21 	else if (state & CEPH_OSD_EXISTS)
22 		snprintf(str, len, "exists");
23 	else if (state & CEPH_OSD_UP)
24 		snprintf(str, len, "up");
25 	else
26 		snprintf(str, len, "doesn't exist");
27 
28 	return str;
29 }
30 
31 /* maps */
32 
33 static int calc_bits_of(unsigned int t)
34 {
35 	int b = 0;
36 	while (t) {
37 		t = t >> 1;
38 		b++;
39 	}
40 	return b;
41 }
42 
43 /*
44  * the foo_mask is the smallest value 2^n-1 that is >= foo.
45  */
46 static void calc_pg_masks(struct ceph_pg_pool_info *pi)
47 {
48 	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
49 	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
50 }
51 
52 /*
53  * decode crush map
54  */
55 static int crush_decode_uniform_bucket(void **p, void *end,
56 				       struct crush_bucket_uniform *b)
57 {
58 	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
59 	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
60 	b->item_weight = ceph_decode_32(p);
61 	return 0;
62 bad:
63 	return -EINVAL;
64 }
65 
66 static int crush_decode_list_bucket(void **p, void *end,
67 				    struct crush_bucket_list *b)
68 {
69 	int j;
70 	dout("crush_decode_list_bucket %p to %p\n", *p, end);
71 	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
72 	if (b->item_weights == NULL)
73 		return -ENOMEM;
74 	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
75 	if (b->sum_weights == NULL)
76 		return -ENOMEM;
77 	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
78 	for (j = 0; j < b->h.size; j++) {
79 		b->item_weights[j] = ceph_decode_32(p);
80 		b->sum_weights[j] = ceph_decode_32(p);
81 	}
82 	return 0;
83 bad:
84 	return -EINVAL;
85 }
86 
87 static int crush_decode_tree_bucket(void **p, void *end,
88 				    struct crush_bucket_tree *b)
89 {
90 	int j;
91 	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
92 	ceph_decode_8_safe(p, end, b->num_nodes, bad);
93 	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
94 	if (b->node_weights == NULL)
95 		return -ENOMEM;
96 	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
97 	for (j = 0; j < b->num_nodes; j++)
98 		b->node_weights[j] = ceph_decode_32(p);
99 	return 0;
100 bad:
101 	return -EINVAL;
102 }
103 
104 static int crush_decode_straw_bucket(void **p, void *end,
105 				     struct crush_bucket_straw *b)
106 {
107 	int j;
108 	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
109 	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
110 	if (b->item_weights == NULL)
111 		return -ENOMEM;
112 	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
113 	if (b->straws == NULL)
114 		return -ENOMEM;
115 	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
116 	for (j = 0; j < b->h.size; j++) {
117 		b->item_weights[j] = ceph_decode_32(p);
118 		b->straws[j] = ceph_decode_32(p);
119 	}
120 	return 0;
121 bad:
122 	return -EINVAL;
123 }
124 
125 static int crush_decode_straw2_bucket(void **p, void *end,
126 				      struct crush_bucket_straw2 *b)
127 {
128 	int j;
129 	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
130 	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
131 	if (b->item_weights == NULL)
132 		return -ENOMEM;
133 	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
134 	for (j = 0; j < b->h.size; j++)
135 		b->item_weights[j] = ceph_decode_32(p);
136 	return 0;
137 bad:
138 	return -EINVAL;
139 }
140 
141 struct crush_name_node {
142 	struct rb_node cn_node;
143 	int cn_id;
144 	char cn_name[];
145 };
146 
147 static struct crush_name_node *alloc_crush_name(size_t name_len)
148 {
149 	struct crush_name_node *cn;
150 
151 	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
152 	if (!cn)
153 		return NULL;
154 
155 	RB_CLEAR_NODE(&cn->cn_node);
156 	return cn;
157 }
158 
159 static void free_crush_name(struct crush_name_node *cn)
160 {
161 	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
162 
163 	kfree(cn);
164 }
165 
166 DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
167 
168 static int decode_crush_names(void **p, void *end, struct rb_root *root)
169 {
170 	u32 n;
171 
172 	ceph_decode_32_safe(p, end, n, e_inval);
173 	while (n--) {
174 		struct crush_name_node *cn;
175 		int id;
176 		u32 name_len;
177 
178 		ceph_decode_32_safe(p, end, id, e_inval);
179 		ceph_decode_32_safe(p, end, name_len, e_inval);
180 		ceph_decode_need(p, end, name_len, e_inval);
181 
182 		cn = alloc_crush_name(name_len);
183 		if (!cn)
184 			return -ENOMEM;
185 
186 		cn->cn_id = id;
187 		memcpy(cn->cn_name, *p, name_len);
188 		cn->cn_name[name_len] = '\0';
189 		*p += name_len;
190 
191 		if (!__insert_crush_name(root, cn)) {
192 			free_crush_name(cn);
193 			return -EEXIST;
194 		}
195 	}
196 
197 	return 0;
198 
199 e_inval:
200 	return -EINVAL;
201 }
202 
203 void clear_crush_names(struct rb_root *root)
204 {
205 	while (!RB_EMPTY_ROOT(root)) {
206 		struct crush_name_node *cn =
207 		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
208 
209 		erase_crush_name(root, cn);
210 		free_crush_name(cn);
211 	}
212 }
213 
214 static struct crush_choose_arg_map *alloc_choose_arg_map(void)
215 {
216 	struct crush_choose_arg_map *arg_map;
217 
218 	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
219 	if (!arg_map)
220 		return NULL;
221 
222 	RB_CLEAR_NODE(&arg_map->node);
223 	return arg_map;
224 }
225 
226 static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
227 {
228 	if (arg_map) {
229 		int i, j;
230 
231 		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
232 
233 		for (i = 0; i < arg_map->size; i++) {
234 			struct crush_choose_arg *arg = &arg_map->args[i];
235 
236 			for (j = 0; j < arg->weight_set_size; j++)
237 				kfree(arg->weight_set[j].weights);
238 			kfree(arg->weight_set);
239 			kfree(arg->ids);
240 		}
241 		kfree(arg_map->args);
242 		kfree(arg_map);
243 	}
244 }
245 
246 DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
247 		node);
248 
249 void clear_choose_args(struct crush_map *c)
250 {
251 	while (!RB_EMPTY_ROOT(&c->choose_args)) {
252 		struct crush_choose_arg_map *arg_map =
253 		    rb_entry(rb_first(&c->choose_args),
254 			     struct crush_choose_arg_map, node);
255 
256 		erase_choose_arg_map(&c->choose_args, arg_map);
257 		free_choose_arg_map(arg_map);
258 	}
259 }
260 
261 static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
262 {
263 	u32 *a = NULL;
264 	u32 len;
265 	int ret;
266 
267 	ceph_decode_32_safe(p, end, len, e_inval);
268 	if (len) {
269 		u32 i;
270 
271 		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
272 		if (!a) {
273 			ret = -ENOMEM;
274 			goto fail;
275 		}
276 
277 		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
278 		for (i = 0; i < len; i++)
279 			a[i] = ceph_decode_32(p);
280 	}
281 
282 	*plen = len;
283 	return a;
284 
285 e_inval:
286 	ret = -EINVAL;
287 fail:
288 	kfree(a);
289 	return ERR_PTR(ret);
290 }
291 
292 /*
293  * Assumes @arg is zero-initialized.
294  */
295 static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
296 {
297 	int ret;
298 
299 	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
300 	if (arg->weight_set_size) {
301 		u32 i;
302 
303 		arg->weight_set = kmalloc_array(arg->weight_set_size,
304 						sizeof(*arg->weight_set),
305 						GFP_NOIO);
306 		if (!arg->weight_set)
307 			return -ENOMEM;
308 
309 		for (i = 0; i < arg->weight_set_size; i++) {
310 			struct crush_weight_set *w = &arg->weight_set[i];
311 
312 			w->weights = decode_array_32_alloc(p, end, &w->size);
313 			if (IS_ERR(w->weights)) {
314 				ret = PTR_ERR(w->weights);
315 				w->weights = NULL;
316 				return ret;
317 			}
318 		}
319 	}
320 
321 	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
322 	if (IS_ERR(arg->ids)) {
323 		ret = PTR_ERR(arg->ids);
324 		arg->ids = NULL;
325 		return ret;
326 	}
327 
328 	return 0;
329 
330 e_inval:
331 	return -EINVAL;
332 }
333 
334 static int decode_choose_args(void **p, void *end, struct crush_map *c)
335 {
336 	struct crush_choose_arg_map *arg_map = NULL;
337 	u32 num_choose_arg_maps, num_buckets;
338 	int ret;
339 
340 	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
341 	while (num_choose_arg_maps--) {
342 		arg_map = alloc_choose_arg_map();
343 		if (!arg_map) {
344 			ret = -ENOMEM;
345 			goto fail;
346 		}
347 
348 		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
349 				    e_inval);
350 		arg_map->size = c->max_buckets;
351 		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
352 					GFP_NOIO);
353 		if (!arg_map->args) {
354 			ret = -ENOMEM;
355 			goto fail;
356 		}
357 
358 		ceph_decode_32_safe(p, end, num_buckets, e_inval);
359 		while (num_buckets--) {
360 			struct crush_choose_arg *arg;
361 			u32 bucket_index;
362 
363 			ceph_decode_32_safe(p, end, bucket_index, e_inval);
364 			if (bucket_index >= arg_map->size)
365 				goto e_inval;
366 
367 			arg = &arg_map->args[bucket_index];
368 			ret = decode_choose_arg(p, end, arg);
369 			if (ret)
370 				goto fail;
371 
372 			if (arg->ids_size &&
373 			    arg->ids_size != c->buckets[bucket_index]->size)
374 				goto e_inval;
375 		}
376 
377 		insert_choose_arg_map(&c->choose_args, arg_map);
378 	}
379 
380 	return 0;
381 
382 e_inval:
383 	ret = -EINVAL;
384 fail:
385 	free_choose_arg_map(arg_map);
386 	return ret;
387 }
388 
389 static void crush_finalize(struct crush_map *c)
390 {
391 	__s32 b;
392 
393 	/* Space for the array of pointers to per-bucket workspace */
394 	c->working_size = sizeof(struct crush_work) +
395 	    c->max_buckets * sizeof(struct crush_work_bucket *);
396 
397 	for (b = 0; b < c->max_buckets; b++) {
398 		if (!c->buckets[b])
399 			continue;
400 
401 		switch (c->buckets[b]->alg) {
402 		default:
403 			/*
404 			 * The base case, permutation variables and
405 			 * the pointer to the permutation array.
