xref: /openbmc/linux/net/ceph/messenger_v2.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Ceph msgr2 protocol implementation
4  *
5  * Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com>
6  */
7 
8 #include <linux/ceph/ceph_debug.h>
9 
10 #include <crypto/aead.h>
11 #include <crypto/algapi.h>  /* for crypto_memneq() */
12 #include <crypto/hash.h>
13 #include <crypto/sha2.h>
14 #include <linux/bvec.h>
15 #include <linux/crc32c.h>
16 #include <linux/net.h>
17 #include <linux/scatterlist.h>
18 #include <linux/socket.h>
19 #include <linux/sched/mm.h>
20 #include <net/sock.h>
21 #include <net/tcp.h>
22 
23 #include <linux/ceph/ceph_features.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/libceph.h>
26 #include <linux/ceph/messenger.h>
27 
28 #include "crypto.h"  /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */
29 
30 #define FRAME_TAG_HELLO			1
31 #define FRAME_TAG_AUTH_REQUEST		2
32 #define FRAME_TAG_AUTH_BAD_METHOD	3
33 #define FRAME_TAG_AUTH_REPLY_MORE	4
34 #define FRAME_TAG_AUTH_REQUEST_MORE	5
35 #define FRAME_TAG_AUTH_DONE		6
36 #define FRAME_TAG_AUTH_SIGNATURE	7
37 #define FRAME_TAG_CLIENT_IDENT		8
38 #define FRAME_TAG_SERVER_IDENT		9
39 #define FRAME_TAG_IDENT_MISSING_FEATURES 10
40 #define FRAME_TAG_SESSION_RECONNECT	11
41 #define FRAME_TAG_SESSION_RESET		12
42 #define FRAME_TAG_SESSION_RETRY		13
43 #define FRAME_TAG_SESSION_RETRY_GLOBAL	14
44 #define FRAME_TAG_SESSION_RECONNECT_OK	15
45 #define FRAME_TAG_WAIT			16
46 #define FRAME_TAG_MESSAGE		17
47 #define FRAME_TAG_KEEPALIVE2		18
48 #define FRAME_TAG_KEEPALIVE2_ACK	19
49 #define FRAME_TAG_ACK			20
50 
51 #define FRAME_LATE_STATUS_ABORTED	0x1
52 #define FRAME_LATE_STATUS_COMPLETE	0xe
53 #define FRAME_LATE_STATUS_ABORTED_MASK	0xf
54 
55 #define IN_S_HANDLE_PREAMBLE		1
56 #define IN_S_HANDLE_CONTROL		2
57 #define IN_S_HANDLE_CONTROL_REMAINDER	3
58 #define IN_S_PREPARE_READ_DATA		4
59 #define IN_S_PREPARE_READ_DATA_CONT	5
60 #define IN_S_PREPARE_READ_ENC_PAGE	6
61 #define IN_S_HANDLE_EPILOGUE		7
62 #define IN_S_FINISH_SKIP		8
63 
64 #define OUT_S_QUEUE_DATA		1
65 #define OUT_S_QUEUE_DATA_CONT		2
66 #define OUT_S_QUEUE_ENC_PAGE		3
67 #define OUT_S_QUEUE_ZEROS		4
68 #define OUT_S_FINISH_MESSAGE		5
69 #define OUT_S_GET_NEXT			6
70 
71 #define CTRL_BODY(p)	((void *)(p) + CEPH_PREAMBLE_LEN)
72 #define FRONT_PAD(p)	((void *)(p) + CEPH_EPILOGUE_SECURE_LEN)
73 #define MIDDLE_PAD(p)	(FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN)
74 #define DATA_PAD(p)	(MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN)
75 
76 #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
77 
78 static int do_recvmsg(struct socket *sock, struct iov_iter *it)
79 {
80 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
81 	int ret;
82 
83 	msg.msg_iter = *it;
84 	while (iov_iter_count(it)) {
85 		ret = sock_recvmsg(sock, &msg, msg.msg_flags);
86 		if (ret <= 0) {
87 			if (ret == -EAGAIN)
88 				ret = 0;
89 			return ret;
90 		}
91 
92 		iov_iter_advance(it, ret);
93 	}
94 
95 	WARN_ON(msg_data_left(&msg));
96 	return 1;
97 }
98 
99 /*
100  * Read as much as possible.
101  *
102  * Return:
103  *   1 - done, nothing (else) to read
104  *   0 - socket is empty, need to wait
105  *  <0 - error
106  */
107 static int ceph_tcp_recv(struct ceph_connection *con)
108 {
109 	int ret;
110 
111 	dout("%s con %p %s %zu\n", __func__, con,
112 	     iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need",
113 	     iov_iter_count(&con->v2.in_iter));
114 	ret = do_recvmsg(con->sock, &con->v2.in_iter);
115 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
116 	     iov_iter_count(&con->v2.in_iter));
117 	return ret;
118 }
119 
120 static int do_sendmsg(struct socket *sock, struct iov_iter *it)
121 {
122 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
123 	int ret;
124 
125 	msg.msg_iter = *it;
126 	while (iov_iter_count(it)) {
127 		ret = sock_sendmsg(sock, &msg);
128 		if (ret <= 0) {
129 			if (ret == -EAGAIN)
130 				ret = 0;
131 			return ret;
132 		}
133 
134 		iov_iter_advance(it, ret);
135 	}
136 
137 	WARN_ON(msg_data_left(&msg));
138 	return 1;
139 }
140 
141 static int do_try_sendpage(struct socket *sock, struct iov_iter *it)
142 {
143 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
144 	struct bio_vec bv;
145 	int ret;
146 
147 	if (WARN_ON(!iov_iter_is_bvec(it)))
148 		return -EINVAL;
149 
150 	while (iov_iter_count(it)) {
151 		/* iov_iter_iovec() for ITER_BVEC */
152 		bv.bv_page = it->bvec->bv_page;
153 		bv.bv_offset = it->bvec->bv_offset + it->iov_offset;
154 		bv.bv_len = min(iov_iter_count(it),
155 				it->bvec->bv_len - it->iov_offset);
156 
157 		/*
158 		 * sendpage cannot properly handle pages with
159 		 * page_count == 0, we need to fall back to sendmsg if
160 		 * that's the case.
161 		 *
162 		 * Same goes for slab pages: skb_can_coalesce() allows
163 		 * coalescing neighboring slab objects into a single frag
164 		 * which triggers one of hardened usercopy checks.
165 		 */
166 		if (sendpage_ok(bv.bv_page)) {
167 			ret = sock->ops->sendpage(sock, bv.bv_page,
168 						  bv.bv_offset, bv.bv_len,
169 						  CEPH_MSG_FLAGS);
170 		} else {
171 			iov_iter_bvec(&msg.msg_iter, WRITE, &bv, 1, bv.bv_len);
172 			ret = sock_sendmsg(sock, &msg);
173 		}
174 		if (ret <= 0) {
175 			if (ret == -EAGAIN)
176 				ret = 0;
177 			return ret;
178 		}
179 
180 		iov_iter_advance(it, ret);
181 	}
182 
183 	return 1;
184 }
185 
186 /*
187  * Write as much as possible.  The socket is expected to be corked,
188  * so we don't bother with MSG_MORE/MSG_SENDPAGE_NOTLAST here.
189  *
190  * Return:
191  *   1 - done, nothing (else) to write
192  *   0 - socket is full, need to wait
193  *  <0 - error
194  */
195 static int ceph_tcp_send(struct ceph_connection *con)
196 {
197 	int ret;
198 
199 	dout("%s con %p have %zu try_sendpage %d\n", __func__, con,
200 	     iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage);
201 	if (con->v2.out_iter_sendpage)
202 		ret = do_try_sendpage(con->sock, &con->v2.out_iter);
203 	else
204 		ret = do_sendmsg(con->sock, &con->v2.out_iter);
205 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
206 	     iov_iter_count(&con->v2.out_iter));
207 	return ret;
208 }
209 
210 static void add_in_kvec(struct ceph_connection *con, void *buf, int len)
211 {
212 	BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs));
213 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
214 
215 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf;
216 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len;
217 	con->v2.in_kvec_cnt++;
218 
219 	con->v2.in_iter.nr_segs++;
220 	con->v2.in_iter.count += len;
221 }
222 
223 static void reset_in_kvecs(struct ceph_connection *con)
224 {
225 	WARN_ON(iov_iter_count(&con->v2.in_iter));
226 
227 	con->v2.in_kvec_cnt = 0;
228 	iov_iter_kvec(&con->v2.in_iter, READ, con->v2.in_kvecs, 0, 0);
229 }
230 
231 static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv)
232 {
233 	WARN_ON(iov_iter_count(&con->v2.in_iter));
234 
235 	con->v2.in_bvec = *bv;
236 	iov_iter_bvec(&con->v2.in_iter, READ, &con->v2.in_bvec, 1, bv->bv_len);
237 }
238 
239 static void set_in_skip(struct ceph_connection *con, int len)
240 {
241 	WARN_ON(iov_iter_count(&con->v2.in_iter));
242 
243 	dout("%s con %p len %d\n", __func__, con, len);
244 	iov_iter_discard(&con->v2.in_iter, READ, len);
245 }
246 
247 static void add_out_kvec(struct ceph_connection *con, void *buf, int len)
248 {
249 	BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs));
250 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
251 	WARN_ON(con->v2.out_zero);
252 
253 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf;
254 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len;
255 	con->v2.out_kvec_cnt++;
256 
257 	con->v2.out_iter.nr_segs++;
258 	con->v2.out_iter.count += len;
259 }
260 
261 static void reset_out_kvecs(struct ceph_connection *con)
262 {
263 	WARN_ON(iov_iter_count(&con->v2.out_iter));
264 	WARN_ON(con->v2.out_zero);
265 
266 	con->v2.out_kvec_cnt = 0;
267 
268 	iov_iter_kvec(&con->v2.out_iter, WRITE, con->v2.out_kvecs, 0, 0);
269 	con->v2.out_iter_sendpage = false;
270 }
271 
272 static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv,
273 			 bool zerocopy)
274 {
275 	WARN_ON(iov_iter_count(&con->v2.out_iter));
276 	WARN_ON(con->v2.out_zero);
277 
278 	con->v2.out_bvec = *bv;
279 	con->v2.out_iter_sendpage = zerocopy;
280 	iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1,
281 		      con->v2.out_bvec.bv_len);
282 }
283 
284 static void set_out_bvec_zero(struct ceph_connection *con)
285 {
286 	WARN_ON(iov_iter_count(&con->v2.out_iter));
287 	WARN_ON(!con->v2.out_zero);
288 
289 	con->v2.out_bvec.bv_page = ceph_zero_page;
290 	con->v2.out_bvec.bv_offset = 0;
291 	con->v2.out_bvec.bv_len = min(con->v2.out_zero, (int)PAGE_SIZE);
292 	con->v2.out_iter_sendpage = true;
293 	iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1,
294 		      con->v2.out_bvec.bv_len);
295 }
296 
297 static void out_zero_add(struct ceph_connection *con, int len)
298 {
299 	dout("%s con %p len %d\n", __func__, con, len);
300 	con->v2.out_zero += len;
301 }
302 
303 static void *alloc_conn_buf(struct ceph_connection *con, int len)
304 {
305 	void *buf;
306 
307 	dout("%s con %p len %d\n", __func__, con, len);
308 
309 	if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs)))
310 		return NULL;
311 
312 	buf = kvmalloc(len, GFP_NOIO);
313 	if (!buf)
314 		return NULL;
315 
316 	con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf;
317 	return buf;
318 }
319 
320 static void free_conn_bufs(struct ceph_connection *con)
321 {
322 	while (con->v2.conn_buf_cnt)
323 		kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]);
324 }
325 
326 static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len)
327 {
328 	BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs));
329 
330 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf;
331 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len;
332 	con->v2.in_sign_kvec_cnt++;
333 }
334 
335 static void clear_in_sign_kvecs(struct ceph_connection *con)
336 {
337 	con->v2.in_sign_kvec_cnt = 0;
338 }
339 
340 static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len)
341 {
342 	BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs));
343 
344 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf;
345 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len;
346 	con->v2.out_sign_kvec_cnt++;
347 }
348 
349 static void clear_out_sign_kvecs(struct ceph_connection *con)
350 {
351 	con->v2.out_sign_kvec_cnt = 0;
352 }
353 
354 static bool con_secure(struct ceph_connection *con)
355 {
356 	return con->v2.con_mode == CEPH_CON_MODE_SECURE;
357 }
358 
359 static int front_len(const struct ceph_msg *msg)
360 {
361 	return le32_to_cpu(msg->hdr.front_len);
362 }
363 
364 static int middle_len(const struct ceph_msg *msg)
365 {
366 	return le32_to_cpu(msg->hdr.middle_len);
367 }
368 
369 static int data_len(const struct ceph_msg *msg)
370 {
371 	return le32_to_cpu(msg->hdr.data_len);
372 }
373 
374 static bool need_padding(int len)
375 {
376 	return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN);
377 }
378 
379 static int padded_len(int len)
380 {
381 	return ALIGN(len, CEPH_GCM_BLOCK_LEN);
382 }
383 
384 static int padding_len(int len)
385 {
386 	return padded_len(len) - len;
387 }
388 
389 /* preamble + control segment */
390 static int head_onwire_len(int ctrl_len, bool secure)
391 {
392 	int head_len;
393 	int rem_len;
394 
395 	if (secure) {
396 		head_len = CEPH_PREAMBLE_SECURE_LEN;
397 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
398 			rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
399 			head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN;
400 		}
401 	} else {
402 		head_len = CEPH_PREAMBLE_PLAIN_LEN;
403 		if (ctrl_len)
404 			head_len += ctrl_len + CEPH_CRC_LEN;
405 	}
406 	return head_len;
407 }
408 
409 /* front, middle and data segments + epilogue */
410 static int __tail_onwire_len(int front_len, int middle_len, int data_len,
411 			     bool secure)
412 {
413 	if (!front_len && !middle_len && !data_len)
414 		return 0;
415 
416 	if (!secure)
417 		return front_len + middle_len + data_len +
418 		       CEPH_EPILOGUE_PLAIN_LEN;
419 
420 	return padded_len(front_len) + padded_len(middle_len) +
421 	       padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN;
422 }
423 
424 static int tail_onwire_len(const struct ceph_msg *msg, bool secure)
425 {
426 	return __tail_onwire_len(front_len(msg), middle_len(msg),
427 				 data_len(msg), secure);
428 }
429 
430 /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */
431 #define MESSAGE_HEAD_PLAIN_LEN	(CEPH_PREAMBLE_PLAIN_LEN +		\
432 				 sizeof(struct ceph_msg_header2) +	\
433 				 CEPH_CRC_LEN)
434 
435 static const int frame_aligns[] = {
436 	sizeof(void *),
437 	sizeof(void *),
438 	sizeof(void *),
439 	PAGE_SIZE
440 };
441 
442 /*
443  * Discards trailing empty segments, unless there is just one segment.
444  * A frame always has at least one (possibly empty) segment.
