1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Ceph msgr2 protocol implementation 4 * 5 * Copyright (C) 2020 Ilya Dryomov <idryomov@gmail.com> 6 */ 7 8 #include <linux/ceph/ceph_debug.h> 9 10 #include <crypto/aead.h> 11 #include <crypto/algapi.h> /* for crypto_memneq() */ 12 #include <crypto/hash.h> 13 #include <crypto/sha2.h> 14 #include <linux/bvec.h> 15 #include <linux/crc32c.h> 16 #include <linux/net.h> 17 #include <linux/scatterlist.h> 18 #include <linux/socket.h> 19 #include <linux/sched/mm.h> 20 #include <net/sock.h> 21 #include <net/tcp.h> 22 23 #include <linux/ceph/ceph_features.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/libceph.h> 26 #include <linux/ceph/messenger.h> 27 28 #include "crypto.h" /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */ 29 30 #define FRAME_TAG_HELLO 1 31 #define FRAME_TAG_AUTH_REQUEST 2 32 #define FRAME_TAG_AUTH_BAD_METHOD 3 33 #define FRAME_TAG_AUTH_REPLY_MORE 4 34 #define FRAME_TAG_AUTH_REQUEST_MORE 5 35 #define FRAME_TAG_AUTH_DONE 6 36 #define FRAME_TAG_AUTH_SIGNATURE 7 37 #define FRAME_TAG_CLIENT_IDENT 8 38 #define FRAME_TAG_SERVER_IDENT 9 39 #define FRAME_TAG_IDENT_MISSING_FEATURES 10 40 #define FRAME_TAG_SESSION_RECONNECT 11 41 #define FRAME_TAG_SESSION_RESET 12 42 #define FRAME_TAG_SESSION_RETRY 13 43 #define FRAME_TAG_SESSION_RETRY_GLOBAL 14 44 #define FRAME_TAG_SESSION_RECONNECT_OK 15 45 #define FRAME_TAG_WAIT 16 46 #define FRAME_TAG_MESSAGE 17 47 #define FRAME_TAG_KEEPALIVE2 18 48 #define FRAME_TAG_KEEPALIVE2_ACK 19 49 #define FRAME_TAG_ACK 20 50 51 #define FRAME_LATE_STATUS_ABORTED 0x1 52 #define FRAME_LATE_STATUS_COMPLETE 0xe 53 #define FRAME_LATE_STATUS_ABORTED_MASK 0xf 54 55 #define IN_S_HANDLE_PREAMBLE 1 56 #define IN_S_HANDLE_CONTROL 2 57 #define IN_S_HANDLE_CONTROL_REMAINDER 3 58 #define IN_S_PREPARE_READ_DATA 4 59 #define IN_S_PREPARE_READ_DATA_CONT 5 60 #define IN_S_HANDLE_EPILOGUE 6 61 #define IN_S_FINISH_SKIP 7 62 63 #define OUT_S_QUEUE_DATA 1 64 #define OUT_S_QUEUE_DATA_CONT 2 65 #define OUT_S_QUEUE_ENC_PAGE 3 66 #define OUT_S_QUEUE_ZEROS 4 67 #define OUT_S_FINISH_MESSAGE 5 68 #define OUT_S_GET_NEXT 6 69 70 #define CTRL_BODY(p) ((void *)(p) + CEPH_PREAMBLE_LEN) 71 #define FRONT_PAD(p) ((void *)(p) + CEPH_EPILOGUE_SECURE_LEN) 72 #define MIDDLE_PAD(p) (FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN) 73 #define DATA_PAD(p) (MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN) 74 75 #define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 76 77 static int do_recvmsg(struct socket *sock, struct iov_iter *it) 78 { 79 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 80 int ret; 81 82 msg.msg_iter = *it; 83 while (iov_iter_count(it)) { 84 ret = sock_recvmsg(sock, &msg, msg.msg_flags); 85 if (ret <= 0) { 86 if (ret == -EAGAIN) 87 ret = 0; 88 return ret; 89 } 90 91 iov_iter_advance(it, ret); 92 } 93 94 WARN_ON(msg_data_left(&msg)); 95 return 1; 96 } 97 98 /* 99 * Read as much as possible. 100 * 101 * Return: 102 * 1 - done, nothing (else) to read 103 * 0 - socket is empty, need to wait 104 * <0 - error 105 */ 106 static int ceph_tcp_recv(struct ceph_connection *con) 107 { 108 int ret; 109 110 dout("%s con %p %s %zu\n", __func__, con, 111 iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need", 112 iov_iter_count(&con->v2.in_iter)); 113 ret = do_recvmsg(con->sock, &con->v2.in_iter); 114 dout("%s con %p ret %d left %zu\n", __func__, con, ret, 115 iov_iter_count(&con->v2.in_iter)); 116 return ret; 117 } 118 119 static int do_sendmsg(struct socket *sock, struct iov_iter *it) 120 { 121 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 122 int ret; 123 124 msg.msg_iter = *it; 125 while (iov_iter_count(it)) { 126 ret = sock_sendmsg(sock, &msg); 127 if (ret <= 0) { 128 if (ret == -EAGAIN) 129 ret = 0; 130 return ret; 131 } 132 133 iov_iter_advance(it, ret); 134 } 135 136 WARN_ON(msg_data_left(&msg)); 137 return 1; 138 } 139 140 static int do_try_sendpage(struct socket *sock, struct iov_iter *it) 141 { 142 struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS }; 143 struct bio_vec bv; 144 int ret; 145 146 if (WARN_ON(!iov_iter_is_bvec(it))) 147 return -EINVAL; 148 149 while (iov_iter_count(it)) { 150 /* iov_iter_iovec() for ITER_BVEC */ 151 bv.bv_page = it->bvec->bv_page; 152 bv.bv_offset = it->bvec->bv_offset + it->iov_offset; 153 bv.bv_len = min(iov_iter_count(it), 154 it->bvec->bv_len - it->iov_offset); 155 156 /* 157 * sendpage cannot properly handle pages with 158 * page_count == 0, we need to fall back to sendmsg if 159 * that's the case. 160 * 161 * Same goes for slab pages: skb_can_coalesce() allows 162 * coalescing neighboring slab objects into a single frag 163 * which triggers one of hardened usercopy checks. 164 */ 165 if (sendpage_ok(bv.bv_page)) { 166 ret = sock->ops->sendpage(sock, bv.bv_page, 167 bv.bv_offset, bv.bv_len, 168 CEPH_MSG_FLAGS); 169 } else { 170 iov_iter_bvec(&msg.msg_iter, WRITE, &bv, 1, bv.bv_len); 171 ret = sock_sendmsg(sock, &msg); 172 } 173 if (ret <= 0) { 174 if (ret == -EAGAIN) 175 ret = 0; 176 return ret; 177 } 178 179 iov_iter_advance(it, ret); 180 } 181 182 return 1; 183 } 184 185 /* 186 * Write as much as possible. The socket is expected to be corked, 187 * so we don't bother with MSG_MORE/MSG_SENDPAGE_NOTLAST here. 188 * 189 * Return: 190 * 1 - done, nothing (else) to write 191 * 0 - socket is full, need to wait 192 * <0 - error 193 */ 194 static int ceph_tcp_send(struct ceph_connection *con) 195 { 196 int ret; 197 198 dout("%s con %p have %zu try_sendpage %d\n", __func__, con, 199 iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage); 200 if (con->v2.out_iter_sendpage) 201 ret = do_try_sendpage(con->sock, &con->v2.out_iter); 202 else 203 ret = do_sendmsg(con->sock, &con->v2.out_iter); 204 dout("%s con %p ret %d left %zu\n", __func__, con, ret, 205 iov_iter_count(&con->v2.out_iter)); 206 return ret; 207 } 208 209 static void add_in_kvec(struct ceph_connection *con, void *buf, int len) 210 { 211 BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs)); 212 WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); 213 214 con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf; 215 con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len; 216 con->v2.in_kvec_cnt++; 217 218 con->v2.in_iter.nr_segs++; 219 con->v2.in_iter.count += len; 220 } 221 222 static void reset_in_kvecs(struct ceph_connection *con) 223 { 224 WARN_ON(iov_iter_count(&con->v2.in_iter)); 225 226 con->v2.in_kvec_cnt = 0; 227 iov_iter_kvec(&con->v2.in_iter, READ, con->v2.in_kvecs, 0, 0); 228 } 229 230 static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv) 231 { 232 WARN_ON(iov_iter_count(&con->v2.in_iter)); 233 234 con->v2.in_bvec = *bv; 235 iov_iter_bvec(&con->v2.in_iter, READ, &con->v2.in_bvec, 1, bv->bv_len); 236 } 237 238 static void set_in_skip(struct ceph_connection *con, int len) 239 { 240 WARN_ON(iov_iter_count(&con->v2.in_iter)); 241 242 dout("%s con %p len %d\n", __func__, con, len); 243 iov_iter_discard(&con->v2.in_iter, READ, len); 244 } 245 246 static void add_out_kvec(struct ceph_connection *con, void *buf, int len) 247 { 248 BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs)); 249 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 250 WARN_ON(con->v2.out_zero); 251 252 con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf; 253 con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len; 254 con->v2.out_kvec_cnt++; 255 256 con->v2.out_iter.nr_segs++; 257 con->v2.out_iter.count += len; 258 } 259 260 static void reset_out_kvecs(struct ceph_connection *con) 261 { 262 WARN_ON(iov_iter_count(&con->v2.out_iter)); 263 WARN_ON(con->v2.out_zero); 264 265 con->v2.out_kvec_cnt = 0; 266 267 iov_iter_kvec(&con->v2.out_iter, WRITE, con->v2.out_kvecs, 0, 0); 268 con->v2.out_iter_sendpage = false; 269 } 270 271 static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv, 272 bool zerocopy) 273 { 274 WARN_ON(iov_iter_count(&con->v2.out_iter)); 275 WARN_ON(con->v2.out_zero); 276 277 con->v2.out_bvec = *bv; 278 con->v2.out_iter_sendpage = zerocopy; 279 iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1, 280 con->v2.out_bvec.bv_len); 281 } 282 283 static void set_out_bvec_zero(struct ceph_connection *con) 284 { 285 WARN_ON(iov_iter_count(&con->v2.out_iter)); 286 WARN_ON(!con->v2.out_zero); 287 288 con->v2.out_bvec.bv_page = ceph_zero_page; 289 con->v2.out_bvec.bv_offset = 0; 290 con->v2.out_bvec.bv_len = min(con->v2.out_zero, (int)PAGE_SIZE); 291 con->v2.out_iter_sendpage = true; 292 iov_iter_bvec(&con->v2.out_iter, WRITE, &con->v2.out_bvec, 1, 293 con->v2.out_bvec.bv_len); 294 } 295 296 static void out_zero_add(struct ceph_connection *con, int len) 297 { 298 dout("%s con %p len %d\n", __func__, con, len); 299 con->v2.out_zero += len; 300 } 301 302 static void *alloc_conn_buf(struct ceph_connection *con, int len) 303 { 304 void *buf; 305 306 dout("%s con %p len %d\n", __func__, con, len); 307 308 if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs))) 309 return NULL; 310 311 buf = ceph_kvmalloc(len, GFP_NOIO); 312 if (!buf) 313 return NULL; 314 315 con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf; 316 return buf; 317 } 318 319 static void free_conn_bufs(struct ceph_connection *con) 320 { 321 while (con->v2.conn_buf_cnt) 322 kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]); 323 } 324 325 static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len) 326 { 327 BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs)); 328 329 con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf; 330 con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len; 331 con->v2.in_sign_kvec_cnt++; 332 } 333 334 static void clear_in_sign_kvecs(struct ceph_connection *con) 335 { 336 con->v2.in_sign_kvec_cnt = 0; 337 } 338 339 static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len) 340 { 341 BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs)); 342 343 con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf; 344 con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len; 345 con->v2.out_sign_kvec_cnt++; 346 } 347 348 static void clear_out_sign_kvecs(struct ceph_connection *con) 349 { 350 con->v2.out_sign_kvec_cnt = 0; 351 } 352 353 static bool con_secure(struct ceph_connection *con) 354 { 355 return con->v2.con_mode == CEPH_CON_MODE_SECURE; 356 } 357 358 static int front_len(const struct ceph_msg *msg) 359 { 360 return le32_to_cpu(msg->hdr.front_len); 361 } 362 363 static int middle_len(const struct ceph_msg *msg) 364 { 365 return le32_to_cpu(msg->hdr.middle_len); 366 } 367 368 static int data_len(const struct ceph_msg *msg) 369 { 370 return le32_to_cpu(msg->hdr.data_len); 371 } 372 373 static bool need_padding(int len) 374 { 375 return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN); 376 } 377 378 static int padded_len(int len) 379 { 380 return ALIGN(len, CEPH_GCM_BLOCK_LEN); 381 } 382 383 static int padding_len(int len) 384 { 385 return padded_len(len) - len; 386 } 387 388 /* preamble + control segment */ 389 static int head_onwire_len(int ctrl_len, bool secure) 390 { 391 int head_len; 392 int rem_len; 393 394 if (secure) { 395 head_len = CEPH_PREAMBLE_SECURE_LEN; 396 if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { 397 rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 398 head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN; 399 } 400 } else { 401 head_len = CEPH_PREAMBLE_PLAIN_LEN; 402 if (ctrl_len) 403 head_len += ctrl_len + CEPH_CRC_LEN; 404 } 405 return head_len; 406 } 407 408 /* front, middle and data segments + epilogue */ 409 static int __tail_onwire_len(int front_len, int middle_len, int data_len, 410 bool secure) 411 { 412 if (!front_len && !middle_len && !data_len) 413 return 0; 414 415 if (!secure) 416 return front_len + middle_len + data_len + 417 CEPH_EPILOGUE_PLAIN_LEN; 418 419 return padded_len(front_len) + padded_len(middle_len) + 420 padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN; 421 } 422 423 static int tail_onwire_len(const struct ceph_msg *msg, bool secure) 424 { 425 return __tail_onwire_len(front_len(msg), middle_len(msg), 426 data_len(msg), secure); 427 } 428 429 /* head_onwire_len(sizeof(struct ceph_msg_header2), false) */ 430 #define MESSAGE_HEAD_PLAIN_LEN (CEPH_PREAMBLE_PLAIN_LEN + \ 431 sizeof(struct ceph_msg_header2) + \ 432 CEPH_CRC_LEN) 433 434 static const int frame_aligns[] = { 435 sizeof(void *), 436 sizeof(void *), 437 sizeof(void *), 438 PAGE_SIZE 439 }; 440 441 /* 442 * Discards trailing empty segments, unless there is just one segment. 443 * A frame always has at least one (possibly empty) segment. 