xref: /openbmc/linux/net/ceph/messenger.c (revision fff74a93)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	kunmap(zero_page);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 }
285 
286 int ceph_msgr_init(void)
287 {
288 	BUG_ON(zero_page != NULL);
289 	zero_page = ZERO_PAGE(0);
290 	page_cache_get(zero_page);
291 
292 	if (ceph_msgr_slab_init())
293 		return -ENOMEM;
294 
295 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
296 	if (ceph_msgr_wq)
297 		return 0;
298 
299 	pr_err("msgr_init failed to create workqueue\n");
300 	_ceph_msgr_exit();
301 
302 	return -ENOMEM;
303 }
304 EXPORT_SYMBOL(ceph_msgr_init);
305 
306 void ceph_msgr_exit(void)
307 {
308 	BUG_ON(ceph_msgr_wq == NULL);
309 
310 	_ceph_msgr_exit();
311 }
312 EXPORT_SYMBOL(ceph_msgr_exit);
313 
314 void ceph_msgr_flush(void)
315 {
316 	flush_workqueue(ceph_msgr_wq);
317 }
318 EXPORT_SYMBOL(ceph_msgr_flush);
319 
320 /* Connection socket state transition functions */
321 
322 static void con_sock_state_init(struct ceph_connection *con)
323 {
324 	int old_state;
325 
326 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
327 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
328 		printk("%s: unexpected old state %d\n", __func__, old_state);
329 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
330 	     CON_SOCK_STATE_CLOSED);
331 }
332 
333 static void con_sock_state_connecting(struct ceph_connection *con)
334 {
335 	int old_state;
336 
337 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
338 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
339 		printk("%s: unexpected old state %d\n", __func__, old_state);
340 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
341 	     CON_SOCK_STATE_CONNECTING);
342 }
343 
344 static void con_sock_state_connected(struct ceph_connection *con)
345 {
346 	int old_state;
347 
348 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
349 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
350 		printk("%s: unexpected old state %d\n", __func__, old_state);
351 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
352 	     CON_SOCK_STATE_CONNECTED);
353 }
354 
355 static void con_sock_state_closing(struct ceph_connection *con)
356 {
357 	int old_state;
358 
359 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
360 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
361 			old_state != CON_SOCK_STATE_CONNECTED &&
362 			old_state != CON_SOCK_STATE_CLOSING))
363 		printk("%s: unexpected old state %d\n", __func__, old_state);
364 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
365 	     CON_SOCK_STATE_CLOSING);
366 }
367 
368 static void con_sock_state_closed(struct ceph_connection *con)
369 {
370 	int old_state;
371 
372 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
373 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
374 		    old_state != CON_SOCK_STATE_CLOSING &&
375 		    old_state != CON_SOCK_STATE_CONNECTING &&
376 		    old_state != CON_SOCK_STATE_CLOSED))
377 		printk("%s: unexpected old state %d\n", __func__, old_state);
378 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
379 	     CON_SOCK_STATE_CLOSED);
380 }
381 
382 /*
383  * socket callback functions
384  */
385 
386 /* data available on socket, or listen socket received a connect */
387 static void ceph_sock_data_ready(struct sock *sk)
388 {
389 	struct ceph_connection *con = sk->sk_user_data;
390 	if (atomic_read(&con->msgr->stopping)) {
391 		return;
392 	}
393 
394 	if (sk->sk_state != TCP_CLOSE_WAIT) {
395 		dout("%s on %p state = %lu, queueing work\n", __func__,
396 		     con, con->state);
397 		queue_con(con);
398 	}
399 }
400 
401 /* socket has buffer space for writing */
402 static void ceph_sock_write_space(struct sock *sk)
403 {
404 	struct ceph_connection *con = sk->sk_user_data;
405 
406 	/* only queue to workqueue if there is data we want to write,
407 	 * and there is sufficient space in the socket buffer to accept
408 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
409 	 * doesn't get called again until try_write() fills the socket
410 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
411 	 * and net/core/stream.c:sk_stream_write_space().
412 	 */
413 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
414 		if (sk_stream_is_writeable(sk)) {
415 			dout("%s %p queueing write work\n", __func__, con);
416 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
417 			queue_con(con);
418 		}
419 	} else {
420 		dout("%s %p nothing to write\n", __func__, con);
421 	}
422 }
423 
424 /* socket's state has changed */
425 static void ceph_sock_state_change(struct sock *sk)
426 {
427 	struct ceph_connection *con = sk->sk_user_data;
428 
429 	dout("%s %p state = %lu sk_state = %u\n", __func__,
430 	     con, con->state, sk->sk_state);
431 
432 	switch (sk->sk_state) {
433 	case TCP_CLOSE:
434 		dout("%s TCP_CLOSE\n", __func__);
435 	case TCP_CLOSE_WAIT:
436 		dout("%s TCP_CLOSE_WAIT\n", __func__);
437 		con_sock_state_closing(con);
438 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
439 		queue_con(con);
440 		break;
441 	case TCP_ESTABLISHED:
442 		dout("%s TCP_ESTABLISHED\n", __func__);
443 		con_sock_state_connected(con);
444 		queue_con(con);
445 		break;
446 	default:	/* Everything else is uninteresting */
447 		break;
448 	}
449 }
450 
451 /*
452  * set up socket callbacks
453  */
454 static void set_sock_callbacks(struct socket *sock,
455 			       struct ceph_connection *con)
456 {
457 	struct sock *sk = sock->sk;
458 	sk->sk_user_data = con;
459 	sk->sk_data_ready = ceph_sock_data_ready;
460 	sk->sk_write_space = ceph_sock_write_space;
461 	sk->sk_state_change = ceph_sock_state_change;
462 }
463 
464 
465 /*
466  * socket helpers
467  */
468 
469 /*
470  * initiate connection to a remote socket.
471  */
472 static int ceph_tcp_connect(struct ceph_connection *con)
473 {
474 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
475 	struct socket *sock;
476 	int ret;
477 
478 	BUG_ON(con->sock);
479 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
480 			       IPPROTO_TCP, &sock);
481 	if (ret)
482 		return ret;
483 	sock->sk->sk_allocation = GFP_NOFS;
484 
485 #ifdef CONFIG_LOCKDEP
486 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
487 #endif
488 
489 	set_sock_callbacks(sock, con);
490 
491 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
492 
493 	con_sock_state_connecting(con);
494 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
495 				 O_NONBLOCK);
496 	if (ret == -EINPROGRESS) {
497 		dout("connect %s EINPROGRESS sk_state = %u\n",
498 		     ceph_pr_addr(&con->peer_addr.in_addr),
499 		     sock->sk->sk_state);
500 	} else if (ret < 0) {
501 		pr_err("connect %s error %d\n",
502 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
503 		sock_release(sock);
504 		con->error_msg = "connect error";
505 
506 		return ret;
507 	}
508 	con->sock = sock;
509 	return 0;
510 }
511 
512 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
513 {
514 	struct kvec iov = {buf, len};
515 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
516 	int r;
517 
518 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
519 	if (r == -EAGAIN)
520 		r = 0;
521 	return r;
522 }
523 
524 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
525 		     int page_offset, size_t length)
526 {
527 	void *kaddr;
528 	int ret;
529 
530 	BUG_ON(page_offset + length > PAGE_SIZE);
531 
532 	kaddr = kmap(page);
533 	BUG_ON(!kaddr);
534 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
535 	kunmap(page);
536 
537 	return ret;
538 }
539 
540 /*
541  * write something.  @more is true if caller will be sending more data
542  * shortly.