445  */
446 static int calc_segment_count(const int *lens, int len_cnt)
447 {
448 	int i;
449 
450 	for (i = len_cnt - 1; i >= 0; i--) {
451 		if (lens[i])
452 			return i + 1;
453 	}
454 
455 	return 1;
456 }
457 
458 static void init_frame_desc(struct ceph_frame_desc *desc, int tag,
459 			    const int *lens, int len_cnt)
460 {
461 	int i;
462 
463 	memset(desc, 0, sizeof(*desc));
464 
465 	desc->fd_tag = tag;
466 	desc->fd_seg_cnt = calc_segment_count(lens, len_cnt);
467 	BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT);
468 	for (i = 0; i < desc->fd_seg_cnt; i++) {
469 		desc->fd_lens[i] = lens[i];
470 		desc->fd_aligns[i] = frame_aligns[i];
471 	}
472 }
473 
474 /*
475  * Preamble crc covers everything up to itself (28 bytes) and
476  * is calculated and verified irrespective of the connection mode
477  * (i.e. even if the frame is encrypted).
478  */
479 static void encode_preamble(const struct ceph_frame_desc *desc, void *p)
480 {
481 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
482 	void *start = p;
483 	int i;
484 
485 	memset(p, 0, CEPH_PREAMBLE_LEN);
486 
487 	ceph_encode_8(&p, desc->fd_tag);
488 	ceph_encode_8(&p, desc->fd_seg_cnt);
489 	for (i = 0; i < desc->fd_seg_cnt; i++) {
490 		ceph_encode_32(&p, desc->fd_lens[i]);
491 		ceph_encode_16(&p, desc->fd_aligns[i]);
492 	}
493 
494 	put_unaligned_le32(crc32c(0, start, crcp - start), crcp);
495 }
496 
497 static int decode_preamble(void *p, struct ceph_frame_desc *desc)
498 {
499 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
500 	u32 crc, expected_crc;
501 	int i;
502 
503 	crc = crc32c(0, p, crcp - p);
504 	expected_crc = get_unaligned_le32(crcp);
505 	if (crc != expected_crc) {
506 		pr_err("bad preamble crc, calculated %u, expected %u\n",
507 		       crc, expected_crc);
508 		return -EBADMSG;
509 	}
510 
511 	memset(desc, 0, sizeof(*desc));
512 
513 	desc->fd_tag = ceph_decode_8(&p);
514 	desc->fd_seg_cnt = ceph_decode_8(&p);
515 	if (desc->fd_seg_cnt < 1 ||
516 	    desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) {
517 		pr_err("bad segment count %d\n", desc->fd_seg_cnt);
518 		return -EINVAL;
519 	}
520 	for (i = 0; i < desc->fd_seg_cnt; i++) {
521 		desc->fd_lens[i] = ceph_decode_32(&p);
522 		desc->fd_aligns[i] = ceph_decode_16(&p);
523 	}
524 
525 	/*
526 	 * This would fire for FRAME_TAG_WAIT (it has one empty
527 	 * segment), but we should never get it as client.
528 	 */
529 	if (!desc->fd_lens[desc->fd_seg_cnt - 1]) {
530 		pr_err("last segment empty\n");
531 		return -EINVAL;
532 	}
533 
534 	if (desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) {
535 		pr_err("control segment too big %d\n", desc->fd_lens[0]);
536 		return -EINVAL;
537 	}
538 	if (desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) {
539 		pr_err("front segment too big %d\n", desc->fd_lens[1]);
540 		return -EINVAL;
541 	}
542 	if (desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) {
543 		pr_err("middle segment too big %d\n", desc->fd_lens[2]);
544 		return -EINVAL;
545 	}
546 	if (desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) {
547 		pr_err("data segment too big %d\n", desc->fd_lens[3]);
548 		return -EINVAL;
549 	}
550 
551 	return 0;
552 }
553 
554 static void encode_epilogue_plain(struct ceph_connection *con, bool aborted)
555 {
556 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
557 						 FRAME_LATE_STATUS_COMPLETE;
558 	cpu_to_le32s(&con->v2.out_epil.front_crc);
559 	cpu_to_le32s(&con->v2.out_epil.middle_crc);
560 	cpu_to_le32s(&con->v2.out_epil.data_crc);
561 }
562 
563 static void encode_epilogue_secure(struct ceph_connection *con, bool aborted)
564 {
565 	memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil));
566 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
567 						 FRAME_LATE_STATUS_COMPLETE;
568 }
569 
570 static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc,
571 			   u32 *data_crc)
572 {
573 	u8 late_status;
574 
575 	late_status = ceph_decode_8(&p);
576 	if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) !=
577 			FRAME_LATE_STATUS_COMPLETE) {
578 		/* we should never get an aborted message as client */
579 		pr_err("bad late_status 0x%x\n", late_status);
580 		return -EINVAL;
581 	}
582 
583 	if (front_crc && middle_crc && data_crc) {
584 		*front_crc = ceph_decode_32(&p);
585 		*middle_crc = ceph_decode_32(&p);
586 		*data_crc = ceph_decode_32(&p);
587 	}
588 
589 	return 0;
590 }
591 
592 static void fill_header(struct ceph_msg_header *hdr,
593 			const struct ceph_msg_header2 *hdr2,
594 			int front_len, int middle_len, int data_len,
595 			const struct ceph_entity_name *peer_name)
596 {
597 	hdr->seq = hdr2->seq;
598 	hdr->tid = hdr2->tid;
599 	hdr->type = hdr2->type;
600 	hdr->priority = hdr2->priority;
601 	hdr->version = hdr2->version;
602 	hdr->front_len = cpu_to_le32(front_len);
603 	hdr->middle_len = cpu_to_le32(middle_len);
604 	hdr->data_len = cpu_to_le32(data_len);
605 	hdr->data_off = hdr2->data_off;
606 	hdr->src = *peer_name;
607 	hdr->compat_version = hdr2->compat_version;
608 	hdr->reserved = 0;
609 	hdr->crc = 0;
610 }
611 
612 static void fill_header2(struct ceph_msg_header2 *hdr2,
613 			 const struct ceph_msg_header *hdr, u64 ack_seq)
614 {
615 	hdr2->seq = hdr->seq;
616 	hdr2->tid = hdr->tid;
617 	hdr2->type = hdr->type;
618 	hdr2->priority = hdr->priority;
619 	hdr2->version = hdr->version;
620 	hdr2->data_pre_padding_len = 0;
621 	hdr2->data_off = hdr->data_off;
622 	hdr2->ack_seq = cpu_to_le64(ack_seq);
623 	hdr2->flags = 0;
624 	hdr2->compat_version = hdr->compat_version;
625 	hdr2->reserved = 0;
626 }
627 
628 static int verify_control_crc(struct ceph_connection *con)
629 {
630 	int ctrl_len = con->v2.in_desc.fd_lens[0];
631 	u32 crc, expected_crc;
632 
633 	WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len);
634 	WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN);
635 
636 	crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len);
637 	expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base);
638 	if (crc != expected_crc) {
639 		pr_err("bad control crc, calculated %u, expected %u\n",
640 		       crc, expected_crc);
641 		return -EBADMSG;
642 	}
643 
644 	return 0;
645 }
646 
647 static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc,
648 				u32 middle_crc, u32 data_crc)
649 {
650 	if (front_len(con->in_msg)) {
651 		con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base,
652 					   front_len(con->in_msg));
653 	} else {
654 		WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg));
655 		con->in_front_crc = -1;
656 	}
657 
658 	if (middle_len(con->in_msg))
659 		con->in_middle_crc = crc32c(-1,
660 					    con->in_msg->middle->vec.iov_base,
661 					    middle_len(con->in_msg));
662 	else if (data_len(con->in_msg))
663 		con->in_middle_crc = -1;
664 	else
665 		con->in_middle_crc = 0;
666 
667 	if (!data_len(con->in_msg))
668 		con->in_data_crc = 0;
669 
670 	dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg,
671 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
672 
673 	if (con->in_front_crc != front_crc) {
674 		pr_err("bad front crc, calculated %u, expected %u\n",
675 		       con->in_front_crc, front_crc);
676 		return -EBADMSG;
677 	}
678 	if (con->in_middle_crc != middle_crc) {
679 		pr_err("bad middle crc, calculated %u, expected %u\n",
680 		       con->in_middle_crc, middle_crc);
681 		return -EBADMSG;
682 	}
683 	if (con->in_data_crc != data_crc) {
684 		pr_err("bad data crc, calculated %u, expected %u\n",
685 		       con->in_data_crc, data_crc);
686 		return -EBADMSG;
687 	}
688 
689 	return 0;
690 }
691 
692 static int setup_crypto(struct ceph_connection *con,
693 			const u8 *session_key, int session_key_len,
694 			const u8 *con_secret, int con_secret_len)
695 {
696 	unsigned int noio_flag;
697 	int ret;
698 
699 	dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n",
700 	     __func__, con, con->v2.con_mode, session_key_len, con_secret_len);
701 	WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req);
702 
703 	if (con->v2.con_mode != CEPH_CON_MODE_CRC &&
704 	    con->v2.con_mode != CEPH_CON_MODE_SECURE) {
705 		pr_err("bad con_mode %d\n", con->v2.con_mode);
706 		return -EINVAL;
707 	}
708 
709 	if (!session_key_len) {
710 		WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC);
711 		WARN_ON(con_secret_len);
712 		return 0;  /* auth_none */
713 	}
714 
715 	noio_flag = memalloc_noio_save();
716 	con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0);
717 	memalloc_noio_restore(noio_flag);
718 	if (IS_ERR(con->v2.hmac_tfm)) {
719 		ret = PTR_ERR(con->v2.hmac_tfm);
720 		con->v2.hmac_tfm = NULL;
721 		pr_err("failed to allocate hmac tfm context: %d\n", ret);
722 		return ret;
723 	}
724 
725 	WARN_ON((unsigned long)session_key &
726 		crypto_shash_alignmask(con->v2.hmac_tfm));
727 	ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key,
728 				  session_key_len);
729 	if (ret) {
730 		pr_err("failed to set hmac key: %d\n", ret);
731 		return ret;
732 	}
733 
734 	if (con->v2.con_mode == CEPH_CON_MODE_CRC) {
735 		WARN_ON(con_secret_len);
736 		return 0;  /* auth_x, plain mode */
737 	}
738 
739 	if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) {
740 		pr_err("con_secret too small %d\n", con_secret_len);
741 		return -EINVAL;
742 	}
743 
744 	noio_flag = memalloc_noio_save();
745 	con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
746 	memalloc_noio_restore(noio_flag);
747 	if (IS_ERR(con->v2.gcm_tfm)) {
748 		ret = PTR_ERR(con->v2.gcm_tfm);
749 		con->v2.gcm_tfm = NULL;
750 		pr_err("failed to allocate gcm tfm context: %d\n", ret);
751 		return ret;
752 	}
753 
754 	WARN_ON((unsigned long)con_secret &
755 		crypto_aead_alignmask(con->v2.gcm_tfm));
756 	ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN);
757 	if (ret) {
758 		pr_err("failed to set gcm key: %d\n", ret);
759 		return ret;
760 	}
761 
762 	WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN);
763 	ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN);
764 	if (ret) {
765 		pr_err("failed to set gcm tag size: %d\n", ret);
766 		return ret;
767 	}
768 
769 	con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO);
770 	if (!con->v2.gcm_req) {
771 		pr_err("failed to allocate gcm request\n");
772 		return -ENOMEM;
773 	}
774 
775 	crypto_init_wait(&con->v2.gcm_wait);
776 	aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
777 				  crypto_req_done, &con->v2.gcm_wait);
778 
779 	memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN,
780 	       CEPH_GCM_IV_LEN);
781 	memcpy(&con->v2.out_gcm_nonce,
782 	       con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN,
783 	       CEPH_GCM_IV_LEN);
784 	return 0;  /* auth_x, secure mode */
785 }
786 
787 static int hmac_sha256(struct ceph_connection *con, const struct kvec *kvecs,
788 		       int kvec_cnt, u8 *hmac)
789 {
790 	SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm);  /* tfm arg is ignored */
791 	int ret;
792 	int i;
793 
794 	dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con,
795 	     con->v2.hmac_tfm, kvec_cnt);
796 
797 	if (!con->v2.hmac_tfm) {
798 		memset(hmac, 0, SHA256_DIGEST_SIZE);
799 		return 0;  /* auth_none */
800 	}
801 
802 	desc->tfm = con->v2.hmac_tfm;
803 	ret = crypto_shash_init(desc);
804 	if (ret)
805 		goto out;
806 
807 	for (i = 0; i < kvec_cnt; i++) {
808 		WARN_ON((unsigned long)kvecs[i].iov_base &
809 			crypto_shash_alignmask(con->v2.hmac_tfm));
810 		ret = crypto_shash_update(desc, kvecs[i].iov_base,
811 					  kvecs[i].iov_len);
812 		if (ret)
813 			goto out;
814 	}
815 
816 	ret = crypto_shash_final(desc, hmac);
817 
818 out:
819 	shash_desc_zero(desc);
820 	return ret;  /* auth_x, both plain and secure modes */
821 }
822 
823 static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce)
824 {
825 	u64 counter;
826 
827 	counter = le64_to_cpu(nonce->counter);
828 	nonce->counter = cpu_to_le64(counter + 1);
829 }
830 
831 static int gcm_crypt(struct ceph_connection *con, bool encrypt,
832 		     struct scatterlist *src, struct scatterlist *dst,
833 		     int src_len)
834 {
835 	struct ceph_gcm_nonce *nonce;
836 	int ret;
837 
838 	nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce;
839 
840 	aead_request_set_ad(con->v2.gcm_req, 0);  /* no AAD */
841 	aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce);
842 	ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) :
843 					crypto_aead_decrypt(con->v2.gcm_req),
844 			      &con->v2.gcm_wait);
845 	if (ret)
846 		return ret;
847 
848 	gcm_inc_nonce(nonce);
849 	return 0;
850 }
851 
852 static void get_bvec_at(struct ceph_msg_data_cursor *cursor,
853 			struct bio_vec *bv)
854 {
855 	struct page *page;
856 	size_t off, len;
857 
858 	WARN_ON(!cursor->total_resid);
859 
860 	/* skip zero-length data items */
861 	while (!cursor->resid)
862 		ceph_msg_data_advance(cursor, 0);
863 
864 	/* get a piece of data, cursor isn't advanced */
865 	page = ceph_msg_data_next(cursor, &off, &len, NULL);
866 
867 	bv->bv_page = page;
868 	bv->bv_offset = off;
869 	bv->bv_len = len;
870 }
871 
872 static int calc_sg_cnt(void *buf, int buf_len)
873 {
874 	int sg_cnt;
875 
876 	if (!buf_len)
877 		return 0;
878 
879 	sg_cnt = need_padding(buf_len) ? 1 : 0;
880 	if (is_vmalloc_addr(buf)) {
881 		WARN_ON(offset_in_page(buf));
882 		sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT;
883 	} else {
884 		sg_cnt++;
885 	}
886 
887 	return sg_cnt;
888 }
889 
890 static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor)
891 {
892 	int data_len = cursor->total_resid;
893 	struct bio_vec bv;
894 	int sg_cnt;
895 
896 	if (!data_len)
897 		return 0;
898 
899 	sg_cnt = need_padding(data_len) ? 1 : 0;
900 	do {
901 		get_bvec_at(cursor, &bv);
902 		sg_cnt++;
903 
904 		ceph_msg_data_advance(cursor, bv.bv_len);
905 	} while (cursor->total_resid);
906 
907 	return sg_cnt;
908 }
909 
910 static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad)
911 {
912 	void *end = buf + buf_len;
913 	struct page *page;
914 	int len;
915 	void *p;
916 
917 	if (!buf_len)
918 		return;
919 
920 	if (is_vmalloc_addr(buf)) {
921 		p = buf;
922 		do {
923 			page = vmalloc_to_page(p);
924 			len = min_t(int, end - p, PAGE_SIZE);
925 			WARN_ON(!page || !len || offset_in_page(p));
926 			sg_set_page(*sg, page, len, 0);
927 			*sg = sg_next(*sg);
928 			p += len;
929 		} while (p != end);
930 	} else {
931 		sg_set_buf(*sg, buf, buf_len);
932 		*sg = sg_next(*sg);
933 	}
934 
935 	if (need_padding(buf_len)) {
936 		sg_set_buf(*sg, pad, padding_len(buf_len));
937 		*sg = sg_next(*sg);
938 	}
939 }
940 
941 static void init_sgs_cursor(struct scatterlist **sg,
942 			    struct ceph_msg_data_cursor *cursor, u8 *pad)
943 {
944 	int data_len = cursor->total_resid;
945 	struct bio_vec bv;
946 
947 	if (!data_len)
948 		return;
949 
950 	do {
951 		get_bvec_at(cursor, &bv);
952 		sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
953 		*sg = sg_next(*sg);
954 
955 		ceph_msg_data_advance(cursor, bv.bv_len);
956 	} while (cursor->total_resid);
957 
958 	if (need_padding(data_len)) {
959 		sg_set_buf(*sg, pad, padding_len(data_len));
960 		*sg = sg_next(*sg);
961 	}
962 }
963 
964 static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg,
965 			     u8 *front_pad, u8 *middle_pad, u8 *data_pad,
966 			     void *epilogue, bool add_tag)
967 {
968 	struct ceph_msg_data_cursor cursor;
969 	struct scatterlist *cur_sg;
970 	int sg_cnt;
971 	int ret;
972 
973 	if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
974 		return 0;
975 
976 	sg_cnt = 1;  /* epilogue + [auth tag] */
977 	if (front_len(msg))
978 		sg_cnt += calc_sg_cnt(msg->front.iov_base,
979 				      front_len(msg));
980 	if (middle_len(msg))
981 		sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base,
982 				      middle_len(msg));
983 	if (data_len(msg)) {
984 		ceph_msg_data_cursor_init(&cursor, msg, data_len(msg));
985 		sg_cnt += calc_sg_cnt_cursor(&cursor);
986 	}
987 
988 	ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO);
989 	if (ret)
990 		return ret;
991 
992 	cur_sg = sgt->sgl;
993 	if (front_len(msg))
994 		init_sgs(&cur_sg, msg->front.iov_base, front_len(msg),
995 			 front_pad);
996 	if (middle_len(msg))
997 		init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg),
998 			 middle_pad);
999 	if (data_len(msg)) {
1000 		ceph_msg_data_cursor_init(&cursor, msg, data_len(msg));
1001 		init_sgs_cursor(&cur_sg, &cursor, data_pad);