444 */ 445 static int calc_segment_count(const int *lens, int len_cnt) 446 { 447 int i; 448 449 for (i = len_cnt - 1; i >= 0; i--) { 450 if (lens[i]) 451 return i + 1; 452 } 453 454 return 1; 455 } 456 457 static void init_frame_desc(struct ceph_frame_desc *desc, int tag, 458 const int *lens, int len_cnt) 459 { 460 int i; 461 462 memset(desc, 0, sizeof(*desc)); 463 464 desc->fd_tag = tag; 465 desc->fd_seg_cnt = calc_segment_count(lens, len_cnt); 466 BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT); 467 for (i = 0; i < desc->fd_seg_cnt; i++) { 468 desc->fd_lens[i] = lens[i]; 469 desc->fd_aligns[i] = frame_aligns[i]; 470 } 471 } 472 473 /* 474 * Preamble crc covers everything up to itself (28 bytes) and 475 * is calculated and verified irrespective of the connection mode 476 * (i.e. even if the frame is encrypted). 477 */ 478 static void encode_preamble(const struct ceph_frame_desc *desc, void *p) 479 { 480 void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; 481 void *start = p; 482 int i; 483 484 memset(p, 0, CEPH_PREAMBLE_LEN); 485 486 ceph_encode_8(&p, desc->fd_tag); 487 ceph_encode_8(&p, desc->fd_seg_cnt); 488 for (i = 0; i < desc->fd_seg_cnt; i++) { 489 ceph_encode_32(&p, desc->fd_lens[i]); 490 ceph_encode_16(&p, desc->fd_aligns[i]); 491 } 492 493 put_unaligned_le32(crc32c(0, start, crcp - start), crcp); 494 } 495 496 static int decode_preamble(void *p, struct ceph_frame_desc *desc) 497 { 498 void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN; 499 u32 crc, expected_crc; 500 int i; 501 502 crc = crc32c(0, p, crcp - p); 503 expected_crc = get_unaligned_le32(crcp); 504 if (crc != expected_crc) { 505 pr_err("bad preamble crc, calculated %u, expected %u\n", 506 crc, expected_crc); 507 return -EBADMSG; 508 } 509 510 memset(desc, 0, sizeof(*desc)); 511 512 desc->fd_tag = ceph_decode_8(&p); 513 desc->fd_seg_cnt = ceph_decode_8(&p); 514 if (desc->fd_seg_cnt < 1 || 515 desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) { 516 pr_err("bad segment count %d\n", desc->fd_seg_cnt); 517 return -EINVAL; 518 } 519 for (i = 0; i < desc->fd_seg_cnt; i++) { 520 desc->fd_lens[i] = ceph_decode_32(&p); 521 desc->fd_aligns[i] = ceph_decode_16(&p); 522 } 523 524 /* 525 * This would fire for FRAME_TAG_WAIT (it has one empty 526 * segment), but we should never get it as client. 527 */ 528 if (!desc->fd_lens[desc->fd_seg_cnt - 1]) { 529 pr_err("last segment empty\n"); 530 return -EINVAL; 531 } 532 533 if (desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) { 534 pr_err("control segment too big %d\n", desc->fd_lens[0]); 535 return -EINVAL; 536 } 537 if (desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) { 538 pr_err("front segment too big %d\n", desc->fd_lens[1]); 539 return -EINVAL; 540 } 541 if (desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) { 542 pr_err("middle segment too big %d\n", desc->fd_lens[2]); 543 return -EINVAL; 544 } 545 if (desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) { 546 pr_err("data segment too big %d\n", desc->fd_lens[3]); 547 return -EINVAL; 548 } 549 550 return 0; 551 } 552 553 static void encode_epilogue_plain(struct ceph_connection *con, bool aborted) 554 { 555 con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : 556 FRAME_LATE_STATUS_COMPLETE; 557 cpu_to_le32s(&con->v2.out_epil.front_crc); 558 cpu_to_le32s(&con->v2.out_epil.middle_crc); 559 cpu_to_le32s(&con->v2.out_epil.data_crc); 560 } 561 562 static void encode_epilogue_secure(struct ceph_connection *con, bool aborted) 563 { 564 memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil)); 565 con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED : 566 FRAME_LATE_STATUS_COMPLETE; 567 } 568 569 static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc, 570 u32 *data_crc) 571 { 572 u8 late_status; 573 574 late_status = ceph_decode_8(&p); 575 if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) != 576 FRAME_LATE_STATUS_COMPLETE) { 577 /* we should never get an aborted message as client */ 578 pr_err("bad late_status 0x%x\n", late_status); 579 return -EINVAL; 580 } 581 582 if (front_crc && middle_crc && data_crc) { 583 *front_crc = ceph_decode_32(&p); 584 *middle_crc = ceph_decode_32(&p); 585 *data_crc = ceph_decode_32(&p); 586 } 587 588 return 0; 589 } 590 591 static void fill_header(struct ceph_msg_header *hdr, 592 const struct ceph_msg_header2 *hdr2, 593 int front_len, int middle_len, int data_len, 594 const struct ceph_entity_name *peer_name) 595 { 596 hdr->seq = hdr2->seq; 597 hdr->tid = hdr2->tid; 598 hdr->type = hdr2->type; 599 hdr->priority = hdr2->priority; 600 hdr->version = hdr2->version; 601 hdr->front_len = cpu_to_le32(front_len); 602 hdr->middle_len = cpu_to_le32(middle_len); 603 hdr->data_len = cpu_to_le32(data_len); 604 hdr->data_off = hdr2->data_off; 605 hdr->src = *peer_name; 606 hdr->compat_version = hdr2->compat_version; 607 hdr->reserved = 0; 608 hdr->crc = 0; 609 } 610 611 static void fill_header2(struct ceph_msg_header2 *hdr2, 612 const struct ceph_msg_header *hdr, u64 ack_seq) 613 { 614 hdr2->seq = hdr->seq; 615 hdr2->tid = hdr->tid; 616 hdr2->type = hdr->type; 617 hdr2->priority = hdr->priority; 618 hdr2->version = hdr->version; 619 hdr2->data_pre_padding_len = 0; 620 hdr2->data_off = hdr->data_off; 621 hdr2->ack_seq = cpu_to_le64(ack_seq); 622 hdr2->flags = 0; 623 hdr2->compat_version = hdr->compat_version; 624 hdr2->reserved = 0; 625 } 626 627 static int verify_control_crc(struct ceph_connection *con) 628 { 629 int ctrl_len = con->v2.in_desc.fd_lens[0]; 630 u32 crc, expected_crc; 631 632 WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len); 633 WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN); 634 635 crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len); 636 expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base); 637 if (crc != expected_crc) { 638 pr_err("bad control crc, calculated %u, expected %u\n", 639 crc, expected_crc); 640 return -EBADMSG; 641 } 642 643 return 0; 644 } 645 646 static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc, 647 u32 middle_crc, u32 data_crc) 648 { 649 if (front_len(con->in_msg)) { 650 con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base, 651 front_len(con->in_msg)); 652 } else { 653 WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg)); 654 con->in_front_crc = -1; 655 } 656 657 if (middle_len(con->in_msg)) 658 con->in_middle_crc = crc32c(-1, 659 con->in_msg->middle->vec.iov_base, 660 middle_len(con->in_msg)); 661 else if (data_len(con->in_msg)) 662 con->in_middle_crc = -1; 663 else 664 con->in_middle_crc = 0; 665 666 if (!data_len(con->in_msg)) 667 con->in_data_crc = 0; 668 669 dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg, 670 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 671 672 if (con->in_front_crc != front_crc) { 673 pr_err("bad front crc, calculated %u, expected %u\n", 674 con->in_front_crc, front_crc); 675 return -EBADMSG; 676 } 677 if (con->in_middle_crc != middle_crc) { 678 pr_err("bad middle crc, calculated %u, expected %u\n", 679 con->in_middle_crc, middle_crc); 680 return -EBADMSG; 681 } 682 if (con->in_data_crc != data_crc) { 683 pr_err("bad data crc, calculated %u, expected %u\n", 684 con->in_data_crc, data_crc); 685 return -EBADMSG; 686 } 687 688 return 0; 689 } 690 691 static int setup_crypto(struct ceph_connection *con, 692 u8 *session_key, int session_key_len, 693 u8 *con_secret, int con_secret_len) 694 { 695 unsigned int noio_flag; 696 void *p; 697 int ret; 698 699 dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n", 700 __func__, con, con->v2.con_mode, session_key_len, con_secret_len); 701 WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req); 702 703 if (con->v2.con_mode != CEPH_CON_MODE_CRC && 704 con->v2.con_mode != CEPH_CON_MODE_SECURE) { 705 pr_err("bad con_mode %d\n", con->v2.con_mode); 706 return -EINVAL; 707 } 708 709 if (!session_key_len) { 710 WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC); 711 WARN_ON(con_secret_len); 712 return 0; /* auth_none */ 713 } 714 715 noio_flag = memalloc_noio_save(); 716 con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0); 717 memalloc_noio_restore(noio_flag); 718 if (IS_ERR(con->v2.hmac_tfm)) { 719 ret = PTR_ERR(con->v2.hmac_tfm); 720 con->v2.hmac_tfm = NULL; 721 pr_err("failed to allocate hmac tfm context: %d\n", ret); 722 return ret; 723 } 724 725 WARN_ON((unsigned long)session_key & 726 crypto_shash_alignmask(con->v2.hmac_tfm)); 727 ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key, 728 session_key_len); 729 if (ret) { 730 pr_err("failed to set hmac key: %d\n", ret); 731 return ret; 732 } 733 734 if (con->v2.con_mode == CEPH_CON_MODE_CRC) { 735 WARN_ON(con_secret_len); 736 return 0; /* auth_x, plain mode */ 737 } 738 739 if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) { 740 pr_err("con_secret too small %d\n", con_secret_len); 741 return -EINVAL; 742 } 743 744 noio_flag = memalloc_noio_save(); 745 con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0); 746 memalloc_noio_restore(noio_flag); 747 if (IS_ERR(con->v2.gcm_tfm)) { 748 ret = PTR_ERR(con->v2.gcm_tfm); 749 con->v2.gcm_tfm = NULL; 750 pr_err("failed to allocate gcm tfm context: %d\n", ret); 751 return ret; 752 } 753 754 p = con_secret; 755 WARN_ON((unsigned long)p & crypto_aead_alignmask(con->v2.gcm_tfm)); 756 ret = crypto_aead_setkey(con->v2.gcm_tfm, p, CEPH_GCM_KEY_LEN); 757 if (ret) { 758 pr_err("failed to set gcm key: %d\n", ret); 759 return ret; 760 } 761 762 p += CEPH_GCM_KEY_LEN; 763 WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN); 764 ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN); 765 if (ret) { 766 pr_err("failed to set gcm tag size: %d\n", ret); 767 return ret; 768 } 769 770 con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO); 771 if (!con->v2.gcm_req) { 772 pr_err("failed to allocate gcm request\n"); 773 return -ENOMEM; 774 } 775 776 crypto_init_wait(&con->v2.gcm_wait); 777 aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 778 crypto_req_done, &con->v2.gcm_wait); 779 780 memcpy(&con->v2.in_gcm_nonce, p, CEPH_GCM_IV_LEN); 781 memcpy(&con->v2.out_gcm_nonce, p + CEPH_GCM_IV_LEN, CEPH_GCM_IV_LEN); 782 return 0; /* auth_x, secure mode */ 783 } 784 785 static int hmac_sha256(struct ceph_connection *con, const struct kvec *kvecs, 786 int kvec_cnt, u8 *hmac) 787 { 788 SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm); /* tfm arg is ignored */ 789 int ret; 790 int i; 791 792 dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con, 793 con->v2.hmac_tfm, kvec_cnt); 794 795 if (!con->v2.hmac_tfm) { 796 memset(hmac, 0, SHA256_DIGEST_SIZE); 797 return 0; /* auth_none */ 798 } 799 800 desc->tfm = con->v2.hmac_tfm; 801 ret = crypto_shash_init(desc); 802 if (ret) 803 return ret; 804 805 for (i = 0; i < kvec_cnt; i++) { 806 WARN_ON((unsigned long)kvecs[i].iov_base & 807 crypto_shash_alignmask(con->v2.hmac_tfm)); 808 ret = crypto_shash_update(desc, kvecs[i].iov_base, 809 kvecs[i].iov_len); 810 if (ret) 811 return ret; 812 } 813 814 ret = crypto_shash_final(desc, hmac); 815 if (ret) 816 return ret; 817 818 shash_desc_zero(desc); 819 return 0; /* auth_x, both plain and secure modes */ 820 } 821 822 static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce) 823 { 824 u64 counter; 825 826 counter = le64_to_cpu(nonce->counter); 827 nonce->counter = cpu_to_le64(counter + 1); 828 } 829 830 static int gcm_crypt(struct ceph_connection *con, bool encrypt, 831 struct scatterlist *src, struct scatterlist *dst, 832 int src_len) 833 { 834 struct ceph_gcm_nonce *nonce; 835 int ret; 836 837 nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce; 838 839 aead_request_set_ad(con->v2.gcm_req, 0); /* no AAD */ 840 aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce); 841 ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) : 842 crypto_aead_decrypt(con->v2.gcm_req), 843 &con->v2.gcm_wait); 844 if (ret) 845 return ret; 846 847 gcm_inc_nonce(nonce); 848 return 0; 849 } 850 851 static void get_bvec_at(struct ceph_msg_data_cursor *cursor, 852 struct bio_vec *bv) 853 { 854 struct page *page; 855 size_t off, len; 856 857 WARN_ON(!cursor->total_resid); 858 859 /* skip zero-length data items */ 860 while (!cursor->resid) 861 ceph_msg_data_advance(cursor, 0); 862 863 /* get a piece of data, cursor isn't advanced */ 864 page = ceph_msg_data_next(cursor, &off, &len, NULL); 865 866 bv->bv_page = page; 867 bv->bv_offset = off; 868 bv->bv_len = len; 869 } 870 871 static int calc_sg_cnt(void *buf, int buf_len) 872 { 873 int sg_cnt; 874 875 if (!buf_len) 876 return 0; 877 878 sg_cnt = need_padding(buf_len) ? 