543  */
544 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
545 		     size_t kvlen, size_t len, int more)
546 {
547 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
548 	int r;
549 
550 	if (more)
551 		msg.msg_flags |= MSG_MORE;
552 	else
553 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
554 
555 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
556 	if (r == -EAGAIN)
557 		r = 0;
558 	return r;
559 }
560 
561 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
562 		     int offset, size_t size, bool more)
563 {
564 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
565 	int ret;
566 
567 	ret = kernel_sendpage(sock, page, offset, size, flags);
568 	if (ret == -EAGAIN)
569 		ret = 0;
570 
571 	return ret;
572 }
573 
574 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
575 		     int offset, size_t size, bool more)
576 {
577 	int ret;
578 	struct kvec iov;
579 
580 	/* sendpage cannot properly handle pages with page_count == 0,
581 	 * we need to fallback to sendmsg if that's the case */
582 	if (page_count(page) >= 1)
583 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
584 
585 	iov.iov_base = kmap(page) + offset;
586 	iov.iov_len = size;
587 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
588 	kunmap(page);
589 
590 	return ret;
591 }
592 
593 /*
594  * Shutdown/close the socket for the given connection.
595  */
596 static int con_close_socket(struct ceph_connection *con)
597 {
598 	int rc = 0;
599 
600 	dout("con_close_socket on %p sock %p\n", con, con->sock);
601 	if (con->sock) {
602 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
603 		sock_release(con->sock);
604 		con->sock = NULL;
605 	}
606 
607 	/*
608 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
609 	 * independent of the connection mutex, and we could have
610 	 * received a socket close event before we had the chance to
611 	 * shut the socket down.
612 	 */
613 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
614 
615 	con_sock_state_closed(con);
616 	return rc;
617 }
618 
619 /*
620  * Reset a connection.  Discard all incoming and outgoing messages
621  * and clear *_seq state.
622  */
623 static void ceph_msg_remove(struct ceph_msg *msg)
624 {
625 	list_del_init(&msg->list_head);
626 	BUG_ON(msg->con == NULL);
627 	msg->con->ops->put(msg->con);
628 	msg->con = NULL;
629 
630 	ceph_msg_put(msg);
631 }
632 static void ceph_msg_remove_list(struct list_head *head)
633 {
634 	while (!list_empty(head)) {
635 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
636 							list_head);
637 		ceph_msg_remove(msg);
638 	}
639 }
640 
641 static void reset_connection(struct ceph_connection *con)
642 {
643 	/* reset connection, out_queue, msg_ and connect_seq */
644 	/* discard existing out_queue and msg_seq */
645 	dout("reset_connection %p\n", con);
646 	ceph_msg_remove_list(&con->out_queue);
647 	ceph_msg_remove_list(&con->out_sent);
648 
649 	if (con->in_msg) {
650 		BUG_ON(con->in_msg->con != con);
651 		con->in_msg->con = NULL;
652 		ceph_msg_put(con->in_msg);
653 		con->in_msg = NULL;
654 		con->ops->put(con);
655 	}
656 
657 	con->connect_seq = 0;
658 	con->out_seq = 0;
659 	if (con->out_msg) {
660 		ceph_msg_put(con->out_msg);
661 		con->out_msg = NULL;
662 	}
663 	con->in_seq = 0;
664 	con->in_seq_acked = 0;
665 }
666 
667 /*
668  * mark a peer down.  drop any open connections.
669  */
670 void ceph_con_close(struct ceph_connection *con)
671 {
672 	mutex_lock(&con->mutex);
673 	dout("con_close %p peer %s\n", con,
674 	     ceph_pr_addr(&con->peer_addr.in_addr));
675 	con->state = CON_STATE_CLOSED;
676 
677 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
678 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
679 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
680 	con_flag_clear(con, CON_FLAG_BACKOFF);
681 
682 	reset_connection(con);
683 	con->peer_global_seq = 0;
684 	cancel_con(con);
685 	con_close_socket(con);
686 	mutex_unlock(&con->mutex);
687 }
688 EXPORT_SYMBOL(ceph_con_close);
689 
690 /*
691  * Reopen a closed connection, with a new peer address.
692  */
693 void ceph_con_open(struct ceph_connection *con,
694 		   __u8 entity_type, __u64 entity_num,
695 		   struct ceph_entity_addr *addr)
696 {
697 	mutex_lock(&con->mutex);
698 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
699 
700 	WARN_ON(con->state != CON_STATE_CLOSED);
701 	con->state = CON_STATE_PREOPEN;
702 
703 	con->peer_name.type = (__u8) entity_type;
704 	con->peer_name.num = cpu_to_le64(entity_num);
705 
706 	memcpy(&con->peer_addr, addr, sizeof(*addr));
707 	con->delay = 0;      /* reset backoff memory */
708 	mutex_unlock(&con->mutex);
709 	queue_con(con);
710 }
711 EXPORT_SYMBOL(ceph_con_open);
712 
713 /*
714  * return true if this connection ever successfully opened
715  */
716 bool ceph_con_opened(struct ceph_connection *con)
717 {
718 	return con->connect_seq > 0;
719 }
720 
721 /*
722  * initialize a new connection.
723  */
724 void ceph_con_init(struct ceph_connection *con, void *private,
725 	const struct ceph_connection_operations *ops,
726 	struct ceph_messenger *msgr)
727 {
728 	dout("con_init %p\n", con);
729 	memset(con, 0, sizeof(*con));
730 	con->private = private;
731 	con->ops = ops;
732 	con->msgr = msgr;
733 
734 	con_sock_state_init(con);
735 
736 	mutex_init(&con->mutex);
737 	INIT_LIST_HEAD(&con->out_queue);
738 	INIT_LIST_HEAD(&con->out_sent);
739 	INIT_DELAYED_WORK(&con->work, con_work);
740 
741 	con->state = CON_STATE_CLOSED;
742 }
743 EXPORT_SYMBOL(ceph_con_init);
744 
745 
746 /*
747  * We maintain a global counter to order connection attempts.  Get
748  * a unique seq greater than @gt.
749  */
750 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
751 {
752 	u32 ret;
753 
754 	spin_lock(&msgr->global_seq_lock);
755 	if (msgr->global_seq < gt)
756 		msgr->global_seq = gt;
757 	ret = ++msgr->global_seq;
758 	spin_unlock(&msgr->global_seq_lock);
759 	return ret;
760 }
761 
762 static void con_out_kvec_reset(struct ceph_connection *con)
763 {
764 	con->out_kvec_left = 0;
765 	con->out_kvec_bytes = 0;
766 	con->out_kvec_cur = &con->out_kvec[0];
767 }
768 
769 static void con_out_kvec_add(struct ceph_connection *con,
770 				size_t size, void *data)
771 {
772 	int index;
773 
774 	index = con->out_kvec_left;
775 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
776 
777 	con->out_kvec[index].iov_len = size;
778 	con->out_kvec[index].iov_base = data;
779 	con->out_kvec_left++;
780 	con->out_kvec_bytes += size;
781 }
782 
783 #ifdef CONFIG_BLOCK
784 
785 /*
786  * For a bio data item, a piece is whatever remains of the next
787  * entry in the current bio iovec, or the first entry in the next
788  * bio in the list.