1002 	}
1003 
1004 	WARN_ON(!sg_is_last(cur_sg));
1005 	sg_set_buf(cur_sg, epilogue,
1006 		   CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0));
1007 	return 0;
1008 }
1009 
1010 static int decrypt_preamble(struct ceph_connection *con)
1011 {
1012 	struct scatterlist sg;
1013 
1014 	sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN);
1015 	return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN);
1016 }
1017 
1018 static int decrypt_control_remainder(struct ceph_connection *con)
1019 {
1020 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1021 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1022 	int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN;
1023 	struct scatterlist sgs[2];
1024 
1025 	WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len);
1026 	WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len);
1027 
1028 	sg_init_table(sgs, 2);
1029 	sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len);
1030 	sg_set_buf(&sgs[1], con->v2.in_buf, pt_len);
1031 
1032 	return gcm_crypt(con, false, sgs, sgs,
1033 			 padded_len(rem_len) + CEPH_GCM_TAG_LEN);
1034 }
1035 
1036 static int decrypt_tail(struct ceph_connection *con)
1037 {
1038 	struct sg_table enc_sgt = {};
1039 	struct sg_table sgt = {};
1040 	int tail_len;
1041 	int ret;
1042 
1043 	tail_len = tail_onwire_len(con->in_msg, true);
1044 	ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages,
1045 					con->v2.in_enc_page_cnt, 0, tail_len,
1046 					GFP_NOIO);
1047 	if (ret)
1048 		goto out;
1049 
1050 	ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf),
1051 			MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf),
1052 			con->v2.in_buf, true);
1053 	if (ret)
1054 		goto out;
1055 
1056 	dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con,
1057 	     con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents);
1058 	ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len);
1059 	if (ret)
1060 		goto out;
1061 
1062 	WARN_ON(!con->v2.in_enc_page_cnt);
1063 	ceph_release_page_vector(con->v2.in_enc_pages,
1064 				 con->v2.in_enc_page_cnt);
1065 	con->v2.in_enc_pages = NULL;
1066 	con->v2.in_enc_page_cnt = 0;
1067 
1068 out:
1069 	sg_free_table(&sgt);
1070 	sg_free_table(&enc_sgt);
1071 	return ret;
1072 }
1073 
1074 static int prepare_banner(struct ceph_connection *con)
1075 {
1076 	int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8;
1077 	void *buf, *p;
1078 
1079 	buf = alloc_conn_buf(con, buf_len);
1080 	if (!buf)
1081 		return -ENOMEM;
1082 
1083 	p = buf;
1084 	ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN);
1085 	ceph_encode_16(&p, sizeof(u64) + sizeof(u64));
1086 	ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES);
1087 	ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES);
1088 	WARN_ON(p != buf + buf_len);
1089 
1090 	add_out_kvec(con, buf, buf_len);
1091 	add_out_sign_kvec(con, buf, buf_len);
1092 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1093 	return 0;
1094 }
1095 
1096 /*
1097  * base:
1098  *   preamble
1099  *   control body (ctrl_len bytes)
1100  *   space for control crc
1101  *
1102  * extdata (optional):
1103  *   control body (extdata_len bytes)
1104  *
1105  * Compute control crc and gather base and extdata into:
1106  *
1107  *   preamble
1108  *   control body (ctrl_len + extdata_len bytes)
1109  *   control crc
1110  *
1111  * Preamble should already be encoded at the start of base.
1112  */
1113 static void prepare_head_plain(struct ceph_connection *con, void *base,
1114 			       int ctrl_len, void *extdata, int extdata_len,
1115 			       bool to_be_signed)
1116 {
1117 	int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN;
1118 	void *crcp = base + base_len - CEPH_CRC_LEN;
1119 	u32 crc;
1120 
1121 	crc = crc32c(-1, CTRL_BODY(base), ctrl_len);
1122 	if (extdata_len)
1123 		crc = crc32c(crc, extdata, extdata_len);
1124 	put_unaligned_le32(crc, crcp);
1125 
1126 	if (!extdata_len) {
1127 		add_out_kvec(con, base, base_len);
1128 		if (to_be_signed)
1129 			add_out_sign_kvec(con, base, base_len);
1130 		return;
1131 	}
1132 
1133 	add_out_kvec(con, base, crcp - base);
1134 	add_out_kvec(con, extdata, extdata_len);
1135 	add_out_kvec(con, crcp, CEPH_CRC_LEN);
1136 	if (to_be_signed) {
1137 		add_out_sign_kvec(con, base, crcp - base);
1138 		add_out_sign_kvec(con, extdata, extdata_len);
1139 		add_out_sign_kvec(con, crcp, CEPH_CRC_LEN);
1140 	}
1141 }
1142 
1143 static int prepare_head_secure_small(struct ceph_connection *con,
1144 				     void *base, int ctrl_len)
1145 {
1146 	struct scatterlist sg;
1147 	int ret;
1148 
1149 	/* inline buffer padding? */
1150 	if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN)
1151 		memset(CTRL_BODY(base) + ctrl_len, 0,
1152 		       CEPH_PREAMBLE_INLINE_LEN - ctrl_len);
1153 
1154 	sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN);
1155 	ret = gcm_crypt(con, true, &sg, &sg,
1156 			CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN);
1157 	if (ret)
1158 		return ret;
1159 
1160 	add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN);
1161 	return 0;
1162 }
1163 
1164 /*
1165  * base:
1166  *   preamble
1167  *   control body (ctrl_len bytes)
1168  *   space for padding, if needed
1169  *   space for control remainder auth tag
1170  *   space for preamble auth tag
1171  *
1172  * Encrypt preamble and the inline portion, then encrypt the remainder
1173  * and gather into:
1174  *
1175  *   preamble
1176  *   control body (48 bytes)
1177  *   preamble auth tag
1178  *   control body (ctrl_len - 48 bytes)
1179  *   zero padding, if needed
1180  *   control remainder auth tag
1181  *
1182  * Preamble should already be encoded at the start of base.
1183  */
1184 static int prepare_head_secure_big(struct ceph_connection *con,
1185 				   void *base, int ctrl_len)
1186 {
1187 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1188 	void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN;
1189 	void *rem_tag = rem + padded_len(rem_len);
1190 	void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN;
1191 	struct scatterlist sgs[2];
1192 	int ret;
1193 
1194 	sg_init_table(sgs, 2);
1195 	sg_set_buf(&sgs[0], base, rem - base);
1196 	sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN);
1197 	ret = gcm_crypt(con, true, sgs, sgs, rem - base);
1198 	if (ret)
1199 		return ret;
1200 
1201 	/* control remainder padding? */
1202 	if (need_padding(rem_len))
1203 		memset(rem + rem_len, 0, padding_len(rem_len));
1204 
1205 	sg_init_one(&sgs[0], rem, pmbl_tag - rem);
1206 	ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem);
1207 	if (ret)
1208 		return ret;
1209 
1210 	add_out_kvec(con, base, rem - base);
1211 	add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN);
1212 	add_out_kvec(con, rem, pmbl_tag - rem);
1213 	return 0;
1214 }
1215 
1216 static int __prepare_control(struct ceph_connection *con, int tag,
1217 			     void *base, int ctrl_len, void *extdata,
1218 			     int extdata_len, bool to_be_signed)
1219 {
1220 	int total_len = ctrl_len + extdata_len;
1221 	struct ceph_frame_desc desc;
1222 	int ret;
1223 
1224 	dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag,
1225 	     total_len, ctrl_len, extdata_len);
1226 
1227 	/* extdata may be vmalloc'ed but not base */
1228 	if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len))
1229 		return -EINVAL;
1230 
1231 	init_frame_desc(&desc, tag, &total_len, 1);
1232 	encode_preamble(&desc, base);
1233 
1234 	if (con_secure(con)) {
1235 		if (WARN_ON(extdata_len || to_be_signed))
1236 			return -EINVAL;
1237 
1238 		if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN)
1239 			/* fully inlined, inline buffer may need padding */
1240 			ret = prepare_head_secure_small(con, base, ctrl_len);
1241 		else
1242 			/* partially inlined, inline buffer is full */
1243 			ret = prepare_head_secure_big(con, base, ctrl_len);
1244 		if (ret)
1245 			return ret;
1246 	} else {
1247 		prepare_head_plain(con, base, ctrl_len, extdata, extdata_len,
1248 				   to_be_signed);
1249 	}
1250 
1251 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1252 	return 0;
1253 }
1254 
1255 static int prepare_control(struct ceph_connection *con, int tag,
1256 			   void *base, int ctrl_len)
1257 {
1258 	return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false);
1259 }
1260 
1261 static int prepare_hello(struct ceph_connection *con)
1262 {
1263 	void *buf, *p;
1264 	int ctrl_len;
1265 
1266 	ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr);
1267 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1268 	if (!buf)
1269 		return -ENOMEM;
1270 
1271 	p = CTRL_BODY(buf);
1272 	ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT);
1273 	ceph_encode_entity_addr(&p, &con->peer_addr);
1274 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1275 
1276 	return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len,
1277 				 NULL, 0, true);
1278 }
1279 
1280 /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */
1281 #define AUTH_BUF_LEN	(512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN)
1282 
1283 static int prepare_auth_request(struct ceph_connection *con)
1284 {
1285 	void *authorizer, *authorizer_copy;
1286 	int ctrl_len, authorizer_len;
1287 	void *buf;
1288 	int ret;
1289 
1290 	ctrl_len = AUTH_BUF_LEN;
1291 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1292 	if (!buf)
1293 		return -ENOMEM;
1294 
1295 	mutex_unlock(&con->mutex);
1296 	ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len,
1297 					 &authorizer, &authorizer_len);
1298 	mutex_lock(&con->mutex);
1299 	if (con->state != CEPH_CON_S_V2_HELLO) {
1300 		dout("%s con %p state changed to %d\n", __func__, con,
1301 		     con->state);
1302 		return -EAGAIN;
1303 	}
1304 
1305 	dout("%s con %p get_auth_request ret %d\n", __func__, con, ret);
1306 	if (ret)
1307 		return ret;
1308 
1309 	authorizer_copy = alloc_conn_buf(con, authorizer_len);
1310 	if (!authorizer_copy)
1311 		return -ENOMEM;
1312 
1313 	memcpy(authorizer_copy, authorizer, authorizer_len);
1314 
1315 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len,
1316 				 authorizer_copy, authorizer_len, true);
1317 }
1318 
1319 static int prepare_auth_request_more(struct ceph_connection *con,
1320 				     void *reply, int reply_len)
1321 {
1322 	int ctrl_len, authorizer_len;
1323 	void *authorizer;
1324 	void *buf;
1325 	int ret;
1326 
1327 	ctrl_len = AUTH_BUF_LEN;
1328 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1329 	if (!buf)
1330 		return -ENOMEM;
1331 
1332 	mutex_unlock(&con->mutex);
1333 	ret = con->ops->handle_auth_reply_more(con, reply, reply_len,
1334 					       CTRL_BODY(buf), &ctrl_len,
1335 					       &authorizer, &authorizer_len);
1336 	mutex_lock(&con->mutex);
1337 	if (con->state != CEPH_CON_S_V2_AUTH) {
1338 		dout("%s con %p state changed to %d\n", __func__, con,
1339 		     con->state);
1340 		return -EAGAIN;
1341 	}
1342 
1343 	dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret);
1344 	if (ret)
1345 		return ret;
1346 
1347 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf,
1348 				 ctrl_len, authorizer, authorizer_len, true);
1349 }
1350 
1351 static int prepare_auth_signature(struct ceph_connection *con)
1352 {
1353 	void *buf;
1354 	int ret;
1355 
1356 	buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE,
1357 						  con_secure(con)));
1358 	if (!buf)
1359 		return -ENOMEM;
1360 
1361 	ret = hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt,
1362 			  CTRL_BODY(buf));
1363 	if (ret)
1364 		return ret;
1365 
1366 	return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf,
1367 			       SHA256_DIGEST_SIZE);
1368 }
1369 
1370 static int prepare_client_ident(struct ceph_connection *con)
1371 {
1372 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1373 	struct ceph_client *client = from_msgr(con->msgr);
1374 	u64 global_id = ceph_client_gid(client);
1375 	void *buf, *p;
1376 	int ctrl_len;
1377 
1378 	WARN_ON(con->v2.server_cookie);
1379 	WARN_ON(con->v2.connect_seq);
1380 	WARN_ON(con->v2.peer_global_seq);
1381 
1382 	if (!con->v2.client_cookie) {
1383 		do {
1384 			get_random_bytes(&con->v2.client_cookie,
1385 					 sizeof(con->v2.client_cookie));
1386 		} while (!con->v2.client_cookie);
1387 		dout("%s con %p generated cookie 0x%llx\n", __func__, con,
1388 		     con->v2.client_cookie);
1389 	} else {
1390 		dout("%s con %p cookie already set 0x%llx\n", __func__, con,
1391 		     con->v2.client_cookie);
1392 	}
1393 
1394 	dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n",
1395 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1396 	     ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce),
1397 	     global_id, con->v2.global_seq, client->supported_features,
1398 	     client->required_features, con->v2.client_cookie);
1399 
1400 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) +
1401 		   ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8;
1402 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1403 	if (!buf)
1404 		return -ENOMEM;
1405 
1406 	p = CTRL_BODY(buf);
1407 	ceph_encode_8(&p, 2);  /* addrvec marker */
1408 	ceph_encode_32(&p, 1);  /* addr_cnt */
1409 	ceph_encode_entity_addr(&p, my_addr);
1410 	ceph_encode_entity_addr(&p, &con->peer_addr);
1411 	ceph_encode_64(&p, global_id);
1412 	ceph_encode_64(&p, con->v2.global_seq);
1413 	ceph_encode_64(&p, client->supported_features);
1414 	ceph_encode_64(&p, client->required_features);
1415 	ceph_encode_64(&p, 0);  /* flags */
1416 	ceph_encode_64(&p, con->v2.client_cookie);
1417 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1418 
1419 	return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len);
1420 }
1421 
1422 static int prepare_session_reconnect(struct ceph_connection *con)
1423 {
1424 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1425 	void *buf, *p;
1426 	int ctrl_len;
1427 
1428 	WARN_ON(!con->v2.client_cookie);
1429 	WARN_ON(!con->v2.server_cookie);
1430 	WARN_ON(!con->v2.connect_seq);
1431 	WARN_ON(!con->v2.peer_global_seq);
1432 
1433 	dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n",
1434 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1435 	     con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq,
1436 	     con->v2.connect_seq, con->in_seq);
1437 
1438 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8;
1439 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1440 	if (!buf)
1441 		return -ENOMEM;
1442 
1443 	p = CTRL_BODY(buf);
1444 	ceph_encode_8(&p, 2);  /* entity_addrvec_t marker */
1445 	ceph_encode_32(&p, 1);  /* my_addrs len */
1446 	ceph_encode_entity_addr(&p, my_addr);
1447 	ceph_encode_64(&p, con->v2.client_cookie);
1448 	ceph_encode_64(&p, con->v2.server_cookie);
1449 	ceph_encode_64(&p, con->v2.global_seq);
1450 	ceph_encode_64(&p, con->v2.connect_seq);
1451 	ceph_encode_64(&p, con->in_seq);
1452 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1453 
1454 	return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len);
1455 }
1456 
1457 static int prepare_keepalive2(struct ceph_connection *con)
1458 {
1459 	struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf);
1460 	struct timespec64 now;
1461 
1462 	ktime_get_real_ts64(&now);
1463 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec,
1464 	     now.tv_nsec);
1465 
1466 	ceph_encode_timespec64(ts, &now);
1467 
1468 	reset_out_kvecs(con);
1469 	return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf,
1470 			       sizeof(struct ceph_timespec));
1471 }
1472 
1473 static int prepare_ack(struct ceph_connection *con)
1474 {
1475 	void *p;
1476 
1477 	dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1478 	     con->in_seq_acked, con->in_seq);
1479 	con->in_seq_acked = con->in_seq;
1480 
1481 	p = CTRL_BODY(con->v2.out_buf);
1482 	ceph_encode_64(&p, con->in_seq_acked);
1483 
1484 	reset_out_kvecs(con);
1485 	return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8);
1486 }
1487 
1488 static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted)
1489 {
1490 	dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con,
1491 	     con->out_msg, aborted, con->v2.out_epil.front_crc,
1492 	     con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc);
1493 
1494 	encode_epilogue_plain(con, aborted);
1495 	add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN);
1496 }
1497 
1498 /*
1499  * For "used" empty segments, crc is -1.  For unused (trailing)
1500  * segments, crc is 0.