406 			 */
407 			c->working_size += sizeof(struct crush_work_bucket);
408 			break;
409 		}
410 		/* Every bucket has a permutation array. */
411 		c->working_size += c->buckets[b]->size * sizeof(__u32);
412 	}
413 }
414 
415 static struct crush_map *crush_decode(void *pbyval, void *end)
416 {
417 	struct crush_map *c;
418 	int err;
419 	int i, j;
420 	void **p = &pbyval;
421 	void *start = pbyval;
422 	u32 magic;
423 
424 	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
425 
426 	c = kzalloc(sizeof(*c), GFP_NOFS);
427 	if (c == NULL)
428 		return ERR_PTR(-ENOMEM);
429 
430 	c->type_names = RB_ROOT;
431 	c->names = RB_ROOT;
432 	c->choose_args = RB_ROOT;
433 
434         /* set tunables to default values */
435         c->choose_local_tries = 2;
436         c->choose_local_fallback_tries = 5;
437         c->choose_total_tries = 19;
438 	c->chooseleaf_descend_once = 0;
439 
440 	ceph_decode_need(p, end, 4*sizeof(u32), bad);
441 	magic = ceph_decode_32(p);
442 	if (magic != CRUSH_MAGIC) {
443 		pr_err("crush_decode magic %x != current %x\n",
444 		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
445 		goto bad;
446 	}
447 	c->max_buckets = ceph_decode_32(p);
448 	c->max_rules = ceph_decode_32(p);
449 	c->max_devices = ceph_decode_32(p);
450 
451 	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
452 	if (c->buckets == NULL)
453 		goto badmem;
454 	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
455 	if (c->rules == NULL)
456 		goto badmem;
457 
458 	/* buckets */
459 	for (i = 0; i < c->max_buckets; i++) {
460 		int size = 0;
461 		u32 alg;
462 		struct crush_bucket *b;
463 
464 		ceph_decode_32_safe(p, end, alg, bad);
465 		if (alg == 0) {
466 			c->buckets[i] = NULL;
467 			continue;
468 		}
469 		dout("crush_decode bucket %d off %x %p to %p\n",
470 		     i, (int)(*p-start), *p, end);
471 
472 		switch (alg) {
473 		case CRUSH_BUCKET_UNIFORM:
474 			size = sizeof(struct crush_bucket_uniform);
475 			break;
476 		case CRUSH_BUCKET_LIST:
477 			size = sizeof(struct crush_bucket_list);
478 			break;
479 		case CRUSH_BUCKET_TREE:
480 			size = sizeof(struct crush_bucket_tree);
481 			break;
482 		case CRUSH_BUCKET_STRAW:
483 			size = sizeof(struct crush_bucket_straw);
484 			break;
485 		case CRUSH_BUCKET_STRAW2:
486 			size = sizeof(struct crush_bucket_straw2);
487 			break;
488 		default:
489 			goto bad;
490 		}
491 		BUG_ON(size == 0);
492 		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
493 		if (b == NULL)
494 			goto badmem;
495 
496 		ceph_decode_need(p, end, 4*sizeof(u32), bad);
497 		b->id = ceph_decode_32(p);
498 		b->type = ceph_decode_16(p);
499 		b->alg = ceph_decode_8(p);
500 		b->hash = ceph_decode_8(p);
501 		b->weight = ceph_decode_32(p);
502 		b->size = ceph_decode_32(p);
503 
504 		dout("crush_decode bucket size %d off %x %p to %p\n",
505 		     b->size, (int)(*p-start), *p, end);
506 
507 		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
508 		if (b->items == NULL)
509 			goto badmem;
510 
511 		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
512 		for (j = 0; j < b->size; j++)
513 			b->items[j] = ceph_decode_32(p);
514 
515 		switch (b->alg) {
516 		case CRUSH_BUCKET_UNIFORM:
517 			err = crush_decode_uniform_bucket(p, end,
518 				  (struct crush_bucket_uniform *)b);
519 			if (err < 0)
520 				goto fail;
521 			break;
522 		case CRUSH_BUCKET_LIST:
523 			err = crush_decode_list_bucket(p, end,
524 			       (struct crush_bucket_list *)b);
525 			if (err < 0)
526 				goto fail;
527 			break;
528 		case CRUSH_BUCKET_TREE:
529 			err = crush_decode_tree_bucket(p, end,
530 				(struct crush_bucket_tree *)b);
531 			if (err < 0)
532 				goto fail;
533 			break;
534 		case CRUSH_BUCKET_STRAW:
535 			err = crush_decode_straw_bucket(p, end,
536 				(struct crush_bucket_straw *)b);
537 			if (err < 0)
538 				goto fail;
539 			break;
540 		case CRUSH_BUCKET_STRAW2:
541 			err = crush_decode_straw2_bucket(p, end,
542 				(struct crush_bucket_straw2 *)b);
543 			if (err < 0)
544 				goto fail;
545 			break;
546 		}
547 	}
548 
549 	/* rules */
550 	dout("rule vec is %p\n", c->rules);
551 	for (i = 0; i < c->max_rules; i++) {
552 		u32 yes;
553 		struct crush_rule *r;
554 
555 		ceph_decode_32_safe(p, end, yes, bad);
556 		if (!yes) {
557 			dout("crush_decode NO rule %d off %x %p to %p\n",
558 			     i, (int)(*p-start), *p, end);
559 			c->rules[i] = NULL;
560 			continue;
561 		}
562 
563 		dout("crush_decode rule %d off %x %p to %p\n",
564 		     i, (int)(*p-start), *p, end);
565 
566 		/* len */
567 		ceph_decode_32_safe(p, end, yes, bad);
568 #if BITS_PER_LONG == 32
569 		if (yes > (ULONG_MAX - sizeof(*r))
570 			  / sizeof(struct crush_rule_step))
571 			goto bad;
572 #endif
573 		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
574 		c->rules[i] = r;
575 		if (r == NULL)
576 			goto badmem;
577 		dout(" rule %d is at %p\n", i, r);
578 		r->len = yes;
579 		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
580 		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
581 		for (j = 0; j < r->len; j++) {
582 			r->steps[j].op = ceph_decode_32(p);
583 			r->steps[j].arg1 = ceph_decode_32(p);
584 			r->steps[j].arg2 = ceph_decode_32(p);
585 		}
586 	}
587 
588 	err = decode_crush_names(p, end, &c->type_names);
589 	if (err)
590 		goto fail;
591 
592 	err = decode_crush_names(p, end, &c->names);
593 	if (err)
594 		goto fail;
595 
596 	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
597 
598         /* tunables */
599         ceph_decode_need(p, end, 3*sizeof(u32), done);
600         c->choose_local_tries = ceph_decode_32(p);
601         c->choose_local_fallback_tries =  ceph_decode_32(p);
602         c->choose_total_tries = ceph_decode_32(p);
603         dout("crush decode tunable choose_local_tries = %d\n",
604              c->choose_local_tries);
605         dout("crush decode tunable choose_local_fallback_tries = %d\n",
606              c->choose_local_fallback_tries);
607         dout("crush decode tunable choose_total_tries = %d\n",
608              c->choose_total_tries);
609 
610 	ceph_decode_need(p, end, sizeof(u32), done);
611 	c->chooseleaf_descend_once = ceph_decode_32(p);
612 	dout("crush decode tunable chooseleaf_descend_once = %d\n",
613 	     c->chooseleaf_descend_once);
614 
615 	ceph_decode_need(p, end, sizeof(u8), done);
616 	c->chooseleaf_vary_r = ceph_decode_8(p);
617 	dout("crush decode tunable chooseleaf_vary_r = %d\n",
618 	     c->chooseleaf_vary_r);
619 
620 	/* skip straw_calc_version, allowed_bucket_algs */
621 	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
622 	*p += sizeof(u8) + sizeof(u32);
623 
624 	ceph_decode_need(p, end, sizeof(u8), done);
625 	c->chooseleaf_stable = ceph_decode_8(p);
626 	dout("crush decode tunable chooseleaf_stable = %d\n",
627 	     c->chooseleaf_stable);
628 
629 	if (*p != end) {
630 		/* class_map */
631 		ceph_decode_skip_map(p, end, 32, 32, bad);
632 		/* class_name */
633 		ceph_decode_skip_map(p, end, 32, string, bad);
634 		/* class_bucket */
635 		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
636 	}
637 
638 	if (*p != end) {
639 		err = decode_choose_args(p, end, c);
640 		if (err)
641 			goto fail;
642 	}
643 
644 done:
645 	crush_finalize(c);
646 	dout("crush_decode success\n");
647 	return c;
648 
649 badmem:
650 	err = -ENOMEM;
651 fail:
652 	dout("crush_decode fail %d\n", err);
653 	crush_destroy(c);
654 	return ERR_PTR(err);
655 
656 bad:
657 	err = -EINVAL;
658 	goto fail;
659 }
660 
661 int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
662 {
663 	if (lhs->pool < rhs->pool)
664 		return -1;
665 	if (lhs->pool > rhs->pool)
666 		return 1;
667 	if (lhs->seed < rhs->seed)
668 		return -1;
669 	if (lhs->seed > rhs->seed)
670 		return 1;
671 
672 	return 0;
673 }
674 
675 int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
676 {
677 	int ret;
678 
679 	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
680 	if (ret)
681 		return ret;
682 
683 	if (lhs->shard < rhs->shard)
684 		return -1;
685 	if (lhs->shard > rhs->shard)
686 		return 1;
687 
688 	return 0;
689 }
690 
691 static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
692 {
693 	struct ceph_pg_mapping *pg;
694 
695 	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
696 	if (!pg)
697 		return NULL;
698 
699 	RB_CLEAR_NODE(&pg->node);
700 	return pg;
701 }
702 
703 static void free_pg_mapping(struct ceph_pg_mapping *pg)
704 {
705 	WARN_ON(!RB_EMPTY_NODE(&pg->node));
706 
707 	kfree(pg);
708 }
709 
710 /*
711  * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
712  * to a set of osds) and primary_temp (explicit primary setting)
713  */
714 DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
715 		 RB_BYPTR, const struct ceph_pg *, node)
716 
717 /*
718  * rbtree of pg pool info
719  */
720 DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
721 
722 struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
723 {
724 	return lookup_pg_pool(&map->pg_pools, id);
725 }
726 
727 const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
728 {
729 	struct ceph_pg_pool_info *pi;
730 
731 	if (id == CEPH_NOPOOL)
732 		return NULL;
733 
734 	if (WARN_ON_ONCE(id > (u64) INT_MAX))
735 		return NULL;
736 
737 	pi = lookup_pg_pool(&map->pg_pools, id);
738 	return pi ? pi->name : NULL;
739 }
740 EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
741 
742 int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
743 {
744 	struct rb_node *rbp;
745 
746 	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
747 		struct ceph_pg_pool_info *pi =
748 			rb_entry(rbp, struct ceph_pg_pool_info, node);
749 		if (pi->name && strcmp(pi->name, name) == 0)
750 			return pi->id;
751 	}
752 	return -ENOENT;
753 }
754 EXPORT_SYMBOL(ceph_pg_poolid_by_name);
755 
756 u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
757 {
758 	struct ceph_pg_pool_info *pi;
759 
760 	pi = lookup_pg_pool(&map->pg_pools, id);
761 	return pi ? pi->flags : 0;
762 }
763 EXPORT_SYMBOL(ceph_pg_pool_flags);
764 
765 static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
766 {
767 	erase_pg_pool(root, pi);
768 	kfree(pi->name);
769 	kfree(pi);
770 }
771 
772 static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
773 {
774 	u8 ev, cv;
775 	unsigned len, num;
776 	void *pool_end;
777 
778 	ceph_decode_need(p, end, 2 + 4, bad);
779 	ev = ceph_decode_8(p);  /* encoding version */
780 	cv = ceph_decode_8(p); /* compat version */
781 	if (ev < 5) {
782 		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
783 		return -EINVAL;
784 	}