789  */
790 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
791 					size_t length)
792 {
793 	struct ceph_msg_data *data = cursor->data;
794 	struct bio *bio;
795 
796 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
797 
798 	bio = data->bio;
799 	BUG_ON(!bio);
800 
801 	cursor->resid = min(length, data->bio_length);
802 	cursor->bio = bio;
803 	cursor->bvec_iter = bio->bi_iter;
804 	cursor->last_piece =
805 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
806 }
807 
808 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
809 						size_t *page_offset,
810 						size_t *length)
811 {
812 	struct ceph_msg_data *data = cursor->data;
813 	struct bio *bio;
814 	struct bio_vec bio_vec;
815 
816 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
817 
818 	bio = cursor->bio;
819 	BUG_ON(!bio);
820 
821 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
822 
823 	*page_offset = (size_t) bio_vec.bv_offset;
824 	BUG_ON(*page_offset >= PAGE_SIZE);
825 	if (cursor->last_piece) /* pagelist offset is always 0 */
826 		*length = cursor->resid;
827 	else
828 		*length = (size_t) bio_vec.bv_len;
829 	BUG_ON(*length > cursor->resid);
830 	BUG_ON(*page_offset + *length > PAGE_SIZE);
831 
832 	return bio_vec.bv_page;
833 }
834 
835 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
836 					size_t bytes)
837 {
838 	struct bio *bio;
839 	struct bio_vec bio_vec;
840 
841 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
842 
843 	bio = cursor->bio;
844 	BUG_ON(!bio);
845 
846 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
847 
848 	/* Advance the cursor offset */
849 
850 	BUG_ON(cursor->resid < bytes);
851 	cursor->resid -= bytes;
852 
853 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
854 
855 	if (bytes < bio_vec.bv_len)
856 		return false;	/* more bytes to process in this segment */
857 
858 	/* Move on to the next segment, and possibly the next bio */
859 
860 	if (!cursor->bvec_iter.bi_size) {
861 		bio = bio->bi_next;
862 		cursor->bio = bio;
863 		if (bio)
864 			cursor->bvec_iter = bio->bi_iter;
865 		else
866 			memset(&cursor->bvec_iter, 0,
867 			       sizeof(cursor->bvec_iter));
868 	}
869 
870 	if (!cursor->last_piece) {
871 		BUG_ON(!cursor->resid);
872 		BUG_ON(!bio);
873 		/* A short read is OK, so use <= rather than == */
874 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
875 			cursor->last_piece = true;
876 	}
877 
878 	return true;
879 }
880 #endif /* CONFIG_BLOCK */
881 
882 /*
883  * For a page array, a piece comes from the first page in the array
884  * that has not already been fully consumed.
885  */
886 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
887 					size_t length)
888 {
889 	struct ceph_msg_data *data = cursor->data;
890 	int page_count;
891 
892 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
893 
894 	BUG_ON(!data->pages);
895 	BUG_ON(!data->length);
896 
897 	cursor->resid = min(length, data->length);
898 	page_count = calc_pages_for(data->alignment, (u64)data->length);
899 	cursor->page_offset = data->alignment & ~PAGE_MASK;
900 	cursor->page_index = 0;
901 	BUG_ON(page_count > (int)USHRT_MAX);
902 	cursor->page_count = (unsigned short)page_count;
903 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
904 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
905 }
906 
907 static struct page *
908 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
909 					size_t *page_offset, size_t *length)
910 {
911 	struct ceph_msg_data *data = cursor->data;
912 
913 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
914 
915 	BUG_ON(cursor->page_index >= cursor->page_count);
916 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
917 
918 	*page_offset = cursor->page_offset;
919 	if (cursor->last_piece)
920 		*length = cursor->resid;
921 	else
922 		*length = PAGE_SIZE - *page_offset;
923 
924 	return data->pages[cursor->page_index];
925 }
926 
927 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
928 						size_t bytes)
929 {
930 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
931 
932 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
933 
934 	/* Advance the cursor page offset */
935 
936 	cursor->resid -= bytes;
937 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
938 	if (!bytes || cursor->page_offset)
939 		return false;	/* more bytes to process in the current page */
940 
941 	if (!cursor->resid)
942 		return false;   /* no more data */
943 
944 	/* Move on to the next page; offset is already at 0 */
945 
946 	BUG_ON(cursor->page_index >= cursor->page_count);
947 	cursor->page_index++;
948 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
949 
950 	return true;
951 }
952 
953 /*
954  * For a pagelist, a piece is whatever remains to be consumed in the
955  * first page in the list, or the front of the next page.
956  */
957 static void
958 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
959 					size_t length)
960 {
961 	struct ceph_msg_data *data = cursor->data;
962 	struct ceph_pagelist *pagelist;
963 	struct page *page;
964 
965 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
966 
967 	pagelist = data->pagelist;
968 	BUG_ON(!pagelist);
969 
970 	if (!length)
971 		return;		/* pagelist can be assigned but empty */
972 
973 	BUG_ON(list_empty(&pagelist->head));
974 	page = list_first_entry(&pagelist->head, struct page, lru);
975 
976 	cursor->resid = min(length, pagelist->length);
977 	cursor->page = page;
978 	cursor->offset = 0;
979 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
980 }
981 
982 static struct page *
983 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
984 				size_t *page_offset, size_t *length)
985 {
986 	struct ceph_msg_data *data = cursor->data;
987 	struct ceph_pagelist *pagelist;
988 
989 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
990 
991 	pagelist = data->pagelist;
992 	BUG_ON(!pagelist);
993 
994 	BUG_ON(!cursor->page);
995 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
996 
997 	/* offset of first page in pagelist is always 0 */
998 	*page_offset = cursor->offset & ~PAGE_MASK;
999 	if (cursor->last_piece)
1000 		*length = cursor->resid;
1001 	else
1002 		*length = PAGE_SIZE - *page_offset;
1003 
1004 	return cursor->page;
1005 }
1006 
1007 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1008 						size_t bytes)
1009 {
1010 	struct ceph_msg_data *data = cursor->data;
1011 	struct ceph_pagelist *pagelist;
1012 
1013 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1014 
1015 	pagelist = data->pagelist;
1016 	BUG_ON(!pagelist);
1017 
1018 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1019 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1020 
1021 	/* Advance the cursor offset */
1022 
1023 	cursor->resid -= bytes;
1024 	cursor->offset += bytes;
1025 	/* offset of first page in pagelist is always 0 */
1026 	if (!bytes || cursor->offset & ~PAGE_MASK)
1027 		return false;	/* more bytes to process in the current page */
1028 
1029 	if (!cursor->resid)
1030 		return false;   /* no more data */
1031 
1032 	/* Move on to the next page */
1033 
1034 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1035 	cursor->page = list_entry_next(cursor->page, lru);
1036 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1037 
1038 	return true;
1039 }
1040 
1041 /*
1042  * Message data is handled (sent or received) in pieces, where each
1043  * piece resides on a single page.  The network layer might not
1044  * consume an entire piece at once.  A data item's cursor keeps
1045  * track of which piece is next to process and how much remains to
1046  * be processed in that piece.  It also tracks whether the current
1047  * piece is the last one in the data item.
1048  */
1049 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1050 {
1051 	size_t length = cursor->total_resid;
1052 
1053 	switch (cursor->data->type) {
1054 	case CEPH_MSG_DATA_PAGELIST:
1055 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1056 		break;
1057 	case CEPH_MSG_DATA_PAGES:
1058 		ceph_msg_data_pages_cursor_init(cursor, length);
1059 		break;
1060 #ifdef CONFIG_BLOCK
1061 	case CEPH_MSG_DATA_BIO:
1062 		ceph_msg_data_bio_cursor_init(cursor, length);
1063 		break;
1064 #endif /* CONFIG_BLOCK */
1065 	case CEPH_MSG_DATA_NONE:
1066 	default:
1067 		/* BUG(); */
1068 		break;
1069 	}
1070 	cursor->need_crc = true;
1071 }
1072 
1073 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1074 {
1075 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1076 	struct ceph_msg_data *data;
1077 
1078 	BUG_ON(!length);
1079 	BUG_ON(length > msg->data_length);
1080 	BUG_ON(list_empty(&msg->data));
1081 
1082 	cursor->data_head = &msg->data;
1083 	cursor->total_resid = length;
1084 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1085 	cursor->data = data;
1086 
1087 	__ceph_msg_data_cursor_init(cursor);
1088 }
1089 
1090 /*
1091  * Return the page containing the next piece to process for a given
1092  * data item, and supply the page offset and length of that piece.
1093  * Indicate whether this is the last piece in this data item.