1 : 0; 879 if (is_vmalloc_addr(buf)) { 880 WARN_ON(offset_in_page(buf)); 881 sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT; 882 } else { 883 sg_cnt++; 884 } 885 886 return sg_cnt; 887 } 888 889 static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor) 890 { 891 int data_len = cursor->total_resid; 892 struct bio_vec bv; 893 int sg_cnt; 894 895 if (!data_len) 896 return 0; 897 898 sg_cnt = need_padding(data_len) ? 1 : 0; 899 do { 900 get_bvec_at(cursor, &bv); 901 sg_cnt++; 902 903 ceph_msg_data_advance(cursor, bv.bv_len); 904 } while (cursor->total_resid); 905 906 return sg_cnt; 907 } 908 909 static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad) 910 { 911 void *end = buf + buf_len; 912 struct page *page; 913 int len; 914 void *p; 915 916 if (!buf_len) 917 return; 918 919 if (is_vmalloc_addr(buf)) { 920 p = buf; 921 do { 922 page = vmalloc_to_page(p); 923 len = min_t(int, end - p, PAGE_SIZE); 924 WARN_ON(!page || !len || offset_in_page(p)); 925 sg_set_page(*sg, page, len, 0); 926 *sg = sg_next(*sg); 927 p += len; 928 } while (p != end); 929 } else { 930 sg_set_buf(*sg, buf, buf_len); 931 *sg = sg_next(*sg); 932 } 933 934 if (need_padding(buf_len)) { 935 sg_set_buf(*sg, pad, padding_len(buf_len)); 936 *sg = sg_next(*sg); 937 } 938 } 939 940 static void init_sgs_cursor(struct scatterlist **sg, 941 struct ceph_msg_data_cursor *cursor, u8 *pad) 942 { 943 int data_len = cursor->total_resid; 944 struct bio_vec bv; 945 946 if (!data_len) 947 return; 948 949 do { 950 get_bvec_at(cursor, &bv); 951 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 952 *sg = sg_next(*sg); 953 954 ceph_msg_data_advance(cursor, bv.bv_len); 955 } while (cursor->total_resid); 956 957 if (need_padding(data_len)) { 958 sg_set_buf(*sg, pad, padding_len(data_len)); 959 *sg = sg_next(*sg); 960 } 961 } 962 963 static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg, 964 u8 *front_pad, u8 *middle_pad, u8 *data_pad, 965 void *epilogue, bool add_tag) 966 { 967 struct ceph_msg_data_cursor cursor; 968 struct scatterlist *cur_sg; 969 int sg_cnt; 970 int ret; 971 972 if (!front_len(msg) && !middle_len(msg) && !data_len(msg)) 973 return 0; 974 975 sg_cnt = 1; /* epilogue + [auth tag] */ 976 if (front_len(msg)) 977 sg_cnt += calc_sg_cnt(msg->front.iov_base, 978 front_len(msg)); 979 if (middle_len(msg)) 980 sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base, 981 middle_len(msg)); 982 if (data_len(msg)) { 983 ceph_msg_data_cursor_init(&cursor, msg, data_len(msg)); 984 sg_cnt += calc_sg_cnt_cursor(&cursor); 985 } 986 987 ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO); 988 if (ret) 989 return ret; 990 991 cur_sg = sgt->sgl; 992 if (front_len(msg)) 993 init_sgs(&cur_sg, msg->front.iov_base, front_len(msg), 994 front_pad); 995 if (middle_len(msg)) 996 init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg), 997 middle_pad); 998 if (data_len(msg)) { 999 ceph_msg_data_cursor_init(&cursor, msg, data_len(msg)); 1000 init_sgs_cursor(&cur_sg, &cursor, data_pad); 1001 } 1002 1003 WARN_ON(!sg_is_last(cur_sg)); 1004 sg_set_buf(cur_sg, epilogue, 1005 CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0)); 1006 return 0; 1007 } 1008 1009 static int decrypt_preamble(struct ceph_connection *con) 1010 { 1011 struct scatterlist sg; 1012 1013 sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN); 1014 return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN); 1015 } 1016 1017 static int decrypt_control_remainder(struct ceph_connection *con) 1018 { 1019 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1020 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1021 int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN; 1022 struct scatterlist sgs[2]; 1023 1024 WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len); 1025 WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len); 1026 1027 sg_init_table(sgs, 2); 1028 sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len); 1029 sg_set_buf(&sgs[1], con->v2.in_buf, pt_len); 1030 1031 return gcm_crypt(con, false, sgs, sgs, 1032 padded_len(rem_len) + CEPH_GCM_TAG_LEN); 1033 } 1034 1035 static int decrypt_message(struct ceph_connection *con) 1036 { 1037 struct sg_table sgt = {}; 1038 int ret; 1039 1040 ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf), 1041 MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf), 1042 con->v2.in_buf, true); 1043 if (ret) 1044 goto out; 1045 1046 ret = gcm_crypt(con, false, sgt.sgl, sgt.sgl, 1047 tail_onwire_len(con->in_msg, true)); 1048 1049 out: 1050 sg_free_table(&sgt); 1051 return ret; 1052 } 1053 1054 static int prepare_banner(struct ceph_connection *con) 1055 { 1056 int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8; 1057 void *buf, *p; 1058 1059 buf = alloc_conn_buf(con, buf_len); 1060 if (!buf) 1061 return -ENOMEM; 1062 1063 p = buf; 1064 ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN); 1065 ceph_encode_16(&p, sizeof(u64) + sizeof(u64)); 1066 ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES); 1067 ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES); 1068 WARN_ON(p != buf + buf_len); 1069 1070 add_out_kvec(con, buf, buf_len); 1071 add_out_sign_kvec(con, buf, buf_len); 1072 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1073 return 0; 1074 } 1075 1076 /* 1077 * base: 1078 * preamble 1079 * control body (ctrl_len bytes) 1080 * space for control crc 1081 * 1082 * extdata (optional): 1083 * control body (extdata_len bytes) 1084 * 1085 * Compute control crc and gather base and extdata into: 1086 * 1087 * preamble 1088 * control body (ctrl_len + extdata_len bytes) 1089 * control crc 1090 * 1091 * Preamble should already be encoded at the start of base. 1092 */ 1093 static void prepare_head_plain(struct ceph_connection *con, void *base, 1094 int ctrl_len, void *extdata, int extdata_len, 1095 bool to_be_signed) 1096 { 1097 int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN; 1098 void *crcp = base + base_len - CEPH_CRC_LEN; 1099 u32 crc; 1100 1101 crc = crc32c(-1, CTRL_BODY(base), ctrl_len); 1102 if (extdata_len) 1103 crc = crc32c(crc, extdata, extdata_len); 1104 put_unaligned_le32(crc, crcp); 1105 1106 if (!extdata_len) { 1107 add_out_kvec(con, base, base_len); 1108 if (to_be_signed) 1109 add_out_sign_kvec(con, base, base_len); 1110 return; 1111 } 1112 1113 add_out_kvec(con, base, crcp - base); 1114 add_out_kvec(con, extdata, extdata_len); 1115 add_out_kvec(con, crcp, CEPH_CRC_LEN); 1116 if (to_be_signed) { 1117 add_out_sign_kvec(con, base, crcp - base); 1118 add_out_sign_kvec(con, extdata, extdata_len); 1119 add_out_sign_kvec(con, crcp, CEPH_CRC_LEN); 1120 } 1121 } 1122 1123 static int prepare_head_secure_small(struct ceph_connection *con, 1124 void *base, int ctrl_len) 1125 { 1126 struct scatterlist sg; 1127 int ret; 1128 1129 /* inline buffer padding? */ 1130 if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN) 1131 memset(CTRL_BODY(base) + ctrl_len, 0, 1132 CEPH_PREAMBLE_INLINE_LEN - ctrl_len); 1133 1134 sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN); 1135 ret = gcm_crypt(con, true, &sg, &sg, 1136 CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN); 1137 if (ret) 1138 return ret; 1139 1140 add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN); 1141 return 0; 1142 } 1143 1144 /* 1145 * base: 1146 * preamble 1147 * control body (ctrl_len bytes) 1148 * space for padding, if needed 1149 * space for control remainder auth tag 1150 * space for preamble auth tag 1151 * 1152 * Encrypt preamble and the inline portion, then encrypt the remainder 1153 * and gather into: 1154 * 1155 * preamble 1156 * control body (48 bytes) 1157 * preamble auth tag 1158 * control body (ctrl_len - 48 bytes) 1159 * zero padding, if needed 1160 * control remainder auth tag 1161 * 1162 * Preamble should already be encoded at the start of base. 1163 */ 1164 static int prepare_head_secure_big(struct ceph_connection *con, 1165 void *base, int ctrl_len) 1166 { 1167 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1168 void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN; 1169 void *rem_tag = rem + padded_len(rem_len); 1170 void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN; 1171 struct scatterlist sgs[2]; 1172 int ret; 1173 1174 sg_init_table(sgs, 2); 1175 sg_set_buf(&sgs[0], base, rem - base); 1176 sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN); 1177 ret = gcm_crypt(con, true, sgs, sgs, rem - base); 1178 if (ret) 1179 return ret; 1180 1181 /* control remainder padding? */ 1182 if (need_padding(rem_len)) 1183 memset(rem + rem_len, 0, padding_len(rem_len)); 1184 1185 sg_init_one(&sgs[0], rem, pmbl_tag - rem); 1186 ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem); 1187 if (ret) 1188 return ret; 1189 1190 add_out_kvec(con, base, rem - base); 1191 add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN); 1192 add_out_kvec(con, rem, pmbl_tag - rem); 1193 return 0; 1194 } 1195 1196 static int __prepare_control(struct ceph_connection *con, int tag, 1197 void *base, int ctrl_len, void *extdata, 1198 int extdata_len, bool to_be_signed) 1199 { 1200 int total_len = ctrl_len + extdata_len; 1201 struct ceph_frame_desc desc; 1202 int ret; 1203 1204 dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag, 1205 total_len, ctrl_len, extdata_len); 1206 1207 /* extdata may be vmalloc'ed but not base */ 1208 if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len)) 1209 return -EINVAL; 1210 1211 init_frame_desc(&desc, tag, &total_len, 1); 1212 encode_preamble(&desc, base); 1213 1214 if (con_secure(con)) { 1215 if (WARN_ON(extdata_len || to_be_signed)) 1216 return -EINVAL; 1217 1218 if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN) 1219 /* fully inlined, inline buffer may need padding */ 1220 ret = prepare_head_secure_small(con, base, ctrl_len); 1221 else 1222 /* partially inlined, inline buffer is full */ 1223 ret = prepare_head_secure_big(con, base, ctrl_len); 1224 if (ret) 1225 return ret; 1226 } else { 1227 prepare_head_plain(con, base, ctrl_len, extdata, extdata_len, 1228 to_be_signed); 1229 } 1230 1231 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1232 return 0; 1233 } 1234 1235 static int prepare_control(struct ceph_connection *con, int tag, 1236 void *base, int ctrl_len) 1237 { 1238 return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false); 1239 } 1240 1241 static int prepare_hello(struct ceph_connection *con) 1242 { 1243 void *buf, *p; 1244 int ctrl_len; 1245 1246 ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr); 1247 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1248 if (!buf) 1249 return -ENOMEM; 1250 1251 p = CTRL_BODY(buf); 1252 ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT); 1253 ceph_encode_entity_addr(&p, &con->peer_addr); 1254 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1255 1256 return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len, 1257 NULL, 0, true); 1258 } 1259 1260 /* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */ 1261 #define AUTH_BUF_LEN (512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN) 1262 1263 static int prepare_auth_request(struct ceph_connection *con) 1264 { 1265 void *authorizer, *authorizer_copy; 1266 int ctrl_len, authorizer_len; 1267 void *buf; 1268 int ret; 1269 1270 ctrl_len = AUTH_BUF_LEN; 1271 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1272 if (!buf) 1273 return -ENOMEM; 1274 1275 mutex_unlock(&con->mutex); 1276 ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len, 1277 &authorizer, &authorizer_len); 1278 mutex_lock(&con->mutex); 1279 if (con->state != CEPH_CON_S_V2_HELLO) { 1280 dout("%s con %p state changed to %d\n", __func__, con, 1281 con->state); 1282 return -EAGAIN; 1283 } 1284 1285 dout("%s con %p get_auth_request ret %d\n", __func__, con, ret); 1286 if (ret) 1287 return ret; 1288 1289 authorizer_copy = alloc_conn_buf(con, authorizer_len); 1290 if (!authorizer_copy) 1291 return -ENOMEM; 1292 1293 memcpy(authorizer_copy, authorizer, authorizer_len); 1294 1295 return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len, 1296 authorizer_copy, authorizer_len, true); 1297 } 1298 1299 static int prepare_auth_request_more(struct ceph_connection *con, 1300 void *reply, int reply_len) 1301 { 1302 int ctrl_len, authorizer_len; 1303 void *authorizer; 1304 void *buf; 1305 int ret; 1306 1307 ctrl_len = AUTH_BUF_LEN; 1308 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false)); 1309 if (!buf) 1310 return -ENOMEM; 1311 1312 mutex_unlock(&con->mutex); 1313 ret = con->ops->handle_auth_reply_more(con, reply, reply_len, 1314 CTRL_BODY(buf), &ctrl_len, 1315 &authorizer, &authorizer_len); 