785 	if (cv > 9) {
786 		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
787 		return -EINVAL;
788 	}
789 	len = ceph_decode_32(p);
790 	ceph_decode_need(p, end, len, bad);
791 	pool_end = *p + len;
792 
793 	pi->type = ceph_decode_8(p);
794 	pi->size = ceph_decode_8(p);
795 	pi->crush_ruleset = ceph_decode_8(p);
796 	pi->object_hash = ceph_decode_8(p);
797 
798 	pi->pg_num = ceph_decode_32(p);
799 	pi->pgp_num = ceph_decode_32(p);
800 
801 	*p += 4 + 4;  /* skip lpg* */
802 	*p += 4;      /* skip last_change */
803 	*p += 8 + 4;  /* skip snap_seq, snap_epoch */
804 
805 	/* skip snaps */
806 	num = ceph_decode_32(p);
807 	while (num--) {
808 		*p += 8;  /* snapid key */
809 		*p += 1 + 1; /* versions */
810 		len = ceph_decode_32(p);
811 		*p += len;
812 	}
813 
814 	/* skip removed_snaps */
815 	num = ceph_decode_32(p);
816 	*p += num * (8 + 8);
817 
818 	*p += 8;  /* skip auid */
819 	pi->flags = ceph_decode_64(p);
820 	*p += 4;  /* skip crash_replay_interval */
821 
822 	if (ev >= 7)
823 		pi->min_size = ceph_decode_8(p);
824 	else
825 		pi->min_size = pi->size - pi->size / 2;
826 
827 	if (ev >= 8)
828 		*p += 8 + 8;  /* skip quota_max_* */
829 
830 	if (ev >= 9) {
831 		/* skip tiers */
832 		num = ceph_decode_32(p);
833 		*p += num * 8;
834 
835 		*p += 8;  /* skip tier_of */
836 		*p += 1;  /* skip cache_mode */
837 
838 		pi->read_tier = ceph_decode_64(p);
839 		pi->write_tier = ceph_decode_64(p);
840 	} else {
841 		pi->read_tier = -1;
842 		pi->write_tier = -1;
843 	}
844 
845 	if (ev >= 10) {
846 		/* skip properties */
847 		num = ceph_decode_32(p);
848 		while (num--) {
849 			len = ceph_decode_32(p);
850 			*p += len; /* key */
851 			len = ceph_decode_32(p);
852 			*p += len; /* val */
853 		}
854 	}
855 
856 	if (ev >= 11) {
857 		/* skip hit_set_params */
858 		*p += 1 + 1; /* versions */
859 		len = ceph_decode_32(p);
860 		*p += len;
861 
862 		*p += 4; /* skip hit_set_period */
863 		*p += 4; /* skip hit_set_count */
864 	}
865 
866 	if (ev >= 12)
867 		*p += 4; /* skip stripe_width */
868 
869 	if (ev >= 13) {
870 		*p += 8; /* skip target_max_bytes */
871 		*p += 8; /* skip target_max_objects */
872 		*p += 4; /* skip cache_target_dirty_ratio_micro */
873 		*p += 4; /* skip cache_target_full_ratio_micro */
874 		*p += 4; /* skip cache_min_flush_age */
875 		*p += 4; /* skip cache_min_evict_age */
876 	}
877 
878 	if (ev >=  14) {
879 		/* skip erasure_code_profile */
880 		len = ceph_decode_32(p);
881 		*p += len;
882 	}
883 
884 	/*
885 	 * last_force_op_resend_preluminous, will be overridden if the
886 	 * map was encoded with RESEND_ON_SPLIT
887 	 */
888 	if (ev >= 15)
889 		pi->last_force_request_resend = ceph_decode_32(p);
890 	else
891 		pi->last_force_request_resend = 0;
892 
893 	if (ev >= 16)
894 		*p += 4; /* skip min_read_recency_for_promote */
895 
896 	if (ev >= 17)
897 		*p += 8; /* skip expected_num_objects */
898 
899 	if (ev >= 19)
900 		*p += 4; /* skip cache_target_dirty_high_ratio_micro */
901 
902 	if (ev >= 20)
903 		*p += 4; /* skip min_write_recency_for_promote */
904 
905 	if (ev >= 21)
906 		*p += 1; /* skip use_gmt_hitset */
907 
908 	if (ev >= 22)
909 		*p += 1; /* skip fast_read */
910 
911 	if (ev >= 23) {
912 		*p += 4; /* skip hit_set_grade_decay_rate */
913 		*p += 4; /* skip hit_set_search_last_n */
914 	}
915 
916 	if (ev >= 24) {
917 		/* skip opts */
918 		*p += 1 + 1; /* versions */
919 		len = ceph_decode_32(p);
920 		*p += len;
921 	}
922 
923 	if (ev >= 25)
924 		pi->last_force_request_resend = ceph_decode_32(p);
925 
926 	/* ignore the rest */
927 
928 	*p = pool_end;
929 	calc_pg_masks(pi);
930 	return 0;
931 
932 bad:
933 	return -EINVAL;
934 }
935 
936 static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
937 {
938 	struct ceph_pg_pool_info *pi;
939 	u32 num, len;
940 	u64 pool;
941 
942 	ceph_decode_32_safe(p, end, num, bad);
943 	dout(" %d pool names\n", num);
944 	while (num--) {
945 		ceph_decode_64_safe(p, end, pool, bad);
946 		ceph_decode_32_safe(p, end, len, bad);
947 		dout("  pool %llu len %d\n", pool, len);
948 		ceph_decode_need(p, end, len, bad);
949 		pi = lookup_pg_pool(&map->pg_pools, pool);
950 		if (pi) {
951 			char *name = kstrndup(*p, len, GFP_NOFS);
952 
953 			if (!name)
954 				return -ENOMEM;
955 			kfree(pi->name);
956 			pi->name = name;
957 			dout("  name is %s\n", pi->name);
958 		}
959 		*p += len;
960 	}
961 	return 0;
962 
963 bad:
964 	return -EINVAL;
965 }
966 
967 /*
968  * CRUSH workspaces
969  *
970  * workspace_manager framework borrowed from fs/btrfs/compression.c.
971  * Two simplifications: there is only one type of workspace and there
972  * is always at least one workspace.
973  */
974 static struct crush_work *alloc_workspace(const struct crush_map *c)
975 {
976 	struct crush_work *work;
977 	size_t work_size;
978 
979 	WARN_ON(!c->working_size);
980 	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
981 	dout("%s work_size %zu bytes\n", __func__, work_size);
982 
983 	work = ceph_kvmalloc(work_size, GFP_NOIO);
984 	if (!work)
985 		return NULL;
986 
987 	INIT_LIST_HEAD(&work->item);
988 	crush_init_workspace(c, work);
989 	return work;
990 }
991 
992 static void free_workspace(struct crush_work *work)
993 {
994 	WARN_ON(!list_empty(&work->item));
995 	kvfree(work);
996 }
997 
998 static void init_workspace_manager(struct workspace_manager *wsm)
999 {
1000 	INIT_LIST_HEAD(&wsm->idle_ws);
1001 	spin_lock_init(&wsm->ws_lock);
1002 	atomic_set(&wsm->total_ws, 0);
1003 	wsm->free_ws = 0;
1004 	init_waitqueue_head(&wsm->ws_wait);
1005 }
1006 
1007 static void add_initial_workspace(struct workspace_manager *wsm,
1008 				  struct crush_work *work)
1009 {
1010 	WARN_ON(!list_empty(&wsm->idle_ws));
1011 
1012 	list_add(&work->item, &wsm->idle_ws);
1013 	atomic_set(&wsm->total_ws, 1);
1014 	wsm->free_ws = 1;
1015 }
1016 
1017 static void cleanup_workspace_manager(struct workspace_manager *wsm)
1018 {
1019 	struct crush_work *work;
1020 
1021 	while (!list_empty(&wsm->idle_ws)) {
1022 		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1023 					item);
1024 		list_del_init(&work->item);
1025 		free_workspace(work);
1026 	}
1027 	atomic_set(&wsm->total_ws, 0);
1028 	wsm->free_ws = 0;
1029 }
1030 
1031 /*
1032  * Finds an available workspace or allocates a new one.  If it's not
1033  * possible to allocate a new one, waits until there is one.
1034  */
1035 static struct crush_work *get_workspace(struct workspace_manager *wsm,
1036 					const struct crush_map *c)
1037 {
1038 	struct crush_work *work;
1039 	int cpus = num_online_cpus();
1040 
1041 again:
1042 	spin_lock(&wsm->ws_lock);
1043 	if (!list_empty(&wsm->idle_ws)) {
1044 		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1045 					item);
1046 		list_del_init(&work->item);
1047 		wsm->free_ws--;
1048 		spin_unlock(&wsm->ws_lock);
1049 		return work;
1050 
1051 	}
1052 	if (atomic_read(&wsm->total_ws) > cpus) {
1053 		DEFINE_WAIT(wait);
1054 
1055 		spin_unlock(&wsm->ws_lock);
1056 		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1057 		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1058 			schedule();
1059 		finish_wait(&wsm->ws_wait, &wait);
1060 		goto again;
1061 	}
1062 	atomic_inc(&wsm->total_ws);
1063 	spin_unlock(&wsm->ws_lock);
1064 
1065 	work = alloc_workspace(c);
1066 	if (!work) {
1067 		atomic_dec(&wsm->total_ws);
1068 		wake_up(&wsm->ws_wait);
1069 
1070 		/*
1071 		 * Do not return the error but go back to waiting.  We
1072 		 * have the inital workspace and the CRUSH computation
1073 		 * time is bounded so we will get it eventually.
1074 		 */
1075 		WARN_ON(atomic_read(&wsm->total_ws) < 1);
1076 		goto again;
1077 	}
1078 	return work;
1079 }
1080 
1081 /*
1082  * Puts a workspace back on the list or frees it if we have enough
1083  * idle ones sitting around.
1084  */
1085 static void put_workspace(struct workspace_manager *wsm,
1086 			  struct crush_work *work)
1087 {
1088 	spin_lock(&wsm->ws_lock);
1089 	if (wsm->free_ws <= num_online_cpus()) {
1090 		list_add(&work->item, &wsm->idle_ws);
1091 		wsm->free_ws++;
1092 		spin_unlock(&wsm->ws_lock);
1093 		goto wake;
1094 	}
1095 	spin_unlock(&wsm->ws_lock);
1096 
1097 	free_workspace(work);
1098 	atomic_dec(&wsm->total_ws);
1099 wake:
1100 	if (wq_has_sleeper(&wsm->ws_wait))
1101 		wake_up(&wsm->ws_wait);
1102 }
1103 
1104 /*
1105  * osd map
1106  */
1107 struct ceph_osdmap *ceph_osdmap_alloc(void)
1108 {
1109 	struct ceph_osdmap *map;
1110 
1111 	map = kzalloc(sizeof(*map), GFP_NOIO);
1112 	if (!map)
1113 		return NULL;
1114 
1115 	map->pg_pools = RB_ROOT;
1116 	map->pool_max = -1;
1117 	map->pg_temp = RB_ROOT;
1118 	map->primary_temp = RB_ROOT;
1119 	map->pg_upmap = RB_ROOT;
1120 	map->pg_upmap_items = RB_ROOT;
1121 
1122 	init_workspace_manager(&map->crush_wsm);
1123 
1124 	return map;
1125 }
1126 
1127 void ceph_osdmap_destroy(struct ceph_osdmap *map)
1128 {
1129 	dout("osdmap_destroy %p\n", map);
1130 
1131 	if (map->crush)
1132 		crush_destroy(map->crush);
1133 	cleanup_workspace_manager(&map->crush_wsm);
1134 
1135 	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1136 		struct ceph_pg_mapping *pg =
1137 			rb_entry(rb_first(&map->pg_temp),
1138 				 struct ceph_pg_mapping, node);
1139 		erase_pg_mapping(&map->pg_temp, pg);
1140 		free_pg_mapping(pg);
1141 	}
1142 	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1143 		struct ceph_pg_mapping *pg =
1144 			rb_entry(rb_first(&map->primary_temp),
1145 				 struct ceph_pg_mapping, node);
1146 		erase_pg_mapping(&map->primary_temp, pg);
1147 		free_pg_mapping(pg);
1148 	}
1149 	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1150 		struct ceph_pg_mapping *pg =
1151 			rb_entry(rb_first(&map->pg_upmap),
1152 				 struct ceph_pg_mapping, node);
1153 		rb_erase(&pg->node, &map->pg_upmap);
1154 		kfree(pg);
1155 	}
1156 	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1157 		struct ceph_pg_mapping *pg =
1158 			rb_entry(rb_first(&map->pg_upmap_items),
1159 				 struct ceph_pg_mapping, node);
1160 		rb_erase(&pg->node, &map->pg_upmap_items);
1161 		kfree(pg);
1162 	}
1163 	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1164 		struct ceph_pg_pool_info *pi =
1165 			rb_entry(rb_first(&map->pg_pools),
1166 				 struct ceph_pg_pool_info, node);
1167 		__remove_pg_pool(&map->pg_pools, pi);
1168 	}
1169 	kvfree(map->osd_state);
1170 	kvfree(map->osd_weight);
1171 	kvfree(map->osd_addr);
1172 	kvfree(map->osd_primary_affinity);
1173 	kfree(map);
1174 }
1175 
1176 /*
1177  * Adjust max_osd value, (re)allocate arrays.
