xref: /openbmc/linux/net/ceph/messenger_v2.c (revision 99a15348)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Ceph msgr2 protocol implementation
4  *
5  * Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com>
6  */
7 
8 #include <linux/ceph/ceph_debug.h>
9 
10 #include <crypto/aead.h>
11 #include <crypto/algapi.h>  /* for crypto_memneq() */
12 #include <crypto/hash.h>
13 #include <crypto/sha2.h>
14 #include <linux/bvec.h>
15 #include <linux/crc32c.h>
16 #include <linux/net.h>
17 #include <linux/scatterlist.h>
18 #include <linux/socket.h>
19 #include <linux/sched/mm.h>
20 #include <net/sock.h>
21 #include <net/tcp.h>
22 
23 #include <linux/ceph/ceph_features.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/libceph.h>
26 #include <linux/ceph/messenger.h>
27 
28 #include "crypto.h"  /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */
29 
30 #define FRAME_TAG_HELLO			1
31 #define FRAME_TAG_AUTH_REQUEST		2
32 #define FRAME_TAG_AUTH_BAD_METHOD	3
33 #define FRAME_TAG_AUTH_REPLY_MORE	4
34 #define FRAME_TAG_AUTH_REQUEST_MORE	5
35 #define FRAME_TAG_AUTH_DONE		6
36 #define FRAME_TAG_AUTH_SIGNATURE	7
37 #define FRAME_TAG_CLIENT_IDENT		8
38 #define FRAME_TAG_SERVER_IDENT		9
39 #define FRAME_TAG_IDENT_MISSING_FEATURES 10
40 #define FRAME_TAG_SESSION_RECONNECT	11
41 #define FRAME_TAG_SESSION_RESET		12
42 #define FRAME_TAG_SESSION_RETRY		13
43 #define FRAME_TAG_SESSION_RETRY_GLOBAL	14
44 #define FRAME_TAG_SESSION_RECONNECT_OK	15
45 #define FRAME_TAG_WAIT			16
46 #define FRAME_TAG_MESSAGE		17
47 #define FRAME_TAG_KEEPALIVE2		18
48 #define FRAME_TAG_KEEPALIVE2_ACK	19
49 #define FRAME_TAG_ACK			20
50 
51 #define FRAME_LATE_STATUS_ABORTED	0x1
52 #define FRAME_LATE_STATUS_COMPLETE	0xe
53 #define FRAME_LATE_STATUS_ABORTED_MASK	0xf
54 
55 #define IN_S_HANDLE_PREAMBLE		1
56 #define IN_S_HANDLE_CONTROL		2
57 #define IN_S_HANDLE_CONTROL_REMAINDER	3
58 #define IN_S_PREPARE_READ_DATA		4
59 #define IN_S_PREPARE_READ_DATA_CONT	5
60 #define IN_S_PREPARE_READ_ENC_PAGE	6
61 #define IN_S_HANDLE_EPILOGUE		7
62 #define IN_S_FINISH_SKIP		8
63 
64 #define OUT_S_QUEUE_DATA		1
65 #define OUT_S_QUEUE_DATA_CONT		2
66 #define OUT_S_QUEUE_ENC_PAGE		3
67 #define OUT_S_QUEUE_ZEROS		4
68 #define OUT_S_FINISH_MESSAGE		5
69 #define OUT_S_GET_NEXT			6
70 
71 #define CTRL_BODY(p)	((void *)(p) + CEPH_PREAMBLE_LEN)
72 #define FRONT_PAD(p)	((void *)(p) + CEPH_EPILOGUE_SECURE_LEN)
73 #define MIDDLE_PAD(p)	(FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN)
74 #define DATA_PAD(p)	(MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN)
75 
76 #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
77 
78 static int do_recvmsg(struct socket *sock, struct iov_iter *it)
79 {
80 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
81 	int ret;
82 
83 	msg.msg_iter = *it;
84 	while (iov_iter_count(it)) {
85 		ret = sock_recvmsg(sock, &msg, msg.msg_flags);
86 		if (ret <= 0) {
87 			if (ret == -EAGAIN)
88 				ret = 0;
89 			return ret;
90 		}
91 
92 		iov_iter_advance(it, ret);
93 	}
94 
95 	WARN_ON(msg_data_left(&msg));
96 	return 1;
97 }
98 
99 /*
100  * Read as much as possible.
101  *
102  * Return:
103  *   1 - done, nothing (else) to read
104  *   0 - socket is empty, need to wait
105  *  <0 - error
106  */
107 static int ceph_tcp_recv(struct ceph_connection *con)
108 {
109 	int ret;
110 
111 	dout("%s con %p %s %zu\n", __func__, con,
112 	     iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need",
113 	     iov_iter_count(&con->v2.in_iter));
114 	ret = do_recvmsg(con->sock, &con->v2.in_iter);
115 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
116 	     iov_iter_count(&con->v2.in_iter));
117 	return ret;
118 }
119 
120 static int do_sendmsg(struct socket *sock, struct iov_iter *it)
121 {
122 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
123 	int ret;
124 
125 	msg.msg_iter = *it;
126 	while (iov_iter_count(it)) {
127 		ret = sock_sendmsg(sock, &msg);
128 		if (ret <= 0) {
129 			if (ret == -EAGAIN)
130 				ret = 0;
131 			return ret;
132 		}
133 
134 		iov_iter_advance(it, ret);
135 	}
136 
137 	WARN_ON(msg_data_left(&msg));
138 	return 1;
139 }
140 
141 static int do_try_sendpage(struct socket *sock, struct iov_iter *it)
142 {
143 	struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
144 	struct bio_vec bv;
145 	int ret;
146 
147 	if (WARN_ON(!iov_iter_is_bvec(it)))
148 		return -EINVAL;
149 
150 	while (iov_iter_count(it)) {
151 		/* iov_iter_iovec() for ITER_BVEC */
152 		bv.bv_page = it->bvec->bv_page;
153 		bv.bv_offset = it->bvec->bv_offset + it->iov_offset;
154 		bv.bv_len = min(iov_iter_count(it),
155 				it->bvec->bv_len - it->iov_offset);
156 
157 		/*
158 		 * sendpage cannot properly handle pages with
159 		 * page_count == 0, we need to fall back to sendmsg if
160 		 * that's the case.
161 		 *
162 		 * Same goes for slab pages: skb_can_coalesce() allows
163 		 * coalescing neighboring slab objects into a single frag
164 		 * which triggers one of hardened usercopy checks.
165 		 */
166 		if (sendpage_ok(bv.bv_page)) {
167 			ret = sock->ops->sendpage(sock, bv.bv_page,
168 						  bv.bv_offset, bv.bv_len,
169 						  CEPH_MSG_FLAGS);
170 		} else {
171 			iov_iter_bvec(&msg.msg_iter, WRITE, &bv, 1, bv.bv_len);
172 			ret = sock_sendmsg(sock, &msg);
173 		}
174 		if (ret <= 0) {
175 			if (ret == -EAGAIN)
176 				ret = 0;
177 			return ret;
178 		}
179 
180 		iov_iter_advance(it, ret);
181 	}
182 
183 	return 1;
184 }
185 
186 /*
187  * Write as much as possible.  The socket is expected to be corked,
188  * so we don't bother with MSG_MORE/MSG_SENDPAGE_NOTLAST here.
189  *
190  * Return:
191  *   1 - done, nothing (else) to write
192  *   0 - socket is full, need to wait
193  *  <0 - error
194  */
195 static int ceph_tcp_send(struct ceph_connection *con)
196 {
197 	int ret;
198 
199 	dout("%s con %p have %zu try_sendpage %d\n", __func__, con,
200 	     iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage);
201 	if (con->v2.out_iter_sendpage)
202 		ret = do_try_sendpage(con->sock, &con->v2.out_iter);
203 	else
204 		ret = do_sendmsg(con->sock, &con->v2.out_iter);
205 	dout("%s con %p ret %d left %zu\n", __func__, con, ret,
206 	     iov_iter_count(&con->v2.out_iter));
207 	return ret;
208 }
209 
210 static void add_in_kvec(struct ceph_connection *con, void *buf, int len)
211 {
212 	BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs));
213 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
214 
215 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf;
216 	con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len;
217 	con->v2.in_kvec_cnt++;
218 
219 	con->v2.in_iter.nr_segs++;
220 	con->v2.in_iter.count += len;
221 }
222 
223 static void reset_in_kvecs(struct ceph_connection *con)
224 {
225 	WARN_ON(iov_iter_count(&con->v2.in_iter));
226 
227 	con->v2.in_kvec_cnt = 0;
228 	iov_iter_kvec(&con->v2.in_iter, READ, con->v2.in_kvecs, 0, 0);
229 }
230 
231 static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv)
232 {
233 	WARN_ON(iov_iter_count(&con->v2.in_iter));
234 
235 	con->v2.in_bvec = *bv;
236 	iov_iter_bvec(&con->v2.in_iter, READ, &con->v2.in_bvec, 1, bv->bv_len);
237 }
238 
239 static void set_in_skip(struct ceph_connection *con, int len)
240 {
241 	WARN_ON(iov_iter_count(&con->v2.in_iter));
242 
243 	dout("%s con %p len %d\n", __func__, con, len);
244 	iov_iter_discard(&con->v2.in_iter, READ, len);
245 }
246 
247 static void add_out_kvec(struct ceph_connection *con, void *buf, int len)
248 {
249 	BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs));
250 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
251 	WARN_ON(con->v2.out_zero);
252 
253 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf;
254 	con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len;
255 	con->v2.out_kvec_cnt++;
256 
257 	con->v2.out_iter.nr_segs++;
258 	con->v2.out_iter.count += len;
259 }
260 
261 static void reset_out_kvecs(struct ceph_connection *con)
262 {
263 	WARN_ON(iov_iter_count(&con->v2.out_iter));
264 	WARN_ON(con->v2.out_zero);
265 
266 	con->v2.out_kvec_cnt = 0;
267 
268 	iov_iter_kvec(&con->v2.out_iter, WRITE, con->v2.out_kvecs, 0, 0);
269 	con->v2.out_iter_sendpage = false;
270 }
271 
272 static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv,
273 			 bool zerocopy)
274 {
275 	WARN_ON(iov_iter_count(&con->v2.out_iter));
276 	WARN_ON(con->v2.out_zero);
277 
278 	con->v2.out_bvec = *bv;
279 	con->v2.out_iter_sendpage = zerocopy;
280 	iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1,
281 		      con->v2.out_bvec.bv_len);
282 }
283 
284 static void set_out_bvec_zero(struct ceph_connection *con)
285 {
286 	WARN_ON(iov_iter_count(&con->v2.out_iter));
287 	WARN_ON(!con->v2.out_zero);
288 
289 	con->v2.out_bvec.bv_page = ceph_zero_page;
290 	con->v2.out_bvec.bv_offset = 0;
291 	con->v2.out_bvec.bv_len = min(con->v2.out_zero, (int)PAGE_SIZE);
292 	con->v2.out_iter_sendpage = true;
293 	iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1,
294 		      con->v2.out_bvec.bv_len);
295 }
296 
297 static void out_zero_add(struct ceph_connection *con, int len)
298 {
299 	dout("%s con %p len %d\n", __func__, con, len);
300 	con->v2.out_zero += len;
301 }
302 
303 static void *alloc_conn_buf(struct ceph_connection *con, int len)
304 {
305 	void *buf;
306 
307 	dout("%s con %p len %d\n", __func__, con, len);
308 
309 	if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs)))
310 		return NULL;
311 
312 	buf = kvmalloc(len, GFP_NOIO);
313 	if (!buf)
314 		return NULL;
315 
316 	con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf;
317 	return buf;
318 }
319 
320 static void free_conn_bufs(struct ceph_connection *con)
321 {
322 	while (con->v2.conn_buf_cnt)
323 		kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]);
324 }
325 
326 static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len)
327 {
328 	BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs));
329 
330 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf;
331 	con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len;
332 	con->v2.in_sign_kvec_cnt++;
333 }
334 
335 static void clear_in_sign_kvecs(struct ceph_connection *con)
336 {
337 	con->v2.in_sign_kvec_cnt = 0;
338 }
339 
340 static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len)
341 {
342 	BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs));
343 
344 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf;
345 	con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len;
346 	con->v2.out_sign_kvec_cnt++;
347 }
348 
349 static void clear_out_sign_kvecs(struct ceph_connection *con)
350 {
351 	con->v2.out_sign_kvec_cnt = 0;
352 }
353 
354 static bool con_secure(struct ceph_connection *con)
355 {
356 	return con->v2.con_mode == CEPH_CON_MODE_SECURE;
357 }
358 
359 static int front_len(const struct ceph_msg *msg)
360 {
361 	return le32_to_cpu(msg->hdr.front_len);
362 }
363 
364 static int middle_len(const struct ceph_msg *msg)
365 {
366 	return le32_to_cpu(msg->hdr.middle_len);
367 }
368 
369 static int data_len(const struct ceph_msg *msg)
370 {
371 	return le32_to_cpu(msg->hdr.data_len);
372 }
373 
374 static bool need_padding(int len)
375 {
376 	return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN);
377 }
378 
379 static int padded_len(int len)
380 {
381 	return ALIGN(len, CEPH_GCM_BLOCK_LEN);
382 }
383 
384 static int padding_len(int len)
385 {
386 	return padded_len(len) - len;
387 }
388 
389 /* preamble + control segment */
390 static int head_onwire_len(int ctrl_len, bool secure)
391 {
392 	int head_len;
393 	int rem_len;
394 
395 	if (secure) {
396 		head_len = CEPH_PREAMBLE_SECURE_LEN;
397 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
398 			rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
399 			head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN;
400 		}
401 	} else {
402 		head_len = CEPH_PREAMBLE_PLAIN_LEN;
403 		if (ctrl_len)
404 			head_len += ctrl_len + CEPH_CRC_LEN;
405 	}
406 	return head_len;
407 }
408 
409 /* front, middle and data segments + epilogue */
410 static int __tail_onwire_len(int front_len, int middle_len, int data_len,
411 			     bool secure)
412 {
413 	if (!front_len && !middle_len && !data_len)
414 		return 0;
415 
416 	if (!secure)
417 		return front_len + middle_len + data_len +
418 		       CEPH_EPILOGUE_PLAIN_LEN;
419 
420 	return padded_len(front_len) + padded_len(middle_len) +
421 	       padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN;
422 }
423 
424 static int tail_onwire_len(const struct ceph_msg *msg, bool secure)
425 {
426 	return __tail_onwire_len(front_len(msg), middle_len(msg),
427 				 data_len(msg), secure);
428 }
429 
430 /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */
431 #define MESSAGE_HEAD_PLAIN_LEN	(CEPH_PREAMBLE_PLAIN_LEN +		\
432 				 sizeof(struct ceph_msg_header2) +	\
433 				 CEPH_CRC_LEN)
434 
435 static const int frame_aligns[] = {
436 	sizeof(void *),
437 	sizeof(void *),
438 	sizeof(void *),
439 	PAGE_SIZE
440 };
441 
442 /*
443  * Discards trailing empty segments, unless there is just one segment.
444  * A frame always has at least one (possibly empty) segment.