1316 mutex_lock(&con->mutex); 1317 if (con->state != CEPH_CON_S_V2_AUTH) { 1318 dout("%s con %p state changed to %d\n", __func__, con, 1319 con->state); 1320 return -EAGAIN; 1321 } 1322 1323 dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret); 1324 if (ret) 1325 return ret; 1326 1327 return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf, 1328 ctrl_len, authorizer, authorizer_len, true); 1329 } 1330 1331 static int prepare_auth_signature(struct ceph_connection *con) 1332 { 1333 void *buf; 1334 int ret; 1335 1336 buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE, false)); 1337 if (!buf) 1338 return -ENOMEM; 1339 1340 ret = hmac_sha256(con, con->v2.in_sign_kvecs, con->v2.in_sign_kvec_cnt, 1341 CTRL_BODY(buf)); 1342 if (ret) 1343 return ret; 1344 1345 return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf, 1346 SHA256_DIGEST_SIZE); 1347 } 1348 1349 static int prepare_client_ident(struct ceph_connection *con) 1350 { 1351 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 1352 struct ceph_client *client = from_msgr(con->msgr); 1353 u64 global_id = ceph_client_gid(client); 1354 void *buf, *p; 1355 int ctrl_len; 1356 1357 WARN_ON(con->v2.server_cookie); 1358 WARN_ON(con->v2.connect_seq); 1359 WARN_ON(con->v2.peer_global_seq); 1360 1361 if (!con->v2.client_cookie) { 1362 do { 1363 get_random_bytes(&con->v2.client_cookie, 1364 sizeof(con->v2.client_cookie)); 1365 } while (!con->v2.client_cookie); 1366 dout("%s con %p generated cookie 0x%llx\n", __func__, con, 1367 con->v2.client_cookie); 1368 } else { 1369 dout("%s con %p cookie already set 0x%llx\n", __func__, con, 1370 con->v2.client_cookie); 1371 } 1372 1373 dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n", 1374 __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), 1375 ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce), 1376 global_id, con->v2.global_seq, client->supported_features, 1377 client->required_features, con->v2.client_cookie); 1378 1379 ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 1380 ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8; 1381 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); 1382 if (!buf) 1383 return -ENOMEM; 1384 1385 p = CTRL_BODY(buf); 1386 ceph_encode_8(&p, 2); /* addrvec marker */ 1387 ceph_encode_32(&p, 1); /* addr_cnt */ 1388 ceph_encode_entity_addr(&p, my_addr); 1389 ceph_encode_entity_addr(&p, &con->peer_addr); 1390 ceph_encode_64(&p, global_id); 1391 ceph_encode_64(&p, con->v2.global_seq); 1392 ceph_encode_64(&p, client->supported_features); 1393 ceph_encode_64(&p, client->required_features); 1394 ceph_encode_64(&p, 0); /* flags */ 1395 ceph_encode_64(&p, con->v2.client_cookie); 1396 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1397 1398 return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len); 1399 } 1400 1401 static int prepare_session_reconnect(struct ceph_connection *con) 1402 { 1403 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 1404 void *buf, *p; 1405 int ctrl_len; 1406 1407 WARN_ON(!con->v2.client_cookie); 1408 WARN_ON(!con->v2.server_cookie); 1409 WARN_ON(!con->v2.connect_seq); 1410 WARN_ON(!con->v2.peer_global_seq); 1411 1412 dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n", 1413 __func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce), 1414 con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq, 1415 con->v2.connect_seq, con->in_seq); 1416 1417 ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8; 1418 buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con))); 1419 if (!buf) 1420 return -ENOMEM; 1421 1422 p = CTRL_BODY(buf); 1423 ceph_encode_8(&p, 2); /* entity_addrvec_t marker */ 1424 ceph_encode_32(&p, 1); /* my_addrs len */ 1425 ceph_encode_entity_addr(&p, my_addr); 1426 ceph_encode_64(&p, con->v2.client_cookie); 1427 ceph_encode_64(&p, con->v2.server_cookie); 1428 ceph_encode_64(&p, con->v2.global_seq); 1429 ceph_encode_64(&p, con->v2.connect_seq); 1430 ceph_encode_64(&p, con->in_seq); 1431 WARN_ON(p != CTRL_BODY(buf) + ctrl_len); 1432 1433 return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len); 1434 } 1435 1436 static int prepare_keepalive2(struct ceph_connection *con) 1437 { 1438 struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf); 1439 struct timespec64 now; 1440 1441 ktime_get_real_ts64(&now); 1442 dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec, 1443 now.tv_nsec); 1444 1445 ceph_encode_timespec64(ts, &now); 1446 1447 reset_out_kvecs(con); 1448 return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf, 1449 sizeof(struct ceph_timespec)); 1450 } 1451 1452 static int prepare_ack(struct ceph_connection *con) 1453 { 1454 void *p; 1455 1456 dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, 1457 con->in_seq_acked, con->in_seq); 1458 con->in_seq_acked = con->in_seq; 1459 1460 p = CTRL_BODY(con->v2.out_buf); 1461 ceph_encode_64(&p, con->in_seq_acked); 1462 1463 reset_out_kvecs(con); 1464 return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8); 1465 } 1466 1467 static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted) 1468 { 1469 dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con, 1470 con->out_msg, aborted, con->v2.out_epil.front_crc, 1471 con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc); 1472 1473 encode_epilogue_plain(con, aborted); 1474 add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN); 1475 } 1476 1477 /* 1478 * For "used" empty segments, crc is -1. For unused (trailing) 1479 * segments, crc is 0. 1480 */ 1481 static void prepare_message_plain(struct ceph_connection *con) 1482 { 1483 struct ceph_msg *msg = con->out_msg; 1484 1485 prepare_head_plain(con, con->v2.out_buf, 1486 sizeof(struct ceph_msg_header2), NULL, 0, false); 1487 1488 if (!front_len(msg) && !middle_len(msg)) { 1489 if (!data_len(msg)) { 1490 /* 1491 * Empty message: once the head is written, 1492 * we are done -- there is no epilogue. 1493 */ 1494 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1495 return; 1496 } 1497 1498 con->v2.out_epil.front_crc = -1; 1499 con->v2.out_epil.middle_crc = -1; 1500 con->v2.out_state = OUT_S_QUEUE_DATA; 1501 return; 1502 } 1503 1504 if (front_len(msg)) { 1505 con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base, 1506 front_len(msg)); 1507 add_out_kvec(con, msg->front.iov_base, front_len(msg)); 1508 } else { 1509 /* middle (at least) is there, checked above */ 1510 con->v2.out_epil.front_crc = -1; 1511 } 1512 1513 if (middle_len(msg)) { 1514 con->v2.out_epil.middle_crc = 1515 crc32c(-1, msg->middle->vec.iov_base, middle_len(msg)); 1516 add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); 1517 } else { 1518 con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0; 1519 } 1520 1521 if (data_len(msg)) { 1522 con->v2.out_state = OUT_S_QUEUE_DATA; 1523 } else { 1524 con->v2.out_epil.data_crc = 0; 1525 prepare_epilogue_plain(con, false); 1526 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1527 } 1528 } 1529 1530 /* 1531 * Unfortunately the kernel crypto API doesn't support streaming 1532 * (piecewise) operation for AEAD algorithms, so we can't get away 1533 * with a fixed size buffer and a couple sgs. Instead, we have to 1534 * allocate pages for the entire tail of the message (currently up 1535 * to ~32M) and two sgs arrays (up to ~256K each)... 1536 */ 1537 static int prepare_message_secure(struct ceph_connection *con) 1538 { 1539 void *zerop = page_address(ceph_zero_page); 1540 struct sg_table enc_sgt = {}; 1541 struct sg_table sgt = {}; 1542 struct page **enc_pages; 1543 int enc_page_cnt; 1544 int tail_len; 1545 int ret; 1546 1547 ret = prepare_head_secure_small(con, con->v2.out_buf, 1548 sizeof(struct ceph_msg_header2)); 1549 if (ret) 1550 return ret; 1551 1552 tail_len = tail_onwire_len(con->out_msg, true); 1553 if (!tail_len) { 1554 /* 1555 * Empty message: once the head is written, 1556 * we are done -- there is no epilogue. 1557 */ 1558 con->v2.out_state = OUT_S_FINISH_MESSAGE; 1559 return 0; 1560 } 1561 1562 encode_epilogue_secure(con, false); 1563 ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop, 1564 &con->v2.out_epil, false); 1565 if (ret) 1566 goto out; 1567 1568 enc_page_cnt = calc_pages_for(0, tail_len); 1569 enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO); 1570 if (IS_ERR(enc_pages)) { 1571 ret = PTR_ERR(enc_pages); 1572 goto out; 1573 } 1574 1575 WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt); 1576 con->v2.out_enc_pages = enc_pages; 1577 con->v2.out_enc_page_cnt = enc_page_cnt; 1578 con->v2.out_enc_resid = tail_len; 1579 con->v2.out_enc_i = 0; 1580 1581 ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt, 1582 0, tail_len, GFP_NOIO); 1583 if (ret) 1584 goto out; 1585 1586 ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl, 1587 tail_len - CEPH_GCM_TAG_LEN); 1588 if (ret) 1589 goto out; 1590 1591 dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con, 1592 con->out_msg, sgt.orig_nents, enc_page_cnt); 1593 con->v2.out_state = OUT_S_QUEUE_ENC_PAGE; 1594 1595 out: 1596 sg_free_table(&sgt); 1597 sg_free_table(&enc_sgt); 1598 return ret; 1599 } 1600 1601 static int prepare_message(struct ceph_connection *con) 1602 { 1603 int lens[] = { 1604 sizeof(struct ceph_msg_header2), 1605 front_len(con->out_msg), 1606 middle_len(con->out_msg), 1607 data_len(con->out_msg) 1608 }; 1609 struct ceph_frame_desc desc; 1610 int ret; 1611 1612 dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con, 1613 con->out_msg, lens[0], lens[1], lens[2], lens[3]); 1614 1615 if (con->in_seq > con->in_seq_acked) { 1616 dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con, 1617 con->in_seq_acked, con->in_seq); 1618 con->in_seq_acked = con->in_seq; 1619 } 1620 1621 reset_out_kvecs(con); 1622 init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4); 1623 encode_preamble(&desc, con->v2.out_buf); 1624 fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr, 1625 con->in_seq_acked); 1626 1627 if (con_secure(con)) { 1628 ret = prepare_message_secure(con); 1629 if (ret) 1630 return ret; 1631 } else { 1632 prepare_message_plain(con); 1633 } 1634 1635 ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING); 1636 return 0; 1637 } 1638 1639 static int prepare_read_banner_prefix(struct ceph_connection *con) 1640 { 1641 void *buf; 1642 1643 buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN); 1644 if (!buf) 1645 return -ENOMEM; 1646 1647 reset_in_kvecs(con); 1648 add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); 1649 add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN); 1650 con->state = CEPH_CON_S_V2_BANNER_PREFIX; 1651 return 0; 1652 } 1653 1654 static int prepare_read_banner_payload(struct ceph_connection *con, 1655 int payload_len) 1656 { 1657 void *buf; 1658 1659 buf = alloc_conn_buf(con, payload_len); 1660 if (!buf) 1661 return -ENOMEM; 1662 1663 reset_in_kvecs(con); 1664 add_in_kvec(con, buf, payload_len); 1665 add_in_sign_kvec(con, buf, payload_len); 1666 con->state = CEPH_CON_S_V2_BANNER_PAYLOAD; 1667 return 0; 1668 } 1669 1670 static void prepare_read_preamble(struct ceph_connection *con) 1671 { 1672 reset_in_kvecs(con); 1673 add_in_kvec(con, con->v2.in_buf, 1674 con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN : 1675 CEPH_PREAMBLE_PLAIN_LEN); 1676 con->v2.in_state = IN_S_HANDLE_PREAMBLE; 1677 } 1678 1679 static int prepare_read_control(struct ceph_connection *con) 1680 { 1681 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1682 int head_len; 1683 void *buf; 1684 1685 reset_in_kvecs(con); 1686 if (con->state == CEPH_CON_S_V2_HELLO || 1687 con->state == CEPH_CON_S_V2_AUTH) { 1688 head_len = head_onwire_len(ctrl_len, false); 1689 buf = alloc_conn_buf(con, head_len); 1690 if (!buf) 1691 return -ENOMEM; 1692 1693 /* preserve preamble */ 1694 memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN); 1695 1696 add_in_kvec(con, CTRL_BODY(buf), ctrl_len); 1697 add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN); 1698 add_in_sign_kvec(con, buf, head_len); 1699 } else { 1700 if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) { 1701 buf = alloc_conn_buf(con, ctrl_len); 1702 if (!buf) 1703 return -ENOMEM; 1704 1705 add_in_kvec(con, buf, ctrl_len); 1706 } else { 1707 add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len); 1708 } 1709 add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN); 1710 } 1711 con->v2.in_state = IN_S_HANDLE_CONTROL; 1712 return 0; 1713 } 1714 1715 static int prepare_read_control_remainder(struct ceph_connection *con) 1716 { 1717 int ctrl_len = con->v2.in_desc.fd_lens[0]; 1718 int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN; 1719 void *buf; 1720 1721 buf = alloc_conn_buf(con, ctrl_len); 1722 if (!buf) 1723 return -ENOMEM; 1724 1725 memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN); 1726 1727 reset_in_kvecs(con); 1728 add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len); 1729 add_in_kvec(con, con->v2.in_buf, 1730 padding_len(rem_len) + CEPH_GCM_TAG_LEN); 1731 con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER; 1732 return 0; 1733 } 1734 1735 static void prepare_read_data(struct ceph_connection *con) 1736 { 1737 struct bio_vec bv; 1738 1739 if (!con_secure(con)) 1740 con->in_data_crc = -1; 1741 ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg, 1742 data_len(con->in_msg)); 1743 1744 get_bvec_at(&con->v2.in_cursor, &bv); 1745 set_in_bvec(con, &bv); 1746 con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT; 1747 } 1748 1749 static void prepare_read_data_cont(struct ceph_connection *con) 1750 { 1751 struct bio_vec bv; 1752 1753 if (!con_secure(con)) 1754 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, 1755 con->v2.in_bvec.bv_page, 1756 con->v2.in_bvec.bv_offset, 1757 con->v2.in_bvec.bv_len); 1758 1759 ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len); 1760 if (con->v2.in_cursor.total_resid) { 1761 get_bvec_at(&con->v2.in_cursor, &bv); 1762 set_in_bvec(con, &bv); 1763 WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT); 1764 return; 1765 } 1766 1767 /* 1768 * We've read all data. Prepare to read data padding (if any) 1769 * and epilogue. 