1178  *
1179  * The new elements are properly initialized.
1180  */
1181 static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1182 {
1183 	u32 *state;
1184 	u32 *weight;
1185 	struct ceph_entity_addr *addr;
1186 	u32 to_copy;
1187 	int i;
1188 
1189 	dout("%s old %u new %u\n", __func__, map->max_osd, max);
1190 	if (max == map->max_osd)
1191 		return 0;
1192 
1193 	state = ceph_kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1194 	weight = ceph_kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1195 	addr = ceph_kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1196 	if (!state || !weight || !addr) {
1197 		kvfree(state);
1198 		kvfree(weight);
1199 		kvfree(addr);
1200 		return -ENOMEM;
1201 	}
1202 
1203 	to_copy = min(map->max_osd, max);
1204 	if (map->osd_state) {
1205 		memcpy(state, map->osd_state, to_copy * sizeof(*state));
1206 		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1207 		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1208 		kvfree(map->osd_state);
1209 		kvfree(map->osd_weight);
1210 		kvfree(map->osd_addr);
1211 	}
1212 
1213 	map->osd_state = state;
1214 	map->osd_weight = weight;
1215 	map->osd_addr = addr;
1216 	for (i = map->max_osd; i < max; i++) {
1217 		map->osd_state[i] = 0;
1218 		map->osd_weight[i] = CEPH_OSD_OUT;
1219 		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1220 	}
1221 
1222 	if (map->osd_primary_affinity) {
1223 		u32 *affinity;
1224 
1225 		affinity = ceph_kvmalloc(array_size(max, sizeof(*affinity)),
1226 					 GFP_NOFS);
1227 		if (!affinity)
1228 			return -ENOMEM;
1229 
1230 		memcpy(affinity, map->osd_primary_affinity,
1231 		       to_copy * sizeof(*affinity));
1232 		kvfree(map->osd_primary_affinity);
1233 
1234 		map->osd_primary_affinity = affinity;
1235 		for (i = map->max_osd; i < max; i++)
1236 			map->osd_primary_affinity[i] =
1237 			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1238 	}
1239 
1240 	map->max_osd = max;
1241 
1242 	return 0;
1243 }
1244 
1245 static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1246 {
1247 	struct crush_work *work;
1248 
1249 	if (IS_ERR(crush))
1250 		return PTR_ERR(crush);
1251 
1252 	work = alloc_workspace(crush);
1253 	if (!work) {
1254 		crush_destroy(crush);
1255 		return -ENOMEM;
1256 	}
1257 
1258 	if (map->crush)
1259 		crush_destroy(map->crush);
1260 	cleanup_workspace_manager(&map->crush_wsm);
1261 	map->crush = crush;
1262 	add_initial_workspace(&map->crush_wsm, work);
1263 	return 0;
1264 }
1265 
1266 #define OSDMAP_WRAPPER_COMPAT_VER	7
1267 #define OSDMAP_CLIENT_DATA_COMPAT_VER	1
1268 
1269 /*
1270  * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
1271  * to struct_v of the client_data section for new (v7 and above)
1272  * osdmaps.
1273  */
1274 static int get_osdmap_client_data_v(void **p, void *end,
1275 				    const char *prefix, u8 *v)
1276 {
1277 	u8 struct_v;
1278 
1279 	ceph_decode_8_safe(p, end, struct_v, e_inval);
1280 	if (struct_v >= 7) {
1281 		u8 struct_compat;
1282 
1283 		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1284 		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1285 			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1286 				struct_v, struct_compat,
1287 				OSDMAP_WRAPPER_COMPAT_VER, prefix);
1288 			return -EINVAL;
1289 		}
1290 		*p += 4; /* ignore wrapper struct_len */
1291 
1292 		ceph_decode_8_safe(p, end, struct_v, e_inval);
1293 		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1294 		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1295 			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1296 				struct_v, struct_compat,
1297 				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1298 			return -EINVAL;
1299 		}
1300 		*p += 4; /* ignore client data struct_len */
1301 	} else {
1302 		u16 version;
1303 
1304 		*p -= 1;
1305 		ceph_decode_16_safe(p, end, version, e_inval);
1306 		if (version < 6) {
1307 			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1308 				version, prefix);
1309 			return -EINVAL;
1310 		}
1311 
1312 		/* old osdmap enconding */
1313 		struct_v = 0;
1314 	}
1315 
1316 	*v = struct_v;
1317 	return 0;
1318 
1319 e_inval:
1320 	return -EINVAL;
1321 }
1322 
1323 static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1324 			  bool incremental)
1325 {
1326 	u32 n;
1327 
1328 	ceph_decode_32_safe(p, end, n, e_inval);
1329 	while (n--) {
1330 		struct ceph_pg_pool_info *pi;
1331 		u64 pool;
1332 		int ret;
1333 
1334 		ceph_decode_64_safe(p, end, pool, e_inval);
1335 
1336 		pi = lookup_pg_pool(&map->pg_pools, pool);
1337 		if (!incremental || !pi) {
1338 			pi = kzalloc(sizeof(*pi), GFP_NOFS);
1339 			if (!pi)
1340 				return -ENOMEM;
1341 
1342 			RB_CLEAR_NODE(&pi->node);
1343 			pi->id = pool;
1344 
1345 			if (!__insert_pg_pool(&map->pg_pools, pi)) {
1346 				kfree(pi);
1347 				return -EEXIST;
1348 			}
1349 		}
1350 
1351 		ret = decode_pool(p, end, pi);
1352 		if (ret)
1353 			return ret;
1354 	}
1355 
1356 	return 0;
1357 
1358 e_inval:
1359 	return -EINVAL;
1360 }
1361 
1362 static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1363 {
1364 	return __decode_pools(p, end, map, false);
1365 }
1366 
1367 static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1368 {
1369 	return __decode_pools(p, end, map, true);
1370 }
1371 
1372 typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1373 
1374 static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1375 			     decode_mapping_fn_t fn, bool incremental)
1376 {
1377 	u32 n;
1378 
1379 	WARN_ON(!incremental && !fn);
1380 
1381 	ceph_decode_32_safe(p, end, n, e_inval);
1382 	while (n--) {
1383 		struct ceph_pg_mapping *pg;
1384 		struct ceph_pg pgid;
1385 		int ret;
1386 
1387 		ret = ceph_decode_pgid(p, end, &pgid);
1388 		if (ret)
1389 			return ret;
1390 
1391 		pg = lookup_pg_mapping(mapping_root, &pgid);
1392 		if (pg) {
1393 			WARN_ON(!incremental);
1394 			erase_pg_mapping(mapping_root, pg);
1395 			free_pg_mapping(pg);
1396 		}
1397 
1398 		if (fn) {
1399 			pg = fn(p, end, incremental);
1400 			if (IS_ERR(pg))
1401 				return PTR_ERR(pg);
1402 
1403 			if (pg) {
1404 				pg->pgid = pgid; /* struct */
1405 				insert_pg_mapping(mapping_root, pg);
1406 			}
1407 		}
1408 	}
1409 
1410 	return 0;
1411 
1412 e_inval:
1413 	return -EINVAL;
1414 }
1415 
1416 static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1417 						bool incremental)
1418 {
1419 	struct ceph_pg_mapping *pg;
1420 	u32 len, i;
1421 
1422 	ceph_decode_32_safe(p, end, len, e_inval);
1423 	if (len == 0 && incremental)
1424 		return NULL;	/* new_pg_temp: [] to remove */
1425 	if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1426 		return ERR_PTR(-EINVAL);
1427 
1428 	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1429 	pg = alloc_pg_mapping(len * sizeof(u32));
1430 	if (!pg)
1431 		return ERR_PTR(-ENOMEM);
1432 
1433 	pg->pg_temp.len = len;
1434 	for (i = 0; i < len; i++)
1435 		pg->pg_temp.osds[i] = ceph_decode_32(p);
1436 
1437 	return pg;
1438 
1439 e_inval:
1440 	return ERR_PTR(-EINVAL);
1441 }
1442 
1443 static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1444 {
1445 	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1446 				 false);
1447 }
1448 
1449 static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1450 {
1451 	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1452 				 true);
1453 }
1454 
1455 static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1456 						     bool incremental)
1457 {
1458 	struct ceph_pg_mapping *pg;
1459 	u32 osd;
1460 
1461 	ceph_decode_32_safe(p, end, osd, e_inval);
1462 	if (osd == (u32)-1 && incremental)
1463 		return NULL;	/* new_primary_temp: -1 to remove */
1464 
1465 	pg = alloc_pg_mapping(0);
1466 	if (!pg)
1467 		return ERR_PTR(-ENOMEM);
1468 
1469 	pg->primary_temp.osd = osd;
1470 	return pg;
1471 
1472 e_inval:
1473 	return ERR_PTR(-EINVAL);
1474 }
1475 
1476 static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1477 {
1478 	return decode_pg_mapping(p, end, &map->primary_temp,
1479 				 __decode_primary_temp, false);
1480 }
1481 
1482 static int decode_new_primary_temp(void **p, void *end,
1483 				   struct ceph_osdmap *map)
1484 {
1485 	return decode_pg_mapping(p, end, &map->primary_temp,
1486 				 __decode_primary_temp, true);
1487 }
1488 
1489 u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1490 {
1491 	BUG_ON(osd >= map->max_osd);
1492 
1493 	if (!map->osd_primary_affinity)
1494 		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1495 
1496 	return map->osd_primary_affinity[osd];
1497 }
1498 
1499 static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1500 {
1501 	BUG_ON(osd >= map->max_osd);
1502 
1503 	if (!map->osd_primary_affinity) {
1504 		int i;
1505 
1506 		map->osd_primary_affinity = ceph_kvmalloc(
1507 		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1508 		    GFP_NOFS);
1509 		if (!map->osd_primary_affinity)
1510 			return -ENOMEM;
1511 
1512 		for (i = 0; i < map->max_osd; i++)
1513 			map->osd_primary_affinity[i] =
1514 			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1515 	}
1516 
1517 	map->osd_primary_affinity[osd] = aff;
1518 
1519 	return 0;
1520 }
1521 
1522 static int decode_primary_affinity(void **p, void *end,
1523 				   struct ceph_osdmap *map)
1524 {
1525 	u32 len, i;
1526 
1527 	ceph_decode_32_safe(p, end, len, e_inval);
1528 	if (len == 0) {
1529 		kvfree(map->osd_primary_affinity);
1530 		map->osd_primary_affinity = NULL;
1531 		return 0;
1532 	}
1533 	if (len != map->max_osd)
1534 		goto e_inval;
1535 
1536 	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1537 
1538 	for (i = 0; i < map->max_osd; i++) {
1539 		int ret;
1540 
1541 		ret = set_primary_affinity(map, i, ceph_decode_32(p));
1542 		if (ret)
1543 			return ret;
1544 	}
1545 
1546 	return 0;
1547 
1548 e_inval:
1549 	return -EINVAL;
1550 }
1551 
1552 static int decode_new_primary_affinity(void **p, void *end,
1553 				       struct ceph_osdmap *map)
1554 {
1555 	u32 n;
1556 
1557 	ceph_decode_32_safe(p, end, n, e_inval);
1558 	while (n--) {
1559 		u32 osd, aff;
1560 		int ret;
1561 
1562 		ceph_decode_32_safe(p, end, osd, e_inval);
1563 		ceph_decode_32_safe(p, end, aff, e_inval);
1564 
1565 		ret = set_primary_affinity(map, osd, aff);
1566 		if (ret)
1567 			return ret;
1568 
1569 		pr_info("osd%d primary-affinity 0x%x\n", osd, aff);
1570 	}
1571 
1572 	return 0;
1573 
1574 e_inval:
1575 	return -EINVAL;
1576 }
1577 
1578 static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1579 						 bool __unused)
1580 {
1581 	return __decode_pg_temp(p, end, false);
1582 }
1583 
1584 static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1585 {
1586 	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1587 				 false);
1588 }
1589 
1590 static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1591 {
1592 	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1593 				 true);
1594 }
1595 
1596 static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1597 {
1598 	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1599 }
1600 
1601 static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1602 						       bool __unused)
1603 {
1604 	struct ceph_pg_mapping *pg;
1605 	u32 len, i;
1606 
1607 	ceph_decode_32_safe(p, end, len, e_inval);
1608 	if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1609 		return ERR_PTR(-EINVAL);
1610 
1611 	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1612 	pg = alloc_pg_mapping(2 * len * sizeof(u32));
1613 	if (!pg)
1614 		return ERR_PTR(-ENOMEM);
1615 
1616 	pg->pg_upmap_items.len = len;
1617 	for (i = 0; i < len; i++) {
1618 		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1619 		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1620 	}
1621 
1622 	return pg;
1623 
1624 e_inval:
1625 	return ERR_PTR(-EINVAL);
1626 }
1627 
1628 static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1629 {
1630 	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1631 				 __decode_pg_upmap_items, false);
1632 }
1633 
1634 static int decode_new_pg_upmap_items(void **p, void *end,
1635 				     struct ceph_osdmap *map)
1636 {
1637 	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1638 				 __decode_pg_upmap_items, true);
1639 }
1640 
1641 static int decode_old_pg_upmap_items(void **p, void *end,
1642 				     struct ceph_osdmap *map)
1643 {
1644 	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1645 }
1646 
1647 /*
1648  * decode a full map.