445  */
446 static int calc_segment_count(const int *lens, int len_cnt)
447 {
448 	int i;
449 
450 	for (i = len_cnt - 1; i >= 0; i--) {
451 		if (lens[i])
452 			return i + 1;
453 	}
454 
455 	return 1;
456 }
457 
458 static void init_frame_desc(struct ceph_frame_desc *desc, int tag,
459 			    const int *lens, int len_cnt)
460 {
461 	int i;
462 
463 	memset(desc, 0, sizeof(*desc));
464 
465 	desc->fd_tag = tag;
466 	desc->fd_seg_cnt = calc_segment_count(lens, len_cnt);
467 	BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT);
468 	for (i = 0; i < desc->fd_seg_cnt; i++) {
469 		desc->fd_lens[i] = lens[i];
470 		desc->fd_aligns[i] = frame_aligns[i];
471 	}
472 }
473 
474 /*
475  * Preamble crc covers everything up to itself (28 bytes) and
476  * is calculated and verified irrespective of the connection mode
477  * (i.e. even if the frame is encrypted).
478  */
479 static void encode_preamble(const struct ceph_frame_desc *desc, void *p)
480 {
481 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
482 	void *start = p;
483 	int i;
484 
485 	memset(p, 0, CEPH_PREAMBLE_LEN);
486 
487 	ceph_encode_8(&p, desc->fd_tag);
488 	ceph_encode_8(&p, desc->fd_seg_cnt);
489 	for (i = 0; i < desc->fd_seg_cnt; i++) {
490 		ceph_encode_32(&p, desc->fd_lens[i]);
491 		ceph_encode_16(&p, desc->fd_aligns[i]);
492 	}
493 
494 	put_unaligned_le32(crc32c(0, start, crcp - start), crcp);
495 }
496 
497 static int decode_preamble(void *p, struct ceph_frame_desc *desc)
498 {
499 	void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
500 	u32 crc, expected_crc;
501 	int i;
502 
503 	crc = crc32c(0, p, crcp - p);
504 	expected_crc = get_unaligned_le32(crcp);
505 	if (crc != expected_crc) {
506 		pr_err("bad preamble crc, calculated %u, expected %u\n",
507 		       crc, expected_crc);
508 		return -EBADMSG;
509 	}
510 
511 	memset(desc, 0, sizeof(*desc));
512 
513 	desc->fd_tag = ceph_decode_8(&p);
514 	desc->fd_seg_cnt = ceph_decode_8(&p);
515 	if (desc->fd_seg_cnt < 1 ||
516 	    desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) {
517 		pr_err("bad segment count %d\n", desc->fd_seg_cnt);
518 		return -EINVAL;
519 	}
520 	for (i = 0; i < desc->fd_seg_cnt; i++) {
521 		desc->fd_lens[i] = ceph_decode_32(&p);
522 		desc->fd_aligns[i] = ceph_decode_16(&p);
523 	}
524 
525 	/*
526 	 * This would fire for FRAME_TAG_WAIT (it has one empty
527 	 * segment), but we should never get it as client.
528 	 */
529 	if (!desc->fd_lens[desc->fd_seg_cnt - 1]) {
530 		pr_err("last segment empty\n");
531 		return -EINVAL;
532 	}
533 
534 	if (desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) {
535 		pr_err("control segment too big %d\n", desc->fd_lens[0]);
536 		return -EINVAL;
537 	}
538 	if (desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) {
539 		pr_err("front segment too big %d\n", desc->fd_lens[1]);
540 		return -EINVAL;
541 	}
542 	if (desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) {
543 		pr_err("middle segment too big %d\n", desc->fd_lens[2]);
544 		return -EINVAL;
545 	}
546 	if (desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) {
547 		pr_err("data segment too big %d\n", desc->fd_lens[3]);
548 		return -EINVAL;
549 	}
550 
551 	return 0;
552 }
553 
554 static void encode_epilogue_plain(struct ceph_connection *con, bool aborted)
555 {
556 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
557 						 FRAME_LATE_STATUS_COMPLETE;
558 	cpu_to_le32s(&con->v2.out_epil.front_crc);
559 	cpu_to_le32s(&con->v2.out_epil.middle_crc);
560 	cpu_to_le32s(&con->v2.out_epil.data_crc);
561 }
562 
563 static void encode_epilogue_secure(struct ceph_connection *con, bool aborted)
564 {
565 	memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil));
566 	con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
567 						 FRAME_LATE_STATUS_COMPLETE;
568 }
569 
570 static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc,
571 			   u32 *data_crc)
572 {
573 	u8 late_status;
574 
575 	late_status = ceph_decode_8(&p);
576 	if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) !=
577 			FRAME_LATE_STATUS_COMPLETE) {
578 		/* we should never get an aborted message as client */
579 		pr_err("bad late_status 0x%x\n", late_status);
580 		return -EINVAL;
581 	}
582 
583 	if (front_crc && middle_crc && data_crc) {
584 		*front_crc = ceph_decode_32(&p);
585 		*middle_crc = ceph_decode_32(&p);
586 		*data_crc = ceph_decode_32(&p);
587 	}
588 
589 	return 0;
590 }
591 
592 static void fill_header(struct ceph_msg_header *hdr,
593 			const struct ceph_msg_header2 *hdr2,
594 			int front_len, int middle_len, int data_len,
595 			const struct ceph_entity_name *peer_name)
596 {
597 	hdr->seq = hdr2->seq;
598 	hdr->tid = hdr2->tid;
599 	hdr->type = hdr2->type;
600 	hdr->priority = hdr2->priority;
601 	hdr->version = hdr2->version;
602 	hdr->front_len = cpu_to_le32(front_len);
603 	hdr->middle_len = cpu_to_le32(middle_len);
604 	hdr->data_len = cpu_to_le32(data_len);
605 	hdr->data_off = hdr2->data_off;
606 	hdr->src = *peer_name;
607 	hdr->compat_version = hdr2->compat_version;
608 	hdr->reserved = 0;
609 	hdr->crc = 0;
610 }
611 
612 static void fill_header2(struct ceph_msg_header2 *hdr2,
613 			 const struct ceph_msg_header *hdr, u64 ack_seq)
614 {
615 	hdr2->seq = hdr->seq;
616 	hdr2->tid = hdr->tid;
617 	hdr2->type = hdr->type;
618 	hdr2->priority = hdr->priority;
619 	hdr2->version = hdr->version;
620 	hdr2->data_pre_padding_len = 0;
621 	hdr2->data_off = hdr->data_off;
622 	hdr2->ack_seq = cpu_to_le64(ack_seq);
623 	hdr2->flags = 0;
624 	hdr2->compat_version = hdr->compat_version;
625 	hdr2->reserved = 0;
626 }
627 
628 static int verify_control_crc(struct ceph_connection *con)
629 {
630 	int ctrl_len = con->v2.in_desc.fd_lens[0];
631 	u32 crc, expected_crc;
632 
633 	WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len);
634 	WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN);
635 
636 	crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len);
637 	expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base);
638 	if (crc != expected_crc) {
639 		pr_err("bad control crc, calculated %u, expected %u\n",
640 		       crc, expected_crc);
641 		return -EBADMSG;
642 	}
643 
644 	return 0;
645 }
646 
647 static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc,
648 				u32 middle_crc, u32 data_crc)
649 {
650 	if (front_len(con->in_msg)) {
651 		con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base,
652 					   front_len(con->in_msg));
653 	} else {
654 		WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg));
655 		con->in_front_crc = -1;
656 	}
657 
658 	if (middle_len(con->in_msg))
659 		con->in_middle_crc = crc32c(-1,
660 					    con->in_msg->middle->vec.iov_base,
661 					    middle_len(con->in_msg));
662 	else if (data_len(con->in_msg))
663 		con->in_middle_crc = -1;
664 	else
665 		con->in_middle_crc = 0;
666 
667 	if (!data_len(con->in_msg))
668 		con->in_data_crc = 0;
669 
670 	dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg,
671 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
672 
673 	if (con->in_front_crc != front_crc) {
674 		pr_err("bad front crc, calculated %u, expected %u\n",
675 		       con->in_front_crc, front_crc);
676 		return -EBADMSG;
677 	}
678 	if (con->in_middle_crc != middle_crc) {
679 		pr_err("bad middle crc, calculated %u, expected %u\n",
680 		       con->in_middle_crc, middle_crc);
681 		return -EBADMSG;
682 	}
683 	if (con->in_data_crc != data_crc) {
684 		pr_err("bad data crc, calculated %u, expected %u\n",
685 		       con->in_data_crc, data_crc);
686 		return -EBADMSG;
687 	}
688 
689 	return 0;
690 }
691 
692 static int setup_crypto(struct ceph_connection *con,
693 			const u8 *session_key, int session_key_len,
694 			const u8 *con_secret, int con_secret_len)
695 {
696 	unsigned int noio_flag;
697 	int ret;
698 
699 	dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n",
700 	     __func__, con, con->v2.con_mode, session_key_len, con_secret_len);
701 	WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req);
702 
703 	if (con->v2.con_mode != CEPH_CON_MODE_CRC &&
704 	    con->v2.con_mode != CEPH_CON_MODE_SECURE) {
705 		pr_err("bad con_mode %d\n", con->v2.con_mode);
706 		return -EINVAL;
707 	}
708 
709 	if (!session_key_len) {
710 		WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC);
711 		WARN_ON(con_secret_len);
712 		return 0;  /* auth_none */
713 	}
714 
715 	noio_flag = memalloc_noio_save();
716 	con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0);
717 	memalloc_noio_restore(noio_flag);
718 	if (IS_ERR(con->v2.hmac_tfm)) {
719 		ret = PTR_ERR(con->v2.hmac_tfm);
720 		con->v2.hmac_tfm = NULL;
721 		pr_err("failed to allocate hmac tfm context: %d\n", ret);
722 		return ret;
723 	}
724 
725 	WARN_ON((unsigned long)session_key &
726 		crypto_shash_alignmask(con->v2.hmac_tfm));
727 	ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key,
728 				  session_key_len);
729 	if (ret) {
730 		pr_err("failed to set hmac key: %d\n", ret);
731 		return ret;
732 	}
733 
734 	if (con->v2.con_mode == CEPH_CON_MODE_CRC) {
735 		WARN_ON(con_secret_len);
736 		return 0;  /* auth_x, plain mode */
737 	}
738 
739 	if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) {
740 		pr_err("con_secret too small %d\n", con_secret_len);
741 		return -EINVAL;
742 	}
743 
744 	noio_flag = memalloc_noio_save();
745 	con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
746 	memalloc_noio_restore(noio_flag);
747 	if (IS_ERR(con->v2.gcm_tfm)) {
748 		ret = PTR_ERR(con->v2.gcm_tfm);
749 		con->v2.gcm_tfm = NULL;
750 		pr_err("failed to allocate gcm tfm context: %d\n", ret);
751 		return ret;
752 	}
753 
754 	WARN_ON((unsigned long)con_secret &
755 		crypto_aead_alignmask(con->v2.gcm_tfm));
756 	ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN);
757 	if (ret) {
758 		pr_err("failed to set gcm key: %d\n", ret);
759 		return ret;
760 	}
761 
762 	WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN);
763 	ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN);
764 	if (ret) {
765 		pr_err("failed to set gcm tag size: %d\n", ret);
766 		return ret;
767 	}
768 
769 	con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO);
770 	if (!con->v2.gcm_req) {
771 		pr_err("failed to allocate gcm request\n");
772 		return -ENOMEM;
773 	}
774 
775 	crypto_init_wait(&con->v2.gcm_wait);
776 	aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
777 				  crypto_req_done, &con->v2.gcm_wait);
778 
779 	memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN,
780 	       CEPH_GCM_IV_LEN);
781 	memcpy(&con->v2.out_gcm_nonce,
782 	       con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN,
783 	       CEPH_GCM_IV_LEN);
784 	return 0;  /* auth_x, secure mode */
785 }
786 
787 static int hmac_sha256(struct ceph_connection *con, const struct kvec *kvecs,
788 		       int kvec_cnt, u8 *hmac)
789 {
790 	SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm);  /* tfm arg is ignored */
791 	int ret;
792 	int i;
793 
794 	dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con,
795 	     con->v2.hmac_tfm, kvec_cnt);
796 
797 	if (!con->v2.hmac_tfm) {
798 		memset(hmac, 0, SHA256_DIGEST_SIZE);
799 		return 0;  /* auth_none */
800 	}
801 
802 	desc->tfm = con->v2.hmac_tfm;
803 	ret = crypto_shash_init(desc);
804 	if (ret)
805 		goto out;
806 
807 	for (i = 0; i < kvec_cnt; i++) {
808 		WARN_ON((unsigned long)kvecs[i].iov_base &
809 			crypto_shash_alignmask(con->v2.hmac_tfm));
810 		ret = crypto_shash_update(desc, kvecs[i].iov_base,
811 					  kvecs[i].iov_len);
812 		if (ret)
813 			goto out;
814 	}
815 
816 	ret = crypto_shash_final(desc, hmac);
817 
818 out:
819 	shash_desc_zero(desc);
820 	return ret;  /* auth_x, both plain and secure modes */
821 }
822 
823 static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce)
824 {
825 	u64 counter;
826 
827 	counter = le64_to_cpu(nonce->counter);
828 	nonce->counter = cpu_to_le64(counter + 1);
829 }
830 
831 static int gcm_crypt(struct ceph_connection *con, bool encrypt,
832 		     struct scatterlist *src, struct scatterlist *dst,
833 		     int src_len)
834 {
835 	struct ceph_gcm_nonce *nonce;
836 	int ret;
837 
838 	nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce;
839 
840 	aead_request_set_ad(con->v2.gcm_req, 0);  /* no AAD */
841 	aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce);
842 	ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) :
843 					crypto_aead_decrypt(con->v2.gcm_req),
844 			      &con->v2.gcm_wait);
845 	if (ret)
846 		return ret;
847 
848 	gcm_inc_nonce(nonce);
849 	return 0;
850 }
851 
852 static void get_bvec_at(struct ceph_msg_data_cursor *cursor,
853 			struct bio_vec *bv)
854 {
855 	struct page *page;
856 	size_t off, len;
857 
858 	WARN_ON(!cursor->total_resid);
859 
860 	/* skip zero-length data items */
861 	while (!cursor->resid)
862 		ceph_msg_data_advance(cursor, 0);
863 
864 	/* get a piece of data, cursor isn't advanced */
865 	page = ceph_msg_data_next(cursor, &off, &len, NULL);
866 
867 	bv->bv_page = page;
868 	bv->bv_offset = off;
869 	bv->bv_len = len;
870 }
871 
872 static int calc_sg_cnt(void *buf, int buf_len)
873 {
874 	int sg_cnt;
875 
876 	if (!buf_len)
877 		return 0;
878 
879 	sg_cnt = need_padding(buf_len) ? 1 : 0;
880 	if (is_vmalloc_addr(buf)) {
881 		WARN_ON(offset_in_page(buf));
882 		sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT;
883 	} else {
884 		sg_cnt++;
885 	}
886 
887 	return sg_cnt;
888 }
889 
890 static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor)
891 {
892 	int data_len = cursor->total_resid;
893 	struct bio_vec bv;
894 	int sg_cnt;
895 
896 	if (!data_len)
897 		return 0;
898 
899 	sg_cnt = need_padding(data_len) ? 1 : 0;
900 	do {
901 		get_bvec_at(cursor, &bv);
902 		sg_cnt++;
903 
904 		ceph_msg_data_advance(cursor, bv.bv_len);
905 	} while (cursor->total_resid);
906 
907 	return sg_cnt;
908 }
909 
910 static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad)
911 {
912 	void *end = buf + buf_len;
913 	struct page *page;
914 	int len;
915 	void *p;
916 
917 	if (!buf_len)
918 		return;
919 
920 	if (is_vmalloc_addr(buf)) {
921 		p = buf;
922 		do {
923 			page = vmalloc_to_page(p);
924 			len = min_t(int, end - p, PAGE_SIZE);
925 			WARN_ON(!page || !len || offset_in_page(p));
926 			sg_set_page(*sg, page, len, 0);
927 			*sg = sg_next(*sg);
928 			p += len;
929 		} while (p != end);
930 	} else {
931 		sg_set_buf(*sg, buf, buf_len);
932 		*sg = sg_next(*sg);
933 	}
934 
935 	if (need_padding(buf_len)) {
936 		sg_set_buf(*sg, pad, padding_len(buf_len));
937 		*sg = sg_next(*sg);
938 	}
939 }
940 
941 static void init_sgs_cursor(struct scatterlist **sg,
942 			    struct ceph_msg_data_cursor *cursor, u8 *pad)
943 {
944 	int data_len = cursor->total_resid;
945 	struct bio_vec bv;
946 
947 	if (!data_len)
948 		return;
949 
950 	do {
951 		get_bvec_at(cursor, &bv);
952 		sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
953 		*sg = sg_next(*sg);
954 
955 		ceph_msg_data_advance(cursor, bv.bv_len);
956 	} while (cursor->total_resid);
957 
958 	if (need_padding(data_len)) {
959 		sg_set_buf(*sg, pad, padding_len(data_len));
960 		*sg = sg_next(*sg);
961 	}
962 }
963 
964 static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg,
965 			     u8 *front_pad, u8 *middle_pad, u8 *data_pad,
966 			     void *epilogue, bool add_tag)
967 {
968 	struct ceph_msg_data_cursor cursor;
969 	struct scatterlist *cur_sg;
970 	int sg_cnt;
971 	int ret;
972 
973 	if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
974 		return 0;
975 
976 	sg_cnt = 1;  /* epilogue + [auth tag] */
977 	if (front_len(msg))
978 		sg_cnt += calc_sg_cnt(msg->front.iov_base,
979 				      front_len(msg));
980 	if (middle_len(msg))
981 		sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base,
982 				      middle_len(msg));
983 	if (data_len(msg)) {
984 		ceph_msg_data_cursor_init(&cursor, msg, data_len(msg));
985 		sg_cnt += calc_sg_cnt_cursor(&cursor);
986 	}
987 
988 	ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO);
989 	if (ret)
990 		return ret;
991 
992 	cur_sg = sgt->sgl;
993 	if (front_len(msg))
994 		init_sgs(&cur_sg, msg->front.iov_base, front_len(msg),
995 			 front_pad);
996 	if (middle_len(msg))
997 		init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg),
998 			 middle_pad);
999 	if (data_len(msg)) {
1000 		ceph_msg_data_cursor_init(&cursor, msg, data_len(msg));
1001 		init_sgs_cursor(&cur_sg, &cursor, data_pad);