1770 */ 1771 reset_in_kvecs(con); 1772 if (con_secure(con)) { 1773 if (need_padding(data_len(con->in_msg))) 1774 add_in_kvec(con, DATA_PAD(con->v2.in_buf), 1775 padding_len(data_len(con->in_msg))); 1776 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_SECURE_LEN); 1777 } else { 1778 add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN); 1779 } 1780 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 1781 } 1782 1783 static void __finish_skip(struct ceph_connection *con) 1784 { 1785 con->in_seq++; 1786 prepare_read_preamble(con); 1787 } 1788 1789 static void prepare_skip_message(struct ceph_connection *con) 1790 { 1791 struct ceph_frame_desc *desc = &con->v2.in_desc; 1792 int tail_len; 1793 1794 dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1], 1795 desc->fd_lens[2], desc->fd_lens[3]); 1796 1797 tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2], 1798 desc->fd_lens[3], con_secure(con)); 1799 if (!tail_len) { 1800 __finish_skip(con); 1801 } else { 1802 set_in_skip(con, tail_len); 1803 con->v2.in_state = IN_S_FINISH_SKIP; 1804 } 1805 } 1806 1807 static int process_banner_prefix(struct ceph_connection *con) 1808 { 1809 int payload_len; 1810 void *p; 1811 1812 WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN); 1813 1814 p = con->v2.in_kvecs[0].iov_base; 1815 if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) { 1816 if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN)) 1817 con->error_msg = "server is speaking msgr1 protocol"; 1818 else 1819 con->error_msg = "protocol error, bad banner"; 1820 return -EINVAL; 1821 } 1822 1823 p += CEPH_BANNER_V2_LEN; 1824 payload_len = ceph_decode_16(&p); 1825 dout("%s con %p payload_len %d\n", __func__, con, payload_len); 1826 1827 return prepare_read_banner_payload(con, payload_len); 1828 } 1829 1830 static int process_banner_payload(struct ceph_connection *con) 1831 { 1832 void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len; 1833 u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES; 1834 u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES; 1835 u64 server_feat, server_req_feat; 1836 void *p; 1837 int ret; 1838 1839 p = con->v2.in_kvecs[0].iov_base; 1840 ceph_decode_64_safe(&p, end, server_feat, bad); 1841 ceph_decode_64_safe(&p, end, server_req_feat, bad); 1842 1843 dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n", 1844 __func__, con, server_feat, server_req_feat); 1845 1846 if (req_feat & ~server_feat) { 1847 pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", 1848 server_feat, req_feat & ~server_feat); 1849 con->error_msg = "missing required protocol features"; 1850 return -EINVAL; 1851 } 1852 if (server_req_feat & ~feat) { 1853 pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", 1854 feat, server_req_feat & ~feat); 1855 con->error_msg = "missing required protocol features"; 1856 return -EINVAL; 1857 } 1858 1859 /* no reset_out_kvecs() as our banner may still be pending */ 1860 ret = prepare_hello(con); 1861 if (ret) { 1862 pr_err("prepare_hello failed: %d\n", ret); 1863 return ret; 1864 } 1865 1866 con->state = CEPH_CON_S_V2_HELLO; 1867 prepare_read_preamble(con); 1868 return 0; 1869 1870 bad: 1871 pr_err("failed to decode banner payload\n"); 1872 return -EINVAL; 1873 } 1874 1875 static int process_hello(struct ceph_connection *con, void *p, void *end) 1876 { 1877 struct ceph_entity_addr *my_addr = &con->msgr->inst.addr; 1878 struct ceph_entity_addr addr_for_me; 1879 u8 entity_type; 1880 int ret; 1881 1882 if (con->state != CEPH_CON_S_V2_HELLO) { 1883 con->error_msg = "protocol error, unexpected hello"; 1884 return -EINVAL; 1885 } 1886 1887 ceph_decode_8_safe(&p, end, entity_type, bad); 1888 ret = ceph_decode_entity_addr(&p, end, &addr_for_me); 1889 if (ret) { 1890 pr_err("failed to decode addr_for_me: %d\n", ret); 1891 return ret; 1892 } 1893 1894 dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con, 1895 entity_type, ceph_pr_addr(&addr_for_me)); 1896 1897 if (entity_type != con->peer_name.type) { 1898 pr_err("bad peer type, want %d, got %d\n", 1899 con->peer_name.type, entity_type); 1900 con->error_msg = "wrong peer at address"; 1901 return -EINVAL; 1902 } 1903 1904 /* 1905 * Set our address to the address our first peer (i.e. monitor) 1906 * sees that we are connecting from. If we are behind some sort 1907 * of NAT and want to be identified by some private (not NATed) 1908 * address, ip option should be used. 1909 */ 1910 if (ceph_addr_is_blank(my_addr)) { 1911 memcpy(&my_addr->in_addr, &addr_for_me.in_addr, 1912 sizeof(my_addr->in_addr)); 1913 ceph_addr_set_port(my_addr, 0); 1914 dout("%s con %p set my addr %s, as seen by peer %s\n", 1915 __func__, con, ceph_pr_addr(my_addr), 1916 ceph_pr_addr(&con->peer_addr)); 1917 } else { 1918 dout("%s con %p my addr already set %s\n", 1919 __func__, con, ceph_pr_addr(my_addr)); 1920 } 1921 1922 WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr)); 1923 WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY); 1924 WARN_ON(!my_addr->nonce); 1925 1926 /* no reset_out_kvecs() as our hello may still be pending */ 1927 ret = prepare_auth_request(con); 1928 if (ret) { 1929 if (ret != -EAGAIN) 1930 pr_err("prepare_auth_request failed: %d\n", ret); 1931 return ret; 1932 } 1933 1934 con->state = CEPH_CON_S_V2_AUTH; 1935 return 0; 1936 1937 bad: 1938 pr_err("failed to decode hello\n"); 1939 return -EINVAL; 1940 } 1941 1942 static int process_auth_bad_method(struct ceph_connection *con, 1943 void *p, void *end) 1944 { 1945 int allowed_protos[8], allowed_modes[8]; 1946 int allowed_proto_cnt, allowed_mode_cnt; 1947 int used_proto, result; 1948 int ret; 1949 int i; 1950 1951 if (con->state != CEPH_CON_S_V2_AUTH) { 1952 con->error_msg = "protocol error, unexpected auth_bad_method"; 1953 return -EINVAL; 1954 } 1955 1956 ceph_decode_32_safe(&p, end, used_proto, bad); 1957 ceph_decode_32_safe(&p, end, result, bad); 1958 dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto, 1959 result); 1960 1961 ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad); 1962 if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) { 1963 pr_err("allowed_protos too big %d\n", allowed_proto_cnt); 1964 return -EINVAL; 1965 } 1966 for (i = 0; i < allowed_proto_cnt; i++) { 1967 ceph_decode_32_safe(&p, end, allowed_protos[i], bad); 1968 dout("%s con %p allowed_protos[%d] %d\n", __func__, con, 1969 i, allowed_protos[i]); 1970 } 1971 1972 ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad); 1973 if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) { 1974 pr_err("allowed_modes too big %d\n", allowed_mode_cnt); 1975 return -EINVAL; 1976 } 1977 for (i = 0; i < allowed_mode_cnt; i++) { 1978 ceph_decode_32_safe(&p, end, allowed_modes[i], bad); 1979 dout("%s con %p allowed_modes[%d] %d\n", __func__, con, 1980 i, allowed_modes[i]); 1981 } 1982 1983 mutex_unlock(&con->mutex); 1984 ret = con->ops->handle_auth_bad_method(con, used_proto, result, 1985 allowed_protos, 1986 allowed_proto_cnt, 1987 allowed_modes, 1988 allowed_mode_cnt); 1989 mutex_lock(&con->mutex); 1990 if (con->state != CEPH_CON_S_V2_AUTH) { 1991 dout("%s con %p state changed to %d\n", __func__, con, 1992 con->state); 1993 return -EAGAIN; 1994 } 1995 1996 dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret); 1997 return ret; 1998 1999 bad: 2000 pr_err("failed to decode auth_bad_method\n"); 2001 return -EINVAL; 2002 } 2003 2004 static int process_auth_reply_more(struct ceph_connection *con, 2005 void *p, void *end) 2006 { 2007 int payload_len; 2008 int ret; 2009 2010 if (con->state != CEPH_CON_S_V2_AUTH) { 2011 con->error_msg = "protocol error, unexpected auth_reply_more"; 2012 return -EINVAL; 2013 } 2014 2015 ceph_decode_32_safe(&p, end, payload_len, bad); 2016 ceph_decode_need(&p, end, payload_len, bad); 2017 2018 dout("%s con %p payload_len %d\n", __func__, con, payload_len); 2019 2020 reset_out_kvecs(con); 2021 ret = prepare_auth_request_more(con, p, payload_len); 2022 if (ret) { 2023 if (ret != -EAGAIN) 2024 pr_err("prepare_auth_request_more failed: %d\n", ret); 2025 return ret; 2026 } 2027 2028 return 0; 2029 2030 bad: 2031 pr_err("failed to decode auth_reply_more\n"); 2032 return -EINVAL; 2033 } 2034 2035 static int process_auth_done(struct ceph_connection *con, void *p, void *end) 2036 { 2037 u8 session_key[CEPH_KEY_LEN]; 2038 u8 con_secret[CEPH_MAX_CON_SECRET_LEN]; 2039 int session_key_len, con_secret_len; 2040 int payload_len; 2041 u64 global_id; 2042 int ret; 2043 2044 if (con->state != CEPH_CON_S_V2_AUTH) { 2045 con->error_msg = "protocol error, unexpected auth_done"; 2046 return -EINVAL; 2047 } 2048 2049 ceph_decode_64_safe(&p, end, global_id, bad); 2050 ceph_decode_32_safe(&p, end, con->v2.con_mode, bad); 2051 ceph_decode_32_safe(&p, end, payload_len, bad); 2052 2053 dout("%s con %p global_id %llu con_mode %d payload_len %d\n", 2054 __func__, con, global_id, con->v2.con_mode, payload_len); 2055 2056 mutex_unlock(&con->mutex); 2057 session_key_len = 0; 2058 con_secret_len = 0; 2059 ret = con->ops->handle_auth_done(con, global_id, p, payload_len, 2060 session_key, &session_key_len, 2061 con_secret, &con_secret_len); 2062 mutex_lock(&con->mutex); 2063 if (con->state != CEPH_CON_S_V2_AUTH) { 2064 dout("%s con %p state changed to %d\n", __func__, con, 2065 con->state); 2066 return -EAGAIN; 2067 } 2068 2069 dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret); 2070 if (ret) 2071 return ret; 2072 2073 ret = setup_crypto(con, session_key, session_key_len, con_secret, 2074 con_secret_len); 2075 if (ret) 2076 return ret; 2077 2078 reset_out_kvecs(con); 2079 ret = prepare_auth_signature(con); 2080 if (ret) { 2081 pr_err("prepare_auth_signature failed: %d\n", ret); 2082 return ret; 2083 } 2084 2085 con->state = CEPH_CON_S_V2_AUTH_SIGNATURE; 2086 return 0; 2087 2088 bad: 2089 pr_err("failed to decode auth_done\n"); 2090 return -EINVAL; 2091 } 2092 2093 static int process_auth_signature(struct ceph_connection *con, 2094 void *p, void *end) 2095 { 2096 u8 hmac[SHA256_DIGEST_SIZE]; 2097 int ret; 2098 2099 if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) { 2100 con->error_msg = "protocol error, unexpected auth_signature"; 2101 return -EINVAL; 2102 } 2103 2104 ret = hmac_sha256(con, con->v2.out_sign_kvecs, 2105 con->v2.out_sign_kvec_cnt, hmac); 2106 if (ret) 2107 return ret; 2108 2109 ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad); 2110 if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) { 2111 con->error_msg = "integrity error, bad auth signature"; 2112 return -EBADMSG; 2113 } 2114 2115 dout("%s con %p auth signature ok\n", __func__, con); 2116 2117 /* no reset_out_kvecs() as our auth_signature may still be pending */ 2118 if (!con->v2.server_cookie) { 2119 ret = prepare_client_ident(con); 2120 if (ret) { 2121 pr_err("prepare_client_ident failed: %d\n", ret); 2122 return ret; 2123 } 2124 2125 con->state = CEPH_CON_S_V2_SESSION_CONNECT; 2126 } else { 2127 ret = prepare_session_reconnect(con); 2128 if (ret) { 2129 pr_err("prepare_session_reconnect failed: %d\n", ret); 2130 return ret; 2131 } 2132 2133 con->state = CEPH_CON_S_V2_SESSION_RECONNECT; 2134 } 