1501  */
1502 static void prepare_message_plain(struct ceph_connection *con)
1503 {
1504 	struct ceph_msg *msg = con->out_msg;
1505 
1506 	prepare_head_plain(con, con->v2.out_buf,
1507 			   sizeof(struct ceph_msg_header2), NULL, 0, false);
1508 
1509 	if (!front_len(msg) && !middle_len(msg)) {
1510 		if (!data_len(msg)) {
1511 			/*
1512 			 * Empty message: once the head is written,
1513 			 * we are done -- there is no epilogue.
1514 			 */
1515 			con->v2.out_state = OUT_S_FINISH_MESSAGE;
1516 			return;
1517 		}
1518 
1519 		con->v2.out_epil.front_crc = -1;
1520 		con->v2.out_epil.middle_crc = -1;
1521 		con->v2.out_state = OUT_S_QUEUE_DATA;
1522 		return;
1523 	}
1524 
1525 	if (front_len(msg)) {
1526 		con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base,
1527 						    front_len(msg));
1528 		add_out_kvec(con, msg->front.iov_base, front_len(msg));
1529 	} else {
1530 		/* middle (at least) is there, checked above */
1531 		con->v2.out_epil.front_crc = -1;
1532 	}
1533 
1534 	if (middle_len(msg)) {
1535 		con->v2.out_epil.middle_crc =
1536 			crc32c(-1, msg->middle->vec.iov_base, middle_len(msg));
1537 		add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
1538 	} else {
1539 		con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0;
1540 	}
1541 
1542 	if (data_len(msg)) {
1543 		con->v2.out_state = OUT_S_QUEUE_DATA;
1544 	} else {
1545 		con->v2.out_epil.data_crc = 0;
1546 		prepare_epilogue_plain(con, false);
1547 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1548 	}
1549 }
1550 
1551 /*
1552  * Unfortunately the kernel crypto API doesn't support streaming
1553  * (piecewise) operation for AEAD algorithms, so we can't get away
1554  * with a fixed size buffer and a couple sgs.  Instead, we have to
1555  * allocate pages for the entire tail of the message (currently up
1556  * to ~32M) and two sgs arrays (up to ~256K each)...
1557  */
1558 static int prepare_message_secure(struct ceph_connection *con)
1559 {
1560 	void *zerop = page_address(ceph_zero_page);
1561 	struct sg_table enc_sgt = {};
1562 	struct sg_table sgt = {};
1563 	struct page **enc_pages;
1564 	int enc_page_cnt;
1565 	int tail_len;
1566 	int ret;
1567 
1568 	ret = prepare_head_secure_small(con, con->v2.out_buf,
1569 					sizeof(struct ceph_msg_header2));
1570 	if (ret)
1571 		return ret;
1572 
1573 	tail_len = tail_onwire_len(con->out_msg, true);
1574 	if (!tail_len) {
1575 		/*
1576 		 * Empty message: once the head is written,
1577 		 * we are done -- there is no epilogue.
1578 		 */
1579 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1580 		return 0;
1581 	}
1582 
1583 	encode_epilogue_secure(con, false);
1584 	ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop,
1585 				&con->v2.out_epil, false);
1586 	if (ret)
1587 		goto out;
1588 
1589 	enc_page_cnt = calc_pages_for(0, tail_len);
1590 	enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
1591 	if (IS_ERR(enc_pages)) {
1592 		ret = PTR_ERR(enc_pages);
1593 		goto out;
1594 	}
1595 
1596 	WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt);
1597 	con->v2.out_enc_pages = enc_pages;
1598 	con->v2.out_enc_page_cnt = enc_page_cnt;
1599 	con->v2.out_enc_resid = tail_len;
1600 	con->v2.out_enc_i = 0;
1601 
1602 	ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt,
1603 					0, tail_len, GFP_NOIO);
1604 	if (ret)
1605 		goto out;
1606 
1607 	ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl,
1608 			tail_len - CEPH_GCM_TAG_LEN);
1609 	if (ret)
1610 		goto out;
1611 
1612 	dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con,
1613 	     con->out_msg, sgt.orig_nents, enc_page_cnt);
1614 	con->v2.out_state = OUT_S_QUEUE_ENC_PAGE;
1615 
1616 out:
1617 	sg_free_table(&sgt);
1618 	sg_free_table(&enc_sgt);
1619 	return ret;
1620 }
1621 
1622 static int prepare_message(struct ceph_connection *con)
1623 {
1624 	int lens[] = {
1625 		sizeof(struct ceph_msg_header2),
1626 		front_len(con->out_msg),
1627 		middle_len(con->out_msg),
1628 		data_len(con->out_msg)
1629 	};
1630 	struct ceph_frame_desc desc;
1631 	int ret;
1632 
1633 	dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con,
1634 	     con->out_msg, lens[0], lens[1], lens[2], lens[3]);
1635 
1636 	if (con->in_seq > con->in_seq_acked) {
1637 		dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1638 		     con->in_seq_acked, con->in_seq);
1639 		con->in_seq_acked = con->in_seq;
1640 	}
1641 
1642 	reset_out_kvecs(con);
1643 	init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4);
1644 	encode_preamble(&desc, con->v2.out_buf);
1645 	fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr,
1646 		     con->in_seq_acked);
1647 
1648 	if (con_secure(con)) {
1649 		ret = prepare_message_secure(con);
1650 		if (ret)
1651 			return ret;
1652 	} else {
1653 		prepare_message_plain(con);
1654 	}
1655 
1656 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1657 	return 0;
1658 }
1659 
1660 static int prepare_read_banner_prefix(struct ceph_connection *con)
1661 {
1662 	void *buf;
1663 
1664 	buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN);
1665 	if (!buf)
1666 		return -ENOMEM;
1667 
1668 	reset_in_kvecs(con);
1669 	add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1670 	add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1671 	con->state = CEPH_CON_S_V2_BANNER_PREFIX;
1672 	return 0;
1673 }
1674 
1675 static int prepare_read_banner_payload(struct ceph_connection *con,
1676 				       int payload_len)
1677 {
1678 	void *buf;
1679 
1680 	buf = alloc_conn_buf(con, payload_len);
1681 	if (!buf)
1682 		return -ENOMEM;
1683 
1684 	reset_in_kvecs(con);
1685 	add_in_kvec(con, buf, payload_len);
1686 	add_in_sign_kvec(con, buf, payload_len);
1687 	con->state = CEPH_CON_S_V2_BANNER_PAYLOAD;
1688 	return 0;
1689 }
1690 
1691 static void prepare_read_preamble(struct ceph_connection *con)
1692 {
1693 	reset_in_kvecs(con);
1694 	add_in_kvec(con, con->v2.in_buf,
1695 		    con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN :
1696 				      CEPH_PREAMBLE_PLAIN_LEN);
1697 	con->v2.in_state = IN_S_HANDLE_PREAMBLE;
1698 }
1699 
1700 static int prepare_read_control(struct ceph_connection *con)
1701 {
1702 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1703 	int head_len;
1704 	void *buf;
1705 
1706 	reset_in_kvecs(con);
1707 	if (con->state == CEPH_CON_S_V2_HELLO ||
1708 	    con->state == CEPH_CON_S_V2_AUTH) {
1709 		head_len = head_onwire_len(ctrl_len, false);
1710 		buf = alloc_conn_buf(con, head_len);
1711 		if (!buf)
1712 			return -ENOMEM;
1713 
1714 		/* preserve preamble */
1715 		memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN);
1716 
1717 		add_in_kvec(con, CTRL_BODY(buf), ctrl_len);
1718 		add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN);
1719 		add_in_sign_kvec(con, buf, head_len);
1720 	} else {
1721 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
1722 			buf = alloc_conn_buf(con, ctrl_len);
1723 			if (!buf)
1724 				return -ENOMEM;
1725 
1726 			add_in_kvec(con, buf, ctrl_len);
1727 		} else {
1728 			add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len);
1729 		}
1730 		add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN);
1731 	}
1732 	con->v2.in_state = IN_S_HANDLE_CONTROL;
1733 	return 0;
1734 }
1735 
1736 static int prepare_read_control_remainder(struct ceph_connection *con)
1737 {
1738 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1739 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1740 	void *buf;
1741 
1742 	buf = alloc_conn_buf(con, ctrl_len);
1743 	if (!buf)
1744 		return -ENOMEM;
1745 
1746 	memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN);
1747 
1748 	reset_in_kvecs(con);
1749 	add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len);
1750 	add_in_kvec(con, con->v2.in_buf,
1751 		    padding_len(rem_len) + CEPH_GCM_TAG_LEN);
1752 	con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER;
1753 	return 0;
1754 }
1755 
1756 static int prepare_read_data(struct ceph_connection *con)
1757 {
1758 	struct bio_vec bv;
1759 
1760 	con->in_data_crc = -1;
1761 	ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg,
1762 				  data_len(con->in_msg));
1763 
1764 	get_bvec_at(&con->v2.in_cursor, &bv);
1765 	if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1766 		if (unlikely(!con->bounce_page)) {
1767 			con->bounce_page = alloc_page(GFP_NOIO);
1768 			if (!con->bounce_page) {
1769 				pr_err("failed to allocate bounce page\n");
1770 				return -ENOMEM;
1771 			}
1772 		}
1773 
1774 		bv.bv_page = con->bounce_page;
1775 		bv.bv_offset = 0;
1776 		set_in_bvec(con, &bv);
1777 	} else {
1778 		set_in_bvec(con, &bv);
1779 	}
1780 	con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT;
1781 	return 0;
1782 }
1783 
1784 static void prepare_read_data_cont(struct ceph_connection *con)
1785 {
1786 	struct bio_vec bv;
1787 
1788 	if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1789 		con->in_data_crc = crc32c(con->in_data_crc,
1790 					  page_address(con->bounce_page),
1791 					  con->v2.in_bvec.bv_len);
1792 
1793 		get_bvec_at(&con->v2.in_cursor, &bv);
1794 		memcpy_to_page(bv.bv_page, bv.bv_offset,
1795 			       page_address(con->bounce_page),
1796 			       con->v2.in_bvec.bv_len);
1797 	} else {
1798 		con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
1799 						    con->v2.in_bvec.bv_page,
1800 						    con->v2.in_bvec.bv_offset,
1801 						    con->v2.in_bvec.bv_len);
1802 	}
1803 
1804 	ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len);
1805 	if (con->v2.in_cursor.total_resid) {
1806 		get_bvec_at(&con->v2.in_cursor, &bv);
1807 		if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1808 			bv.bv_page = con->bounce_page;
1809 			bv.bv_offset = 0;
1810 			set_in_bvec(con, &bv);
1811 		} else {
1812 			set_in_bvec(con, &bv);
1813 		}
1814 		WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT);
1815 		return;
1816 	}
1817 
1818 	/*
1819 	 * We've read all data.  Prepare to read epilogue.