1002 	}
1003 
1004 	WARN_ON(!sg_is_last(cur_sg));
1005 	sg_set_buf(cur_sg, epilogue,
1006 		   CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0));
1007 	return 0;
1008 }
1009 
1010 static int decrypt_preamble(struct ceph_connection *con)
1011 {
1012 	struct scatterlist sg;
1013 
1014 	sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN);
1015 	return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN);
1016 }
1017 
1018 static int decrypt_control_remainder(struct ceph_connection *con)
1019 {
1020 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1021 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1022 	int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN;
1023 	struct scatterlist sgs[2];
1024 
1025 	WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len);
1026 	WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len);
1027 
1028 	sg_init_table(sgs, 2);
1029 	sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len);
1030 	sg_set_buf(&sgs[1], con->v2.in_buf, pt_len);
1031 
1032 	return gcm_crypt(con, false, sgs, sgs,
1033 			 padded_len(rem_len) + CEPH_GCM_TAG_LEN);
1034 }
1035 
1036 static int decrypt_tail(struct ceph_connection *con)
1037 {
1038 	struct sg_table enc_sgt = {};
1039 	struct sg_table sgt = {};
1040 	int tail_len;
1041 	int ret;
1042 
1043 	tail_len = tail_onwire_len(con->in_msg, true);
1044 	ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages,
1045 					con->v2.in_enc_page_cnt, 0, tail_len,
1046 					GFP_NOIO);
1047 	if (ret)
1048 		goto out;
1049 
1050 	ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf),
1051 			MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf),
1052 			con->v2.in_buf, true);
1053 	if (ret)
1054 		goto out;
1055 
1056 	dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con,
1057 	     con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents);
1058 	ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len);
1059 	if (ret)
1060 		goto out;
1061 
1062 	WARN_ON(!con->v2.in_enc_page_cnt);
1063 	ceph_release_page_vector(con->v2.in_enc_pages,
1064 				 con->v2.in_enc_page_cnt);
1065 	con->v2.in_enc_pages = NULL;
1066 	con->v2.in_enc_page_cnt = 0;
1067 
1068 out:
1069 	sg_free_table(&sgt);
1070 	sg_free_table(&enc_sgt);
1071 	return ret;
1072 }
1073 
1074 static int prepare_banner(struct ceph_connection *con)
1075 {
1076 	int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8;
1077 	void *buf, *p;
1078 
1079 	buf = alloc_conn_buf(con, buf_len);
1080 	if (!buf)
1081 		return -ENOMEM;
1082 
1083 	p = buf;
1084 	ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN);
1085 	ceph_encode_16(&p, sizeof(u64) + sizeof(u64));
1086 	ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES);
1087 	ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES);
1088 	WARN_ON(p != buf + buf_len);
1089 
1090 	add_out_kvec(con, buf, buf_len);
1091 	add_out_sign_kvec(con, buf, buf_len);
1092 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1093 	return 0;
1094 }
1095 
1096 /*
1097  * base:
1098  *   preamble
1099  *   control body (ctrl_len bytes)
1100  *   space for control crc
1101  *
1102  * extdata (optional):
1103  *   control body (extdata_len bytes)
1104  *
1105  * Compute control crc and gather base and extdata into:
1106  *
1107  *   preamble
1108  *   control body (ctrl_len + extdata_len bytes)
1109  *   control crc
1110  *
1111  * Preamble should already be encoded at the start of base.
1112  */
1113 static void prepare_head_plain(struct ceph_connection *con, void *base,
1114 			       int ctrl_len, void *extdata, int extdata_len,
1115 			       bool to_be_signed)
1116 {
1117 	int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN;
1118 	void *crcp = base + base_len - CEPH_CRC_LEN;
1119 	u32 crc;
1120 
1121 	crc = crc32c(-1, CTRL_BODY(base), ctrl_len);
1122 	if (extdata_len)
1123 		crc = crc32c(crc, extdata, extdata_len);
1124 	put_unaligned_le32(crc, crcp);
1125 
1126 	if (!extdata_len) {
1127 		add_out_kvec(con, base, base_len);
1128 		if (to_be_signed)
1129 			add_out_sign_kvec(con, base, base_len);
1130 		return;
1131 	}
1132 
1133 	add_out_kvec(con, base, crcp - base);
1134 	add_out_kvec(con, extdata, extdata_len);
1135 	add_out_kvec(con, crcp, CEPH_CRC_LEN);
1136 	if (to_be_signed) {
1137 		add_out_sign_kvec(con, base, crcp - base);
1138 		add_out_sign_kvec(con, extdata, extdata_len);
1139 		add_out_sign_kvec(con, crcp, CEPH_CRC_LEN);
1140 	}
1141 }
1142 
1143 static int prepare_head_secure_small(struct ceph_connection *con,
1144 				     void *base, int ctrl_len)
1145 {
1146 	struct scatterlist sg;
1147 	int ret;
1148 
1149 	/* inline buffer padding? */
1150 	if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN)
1151 		memset(CTRL_BODY(base) + ctrl_len, 0,
1152 		       CEPH_PREAMBLE_INLINE_LEN - ctrl_len);
1153 
1154 	sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN);
1155 	ret = gcm_crypt(con, true, &sg, &sg,
1156 			CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN);
1157 	if (ret)
1158 		return ret;
1159 
1160 	add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN);
1161 	return 0;
1162 }
1163 
1164 /*
1165  * base:
1166  *   preamble
1167  *   control body (ctrl_len bytes)
1168  *   space for padding, if needed
1169  *   space for control remainder auth tag
1170  *   space for preamble auth tag
1171  *
1172  * Encrypt preamble and the inline portion, then encrypt the remainder
1173  * and gather into:
1174  *
1175  *   preamble
1176  *   control body (48 bytes)
1177  *   preamble auth tag
1178  *   control body (ctrl_len - 48 bytes)
1179  *   zero padding, if needed
1180  *   control remainder auth tag
1181  *
1182  * Preamble should already be encoded at the start of base.
1183  */
1184 static int prepare_head_secure_big(struct ceph_connection *con,
1185 				   void *base, int ctrl_len)
1186 {
1187 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1188 	void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN;
1189 	void *rem_tag = rem + padded_len(rem_len);
1190 	void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN;
1191 	struct scatterlist sgs[2];
1192 	int ret;
1193 
1194 	sg_init_table(sgs, 2);
1195 	sg_set_buf(&sgs[0], base, rem - base);
1196 	sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN);
1197 	ret = gcm_crypt(con, true, sgs, sgs, rem - base);
1198 	if (ret)
1199 		return ret;
1200 
1201 	/* control remainder padding? */
1202 	if (need_padding(rem_len))
1203 		memset(rem + rem_len, 0, padding_len(rem_len));
1204 
1205 	sg_init_one(&sgs[0], rem, pmbl_tag - rem);
1206 	ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem);
1207 	if (ret)
1208 		return ret;
1209 
1210 	add_out_kvec(con, base, rem - base);
1211 	add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN);
1212 	add_out_kvec(con, rem, pmbl_tag - rem);
1213 	return 0;
1214 }
1215 
1216 static int __prepare_control(struct ceph_connection *con, int tag,
1217 			     void *base, int ctrl_len, void *extdata,
1218 			     int extdata_len, bool to_be_signed)
1219 {
1220 	int total_len = ctrl_len + extdata_len;
1221 	struct ceph_frame_desc desc;
1222 	int ret;
1223 
1224 	dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag,
1225 	     total_len, ctrl_len, extdata_len);
1226 
1227 	/* extdata may be vmalloc'ed but not base */
1228 	if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len))
1229 		return -EINVAL;
1230 
1231 	init_frame_desc(&desc, tag, &total_len, 1);
1232 	encode_preamble(&desc, base);
1233 
1234 	if (con_secure(con)) {
1235 		if (WARN_ON(extdata_len || to_be_signed))
1236 			return -EINVAL;
1237 
1238 		if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN)
1239 			/* fully inlined, inline buffer may need padding */
1240 			ret = prepare_head_secure_small(con, base, ctrl_len);
1241 		else
1242 			/* partially inlined, inline buffer is full */
1243 			ret = prepare_head_secure_big(con, base, ctrl_len);
1244 		if (ret)
1245 			return ret;
1246 	} else {
1247 		prepare_head_plain(con, base, ctrl_len, extdata, extdata_len,
1248 				   to_be_signed);
1249 	}
1250 
1251 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1252 	return 0;
1253 }
1254 
1255 static int prepare_control(struct ceph_connection *con, int tag,
1256 			   void *base, int ctrl_len)
1257 {
1258 	return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false);
1259 }
1260 
1261 static int prepare_hello(struct ceph_connection *con)
1262 {
1263 	void *buf, *p;
1264 	int ctrl_len;
1265 
1266 	ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr);
1267 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1268 	if (!buf)
1269 		return -ENOMEM;
1270 
1271 	p = CTRL_BODY(buf);
1272 	ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT);
1273 	ceph_encode_entity_addr(&p, &con->peer_addr);
1274 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1275 
1276 	return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len,
1277 				 NULL, 0, true);
1278 }
1279 
1280 /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */
1281 #define AUTH_BUF_LEN	(512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN)
1282 
1283 static int prepare_auth_request(struct ceph_connection *con)
1284 {
1285 	void *authorizer, *authorizer_copy;
1286 	int ctrl_len, authorizer_len;
1287 	void *buf;
1288 	int ret;
1289 
1290 	ctrl_len = AUTH_BUF_LEN;
1291 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1292 	if (!buf)
1293 		return -ENOMEM;
1294 
1295 	mutex_unlock(&con->mutex);
1296 	ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len,
1297 					 &authorizer, &authorizer_len);
1298 	mutex_lock(&con->mutex);
1299 	if (con->state != CEPH_CON_S_V2_HELLO) {
1300 		dout("%s con %p state changed to %d\n", __func__, con,
1301 		     con->state);
1302 		return -EAGAIN;
1303 	}
1304 
1305 	dout("%s con %p get_auth_request ret %d\n", __func__, con, ret);
1306 	if (ret)
1307 		return ret;
1308 
1309 	authorizer_copy = alloc_conn_buf(con, authorizer_len);
1310 	if (!authorizer_copy)
1311 		return -ENOMEM;
1312 
1313 	memcpy(authorizer_copy, authorizer, authorizer_len);
1314 
1315 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len,
1316 				 authorizer_copy, authorizer_len, true);
1317 }
1318 
1319 static int prepare_auth_request_more(struct ceph_connection *con,
1320 				     void *reply, int reply_len)
1321 {
1322 	int ctrl_len, authorizer_len;
1323 	void *authorizer;
1324 	void *buf;
1325 	int ret;
1326 
1327 	ctrl_len = AUTH_BUF_LEN;
1328 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1329 	if (!buf)
1330 		return -ENOMEM;
1331 
1332 	mutex_unlock(&con->mutex);
1333 	ret = con->ops->handle_auth_reply_more(con, reply, reply_len,
1334 					       CTRL_BODY(buf), &ctrl_len,
1335 					       &authorizer, &authorizer_len);
1336 	mutex_lock(&con->mutex);
1337 	if (con->state != CEPH_CON_S_V2_AUTH) {
1338 		dout("%s con %p state changed to %d\n", __func__, con,
1339 		     con->state);
1340 		return -EAGAIN;
1341 	}
1342 
1343 	dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret);
1344 	if (ret)
1345 		return ret;
1346 
1347 	return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf,
1348 				 ctrl_len, authorizer, authorizer_len, true);
1349 }
1350 
1351 static int prepare_auth_signature(struct ceph_connection *con)
1352 {
1353 	void *buf;
1354 	int ret;
1355 
1356 	buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE,
1357 						  con_secure(con)));
1358 	if (!buf)
1359 		return -ENOMEM;
1360 
1361 	ret = hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt,
1362 			  CTRL_BODY(buf));
1363 	if (ret)
1364 		return ret;
1365 
1366 	return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf,
1367 			       SHA256_DIGEST_SIZE);
1368 }
1369 
1370 static int prepare_client_ident(struct ceph_connection *con)
1371 {
1372 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1373 	struct ceph_client *client = from_msgr(con->msgr);
1374 	u64 global_id = ceph_client_gid(client);
1375 	void *buf, *p;
1376 	int ctrl_len;
1377 
1378 	WARN_ON(con->v2.server_cookie);
1379 	WARN_ON(con->v2.connect_seq);
1380 	WARN_ON(con->v2.peer_global_seq);
1381 
1382 	if (!con->v2.client_cookie) {
1383 		do {
1384 			get_random_bytes(&con->v2.client_cookie,
1385 					 sizeof(con->v2.client_cookie));
1386 		} while (!con->v2.client_cookie);
1387 		dout("%s con %p generated cookie 0x%llx\n", __func__, con,
1388 		     con->v2.client_cookie);
1389 	} else {
1390 		dout("%s con %p cookie already set 0x%llx\n", __func__, con,
1391 		     con->v2.client_cookie);
1392 	}
1393 
1394 	dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n",
1395 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1396 	     ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce),
1397 	     global_id, con->v2.global_seq, client->supported_features,
1398 	     client->required_features, con->v2.client_cookie);
1399 
1400 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) +
1401 		   ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8;
1402 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1403 	if (!buf)
1404 		return -ENOMEM;
1405 
1406 	p = CTRL_BODY(buf);
1407 	ceph_encode_8(&p, 2);  /* addrvec marker */
1408 	ceph_encode_32(&p, 1);  /* addr_cnt */
1409 	ceph_encode_entity_addr(&p, my_addr);
1410 	ceph_encode_entity_addr(&p, &con->peer_addr);
1411 	ceph_encode_64(&p, global_id);
1412 	ceph_encode_64(&p, con->v2.global_seq);
1413 	ceph_encode_64(&p, client->supported_features);
1414 	ceph_encode_64(&p, client->required_features);
1415 	ceph_encode_64(&p, 0);  /* flags */
1416 	ceph_encode_64(&p, con->v2.client_cookie);
1417 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1418 
1419 	return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len);
1420 }
1421 
1422 static int prepare_session_reconnect(struct ceph_connection *con)
1423 {
1424 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1425 	void *buf, *p;
1426 	int ctrl_len;
1427 
1428 	WARN_ON(!con->v2.client_cookie);
1429 	WARN_ON(!con->v2.server_cookie);
1430 	WARN_ON(!con->v2.connect_seq);
1431 	WARN_ON(!con->v2.peer_global_seq);
1432 
1433 	dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n",
1434 	     __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1435 	     con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq,
1436 	     con->v2.connect_seq, con->in_seq);
1437 
1438 	ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8;
1439 	buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1440 	if (!buf)
1441 		return -ENOMEM;
1442 
1443 	p = CTRL_BODY(buf);
1444 	ceph_encode_8(&p, 2);  /* entity_addrvec_t marker */
1445 	ceph_encode_32(&p, 1);  /* my_addrs len */
1446 	ceph_encode_entity_addr(&p, my_addr);
1447 	ceph_encode_64(&p, con->v2.client_cookie);
1448 	ceph_encode_64(&p, con->v2.server_cookie);
1449 	ceph_encode_64(&p, con->v2.global_seq);
1450 	ceph_encode_64(&p, con->v2.connect_seq);
1451 	ceph_encode_64(&p, con->in_seq);
1452 	WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1453 
1454 	return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len);
1455 }
1456 
1457 static int prepare_keepalive2(struct ceph_connection *con)
1458 {
1459 	struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf);
1460 	struct timespec64 now;
1461 
1462 	ktime_get_real_ts64(&now);
1463 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec,
1464 	     now.tv_nsec);
1465 
1466 	ceph_encode_timespec64(ts, &now);
1467 
1468 	reset_out_kvecs(con);
1469 	return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf,
1470 			       sizeof(struct ceph_timespec));
1471 }
1472 
1473 static int prepare_ack(struct ceph_connection *con)
1474 {
1475 	void *p;
1476 
1477 	dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1478 	     con->in_seq_acked, con->in_seq);
1479 	con->in_seq_acked = con->in_seq;
1480 
1481 	p = CTRL_BODY(con->v2.out_buf);
1482 	ceph_encode_64(&p, con->in_seq_acked);
1483 
1484 	reset_out_kvecs(con);
1485 	return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8);
1486 }
1487 
1488 static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted)
1489 {
1490 	dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con,
1491 	     con->out_msg, aborted, con->v2.out_epil.front_crc,
1492 	     con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc);
1493 
1494 	encode_epilogue_plain(con, aborted);
1495 	add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN);
1496 }
1497 
1498 /*
1499  * For "used" empty segments, crc is -1.  For unused (trailing)
1500  * segments, crc is 0.