1649  */
1650 static int osdmap_decode(void **p, void *end, struct ceph_osdmap *map)
1651 {
1652 	u8 struct_v;
1653 	u32 epoch = 0;
1654 	void *start = *p;
1655 	u32 max;
1656 	u32 len, i;
1657 	int err;
1658 
1659 	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1660 
1661 	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1662 	if (err)
1663 		goto bad;
1664 
1665 	/* fsid, epoch, created, modified */
1666 	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1667 			 sizeof(map->created) + sizeof(map->modified), e_inval);
1668 	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1669 	epoch = map->epoch = ceph_decode_32(p);
1670 	ceph_decode_copy(p, &map->created, sizeof(map->created));
1671 	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1672 
1673 	/* pools */
1674 	err = decode_pools(p, end, map);
1675 	if (err)
1676 		goto bad;
1677 
1678 	/* pool_name */
1679 	err = decode_pool_names(p, end, map);
1680 	if (err)
1681 		goto bad;
1682 
1683 	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1684 
1685 	ceph_decode_32_safe(p, end, map->flags, e_inval);
1686 
1687 	/* max_osd */
1688 	ceph_decode_32_safe(p, end, max, e_inval);
1689 
1690 	/* (re)alloc osd arrays */
1691 	err = osdmap_set_max_osd(map, max);
1692 	if (err)
1693 		goto bad;
1694 
1695 	/* osd_state, osd_weight, osd_addrs->client_addr */
1696 	ceph_decode_need(p, end, 3*sizeof(u32) +
1697 			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1698 						       sizeof(u8)) +
1699 				       sizeof(*map->osd_weight), e_inval);
1700 	if (ceph_decode_32(p) != map->max_osd)
1701 		goto e_inval;
1702 
1703 	if (struct_v >= 5) {
1704 		for (i = 0; i < map->max_osd; i++)
1705 			map->osd_state[i] = ceph_decode_32(p);
1706 	} else {
1707 		for (i = 0; i < map->max_osd; i++)
1708 			map->osd_state[i] = ceph_decode_8(p);
1709 	}
1710 
1711 	if (ceph_decode_32(p) != map->max_osd)
1712 		goto e_inval;
1713 
1714 	for (i = 0; i < map->max_osd; i++)
1715 		map->osd_weight[i] = ceph_decode_32(p);
1716 
1717 	if (ceph_decode_32(p) != map->max_osd)
1718 		goto e_inval;
1719 
1720 	for (i = 0; i < map->max_osd; i++) {
1721 		err = ceph_decode_entity_addr(p, end, &map->osd_addr[i]);
1722 		if (err)
1723 			goto bad;
1724 	}
1725 
1726 	/* pg_temp */
1727 	err = decode_pg_temp(p, end, map);
1728 	if (err)
1729 		goto bad;
1730 
1731 	/* primary_temp */
1732 	if (struct_v >= 1) {
1733 		err = decode_primary_temp(p, end, map);
1734 		if (err)
1735 			goto bad;
1736 	}
1737 
1738 	/* primary_affinity */
1739 	if (struct_v >= 2) {
1740 		err = decode_primary_affinity(p, end, map);
1741 		if (err)
1742 			goto bad;
1743 	} else {
1744 		WARN_ON(map->osd_primary_affinity);
1745 	}
1746 
1747 	/* crush */
1748 	ceph_decode_32_safe(p, end, len, e_inval);
1749 	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1750 	if (err)
1751 		goto bad;
1752 
1753 	*p += len;
1754 	if (struct_v >= 3) {
1755 		/* erasure_code_profiles */
1756 		ceph_decode_skip_map_of_map(p, end, string, string, string,
1757 					    e_inval);
1758 	}
1759 
1760 	if (struct_v >= 4) {
1761 		err = decode_pg_upmap(p, end, map);
1762 		if (err)
1763 			goto bad;
1764 
1765 		err = decode_pg_upmap_items(p, end, map);
1766 		if (err)
1767 			goto bad;
1768 	} else {
1769 		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1770 		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1771 	}
1772 
1773 	/* ignore the rest */
1774 	*p = end;
1775 
1776 	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1777 	return 0;
1778 
1779 e_inval:
1780 	err = -EINVAL;
1781 bad:
1782 	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1783 	       err, epoch, (int)(*p - start), *p, start, end);
1784 	print_hex_dump(KERN_DEBUG, "osdmap: ",
1785 		       DUMP_PREFIX_OFFSET, 16, 1,
1786 		       start, end - start, true);
1787 	return err;
1788 }
1789 
1790 /*
1791  * Allocate and decode a full map.
1792  */
1793 struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end)
1794 {
1795 	struct ceph_osdmap *map;
1796 	int ret;
1797 
1798 	map = ceph_osdmap_alloc();
1799 	if (!map)
1800 		return ERR_PTR(-ENOMEM);
1801 
1802 	ret = osdmap_decode(p, end, map);
1803 	if (ret) {
1804 		ceph_osdmap_destroy(map);
1805 		return ERR_PTR(ret);
1806 	}
1807 
1808 	return map;
1809 }
1810 
1811 /*
1812  * Encoding order is (new_up_client, new_state, new_weight).  Need to
1813  * apply in the (new_weight, new_state, new_up_client) order, because
1814  * an incremental map may look like e.g.
1815  *
1816  *     new_up_client: { osd=6, addr=... } # set osd_state and addr
1817  *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1818  */
1819 static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1820 				      struct ceph_osdmap *map)
1821 {
1822 	void *new_up_client;
1823 	void *new_state;
1824 	void *new_weight_end;
1825 	u32 len;
1826 	int i;
1827 
1828 	new_up_client = *p;
1829 	ceph_decode_32_safe(p, end, len, e_inval);
1830 	for (i = 0; i < len; ++i) {
1831 		struct ceph_entity_addr addr;
1832 
1833 		ceph_decode_skip_32(p, end, e_inval);
1834 		if (ceph_decode_entity_addr(p, end, &addr))
1835 			goto e_inval;
1836 	}
1837 
1838 	new_state = *p;
1839 	ceph_decode_32_safe(p, end, len, e_inval);
1840 	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1841 	ceph_decode_need(p, end, len, e_inval);
1842 	*p += len;
1843 
1844 	/* new_weight */
1845 	ceph_decode_32_safe(p, end, len, e_inval);
1846 	while (len--) {
1847 		s32 osd;
1848 		u32 w;
1849 
1850 		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1851 		osd = ceph_decode_32(p);
1852 		w = ceph_decode_32(p);
1853 		BUG_ON(osd >= map->max_osd);
1854 		pr_info("osd%d weight 0x%x %s\n", osd, w,
1855 		     w == CEPH_OSD_IN ? "(in)" :
1856 		     (w == CEPH_OSD_OUT ? "(out)" : ""));
1857 		map->osd_weight[osd] = w;
1858 
1859 		/*
1860 		 * If we are marking in, set the EXISTS, and clear the
1861 		 * AUTOOUT and NEW bits.
1862 		 */
1863 		if (w) {
1864 			map->osd_state[osd] |= CEPH_OSD_EXISTS;
1865 			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1866 						 CEPH_OSD_NEW);
1867 		}
1868 	}
1869 	new_weight_end = *p;
1870 
1871 	/* new_state (up/down) */
1872 	*p = new_state;
1873 	len = ceph_decode_32(p);
1874 	while (len--) {
1875 		s32 osd;
1876 		u32 xorstate;
1877 		int ret;
1878 
1879 		osd = ceph_decode_32(p);
1880 		if (struct_v >= 5)
1881 			xorstate = ceph_decode_32(p);
1882 		else
1883 			xorstate = ceph_decode_8(p);
1884 		if (xorstate == 0)
1885 			xorstate = CEPH_OSD_UP;
1886 		BUG_ON(osd >= map->max_osd);
1887 		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1888 		    (xorstate & CEPH_OSD_UP))
1889 			pr_info("osd%d down\n", osd);
1890 		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1891 		    (xorstate & CEPH_OSD_EXISTS)) {
1892 			pr_info("osd%d does not exist\n", osd);
1893 			ret = set_primary_affinity(map, osd,
1894 						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1895 			if (ret)
1896 				return ret;
1897 			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1898 			map->osd_state[osd] = 0;
1899 		} else {
1900 			map->osd_state[osd] ^= xorstate;
1901 		}
1902 	}
1903 
1904 	/* new_up_client */
1905 	*p = new_up_client;
1906 	len = ceph_decode_32(p);
1907 	while (len--) {
1908 		s32 osd;
1909 		struct ceph_entity_addr addr;
1910 
1911 		osd = ceph_decode_32(p);
1912 		BUG_ON(osd >= map->max_osd);
1913 		if (ceph_decode_entity_addr(p, end, &addr))
1914 			goto e_inval;
1915 		pr_info("osd%d up\n", osd);
1916 		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1917 		map->osd_addr[osd] = addr;
1918 	}
1919 
1920 	*p = new_weight_end;
1921 	return 0;
1922 
1923 e_inval:
1924 	return -EINVAL;
1925 }
1926 
1927 /*
1928  * decode and apply an incremental map update.