1820 	 */
1821 	reset_in_kvecs(con);
1822 	add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1823 	con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1824 }
1825 
1826 static int prepare_read_tail_plain(struct ceph_connection *con)
1827 {
1828 	struct ceph_msg *msg = con->in_msg;
1829 
1830 	if (!front_len(msg) && !middle_len(msg)) {
1831 		WARN_ON(!data_len(msg));
1832 		return prepare_read_data(con);
1833 	}
1834 
1835 	reset_in_kvecs(con);
1836 	if (front_len(msg)) {
1837 		add_in_kvec(con, msg->front.iov_base, front_len(msg));
1838 		WARN_ON(msg->front.iov_len != front_len(msg));
1839 	}
1840 	if (middle_len(msg)) {
1841 		add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
1842 		WARN_ON(msg->middle->vec.iov_len != middle_len(msg));
1843 	}
1844 
1845 	if (data_len(msg)) {
1846 		con->v2.in_state = IN_S_PREPARE_READ_DATA;
1847 	} else {
1848 		add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1849 		con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1850 	}
1851 	return 0;
1852 }
1853 
1854 static void prepare_read_enc_page(struct ceph_connection *con)
1855 {
1856 	struct bio_vec bv;
1857 
1858 	dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i,
1859 	     con->v2.in_enc_resid);
1860 	WARN_ON(!con->v2.in_enc_resid);
1861 
1862 	bv.bv_page = con->v2.in_enc_pages[con->v2.in_enc_i];
1863 	bv.bv_offset = 0;
1864 	bv.bv_len = min(con->v2.in_enc_resid, (int)PAGE_SIZE);
1865 
1866 	set_in_bvec(con, &bv);
1867 	con->v2.in_enc_i++;
1868 	con->v2.in_enc_resid -= bv.bv_len;
1869 
1870 	if (con->v2.in_enc_resid) {
1871 		con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE;
1872 		return;
1873 	}
1874 
1875 	/*
1876 	 * We are set to read the last piece of ciphertext (ending
1877 	 * with epilogue) + auth tag.
1878 	 */
1879 	WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt);
1880 	con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1881 }
1882 
1883 static int prepare_read_tail_secure(struct ceph_connection *con)
1884 {
1885 	struct page **enc_pages;
1886 	int enc_page_cnt;
1887 	int tail_len;
1888 
1889 	tail_len = tail_onwire_len(con->in_msg, true);
1890 	WARN_ON(!tail_len);
1891 
1892 	enc_page_cnt = calc_pages_for(0, tail_len);
1893 	enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
1894 	if (IS_ERR(enc_pages))
1895 		return PTR_ERR(enc_pages);
1896 
1897 	WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt);
1898 	con->v2.in_enc_pages = enc_pages;
1899 	con->v2.in_enc_page_cnt = enc_page_cnt;
1900 	con->v2.in_enc_resid = tail_len;
1901 	con->v2.in_enc_i = 0;
1902 
1903 	prepare_read_enc_page(con);
1904 	return 0;
1905 }
1906 
1907 static void __finish_skip(struct ceph_connection *con)
1908 {
1909 	con->in_seq++;
1910 	prepare_read_preamble(con);
1911 }
1912 
1913 static void prepare_skip_message(struct ceph_connection *con)
1914 {
1915 	struct ceph_frame_desc *desc = &con->v2.in_desc;
1916 	int tail_len;
1917 
1918 	dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1],
1919 	     desc->fd_lens[2], desc->fd_lens[3]);
1920 
1921 	tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2],
1922 				     desc->fd_lens[3], con_secure(con));
1923 	if (!tail_len) {
1924 		__finish_skip(con);
1925 	} else {
1926 		set_in_skip(con, tail_len);
1927 		con->v2.in_state = IN_S_FINISH_SKIP;
1928 	}
1929 }
1930 
1931 static int process_banner_prefix(struct ceph_connection *con)
1932 {
1933 	int payload_len;
1934 	void *p;
1935 
1936 	WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN);
1937 
1938 	p = con->v2.in_kvecs[0].iov_base;
1939 	if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) {
1940 		if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN))
1941 			con->error_msg = "server is speaking msgr1 protocol";
1942 		else
1943 			con->error_msg = "protocol error, bad banner";
1944 		return -EINVAL;
1945 	}
1946 
1947 	p += CEPH_BANNER_V2_LEN;
1948 	payload_len = ceph_decode_16(&p);
1949 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
1950 
1951 	return prepare_read_banner_payload(con, payload_len);
1952 }
1953 
1954 static int process_banner_payload(struct ceph_connection *con)
1955 {
1956 	void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len;
1957 	u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES;
1958 	u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES;
1959 	u64 server_feat, server_req_feat;
1960 	void *p;
1961 	int ret;
1962 
1963 	p = con->v2.in_kvecs[0].iov_base;
1964 	ceph_decode_64_safe(&p, end, server_feat, bad);
1965 	ceph_decode_64_safe(&p, end, server_req_feat, bad);
1966 
1967 	dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n",
1968 	     __func__, con, server_feat, server_req_feat);
1969 
1970 	if (req_feat & ~server_feat) {
1971 		pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
1972 		       server_feat, req_feat & ~server_feat);
1973 		con->error_msg = "missing required protocol features";
1974 		return -EINVAL;
1975 	}
1976 	if (server_req_feat & ~feat) {
1977 		pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
1978 		       feat, server_req_feat & ~feat);
1979 		con->error_msg = "missing required protocol features";
1980 		return -EINVAL;
1981 	}
1982 
1983 	/* no reset_out_kvecs() as our banner may still be pending */
1984 	ret = prepare_hello(con);
1985 	if (ret) {
1986 		pr_err("prepare_hello failed: %d\n", ret);
1987 		return ret;
1988 	}
1989 
1990 	con->state = CEPH_CON_S_V2_HELLO;
1991 	prepare_read_preamble(con);
1992 	return 0;
1993 
1994 bad:
1995 	pr_err("failed to decode banner payload\n");
1996 	return -EINVAL;
1997 }
1998 
1999 static int process_hello(struct ceph_connection *con, void *p, void *end)
2000 {
2001 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
2002 	struct ceph_entity_addr addr_for_me;
2003 	u8 entity_type;
2004 	int ret;
2005 
2006 	if (con->state != CEPH_CON_S_V2_HELLO) {
2007 		con->error_msg = "protocol error, unexpected hello";
2008 		return -EINVAL;
2009 	}
2010 
2011 	ceph_decode_8_safe(&p, end, entity_type, bad);
2012 	ret = ceph_decode_entity_addr(&p, end, &addr_for_me);
2013 	if (ret) {
2014 		pr_err("failed to decode addr_for_me: %d\n", ret);
2015 		return ret;
2016 	}
2017 
2018 	dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con,
2019 	     entity_type, ceph_pr_addr(&addr_for_me));
2020 
2021 	if (entity_type != con->peer_name.type) {
2022 		pr_err("bad peer type, want %d, got %d\n",
2023 		       con->peer_name.type, entity_type);
2024 		con->error_msg = "wrong peer at address";
2025 		return -EINVAL;
2026 	}
2027 
2028 	/*
2029 	 * Set our address to the address our first peer (i.e. monitor)
2030 	 * sees that we are connecting from.  If we are behind some sort
2031 	 * of NAT and want to be identified by some private (not NATed)
2032 	 * address, ip option should be used.
2033 	 */
2034 	if (ceph_addr_is_blank(my_addr)) {
2035 		memcpy(&my_addr->in_addr, &addr_for_me.in_addr,
2036 		       sizeof(my_addr->in_addr));
2037 		ceph_addr_set_port(my_addr, 0);
2038 		dout("%s con %p set my addr %s, as seen by peer %s\n",
2039 		     __func__, con, ceph_pr_addr(my_addr),
2040 		     ceph_pr_addr(&con->peer_addr));
2041 	} else {
2042 		dout("%s con %p my addr already set %s\n",
2043 		     __func__, con, ceph_pr_addr(my_addr));
2044 	}
2045 
2046 	WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr));
2047 	WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY);
2048 	WARN_ON(!my_addr->nonce);
2049 
2050 	/* no reset_out_kvecs() as our hello may still be pending */
2051 	ret = prepare_auth_request(con);
2052 	if (ret) {
2053 		if (ret != -EAGAIN)
2054 			pr_err("prepare_auth_request failed: %d\n", ret);
2055 		return ret;
2056 	}
2057 
2058 	con->state = CEPH_CON_S_V2_AUTH;
2059 	return 0;
2060 
2061 bad:
2062 	pr_err("failed to decode hello\n");
2063 	return -EINVAL;
2064 }
2065 
2066 static int process_auth_bad_method(struct ceph_connection *con,
2067 				   void *p, void *end)
2068 {
2069 	int allowed_protos[8], allowed_modes[8];
2070 	int allowed_proto_cnt, allowed_mode_cnt;
2071 	int used_proto, result;
2072 	int ret;
2073 	int i;
2074 
2075 	if (con->state != CEPH_CON_S_V2_AUTH) {
2076 		con->error_msg = "protocol error, unexpected auth_bad_method";
2077 		return -EINVAL;
2078 	}
2079 
2080 	ceph_decode_32_safe(&p, end, used_proto, bad);
2081 	ceph_decode_32_safe(&p, end, result, bad);
2082 	dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto,
2083 	     result);
2084 
2085 	ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad);
2086 	if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) {
2087 		pr_err("allowed_protos too big %d\n", allowed_proto_cnt);
2088 		return -EINVAL;
2089 	}
2090 	for (i = 0; i < allowed_proto_cnt; i++) {
2091 		ceph_decode_32_safe(&p, end, allowed_protos[i], bad);
2092 		dout("%s con %p allowed_protos[%d] %d\n", __func__, con,
2093 		     i, allowed_protos[i]);
2094 	}
2095 
2096 	ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad);
2097 	if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) {
2098 		pr_err("allowed_modes too big %d\n", allowed_mode_cnt);
2099 		return -EINVAL;
2100 	}
2101 	for (i = 0; i < allowed_mode_cnt; i++) {
2102 		ceph_decode_32_safe(&p, end, allowed_modes[i], bad);
2103 		dout("%s con %p allowed_modes[%d] %d\n", __func__, con,
2104 		     i, allowed_modes[i]);
2105 	}
2106 
2107 	mutex_unlock(&con->mutex);
2108 	ret = con->ops->handle_auth_bad_method(con, used_proto, result,
2109 					       allowed_protos,
2110 					       allowed_proto_cnt,
2111 					       allowed_modes,
2112 					       allowed_mode_cnt);
2113 	mutex_lock(&con->mutex);
2114 	if (con->state != CEPH_CON_S_V2_AUTH) {
2115 		dout("%s con %p state changed to %d\n", __func__, con,
2116 		     con->state);
2117 		return -EAGAIN;
2118 	}
2119 
2120 	dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret);
2121 	return ret;
2122 
2123 bad:
2124 	pr_err("failed to decode auth_bad_method\n");
2125 	return -EINVAL;
2126 }
2127 
2128 static int process_auth_reply_more(struct ceph_connection *con,
2129 				   void *p, void *end)
2130 {
2131 	int payload_len;
2132 	int ret;
2133 
2134 	if (con->state != CEPH_CON_S_V2_AUTH) {
2135 		con->error_msg = "protocol error, unexpected auth_reply_more";
2136 		return -EINVAL;
2137 	}
2138 
2139 	ceph_decode_32_safe(&p, end, payload_len, bad);
2140 	ceph_decode_need(&p, end, payload_len, bad);
2141 
2142 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
2143 
2144 	reset_out_kvecs(con);
2145 	ret = prepare_auth_request_more(con, p, payload_len);
2146 	if (ret) {
2147 		if (ret != -EAGAIN)
2148 			pr_err("prepare_auth_request_more failed: %d\n", ret);
2149 		return ret;
2150 	}
2151 
2152 	return 0;
2153 
2154 bad:
2155 	pr_err("failed to decode auth_reply_more\n");
2156 	return -EINVAL;
2157 }
2158 
2159 /*
2160  * Align session_key and con_secret to avoid GFP_ATOMIC allocation
2161  * inside crypto_shash_setkey() and crypto_aead_setkey() called from
2162  * setup_crypto().  __aligned(16) isn't guaranteed to work for stack
2163  * objects, so do it by hand.
2164  */
2165 static int process_auth_done(struct ceph_connection *con, void *p, void *end)
2166 {
2167 	u8 session_key_buf[CEPH_KEY_LEN + 16];
2168 	u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16];
2169 	u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16);
2170 	u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16);
2171 	int session_key_len, con_secret_len;
2172 	int payload_len;
2173 	u64 global_id;
2174 	int ret;
2175 
2176 	if (con->state != CEPH_CON_S_V2_AUTH) {
2177 		con->error_msg = "protocol error, unexpected auth_done";
2178 		return -EINVAL;
2179 	}
2180 
2181 	ceph_decode_64_safe(&p, end, global_id, bad);
2182 	ceph_decode_32_safe(&p, end, con->v2.con_mode, bad);
2183 	ceph_decode_32_safe(&p, end, payload_len, bad);
2184 
2185 	dout("%s con %p global_id %llu con_mode %d payload_len %d\n",
2186 	     __func__, con, global_id, con->v2.con_mode, payload_len);
2187 
2188 	mutex_unlock(&con->mutex);
2189 	session_key_len = 0;
2190 	con_secret_len = 0;
2191 	ret = con->ops->handle_auth_done(con, global_id, p, payload_len,
2192 					 session_key, &session_key_len,
2193 					 con_secret, &con_secret_len);
2194 	mutex_lock(&con->mutex);
2195 	if (con->state != CEPH_CON_S_V2_AUTH) {
2196 		dout("%s con %p state changed to %d\n", __func__, con,
2197 		     con->state);
2198 		ret = -EAGAIN;
2199 		goto out;
2200 	}
2201 
2202 	dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret);
2203 	if (ret)
2204 		goto out;
2205 
2206 	ret = setup_crypto(con, session_key, session_key_len, con_secret,
2207 			   con_secret_len);
2208 	if (ret)
2209 		goto out;
2210 
2211 	reset_out_kvecs(con);
2212 	ret = prepare_auth_signature(con);
2213 	if (ret) {
2214 		pr_err("prepare_auth_signature failed: %d\n", ret);
2215 		goto out;
2216 	}
2217 
2218 	con->state = CEPH_CON_S_V2_AUTH_SIGNATURE;
2219 
2220 out:
2221 	memzero_explicit(session_key_buf, sizeof(session_key_buf));
2222 	memzero_explicit(con_secret_buf, sizeof(con_secret_buf));
2223 	return ret;
2224 
2225 bad:
2226 	pr_err("failed to decode auth_done\n");
2227 	return -EINVAL;
2228 }
2229 
2230 static int process_auth_signature(struct ceph_connection *con,
2231 				  void *p, void *end)
2232 {
2233 	u8 hmac[SHA256_DIGEST_SIZE];
2234 	int ret;
2235 
2236 	if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) {
2237 		con->error_msg = "protocol error, unexpected auth_signature";
2238 		return -EINVAL;
2239 	}
2240 
2241 	ret = hmac_sha256(con, con->v2.out_sign_kvecs,
2242 			  con->v2.out_sign_kvec_cnt, hmac);
2243 	if (ret)
2244 		return ret;
2245 
2246 	ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad);
2247 	if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) {
2248 		con->error_msg = "integrity error, bad auth signature";
2249 		return -EBADMSG;
2250 	}
2251 
2252 	dout("%s con %p auth signature ok\n", __func__, con);
2253 
2254 	/* no reset_out_kvecs() as our auth_signature may still be pending */
2255 	if (!con->v2.server_cookie) {
2256 		ret = prepare_client_ident(con);
2257 		if (ret) {
2258 			pr_err("prepare_client_ident failed: %d\n", ret);
2259 			return ret;
2260 		}
2261 
2262 		con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2263 	} else {
2264 		ret = prepare_session_reconnect(con);
2265 		if (ret) {
2266 			pr_err("prepare_session_reconnect failed: %d\n", ret);
2267 			return ret;
2268 		}
2269 
2270 		con->state = CEPH_CON_S_V2_SESSION_RECONNECT;
2271 	}
2272 
2273 	return 0;
2274 
2275 bad:
2276 	pr_err("failed to decode auth_signature\n");
2277 	return -EINVAL;
2278 }
2279 
2280 static int process_server_ident(struct ceph_connection *con,
2281 				void *p, void *end)
2282 {
2283 	struct ceph_client *client = from_msgr(con->msgr);
2284 	u64 features, required_features;
2285 	struct ceph_entity_addr addr;
2286 	u64 global_seq;
2287 	u64 global_id;
2288 	u64 cookie;
2289 	u64 flags;
2290 	int ret;
2291 
2292 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2293 		con->error_msg = "protocol error, unexpected server_ident";
2294 		return -EINVAL;
2295 	}
2296 
2297 	ret = ceph_decode_entity_addrvec(&p, end, true, &addr);
2298 	if (ret) {
2299 		pr_err("failed to decode server addrs: %d\n", ret);
2300 		return ret;
2301 	}
2302 
2303 	ceph_decode_64_safe(&p, end, global_id, bad);
2304 	ceph_decode_64_safe(&p, end, global_seq, bad);
2305 	ceph_decode_64_safe(&p, end, features, bad);
2306 	ceph_decode_64_safe(&p, end, required_features, bad);
2307 	ceph_decode_64_safe(&p, end, flags, bad);
2308 	ceph_decode_64_safe(&p, end, cookie, bad);
2309 
2310 	dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n",
2311 	     __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce),
2312 	     global_id, global_seq, features, required_features, flags, cookie);
2313 
2314 	/* is this who we intended to talk to? */
2315 	if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) {
2316 		pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n",
2317 		       ceph_pr_addr(&con->peer_addr),
2318 		       le32_to_cpu(con->peer_addr.nonce),
2319 		       ceph_pr_addr(&addr), le32_to_cpu(addr.nonce));
2320 		con->error_msg = "wrong peer at address";
2321 		return -EINVAL;
2322 	}
2323 
2324 	if (client->required_features & ~features) {
2325 		pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
2326 		       features, client->required_features & ~features);
2327 		con->error_msg = "missing required protocol features";
2328 		return -EINVAL;
2329 	}
2330 
2331 	/*
2332 	 * Both name->type and name->num are set in ceph_con_open() but
2333 	 * name->num may be bogus in the initial monmap.  name->type is
2334 	 * verified in handle_hello().