1501  */
1502 static void prepare_message_plain(struct ceph_connection *con)
1503 {
1504 	struct ceph_msg *msg = con->out_msg;
1505 
1506 	prepare_head_plain(con, con->v2.out_buf,
1507 			   sizeof(struct ceph_msg_header2), NULL, 0, false);
1508 
1509 	if (!front_len(msg) && !middle_len(msg)) {
1510 		if (!data_len(msg)) {
1511 			/*
1512 			 * Empty message: once the head is written,
1513 			 * we are done -- there is no epilogue.
1514 			 */
1515 			con->v2.out_state = OUT_S_FINISH_MESSAGE;
1516 			return;
1517 		}
1518 
1519 		con->v2.out_epil.front_crc = -1;
1520 		con->v2.out_epil.middle_crc = -1;
1521 		con->v2.out_state = OUT_S_QUEUE_DATA;
1522 		return;
1523 	}
1524 
1525 	if (front_len(msg)) {
1526 		con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base,
1527 						    front_len(msg));
1528 		add_out_kvec(con, msg->front.iov_base, front_len(msg));
1529 	} else {
1530 		/* middle (at least) is there, checked above */
1531 		con->v2.out_epil.front_crc = -1;
1532 	}
1533 
1534 	if (middle_len(msg)) {
1535 		con->v2.out_epil.middle_crc =
1536 			crc32c(-1, msg->middle->vec.iov_base, middle_len(msg));
1537 		add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
1538 	} else {
1539 		con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0;
1540 	}
1541 
1542 	if (data_len(msg)) {
1543 		con->v2.out_state = OUT_S_QUEUE_DATA;
1544 	} else {
1545 		con->v2.out_epil.data_crc = 0;
1546 		prepare_epilogue_plain(con, false);
1547 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1548 	}
1549 }
1550 
1551 /*
1552  * Unfortunately the kernel crypto API doesn't support streaming
1553  * (piecewise) operation for AEAD algorithms, so we can't get away
1554  * with a fixed size buffer and a couple sgs.  Instead, we have to
1555  * allocate pages for the entire tail of the message (currently up
1556  * to ~32M) and two sgs arrays (up to ~256K each)...
1557  */
1558 static int prepare_message_secure(struct ceph_connection *con)
1559 {
1560 	void *zerop = page_address(ceph_zero_page);
1561 	struct sg_table enc_sgt = {};
1562 	struct sg_table sgt = {};
1563 	struct page **enc_pages;
1564 	int enc_page_cnt;
1565 	int tail_len;
1566 	int ret;
1567 
1568 	ret = prepare_head_secure_small(con, con->v2.out_buf,
1569 					sizeof(struct ceph_msg_header2));
1570 	if (ret)
1571 		return ret;
1572 
1573 	tail_len = tail_onwire_len(con->out_msg, true);
1574 	if (!tail_len) {
1575 		/*
1576 		 * Empty message: once the head is written,
1577 		 * we are done -- there is no epilogue.
1578 		 */
1579 		con->v2.out_state = OUT_S_FINISH_MESSAGE;
1580 		return 0;
1581 	}
1582 
1583 	encode_epilogue_secure(con, false);
1584 	ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop,
1585 				&con->v2.out_epil, false);
1586 	if (ret)
1587 		goto out;
1588 
1589 	enc_page_cnt = calc_pages_for(0, tail_len);
1590 	enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
1591 	if (IS_ERR(enc_pages)) {
1592 		ret = PTR_ERR(enc_pages);
1593 		goto out;
1594 	}
1595 
1596 	WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt);
1597 	con->v2.out_enc_pages = enc_pages;
1598 	con->v2.out_enc_page_cnt = enc_page_cnt;
1599 	con->v2.out_enc_resid = tail_len;
1600 	con->v2.out_enc_i = 0;
1601 
1602 	ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt,
1603 					0, tail_len, GFP_NOIO);
1604 	if (ret)
1605 		goto out;
1606 
1607 	ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl,
1608 			tail_len - CEPH_GCM_TAG_LEN);
1609 	if (ret)
1610 		goto out;
1611 
1612 	dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con,
1613 	     con->out_msg, sgt.orig_nents, enc_page_cnt);
1614 	con->v2.out_state = OUT_S_QUEUE_ENC_PAGE;
1615 
1616 out:
1617 	sg_free_table(&sgt);
1618 	sg_free_table(&enc_sgt);
1619 	return ret;
1620 }
1621 
1622 static int prepare_message(struct ceph_connection *con)
1623 {
1624 	int lens[] = {
1625 		sizeof(struct ceph_msg_header2),
1626 		front_len(con->out_msg),
1627 		middle_len(con->out_msg),
1628 		data_len(con->out_msg)
1629 	};
1630 	struct ceph_frame_desc desc;
1631 	int ret;
1632 
1633 	dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con,
1634 	     con->out_msg, lens[0], lens[1], lens[2], lens[3]);
1635 
1636 	if (con->in_seq > con->in_seq_acked) {
1637 		dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1638 		     con->in_seq_acked, con->in_seq);
1639 		con->in_seq_acked = con->in_seq;
1640 	}
1641 
1642 	reset_out_kvecs(con);
1643 	init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4);
1644 	encode_preamble(&desc, con->v2.out_buf);
1645 	fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr,
1646 		     con->in_seq_acked);
1647 
1648 	if (con_secure(con)) {
1649 		ret = prepare_message_secure(con);
1650 		if (ret)
1651 			return ret;
1652 	} else {
1653 		prepare_message_plain(con);
1654 	}
1655 
1656 	ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1657 	return 0;
1658 }
1659 
1660 static int prepare_read_banner_prefix(struct ceph_connection *con)
1661 {
1662 	void *buf;
1663 
1664 	buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN);
1665 	if (!buf)
1666 		return -ENOMEM;
1667 
1668 	reset_in_kvecs(con);
1669 	add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1670 	add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1671 	con->state = CEPH_CON_S_V2_BANNER_PREFIX;
1672 	return 0;
1673 }
1674 
1675 static int prepare_read_banner_payload(struct ceph_connection *con,
1676 				       int payload_len)
1677 {
1678 	void *buf;
1679 
1680 	buf = alloc_conn_buf(con, payload_len);
1681 	if (!buf)
1682 		return -ENOMEM;
1683 
1684 	reset_in_kvecs(con);
1685 	add_in_kvec(con, buf, payload_len);
1686 	add_in_sign_kvec(con, buf, payload_len);
1687 	con->state = CEPH_CON_S_V2_BANNER_PAYLOAD;
1688 	return 0;
1689 }
1690 
1691 static void prepare_read_preamble(struct ceph_connection *con)
1692 {
1693 	reset_in_kvecs(con);
1694 	add_in_kvec(con, con->v2.in_buf,
1695 		    con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN :
1696 				      CEPH_PREAMBLE_PLAIN_LEN);
1697 	con->v2.in_state = IN_S_HANDLE_PREAMBLE;
1698 }
1699 
1700 static int prepare_read_control(struct ceph_connection *con)
1701 {
1702 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1703 	int head_len;
1704 	void *buf;
1705 
1706 	reset_in_kvecs(con);
1707 	if (con->state == CEPH_CON_S_V2_HELLO ||
1708 	    con->state == CEPH_CON_S_V2_AUTH) {
1709 		head_len = head_onwire_len(ctrl_len, false);
1710 		buf = alloc_conn_buf(con, head_len);
1711 		if (!buf)
1712 			return -ENOMEM;
1713 
1714 		/* preserve preamble */
1715 		memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN);
1716 
1717 		add_in_kvec(con, CTRL_BODY(buf), ctrl_len);
1718 		add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN);
1719 		add_in_sign_kvec(con, buf, head_len);
1720 	} else {
1721 		if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
1722 			buf = alloc_conn_buf(con, ctrl_len);
1723 			if (!buf)
1724 				return -ENOMEM;
1725 
1726 			add_in_kvec(con, buf, ctrl_len);
1727 		} else {
1728 			add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len);
1729 		}
1730 		add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN);
1731 	}
1732 	con->v2.in_state = IN_S_HANDLE_CONTROL;
1733 	return 0;
1734 }
1735 
1736 static int prepare_read_control_remainder(struct ceph_connection *con)
1737 {
1738 	int ctrl_len = con->v2.in_desc.fd_lens[0];
1739 	int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1740 	void *buf;
1741 
1742 	buf = alloc_conn_buf(con, ctrl_len);
1743 	if (!buf)
1744 		return -ENOMEM;
1745 
1746 	memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN);
1747 
1748 	reset_in_kvecs(con);
1749 	add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len);
1750 	add_in_kvec(con, con->v2.in_buf,
1751 		    padding_len(rem_len) + CEPH_GCM_TAG_LEN);
1752 	con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER;
1753 	return 0;
1754 }
1755 
1756 static int prepare_read_data(struct ceph_connection *con)
1757 {
1758 	struct bio_vec bv;
1759 
1760 	con->in_data_crc = -1;
1761 	ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg,
1762 				  data_len(con->in_msg));
1763 
1764 	get_bvec_at(&con->v2.in_cursor, &bv);
1765 	if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1766 		if (unlikely(!con->bounce_page)) {
1767 			con->bounce_page = alloc_page(GFP_NOIO);
1768 			if (!con->bounce_page) {
1769 				pr_err("failed to allocate bounce page\n");
1770 				return -ENOMEM;
1771 			}
1772 		}
1773 
1774 		bv.bv_page = con->bounce_page;
1775 		bv.bv_offset = 0;
1776 	}
1777 	set_in_bvec(con, &bv);
1778 	con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT;
1779 	return 0;
1780 }
1781 
1782 static void prepare_read_data_cont(struct ceph_connection *con)
1783 {
1784 	struct bio_vec bv;
1785 
1786 	if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1787 		con->in_data_crc = crc32c(con->in_data_crc,
1788 					  page_address(con->bounce_page),
1789 					  con->v2.in_bvec.bv_len);
1790 
1791 		get_bvec_at(&con->v2.in_cursor, &bv);
1792 		memcpy_to_page(bv.bv_page, bv.bv_offset,
1793 			       page_address(con->bounce_page),
1794 			       con->v2.in_bvec.bv_len);
1795 	} else {
1796 		con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
1797 						    con->v2.in_bvec.bv_page,
1798 						    con->v2.in_bvec.bv_offset,
1799 						    con->v2.in_bvec.bv_len);
1800 	}
1801 
1802 	ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len);
1803 	if (con->v2.in_cursor.total_resid) {
1804 		get_bvec_at(&con->v2.in_cursor, &bv);
1805 		if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1806 			bv.bv_page = con->bounce_page;
1807 			bv.bv_offset = 0;
1808 		}
1809 		set_in_bvec(con, &bv);
1810 		WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT);
1811 		return;
1812 	}
1813 
1814 	/*
1815 	 * We've read all data.  Prepare to read epilogue.