2135 2136 return 0; 2137 2138 bad: 2139 pr_err("failed to decode auth_signature\n"); 2140 return -EINVAL; 2141 } 2142 2143 static int process_server_ident(struct ceph_connection *con, 2144 void *p, void *end) 2145 { 2146 struct ceph_client *client = from_msgr(con->msgr); 2147 u64 features, required_features; 2148 struct ceph_entity_addr addr; 2149 u64 global_seq; 2150 u64 global_id; 2151 u64 cookie; 2152 u64 flags; 2153 int ret; 2154 2155 if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { 2156 con->error_msg = "protocol error, unexpected server_ident"; 2157 return -EINVAL; 2158 } 2159 2160 ret = ceph_decode_entity_addrvec(&p, end, true, &addr); 2161 if (ret) { 2162 pr_err("failed to decode server addrs: %d\n", ret); 2163 return ret; 2164 } 2165 2166 ceph_decode_64_safe(&p, end, global_id, bad); 2167 ceph_decode_64_safe(&p, end, global_seq, bad); 2168 ceph_decode_64_safe(&p, end, features, bad); 2169 ceph_decode_64_safe(&p, end, required_features, bad); 2170 ceph_decode_64_safe(&p, end, flags, bad); 2171 ceph_decode_64_safe(&p, end, cookie, bad); 2172 2173 dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n", 2174 __func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce), 2175 global_id, global_seq, features, required_features, flags, cookie); 2176 2177 /* is this who we intended to talk to? */ 2178 if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) { 2179 pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n", 2180 ceph_pr_addr(&con->peer_addr), 2181 le32_to_cpu(con->peer_addr.nonce), 2182 ceph_pr_addr(&addr), le32_to_cpu(addr.nonce)); 2183 con->error_msg = "wrong peer at address"; 2184 return -EINVAL; 2185 } 2186 2187 if (client->required_features & ~features) { 2188 pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n", 2189 features, client->required_features & ~features); 2190 con->error_msg = "missing required protocol features"; 2191 return -EINVAL; 2192 } 2193 2194 /* 2195 * Both name->type and name->num are set in ceph_con_open() but 2196 * name->num may be bogus in the initial monmap. name->type is 2197 * verified in handle_hello(). 2198 */ 2199 WARN_ON(!con->peer_name.type); 2200 con->peer_name.num = cpu_to_le64(global_id); 2201 con->v2.peer_global_seq = global_seq; 2202 con->peer_features = features; 2203 WARN_ON(required_features & ~client->supported_features); 2204 con->v2.server_cookie = cookie; 2205 2206 if (flags & CEPH_MSG_CONNECT_LOSSY) { 2207 ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX); 2208 WARN_ON(con->v2.server_cookie); 2209 } else { 2210 WARN_ON(!con->v2.server_cookie); 2211 } 2212 2213 clear_in_sign_kvecs(con); 2214 clear_out_sign_kvecs(con); 2215 free_conn_bufs(con); 2216 con->delay = 0; /* reset backoff memory */ 2217 2218 con->state = CEPH_CON_S_OPEN; 2219 con->v2.out_state = OUT_S_GET_NEXT; 2220 return 0; 2221 2222 bad: 2223 pr_err("failed to decode server_ident\n"); 2224 return -EINVAL; 2225 } 2226 2227 static int process_ident_missing_features(struct ceph_connection *con, 2228 void *p, void *end) 2229 { 2230 struct ceph_client *client = from_msgr(con->msgr); 2231 u64 missing_features; 2232 2233 if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) { 2234 con->error_msg = "protocol error, unexpected ident_missing_features"; 2235 return -EINVAL; 2236 } 2237 2238 ceph_decode_64_safe(&p, end, missing_features, bad); 2239 pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n", 2240 client->supported_features, missing_features); 2241 con->error_msg = "missing required protocol features"; 2242 return -EINVAL; 2243 2244 bad: 2245 pr_err("failed to decode ident_missing_features\n"); 2246 return -EINVAL; 2247 } 2248 2249 static int process_session_reconnect_ok(struct ceph_connection *con, 2250 void *p, void *end) 2251 { 2252 u64 seq; 2253 2254 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2255 con->error_msg = "protocol error, unexpected session_reconnect_ok"; 2256 return -EINVAL; 2257 } 2258 2259 ceph_decode_64_safe(&p, end, seq, bad); 2260 2261 dout("%s con %p seq %llu\n", __func__, con, seq); 2262 ceph_con_discard_requeued(con, seq); 2263 2264 clear_in_sign_kvecs(con); 2265 clear_out_sign_kvecs(con); 2266 free_conn_bufs(con); 2267 con->delay = 0; /* reset backoff memory */ 2268 2269 con->state = CEPH_CON_S_OPEN; 2270 con->v2.out_state = OUT_S_GET_NEXT; 2271 return 0; 2272 2273 bad: 2274 pr_err("failed to decode session_reconnect_ok\n"); 2275 return -EINVAL; 2276 } 2277 2278 static int process_session_retry(struct ceph_connection *con, 2279 void *p, void *end) 2280 { 2281 u64 connect_seq; 2282 int ret; 2283 2284 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2285 con->error_msg = "protocol error, unexpected session_retry"; 2286 return -EINVAL; 2287 } 2288 2289 ceph_decode_64_safe(&p, end, connect_seq, bad); 2290 2291 dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq); 2292 WARN_ON(connect_seq <= con->v2.connect_seq); 2293 con->v2.connect_seq = connect_seq + 1; 2294 2295 free_conn_bufs(con); 2296 2297 reset_out_kvecs(con); 2298 ret = prepare_session_reconnect(con); 2299 if (ret) { 2300 pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret); 2301 return ret; 2302 } 2303 2304 return 0; 2305 2306 bad: 2307 pr_err("failed to decode session_retry\n"); 2308 return -EINVAL; 2309 } 2310 2311 static int process_session_retry_global(struct ceph_connection *con, 2312 void *p, void *end) 2313 { 2314 u64 global_seq; 2315 int ret; 2316 2317 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2318 con->error_msg = "protocol error, unexpected session_retry_global"; 2319 return -EINVAL; 2320 } 2321 2322 ceph_decode_64_safe(&p, end, global_seq, bad); 2323 2324 dout("%s con %p global_seq %llu\n", __func__, con, global_seq); 2325 WARN_ON(global_seq <= con->v2.global_seq); 2326 con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq); 2327 2328 free_conn_bufs(con); 2329 2330 reset_out_kvecs(con); 2331 ret = prepare_session_reconnect(con); 2332 if (ret) { 2333 pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret); 2334 return ret; 2335 } 2336 2337 return 0; 2338 2339 bad: 2340 pr_err("failed to decode session_retry_global\n"); 2341 return -EINVAL; 2342 } 2343 2344 static int process_session_reset(struct ceph_connection *con, 2345 void *p, void *end) 2346 { 2347 bool full; 2348 int ret; 2349 2350 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2351 con->error_msg = "protocol error, unexpected session_reset"; 2352 return -EINVAL; 2353 } 2354 2355 ceph_decode_8_safe(&p, end, full, bad); 2356 if (!full) { 2357 con->error_msg = "protocol error, bad session_reset"; 2358 return -EINVAL; 2359 } 2360 2361 pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name), 2362 ceph_pr_addr(&con->peer_addr)); 2363 ceph_con_reset_session(con); 2364 2365 mutex_unlock(&con->mutex); 2366 if (con->ops->peer_reset) 2367 con->ops->peer_reset(con); 2368 mutex_lock(&con->mutex); 2369 if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) { 2370 dout("%s con %p state changed to %d\n", __func__, con, 2371 con->state); 2372 return -EAGAIN; 2373 } 2374 2375 free_conn_bufs(con); 2376 2377 reset_out_kvecs(con); 2378 ret = prepare_client_ident(con); 2379 if (ret) { 2380 pr_err("prepare_client_ident (rst) failed: %d\n", ret); 2381 return ret; 2382 } 2383 2384 con->state = CEPH_CON_S_V2_SESSION_CONNECT; 2385 return 0; 2386 2387 bad: 2388 pr_err("failed to decode session_reset\n"); 2389 return -EINVAL; 2390 } 2391 2392 static int process_keepalive2_ack(struct ceph_connection *con, 2393 void *p, void *end) 2394 { 2395 if (con->state != CEPH_CON_S_OPEN) { 2396 con->error_msg = "protocol error, unexpected keepalive2_ack"; 2397 return -EINVAL; 2398 } 2399 2400 ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad); 2401 ceph_decode_timespec64(&con->last_keepalive_ack, p); 2402 2403 dout("%s con %p timestamp %lld.%09ld\n", __func__, con, 2404 con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec); 2405 2406 return 0; 2407 2408 bad: 2409 pr_err("failed to decode keepalive2_ack\n"); 2410 return -EINVAL; 2411 } 2412 2413 static int process_ack(struct ceph_connection *con, void *p, void *end) 2414 { 2415 u64 seq; 2416 2417 if (con->state != CEPH_CON_S_OPEN) { 2418 con->error_msg = "protocol error, unexpected ack"; 2419 return -EINVAL; 2420 } 2421 2422 ceph_decode_64_safe(&p, end, seq, bad); 2423 2424 dout("%s con %p seq %llu\n", __func__, con, seq); 2425 ceph_con_discard_sent(con, seq); 2426 return 0; 2427 2428 bad: 2429 pr_err("failed to decode ack\n"); 2430 return -EINVAL; 2431 } 2432 2433 static int process_control(struct ceph_connection *con, void *p, void *end) 2434 { 2435 int tag = con->v2.in_desc.fd_tag; 2436 int ret; 2437 2438 dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p)); 2439 2440 switch (tag) { 2441 case FRAME_TAG_HELLO: 2442 ret = process_hello(con, p, end); 2443 break; 2444 case FRAME_TAG_AUTH_BAD_METHOD: 2445 ret = process_auth_bad_method(con, p, end); 2446 break; 2447 case FRAME_TAG_AUTH_REPLY_MORE: 2448 ret = process_auth_reply_more(con, p, end); 2449 break; 2450 case FRAME_TAG_AUTH_DONE: 2451 ret = process_auth_done(con, p, end); 2452 break; 2453 case FRAME_TAG_AUTH_SIGNATURE: 2454 ret = process_auth_signature(con, p, end); 2455 break; 2456 case FRAME_TAG_SERVER_IDENT: 2457 ret = process_server_ident(con, p, end); 2458 break; 2459 case FRAME_TAG_IDENT_MISSING_FEATURES: 2460 ret = process_ident_missing_features(con, p, end); 2461 break; 2462 case FRAME_TAG_SESSION_RECONNECT_OK: 2463 ret = process_session_reconnect_ok(con, p, end); 2464 break; 2465 case FRAME_TAG_SESSION_RETRY: 2466 ret = process_session_retry(con, p, end); 2467 break; 2468 case FRAME_TAG_SESSION_RETRY_GLOBAL: 2469 ret = process_session_retry_global(con, p, end); 2470 break; 2471 case FRAME_TAG_SESSION_RESET: 2472 ret = process_session_reset(con, p, end); 2473 break; 2474 case FRAME_TAG_KEEPALIVE2_ACK: 2475 ret = process_keepalive2_ack(con, p, end); 2476 break; 2477 case FRAME_TAG_ACK: 2478 ret = process_ack(con, p, end); 2479 break; 2480 default: 2481 pr_err("bad tag %d\n", tag); 2482 con->error_msg = "protocol error, bad tag"; 2483 return -EINVAL; 2484 } 2485 if (ret) { 2486 dout("%s con %p error %d\n", __func__, con, ret); 2487 return ret; 2488 } 2489 2490 prepare_read_preamble(con); 2491 return 0; 2492 } 2493 2494 /* 2495 * Return: 2496 * 1 - con->in_msg set, read message 2497 * 0 - skip message 2498 * <0 - error 2499 */ 2500 static int process_message_header(struct ceph_connection *con, 2501 void *p, void *end) 2502 { 2503 struct ceph_frame_desc *desc = &con->v2.in_desc; 2504 struct ceph_msg_header2 *hdr2 = p; 2505 struct ceph_msg_header hdr; 2506 int skip; 2507 int ret; 2508 u64 seq; 2509 2510 /* verify seq# */ 2511 seq = le64_to_cpu(hdr2->seq); 2512 if ((s64)seq - (s64)con->in_seq < 1) { 2513 pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n", 2514 ENTITY_NAME(con->peer_name), 2515 ceph_pr_addr(&con->peer_addr), 2516 seq, con->in_seq + 1); 2517 return 0; 2518 } 2519 if ((s64)seq - (s64)con->in_seq > 1) { 2520 pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1); 2521 con->error_msg = "bad message sequence # for incoming message"; 2522 return -EBADE; 2523 } 2524 2525 ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq)); 2526 2527 fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2], 2528 desc->fd_lens[3], &con->peer_name); 2529 ret = ceph_con_in_msg_alloc(con, &hdr, &skip); 2530 if (ret) 2531 return ret; 2532 2533 WARN_ON(!con->in_msg ^ skip); 2534 if (skip) 2535 return 0; 2536 2537 WARN_ON(!con->in_msg); 2538 WARN_ON(con->in_msg->con != con); 2539 return 1; 2540 } 2541 2542 static int process_message(struct ceph_connection *con) 2543 { 2544 ceph_con_process_message(con); 2545 2546 /* 2547 * We could have been closed by ceph_con_close() because 2548 * ceph_con_process_message() temporarily drops con->mutex. 