2335 	 */
2336 	WARN_ON(!con->peer_name.type);
2337 	con->peer_name.num = cpu_to_le64(global_id);
2338 	con->v2.peer_global_seq = global_seq;
2339 	con->peer_features = features;
2340 	WARN_ON(required_features & ~client->supported_features);
2341 	con->v2.server_cookie = cookie;
2342 
2343 	if (flags & CEPH_MSG_CONNECT_LOSSY) {
2344 		ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX);
2345 		WARN_ON(con->v2.server_cookie);
2346 	} else {
2347 		WARN_ON(!con->v2.server_cookie);
2348 	}
2349 
2350 	clear_in_sign_kvecs(con);
2351 	clear_out_sign_kvecs(con);
2352 	free_conn_bufs(con);
2353 	con->delay = 0;  /* reset backoff memory */
2354 
2355 	con->state = CEPH_CON_S_OPEN;
2356 	con->v2.out_state = OUT_S_GET_NEXT;
2357 	return 0;
2358 
2359 bad:
2360 	pr_err("failed to decode server_ident\n");
2361 	return -EINVAL;
2362 }
2363 
2364 static int process_ident_missing_features(struct ceph_connection *con,
2365 					  void *p, void *end)
2366 {
2367 	struct ceph_client *client = from_msgr(con->msgr);
2368 	u64 missing_features;
2369 
2370 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2371 		con->error_msg = "protocol error, unexpected ident_missing_features";
2372 		return -EINVAL;
2373 	}
2374 
2375 	ceph_decode_64_safe(&p, end, missing_features, bad);
2376 	pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
2377 	       client->supported_features, missing_features);
2378 	con->error_msg = "missing required protocol features";
2379 	return -EINVAL;
2380 
2381 bad:
2382 	pr_err("failed to decode ident_missing_features\n");
2383 	return -EINVAL;
2384 }
2385 
2386 static int process_session_reconnect_ok(struct ceph_connection *con,
2387 					void *p, void *end)
2388 {
2389 	u64 seq;
2390 
2391 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2392 		con->error_msg = "protocol error, unexpected session_reconnect_ok";
2393 		return -EINVAL;
2394 	}
2395 
2396 	ceph_decode_64_safe(&p, end, seq, bad);
2397 
2398 	dout("%s con %p seq %llu\n", __func__, con, seq);
2399 	ceph_con_discard_requeued(con, seq);
2400 
2401 	clear_in_sign_kvecs(con);
2402 	clear_out_sign_kvecs(con);
2403 	free_conn_bufs(con);
2404 	con->delay = 0;  /* reset backoff memory */
2405 
2406 	con->state = CEPH_CON_S_OPEN;
2407 	con->v2.out_state = OUT_S_GET_NEXT;
2408 	return 0;
2409 
2410 bad:
2411 	pr_err("failed to decode session_reconnect_ok\n");
2412 	return -EINVAL;
2413 }
2414 
2415 static int process_session_retry(struct ceph_connection *con,
2416 				 void *p, void *end)
2417 {
2418 	u64 connect_seq;
2419 	int ret;
2420 
2421 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2422 		con->error_msg = "protocol error, unexpected session_retry";
2423 		return -EINVAL;
2424 	}
2425 
2426 	ceph_decode_64_safe(&p, end, connect_seq, bad);
2427 
2428 	dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq);
2429 	WARN_ON(connect_seq <= con->v2.connect_seq);
2430 	con->v2.connect_seq = connect_seq + 1;
2431 
2432 	free_conn_bufs(con);
2433 
2434 	reset_out_kvecs(con);
2435 	ret = prepare_session_reconnect(con);
2436 	if (ret) {
2437 		pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret);
2438 		return ret;
2439 	}
2440 
2441 	return 0;
2442 
2443 bad:
2444 	pr_err("failed to decode session_retry\n");
2445 	return -EINVAL;
2446 }
2447 
2448 static int process_session_retry_global(struct ceph_connection *con,
2449 					void *p, void *end)
2450 {
2451 	u64 global_seq;
2452 	int ret;
2453 
2454 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2455 		con->error_msg = "protocol error, unexpected session_retry_global";
2456 		return -EINVAL;
2457 	}
2458 
2459 	ceph_decode_64_safe(&p, end, global_seq, bad);
2460 
2461 	dout("%s con %p global_seq %llu\n", __func__, con, global_seq);
2462 	WARN_ON(global_seq <= con->v2.global_seq);
2463 	con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq);
2464 
2465 	free_conn_bufs(con);
2466 
2467 	reset_out_kvecs(con);
2468 	ret = prepare_session_reconnect(con);
2469 	if (ret) {
2470 		pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret);
2471 		return ret;
2472 	}
2473 
2474 	return 0;
2475 
2476 bad:
2477 	pr_err("failed to decode session_retry_global\n");
2478 	return -EINVAL;
2479 }
2480 
2481 static int process_session_reset(struct ceph_connection *con,
2482 				 void *p, void *end)
2483 {
2484 	bool full;
2485 	int ret;
2486 
2487 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2488 		con->error_msg = "protocol error, unexpected session_reset";
2489 		return -EINVAL;
2490 	}
2491 
2492 	ceph_decode_8_safe(&p, end, full, bad);
2493 	if (!full) {
2494 		con->error_msg = "protocol error, bad session_reset";
2495 		return -EINVAL;
2496 	}
2497 
2498 	pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name),
2499 		ceph_pr_addr(&con->peer_addr));
2500 	ceph_con_reset_session(con);
2501 
2502 	mutex_unlock(&con->mutex);
2503 	if (con->ops->peer_reset)
2504 		con->ops->peer_reset(con);
2505 	mutex_lock(&con->mutex);
2506 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2507 		dout("%s con %p state changed to %d\n", __func__, con,
2508 		     con->state);
2509 		return -EAGAIN;
2510 	}
2511 
2512 	free_conn_bufs(con);
2513 
2514 	reset_out_kvecs(con);
2515 	ret = prepare_client_ident(con);
2516 	if (ret) {
2517 		pr_err("prepare_client_ident (rst) failed: %d\n", ret);
2518 		return ret;
2519 	}
2520 
2521 	con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2522 	return 0;
2523 
2524 bad:
2525 	pr_err("failed to decode session_reset\n");
2526 	return -EINVAL;
2527 }
2528 
2529 static int process_keepalive2_ack(struct ceph_connection *con,
2530 				  void *p, void *end)
2531 {
2532 	if (con->state != CEPH_CON_S_OPEN) {
2533 		con->error_msg = "protocol error, unexpected keepalive2_ack";
2534 		return -EINVAL;
2535 	}
2536 
2537 	ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad);
2538 	ceph_decode_timespec64(&con->last_keepalive_ack, p);
2539 
2540 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con,
2541 	     con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec);
2542 
2543 	return 0;
2544 
2545 bad:
2546 	pr_err("failed to decode keepalive2_ack\n");
2547 	return -EINVAL;
2548 }
2549 
2550 static int process_ack(struct ceph_connection *con, void *p, void *end)
2551 {
2552 	u64 seq;
2553 
2554 	if (con->state != CEPH_CON_S_OPEN) {
2555 		con->error_msg = "protocol error, unexpected ack";
2556 		return -EINVAL;
2557 	}
2558 
2559 	ceph_decode_64_safe(&p, end, seq, bad);
2560 
2561 	dout("%s con %p seq %llu\n", __func__, con, seq);
2562 	ceph_con_discard_sent(con, seq);
2563 	return 0;
2564 
2565 bad:
2566 	pr_err("failed to decode ack\n");
2567 	return -EINVAL;
2568 }
2569 
2570 static int process_control(struct ceph_connection *con, void *p, void *end)
2571 {
2572 	int tag = con->v2.in_desc.fd_tag;
2573 	int ret;
2574 
2575 	dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p));
2576 
2577 	switch (tag) {
2578 	case FRAME_TAG_HELLO:
2579 		ret = process_hello(con, p, end);
2580 		break;
2581 	case FRAME_TAG_AUTH_BAD_METHOD:
2582 		ret = process_auth_bad_method(con, p, end);
2583 		break;
2584 	case FRAME_TAG_AUTH_REPLY_MORE:
2585 		ret = process_auth_reply_more(con, p, end);
2586 		break;
2587 	case FRAME_TAG_AUTH_DONE:
2588 		ret = process_auth_done(con, p, end);
2589 		break;
2590 	case FRAME_TAG_AUTH_SIGNATURE:
2591 		ret = process_auth_signature(con, p, end);
2592 		break;
2593 	case FRAME_TAG_SERVER_IDENT:
2594 		ret = process_server_ident(con, p, end);
2595 		break;
2596 	case FRAME_TAG_IDENT_MISSING_FEATURES:
2597 		ret = process_ident_missing_features(con, p, end);
2598 		break;
2599 	case FRAME_TAG_SESSION_RECONNECT_OK:
2600 		ret = process_session_reconnect_ok(con, p, end);
2601 		break;
2602 	case FRAME_TAG_SESSION_RETRY:
2603 		ret = process_session_retry(con, p, end);
2604 		break;
2605 	case FRAME_TAG_SESSION_RETRY_GLOBAL:
2606 		ret = process_session_retry_global(con, p, end);
2607 		break;
2608 	case FRAME_TAG_SESSION_RESET:
2609 		ret = process_session_reset(con, p, end);
2610 		break;
2611 	case FRAME_TAG_KEEPALIVE2_ACK:
2612 		ret = process_keepalive2_ack(con, p, end);
2613 		break;
2614 	case FRAME_TAG_ACK:
2615 		ret = process_ack(con, p, end);
2616 		break;
2617 	default:
2618 		pr_err("bad tag %d\n", tag);
2619 		con->error_msg = "protocol error, bad tag";
2620 		return -EINVAL;
2621 	}
2622 	if (ret) {
2623 		dout("%s con %p error %d\n", __func__, con, ret);
2624 		return ret;
2625 	}
2626 
2627 	prepare_read_preamble(con);
2628 	return 0;
2629 }
2630 
2631 /*
2632  * Return:
2633  *   1 - con->in_msg set, read message
2634  *   0 - skip message
2635  *  <0 - error
2636  */
2637 static int process_message_header(struct ceph_connection *con,
2638 				  void *p, void *end)
2639 {
2640 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2641 	struct ceph_msg_header2 *hdr2 = p;
2642 	struct ceph_msg_header hdr;
2643 	int skip;
2644 	int ret;
2645 	u64 seq;
2646 
2647 	/* verify seq# */
2648 	seq = le64_to_cpu(hdr2->seq);
2649 	if ((s64)seq - (s64)con->in_seq < 1) {
2650 		pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n",
2651 			ENTITY_NAME(con->peer_name),
2652 			ceph_pr_addr(&con->peer_addr),
2653 			seq, con->in_seq + 1);
2654 		return 0;
2655 	}
2656 	if ((s64)seq - (s64)con->in_seq > 1) {
2657 		pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1);
2658 		con->error_msg = "bad message sequence # for incoming message";
2659 		return -EBADE;
2660 	}
2661 
2662 	ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq));
2663 
2664 	fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2],
2665 		    desc->fd_lens[3], &con->peer_name);
2666 	ret = ceph_con_in_msg_alloc(con, &hdr, &skip);
2667 	if (ret)
2668 		return ret;
2669 
2670 	WARN_ON(!con->in_msg ^ skip);
2671 	if (skip)
2672 		return 0;
2673 
2674 	WARN_ON(!con->in_msg);
2675 	WARN_ON(con->in_msg->con != con);
2676 	return 1;
2677 }
2678 
2679 static int process_message(struct ceph_connection *con)
2680 {
2681 	ceph_con_process_message(con);
2682 
2683 	/*
2684 	 * We could have been closed by ceph_con_close() because
2685 	 * ceph_con_process_message() temporarily drops con->mutex.