1816 	 */
1817 	reset_in_kvecs(con);
1818 	add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1819 	con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1820 }
1821 
1822 static int prepare_read_tail_plain(struct ceph_connection *con)
1823 {
1824 	struct ceph_msg *msg = con->in_msg;
1825 
1826 	if (!front_len(msg) && !middle_len(msg)) {
1827 		WARN_ON(!data_len(msg));
1828 		return prepare_read_data(con);
1829 	}
1830 
1831 	reset_in_kvecs(con);
1832 	if (front_len(msg)) {
1833 		add_in_kvec(con, msg->front.iov_base, front_len(msg));
1834 		WARN_ON(msg->front.iov_len != front_len(msg));
1835 	}
1836 	if (middle_len(msg)) {
1837 		add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
1838 		WARN_ON(msg->middle->vec.iov_len != middle_len(msg));
1839 	}
1840 
1841 	if (data_len(msg)) {
1842 		con->v2.in_state = IN_S_PREPARE_READ_DATA;
1843 	} else {
1844 		add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1845 		con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1846 	}
1847 	return 0;
1848 }
1849 
1850 static void prepare_read_enc_page(struct ceph_connection *con)
1851 {
1852 	struct bio_vec bv;
1853 
1854 	dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i,
1855 	     con->v2.in_enc_resid);
1856 	WARN_ON(!con->v2.in_enc_resid);
1857 
1858 	bv.bv_page = con->v2.in_enc_pages[con->v2.in_enc_i];
1859 	bv.bv_offset = 0;
1860 	bv.bv_len = min(con->v2.in_enc_resid, (int)PAGE_SIZE);
1861 
1862 	set_in_bvec(con, &bv);
1863 	con->v2.in_enc_i++;
1864 	con->v2.in_enc_resid -= bv.bv_len;
1865 
1866 	if (con->v2.in_enc_resid) {
1867 		con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE;
1868 		return;
1869 	}
1870 
1871 	/*
1872 	 * We are set to read the last piece of ciphertext (ending
1873 	 * with epilogue) + auth tag.
1874 	 */
1875 	WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt);
1876 	con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1877 }
1878 
1879 static int prepare_read_tail_secure(struct ceph_connection *con)
1880 {
1881 	struct page **enc_pages;
1882 	int enc_page_cnt;
1883 	int tail_len;
1884 
1885 	tail_len = tail_onwire_len(con->in_msg, true);
1886 	WARN_ON(!tail_len);
1887 
1888 	enc_page_cnt = calc_pages_for(0, tail_len);
1889 	enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
1890 	if (IS_ERR(enc_pages))
1891 		return PTR_ERR(enc_pages);
1892 
1893 	WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt);
1894 	con->v2.in_enc_pages = enc_pages;
1895 	con->v2.in_enc_page_cnt = enc_page_cnt;
1896 	con->v2.in_enc_resid = tail_len;
1897 	con->v2.in_enc_i = 0;
1898 
1899 	prepare_read_enc_page(con);
1900 	return 0;
1901 }
1902 
1903 static void __finish_skip(struct ceph_connection *con)
1904 {
1905 	con->in_seq++;
1906 	prepare_read_preamble(con);
1907 }
1908 
1909 static void prepare_skip_message(struct ceph_connection *con)
1910 {
1911 	struct ceph_frame_desc *desc = &con->v2.in_desc;
1912 	int tail_len;
1913 
1914 	dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1],
1915 	     desc->fd_lens[2], desc->fd_lens[3]);
1916 
1917 	tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2],
1918 				     desc->fd_lens[3], con_secure(con));
1919 	if (!tail_len) {
1920 		__finish_skip(con);
1921 	} else {
1922 		set_in_skip(con, tail_len);
1923 		con->v2.in_state = IN_S_FINISH_SKIP;
1924 	}
1925 }
1926 
1927 static int process_banner_prefix(struct ceph_connection *con)
1928 {
1929 	int payload_len;
1930 	void *p;
1931 
1932 	WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN);
1933 
1934 	p = con->v2.in_kvecs[0].iov_base;
1935 	if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) {
1936 		if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN))
1937 			con->error_msg = "server is speaking msgr1 protocol";
1938 		else
1939 			con->error_msg = "protocol error, bad banner";
1940 		return -EINVAL;
1941 	}
1942 
1943 	p += CEPH_BANNER_V2_LEN;
1944 	payload_len = ceph_decode_16(&p);
1945 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
1946 
1947 	return prepare_read_banner_payload(con, payload_len);
1948 }
1949 
1950 static int process_banner_payload(struct ceph_connection *con)
1951 {
1952 	void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len;
1953 	u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES;
1954 	u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES;
1955 	u64 server_feat, server_req_feat;
1956 	void *p;
1957 	int ret;
1958 
1959 	p = con->v2.in_kvecs[0].iov_base;
1960 	ceph_decode_64_safe(&p, end, server_feat, bad);
1961 	ceph_decode_64_safe(&p, end, server_req_feat, bad);
1962 
1963 	dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n",
1964 	     __func__, con, server_feat, server_req_feat);
1965 
1966 	if (req_feat & ~server_feat) {
1967 		pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
1968 		       server_feat, req_feat & ~server_feat);
1969 		con->error_msg = "missing required protocol features";
1970 		return -EINVAL;
1971 	}
1972 	if (server_req_feat & ~feat) {
1973 		pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
1974 		       feat, server_req_feat & ~feat);
1975 		con->error_msg = "missing required protocol features";
1976 		return -EINVAL;
1977 	}
1978 
1979 	/* no reset_out_kvecs() as our banner may still be pending */
1980 	ret = prepare_hello(con);
1981 	if (ret) {
1982 		pr_err("prepare_hello failed: %d\n", ret);
1983 		return ret;
1984 	}
1985 
1986 	con->state = CEPH_CON_S_V2_HELLO;
1987 	prepare_read_preamble(con);
1988 	return 0;
1989 
1990 bad:
1991 	pr_err("failed to decode banner payload\n");
1992 	return -EINVAL;
1993 }
1994 
1995 static int process_hello(struct ceph_connection *con, void *p, void *end)
1996 {
1997 	struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1998 	struct ceph_entity_addr addr_for_me;
1999 	u8 entity_type;
2000 	int ret;
2001 
2002 	if (con->state != CEPH_CON_S_V2_HELLO) {
2003 		con->error_msg = "protocol error, unexpected hello";
2004 		return -EINVAL;
2005 	}
2006 
2007 	ceph_decode_8_safe(&p, end, entity_type, bad);
2008 	ret = ceph_decode_entity_addr(&p, end, &addr_for_me);
2009 	if (ret) {
2010 		pr_err("failed to decode addr_for_me: %d\n", ret);
2011 		return ret;
2012 	}
2013 
2014 	dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con,
2015 	     entity_type, ceph_pr_addr(&addr_for_me));
2016 
2017 	if (entity_type != con->peer_name.type) {
2018 		pr_err("bad peer type, want %d, got %d\n",
2019 		       con->peer_name.type, entity_type);
2020 		con->error_msg = "wrong peer at address";
2021 		return -EINVAL;
2022 	}
2023 
2024 	/*
2025 	 * Set our address to the address our first peer (i.e. monitor)
2026 	 * sees that we are connecting from.  If we are behind some sort
2027 	 * of NAT and want to be identified by some private (not NATed)
2028 	 * address, ip option should be used.
2029 	 */
2030 	if (ceph_addr_is_blank(my_addr)) {
2031 		memcpy(&my_addr->in_addr, &addr_for_me.in_addr,
2032 		       sizeof(my_addr->in_addr));
2033 		ceph_addr_set_port(my_addr, 0);
2034 		dout("%s con %p set my addr %s, as seen by peer %s\n",
2035 		     __func__, con, ceph_pr_addr(my_addr),
2036 		     ceph_pr_addr(&con->peer_addr));
2037 	} else {
2038 		dout("%s con %p my addr already set %s\n",
2039 		     __func__, con, ceph_pr_addr(my_addr));
2040 	}
2041 
2042 	WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr));
2043 	WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY);
2044 	WARN_ON(!my_addr->nonce);
2045 
2046 	/* no reset_out_kvecs() as our hello may still be pending */
2047 	ret = prepare_auth_request(con);
2048 	if (ret) {
2049 		if (ret != -EAGAIN)
2050 			pr_err("prepare_auth_request failed: %d\n", ret);
2051 		return ret;
2052 	}
2053 
2054 	con->state = CEPH_CON_S_V2_AUTH;
2055 	return 0;
2056 
2057 bad:
2058 	pr_err("failed to decode hello\n");
2059 	return -EINVAL;
2060 }
2061 
2062 static int process_auth_bad_method(struct ceph_connection *con,
2063 				   void *p, void *end)
2064 {
2065 	int allowed_protos[8], allowed_modes[8];
2066 	int allowed_proto_cnt, allowed_mode_cnt;
2067 	int used_proto, result;
2068 	int ret;
2069 	int i;
2070 
2071 	if (con->state != CEPH_CON_S_V2_AUTH) {
2072 		con->error_msg = "protocol error, unexpected auth_bad_method";
2073 		return -EINVAL;
2074 	}
2075 
2076 	ceph_decode_32_safe(&p, end, used_proto, bad);
2077 	ceph_decode_32_safe(&p, end, result, bad);
2078 	dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto,
2079 	     result);
2080 
2081 	ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad);
2082 	if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) {
2083 		pr_err("allowed_protos too big %d\n", allowed_proto_cnt);
2084 		return -EINVAL;
2085 	}
2086 	for (i = 0; i < allowed_proto_cnt; i++) {
2087 		ceph_decode_32_safe(&p, end, allowed_protos[i], bad);
2088 		dout("%s con %p allowed_protos[%d] %d\n", __func__, con,
2089 		     i, allowed_protos[i]);
2090 	}
2091 
2092 	ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad);
2093 	if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) {
2094 		pr_err("allowed_modes too big %d\n", allowed_mode_cnt);
2095 		return -EINVAL;
2096 	}
2097 	for (i = 0; i < allowed_mode_cnt; i++) {
2098 		ceph_decode_32_safe(&p, end, allowed_modes[i], bad);
2099 		dout("%s con %p allowed_modes[%d] %d\n", __func__, con,
2100 		     i, allowed_modes[i]);
2101 	}
2102 
2103 	mutex_unlock(&con->mutex);
2104 	ret = con->ops->handle_auth_bad_method(con, used_proto, result,
2105 					       allowed_protos,
2106 					       allowed_proto_cnt,
2107 					       allowed_modes,
2108 					       allowed_mode_cnt);
2109 	mutex_lock(&con->mutex);
2110 	if (con->state != CEPH_CON_S_V2_AUTH) {
2111 		dout("%s con %p state changed to %d\n", __func__, con,
2112 		     con->state);
2113 		return -EAGAIN;
2114 	}
2115 
2116 	dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret);
2117 	return ret;
2118 
2119 bad:
2120 	pr_err("failed to decode auth_bad_method\n");
2121 	return -EINVAL;
2122 }
2123 
2124 static int process_auth_reply_more(struct ceph_connection *con,
2125 				   void *p, void *end)
2126 {
2127 	int payload_len;
2128 	int ret;
2129 
2130 	if (con->state != CEPH_CON_S_V2_AUTH) {
2131 		con->error_msg = "protocol error, unexpected auth_reply_more";
2132 		return -EINVAL;
2133 	}
2134 
2135 	ceph_decode_32_safe(&p, end, payload_len, bad);
2136 	ceph_decode_need(&p, end, payload_len, bad);
2137 
2138 	dout("%s con %p payload_len %d\n", __func__, con, payload_len);
2139 
2140 	reset_out_kvecs(con);
2141 	ret = prepare_auth_request_more(con, p, payload_len);
2142 	if (ret) {
2143 		if (ret != -EAGAIN)
2144 			pr_err("prepare_auth_request_more failed: %d\n", ret);
2145 		return ret;
2146 	}
2147 
2148 	return 0;
2149 
2150 bad:
2151 	pr_err("failed to decode auth_reply_more\n");
2152 	return -EINVAL;
2153 }
2154 
2155 /*
2156  * Align session_key and con_secret to avoid GFP_ATOMIC allocation
2157  * inside crypto_shash_setkey() and crypto_aead_setkey() called from
2158  * setup_crypto().  __aligned(16) isn't guaranteed to work for stack
2159  * objects, so do it by hand.
2160  */
2161 static int process_auth_done(struct ceph_connection *con, void *p, void *end)
2162 {
2163 	u8 session_key_buf[CEPH_KEY_LEN + 16];
2164 	u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16];
2165 	u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16);
2166 	u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16);
2167 	int session_key_len, con_secret_len;
2168 	int payload_len;
2169 	u64 global_id;
2170 	int ret;
2171 
2172 	if (con->state != CEPH_CON_S_V2_AUTH) {
2173 		con->error_msg = "protocol error, unexpected auth_done";
2174 		return -EINVAL;
2175 	}
2176 
2177 	ceph_decode_64_safe(&p, end, global_id, bad);
2178 	ceph_decode_32_safe(&p, end, con->v2.con_mode, bad);
2179 	ceph_decode_32_safe(&p, end, payload_len, bad);
2180 
2181 	dout("%s con %p global_id %llu con_mode %d payload_len %d\n",
2182 	     __func__, con, global_id, con->v2.con_mode, payload_len);
2183 
2184 	mutex_unlock(&con->mutex);
2185 	session_key_len = 0;
2186 	con_secret_len = 0;
2187 	ret = con->ops->handle_auth_done(con, global_id, p, payload_len,
2188 					 session_key, &session_key_len,
2189 					 con_secret, &con_secret_len);
2190 	mutex_lock(&con->mutex);
2191 	if (con->state != CEPH_CON_S_V2_AUTH) {
2192 		dout("%s con %p state changed to %d\n", __func__, con,
2193 		     con->state);
2194 		ret = -EAGAIN;
2195 		goto out;
2196 	}
2197 
2198 	dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret);
2199 	if (ret)
2200 		goto out;
2201 
2202 	ret = setup_crypto(con, session_key, session_key_len, con_secret,
2203 			   con_secret_len);
2204 	if (ret)
2205 		goto out;
2206 
2207 	reset_out_kvecs(con);
2208 	ret = prepare_auth_signature(con);
2209 	if (ret) {
2210 		pr_err("prepare_auth_signature failed: %d\n", ret);
2211 		goto out;
2212 	}
2213 
2214 	con->state = CEPH_CON_S_V2_AUTH_SIGNATURE;
2215 
2216 out:
2217 	memzero_explicit(session_key_buf, sizeof(session_key_buf));
2218 	memzero_explicit(con_secret_buf, sizeof(con_secret_buf));
2219 	return ret;
2220 
2221 bad:
2222 	pr_err("failed to decode auth_done\n");
2223 	return -EINVAL;
2224 }
2225 
2226 static int process_auth_signature(struct ceph_connection *con,
2227 				  void *p, void *end)
2228 {
2229 	u8 hmac[SHA256_DIGEST_SIZE];
2230 	int ret;
2231 
2232 	if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) {
2233 		con->error_msg = "protocol error, unexpected auth_signature";
2234 		return -EINVAL;
2235 	}
2236 
2237 	ret = hmac_sha256(con, con->v2.out_sign_kvecs,
2238 			  con->v2.out_sign_kvec_cnt, hmac);
2239 	if (ret)
2240 		return ret;
2241 
2242 	ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad);
2243 	if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) {
2244 		con->error_msg = "integrity error, bad auth signature";
2245 		return -EBADMSG;
2246 	}
2247 
2248 	dout("%s con %p auth signature ok\n", __func__, con);
2249 
2250 	/* no reset_out_kvecs() as our auth_signature may still be pending */
2251 	if (!con->v2.server_cookie) {
2252 		ret = prepare_client_ident(con);
2253 		if (ret) {
2254 			pr_err("prepare_client_ident failed: %d\n", ret);
2255 			return ret;
2256 		}
2257 
2258 		con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2259 	} else {
2260 		ret = prepare_session_reconnect(con);
2261 		if (ret) {
2262 			pr_err("prepare_session_reconnect failed: %d\n", ret);
2263 			return ret;
2264 		}
2265 
2266 		con->state = CEPH_CON_S_V2_SESSION_RECONNECT;
2267 	}
2268 
2269 	return 0;
2270 
2271 bad:
2272 	pr_err("failed to decode auth_signature\n");
2273 	return -EINVAL;
2274 }
2275 
2276 static int process_server_ident(struct ceph_connection *con,
2277 				void *p, void *end)
2278 {
2279 	struct ceph_client *client = from_msgr(con->msgr);
2280 	u64 features, required_features;
2281 	struct ceph_entity_addr addr;
2282 	u64 global_seq;
2283 	u64 global_id;
2284 	u64 cookie;
2285 	u64 flags;
2286 	int ret;
2287 
2288 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2289 		con->error_msg = "protocol error, unexpected server_ident";
2290 		return -EINVAL;
2291 	}
2292 
2293 	ret = ceph_decode_entity_addrvec(&p, end, true, &addr);
2294 	if (ret) {
2295 		pr_err("failed to decode server addrs: %d\n", ret);
2296 		return ret;
2297 	}
2298 
2299 	ceph_decode_64_safe(&p, end, global_id, bad);
2300 	ceph_decode_64_safe(&p, end, global_seq, bad);
2301 	ceph_decode_64_safe(&p, end, features, bad);
2302 	ceph_decode_64_safe(&p, end, required_features, bad);
2303 	ceph_decode_64_safe(&p, end, flags, bad);
2304 	ceph_decode_64_safe(&p, end, cookie, bad);
2305 
2306 	dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n",
2307 	     __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce),
2308 	     global_id, global_seq, features, required_features, flags, cookie);
2309 
2310 	/* is this who we intended to talk to? */
2311 	if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) {
2312 		pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n",
2313 		       ceph_pr_addr(&con->peer_addr),
2314 		       le32_to_cpu(con->peer_addr.nonce),
2315 		       ceph_pr_addr(&addr), le32_to_cpu(addr.nonce));
2316 		con->error_msg = "wrong peer at address";
2317 		return -EINVAL;
2318 	}
2319 
2320 	if (client->required_features & ~features) {
2321 		pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
2322 		       features, client->required_features & ~features);
2323 		con->error_msg = "missing required protocol features";
2324 		return -EINVAL;
2325 	}
2326 
2327 	/*
2328 	 * Both name->type and name->num are set in ceph_con_open() but
2329 	 * name->num may be bogus in the initial monmap.  name->type is
2330 	 * verified in handle_hello().