2549 */ 2550 if (con->state != CEPH_CON_S_OPEN) { 2551 dout("%s con %p state changed to %d\n", __func__, con, 2552 con->state); 2553 return -EAGAIN; 2554 } 2555 2556 prepare_read_preamble(con); 2557 return 0; 2558 } 2559 2560 static int __handle_control(struct ceph_connection *con, void *p) 2561 { 2562 void *end = p + con->v2.in_desc.fd_lens[0]; 2563 struct ceph_msg *msg; 2564 int ret; 2565 2566 if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE) 2567 return process_control(con, p, end); 2568 2569 ret = process_message_header(con, p, end); 2570 if (ret < 0) 2571 return ret; 2572 if (ret == 0) { 2573 prepare_skip_message(con); 2574 return 0; 2575 } 2576 2577 msg = con->in_msg; /* set in process_message_header() */ 2578 if (!front_len(msg) && !middle_len(msg)) { 2579 if (!data_len(msg)) 2580 return process_message(con); 2581 2582 prepare_read_data(con); 2583 return 0; 2584 } 2585 2586 reset_in_kvecs(con); 2587 if (front_len(msg)) { 2588 WARN_ON(front_len(msg) > msg->front_alloc_len); 2589 add_in_kvec(con, msg->front.iov_base, front_len(msg)); 2590 msg->front.iov_len = front_len(msg); 2591 2592 if (con_secure(con) && need_padding(front_len(msg))) 2593 add_in_kvec(con, FRONT_PAD(con->v2.in_buf), 2594 padding_len(front_len(msg))); 2595 } else { 2596 msg->front.iov_len = 0; 2597 } 2598 if (middle_len(msg)) { 2599 WARN_ON(middle_len(msg) > msg->middle->alloc_len); 2600 add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg)); 2601 msg->middle->vec.iov_len = middle_len(msg); 2602 2603 if (con_secure(con) && need_padding(middle_len(msg))) 2604 add_in_kvec(con, MIDDLE_PAD(con->v2.in_buf), 2605 padding_len(middle_len(msg))); 2606 } else if (msg->middle) { 2607 msg->middle->vec.iov_len = 0; 2608 } 2609 2610 if (data_len(msg)) { 2611 con->v2.in_state = IN_S_PREPARE_READ_DATA; 2612 } else { 2613 add_in_kvec(con, con->v2.in_buf, 2614 con_secure(con) ? CEPH_EPILOGUE_SECURE_LEN : 2615 CEPH_EPILOGUE_PLAIN_LEN); 2616 con->v2.in_state = IN_S_HANDLE_EPILOGUE; 2617 } 2618 return 0; 2619 } 2620 2621 static int handle_preamble(struct ceph_connection *con) 2622 { 2623 struct ceph_frame_desc *desc = &con->v2.in_desc; 2624 int ret; 2625 2626 if (con_secure(con)) { 2627 ret = decrypt_preamble(con); 2628 if (ret) { 2629 if (ret == -EBADMSG) 2630 con->error_msg = "integrity error, bad preamble auth tag"; 2631 return ret; 2632 } 2633 } 2634 2635 ret = decode_preamble(con->v2.in_buf, desc); 2636 if (ret) { 2637 if (ret == -EBADMSG) 2638 con->error_msg = "integrity error, bad crc"; 2639 else 2640 con->error_msg = "protocol error, bad preamble"; 2641 return ret; 2642 } 2643 2644 dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__, 2645 con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0], 2646 desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]); 2647 2648 if (!con_secure(con)) 2649 return prepare_read_control(con); 2650 2651 if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN) 2652 return prepare_read_control_remainder(con); 2653 2654 return __handle_control(con, CTRL_BODY(con->v2.in_buf)); 2655 } 2656 2657 static int handle_control(struct ceph_connection *con) 2658 { 2659 int ctrl_len = con->v2.in_desc.fd_lens[0]; 2660 void *buf; 2661 int ret; 2662 2663 WARN_ON(con_secure(con)); 2664 2665 ret = verify_control_crc(con); 2666 if (ret) { 2667 con->error_msg = "integrity error, bad crc"; 2668 return ret; 2669 } 2670 2671 if (con->state == CEPH_CON_S_V2_AUTH) { 2672 buf = alloc_conn_buf(con, ctrl_len); 2673 if (!buf) 2674 return -ENOMEM; 2675 2676 memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len); 2677 return __handle_control(con, buf); 2678 } 2679 2680 return __handle_control(con, con->v2.in_kvecs[0].iov_base); 2681 } 2682 2683 static int handle_control_remainder(struct ceph_connection *con) 2684 { 2685 int ret; 2686 2687 WARN_ON(!con_secure(con)); 2688 2689 ret = decrypt_control_remainder(con); 2690 if (ret) { 2691 if (ret == -EBADMSG) 2692 con->error_msg = "integrity error, bad control remainder auth tag"; 2693 return ret; 2694 } 2695 2696 return __handle_control(con, con->v2.in_kvecs[0].iov_base - 2697 CEPH_PREAMBLE_INLINE_LEN); 2698 } 2699 2700 static int handle_epilogue(struct ceph_connection *con) 2701 { 2702 u32 front_crc, middle_crc, data_crc; 2703 int ret; 2704 2705 if (con_secure(con)) { 2706 ret = decrypt_message(con); 2707 if (ret) { 2708 if (ret == -EBADMSG) 2709 con->error_msg = "integrity error, bad epilogue auth tag"; 2710 return ret; 2711 } 2712 2713 /* just late_status */ 2714 ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL); 2715 if (ret) { 2716 con->error_msg = "protocol error, bad epilogue"; 2717 return ret; 2718 } 2719 } else { 2720 ret = decode_epilogue(con->v2.in_buf, &front_crc, 2721 &middle_crc, &data_crc); 2722 if (ret) { 2723 con->error_msg = "protocol error, bad epilogue"; 2724 return ret; 2725 } 2726 2727 ret = verify_epilogue_crcs(con, front_crc, middle_crc, 2728 data_crc); 2729 if (ret) { 2730 con->error_msg = "integrity error, bad crc"; 2731 return ret; 2732 } 2733 } 2734 2735 return process_message(con); 2736 } 2737 2738 static void finish_skip(struct ceph_connection *con) 2739 { 2740 dout("%s con %p\n", __func__, con); 2741 2742 if (con_secure(con)) 2743 gcm_inc_nonce(&con->v2.in_gcm_nonce); 2744 2745 __finish_skip(con); 2746 } 2747 2748 static int populate_in_iter(struct ceph_connection *con) 2749 { 2750 int ret; 2751 2752 dout("%s con %p state %d in_state %d\n", __func__, con, con->state, 2753 con->v2.in_state); 2754 WARN_ON(iov_iter_count(&con->v2.in_iter)); 2755 2756 if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) { 2757 ret = process_banner_prefix(con); 2758 } else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) { 2759 ret = process_banner_payload(con); 2760 } else if ((con->state >= CEPH_CON_S_V2_HELLO && 2761 con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) || 2762 con->state == CEPH_CON_S_OPEN) { 2763 switch (con->v2.in_state) { 2764 case IN_S_HANDLE_PREAMBLE: 2765 ret = handle_preamble(con); 2766 break; 2767 case IN_S_HANDLE_CONTROL: 2768 ret = handle_control(con); 2769 break; 2770 case IN_S_HANDLE_CONTROL_REMAINDER: 2771 ret = handle_control_remainder(con); 2772 break; 2773 case IN_S_PREPARE_READ_DATA: 2774 prepare_read_data(con); 2775 ret = 0; 2776 break; 2777 case IN_S_PREPARE_READ_DATA_CONT: 2778 prepare_read_data_cont(con); 2779 ret = 0; 2780 break; 2781 case IN_S_HANDLE_EPILOGUE: 2782 ret = handle_epilogue(con); 2783 break; 2784 case IN_S_FINISH_SKIP: 2785 finish_skip(con); 2786 ret = 0; 2787 break; 2788 default: 2789 WARN(1, "bad in_state %d", con->v2.in_state); 2790 return -EINVAL; 2791 } 2792 } else { 2793 WARN(1, "bad state %d", con->state); 2794 return -EINVAL; 2795 } 2796 if (ret) { 2797 dout("%s con %p error %d\n", __func__, con, ret); 2798 return ret; 2799 } 2800 2801 if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) 2802 return -ENODATA; 2803 dout("%s con %p populated %zu\n", __func__, con, 2804 iov_iter_count(&con->v2.in_iter)); 2805 return 1; 2806 } 2807 2808 int ceph_con_v2_try_read(struct ceph_connection *con) 2809 { 2810 int ret; 2811 2812 dout("%s con %p state %d need %zu\n", __func__, con, con->state, 2813 iov_iter_count(&con->v2.in_iter)); 2814 2815 if (con->state == CEPH_CON_S_PREOPEN) 2816 return 0; 2817 2818 /* 2819 * We should always have something pending here. If not, 2820 * avoid calling populate_in_iter() as if we read something 2821 * (ceph_tcp_recv() would immediately return 1). 2822 */ 2823 if (WARN_ON(!iov_iter_count(&con->v2.in_iter))) 2824 return -ENODATA; 2825 2826 for (;;) { 2827 ret = ceph_tcp_recv(con); 2828 if (ret <= 0) 2829 return ret; 2830 2831 ret = populate_in_iter(con); 2832 if (ret <= 0) { 2833 if (ret && ret != -EAGAIN && !con->error_msg) 2834 con->error_msg = "read processing error"; 2835 return ret; 2836 } 2837 } 2838 } 2839 2840 static void queue_data(struct ceph_connection *con) 2841 { 2842 struct bio_vec bv; 2843 2844 con->v2.out_epil.data_crc = -1; 2845 ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg, 2846 data_len(con->out_msg)); 2847 2848 get_bvec_at(&con->v2.out_cursor, &bv); 2849 set_out_bvec(con, &bv, true); 2850 con->v2.out_state = OUT_S_QUEUE_DATA_CONT; 2851 } 2852 2853 static void queue_data_cont(struct ceph_connection *con) 2854 { 2855 struct bio_vec bv; 2856 2857 con->v2.out_epil.data_crc = ceph_crc32c_page( 2858 con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, 2859 con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len); 2860 2861 ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len); 2862 if (con->v2.out_cursor.total_resid) { 2863 get_bvec_at(&con->v2.out_cursor, &bv); 2864 set_out_bvec(con, &bv, true); 2865 WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT); 2866 return; 2867 } 2868 2869 /* 2870 * We've written all data. Queue epilogue. Once it's written, 2871 * we are done. 2872 */ 2873 reset_out_kvecs(con); 2874 prepare_epilogue_plain(con, false); 2875 con->v2.out_state = OUT_S_FINISH_MESSAGE; 2876 } 2877 2878 static void queue_enc_page(struct ceph_connection *con) 2879 { 2880 struct bio_vec bv; 2881 2882 dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i, 2883 con->v2.out_enc_resid); 2884 WARN_ON(!con->v2.out_enc_resid); 2885 2886 bv.bv_page = con->v2.out_enc_pages[con->v2.out_enc_i]; 2887 bv.bv_offset = 0; 2888 bv.bv_len = min(con->v2.out_enc_resid, (int)PAGE_SIZE); 2889 2890 set_out_bvec(con, &bv, false); 2891 con->v2.out_enc_i++; 2892 con->v2.out_enc_resid -= bv.bv_len; 2893 2894 if (con->v2.out_enc_resid) { 2895 WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE); 2896 return; 2897 } 2898 2899 /* 2900 * We've queued the last piece of ciphertext (ending with 2901 * epilogue) + auth tag. Once it's written, we are done. 2902 */ 2903 WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt); 2904 con->v2.out_state = OUT_S_FINISH_MESSAGE; 2905 } 2906 2907 static void queue_zeros(struct ceph_connection *con) 2908 { 2909 dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero); 2910 2911 if (con->v2.out_zero) { 2912 set_out_bvec_zero(con); 2913 con->v2.out_zero -= con->v2.out_bvec.bv_len; 2914 con->v2.out_state = OUT_S_QUEUE_ZEROS; 2915 return; 2916 } 2917 2918 /* 2919 * We've zero-filled everything up to epilogue. Queue epilogue 2920 * with late_status set to ABORTED and crcs adjusted for zeros. 2921 * Once it's written, we are done patching up for the revoke. 2922 */ 2923 reset_out_kvecs(con); 2924 prepare_epilogue_plain(con, true); 2925 con->v2.out_state = OUT_S_FINISH_MESSAGE; 2926 } 2927 2928 static void finish_message(struct ceph_connection *con) 2929 { 2930 dout("%s con %p msg %p\n", __func__, con, con->out_msg); 2931 2932 /* we end up here both plain and secure modes */ 2933 if (con->v2.out_enc_pages) { 2934 WARN_ON(!con->v2.out_enc_page_cnt); 2935 ceph_release_page_vector(con->v2.out_enc_pages, 2936 con->v2.out_enc_page_cnt); 2937 con->v2.out_enc_pages = NULL; 2938 con->v2.out_enc_page_cnt = 0; 2939 } 2940 /* message may have been revoked */ 2941 if (con->out_msg) { 2942 ceph_msg_put(con->out_msg); 2943 con->out_msg = NULL; 2944 } 2945 2946 con->v2.out_state = OUT_S_GET_NEXT; 2947 } 2948 2949 static int populate_out_iter(struct ceph_connection *con) 2950 { 2951 int ret; 2952 2953 dout("%s con %p state %d out_state %d\n", __func__, con, con->state, 2954 con->v2.out_state); 2955 WARN_ON(iov_iter_count(&con->v2.out_iter)); 2956 2957 if (con->state != CEPH_CON_S_OPEN) { 2958 WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX || 2959 con->state > CEPH_CON_S_V2_SESSION_RECONNECT); 2960 goto nothing_pending; 2961 } 2962 2963 switch (con->v2.out_state) { 2964 case OUT_S_QUEUE_DATA: 2965 WARN_ON(!con->out_msg); 2966 queue_data(con); 2967 goto populated; 2968 case OUT_S_QUEUE_DATA_CONT: 2969 WARN_ON(!con->out_msg); 2970 queue_data_cont(con); 2971 goto populated; 2972 case OUT_S_QUEUE_ENC_PAGE: 2973 queue_enc_page(con); 2974 goto populated; 2975 case OUT_S_QUEUE_ZEROS: 2976 WARN_ON(con->out_msg); /* revoked */ 2977 queue_zeros(con); 2978 goto populated; 2979 case OUT_S_FINISH_MESSAGE: 2980 finish_message(con); 2981 break; 2982 case OUT_S_GET_NEXT: 2983 break; 2984 default: 2985 WARN(1, "bad out_state %d", con->v2.out_state); 2986 return -EINVAL; 2987 } 2988 2989 WARN_ON(con->v2.out_state != OUT_S_GET_NEXT); 2990 if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) { 2991 ret = prepare_keepalive2(con); 2992 if (ret) { 2993 pr_err("prepare_keepalive2 failed: %d\n", ret); 2994 return ret; 2995 } 2996 } else if (!list_empty(&con->out_queue)) { 2997 ceph_con_get_out_msg(con); 2998 ret = prepare_message(con); 2999 if (ret) { 3000 pr_err("prepare_message failed: %d\n", ret); 3001 return ret; 3002 } 3003 } else if (con->in_seq > con->in_seq_acked) { 3004 ret = prepare_ack(con); 3005 if (ret) { 3006 pr_err("prepare_ack failed: %d\n", ret); 3007 return ret; 3008 } 3009 } else { 3010 goto nothing_pending; 3011 } 3012 3013 populated: 3014 if (WARN_ON(!iov_iter_count(&con->v2.out_iter))) 3015 return -ENODATA; 3016 dout("%s con %p populated %zu\n", __func__, con, 3017 iov_iter_count(&con->v2.out_iter)); 3018 return 1; 3019 3020 nothing_pending: 3021 WARN_ON(iov_iter_count(&con->v2.out_iter)); 3022 dout("%s con %p nothing pending\n", __func__, con); 3023 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 3024 return 0; 3025 } 3026 3027 int ceph_con_v2_try_write(struct ceph_connection *con) 3028 { 3029 int ret; 3030 3031 dout("%s con %p state %d have %zu\n", __func__, con, con->state, 3032 iov_iter_count(&con->v2.out_iter)); 3033 3034 /* open the socket first? */ 3035 if (con->state == CEPH_CON_S_PREOPEN) { 3036 WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2); 3037 3038 /* 3039 * Always bump global_seq. Bump connect_seq only if 3040 * there is a session (i.e. we are reconnecting and will 3041 * send session_reconnect instead of client_ident). 