1929  */
1930 struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end,
1931 					     struct ceph_osdmap *map)
1932 {
1933 	struct ceph_fsid fsid;
1934 	u32 epoch = 0;
1935 	struct ceph_timespec modified;
1936 	s32 len;
1937 	u64 pool;
1938 	__s64 new_pool_max;
1939 	__s32 new_flags, max;
1940 	void *start = *p;
1941 	int err;
1942 	u8 struct_v;
1943 
1944 	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1945 
1946 	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1947 	if (err)
1948 		goto bad;
1949 
1950 	/* fsid, epoch, modified, new_pool_max, new_flags */
1951 	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1952 			 sizeof(u64) + sizeof(u32), e_inval);
1953 	ceph_decode_copy(p, &fsid, sizeof(fsid));
1954 	epoch = ceph_decode_32(p);
1955 	BUG_ON(epoch != map->epoch+1);
1956 	ceph_decode_copy(p, &modified, sizeof(modified));
1957 	new_pool_max = ceph_decode_64(p);
1958 	new_flags = ceph_decode_32(p);
1959 
1960 	/* full map? */
1961 	ceph_decode_32_safe(p, end, len, e_inval);
1962 	if (len > 0) {
1963 		dout("apply_incremental full map len %d, %p to %p\n",
1964 		     len, *p, end);
1965 		return ceph_osdmap_decode(p, min(*p+len, end));
1966 	}
1967 
1968 	/* new crush? */
1969 	ceph_decode_32_safe(p, end, len, e_inval);
1970 	if (len > 0) {
1971 		err = osdmap_set_crush(map,
1972 				       crush_decode(*p, min(*p + len, end)));
1973 		if (err)
1974 			goto bad;
1975 		*p += len;
1976 	}
1977 
1978 	/* new flags? */
1979 	if (new_flags >= 0)
1980 		map->flags = new_flags;
1981 	if (new_pool_max >= 0)
1982 		map->pool_max = new_pool_max;
1983 
1984 	/* new max? */
1985 	ceph_decode_32_safe(p, end, max, e_inval);
1986 	if (max >= 0) {
1987 		err = osdmap_set_max_osd(map, max);
1988 		if (err)
1989 			goto bad;
1990 	}
1991 
1992 	map->epoch++;
1993 	map->modified = modified;
1994 
1995 	/* new_pools */
1996 	err = decode_new_pools(p, end, map);
1997 	if (err)
1998 		goto bad;
1999 
2000 	/* new_pool_names */
2001 	err = decode_pool_names(p, end, map);
2002 	if (err)
2003 		goto bad;
2004 
2005 	/* old_pool */
2006 	ceph_decode_32_safe(p, end, len, e_inval);
2007 	while (len--) {
2008 		struct ceph_pg_pool_info *pi;
2009 
2010 		ceph_decode_64_safe(p, end, pool, e_inval);
2011 		pi = lookup_pg_pool(&map->pg_pools, pool);
2012 		if (pi)
2013 			__remove_pg_pool(&map->pg_pools, pi);
2014 	}
2015 
2016 	/* new_up_client, new_state, new_weight */
2017 	err = decode_new_up_state_weight(p, end, struct_v, map);
2018 	if (err)
2019 		goto bad;
2020 
2021 	/* new_pg_temp */
2022 	err = decode_new_pg_temp(p, end, map);
2023 	if (err)
2024 		goto bad;
2025 
2026 	/* new_primary_temp */
2027 	if (struct_v >= 1) {
2028 		err = decode_new_primary_temp(p, end, map);
2029 		if (err)
2030 			goto bad;
2031 	}
2032 
2033 	/* new_primary_affinity */
2034 	if (struct_v >= 2) {
2035 		err = decode_new_primary_affinity(p, end, map);
2036 		if (err)
2037 			goto bad;
2038 	}
2039 
2040 	if (struct_v >= 3) {
2041 		/* new_erasure_code_profiles */
2042 		ceph_decode_skip_map_of_map(p, end, string, string, string,
2043 					    e_inval);
2044 		/* old_erasure_code_profiles */
2045 		ceph_decode_skip_set(p, end, string, e_inval);
2046 	}
2047 
2048 	if (struct_v >= 4) {
2049 		err = decode_new_pg_upmap(p, end, map);
2050 		if (err)
2051 			goto bad;
2052 
2053 		err = decode_old_pg_upmap(p, end, map);
2054 		if (err)
2055 			goto bad;
2056 
2057 		err = decode_new_pg_upmap_items(p, end, map);
2058 		if (err)
2059 			goto bad;
2060 
2061 		err = decode_old_pg_upmap_items(p, end, map);
2062 		if (err)
2063 			goto bad;
2064 	}
2065 
2066 	/* ignore the rest */
2067 	*p = end;
2068 
2069 	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2070 	return map;
2071 
2072 e_inval:
2073 	err = -EINVAL;
2074 bad:
2075 	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2076 	       err, epoch, (int)(*p - start), *p, start, end);
2077 	print_hex_dump(KERN_DEBUG, "osdmap: ",
2078 		       DUMP_PREFIX_OFFSET, 16, 1,
2079 		       start, end - start, true);
2080 	return ERR_PTR(err);
2081 }
2082 
2083 void ceph_oloc_copy(struct ceph_object_locator *dest,
2084 		    const struct ceph_object_locator *src)
2085 {
2086 	ceph_oloc_destroy(dest);
2087 
2088 	dest->pool = src->pool;
2089 	if (src->pool_ns)
2090 		dest->pool_ns = ceph_get_string(src->pool_ns);
2091 	else
2092 		dest->pool_ns = NULL;
2093 }
2094 EXPORT_SYMBOL(ceph_oloc_copy);
2095 
2096 void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2097 {
2098 	ceph_put_string(oloc->pool_ns);
2099 }
2100 EXPORT_SYMBOL(ceph_oloc_destroy);
2101 
2102 void ceph_oid_copy(struct ceph_object_id *dest,
2103 		   const struct ceph_object_id *src)
2104 {
2105 	ceph_oid_destroy(dest);
2106 
2107 	if (src->name != src->inline_name) {
2108 		/* very rare, see ceph_object_id definition */
2109 		dest->name = kmalloc(src->name_len + 1,
2110 				     GFP_NOIO | __GFP_NOFAIL);
2111 	} else {
2112 		dest->name = dest->inline_name;
2113 	}
2114 	memcpy(dest->name, src->name, src->name_len + 1);
2115 	dest->name_len = src->name_len;
2116 }
2117 EXPORT_SYMBOL(ceph_oid_copy);
2118 
2119 static __printf(2, 0)
2120 int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2121 {
2122 	int len;
2123 
2124 	WARN_ON(!ceph_oid_empty(oid));
2125 
2126 	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2127 	if (len >= sizeof(oid->inline_name))
2128 		return len;
2129 
2130 	oid->name_len = len;
2131 	return 0;
2132 }
2133 
2134 /*
2135  * If oid doesn't fit into inline buffer, BUG.
2136  */
2137 void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2138 {
2139 	va_list ap;
2140 
2141 	va_start(ap, fmt);
2142 	BUG_ON(oid_printf_vargs(oid, fmt, ap));
2143 	va_end(ap);
2144 }
2145 EXPORT_SYMBOL(ceph_oid_printf);
2146 
2147 static __printf(3, 0)
2148 int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2149 		      const char *fmt, va_list ap)
2150 {
2151 	va_list aq;
2152 	int len;
2153 
2154 	va_copy(aq, ap);
2155 	len = oid_printf_vargs(oid, fmt, aq);
2156 	va_end(aq);
2157 
2158 	if (len) {
2159 		char *external_name;
2160 
2161 		external_name = kmalloc(len + 1, gfp);
2162 		if (!external_name)
2163 			return -ENOMEM;
2164 
2165 		oid->name = external_name;
2166 		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2167 		oid->name_len = len;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 /*
2174  * If oid doesn't fit into inline buffer, allocate.
2175  */
2176 int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2177 		     const char *fmt, ...)
2178 {
2179 	va_list ap;
2180 	int ret;
2181 
2182 	va_start(ap, fmt);
2183 	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2184 	va_end(ap);
2185 
2186 	return ret;
2187 }
2188 EXPORT_SYMBOL(ceph_oid_aprintf);
2189 
2190 void ceph_oid_destroy(struct ceph_object_id *oid)
2191 {
2192 	if (oid->name != oid->inline_name)
2193 		kfree(oid->name);
2194 }
2195 EXPORT_SYMBOL(ceph_oid_destroy);
2196 
2197 /*
2198  * osds only
2199  */
2200 static bool __osds_equal(const struct ceph_osds *lhs,
2201 			 const struct ceph_osds *rhs)
2202 {
2203 	if (lhs->size == rhs->size &&
2204 	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2205 		return true;
2206 
2207 	return false;
2208 }
2209 
2210 /*
2211  * osds + primary
2212  */
2213 static bool osds_equal(const struct ceph_osds *lhs,
2214 		       const struct ceph_osds *rhs)
2215 {
2216 	if (__osds_equal(lhs, rhs) &&
2217 	    lhs->primary == rhs->primary)
2218 		return true;
2219 
2220 	return false;
2221 }
2222 
2223 static bool osds_valid(const struct ceph_osds *set)
2224 {
2225 	/* non-empty set */
2226 	if (set->size > 0 && set->primary >= 0)
2227 		return true;
2228 
2229 	/* empty can_shift_osds set */
2230 	if (!set->size && set->primary == -1)
2231 		return true;
2232 
2233 	/* empty !can_shift_osds set - all NONE */
2234 	if (set->size > 0 && set->primary == -1) {
2235 		int i;
2236 
2237 		for (i = 0; i < set->size; i++) {
2238 			if (set->osds[i] != CRUSH_ITEM_NONE)
2239 				break;
2240 		}
2241 		if (i == set->size)
2242 			return true;
2243 	}
2244 
2245 	return false;
2246 }
2247 
2248 void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2249 {
2250 	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2251 	dest->size = src->size;
2252 	dest->primary = src->primary;
2253 }
2254 
2255 bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2256 		      u32 new_pg_num)
2257 {
2258 	int old_bits = calc_bits_of(old_pg_num);
2259 	int old_mask = (1 << old_bits) - 1;
2260 	int n;
2261 
2262 	WARN_ON(pgid->seed >= old_pg_num);
2263 	if (new_pg_num <= old_pg_num)
2264 		return false;
2265 
2266 	for (n = 1; ; n++) {
2267 		int next_bit = n << (old_bits - 1);
2268 		u32 s = next_bit | pgid->seed;
2269 
2270 		if (s < old_pg_num || s == pgid->seed)
2271 			continue;
2272 		if (s >= new_pg_num)
2273 			break;
2274 
2275 		s = ceph_stable_mod(s, old_pg_num, old_mask);
2276 		if (s == pgid->seed)
2277 			return true;
2278 	}
2279 
2280 	return false;
2281 }
2282 
2283 bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2284 			  const struct ceph_osds *new_acting,
2285 			  const struct ceph_osds *old_up,
2286 			  const struct ceph_osds *new_up,
2287 			  int old_size,
2288 			  int new_size,
2289 			  int old_min_size,
2290 			  int new_min_size,
2291 			  u32 old_pg_num,
2292 			  u32 new_pg_num,
2293 			  bool old_sort_bitwise,
2294 			  bool new_sort_bitwise,
2295 			  bool old_recovery_deletes,
2296 			  bool new_recovery_deletes,
2297 			  const struct ceph_pg *pgid)
2298 {
2299 	return !osds_equal(old_acting, new_acting) ||
2300 	       !osds_equal(old_up, new_up) ||
2301 	       old_size != new_size ||
2302 	       old_min_size != new_min_size ||
2303 	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2304 	       old_sort_bitwise != new_sort_bitwise ||
2305 	       old_recovery_deletes != new_recovery_deletes;
2306 }
2307 
2308 static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < acting->size; i++) {
2313 		if (acting->osds[i] == osd)
2314 			return i;
2315 	}
2316 
2317 	return -1;
2318 }
2319 
2320 static bool primary_changed(const struct ceph_osds *old_acting,
2321 			    const struct ceph_osds *new_acting)
2322 {
2323 	if (!old_acting->size && !new_acting->size)
2324 		return false; /* both still empty */
2325 
2326 	if (!old_acting->size ^ !new_acting->size)
2327 		return true; /* was empty, now not, or vice versa */
2328 
2329 	if (old_acting->primary != new_acting->primary)
2330 		return true; /* primary changed */
2331 
2332 	if (calc_pg_rank(old_acting->primary, old_acting) !=
2333 	    calc_pg_rank(new_acting->primary, new_acting))
2334 		return true;
2335 
2336 	return false; /* same primary (tho replicas may have changed) */
2337 }
2338 
2339 bool ceph_osds_changed(const struct ceph_osds *old_acting,
2340 		       const struct ceph_osds *new_acting,
2341 		       bool any_change)
2342 {
2343 	if (primary_changed(old_acting, new_acting))
2344 		return true;
2345 
2346 	if (any_change && !__osds_equal(old_acting, new_acting))
2347 		return true;
2348 
2349 	return false;
2350 }
2351 
2352 /*
2353  * Map an object into a PG.