2331 	 */
2332 	WARN_ON(!con->peer_name.type);
2333 	con->peer_name.num = cpu_to_le64(global_id);
2334 	con->v2.peer_global_seq = global_seq;
2335 	con->peer_features = features;
2336 	WARN_ON(required_features & ~client->supported_features);
2337 	con->v2.server_cookie = cookie;
2338 
2339 	if (flags & CEPH_MSG_CONNECT_LOSSY) {
2340 		ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX);
2341 		WARN_ON(con->v2.server_cookie);
2342 	} else {
2343 		WARN_ON(!con->v2.server_cookie);
2344 	}
2345 
2346 	clear_in_sign_kvecs(con);
2347 	clear_out_sign_kvecs(con);
2348 	free_conn_bufs(con);
2349 	con->delay = 0;  /* reset backoff memory */
2350 
2351 	con->state = CEPH_CON_S_OPEN;
2352 	con->v2.out_state = OUT_S_GET_NEXT;
2353 	return 0;
2354 
2355 bad:
2356 	pr_err("failed to decode server_ident\n");
2357 	return -EINVAL;
2358 }
2359 
2360 static int process_ident_missing_features(struct ceph_connection *con,
2361 					  void *p, void *end)
2362 {
2363 	struct ceph_client *client = from_msgr(con->msgr);
2364 	u64 missing_features;
2365 
2366 	if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2367 		con->error_msg = "protocol error, unexpected ident_missing_features";
2368 		return -EINVAL;
2369 	}
2370 
2371 	ceph_decode_64_safe(&p, end, missing_features, bad);
2372 	pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
2373 	       client->supported_features, missing_features);
2374 	con->error_msg = "missing required protocol features";
2375 	return -EINVAL;
2376 
2377 bad:
2378 	pr_err("failed to decode ident_missing_features\n");
2379 	return -EINVAL;
2380 }
2381 
2382 static int process_session_reconnect_ok(struct ceph_connection *con,
2383 					void *p, void *end)
2384 {
2385 	u64 seq;
2386 
2387 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2388 		con->error_msg = "protocol error, unexpected session_reconnect_ok";
2389 		return -EINVAL;
2390 	}
2391 
2392 	ceph_decode_64_safe(&p, end, seq, bad);
2393 
2394 	dout("%s con %p seq %llu\n", __func__, con, seq);
2395 	ceph_con_discard_requeued(con, seq);
2396 
2397 	clear_in_sign_kvecs(con);
2398 	clear_out_sign_kvecs(con);
2399 	free_conn_bufs(con);
2400 	con->delay = 0;  /* reset backoff memory */
2401 
2402 	con->state = CEPH_CON_S_OPEN;
2403 	con->v2.out_state = OUT_S_GET_NEXT;
2404 	return 0;
2405 
2406 bad:
2407 	pr_err("failed to decode session_reconnect_ok\n");
2408 	return -EINVAL;
2409 }
2410 
2411 static int process_session_retry(struct ceph_connection *con,
2412 				 void *p, void *end)
2413 {
2414 	u64 connect_seq;
2415 	int ret;
2416 
2417 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2418 		con->error_msg = "protocol error, unexpected session_retry";
2419 		return -EINVAL;
2420 	}
2421 
2422 	ceph_decode_64_safe(&p, end, connect_seq, bad);
2423 
2424 	dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq);
2425 	WARN_ON(connect_seq <= con->v2.connect_seq);
2426 	con->v2.connect_seq = connect_seq + 1;
2427 
2428 	free_conn_bufs(con);
2429 
2430 	reset_out_kvecs(con);
2431 	ret = prepare_session_reconnect(con);
2432 	if (ret) {
2433 		pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret);
2434 		return ret;
2435 	}
2436 
2437 	return 0;
2438 
2439 bad:
2440 	pr_err("failed to decode session_retry\n");
2441 	return -EINVAL;
2442 }
2443 
2444 static int process_session_retry_global(struct ceph_connection *con,
2445 					void *p, void *end)
2446 {
2447 	u64 global_seq;
2448 	int ret;
2449 
2450 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2451 		con->error_msg = "protocol error, unexpected session_retry_global";
2452 		return -EINVAL;
2453 	}
2454 
2455 	ceph_decode_64_safe(&p, end, global_seq, bad);
2456 
2457 	dout("%s con %p global_seq %llu\n", __func__, con, global_seq);
2458 	WARN_ON(global_seq <= con->v2.global_seq);
2459 	con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq);
2460 
2461 	free_conn_bufs(con);
2462 
2463 	reset_out_kvecs(con);
2464 	ret = prepare_session_reconnect(con);
2465 	if (ret) {
2466 		pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret);
2467 		return ret;
2468 	}
2469 
2470 	return 0;
2471 
2472 bad:
2473 	pr_err("failed to decode session_retry_global\n");
2474 	return -EINVAL;
2475 }
2476 
2477 static int process_session_reset(struct ceph_connection *con,
2478 				 void *p, void *end)
2479 {
2480 	bool full;
2481 	int ret;
2482 
2483 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2484 		con->error_msg = "protocol error, unexpected session_reset";
2485 		return -EINVAL;
2486 	}
2487 
2488 	ceph_decode_8_safe(&p, end, full, bad);
2489 	if (!full) {
2490 		con->error_msg = "protocol error, bad session_reset";
2491 		return -EINVAL;
2492 	}
2493 
2494 	pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name),
2495 		ceph_pr_addr(&con->peer_addr));
2496 	ceph_con_reset_session(con);
2497 
2498 	mutex_unlock(&con->mutex);
2499 	if (con->ops->peer_reset)
2500 		con->ops->peer_reset(con);
2501 	mutex_lock(&con->mutex);
2502 	if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2503 		dout("%s con %p state changed to %d\n", __func__, con,
2504 		     con->state);
2505 		return -EAGAIN;
2506 	}
2507 
2508 	free_conn_bufs(con);
2509 
2510 	reset_out_kvecs(con);
2511 	ret = prepare_client_ident(con);
2512 	if (ret) {
2513 		pr_err("prepare_client_ident (rst) failed: %d\n", ret);
2514 		return ret;
2515 	}
2516 
2517 	con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2518 	return 0;
2519 
2520 bad:
2521 	pr_err("failed to decode session_reset\n");
2522 	return -EINVAL;
2523 }
2524 
2525 static int process_keepalive2_ack(struct ceph_connection *con,
2526 				  void *p, void *end)
2527 {
2528 	if (con->state != CEPH_CON_S_OPEN) {
2529 		con->error_msg = "protocol error, unexpected keepalive2_ack";
2530 		return -EINVAL;
2531 	}
2532 
2533 	ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad);
2534 	ceph_decode_timespec64(&con->last_keepalive_ack, p);
2535 
2536 	dout("%s con %p timestamp %lld.%09ld\n", __func__, con,
2537 	     con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec);
2538 
2539 	return 0;
2540 
2541 bad:
2542 	pr_err("failed to decode keepalive2_ack\n");
2543 	return -EINVAL;
2544 }
2545 
2546 static int process_ack(struct ceph_connection *con, void *p, void *end)
2547 {
2548 	u64 seq;
2549 
2550 	if (con->state != CEPH_CON_S_OPEN) {
2551 		con->error_msg = "protocol error, unexpected ack";
2552 		return -EINVAL;
2553 	}
2554 
2555 	ceph_decode_64_safe(&p, end, seq, bad);
2556 
2557 	dout("%s con %p seq %llu\n", __func__, con, seq);
2558 	ceph_con_discard_sent(con, seq);
2559 	return 0;
2560 
2561 bad:
2562 	pr_err("failed to decode ack\n");
2563 	return -EINVAL;
2564 }
2565 
2566 static int process_control(struct ceph_connection *con, void *p, void *end)
2567 {
2568 	int tag = con->v2.in_desc.fd_tag;
2569 	int ret;
2570 
2571 	dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p));
2572 
2573 	switch (tag) {
2574 	case FRAME_TAG_HELLO:
2575 		ret = process_hello(con, p, end);
2576 		break;
2577 	case FRAME_TAG_AUTH_BAD_METHOD:
2578 		ret = process_auth_bad_method(con, p, end);
2579 		break;
2580 	case FRAME_TAG_AUTH_REPLY_MORE:
2581 		ret = process_auth_reply_more(con, p, end);
2582 		break;
2583 	case FRAME_TAG_AUTH_DONE:
2584 		ret = process_auth_done(con, p, end);
2585 		break;
2586 	case FRAME_TAG_AUTH_SIGNATURE:
2587 		ret = process_auth_signature(con, p, end);
2588 		break;
2589 	case FRAME_TAG_SERVER_IDENT:
2590 		ret = process_server_ident(con, p, end);
2591 		break;
2592 	case FRAME_TAG_IDENT_MISSING_FEATURES:
2593 		ret = process_ident_missing_features(con, p, end);
2594 		break;
2595 	case FRAME_TAG_SESSION_RECONNECT_OK:
2596 		ret = process_session_reconnect_ok(con, p, end);
2597 		break;
2598 	case FRAME_TAG_SESSION_RETRY:
2599 		ret = process_session_retry(con, p, end);
2600 		break;
2601 	case FRAME_TAG_SESSION_RETRY_GLOBAL:
2602 		ret = process_session_retry_global(con, p, end);
2603 		break;
2604 	case FRAME_TAG_SESSION_RESET:
2605 		ret = process_session_reset(con, p, end);
2606 		break;
2607 	case FRAME_TAG_KEEPALIVE2_ACK:
2608 		ret = process_keepalive2_ack(con, p, end);
2609 		break;
2610 	case FRAME_TAG_ACK:
2611 		ret = process_ack(con, p, end);
2612 		break;
2613 	default:
2614 		pr_err("bad tag %d\n", tag);
2615 		con->error_msg = "protocol error, bad tag";
2616 		return -EINVAL;
2617 	}
2618 	if (ret) {
2619 		dout("%s con %p error %d\n", __func__, con, ret);
2620 		return ret;
2621 	}
2622 
2623 	prepare_read_preamble(con);
2624 	return 0;
2625 }
2626 
2627 /*
2628  * Return:
2629  *   1 - con->in_msg set, read message
2630  *   0 - skip message
2631  *  <0 - error
2632  */
2633 static int process_message_header(struct ceph_connection *con,
2634 				  void *p, void *end)
2635 {
2636 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2637 	struct ceph_msg_header2 *hdr2 = p;
2638 	struct ceph_msg_header hdr;
2639 	int skip;
2640 	int ret;
2641 	u64 seq;
2642 
2643 	/* verify seq# */
2644 	seq = le64_to_cpu(hdr2->seq);
2645 	if ((s64)seq - (s64)con->in_seq < 1) {
2646 		pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n",
2647 			ENTITY_NAME(con->peer_name),
2648 			ceph_pr_addr(&con->peer_addr),
2649 			seq, con->in_seq + 1);
2650 		return 0;
2651 	}
2652 	if ((s64)seq - (s64)con->in_seq > 1) {
2653 		pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1);
2654 		con->error_msg = "bad message sequence # for incoming message";
2655 		return -EBADE;
2656 	}
2657 
2658 	ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq));
2659 
2660 	fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2],
2661 		    desc->fd_lens[3], &con->peer_name);
2662 	ret = ceph_con_in_msg_alloc(con, &hdr, &skip);
2663 	if (ret)
2664 		return ret;
2665 
2666 	WARN_ON(!con->in_msg ^ skip);
2667 	if (skip)
2668 		return 0;
2669 
2670 	WARN_ON(!con->in_msg);
2671 	WARN_ON(con->in_msg->con != con);
2672 	return 1;
2673 }
2674 
2675 static int process_message(struct ceph_connection *con)
2676 {
2677 	ceph_con_process_message(con);
2678 
2679 	/*
2680 	 * We could have been closed by ceph_con_close() because
2681 	 * ceph_con_process_message() temporarily drops con->mutex.