3042 */ 3043 con->v2.global_seq = ceph_get_global_seq(con->msgr, 0); 3044 if (con->v2.server_cookie) 3045 con->v2.connect_seq++; 3046 3047 ret = prepare_read_banner_prefix(con); 3048 if (ret) { 3049 pr_err("prepare_read_banner_prefix failed: %d\n", ret); 3050 con->error_msg = "connect error"; 3051 return ret; 3052 } 3053 3054 reset_out_kvecs(con); 3055 ret = prepare_banner(con); 3056 if (ret) { 3057 pr_err("prepare_banner failed: %d\n", ret); 3058 con->error_msg = "connect error"; 3059 return ret; 3060 } 3061 3062 ret = ceph_tcp_connect(con); 3063 if (ret) { 3064 pr_err("ceph_tcp_connect failed: %d\n", ret); 3065 con->error_msg = "connect error"; 3066 return ret; 3067 } 3068 } 3069 3070 if (!iov_iter_count(&con->v2.out_iter)) { 3071 ret = populate_out_iter(con); 3072 if (ret <= 0) { 3073 if (ret && ret != -EAGAIN && !con->error_msg) 3074 con->error_msg = "write processing error"; 3075 return ret; 3076 } 3077 } 3078 3079 tcp_sock_set_cork(con->sock->sk, true); 3080 for (;;) { 3081 ret = ceph_tcp_send(con); 3082 if (ret <= 0) 3083 break; 3084 3085 ret = populate_out_iter(con); 3086 if (ret <= 0) { 3087 if (ret && ret != -EAGAIN && !con->error_msg) 3088 con->error_msg = "write processing error"; 3089 break; 3090 } 3091 } 3092 3093 tcp_sock_set_cork(con->sock->sk, false); 3094 return ret; 3095 } 3096 3097 static u32 crc32c_zeros(u32 crc, int zero_len) 3098 { 3099 int len; 3100 3101 while (zero_len) { 3102 len = min(zero_len, (int)PAGE_SIZE); 3103 crc = crc32c(crc, page_address(ceph_zero_page), len); 3104 zero_len -= len; 3105 } 3106 3107 return crc; 3108 } 3109 3110 static void prepare_zero_front(struct ceph_connection *con, int resid) 3111 { 3112 int sent; 3113 3114 WARN_ON(!resid || resid > front_len(con->out_msg)); 3115 sent = front_len(con->out_msg) - resid; 3116 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3117 3118 if (sent) { 3119 con->v2.out_epil.front_crc = 3120 crc32c(-1, con->out_msg->front.iov_base, sent); 3121 con->v2.out_epil.front_crc = 3122 crc32c_zeros(con->v2.out_epil.front_crc, resid); 3123 } else { 3124 con->v2.out_epil.front_crc = crc32c_zeros(-1, resid); 3125 } 3126 3127 con->v2.out_iter.count -= resid; 3128 out_zero_add(con, resid); 3129 } 3130 3131 static void prepare_zero_middle(struct ceph_connection *con, int resid) 3132 { 3133 int sent; 3134 3135 WARN_ON(!resid || resid > middle_len(con->out_msg)); 3136 sent = middle_len(con->out_msg) - resid; 3137 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3138 3139 if (sent) { 3140 con->v2.out_epil.middle_crc = 3141 crc32c(-1, con->out_msg->middle->vec.iov_base, sent); 3142 con->v2.out_epil.middle_crc = 3143 crc32c_zeros(con->v2.out_epil.middle_crc, resid); 3144 } else { 3145 con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid); 3146 } 3147 3148 con->v2.out_iter.count -= resid; 3149 out_zero_add(con, resid); 3150 } 3151 3152 static void prepare_zero_data(struct ceph_connection *con) 3153 { 3154 dout("%s con %p\n", __func__, con); 3155 con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg)); 3156 out_zero_add(con, data_len(con->out_msg)); 3157 } 3158 3159 static void revoke_at_queue_data(struct ceph_connection *con) 3160 { 3161 int boundary; 3162 int resid; 3163 3164 WARN_ON(!data_len(con->out_msg)); 3165 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 3166 resid = iov_iter_count(&con->v2.out_iter); 3167 3168 boundary = front_len(con->out_msg) + middle_len(con->out_msg); 3169 if (resid > boundary) { 3170 resid -= boundary; 3171 WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); 3172 dout("%s con %p was sending head\n", __func__, con); 3173 if (front_len(con->out_msg)) 3174 prepare_zero_front(con, front_len(con->out_msg)); 3175 if (middle_len(con->out_msg)) 3176 prepare_zero_middle(con, middle_len(con->out_msg)); 3177 prepare_zero_data(con); 3178 WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); 3179 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3180 return; 3181 } 3182 3183 boundary = middle_len(con->out_msg); 3184 if (resid > boundary) { 3185 resid -= boundary; 3186 dout("%s con %p was sending front\n", __func__, con); 3187 prepare_zero_front(con, resid); 3188 if (middle_len(con->out_msg)) 3189 prepare_zero_middle(con, middle_len(con->out_msg)); 3190 prepare_zero_data(con); 3191 queue_zeros(con); 3192 return; 3193 } 3194 3195 WARN_ON(!resid); 3196 dout("%s con %p was sending middle\n", __func__, con); 3197 prepare_zero_middle(con, resid); 3198 prepare_zero_data(con); 3199 queue_zeros(con); 3200 } 3201 3202 static void revoke_at_queue_data_cont(struct ceph_connection *con) 3203 { 3204 int sent, resid; /* current piece of data */ 3205 3206 WARN_ON(!data_len(con->out_msg)); 3207 WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter)); 3208 resid = iov_iter_count(&con->v2.out_iter); 3209 WARN_ON(!resid || resid > con->v2.out_bvec.bv_len); 3210 sent = con->v2.out_bvec.bv_len - resid; 3211 dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid); 3212 3213 if (sent) { 3214 con->v2.out_epil.data_crc = ceph_crc32c_page( 3215 con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page, 3216 con->v2.out_bvec.bv_offset, sent); 3217 ceph_msg_data_advance(&con->v2.out_cursor, sent); 3218 } 3219 WARN_ON(resid > con->v2.out_cursor.total_resid); 3220 con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc, 3221 con->v2.out_cursor.total_resid); 3222 3223 con->v2.out_iter.count -= resid; 3224 out_zero_add(con, con->v2.out_cursor.total_resid); 3225 queue_zeros(con); 3226 } 3227 3228 static void revoke_at_finish_message(struct ceph_connection *con) 3229 { 3230 int boundary; 3231 int resid; 3232 3233 WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter)); 3234 resid = iov_iter_count(&con->v2.out_iter); 3235 3236 if (!front_len(con->out_msg) && !middle_len(con->out_msg) && 3237 !data_len(con->out_msg)) { 3238 WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN); 3239 dout("%s con %p was sending head (empty message) - noop\n", 3240 __func__, con); 3241 return; 3242 } 3243 3244 boundary = front_len(con->out_msg) + middle_len(con->out_msg) + 3245 CEPH_EPILOGUE_PLAIN_LEN; 3246 if (resid > boundary) { 3247 resid -= boundary; 3248 WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN); 3249 dout("%s con %p was sending head\n", __func__, con); 3250 if (front_len(con->out_msg)) 3251 prepare_zero_front(con, front_len(con->out_msg)); 3252 if (middle_len(con->out_msg)) 3253 prepare_zero_middle(con, middle_len(con->out_msg)); 3254 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3255 WARN_ON(iov_iter_count(&con->v2.out_iter) != resid); 3256 con->v2.out_state = OUT_S_QUEUE_ZEROS; 3257 return; 3258 } 3259 3260 boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN; 3261 if (resid > boundary) { 3262 resid -= boundary; 3263 dout("%s con %p was sending front\n", __func__, con); 3264 prepare_zero_front(con, resid); 3265 if (middle_len(con->out_msg)) 3266 prepare_zero_middle(con, middle_len(con->out_msg)); 3267 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3268 queue_zeros(con); 3269 return; 3270 } 3271 3272 boundary = CEPH_EPILOGUE_PLAIN_LEN; 3273 if (resid > boundary) { 3274 resid -= boundary; 3275 dout("%s con %p was sending middle\n", __func__, con); 3276 prepare_zero_middle(con, resid); 3277 con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN; 3278 queue_zeros(con); 3279 return; 3280 } 3281 3282 WARN_ON(!resid); 3283 dout("%s con %p was sending epilogue - noop\n", __func__, con); 3284 } 3285 3286 void ceph_con_v2_revoke(struct ceph_connection *con) 3287 { 3288 WARN_ON(con->v2.out_zero); 3289 3290 if (con_secure(con)) { 3291 WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE && 3292 con->v2.out_state != OUT_S_FINISH_MESSAGE); 3293 dout("%s con %p secure - noop\n", __func__, con); 3294 return; 3295 } 3296 3297 switch (con->v2.out_state) { 3298 case OUT_S_QUEUE_DATA: 3299 revoke_at_queue_data(con); 3300 break; 3301 case OUT_S_QUEUE_DATA_CONT: 3302 revoke_at_queue_data_cont(con); 3303 break; 3304 case OUT_S_FINISH_MESSAGE: 3305 revoke_at_finish_message(con); 3306 break; 3307 default: 3308 WARN(1, "bad out_state %d", con->v2.out_state); 3309 break; 3310 } 3311 } 3312 3313 static void revoke_at_prepare_read_data(struct ceph_connection *con) 3314 { 3315 int remaining; /* data + [data padding] + epilogue */ 3316 int resid; 3317 3318 WARN_ON(!data_len(con->in_msg)); 3319 WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); 3320 resid = iov_iter_count(&con->v2.in_iter); 3321 WARN_ON(!resid); 3322 3323 if (con_secure(con)) 3324 remaining = padded_len(data_len(con->in_msg)) + 3325 CEPH_EPILOGUE_SECURE_LEN; 3326 else 3327 remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN; 3328 3329 dout("%s con %p resid %d remaining %d\n", __func__, con, resid, 3330 remaining); 3331 con->v2.in_iter.count -= resid; 3332 set_in_skip(con, resid + remaining); 3333 con->v2.in_state = IN_S_FINISH_SKIP; 3334 } 3335 3336 static void revoke_at_prepare_read_data_cont(struct ceph_connection *con) 3337 { 3338 int recved, resid; /* current piece of data */ 3339 int remaining; /* [data padding] + epilogue */ 3340 3341 WARN_ON(!data_len(con->in_msg)); 3342 WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter)); 3343 resid = iov_iter_count(&con->v2.in_iter); 3344 WARN_ON(!resid || resid > con->v2.in_bvec.bv_len); 3345 recved = con->v2.in_bvec.bv_len - resid; 3346 dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid); 3347 3348 if (recved) 3349 ceph_msg_data_advance(&con->v2.in_cursor, recved); 3350 WARN_ON(resid > con->v2.in_cursor.total_resid); 3351 3352 if (con_secure(con)) 3353 remaining = padding_len(data_len(con->in_msg)) + 3354 CEPH_EPILOGUE_SECURE_LEN; 3355 else 3356 remaining = CEPH_EPILOGUE_PLAIN_LEN; 3357 3358 dout("%s con %p total_resid %zu remaining %d\n", __func__, con, 3359 con->v2.in_cursor.total_resid, remaining); 3360 con->v2.in_iter.count -= resid; 3361 set_in_skip(con, con->v2.in_cursor.total_resid + remaining); 3362 con->v2.in_state = IN_S_FINISH_SKIP; 3363 } 3364 3365 static void revoke_at_handle_epilogue(struct ceph_connection *con) 3366 { 3367 int resid; 3368 3369 WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter)); 3370 resid = iov_iter_count(&con->v2.in_iter); 3371 WARN_ON(!resid); 3372 3373 dout("%s con %p resid %d\n", __func__, con, resid); 3374 con->v2.in_iter.count -= resid; 3375 set_in_skip(con, resid); 3376 con->v2.in_state = IN_S_FINISH_SKIP; 3377 } 3378 3379 void ceph_con_v2_revoke_incoming(struct ceph_connection *con) 3380 { 3381 switch (con->v2.in_state) { 3382 case IN_S_PREPARE_READ_DATA: 3383 revoke_at_prepare_read_data(con); 3384 break; 3385 case IN_S_PREPARE_READ_DATA_CONT: 3386 revoke_at_prepare_read_data_cont(con); 3387 break; 3388 case IN_S_HANDLE_EPILOGUE: 3389 revoke_at_handle_epilogue(con); 3390 break; 3391 default: 3392 WARN(1, "bad in_state %d", con->v2.in_state); 3393 break; 3394 } 3395 } 3396 3397 bool ceph_con_v2_opened(struct ceph_connection *con) 3398 { 3399 return con->v2.peer_global_seq; 3400 } 3401 3402 void ceph_con_v2_reset_session(struct ceph_connection *con) 3403 { 3404 con->v2.client_cookie = 0; 3405 con->v2.server_cookie = 0; 3406 con->v2.global_seq = 0; 3407 con->v2.connect_seq = 0; 3408 con->v2.peer_global_seq = 0; 3409 } 3410 3411 void ceph_con_v2_reset_protocol(struct ceph_connection *con) 3412 { 3413 iov_iter_truncate(&con->v2.in_iter, 0); 3414 iov_iter_truncate(&con->v2.out_iter, 0); 3415 con->v2.out_zero = 0; 3416 3417 clear_in_sign_kvecs(con); 3418 clear_out_sign_kvecs(con); 3419 free_conn_bufs(con); 3420 3421 if (con->v2.out_enc_pages) { 3422 WARN_ON(!con->v2.out_enc_page_cnt); 3423 ceph_release_page_vector(con->v2.out_enc_pages, 3424 con->v2.out_enc_page_cnt); 3425 con->v2.out_enc_pages = NULL; 3426 con->v2.out_enc_page_cnt = 0; 3427 } 3428 3429 con->v2.con_mode = CEPH_CON_MODE_UNKNOWN; 3430 3431 if (con->v2.hmac_tfm) { 3432 crypto_free_shash(con->v2.hmac_tfm); 3433 con->v2.hmac_tfm = NULL; 3434 } 3435 if (con->v2.gcm_req) { 3436 aead_request_free(con->v2.gcm_req); 3437 con->v2.gcm_req = NULL; 3438 } 3439 if (con->v2.gcm_tfm) { 3440 crypto_free_aead(con->v2.gcm_tfm); 3441 con->v2.gcm_tfm = NULL; 3442 } 3443 } 3444