1094  */
1095 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1096 					size_t *page_offset, size_t *length,
1097 					bool *last_piece)
1098 {
1099 	struct page *page;
1100 
1101 	switch (cursor->data->type) {
1102 	case CEPH_MSG_DATA_PAGELIST:
1103 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1104 		break;
1105 	case CEPH_MSG_DATA_PAGES:
1106 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1107 		break;
1108 #ifdef CONFIG_BLOCK
1109 	case CEPH_MSG_DATA_BIO:
1110 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1111 		break;
1112 #endif /* CONFIG_BLOCK */
1113 	case CEPH_MSG_DATA_NONE:
1114 	default:
1115 		page = NULL;
1116 		break;
1117 	}
1118 	BUG_ON(!page);
1119 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1120 	BUG_ON(!*length);
1121 	if (last_piece)
1122 		*last_piece = cursor->last_piece;
1123 
1124 	return page;
1125 }
1126 
1127 /*
1128  * Returns true if the result moves the cursor on to the next piece
1129  * of the data item.
1130  */
1131 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1132 				size_t bytes)
1133 {
1134 	bool new_piece;
1135 
1136 	BUG_ON(bytes > cursor->resid);
1137 	switch (cursor->data->type) {
1138 	case CEPH_MSG_DATA_PAGELIST:
1139 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1140 		break;
1141 	case CEPH_MSG_DATA_PAGES:
1142 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1143 		break;
1144 #ifdef CONFIG_BLOCK
1145 	case CEPH_MSG_DATA_BIO:
1146 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1147 		break;
1148 #endif /* CONFIG_BLOCK */
1149 	case CEPH_MSG_DATA_NONE:
1150 	default:
1151 		BUG();
1152 		break;
1153 	}
1154 	cursor->total_resid -= bytes;
1155 
1156 	if (!cursor->resid && cursor->total_resid) {
1157 		WARN_ON(!cursor->last_piece);
1158 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1159 		cursor->data = list_entry_next(cursor->data, links);
1160 		__ceph_msg_data_cursor_init(cursor);
1161 		new_piece = true;
1162 	}
1163 	cursor->need_crc = new_piece;
1164 
1165 	return new_piece;
1166 }
1167 
1168 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1169 {
1170 	BUG_ON(!msg);
1171 	BUG_ON(!data_len);
1172 
1173 	/* Initialize data cursor */
1174 
1175 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1176 }
1177 
1178 /*
1179  * Prepare footer for currently outgoing message, and finish things
1180  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1181  */
1182 static void prepare_write_message_footer(struct ceph_connection *con)
1183 {
1184 	struct ceph_msg *m = con->out_msg;
1185 	int v = con->out_kvec_left;
1186 
1187 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1188 
1189 	dout("prepare_write_message_footer %p\n", con);
1190 	con->out_kvec_is_msg = true;
1191 	con->out_kvec[v].iov_base = &m->footer;
1192 	con->out_kvec[v].iov_len = sizeof(m->footer);
1193 	con->out_kvec_bytes += sizeof(m->footer);
1194 	con->out_kvec_left++;
1195 	con->out_more = m->more_to_follow;
1196 	con->out_msg_done = true;
1197 }
1198 
1199 /*
1200  * Prepare headers for the next outgoing message.
1201  */
1202 static void prepare_write_message(struct ceph_connection *con)
1203 {
1204 	struct ceph_msg *m;
1205 	u32 crc;
1206 
1207 	con_out_kvec_reset(con);
1208 	con->out_kvec_is_msg = true;
1209 	con->out_msg_done = false;
1210 
1211 	/* Sneak an ack in there first?  If we can get it into the same
1212 	 * TCP packet that's a good thing. */
1213 	if (con->in_seq > con->in_seq_acked) {
1214 		con->in_seq_acked = con->in_seq;
1215 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1216 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1217 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1218 			&con->out_temp_ack);
1219 	}
1220 
1221 	BUG_ON(list_empty(&con->out_queue));
1222 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1223 	con->out_msg = m;
1224 	BUG_ON(m->con != con);
1225 
1226 	/* put message on sent list */
1227 	ceph_msg_get(m);
1228 	list_move_tail(&m->list_head, &con->out_sent);
1229 
1230 	/*
1231 	 * only assign outgoing seq # if we haven't sent this message
1232 	 * yet.  if it is requeued, resend with it's original seq.
1233 	 */
1234 	if (m->needs_out_seq) {
1235 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1236 		m->needs_out_seq = false;
1237 	}
1238 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1239 
1240 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1241 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1242 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1243 	     m->data_length);
1244 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1245 
1246 	/* tag + hdr + front + middle */
1247 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1248 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1249 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1250 
1251 	if (m->middle)
1252 		con_out_kvec_add(con, m->middle->vec.iov_len,
1253 			m->middle->vec.iov_base);
1254 
1255 	/* fill in crc (except data pages), footer */
1256 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1257 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1258 	con->out_msg->footer.flags = 0;
1259 
1260 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1261 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1262 	if (m->middle) {
1263 		crc = crc32c(0, m->middle->vec.iov_base,
1264 				m->middle->vec.iov_len);
1265 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1266 	} else
1267 		con->out_msg->footer.middle_crc = 0;
1268 	dout("%s front_crc %u middle_crc %u\n", __func__,
1269 	     le32_to_cpu(con->out_msg->footer.front_crc),
1270 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1271 
1272 	/* is there a data payload? */
1273 	con->out_msg->footer.data_crc = 0;
1274 	if (m->data_length) {
1275 		prepare_message_data(con->out_msg, m->data_length);
1276 		con->out_more = 1;  /* data + footer will follow */
1277 	} else {
1278 		/* no, queue up footer too and be done */
1279 		prepare_write_message_footer(con);
1280 	}
1281 
1282 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1283 }
1284 
1285 /*
1286  * Prepare an ack.
1287  */
1288 static void prepare_write_ack(struct ceph_connection *con)
1289 {
1290 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1291 	     con->in_seq_acked, con->in_seq);
1292 	con->in_seq_acked = con->in_seq;
1293 
1294 	con_out_kvec_reset(con);
1295 
1296 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1297 
1298 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1299 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1300 				&con->out_temp_ack);
1301 
1302 	con->out_more = 1;  /* more will follow.. eventually.. */
1303 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1304 }
1305 
1306 /*
1307  * Prepare to share the seq during handshake
1308  */
1309 static void prepare_write_seq(struct ceph_connection *con)
1310 {
1311 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1312 	     con->in_seq_acked, con->in_seq);
1313 	con->in_seq_acked = con->in_seq;
1314 
1315 	con_out_kvec_reset(con);
1316 
1317 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1318 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1319 			 &con->out_temp_ack);
1320 
1321 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1322 }
1323 
1324 /*
1325  * Prepare to write keepalive byte.
1326  */
1327 static void prepare_write_keepalive(struct ceph_connection *con)
1328 {
1329 	dout("prepare_write_keepalive %p\n", con);
1330 	con_out_kvec_reset(con);
1331 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1332 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1333 }
1334 
1335 /*
1336  * Connection negotiation.
1337  */
1338 
1339 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1340 						int *auth_proto)
1341 {
1342 	struct ceph_auth_handshake *auth;
1343 
1344 	if (!con->ops->get_authorizer) {
1345 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1346 		con->out_connect.authorizer_len = 0;
1347 		return NULL;
1348 	}
1349 
1350 	/* Can't hold the mutex while getting authorizer */
1351 	mutex_unlock(&con->mutex);
1352 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1353 	mutex_lock(&con->mutex);
1354 
1355 	if (IS_ERR(auth))
1356 		return auth;
1357 	if (con->state != CON_STATE_NEGOTIATING)
1358 		return ERR_PTR(-EAGAIN);
1359 
1360 	con->auth_reply_buf = auth->authorizer_reply_buf;
1361 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1362 	return auth;
1363 }
1364 
1365 /*
1366  * We connected to a peer and are saying hello.