2686 	 */
2687 	if (con->state != CEPH_CON_S_OPEN) {
2688 		dout("%s con %p state changed to %d\n", __func__, con,
2689 		     con->state);
2690 		return -EAGAIN;
2691 	}
2692 
2693 	prepare_read_preamble(con);
2694 	return 0;
2695 }
2696 
2697 static int __handle_control(struct ceph_connection *con, void *p)
2698 {
2699 	void *end = p + con->v2.in_desc.fd_lens[0];
2700 	struct ceph_msg *msg;
2701 	int ret;
2702 
2703 	if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE)
2704 		return process_control(con, p, end);
2705 
2706 	ret = process_message_header(con, p, end);
2707 	if (ret < 0)
2708 		return ret;
2709 	if (ret == 0) {
2710 		prepare_skip_message(con);
2711 		return 0;
2712 	}
2713 
2714 	msg = con->in_msg;  /* set in process_message_header() */
2715 	if (front_len(msg)) {
2716 		WARN_ON(front_len(msg) > msg->front_alloc_len);
2717 		msg->front.iov_len = front_len(msg);
2718 	} else {
2719 		msg->front.iov_len = 0;
2720 	}
2721 	if (middle_len(msg)) {
2722 		WARN_ON(middle_len(msg) > msg->middle->alloc_len);
2723 		msg->middle->vec.iov_len = middle_len(msg);
2724 	} else if (msg->middle) {
2725 		msg->middle->vec.iov_len = 0;
2726 	}
2727 
2728 	if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
2729 		return process_message(con);
2730 
2731 	if (con_secure(con))
2732 		return prepare_read_tail_secure(con);
2733 
2734 	return prepare_read_tail_plain(con);
2735 }
2736 
2737 static int handle_preamble(struct ceph_connection *con)
2738 {
2739 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2740 	int ret;
2741 
2742 	if (con_secure(con)) {
2743 		ret = decrypt_preamble(con);
2744 		if (ret) {
2745 			if (ret == -EBADMSG)
2746 				con->error_msg = "integrity error, bad preamble auth tag";
2747 			return ret;
2748 		}
2749 	}
2750 
2751 	ret = decode_preamble(con->v2.in_buf, desc);
2752 	if (ret) {
2753 		if (ret == -EBADMSG)
2754 			con->error_msg = "integrity error, bad crc";
2755 		else
2756 			con->error_msg = "protocol error, bad preamble";
2757 		return ret;
2758 	}
2759 
2760 	dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__,
2761 	     con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0],
2762 	     desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]);
2763 
2764 	if (!con_secure(con))
2765 		return prepare_read_control(con);
2766 
2767 	if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN)
2768 		return prepare_read_control_remainder(con);
2769 
2770 	return __handle_control(con, CTRL_BODY(con->v2.in_buf));
2771 }
2772 
2773 static int handle_control(struct ceph_connection *con)
2774 {
2775 	int ctrl_len = con->v2.in_desc.fd_lens[0];
2776 	void *buf;
2777 	int ret;
2778 
2779 	WARN_ON(con_secure(con));
2780 
2781 	ret = verify_control_crc(con);
2782 	if (ret) {
2783 		con->error_msg = "integrity error, bad crc";
2784 		return ret;
2785 	}
2786 
2787 	if (con->state == CEPH_CON_S_V2_AUTH) {
2788 		buf = alloc_conn_buf(con, ctrl_len);
2789 		if (!buf)
2790 			return -ENOMEM;
2791 
2792 		memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len);
2793 		return __handle_control(con, buf);
2794 	}
2795 
2796 	return __handle_control(con, con->v2.in_kvecs[0].iov_base);
2797 }
2798 
2799 static int handle_control_remainder(struct ceph_connection *con)
2800 {
2801 	int ret;
2802 
2803 	WARN_ON(!con_secure(con));
2804 
2805 	ret = decrypt_control_remainder(con);
2806 	if (ret) {
2807 		if (ret == -EBADMSG)
2808 			con->error_msg = "integrity error, bad control remainder auth tag";
2809 		return ret;
2810 	}
2811 
2812 	return __handle_control(con, con->v2.in_kvecs[0].iov_base -
2813 				     CEPH_PREAMBLE_INLINE_LEN);
2814 }
2815 
2816 static int handle_epilogue(struct ceph_connection *con)
2817 {
2818 	u32 front_crc, middle_crc, data_crc;
2819 	int ret;
2820 
2821 	if (con_secure(con)) {
2822 		ret = decrypt_tail(con);
2823 		if (ret) {
2824 			if (ret == -EBADMSG)
2825 				con->error_msg = "integrity error, bad epilogue auth tag";
2826 			return ret;
2827 		}
2828 
2829 		/* just late_status */
2830 		ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL);
2831 		if (ret) {
2832 			con->error_msg = "protocol error, bad epilogue";
2833 			return ret;
2834 		}
2835 	} else {
2836 		ret = decode_epilogue(con->v2.in_buf, &front_crc,
2837 				      &middle_crc, &data_crc);
2838 		if (ret) {
2839 			con->error_msg = "protocol error, bad epilogue";
2840 			return ret;
2841 		}
2842 
2843 		ret = verify_epilogue_crcs(con, front_crc, middle_crc,
2844 					   data_crc);
2845 		if (ret) {
2846 			con->error_msg = "integrity error, bad crc";
2847 			return ret;
2848 		}
2849 	}
2850 
2851 	return process_message(con);
2852 }
2853 
2854 static void finish_skip(struct ceph_connection *con)
2855 {
2856 	dout("%s con %p\n", __func__, con);
2857 
2858 	if (con_secure(con))
2859 		gcm_inc_nonce(&con->v2.in_gcm_nonce);
2860 
2861 	__finish_skip(con);
2862 }
2863 
2864 static int populate_in_iter(struct ceph_connection *con)
2865 {
2866 	int ret;
2867 
2868 	dout("%s con %p state %d in_state %d\n", __func__, con, con->state,
2869 	     con->v2.in_state);
2870 	WARN_ON(iov_iter_count(&con->v2.in_iter));
2871 
2872 	if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) {
2873 		ret = process_banner_prefix(con);
2874 	} else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) {
2875 		ret = process_banner_payload(con);
2876 	} else if ((con->state >= CEPH_CON_S_V2_HELLO &&
2877 		    con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) ||
2878 		   con->state == CEPH_CON_S_OPEN) {
2879 		switch (con->v2.in_state) {
2880 		case IN_S_HANDLE_PREAMBLE:
2881 			ret = handle_preamble(con);
2882 			break;
2883 		case IN_S_HANDLE_CONTROL:
2884 			ret = handle_control(con);
2885 			break;
2886 		case IN_S_HANDLE_CONTROL_REMAINDER:
2887 			ret = handle_control_remainder(con);
2888 			break;
2889 		case IN_S_PREPARE_READ_DATA:
2890 			ret = prepare_read_data(con);
2891 			break;
2892 		case IN_S_PREPARE_READ_DATA_CONT:
2893 			prepare_read_data_cont(con);
2894 			ret = 0;
2895 			break;
2896 		case IN_S_PREPARE_READ_ENC_PAGE:
2897 			prepare_read_enc_page(con);
2898 			ret = 0;
2899 			break;
2900 		case IN_S_HANDLE_EPILOGUE:
2901 			ret = handle_epilogue(con);
2902 			break;
2903 		case IN_S_FINISH_SKIP:
2904 			finish_skip(con);
2905 			ret = 0;
2906 			break;
2907 		default:
2908 			WARN(1, "bad in_state %d", con->v2.in_state);
2909 			return -EINVAL;
2910 		}
2911 	} else {
2912 		WARN(1, "bad state %d", con->state);
2913 		return -EINVAL;
2914 	}
2915 	if (ret) {
2916 		dout("%s con %p error %d\n", __func__, con, ret);
2917 		return ret;
2918 	}
2919 
2920 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
2921 		return -ENODATA;
2922 	dout("%s con %p populated %zu\n", __func__, con,
2923 	     iov_iter_count(&con->v2.in_iter));
2924 	return 1;
2925 }
2926 
2927 int ceph_con_v2_try_read(struct ceph_connection *con)
2928 {
2929 	int ret;
2930 
2931 	dout("%s con %p state %d need %zu\n", __func__, con, con->state,
2932 	     iov_iter_count(&con->v2.in_iter));
2933 
2934 	if (con->state == CEPH_CON_S_PREOPEN)
2935 		return 0;
2936 
2937 	/*
2938 	 * We should always have something pending here.  If not,
2939 	 * avoid calling populate_in_iter() as if we read something
2940 	 * (ceph_tcp_recv() would immediately return 1).
2941 	 */
2942 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
2943 		return -ENODATA;
2944 
2945 	for (;;) {
2946 		ret = ceph_tcp_recv(con);
2947 		if (ret <= 0)
2948 			return ret;
2949 
2950 		ret = populate_in_iter(con);
2951 		if (ret <= 0) {
2952 			if (ret && ret != -EAGAIN && !con->error_msg)
2953 				con->error_msg = "read processing error";
2954 			return ret;
2955 		}
2956 	}
2957 }
2958 
2959 static void queue_data(struct ceph_connection *con)
2960 {
2961 	struct bio_vec bv;
2962 
2963 	con->v2.out_epil.data_crc = -1;
2964 	ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg,
2965 				  data_len(con->out_msg));
2966 
2967 	get_bvec_at(&con->v2.out_cursor, &bv);
2968 	set_out_bvec(con, &bv, true);
2969 	con->v2.out_state = OUT_S_QUEUE_DATA_CONT;
2970 }
2971 
2972 static void queue_data_cont(struct ceph_connection *con)
2973 {
2974 	struct bio_vec bv;
2975 
2976 	con->v2.out_epil.data_crc = ceph_crc32c_page(
2977 		con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
2978 		con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len);
2979 
2980 	ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len);
2981 	if (con->v2.out_cursor.total_resid) {
2982 		get_bvec_at(&con->v2.out_cursor, &bv);
2983 		set_out_bvec(con, &bv, true);
2984 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT);
2985 		return;
2986 	}
2987 
2988 	/*
2989 	 * We've written all data.  Queue epilogue.  Once it's written,
2990 	 * we are done.
2991 	 */
2992 	reset_out_kvecs(con);
2993 	prepare_epilogue_plain(con, false);
2994 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
2995 }
2996 
2997 static void queue_enc_page(struct ceph_connection *con)
2998 {
2999 	struct bio_vec bv;
3000 
3001 	dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i,
3002 	     con->v2.out_enc_resid);
3003 	WARN_ON(!con->v2.out_enc_resid);
3004 
3005 	bv.bv_page = con->v2.out_enc_pages[con->v2.out_enc_i];
3006 	bv.bv_offset = 0;
3007 	bv.bv_len = min(con->v2.out_enc_resid, (int)PAGE_SIZE);
3008 
3009 	set_out_bvec(con, &bv, false);
3010 	con->v2.out_enc_i++;
3011 	con->v2.out_enc_resid -= bv.bv_len;
3012 
3013 	if (con->v2.out_enc_resid) {
3014 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE);
3015 		return;
3016 	}
3017 
3018 	/*
3019 	 * We've queued the last piece of ciphertext (ending with
3020 	 * epilogue) + auth tag.  Once it's written, we are done.
3021 	 */
3022 	WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt);
3023 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
3024 }
3025 
3026 static void queue_zeros(struct ceph_connection *con)
3027 {
3028 	dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero);
3029 
3030 	if (con->v2.out_zero) {
3031 		set_out_bvec_zero(con);
3032 		con->v2.out_zero -= con->v2.out_bvec.bv_len;
3033 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3034 		return;
3035 	}
3036 
3037 	/*
3038 	 * We've zero-filled everything up to epilogue.  Queue epilogue
3039 	 * with late_status set to ABORTED and crcs adjusted for zeros.
3040 	 * Once it's written, we are done patching up for the revoke.
3041 	 */
3042 	reset_out_kvecs(con);
3043 	prepare_epilogue_plain(con, true);
3044 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
3045 }
3046 
3047 static void finish_message(struct ceph_connection *con)
3048 {
3049 	dout("%s con %p msg %p\n", __func__, con, con->out_msg);
3050 
3051 	/* we end up here both plain and secure modes */
3052 	if (con->v2.out_enc_pages) {
3053 		WARN_ON(!con->v2.out_enc_page_cnt);
3054 		ceph_release_page_vector(con->v2.out_enc_pages,
3055 					 con->v2.out_enc_page_cnt);
3056 		con->v2.out_enc_pages = NULL;
3057 		con->v2.out_enc_page_cnt = 0;
3058 	}
3059 	/* message may have been revoked */
3060 	if (con->out_msg) {
3061 		ceph_msg_put(con->out_msg);
3062 		con->out_msg = NULL;
3063 	}
3064 
3065 	con->v2.out_state = OUT_S_GET_NEXT;
3066 }
3067 
3068 static int populate_out_iter(struct ceph_connection *con)
3069 {
3070 	int ret;
3071 
3072 	dout("%s con %p state %d out_state %d\n", __func__, con, con->state,
3073 	     con->v2.out_state);
3074 	WARN_ON(iov_iter_count(&con->v2.out_iter));
3075 
3076 	if (con->state != CEPH_CON_S_OPEN) {
3077 		WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX ||
3078 			con->state > CEPH_CON_S_V2_SESSION_RECONNECT);
3079 		goto nothing_pending;
3080 	}
3081 
3082 	switch (con->v2.out_state) {
3083 	case OUT_S_QUEUE_DATA:
3084 		WARN_ON(!con->out_msg);
3085 		queue_data(con);
3086 		goto populated;
3087 	case OUT_S_QUEUE_DATA_CONT:
3088 		WARN_ON(!con->out_msg);
3089 		queue_data_cont(con);
3090 		goto populated;
3091 	case OUT_S_QUEUE_ENC_PAGE:
3092 		queue_enc_page(con);
3093 		goto populated;
3094 	case OUT_S_QUEUE_ZEROS:
3095 		WARN_ON(con->out_msg);  /* revoked */
3096 		queue_zeros(con);
3097 		goto populated;
3098 	case OUT_S_FINISH_MESSAGE:
3099 		finish_message(con);
3100 		break;
3101 	case OUT_S_GET_NEXT:
3102 		break;
3103 	default:
3104 		WARN(1, "bad out_state %d", con->v2.out_state);
3105 		return -EINVAL;
3106 	}
3107 
3108 	WARN_ON(con->v2.out_state != OUT_S_GET_NEXT);
3109 	if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
3110 		ret = prepare_keepalive2(con);
3111 		if (ret) {
3112 			pr_err("prepare_keepalive2 failed: %d\n", ret);
3113 			return ret;
3114 		}
3115 	} else if (!list_empty(&con->out_queue)) {
3116 		ceph_con_get_out_msg(con);
3117 		ret = prepare_message(con);
3118 		if (ret) {
3119 			pr_err("prepare_message failed: %d\n", ret);
3120 			return ret;
3121 		}
3122 	} else if (con->in_seq > con->in_seq_acked) {
3123 		ret = prepare_ack(con);
3124 		if (ret) {
3125 			pr_err("prepare_ack failed: %d\n", ret);
3126 			return ret;
3127 		}
3128 	} else {
3129 		goto nothing_pending;
3130 	}
3131 
3132 populated:
3133 	if (WARN_ON(!iov_iter_count(&con->v2.out_iter)))
3134 		return -ENODATA;
3135 	dout("%s con %p populated %zu\n", __func__, con,
3136 	     iov_iter_count(&con->v2.out_iter));
3137 	return 1;
3138 
3139 nothing_pending:
3140 	WARN_ON(iov_iter_count(&con->v2.out_iter));
3141 	dout("%s con %p nothing pending\n", __func__, con);
3142 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
3143 	return 0;
3144 }
3145 
3146 int ceph_con_v2_try_write(struct ceph_connection *con)
3147 {
3148 	int ret;
3149 
3150 	dout("%s con %p state %d have %zu\n", __func__, con, con->state,
3151 	     iov_iter_count(&con->v2.out_iter));
3152 
3153 	/* open the socket first? */
3154 	if (con->state == CEPH_CON_S_PREOPEN) {
3155 		WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2);
3156 
3157 		/*
3158 		 * Always bump global_seq.  Bump connect_seq only if
3159 		 * there is a session (i.e. we are reconnecting and will
3160 		 * send session_reconnect instead of client_ident).