2682 	 */
2683 	if (con->state != CEPH_CON_S_OPEN) {
2684 		dout("%s con %p state changed to %d\n", __func__, con,
2685 		     con->state);
2686 		return -EAGAIN;
2687 	}
2688 
2689 	prepare_read_preamble(con);
2690 	return 0;
2691 }
2692 
2693 static int __handle_control(struct ceph_connection *con, void *p)
2694 {
2695 	void *end = p + con->v2.in_desc.fd_lens[0];
2696 	struct ceph_msg *msg;
2697 	int ret;
2698 
2699 	if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE)
2700 		return process_control(con, p, end);
2701 
2702 	ret = process_message_header(con, p, end);
2703 	if (ret < 0)
2704 		return ret;
2705 	if (ret == 0) {
2706 		prepare_skip_message(con);
2707 		return 0;
2708 	}
2709 
2710 	msg = con->in_msg;  /* set in process_message_header() */
2711 	if (front_len(msg)) {
2712 		WARN_ON(front_len(msg) > msg->front_alloc_len);
2713 		msg->front.iov_len = front_len(msg);
2714 	} else {
2715 		msg->front.iov_len = 0;
2716 	}
2717 	if (middle_len(msg)) {
2718 		WARN_ON(middle_len(msg) > msg->middle->alloc_len);
2719 		msg->middle->vec.iov_len = middle_len(msg);
2720 	} else if (msg->middle) {
2721 		msg->middle->vec.iov_len = 0;
2722 	}
2723 
2724 	if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
2725 		return process_message(con);
2726 
2727 	if (con_secure(con))
2728 		return prepare_read_tail_secure(con);
2729 
2730 	return prepare_read_tail_plain(con);
2731 }
2732 
2733 static int handle_preamble(struct ceph_connection *con)
2734 {
2735 	struct ceph_frame_desc *desc = &con->v2.in_desc;
2736 	int ret;
2737 
2738 	if (con_secure(con)) {
2739 		ret = decrypt_preamble(con);
2740 		if (ret) {
2741 			if (ret == -EBADMSG)
2742 				con->error_msg = "integrity error, bad preamble auth tag";
2743 			return ret;
2744 		}
2745 	}
2746 
2747 	ret = decode_preamble(con->v2.in_buf, desc);
2748 	if (ret) {
2749 		if (ret == -EBADMSG)
2750 			con->error_msg = "integrity error, bad crc";
2751 		else
2752 			con->error_msg = "protocol error, bad preamble";
2753 		return ret;
2754 	}
2755 
2756 	dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__,
2757 	     con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0],
2758 	     desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]);
2759 
2760 	if (!con_secure(con))
2761 		return prepare_read_control(con);
2762 
2763 	if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN)
2764 		return prepare_read_control_remainder(con);
2765 
2766 	return __handle_control(con, CTRL_BODY(con->v2.in_buf));
2767 }
2768 
2769 static int handle_control(struct ceph_connection *con)
2770 {
2771 	int ctrl_len = con->v2.in_desc.fd_lens[0];
2772 	void *buf;
2773 	int ret;
2774 
2775 	WARN_ON(con_secure(con));
2776 
2777 	ret = verify_control_crc(con);
2778 	if (ret) {
2779 		con->error_msg = "integrity error, bad crc";
2780 		return ret;
2781 	}
2782 
2783 	if (con->state == CEPH_CON_S_V2_AUTH) {
2784 		buf = alloc_conn_buf(con, ctrl_len);
2785 		if (!buf)
2786 			return -ENOMEM;
2787 
2788 		memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len);
2789 		return __handle_control(con, buf);
2790 	}
2791 
2792 	return __handle_control(con, con->v2.in_kvecs[0].iov_base);
2793 }
2794 
2795 static int handle_control_remainder(struct ceph_connection *con)
2796 {
2797 	int ret;
2798 
2799 	WARN_ON(!con_secure(con));
2800 
2801 	ret = decrypt_control_remainder(con);
2802 	if (ret) {
2803 		if (ret == -EBADMSG)
2804 			con->error_msg = "integrity error, bad control remainder auth tag";
2805 		return ret;
2806 	}
2807 
2808 	return __handle_control(con, con->v2.in_kvecs[0].iov_base -
2809 				     CEPH_PREAMBLE_INLINE_LEN);
2810 }
2811 
2812 static int handle_epilogue(struct ceph_connection *con)
2813 {
2814 	u32 front_crc, middle_crc, data_crc;
2815 	int ret;
2816 
2817 	if (con_secure(con)) {
2818 		ret = decrypt_tail(con);
2819 		if (ret) {
2820 			if (ret == -EBADMSG)
2821 				con->error_msg = "integrity error, bad epilogue auth tag";
2822 			return ret;
2823 		}
2824 
2825 		/* just late_status */
2826 		ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL);
2827 		if (ret) {
2828 			con->error_msg = "protocol error, bad epilogue";
2829 			return ret;
2830 		}
2831 	} else {
2832 		ret = decode_epilogue(con->v2.in_buf, &front_crc,
2833 				      &middle_crc, &data_crc);
2834 		if (ret) {
2835 			con->error_msg = "protocol error, bad epilogue";
2836 			return ret;
2837 		}
2838 
2839 		ret = verify_epilogue_crcs(con, front_crc, middle_crc,
2840 					   data_crc);
2841 		if (ret) {
2842 			con->error_msg = "integrity error, bad crc";
2843 			return ret;
2844 		}
2845 	}
2846 
2847 	return process_message(con);
2848 }
2849 
2850 static void finish_skip(struct ceph_connection *con)
2851 {
2852 	dout("%s con %p\n", __func__, con);
2853 
2854 	if (con_secure(con))
2855 		gcm_inc_nonce(&con->v2.in_gcm_nonce);
2856 
2857 	__finish_skip(con);
2858 }
2859 
2860 static int populate_in_iter(struct ceph_connection *con)
2861 {
2862 	int ret;
2863 
2864 	dout("%s con %p state %d in_state %d\n", __func__, con, con->state,
2865 	     con->v2.in_state);
2866 	WARN_ON(iov_iter_count(&con->v2.in_iter));
2867 
2868 	if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) {
2869 		ret = process_banner_prefix(con);
2870 	} else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) {
2871 		ret = process_banner_payload(con);
2872 	} else if ((con->state >= CEPH_CON_S_V2_HELLO &&
2873 		    con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) ||
2874 		   con->state == CEPH_CON_S_OPEN) {
2875 		switch (con->v2.in_state) {
2876 		case IN_S_HANDLE_PREAMBLE:
2877 			ret = handle_preamble(con);
2878 			break;
2879 		case IN_S_HANDLE_CONTROL:
2880 			ret = handle_control(con);
2881 			break;
2882 		case IN_S_HANDLE_CONTROL_REMAINDER:
2883 			ret = handle_control_remainder(con);
2884 			break;
2885 		case IN_S_PREPARE_READ_DATA:
2886 			ret = prepare_read_data(con);
2887 			break;
2888 		case IN_S_PREPARE_READ_DATA_CONT:
2889 			prepare_read_data_cont(con);
2890 			ret = 0;
2891 			break;
2892 		case IN_S_PREPARE_READ_ENC_PAGE:
2893 			prepare_read_enc_page(con);
2894 			ret = 0;
2895 			break;
2896 		case IN_S_HANDLE_EPILOGUE:
2897 			ret = handle_epilogue(con);
2898 			break;
2899 		case IN_S_FINISH_SKIP:
2900 			finish_skip(con);
2901 			ret = 0;
2902 			break;
2903 		default:
2904 			WARN(1, "bad in_state %d", con->v2.in_state);
2905 			return -EINVAL;
2906 		}
2907 	} else {
2908 		WARN(1, "bad state %d", con->state);
2909 		return -EINVAL;
2910 	}
2911 	if (ret) {
2912 		dout("%s con %p error %d\n", __func__, con, ret);
2913 		return ret;
2914 	}
2915 
2916 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
2917 		return -ENODATA;
2918 	dout("%s con %p populated %zu\n", __func__, con,
2919 	     iov_iter_count(&con->v2.in_iter));
2920 	return 1;
2921 }
2922 
2923 int ceph_con_v2_try_read(struct ceph_connection *con)
2924 {
2925 	int ret;
2926 
2927 	dout("%s con %p state %d need %zu\n", __func__, con, con->state,
2928 	     iov_iter_count(&con->v2.in_iter));
2929 
2930 	if (con->state == CEPH_CON_S_PREOPEN)
2931 		return 0;
2932 
2933 	/*
2934 	 * We should always have something pending here.  If not,
2935 	 * avoid calling populate_in_iter() as if we read something
2936 	 * (ceph_tcp_recv() would immediately return 1).
2937 	 */
2938 	if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
2939 		return -ENODATA;
2940 
2941 	for (;;) {
2942 		ret = ceph_tcp_recv(con);
2943 		if (ret <= 0)
2944 			return ret;
2945 
2946 		ret = populate_in_iter(con);
2947 		if (ret <= 0) {
2948 			if (ret && ret != -EAGAIN && !con->error_msg)
2949 				con->error_msg = "read processing error";
2950 			return ret;
2951 		}
2952 	}
2953 }
2954 
2955 static void queue_data(struct ceph_connection *con)
2956 {
2957 	struct bio_vec bv;
2958 
2959 	con->v2.out_epil.data_crc = -1;
2960 	ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg,
2961 				  data_len(con->out_msg));
2962 
2963 	get_bvec_at(&con->v2.out_cursor, &bv);
2964 	set_out_bvec(con, &bv, true);
2965 	con->v2.out_state = OUT_S_QUEUE_DATA_CONT;
2966 }
2967 
2968 static void queue_data_cont(struct ceph_connection *con)
2969 {
2970 	struct bio_vec bv;
2971 
2972 	con->v2.out_epil.data_crc = ceph_crc32c_page(
2973 		con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
2974 		con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len);
2975 
2976 	ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len);
2977 	if (con->v2.out_cursor.total_resid) {
2978 		get_bvec_at(&con->v2.out_cursor, &bv);
2979 		set_out_bvec(con, &bv, true);
2980 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT);
2981 		return;
2982 	}
2983 
2984 	/*
2985 	 * We've written all data.  Queue epilogue.  Once it's written,
2986 	 * we are done.
2987 	 */
2988 	reset_out_kvecs(con);
2989 	prepare_epilogue_plain(con, false);
2990 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
2991 }
2992 
2993 static void queue_enc_page(struct ceph_connection *con)
2994 {
2995 	struct bio_vec bv;
2996 
2997 	dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i,
2998 	     con->v2.out_enc_resid);
2999 	WARN_ON(!con->v2.out_enc_resid);
3000 
3001 	bv.bv_page = con->v2.out_enc_pages[con->v2.out_enc_i];
3002 	bv.bv_offset = 0;
3003 	bv.bv_len = min(con->v2.out_enc_resid, (int)PAGE_SIZE);
3004 
3005 	set_out_bvec(con, &bv, false);
3006 	con->v2.out_enc_i++;
3007 	con->v2.out_enc_resid -= bv.bv_len;
3008 
3009 	if (con->v2.out_enc_resid) {
3010 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE);
3011 		return;
3012 	}
3013 
3014 	/*
3015 	 * We've queued the last piece of ciphertext (ending with
3016 	 * epilogue) + auth tag.  Once it's written, we are done.
3017 	 */
3018 	WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt);
3019 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
3020 }
3021 
3022 static void queue_zeros(struct ceph_connection *con)
3023 {
3024 	dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero);
3025 
3026 	if (con->v2.out_zero) {
3027 		set_out_bvec_zero(con);
3028 		con->v2.out_zero -= con->v2.out_bvec.bv_len;
3029 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3030 		return;
3031 	}
3032 
3033 	/*
3034 	 * We've zero-filled everything up to epilogue.  Queue epilogue
3035 	 * with late_status set to ABORTED and crcs adjusted for zeros.
3036 	 * Once it's written, we are done patching up for the revoke.
3037 	 */
3038 	reset_out_kvecs(con);
3039 	prepare_epilogue_plain(con, true);
3040 	con->v2.out_state = OUT_S_FINISH_MESSAGE;
3041 }
3042 
3043 static void finish_message(struct ceph_connection *con)
3044 {
3045 	dout("%s con %p msg %p\n", __func__, con, con->out_msg);
3046 
3047 	/* we end up here both plain and secure modes */
3048 	if (con->v2.out_enc_pages) {
3049 		WARN_ON(!con->v2.out_enc_page_cnt);
3050 		ceph_release_page_vector(con->v2.out_enc_pages,
3051 					 con->v2.out_enc_page_cnt);
3052 		con->v2.out_enc_pages = NULL;
3053 		con->v2.out_enc_page_cnt = 0;
3054 	}
3055 	/* message may have been revoked */
3056 	if (con->out_msg) {
3057 		ceph_msg_put(con->out_msg);
3058 		con->out_msg = NULL;
3059 	}
3060 
3061 	con->v2.out_state = OUT_S_GET_NEXT;
3062 }
3063 
3064 static int populate_out_iter(struct ceph_connection *con)
3065 {
3066 	int ret;
3067 
3068 	dout("%s con %p state %d out_state %d\n", __func__, con, con->state,
3069 	     con->v2.out_state);
3070 	WARN_ON(iov_iter_count(&con->v2.out_iter));
3071 
3072 	if (con->state != CEPH_CON_S_OPEN) {
3073 		WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX ||
3074 			con->state > CEPH_CON_S_V2_SESSION_RECONNECT);
3075 		goto nothing_pending;
3076 	}
3077 
3078 	switch (con->v2.out_state) {
3079 	case OUT_S_QUEUE_DATA:
3080 		WARN_ON(!con->out_msg);
3081 		queue_data(con);
3082 		goto populated;
3083 	case OUT_S_QUEUE_DATA_CONT:
3084 		WARN_ON(!con->out_msg);
3085 		queue_data_cont(con);
3086 		goto populated;
3087 	case OUT_S_QUEUE_ENC_PAGE:
3088 		queue_enc_page(con);
3089 		goto populated;
3090 	case OUT_S_QUEUE_ZEROS:
3091 		WARN_ON(con->out_msg);  /* revoked */
3092 		queue_zeros(con);
3093 		goto populated;
3094 	case OUT_S_FINISH_MESSAGE:
3095 		finish_message(con);
3096 		break;
3097 	case OUT_S_GET_NEXT:
3098 		break;
3099 	default:
3100 		WARN(1, "bad out_state %d", con->v2.out_state);
3101 		return -EINVAL;
3102 	}
3103 
3104 	WARN_ON(con->v2.out_state != OUT_S_GET_NEXT);
3105 	if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
3106 		ret = prepare_keepalive2(con);
3107 		if (ret) {
3108 			pr_err("prepare_keepalive2 failed: %d\n", ret);
3109 			return ret;
3110 		}
3111 	} else if (!list_empty(&con->out_queue)) {
3112 		ceph_con_get_out_msg(con);
3113 		ret = prepare_message(con);
3114 		if (ret) {
3115 			pr_err("prepare_message failed: %d\n", ret);
3116 			return ret;
3117 		}
3118 	} else if (con->in_seq > con->in_seq_acked) {
3119 		ret = prepare_ack(con);
3120 		if (ret) {
3121 			pr_err("prepare_ack failed: %d\n", ret);
3122 			return ret;
3123 		}
3124 	} else {
3125 		goto nothing_pending;
3126 	}
3127 
3128 populated:
3129 	if (WARN_ON(!iov_iter_count(&con->v2.out_iter)))
3130 		return -ENODATA;
3131 	dout("%s con %p populated %zu\n", __func__, con,
3132 	     iov_iter_count(&con->v2.out_iter));
3133 	return 1;
3134 
3135 nothing_pending:
3136 	WARN_ON(iov_iter_count(&con->v2.out_iter));
3137 	dout("%s con %p nothing pending\n", __func__, con);
3138 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
3139 	return 0;
3140 }
3141 
3142 int ceph_con_v2_try_write(struct ceph_connection *con)
3143 {
3144 	int ret;
3145 
3146 	dout("%s con %p state %d have %zu\n", __func__, con, con->state,
3147 	     iov_iter_count(&con->v2.out_iter));
3148 
3149 	/* open the socket first? */
3150 	if (con->state == CEPH_CON_S_PREOPEN) {
3151 		WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2);
3152 
3153 		/*
3154 		 * Always bump global_seq.  Bump connect_seq only if
3155 		 * there is a session (i.e. we are reconnecting and will
3156 		 * send session_reconnect instead of client_ident).