1367  */
1368 static void prepare_write_banner(struct ceph_connection *con)
1369 {
1370 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1371 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1372 					&con->msgr->my_enc_addr);
1373 
1374 	con->out_more = 0;
1375 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1376 }
1377 
1378 static int prepare_write_connect(struct ceph_connection *con)
1379 {
1380 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1381 	int proto;
1382 	int auth_proto;
1383 	struct ceph_auth_handshake *auth;
1384 
1385 	switch (con->peer_name.type) {
1386 	case CEPH_ENTITY_TYPE_MON:
1387 		proto = CEPH_MONC_PROTOCOL;
1388 		break;
1389 	case CEPH_ENTITY_TYPE_OSD:
1390 		proto = CEPH_OSDC_PROTOCOL;
1391 		break;
1392 	case CEPH_ENTITY_TYPE_MDS:
1393 		proto = CEPH_MDSC_PROTOCOL;
1394 		break;
1395 	default:
1396 		BUG();
1397 	}
1398 
1399 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1400 	     con->connect_seq, global_seq, proto);
1401 
1402 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1403 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1404 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1405 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1406 	con->out_connect.protocol_version = cpu_to_le32(proto);
1407 	con->out_connect.flags = 0;
1408 
1409 	auth_proto = CEPH_AUTH_UNKNOWN;
1410 	auth = get_connect_authorizer(con, &auth_proto);
1411 	if (IS_ERR(auth))
1412 		return PTR_ERR(auth);
1413 
1414 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1415 	con->out_connect.authorizer_len = auth ?
1416 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1417 
1418 	con_out_kvec_add(con, sizeof (con->out_connect),
1419 					&con->out_connect);
1420 	if (auth && auth->authorizer_buf_len)
1421 		con_out_kvec_add(con, auth->authorizer_buf_len,
1422 					auth->authorizer_buf);
1423 
1424 	con->out_more = 0;
1425 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1426 
1427 	return 0;
1428 }
1429 
1430 /*
1431  * write as much of pending kvecs to the socket as we can.
1432  *  1 -> done
1433  *  0 -> socket full, but more to do
1434  * <0 -> error
1435  */
1436 static int write_partial_kvec(struct ceph_connection *con)
1437 {
1438 	int ret;
1439 
1440 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1441 	while (con->out_kvec_bytes > 0) {
1442 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1443 				       con->out_kvec_left, con->out_kvec_bytes,
1444 				       con->out_more);
1445 		if (ret <= 0)
1446 			goto out;
1447 		con->out_kvec_bytes -= ret;
1448 		if (con->out_kvec_bytes == 0)
1449 			break;            /* done */
1450 
1451 		/* account for full iov entries consumed */
1452 		while (ret >= con->out_kvec_cur->iov_len) {
1453 			BUG_ON(!con->out_kvec_left);
1454 			ret -= con->out_kvec_cur->iov_len;
1455 			con->out_kvec_cur++;
1456 			con->out_kvec_left--;
1457 		}
1458 		/* and for a partially-consumed entry */
1459 		if (ret) {
1460 			con->out_kvec_cur->iov_len -= ret;
1461 			con->out_kvec_cur->iov_base += ret;
1462 		}
1463 	}
1464 	con->out_kvec_left = 0;
1465 	con->out_kvec_is_msg = false;
1466 	ret = 1;
1467 out:
1468 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1469 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1470 	return ret;  /* done! */
1471 }
1472 
1473 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1474 				unsigned int page_offset,
1475 				unsigned int length)
1476 {
1477 	char *kaddr;
1478 
1479 	kaddr = kmap(page);
1480 	BUG_ON(kaddr == NULL);
1481 	crc = crc32c(crc, kaddr + page_offset, length);
1482 	kunmap(page);
1483 
1484 	return crc;
1485 }
1486 /*
1487  * Write as much message data payload as we can.  If we finish, queue
1488  * up the footer.
1489  *  1 -> done, footer is now queued in out_kvec[].
1490  *  0 -> socket full, but more to do
1491  * <0 -> error
1492  */
1493 static int write_partial_message_data(struct ceph_connection *con)
1494 {
1495 	struct ceph_msg *msg = con->out_msg;
1496 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1497 	bool do_datacrc = !con->msgr->nocrc;
1498 	u32 crc;
1499 
1500 	dout("%s %p msg %p\n", __func__, con, msg);
1501 
1502 	if (list_empty(&msg->data))
1503 		return -EINVAL;
1504 
1505 	/*
1506 	 * Iterate through each page that contains data to be
1507 	 * written, and send as much as possible for each.
1508 	 *
1509 	 * If we are calculating the data crc (the default), we will
1510 	 * need to map the page.  If we have no pages, they have
1511 	 * been revoked, so use the zero page.
1512 	 */
1513 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1514 	while (cursor->resid) {
1515 		struct page *page;
1516 		size_t page_offset;
1517 		size_t length;
1518 		bool last_piece;
1519 		bool need_crc;
1520 		int ret;
1521 
1522 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1523 							&last_piece);
1524 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1525 				      length, last_piece);
1526 		if (ret <= 0) {
1527 			if (do_datacrc)
1528 				msg->footer.data_crc = cpu_to_le32(crc);
1529 
1530 			return ret;
1531 		}
1532 		if (do_datacrc && cursor->need_crc)
1533 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1534 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1535 	}
1536 
1537 	dout("%s %p msg %p done\n", __func__, con, msg);
1538 
1539 	/* prepare and queue up footer, too */
1540 	if (do_datacrc)
1541 		msg->footer.data_crc = cpu_to_le32(crc);
1542 	else
1543 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1544 	con_out_kvec_reset(con);
1545 	prepare_write_message_footer(con);
1546 
1547 	return 1;	/* must return > 0 to indicate success */
1548 }
1549 
1550 /*
1551  * write some zeros
1552  */
1553 static int write_partial_skip(struct ceph_connection *con)
1554 {
1555 	int ret;
1556 
1557 	while (con->out_skip > 0) {
1558 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1559 
1560 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1561 		if (ret <= 0)
1562 			goto out;
1563 		con->out_skip -= ret;
1564 	}
1565 	ret = 1;
1566 out:
1567 	return ret;
1568 }
1569 
1570 /*
1571  * Prepare to read connection handshake, or an ack.
1572  */
1573 static void prepare_read_banner(struct ceph_connection *con)
1574 {
1575 	dout("prepare_read_banner %p\n", con);
1576 	con->in_base_pos = 0;
1577 }
1578 
1579 static void prepare_read_connect(struct ceph_connection *con)
1580 {
1581 	dout("prepare_read_connect %p\n", con);
1582 	con->in_base_pos = 0;
1583 }
1584 
1585 static void prepare_read_ack(struct ceph_connection *con)
1586 {
1587 	dout("prepare_read_ack %p\n", con);
1588 	con->in_base_pos = 0;
1589 }
1590 
1591 static void prepare_read_seq(struct ceph_connection *con)
1592 {
1593 	dout("prepare_read_seq %p\n", con);
1594 	con->in_base_pos = 0;
1595 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1596 }
1597 
1598 static void prepare_read_tag(struct ceph_connection *con)
1599 {
1600 	dout("prepare_read_tag %p\n", con);
1601 	con->in_base_pos = 0;
1602 	con->in_tag = CEPH_MSGR_TAG_READY;
1603 }
1604 
1605 /*
1606  * Prepare to read a message.