3161 		 */
3162 		con->v2.global_seq = ceph_get_global_seq(con->msgr, 0);
3163 		if (con->v2.server_cookie)
3164 			con->v2.connect_seq++;
3165 
3166 		ret = prepare_read_banner_prefix(con);
3167 		if (ret) {
3168 			pr_err("prepare_read_banner_prefix failed: %d\n", ret);
3169 			con->error_msg = "connect error";
3170 			return ret;
3171 		}
3172 
3173 		reset_out_kvecs(con);
3174 		ret = prepare_banner(con);
3175 		if (ret) {
3176 			pr_err("prepare_banner failed: %d\n", ret);
3177 			con->error_msg = "connect error";
3178 			return ret;
3179 		}
3180 
3181 		ret = ceph_tcp_connect(con);
3182 		if (ret) {
3183 			pr_err("ceph_tcp_connect failed: %d\n", ret);
3184 			con->error_msg = "connect error";
3185 			return ret;
3186 		}
3187 	}
3188 
3189 	if (!iov_iter_count(&con->v2.out_iter)) {
3190 		ret = populate_out_iter(con);
3191 		if (ret <= 0) {
3192 			if (ret && ret != -EAGAIN && !con->error_msg)
3193 				con->error_msg = "write processing error";
3194 			return ret;
3195 		}
3196 	}
3197 
3198 	tcp_sock_set_cork(con->sock->sk, true);
3199 	for (;;) {
3200 		ret = ceph_tcp_send(con);
3201 		if (ret <= 0)
3202 			break;
3203 
3204 		ret = populate_out_iter(con);
3205 		if (ret <= 0) {
3206 			if (ret && ret != -EAGAIN && !con->error_msg)
3207 				con->error_msg = "write processing error";
3208 			break;
3209 		}
3210 	}
3211 
3212 	tcp_sock_set_cork(con->sock->sk, false);
3213 	return ret;
3214 }
3215 
3216 static u32 crc32c_zeros(u32 crc, int zero_len)
3217 {
3218 	int len;
3219 
3220 	while (zero_len) {
3221 		len = min(zero_len, (int)PAGE_SIZE);
3222 		crc = crc32c(crc, page_address(ceph_zero_page), len);
3223 		zero_len -= len;
3224 	}
3225 
3226 	return crc;
3227 }
3228 
3229 static void prepare_zero_front(struct ceph_connection *con, int resid)
3230 {
3231 	int sent;
3232 
3233 	WARN_ON(!resid || resid > front_len(con->out_msg));
3234 	sent = front_len(con->out_msg) - resid;
3235 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3236 
3237 	if (sent) {
3238 		con->v2.out_epil.front_crc =
3239 			crc32c(-1, con->out_msg->front.iov_base, sent);
3240 		con->v2.out_epil.front_crc =
3241 			crc32c_zeros(con->v2.out_epil.front_crc, resid);
3242 	} else {
3243 		con->v2.out_epil.front_crc = crc32c_zeros(-1, resid);
3244 	}
3245 
3246 	con->v2.out_iter.count -= resid;
3247 	out_zero_add(con, resid);
3248 }
3249 
3250 static void prepare_zero_middle(struct ceph_connection *con, int resid)
3251 {
3252 	int sent;
3253 
3254 	WARN_ON(!resid || resid > middle_len(con->out_msg));
3255 	sent = middle_len(con->out_msg) - resid;
3256 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3257 
3258 	if (sent) {
3259 		con->v2.out_epil.middle_crc =
3260 			crc32c(-1, con->out_msg->middle->vec.iov_base, sent);
3261 		con->v2.out_epil.middle_crc =
3262 			crc32c_zeros(con->v2.out_epil.middle_crc, resid);
3263 	} else {
3264 		con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid);
3265 	}
3266 
3267 	con->v2.out_iter.count -= resid;
3268 	out_zero_add(con, resid);
3269 }
3270 
3271 static void prepare_zero_data(struct ceph_connection *con)
3272 {
3273 	dout("%s con %p\n", __func__, con);
3274 	con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg));
3275 	out_zero_add(con, data_len(con->out_msg));
3276 }
3277 
3278 static void revoke_at_queue_data(struct ceph_connection *con)
3279 {
3280 	int boundary;
3281 	int resid;
3282 
3283 	WARN_ON(!data_len(con->out_msg));
3284 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3285 	resid = iov_iter_count(&con->v2.out_iter);
3286 
3287 	boundary = front_len(con->out_msg) + middle_len(con->out_msg);
3288 	if (resid > boundary) {
3289 		resid -= boundary;
3290 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3291 		dout("%s con %p was sending head\n", __func__, con);
3292 		if (front_len(con->out_msg))
3293 			prepare_zero_front(con, front_len(con->out_msg));
3294 		if (middle_len(con->out_msg))
3295 			prepare_zero_middle(con, middle_len(con->out_msg));
3296 		prepare_zero_data(con);
3297 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3298 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3299 		return;
3300 	}
3301 
3302 	boundary = middle_len(con->out_msg);
3303 	if (resid > boundary) {
3304 		resid -= boundary;
3305 		dout("%s con %p was sending front\n", __func__, con);
3306 		prepare_zero_front(con, resid);
3307 		if (middle_len(con->out_msg))
3308 			prepare_zero_middle(con, middle_len(con->out_msg));
3309 		prepare_zero_data(con);
3310 		queue_zeros(con);
3311 		return;
3312 	}
3313 
3314 	WARN_ON(!resid);
3315 	dout("%s con %p was sending middle\n", __func__, con);
3316 	prepare_zero_middle(con, resid);
3317 	prepare_zero_data(con);
3318 	queue_zeros(con);
3319 }
3320 
3321 static void revoke_at_queue_data_cont(struct ceph_connection *con)
3322 {
3323 	int sent, resid;  /* current piece of data */
3324 
3325 	WARN_ON(!data_len(con->out_msg));
3326 	WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter));
3327 	resid = iov_iter_count(&con->v2.out_iter);
3328 	WARN_ON(!resid || resid > con->v2.out_bvec.bv_len);
3329 	sent = con->v2.out_bvec.bv_len - resid;
3330 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3331 
3332 	if (sent) {
3333 		con->v2.out_epil.data_crc = ceph_crc32c_page(
3334 			con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
3335 			con->v2.out_bvec.bv_offset, sent);
3336 		ceph_msg_data_advance(&con->v2.out_cursor, sent);
3337 	}
3338 	WARN_ON(resid > con->v2.out_cursor.total_resid);
3339 	con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc,
3340 						con->v2.out_cursor.total_resid);
3341 
3342 	con->v2.out_iter.count -= resid;
3343 	out_zero_add(con, con->v2.out_cursor.total_resid);
3344 	queue_zeros(con);
3345 }
3346 
3347 static void revoke_at_finish_message(struct ceph_connection *con)
3348 {
3349 	int boundary;
3350 	int resid;
3351 
3352 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3353 	resid = iov_iter_count(&con->v2.out_iter);
3354 
3355 	if (!front_len(con->out_msg) && !middle_len(con->out_msg) &&
3356 	    !data_len(con->out_msg)) {
3357 		WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN);
3358 		dout("%s con %p was sending head (empty message) - noop\n",
3359 		     __func__, con);
3360 		return;
3361 	}
3362 
3363 	boundary = front_len(con->out_msg) + middle_len(con->out_msg) +
3364 		   CEPH_EPILOGUE_PLAIN_LEN;
3365 	if (resid > boundary) {
3366 		resid -= boundary;
3367 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3368 		dout("%s con %p was sending head\n", __func__, con);
3369 		if (front_len(con->out_msg))
3370 			prepare_zero_front(con, front_len(con->out_msg));
3371 		if (middle_len(con->out_msg))
3372 			prepare_zero_middle(con, middle_len(con->out_msg));
3373 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3374 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3375 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3376 		return;
3377 	}
3378 
3379 	boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3380 	if (resid > boundary) {
3381 		resid -= boundary;
3382 		dout("%s con %p was sending front\n", __func__, con);
3383 		prepare_zero_front(con, resid);
3384 		if (middle_len(con->out_msg))
3385 			prepare_zero_middle(con, middle_len(con->out_msg));
3386 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3387 		queue_zeros(con);
3388 		return;
3389 	}
3390 
3391 	boundary = CEPH_EPILOGUE_PLAIN_LEN;
3392 	if (resid > boundary) {
3393 		resid -= boundary;
3394 		dout("%s con %p was sending middle\n", __func__, con);
3395 		prepare_zero_middle(con, resid);
3396 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3397 		queue_zeros(con);
3398 		return;
3399 	}
3400 
3401 	WARN_ON(!resid);
3402 	dout("%s con %p was sending epilogue - noop\n", __func__, con);
3403 }
3404 
3405 void ceph_con_v2_revoke(struct ceph_connection *con)
3406 {
3407 	WARN_ON(con->v2.out_zero);
3408 
3409 	if (con_secure(con)) {
3410 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE &&
3411 			con->v2.out_state != OUT_S_FINISH_MESSAGE);
3412 		dout("%s con %p secure - noop\n", __func__, con);
3413 		return;
3414 	}
3415 
3416 	switch (con->v2.out_state) {
3417 	case OUT_S_QUEUE_DATA:
3418 		revoke_at_queue_data(con);
3419 		break;
3420 	case OUT_S_QUEUE_DATA_CONT:
3421 		revoke_at_queue_data_cont(con);
3422 		break;
3423 	case OUT_S_FINISH_MESSAGE:
3424 		revoke_at_finish_message(con);
3425 		break;
3426 	default:
3427 		WARN(1, "bad out_state %d", con->v2.out_state);
3428 		break;
3429 	}
3430 }
3431 
3432 static void revoke_at_prepare_read_data(struct ceph_connection *con)
3433 {
3434 	int remaining;
3435 	int resid;
3436 
3437 	WARN_ON(con_secure(con));
3438 	WARN_ON(!data_len(con->in_msg));
3439 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
3440 	resid = iov_iter_count(&con->v2.in_iter);
3441 	WARN_ON(!resid);
3442 
3443 	remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3444 	dout("%s con %p resid %d remaining %d\n", __func__, con, resid,
3445 	     remaining);
3446 	con->v2.in_iter.count -= resid;
3447 	set_in_skip(con, resid + remaining);
3448 	con->v2.in_state = IN_S_FINISH_SKIP;
3449 }
3450 
3451 static void revoke_at_prepare_read_data_cont(struct ceph_connection *con)
3452 {
3453 	int recved, resid;  /* current piece of data */
3454 	int remaining;
3455 
3456 	WARN_ON(con_secure(con));
3457 	WARN_ON(!data_len(con->in_msg));
3458 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3459 	resid = iov_iter_count(&con->v2.in_iter);
3460 	WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3461 	recved = con->v2.in_bvec.bv_len - resid;
3462 	dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid);
3463 
3464 	if (recved)
3465 		ceph_msg_data_advance(&con->v2.in_cursor, recved);
3466 	WARN_ON(resid > con->v2.in_cursor.total_resid);
3467 
3468 	remaining = CEPH_EPILOGUE_PLAIN_LEN;
3469 	dout("%s con %p total_resid %zu remaining %d\n", __func__, con,
3470 	     con->v2.in_cursor.total_resid, remaining);
3471 	con->v2.in_iter.count -= resid;
3472 	set_in_skip(con, con->v2.in_cursor.total_resid + remaining);
3473 	con->v2.in_state = IN_S_FINISH_SKIP;
3474 }
3475 
3476 static void revoke_at_prepare_read_enc_page(struct ceph_connection *con)
3477 {
3478 	int resid;  /* current enc page (not necessarily data) */
3479 
3480 	WARN_ON(!con_secure(con));
3481 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3482 	resid = iov_iter_count(&con->v2.in_iter);
3483 	WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3484 
3485 	dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid,
3486 	     con->v2.in_enc_resid);
3487 	con->v2.in_iter.count -= resid;
3488 	set_in_skip(con, resid + con->v2.in_enc_resid);
3489 	con->v2.in_state = IN_S_FINISH_SKIP;
3490 }
3491 
3492 static void revoke_at_handle_epilogue(struct ceph_connection *con)
3493 {
3494 	int resid;
3495 
3496 	resid = iov_iter_count(&con->v2.in_iter);
3497 	WARN_ON(!resid);
3498 
3499 	dout("%s con %p resid %d\n", __func__, con, resid);
3500 	con->v2.in_iter.count -= resid;
3501 	set_in_skip(con, resid);
3502 	con->v2.in_state = IN_S_FINISH_SKIP;
3503 }
3504 
3505 void ceph_con_v2_revoke_incoming(struct ceph_connection *con)
3506 {
3507 	switch (con->v2.in_state) {
3508 	case IN_S_PREPARE_READ_DATA:
3509 		revoke_at_prepare_read_data(con);
3510 		break;
3511 	case IN_S_PREPARE_READ_DATA_CONT:
3512 		revoke_at_prepare_read_data_cont(con);
3513 		break;
3514 	case IN_S_PREPARE_READ_ENC_PAGE:
3515 		revoke_at_prepare_read_enc_page(con);
3516 		break;
3517 	case IN_S_HANDLE_EPILOGUE:
3518 		revoke_at_handle_epilogue(con);
3519 		break;
3520 	default:
3521 		WARN(1, "bad in_state %d", con->v2.in_state);
3522 		break;
3523 	}
3524 }
3525 
3526 bool ceph_con_v2_opened(struct ceph_connection *con)
3527 {
3528 	return con->v2.peer_global_seq;
3529 }
3530 
3531 void ceph_con_v2_reset_session(struct ceph_connection *con)
3532 {
3533 	con->v2.client_cookie = 0;
3534 	con->v2.server_cookie = 0;
3535 	con->v2.global_seq = 0;
3536 	con->v2.connect_seq = 0;
3537 	con->v2.peer_global_seq = 0;
3538 }
3539 
3540 void ceph_con_v2_reset_protocol(struct ceph_connection *con)
3541 {
3542 	iov_iter_truncate(&con->v2.in_iter, 0);
3543 	iov_iter_truncate(&con->v2.out_iter, 0);
3544 	con->v2.out_zero = 0;
3545 
3546 	clear_in_sign_kvecs(con);
3547 	clear_out_sign_kvecs(con);
3548 	free_conn_bufs(con);
3549 
3550 	if (con->v2.in_enc_pages) {
3551 		WARN_ON(!con->v2.in_enc_page_cnt);
3552 		ceph_release_page_vector(con->v2.in_enc_pages,
3553 					 con->v2.in_enc_page_cnt);
3554 		con->v2.in_enc_pages = NULL;
3555 		con->v2.in_enc_page_cnt = 0;
3556 	}
3557 	if (con->v2.out_enc_pages) {
3558 		WARN_ON(!con->v2.out_enc_page_cnt);
3559 		ceph_release_page_vector(con->v2.out_enc_pages,
3560 					 con->v2.out_enc_page_cnt);
3561 		con->v2.out_enc_pages = NULL;
3562 		con->v2.out_enc_page_cnt = 0;
3563 	}
3564 
3565 	con->v2.con_mode = CEPH_CON_MODE_UNKNOWN;
3566 	memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN);
3567 	memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN);
3568 
3569 	if (con->v2.hmac_tfm) {
3570 		crypto_free_shash(con->v2.hmac_tfm);
3571 		con->v2.hmac_tfm = NULL;
3572 	}
3573 	if (con->v2.gcm_req) {
3574 		aead_request_free(con->v2.gcm_req);
3575 		con->v2.gcm_req = NULL;
3576 	}
3577 	if (con->v2.gcm_tfm) {
3578 		crypto_free_aead(con->v2.gcm_tfm);
3579 		con->v2.gcm_tfm = NULL;
3580 	}
3581 }
3582