3157 		 */
3158 		con->v2.global_seq = ceph_get_global_seq(con->msgr, 0);
3159 		if (con->v2.server_cookie)
3160 			con->v2.connect_seq++;
3161 
3162 		ret = prepare_read_banner_prefix(con);
3163 		if (ret) {
3164 			pr_err("prepare_read_banner_prefix failed: %d\n", ret);
3165 			con->error_msg = "connect error";
3166 			return ret;
3167 		}
3168 
3169 		reset_out_kvecs(con);
3170 		ret = prepare_banner(con);
3171 		if (ret) {
3172 			pr_err("prepare_banner failed: %d\n", ret);
3173 			con->error_msg = "connect error";
3174 			return ret;
3175 		}
3176 
3177 		ret = ceph_tcp_connect(con);
3178 		if (ret) {
3179 			pr_err("ceph_tcp_connect failed: %d\n", ret);
3180 			con->error_msg = "connect error";
3181 			return ret;
3182 		}
3183 	}
3184 
3185 	if (!iov_iter_count(&con->v2.out_iter)) {
3186 		ret = populate_out_iter(con);
3187 		if (ret <= 0) {
3188 			if (ret && ret != -EAGAIN && !con->error_msg)
3189 				con->error_msg = "write processing error";
3190 			return ret;
3191 		}
3192 	}
3193 
3194 	tcp_sock_set_cork(con->sock->sk, true);
3195 	for (;;) {
3196 		ret = ceph_tcp_send(con);
3197 		if (ret <= 0)
3198 			break;
3199 
3200 		ret = populate_out_iter(con);
3201 		if (ret <= 0) {
3202 			if (ret && ret != -EAGAIN && !con->error_msg)
3203 				con->error_msg = "write processing error";
3204 			break;
3205 		}
3206 	}
3207 
3208 	tcp_sock_set_cork(con->sock->sk, false);
3209 	return ret;
3210 }
3211 
3212 static u32 crc32c_zeros(u32 crc, int zero_len)
3213 {
3214 	int len;
3215 
3216 	while (zero_len) {
3217 		len = min(zero_len, (int)PAGE_SIZE);
3218 		crc = crc32c(crc, page_address(ceph_zero_page), len);
3219 		zero_len -= len;
3220 	}
3221 
3222 	return crc;
3223 }
3224 
3225 static void prepare_zero_front(struct ceph_connection *con, int resid)
3226 {
3227 	int sent;
3228 
3229 	WARN_ON(!resid || resid > front_len(con->out_msg));
3230 	sent = front_len(con->out_msg) - resid;
3231 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3232 
3233 	if (sent) {
3234 		con->v2.out_epil.front_crc =
3235 			crc32c(-1, con->out_msg->front.iov_base, sent);
3236 		con->v2.out_epil.front_crc =
3237 			crc32c_zeros(con->v2.out_epil.front_crc, resid);
3238 	} else {
3239 		con->v2.out_epil.front_crc = crc32c_zeros(-1, resid);
3240 	}
3241 
3242 	con->v2.out_iter.count -= resid;
3243 	out_zero_add(con, resid);
3244 }
3245 
3246 static void prepare_zero_middle(struct ceph_connection *con, int resid)
3247 {
3248 	int sent;
3249 
3250 	WARN_ON(!resid || resid > middle_len(con->out_msg));
3251 	sent = middle_len(con->out_msg) - resid;
3252 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3253 
3254 	if (sent) {
3255 		con->v2.out_epil.middle_crc =
3256 			crc32c(-1, con->out_msg->middle->vec.iov_base, sent);
3257 		con->v2.out_epil.middle_crc =
3258 			crc32c_zeros(con->v2.out_epil.middle_crc, resid);
3259 	} else {
3260 		con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid);
3261 	}
3262 
3263 	con->v2.out_iter.count -= resid;
3264 	out_zero_add(con, resid);
3265 }
3266 
3267 static void prepare_zero_data(struct ceph_connection *con)
3268 {
3269 	dout("%s con %p\n", __func__, con);
3270 	con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg));
3271 	out_zero_add(con, data_len(con->out_msg));
3272 }
3273 
3274 static void revoke_at_queue_data(struct ceph_connection *con)
3275 {
3276 	int boundary;
3277 	int resid;
3278 
3279 	WARN_ON(!data_len(con->out_msg));
3280 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3281 	resid = iov_iter_count(&con->v2.out_iter);
3282 
3283 	boundary = front_len(con->out_msg) + middle_len(con->out_msg);
3284 	if (resid > boundary) {
3285 		resid -= boundary;
3286 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3287 		dout("%s con %p was sending head\n", __func__, con);
3288 		if (front_len(con->out_msg))
3289 			prepare_zero_front(con, front_len(con->out_msg));
3290 		if (middle_len(con->out_msg))
3291 			prepare_zero_middle(con, middle_len(con->out_msg));
3292 		prepare_zero_data(con);
3293 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3294 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3295 		return;
3296 	}
3297 
3298 	boundary = middle_len(con->out_msg);
3299 	if (resid > boundary) {
3300 		resid -= boundary;
3301 		dout("%s con %p was sending front\n", __func__, con);
3302 		prepare_zero_front(con, resid);
3303 		if (middle_len(con->out_msg))
3304 			prepare_zero_middle(con, middle_len(con->out_msg));
3305 		prepare_zero_data(con);
3306 		queue_zeros(con);
3307 		return;
3308 	}
3309 
3310 	WARN_ON(!resid);
3311 	dout("%s con %p was sending middle\n", __func__, con);
3312 	prepare_zero_middle(con, resid);
3313 	prepare_zero_data(con);
3314 	queue_zeros(con);
3315 }
3316 
3317 static void revoke_at_queue_data_cont(struct ceph_connection *con)
3318 {
3319 	int sent, resid;  /* current piece of data */
3320 
3321 	WARN_ON(!data_len(con->out_msg));
3322 	WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter));
3323 	resid = iov_iter_count(&con->v2.out_iter);
3324 	WARN_ON(!resid || resid > con->v2.out_bvec.bv_len);
3325 	sent = con->v2.out_bvec.bv_len - resid;
3326 	dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3327 
3328 	if (sent) {
3329 		con->v2.out_epil.data_crc = ceph_crc32c_page(
3330 			con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
3331 			con->v2.out_bvec.bv_offset, sent);
3332 		ceph_msg_data_advance(&con->v2.out_cursor, sent);
3333 	}
3334 	WARN_ON(resid > con->v2.out_cursor.total_resid);
3335 	con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc,
3336 						con->v2.out_cursor.total_resid);
3337 
3338 	con->v2.out_iter.count -= resid;
3339 	out_zero_add(con, con->v2.out_cursor.total_resid);
3340 	queue_zeros(con);
3341 }
3342 
3343 static void revoke_at_finish_message(struct ceph_connection *con)
3344 {
3345 	int boundary;
3346 	int resid;
3347 
3348 	WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3349 	resid = iov_iter_count(&con->v2.out_iter);
3350 
3351 	if (!front_len(con->out_msg) && !middle_len(con->out_msg) &&
3352 	    !data_len(con->out_msg)) {
3353 		WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN);
3354 		dout("%s con %p was sending head (empty message) - noop\n",
3355 		     __func__, con);
3356 		return;
3357 	}
3358 
3359 	boundary = front_len(con->out_msg) + middle_len(con->out_msg) +
3360 		   CEPH_EPILOGUE_PLAIN_LEN;
3361 	if (resid > boundary) {
3362 		resid -= boundary;
3363 		WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3364 		dout("%s con %p was sending head\n", __func__, con);
3365 		if (front_len(con->out_msg))
3366 			prepare_zero_front(con, front_len(con->out_msg));
3367 		if (middle_len(con->out_msg))
3368 			prepare_zero_middle(con, middle_len(con->out_msg));
3369 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3370 		WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3371 		con->v2.out_state = OUT_S_QUEUE_ZEROS;
3372 		return;
3373 	}
3374 
3375 	boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3376 	if (resid > boundary) {
3377 		resid -= boundary;
3378 		dout("%s con %p was sending front\n", __func__, con);
3379 		prepare_zero_front(con, resid);
3380 		if (middle_len(con->out_msg))
3381 			prepare_zero_middle(con, middle_len(con->out_msg));
3382 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3383 		queue_zeros(con);
3384 		return;
3385 	}
3386 
3387 	boundary = CEPH_EPILOGUE_PLAIN_LEN;
3388 	if (resid > boundary) {
3389 		resid -= boundary;
3390 		dout("%s con %p was sending middle\n", __func__, con);
3391 		prepare_zero_middle(con, resid);
3392 		con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3393 		queue_zeros(con);
3394 		return;
3395 	}
3396 
3397 	WARN_ON(!resid);
3398 	dout("%s con %p was sending epilogue - noop\n", __func__, con);
3399 }
3400 
3401 void ceph_con_v2_revoke(struct ceph_connection *con)
3402 {
3403 	WARN_ON(con->v2.out_zero);
3404 
3405 	if (con_secure(con)) {
3406 		WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE &&
3407 			con->v2.out_state != OUT_S_FINISH_MESSAGE);
3408 		dout("%s con %p secure - noop\n", __func__, con);
3409 		return;
3410 	}
3411 
3412 	switch (con->v2.out_state) {
3413 	case OUT_S_QUEUE_DATA:
3414 		revoke_at_queue_data(con);
3415 		break;
3416 	case OUT_S_QUEUE_DATA_CONT:
3417 		revoke_at_queue_data_cont(con);
3418 		break;
3419 	case OUT_S_FINISH_MESSAGE:
3420 		revoke_at_finish_message(con);
3421 		break;
3422 	default:
3423 		WARN(1, "bad out_state %d", con->v2.out_state);
3424 		break;
3425 	}
3426 }
3427 
3428 static void revoke_at_prepare_read_data(struct ceph_connection *con)
3429 {
3430 	int remaining;
3431 	int resid;
3432 
3433 	WARN_ON(con_secure(con));
3434 	WARN_ON(!data_len(con->in_msg));
3435 	WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
3436 	resid = iov_iter_count(&con->v2.in_iter);
3437 	WARN_ON(!resid);
3438 
3439 	remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3440 	dout("%s con %p resid %d remaining %d\n", __func__, con, resid,
3441 	     remaining);
3442 	con->v2.in_iter.count -= resid;
3443 	set_in_skip(con, resid + remaining);
3444 	con->v2.in_state = IN_S_FINISH_SKIP;
3445 }
3446 
3447 static void revoke_at_prepare_read_data_cont(struct ceph_connection *con)
3448 {
3449 	int recved, resid;  /* current piece of data */
3450 	int remaining;
3451 
3452 	WARN_ON(con_secure(con));
3453 	WARN_ON(!data_len(con->in_msg));
3454 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3455 	resid = iov_iter_count(&con->v2.in_iter);
3456 	WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3457 	recved = con->v2.in_bvec.bv_len - resid;
3458 	dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid);
3459 
3460 	if (recved)
3461 		ceph_msg_data_advance(&con->v2.in_cursor, recved);
3462 	WARN_ON(resid > con->v2.in_cursor.total_resid);
3463 
3464 	remaining = CEPH_EPILOGUE_PLAIN_LEN;
3465 	dout("%s con %p total_resid %zu remaining %d\n", __func__, con,
3466 	     con->v2.in_cursor.total_resid, remaining);
3467 	con->v2.in_iter.count -= resid;
3468 	set_in_skip(con, con->v2.in_cursor.total_resid + remaining);
3469 	con->v2.in_state = IN_S_FINISH_SKIP;
3470 }
3471 
3472 static void revoke_at_prepare_read_enc_page(struct ceph_connection *con)
3473 {
3474 	int resid;  /* current enc page (not necessarily data) */
3475 
3476 	WARN_ON(!con_secure(con));
3477 	WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3478 	resid = iov_iter_count(&con->v2.in_iter);
3479 	WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3480 
3481 	dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid,
3482 	     con->v2.in_enc_resid);
3483 	con->v2.in_iter.count -= resid;
3484 	set_in_skip(con, resid + con->v2.in_enc_resid);
3485 	con->v2.in_state = IN_S_FINISH_SKIP;
3486 }
3487 
3488 static void revoke_at_handle_epilogue(struct ceph_connection *con)
3489 {
3490 	int resid;
3491 
3492 	resid = iov_iter_count(&con->v2.in_iter);
3493 	WARN_ON(!resid);
3494 
3495 	dout("%s con %p resid %d\n", __func__, con, resid);
3496 	con->v2.in_iter.count -= resid;
3497 	set_in_skip(con, resid);
3498 	con->v2.in_state = IN_S_FINISH_SKIP;
3499 }
3500 
3501 void ceph_con_v2_revoke_incoming(struct ceph_connection *con)
3502 {
3503 	switch (con->v2.in_state) {
3504 	case IN_S_PREPARE_READ_DATA:
3505 		revoke_at_prepare_read_data(con);
3506 		break;
3507 	case IN_S_PREPARE_READ_DATA_CONT:
3508 		revoke_at_prepare_read_data_cont(con);
3509 		break;
3510 	case IN_S_PREPARE_READ_ENC_PAGE:
3511 		revoke_at_prepare_read_enc_page(con);
3512 		break;
3513 	case IN_S_HANDLE_EPILOGUE:
3514 		revoke_at_handle_epilogue(con);
3515 		break;
3516 	default:
3517 		WARN(1, "bad in_state %d", con->v2.in_state);
3518 		break;
3519 	}
3520 }
3521 
3522 bool ceph_con_v2_opened(struct ceph_connection *con)
3523 {
3524 	return con->v2.peer_global_seq;
3525 }
3526 
3527 void ceph_con_v2_reset_session(struct ceph_connection *con)
3528 {
3529 	con->v2.client_cookie = 0;
3530 	con->v2.server_cookie = 0;
3531 	con->v2.global_seq = 0;
3532 	con->v2.connect_seq = 0;
3533 	con->v2.peer_global_seq = 0;
3534 }
3535 
3536 void ceph_con_v2_reset_protocol(struct ceph_connection *con)
3537 {
3538 	iov_iter_truncate(&con->v2.in_iter, 0);
3539 	iov_iter_truncate(&con->v2.out_iter, 0);
3540 	con->v2.out_zero = 0;
3541 
3542 	clear_in_sign_kvecs(con);
3543 	clear_out_sign_kvecs(con);
3544 	free_conn_bufs(con);
3545 
3546 	if (con->v2.in_enc_pages) {
3547 		WARN_ON(!con->v2.in_enc_page_cnt);
3548 		ceph_release_page_vector(con->v2.in_enc_pages,
3549 					 con->v2.in_enc_page_cnt);
3550 		con->v2.in_enc_pages = NULL;
3551 		con->v2.in_enc_page_cnt = 0;
3552 	}
3553 	if (con->v2.out_enc_pages) {
3554 		WARN_ON(!con->v2.out_enc_page_cnt);
3555 		ceph_release_page_vector(con->v2.out_enc_pages,
3556 					 con->v2.out_enc_page_cnt);
3557 		con->v2.out_enc_pages = NULL;
3558 		con->v2.out_enc_page_cnt = 0;
3559 	}
3560 
3561 	con->v2.con_mode = CEPH_CON_MODE_UNKNOWN;
3562 	memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN);
3563 	memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN);
3564 
3565 	if (con->v2.hmac_tfm) {
3566 		crypto_free_shash(con->v2.hmac_tfm);
3567 		con->v2.hmac_tfm = NULL;
3568 	}
3569 	if (con->v2.gcm_req) {
3570 		aead_request_free(con->v2.gcm_req);
3571 		con->v2.gcm_req = NULL;
3572 	}
3573 	if (con->v2.gcm_tfm) {
3574 		crypto_free_aead(con->v2.gcm_tfm);
3575 		con->v2.gcm_tfm = NULL;
3576 	}
3577 }
3578