1607  */
1608 static int prepare_read_message(struct ceph_connection *con)
1609 {
1610 	dout("prepare_read_message %p\n", con);
1611 	BUG_ON(con->in_msg != NULL);
1612 	con->in_base_pos = 0;
1613 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1614 	return 0;
1615 }
1616 
1617 
1618 static int read_partial(struct ceph_connection *con,
1619 			int end, int size, void *object)
1620 {
1621 	while (con->in_base_pos < end) {
1622 		int left = end - con->in_base_pos;
1623 		int have = size - left;
1624 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1625 		if (ret <= 0)
1626 			return ret;
1627 		con->in_base_pos += ret;
1628 	}
1629 	return 1;
1630 }
1631 
1632 
1633 /*
1634  * Read all or part of the connect-side handshake on a new connection
1635  */
1636 static int read_partial_banner(struct ceph_connection *con)
1637 {
1638 	int size;
1639 	int end;
1640 	int ret;
1641 
1642 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1643 
1644 	/* peer's banner */
1645 	size = strlen(CEPH_BANNER);
1646 	end = size;
1647 	ret = read_partial(con, end, size, con->in_banner);
1648 	if (ret <= 0)
1649 		goto out;
1650 
1651 	size = sizeof (con->actual_peer_addr);
1652 	end += size;
1653 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1654 	if (ret <= 0)
1655 		goto out;
1656 
1657 	size = sizeof (con->peer_addr_for_me);
1658 	end += size;
1659 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1660 	if (ret <= 0)
1661 		goto out;
1662 
1663 out:
1664 	return ret;
1665 }
1666 
1667 static int read_partial_connect(struct ceph_connection *con)
1668 {
1669 	int size;
1670 	int end;
1671 	int ret;
1672 
1673 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1674 
1675 	size = sizeof (con->in_reply);
1676 	end = size;
1677 	ret = read_partial(con, end, size, &con->in_reply);
1678 	if (ret <= 0)
1679 		goto out;
1680 
1681 	size = le32_to_cpu(con->in_reply.authorizer_len);
1682 	end += size;
1683 	ret = read_partial(con, end, size, con->auth_reply_buf);
1684 	if (ret <= 0)
1685 		goto out;
1686 
1687 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1688 	     con, (int)con->in_reply.tag,
1689 	     le32_to_cpu(con->in_reply.connect_seq),
1690 	     le32_to_cpu(con->in_reply.global_seq));
1691 out:
1692 	return ret;
1693 
1694 }
1695 
1696 /*
1697  * Verify the hello banner looks okay.
1698  */
1699 static int verify_hello(struct ceph_connection *con)
1700 {
1701 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1702 		pr_err("connect to %s got bad banner\n",
1703 		       ceph_pr_addr(&con->peer_addr.in_addr));
1704 		con->error_msg = "protocol error, bad banner";
1705 		return -1;
1706 	}
1707 	return 0;
1708 }
1709 
1710 static bool addr_is_blank(struct sockaddr_storage *ss)
1711 {
1712 	switch (ss->ss_family) {
1713 	case AF_INET:
1714 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1715 	case AF_INET6:
1716 		return
1717 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1718 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1719 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1720 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1721 	}
1722 	return false;
1723 }
1724 
1725 static int addr_port(struct sockaddr_storage *ss)
1726 {
1727 	switch (ss->ss_family) {
1728 	case AF_INET:
1729 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1730 	case AF_INET6:
1731 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1732 	}
1733 	return 0;
1734 }
1735 
1736 static void addr_set_port(struct sockaddr_storage *ss, int p)
1737 {
1738 	switch (ss->ss_family) {
1739 	case AF_INET:
1740 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1741 		break;
1742 	case AF_INET6:
1743 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1744 		break;
1745 	}
1746 }
1747 
1748 /*
1749  * Unlike other *_pton function semantics, zero indicates success.
1750  */
1751 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1752 		char delim, const char **ipend)
1753 {
1754 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1755 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1756 
1757 	memset(ss, 0, sizeof(*ss));
1758 
1759 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1760 		ss->ss_family = AF_INET;
1761 		return 0;
1762 	}
1763 
1764 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1765 		ss->ss_family = AF_INET6;
1766 		return 0;
1767 	}
1768 
1769 	return -EINVAL;
1770 }
1771 
1772 /*
1773  * Extract hostname string and resolve using kernel DNS facility.
1774  */
1775 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1776 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1777 		struct sockaddr_storage *ss, char delim, const char **ipend)
1778 {
1779 	const char *end, *delim_p;
1780 	char *colon_p, *ip_addr = NULL;
1781 	int ip_len, ret;
1782 
1783 	/*
1784 	 * The end of the hostname occurs immediately preceding the delimiter or
1785 	 * the port marker (':') where the delimiter takes precedence.
1786 	 */
1787 	delim_p = memchr(name, delim, namelen);
1788 	colon_p = memchr(name, ':', namelen);
1789 
1790 	if (delim_p && colon_p)
1791 		end = delim_p < colon_p ? delim_p : colon_p;
1792 	else if (!delim_p && colon_p)
1793 		end = colon_p;
1794 	else {
1795 		end = delim_p;
1796 		if (!end) /* case: hostname:/ */
1797 			end = name + namelen;
1798 	}
1799 
1800 	if (end <= name)
1801 		return -EINVAL;
1802 
1803 	/* do dns_resolve upcall */
1804 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1805 	if (ip_len > 0)
1806 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1807 	else
1808 		ret = -ESRCH;
1809 
1810 	kfree(ip_addr);
1811 
1812 	*ipend = end;
1813 
1814 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1815 			ret, ret ? "failed" : ceph_pr_addr(ss));
1816 
1817 	return ret;
1818 }
1819 #else
1820 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1821 		struct sockaddr_storage *ss, char delim, const char **ipend)
1822 {
1823 	return -EINVAL;
1824 }
1825 #endif
1826 
1827 /*
1828  * Parse a server name (IP or hostname). If a valid IP address is not found
1829  * then try to extract a hostname to resolve using userspace DNS upcall.
1830  */
1831 static int ceph_parse_server_name(const char *name, size_t namelen,
1832 			struct sockaddr_storage *ss, char delim, const char **ipend)
1833 {
1834 	int ret;
1835 
1836 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1837 	if (ret)
1838 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1839 
1840 	return ret;
1841 }
1842 
1843 /*
1844  * Parse an ip[:port] list into an addr array.  Use the default
1845  * monitor port if a port isn't specified.
1846  */
1847 int ceph_parse_ips(const char *c, const char *end,
1848 		   struct ceph_entity_addr *addr,
1849 		   int max_count, int *count)
1850 {
1851 	int i, ret = -EINVAL;
1852 	const char *p = c;
1853 
1854 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1855 	for (i = 0; i < max_count; i++) {
1856 		const char *ipend;
1857 		struct sockaddr_storage *ss = &addr[i].in_addr;
1858 		int port;
1859 		char delim = ',';
1860 
1861 		if (*p == '[') {
1862 			delim = ']';
1863 			p++;
1864 		}
1865 
1866 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1867 		if (ret)
1868 			goto bad;
1869 		ret = -EINVAL;
1870 
1871 		p = ipend;
1872 
1873 		if (delim == ']') {
1874 			if (*p != ']') {
1875 				dout("missing matching ']'\n");
1876 				goto bad;
1877 			}
1878 			p++;
1879 		}
1880 
1881 		/* port? */
1882 		if (p < end && *p == ':') {
1883 			port = 0;
1884 			p++;
1885 			while (p < end && *p >= '0' && *p <= '9') {
1886 				port = (port * 10) + (*p - '0');
1887 				p++;
1888 			}
1889 			if (port == 0)
1890 				port = CEPH_MON_PORT;
1891 			else if (port > 65535)
1892 				goto bad;
1893 		} else {
1894 			port = CEPH_MON_PORT;
1895 		}
1896 
1897 		addr_set_port(ss, port);
1898 
1899 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1900 
1901 		if (p == end)
1902 			break;
1903 		if (*p != ',')
1904 			goto bad;
1905 		p++;
1906 	}
1907 
1908 	if (p != end)
1909 		goto bad;
1910 
1911 	if (count)
1912 		*count = i + 1;
1913 	return 0;
1914 
1915 bad:
1916 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1917 	return ret;
1918 }
1919 EXPORT_SYMBOL(ceph_parse_ips);
1920 
1921 static int process_banner(struct ceph_connection *con)
1922 {
1923 	dout("process_banner on %p\n", con);
1924 
1925 	if (verify_hello(con) < 0)
1926 		return -1;
1927 
1928 	ceph_decode_addr(&con->actual_peer_addr);
1929 	ceph_decode_addr(&con->peer_addr_for_me);
1930 
1931 	/*
1932 	 * Make sure the other end is who we wanted.  note that the other
1933 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1934 	 * them the benefit of the doubt.