2354  *
2355  * Should only be called with target_oid and target_oloc (as opposed to
2356  * base_oid and base_oloc), since tiering isn't taken into account.
2357  */
2358 void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2359 				 const struct ceph_object_id *oid,
2360 				 const struct ceph_object_locator *oloc,
2361 				 struct ceph_pg *raw_pgid)
2362 {
2363 	WARN_ON(pi->id != oloc->pool);
2364 
2365 	if (!oloc->pool_ns) {
2366 		raw_pgid->pool = oloc->pool;
2367 		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2368 					     oid->name_len);
2369 		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2370 		     raw_pgid->pool, raw_pgid->seed);
2371 	} else {
2372 		char stack_buf[256];
2373 		char *buf = stack_buf;
2374 		int nsl = oloc->pool_ns->len;
2375 		size_t total = nsl + 1 + oid->name_len;
2376 
2377 		if (total > sizeof(stack_buf))
2378 			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2379 		memcpy(buf, oloc->pool_ns->str, nsl);
2380 		buf[nsl] = '\037';
2381 		memcpy(buf + nsl + 1, oid->name, oid->name_len);
2382 		raw_pgid->pool = oloc->pool;
2383 		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2384 		if (buf != stack_buf)
2385 			kfree(buf);
2386 		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2387 		     oid->name, nsl, oloc->pool_ns->str,
2388 		     raw_pgid->pool, raw_pgid->seed);
2389 	}
2390 }
2391 
2392 int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2393 			      const struct ceph_object_id *oid,
2394 			      const struct ceph_object_locator *oloc,
2395 			      struct ceph_pg *raw_pgid)
2396 {
2397 	struct ceph_pg_pool_info *pi;
2398 
2399 	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2400 	if (!pi)
2401 		return -ENOENT;
2402 
2403 	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2404 	return 0;
2405 }
2406 EXPORT_SYMBOL(ceph_object_locator_to_pg);
2407 
2408 /*
2409  * Map a raw PG (full precision ps) into an actual PG.
2410  */
2411 static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2412 			 const struct ceph_pg *raw_pgid,
2413 			 struct ceph_pg *pgid)
2414 {
2415 	pgid->pool = raw_pgid->pool;
2416 	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2417 				     pi->pg_num_mask);
2418 }
2419 
2420 /*
2421  * Map a raw PG (full precision ps) into a placement ps (placement
2422  * seed).  Include pool id in that value so that different pools don't
2423  * use the same seeds.
2424  */
2425 static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2426 			 const struct ceph_pg *raw_pgid)
2427 {
2428 	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2429 		/* hash pool id and seed so that pool PGs do not overlap */
2430 		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2431 				      ceph_stable_mod(raw_pgid->seed,
2432 						      pi->pgp_num,
2433 						      pi->pgp_num_mask),
2434 				      raw_pgid->pool);
2435 	} else {
2436 		/*
2437 		 * legacy behavior: add ps and pool together.  this is
2438 		 * not a great approach because the PGs from each pool
2439 		 * will overlap on top of each other: 0.5 == 1.4 ==
2440 		 * 2.3 == ...
2441 		 */
2442 		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2443 				       pi->pgp_num_mask) +
2444 		       (unsigned)raw_pgid->pool;
2445 	}
2446 }
2447 
2448 /*
2449  * Magic value used for a "default" fallback choose_args, used if the
2450  * crush_choose_arg_map passed to do_crush() does not exist.  If this
2451  * also doesn't exist, fall back to canonical weights.
2452  */
2453 #define CEPH_DEFAULT_CHOOSE_ARGS	-1
2454 
2455 static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2456 		    int *result, int result_max,
2457 		    const __u32 *weight, int weight_max,
2458 		    s64 choose_args_index)
2459 {
2460 	struct crush_choose_arg_map *arg_map;
2461 	struct crush_work *work;
2462 	int r;
2463 
2464 	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2465 
2466 	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2467 					choose_args_index);
2468 	if (!arg_map)
2469 		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2470 						CEPH_DEFAULT_CHOOSE_ARGS);
2471 
2472 	work = get_workspace(&map->crush_wsm, map->crush);
2473 	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2474 			  weight, weight_max, work,
2475 			  arg_map ? arg_map->args : NULL);
2476 	put_workspace(&map->crush_wsm, work);
2477 	return r;
2478 }
2479 
2480 static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2481 				    struct ceph_pg_pool_info *pi,
2482 				    struct ceph_osds *set)
2483 {
2484 	int i;
2485 
2486 	if (ceph_can_shift_osds(pi)) {
2487 		int removed = 0;
2488 
2489 		/* shift left */
2490 		for (i = 0; i < set->size; i++) {
2491 			if (!ceph_osd_exists(osdmap, set->osds[i])) {
2492 				removed++;
2493 				continue;
2494 			}
2495 			if (removed)
2496 				set->osds[i - removed] = set->osds[i];
2497 		}
2498 		set->size -= removed;
2499 	} else {
2500 		/* set dne devices to NONE */
2501 		for (i = 0; i < set->size; i++) {
2502 			if (!ceph_osd_exists(osdmap, set->osds[i]))
2503 				set->osds[i] = CRUSH_ITEM_NONE;
2504 		}
2505 	}
2506 }
2507 
2508 /*
2509  * Calculate raw set (CRUSH output) for given PG and filter out
2510  * nonexistent OSDs.  ->primary is undefined for a raw set.
2511  *
2512  * Placement seed (CRUSH input) is returned through @ppps.
2513  */
2514 static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2515 			   struct ceph_pg_pool_info *pi,
2516 			   const struct ceph_pg *raw_pgid,
2517 			   struct ceph_osds *raw,
2518 			   u32 *ppps)
2519 {
2520 	u32 pps = raw_pg_to_pps(pi, raw_pgid);
2521 	int ruleno;
2522 	int len;
2523 
2524 	ceph_osds_init(raw);
2525 	if (ppps)
2526 		*ppps = pps;
2527 
2528 	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2529 				 pi->size);
2530 	if (ruleno < 0) {
2531 		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2532 		       pi->id, pi->crush_ruleset, pi->type, pi->size);
2533 		return;
2534 	}
2535 
2536 	if (pi->size > ARRAY_SIZE(raw->osds)) {
2537 		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2538 		       pi->id, pi->crush_ruleset, pi->type, pi->size,
2539 		       ARRAY_SIZE(raw->osds));
2540 		return;
2541 	}
2542 
2543 	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2544 		       osdmap->osd_weight, osdmap->max_osd, pi->id);
2545 	if (len < 0) {
2546 		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2547 		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2548 		       pi->size);
2549 		return;
2550 	}
2551 
2552 	raw->size = len;
2553 	remove_nonexistent_osds(osdmap, pi, raw);
2554 }
2555 
2556 /* apply pg_upmap[_items] mappings */
2557 static void apply_upmap(struct ceph_osdmap *osdmap,
2558 			const struct ceph_pg *pgid,
2559 			struct ceph_osds *raw)
2560 {
2561 	struct ceph_pg_mapping *pg;
2562 	int i, j;
2563 
2564 	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2565 	if (pg) {
2566 		/* make sure targets aren't marked out */
2567 		for (i = 0; i < pg->pg_upmap.len; i++) {
2568 			int osd = pg->pg_upmap.osds[i];
2569 
2570 			if (osd != CRUSH_ITEM_NONE &&
2571 			    osd < osdmap->max_osd &&
2572 			    osdmap->osd_weight[osd] == 0) {
2573 				/* reject/ignore explicit mapping */
2574 				return;
2575 			}
2576 		}
2577 		for (i = 0; i < pg->pg_upmap.len; i++)
2578 			raw->osds[i] = pg->pg_upmap.osds[i];
2579 		raw->size = pg->pg_upmap.len;
2580 		/* check and apply pg_upmap_items, if any */
2581 	}
2582 
2583 	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2584 	if (pg) {
2585 		/*
2586 		 * Note: this approach does not allow a bidirectional swap,
2587 		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2588 		 */
2589 		for (i = 0; i < pg->pg_upmap_items.len; i++) {
2590 			int from = pg->pg_upmap_items.from_to[i][0];
2591 			int to = pg->pg_upmap_items.from_to[i][1];
2592 			int pos = -1;
2593 			bool exists = false;
2594 
2595 			/* make sure replacement doesn't already appear */
2596 			for (j = 0; j < raw->size; j++) {
2597 				int osd = raw->osds[j];
2598 
2599 				if (osd == to) {
2600 					exists = true;
2601 					break;
2602 				}
2603 				/* ignore mapping if target is marked out */
2604 				if (osd == from && pos < 0 &&
2605 				    !(to != CRUSH_ITEM_NONE &&
2606 				      to < osdmap->max_osd &&
2607 				      osdmap->osd_weight[to] == 0)) {
2608 					pos = j;
2609 				}
2610 			}
2611 			if (!exists && pos >= 0)
2612 				raw->osds[pos] = to;
2613 		}
2614 	}
2615 }
2616 
2617 /*
2618  * Given raw set, calculate up set and up primary.  By definition of an
2619  * up set, the result won't contain nonexistent or down OSDs.
2620  *
2621  * This is done in-place - on return @set is the up set.  If it's
2622  * empty, ->primary will remain undefined.
2623  */
2624 static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2625 			   struct ceph_pg_pool_info *pi,
2626 			   struct ceph_osds *set)
2627 {
2628 	int i;
2629 
2630 	/* ->primary is undefined for a raw set */
2631 	BUG_ON(set->primary != -1);
2632 
2633 	if (ceph_can_shift_osds(pi)) {
2634 		int removed = 0;
2635 
2636 		/* shift left */
2637 		for (i = 0; i < set->size; i++) {
2638 			if (ceph_osd_is_down(osdmap, set->osds[i])) {
2639 				removed++;
2640 				continue;
2641 			}
2642 			if (removed)
2643 				set->osds[i - removed] = set->osds[i];
2644 		}
2645 		set->size -= removed;
2646 		if (set->size > 0)
2647 			set->primary = set->osds[0];
2648 	} else {
2649 		/* set down/dne devices to NONE */
2650 		for (i = set->size - 1; i >= 0; i--) {
2651 			if (ceph_osd_is_down(osdmap, set->osds[i]))
2652 				set->osds[i] = CRUSH_ITEM_NONE;
2653 			else
2654 				set->primary = set->osds[i];
2655 		}
2656 	}
2657 }
2658 
2659 static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2660 				   struct ceph_pg_pool_info *pi,
2661 				   u32 pps,
2662 				   struct ceph_osds *up)
2663 {
2664 	int i;
2665 	int pos = -1;
2666 
2667 	/*
2668 	 * Do we have any non-default primary_affinity values for these
2669 	 * osds?
2670 	 */
2671 	if (!osdmap->osd_primary_affinity)
2672 		return;
2673 
2674 	for (i = 0; i < up->size; i++) {
2675 		int osd = up->osds[i];
2676 
2677 		if (osd != CRUSH_ITEM_NONE &&
2678 		    osdmap->osd_primary_affinity[osd] !=
2679 					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2680 			break;
2681 		}
2682 	}
2683 	if (i == up->size)
2684 		return;
2685 
2686 	/*
2687 	 * Pick the primary.  Feed both the seed (for the pg) and the
2688 	 * osd into the hash/rng so that a proportional fraction of an
2689 	 * osd's pgs get rejected as primary.
2690 	 */
2691 	for (i = 0; i < up->size; i++) {
2692 		int osd = up->osds[i];
2693 		u32 aff;
2694 
2695 		if (osd == CRUSH_ITEM_NONE)
2696 			continue;
2697 
2698 		aff = osdmap->osd_primary_affinity[osd];
2699 		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2700 		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2701 				    pps, osd) >> 16) >= aff) {
2702 			/*
2703 			 * We chose not to use this primary.  Note it
2704 			 * anyway as a fallback in case we don't pick
2705 			 * anyone else, but keep looking.
2706 			 */
2707 			if (pos < 0)
2708 				pos = i;
2709 		} else {
2710 			pos = i;
2711 			break;
2712 		}
2713 	}
2714 	if (pos < 0)
2715 		return;
2716 
2717 	up->primary = up->osds[pos];
2718 
2719 	if (ceph_can_shift_osds(pi) && pos > 0) {
2720 		/* move the new primary to the front */
2721 		for (i = pos; i > 0; i--)
2722 			up->osds[i] = up->osds[i - 1];
2723 		up->osds[0] = up->primary;
2724 	}
2725 }
2726 
2727 /*
2728  * Get pg_temp and primary_temp mappings for given PG.
2729  *
2730  * Note that a PG may have none, only pg_temp, only primary_temp or
2731  * both pg_temp and primary_temp mappings.  This means @temp isn't
2732  * always a valid OSD set on return: in the "only primary_temp" case,
2733  * @temp will have its ->primary >= 0 but ->size == 0.
2734  */
2735 static void get_temp_osds(struct ceph_osdmap *osdmap,
2736 			  struct ceph_pg_pool_info *pi,
2737 			  const struct ceph_pg *pgid,
2738 			  struct ceph_osds *temp)
2739 {
2740 	struct ceph_pg_mapping *pg;
2741 	int i;
2742 
2743 	ceph_osds_init(temp);
2744 
2745 	/* pg_temp? */
2746 	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2747 	if (pg) {
2748 		for (i = 0; i < pg->pg_temp.len; i++) {
2749 			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2750 				if (ceph_can_shift_osds(pi))
2751 					continue;
2752 
2753 				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2754 			} else {
2755 				temp->osds[temp->size++] = pg->pg_temp.osds[i];
2756 			}
2757 		}
2758 
2759 		/* apply pg_temp's primary */
2760 		for (i = 0; i < temp->size; i++) {
2761 			if (temp->osds[i] != CRUSH_ITEM_NONE) {
2762 				temp->primary = temp->osds[i];
2763 				break;
2764 			}
2765 		}
2766 	}
2767 
2768 	/* primary_temp? */
2769 	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2770 	if (pg)
2771 		temp->primary = pg->primary_temp.osd;
2772 }
2773 
2774 /*
2775  * Map a PG to its acting set as well as its up set.
2776  *
2777  * Acting set is used for data mapping purposes, while up set can be
2778  * recorded for detecting interval changes and deciding whether to
2779  * resend a request.
2780  */
2781 void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2782 			       struct ceph_pg_pool_info *pi,
2783 			       const struct ceph_pg *raw_pgid,
2784 			       struct ceph_osds *up,
2785 			       struct ceph_osds *acting)
2786 {
2787 	struct ceph_pg pgid;
2788 	u32 pps;
2789 
2790 	WARN_ON(pi->id != raw_pgid->pool);
2791 	raw_pg_to_pg(pi, raw_pgid, &pgid);
2792 
2793 	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2794 	apply_upmap(osdmap, &pgid, up);
2795 	raw_to_up_osds(osdmap, pi, up);
2796 	apply_primary_affinity(osdmap, pi, pps, up);
2797 	get_temp_osds(osdmap, pi, &pgid, acting);
2798 	if (!acting->size) {
2799 		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2800 		acting->size = up->size;
2801 		if (acting->primary == -1)
2802 			acting->primary = up->primary;
2803 	}
2804 	WARN_ON(!osds_valid(up) || !osds_valid(acting));
2805 }
2806 
2807 bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2808 			      struct ceph_pg_pool_info *pi,
2809 			      const struct ceph_pg *raw_pgid,
2810 			      struct ceph_spg *spgid)
2811 {
2812 	struct ceph_pg pgid;
2813 	struct ceph_osds up, acting;
2814 	int i;
2815 
2816 	WARN_ON(pi->id != raw_pgid->pool);
2817 	raw_pg_to_pg(pi, raw_pgid, &pgid);
2818 
2819 	if (ceph_can_shift_osds(pi)) {
2820 		spgid->pgid = pgid; /* struct */
2821 		spgid->shard = CEPH_SPG_NOSHARD;
2822 		return true;
2823 	}
2824 
2825 	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2826 	for (i = 0; i < acting.size; i++) {
2827 		if (acting.osds[i] == acting.primary) {
2828 			spgid->pgid = pgid; /* struct */
2829 			spgid->shard = i;
2830 			return true;
2831 		}
2832 	}
2833 
2834 	return false;
2835 }
2836 
2837 /*
2838  * Return acting primary for given PG, or -1 if none.
2839  */
2840 int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2841 			      const struct ceph_pg *raw_pgid)
2842 {
2843 	struct ceph_pg_pool_info *pi;
2844 	struct ceph_osds up, acting;
2845 
2846 	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2847 	if (!pi)
2848 		return -1;
2849 
2850 	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2851 	return acting.primary;
2852 }
2853 EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2854 
2855 static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2856 					      size_t name_len)
2857 {
2858 	struct crush_loc_node *loc;
2859 
2860 	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2861 	if (!loc)
2862 		return NULL;
2863 
2864 	RB_CLEAR_NODE(&loc->cl_node);
2865 	return loc;
2866 }
2867 
2868 static void free_crush_loc(struct crush_loc_node *loc)
2869 {
2870 	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2871 
2872 	kfree(loc);
2873 }
2874 
2875 static int crush_loc_compare(const struct crush_loc *loc1,
2876 			     const struct crush_loc *loc2)
2877 {
2878 	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2879 	       strcmp(loc1->cl_name, loc2->cl_name);
2880 }
2881 
2882 DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2883 		 RB_BYPTR, const struct crush_loc *, cl_node)
2884 
2885 /*
2886  * Parses a set of <bucket type name>':'<bucket name> pairs separated
2887  * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2888  *
2889  * Note that @crush_location is modified by strsep().
2890  */
2891 int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2892 {
2893 	struct crush_loc_node *loc;
2894 	const char *type_name, *name, *colon;
2895 	size_t type_name_len, name_len;
2896 
2897 	dout("%s '%s'\n", __func__, crush_location);
2898 	while ((type_name = strsep(&crush_location, "|"))) {
2899 		colon = strchr(type_name, ':');
2900 		if (!colon)
2901 			return -EINVAL;
2902 
2903 		type_name_len = colon - type_name;
2904 		if (type_name_len == 0)
2905 			return -EINVAL;
2906 
2907 		name = colon + 1;
2908 		name_len = strlen(name);
2909 		if (name_len == 0)
2910 			return -EINVAL;
2911 
2912 		loc = alloc_crush_loc(type_name_len, name_len);
2913 		if (!loc)
2914 			return -ENOMEM;
2915 
2916 		loc->cl_loc.cl_type_name = loc->cl_data;
2917 		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2918 		loc->cl_loc.cl_type_name[type_name_len] = '\0';
2919 
2920 		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2921 		memcpy(loc->cl_loc.cl_name, name, name_len);
2922 		loc->cl_loc.cl_name[name_len] = '\0';
2923 
2924 		if (!__insert_crush_loc(locs, loc)) {
2925 			free_crush_loc(loc);
2926 			return -EEXIST;
2927 		}
2928 
2929 		dout("%s type_name '%s' name '%s'\n", __func__,
2930 		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2937 {
2938 	struct rb_node *n1 = rb_first(locs1);
2939 	struct rb_node *n2 = rb_first(locs2);
2940 	int ret;
2941 
2942 	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2943 		struct crush_loc_node *loc1 =
2944 		    rb_entry(n1, struct crush_loc_node, cl_node);
2945 		struct crush_loc_node *loc2 =
2946 		    rb_entry(n2, struct crush_loc_node, cl_node);
2947 
2948 		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2949 		if (ret)
2950 			return ret;
2951 	}
2952 
2953 	if (!n1 && n2)
2954 		return -1;
2955 	if (n1 && !n2)
2956 		return 1;
2957 	return 0;
2958 }
2959 
2960 void ceph_clear_crush_locs(struct rb_root *locs)
2961 {
2962 	while (!RB_EMPTY_ROOT(locs)) {
2963 		struct crush_loc_node *loc =
2964 		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
2965 
2966 		erase_crush_loc(locs, loc);
2967 		free_crush_loc(loc);
2968 	}
2969 }
2970 
2971 /*
2972  * [a-zA-Z0-9-_.]+
2973  */
2974 static bool is_valid_crush_name(const char *name)
2975 {
2976 	do {
2977 		if (!('a' <= *name && *name <= 'z') &&
2978 		    !('A' <= *name && *name <= 'Z') &&
2979 		    !('0' <= *name && *name <= '9') &&
2980 		    *name != '-' && *name != '_' && *name != '.')
2981 			return false;
2982 	} while (*++name != '\0');
2983 
2984 	return true;
2985 }
2986 
2987 /*
2988  * Gets the parent of an item.  Returns its id (<0 because the
2989  * parent is always a bucket), type id (>0 for the same reason,
2990  * via @parent_type_id) and location (via @parent_loc).  If no
2991  * parent, returns 0.
2992  *
2993  * Does a linear search, as there are no parent pointers of any
2994  * kind.  Note that the result is ambigous for items that occur
2995  * multiple times in the map.
2996  */
2997 static int get_immediate_parent(struct crush_map *c, int id,
2998 				u16 *parent_type_id,
2999 				struct crush_loc *parent_loc)
3000 {
3001 	struct crush_bucket *b;
3002 	struct crush_name_node *type_cn, *cn;
3003 	int i, j;
3004 
3005 	for (i = 0; i < c->max_buckets; i++) {
3006 		b = c->buckets[i];
3007 		if (!b)
3008 			continue;
3009 
3010 		/* ignore per-class shadow hierarchy */
3011 		cn = lookup_crush_name(&c->names, b->id);
3012 		if (!cn || !is_valid_crush_name(cn->cn_name))
3013 			continue;
3014 
3015 		for (j = 0; j < b->size; j++) {
3016 			if (b->items[j] != id)
3017 				continue;
3018 
3019 			*parent_type_id = b->type;
3020 			type_cn = lookup_crush_name(&c->type_names, b->type);
3021 			parent_loc->cl_type_name = type_cn->cn_name;
3022 			parent_loc->cl_name = cn->cn_name;
3023 			return b->id;
3024 		}
3025 	}
3026 
3027 	return 0;  /* no parent */
3028 }
3029 
3030 /*
3031  * Calculates the locality/distance from an item to a client
3032  * location expressed in terms of CRUSH hierarchy as a set of
3033  * (bucket type name, bucket name) pairs.  Specifically, looks
3034  * for the lowest-valued bucket type for which the location of
3035  * @id matches one of the locations in @locs, so for standard
3036  * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3037  * a matching host is closer than a matching rack and a matching
3038  * data center is closer than a matching zone.
3039  *
3040  * Specifying multiple locations (a "multipath" location) such
3041  * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3042  * is a multimap.  The locality will be:
3043  *
3044  * - 3 for OSDs in racks foo1 and foo2
3045  * - 8 for OSDs in data center bar
3046  * - -1 for all other OSDs
3047  *
3048  * The lowest possible bucket type is 1, so the best locality
3049  * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
3050  * the OSD itself.
3051  */
3052 int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3053 			    struct rb_root *locs)
3054 {
3055 	struct crush_loc loc;
3056 	u16 type_id;
3057 
3058 	/*
3059 	 * Instead of repeated get_immediate_parent() calls,
3060 	 * the location of @id could be obtained with a single
3061 	 * depth-first traversal.
3062 	 */
3063 	for (;;) {
3064 		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3065 		if (id >= 0)
3066 			return -1;  /* not local */
3067 
3068 		if (lookup_crush_loc(locs, &loc))
3069 			return type_id;
3070 	}
3071 }
3072