1935 	 */
1936 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1937 		   sizeof(con->peer_addr)) != 0 &&
1938 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1939 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1940 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1941 			   ceph_pr_addr(&con->peer_addr.in_addr),
1942 			   (int)le32_to_cpu(con->peer_addr.nonce),
1943 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1944 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1945 		con->error_msg = "wrong peer at address";
1946 		return -1;
1947 	}
1948 
1949 	/*
1950 	 * did we learn our address?
1951 	 */
1952 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1953 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1954 
1955 		memcpy(&con->msgr->inst.addr.in_addr,
1956 		       &con->peer_addr_for_me.in_addr,
1957 		       sizeof(con->peer_addr_for_me.in_addr));
1958 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1959 		encode_my_addr(con->msgr);
1960 		dout("process_banner learned my addr is %s\n",
1961 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 static int process_connect(struct ceph_connection *con)
1968 {
1969 	u64 sup_feat = con->msgr->supported_features;
1970 	u64 req_feat = con->msgr->required_features;
1971 	u64 server_feat = ceph_sanitize_features(
1972 				le64_to_cpu(con->in_reply.features));
1973 	int ret;
1974 
1975 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1976 
1977 	switch (con->in_reply.tag) {
1978 	case CEPH_MSGR_TAG_FEATURES:
1979 		pr_err("%s%lld %s feature set mismatch,"
1980 		       " my %llx < server's %llx, missing %llx\n",
1981 		       ENTITY_NAME(con->peer_name),
1982 		       ceph_pr_addr(&con->peer_addr.in_addr),
1983 		       sup_feat, server_feat, server_feat & ~sup_feat);
1984 		con->error_msg = "missing required protocol features";
1985 		reset_connection(con);
1986 		return -1;
1987 
1988 	case CEPH_MSGR_TAG_BADPROTOVER:
1989 		pr_err("%s%lld %s protocol version mismatch,"
1990 		       " my %d != server's %d\n",
1991 		       ENTITY_NAME(con->peer_name),
1992 		       ceph_pr_addr(&con->peer_addr.in_addr),
1993 		       le32_to_cpu(con->out_connect.protocol_version),
1994 		       le32_to_cpu(con->in_reply.protocol_version));
1995 		con->error_msg = "protocol version mismatch";
1996 		reset_connection(con);
1997 		return -1;
1998 
1999 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2000 		con->auth_retry++;
2001 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2002 		     con->auth_retry);
2003 		if (con->auth_retry == 2) {
2004 			con->error_msg = "connect authorization failure";
2005 			return -1;
2006 		}
2007 		con_out_kvec_reset(con);
2008 		ret = prepare_write_connect(con);
2009 		if (ret < 0)
2010 			return ret;
2011 		prepare_read_connect(con);
2012 		break;
2013 
2014 	case CEPH_MSGR_TAG_RESETSESSION:
2015 		/*
2016 		 * If we connected with a large connect_seq but the peer
2017 		 * has no record of a session with us (no connection, or
2018 		 * connect_seq == 0), they will send RESETSESION to indicate
2019 		 * that they must have reset their session, and may have
2020 		 * dropped messages.
2021 		 */
2022 		dout("process_connect got RESET peer seq %u\n",
2023 		     le32_to_cpu(con->in_reply.connect_seq));
2024 		pr_err("%s%lld %s connection reset\n",
2025 		       ENTITY_NAME(con->peer_name),
2026 		       ceph_pr_addr(&con->peer_addr.in_addr));
2027 		reset_connection(con);
2028 		con_out_kvec_reset(con);
2029 		ret = prepare_write_connect(con);
2030 		if (ret < 0)
2031 			return ret;
2032 		prepare_read_connect(con);
2033 
2034 		/* Tell ceph about it. */
2035 		mutex_unlock(&con->mutex);
2036 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2037 		if (con->ops->peer_reset)
2038 			con->ops->peer_reset(con);
2039 		mutex_lock(&con->mutex);
2040 		if (con->state != CON_STATE_NEGOTIATING)
2041 			return -EAGAIN;
2042 		break;
2043 
2044 	case CEPH_MSGR_TAG_RETRY_SESSION:
2045 		/*
2046 		 * If we sent a smaller connect_seq than the peer has, try
2047 		 * again with a larger value.
2048 		 */
2049 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2050 		     le32_to_cpu(con->out_connect.connect_seq),
2051 		     le32_to_cpu(con->in_reply.connect_seq));
2052 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2053 		con_out_kvec_reset(con);
2054 		ret = prepare_write_connect(con);
2055 		if (ret < 0)
2056 			return ret;
2057 		prepare_read_connect(con);
2058 		break;
2059 
2060 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2061 		/*
2062 		 * If we sent a smaller global_seq than the peer has, try
2063 		 * again with a larger value.
2064 		 */
2065 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2066 		     con->peer_global_seq,
2067 		     le32_to_cpu(con->in_reply.global_seq));
2068 		get_global_seq(con->msgr,
2069 			       le32_to_cpu(con->in_reply.global_seq));
2070 		con_out_kvec_reset(con);
2071 		ret = prepare_write_connect(con);
2072 		if (ret < 0)
2073 			return ret;
2074 		prepare_read_connect(con);
2075 		break;
2076 
2077 	case CEPH_MSGR_TAG_SEQ:
2078 	case CEPH_MSGR_TAG_READY:
2079 		if (req_feat & ~server_feat) {
2080 			pr_err("%s%lld %s protocol feature mismatch,"
2081 			       " my required %llx > server's %llx, need %llx\n",
2082 			       ENTITY_NAME(con->peer_name),
2083 			       ceph_pr_addr(&con->peer_addr.in_addr),
2084 			       req_feat, server_feat, req_feat & ~server_feat);
2085 			con->error_msg = "missing required protocol features";
2086 			reset_connection(con);
2087 			return -1;
2088 		}
2089 
2090 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2091 		con->state = CON_STATE_OPEN;
2092 		con->auth_retry = 0;    /* we authenticated; clear flag */
2093 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2094 		con->connect_seq++;
2095 		con->peer_features = server_feat;
2096 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2097 		     con->peer_global_seq,
2098 		     le32_to_cpu(con->in_reply.connect_seq),
2099 		     con->connect_seq);
2100 		WARN_ON(con->connect_seq !=
2101 			le32_to_cpu(con->in_reply.connect_seq));
2102 
2103 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2104 			con_flag_set(con, CON_FLAG_LOSSYTX);
2105 
2106 		con->delay = 0;      /* reset backoff memory */
2107 
2108 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2109 			prepare_write_seq(con);
2110 			prepare_read_seq(con);
2111 		} else {
2112 			prepare_read_tag(con);
2113 		}
2114 		break;
2115 
2116 	case CEPH_MSGR_TAG_WAIT:
2117 		/*
2118 		 * If there is a connection race (we are opening
2119 		 * connections to each other), one of us may just have
2120 		 * to WAIT.  This shouldn't happen if we are the
2121 		 * client.
2122 		 */
2123 		pr_err("process_connect got WAIT as client\n");
2124 		con->error_msg = "protocol error, got WAIT as client";
2125 		return -1;
2126 
2127 	default:
2128 		pr_err("connect protocol error, will retry\n");
2129 		con->error_msg = "protocol error, garbage tag during connect";
2130 		return -1;
2131 	}
2132 	return 0;
2133 }
2134 
2135 
2136 /*
2137  * read (part of) an ack
2138  */
2139 static int read_partial_ack(struct ceph_connection *con)
2140 {
2141 	int size = sizeof (con->in_temp_ack);
2142 	int end = size;
2143 
2144 	return read_partial(con, end, size, &con->in_temp_ack);
2145 }
2146 
2147 /*
2148  * We can finally discard anything that's been acked.
2149  */
2150 static void process_ack(struct ceph_connection *con)
2151 {
2152 	struct ceph_msg *m;
2153 	u64 ack = le64_to_cpu(con->in_temp_ack);
2154 	u64 seq;
2155 
2156 	while (!list_empty(&con->out_sent)) {
2157 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2158 				     list_head);
2159 		seq = le64_to_cpu(m->hdr.seq);
2160 		if (seq > ack)
2161 			break;
2162 		dout("got ack for seq %llu type %d at %p\n", seq,
2163 		     le16_to_cpu(m->hdr.type), m);
2164 		m->ack_stamp = jiffies;
2165 		ceph_msg_remove(m);
2166 	}
2167 	prepare_read_tag(con);
2168 }
2169 
2170 
2171 static int read_partial_message_section(struct ceph_connection *con,
2172 					struct kvec *section,
2173 					unsigned int sec_len, u32 *crc)
2174 {
2175 	int ret, left;
2176 
2177 	BUG_ON(!section);
2178 
2179 	while (section->iov_len < sec_len) {
2180 		BUG_ON(section->iov_base == NULL);
2181 		left = sec_len - section->iov_len;
2182 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2183 				       section->iov_len, left);
2184 		if (ret <= 0)
2185 			return ret;
2186 		section->iov_len += ret;
2187 	}
2188 	if (section->iov_len == sec_len)
2189 		*crc = crc32c(0, section->iov_base, section->iov_len);
2190 
2191 	return 1;
2192 }
2193 
2194 static int read_partial_msg_data(struct ceph_connection *con)
2195 {
2196 	struct ceph_msg *msg = con->in_msg;
2197 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2198 	const bool do_datacrc = !con->msgr->nocrc;
2199 	struct page *page;
2200 	size_t page_offset;
2201 	size_t length;
2202 	u32 crc = 0;
2203 	int ret;
2204 
2205 	BUG_ON(!msg);
2206 	if (list_empty(&msg->data))
2207 		return -EIO;
2208 
2209 	if (do_datacrc)
2210 		crc = con->in_data_crc;
2211 	while (cursor->resid) {
2212 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2213 							NULL);
2214 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2215 		if (ret <= 0) {
2216 			if (do_datacrc)
2217 				con->in_data_crc = crc;
2218 
2219 			return ret;
2220 		}
2221 
2222 		if (do_datacrc)
2223 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2224 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2225 	}
2226 	if (do_datacrc)
2227 		con->in_data_crc = crc;
2228 
2229 	return 1;	/* must return > 0 to indicate success */
2230 }
2231 
2232 /*
2233  * read (part of) a message.
2234  */
2235 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2236 
2237 static int read_partial_message(struct ceph_connection *con)
2238 {
2239 	struct ceph_msg *m = con->in_msg;
2240 	int size;
2241 	int end;
2242 	int ret;
2243 	unsigned int front_len, middle_len, data_len;
2244 	bool do_datacrc = !con->msgr->nocrc;
2245 	u64 seq;
2246 	u32 crc;
2247 
2248 	dout("read_partial_message con %p msg %p\n", con, m);
2249 
2250 	/* header */
2251 	size = sizeof (con->in_hdr);
2252 	end = size;
2253 	ret = read_partial(con, end, size, &con->in_hdr);
2254 	if (ret <= 0)
2255 		return ret;
2256 
2257 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2258 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2259 		pr_err("read_partial_message bad hdr "
2260 		       " crc %u != expected %u\n",
2261 		       crc, con->in_hdr.crc);
2262 		return -EBADMSG;
2263 	}
2264 
2265 	front_len = le32_to_cpu(con->in_hdr.front_len);
2266 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2267 		return -EIO;
2268 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2269 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2270 		return -EIO;
2271 	data_len = le32_to_cpu(con->in_hdr.data_len);
2272 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2273 		return -EIO;
2274 
2275 	/* verify seq# */
2276 	seq = le64_to_cpu(con->in_hdr.seq);
2277 	if ((s64)seq - (s64)con->in_seq < 1) {
2278 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2279 			ENTITY_NAME(con->peer_name),
2280 			ceph_pr_addr(&con->peer_addr.in_addr),
2281 			seq, con->in_seq + 1);
2282 		con->in_base_pos = -front_len - middle_len - data_len -
2283 			sizeof(m->footer);
2284 		con->in_tag = CEPH_MSGR_TAG_READY;
2285 		return 0;
2286 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2287 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2288 		       seq, con->in_seq + 1);
2289 		con->error_msg = "bad message sequence # for incoming message";
2290 		return -EBADMSG;
2291 	}
2292 
2293 	/* allocate message? */
2294 	if (!con->in_msg) {
2295 		int skip = 0;
2296 
2297 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2298 		     front_len, data_len);
2299 		ret = ceph_con_in_msg_alloc(con, &skip);
2300 		if (ret < 0)
2301 			return ret;
2302 
2303 		BUG_ON(!con->in_msg ^ skip);
2304 		if (con->in_msg && data_len > con->in_msg->data_length) {
2305 			pr_warning("%s skipping long message (%u > %zd)\n",
2306 				__func__, data_len, con->in_msg->data_length);
2307 			ceph_msg_put(con->in_msg);
2308 			con->in_msg = NULL;
2309 			skip = 1;
2310 		}
2311 		if (skip) {
2312 			/* skip this message */
2313 			dout("alloc_msg said skip message\n");
2314 			con->in_base_pos = -front_len - middle_len - data_len -
2315 				sizeof(m->footer);
2316 			con->in_tag = CEPH_MSGR_TAG_READY;
2317 			con->in_seq++;
2318 			return 0;
2319 		}
2320 
2321 		BUG_ON(!con->in_msg);
2322 		BUG_ON(con->in_msg->con != con);
2323 		m = con->in_msg;
2324 		m->front.iov_len = 0;    /* haven't read it yet */
2325 		if (m->middle)
2326 			m->middle->vec.iov_len = 0;
2327 
2328 		/* prepare for data payload, if any */
2329 
2330 		if (data_len)
2331 			prepare_message_data(con->in_msg, data_len);
2332 	}
2333 
2334 	/* front */
2335 	ret = read_partial_message_section(con, &m->front, front_len,
2336 					   &con->in_front_crc);
2337 	if (ret <= 0)
2338 		return ret;
2339 
2340 	/* middle */
2341 	if (m->middle) {
2342 		ret = read_partial_message_section(con, &m->middle->vec,
2343 						   middle_len,
2344 						   &con->in_middle_crc);
2345 		if (ret <= 0)
2346 			return ret;
2347 	}
2348 
2349 	/* (page) data */
2350 	if (data_len) {
2351 		ret = read_partial_msg_data(con);
2352 		if (ret <= 0)
2353 			return ret;
2354 	}
2355 
2356 	/* footer */
2357 	size = sizeof (m->footer);
2358 	end += size;
2359 	ret = read_partial(con, end, size, &m->footer);
2360 	if (ret <= 0)
2361 		return ret;
2362 
2363 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2364 	     m, front_len, m->footer.front_crc, middle_len,
2365 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2366 
2367 	/* crc ok? */
2368 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2369 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2370 		       m, con->in_front_crc, m->footer.front_crc);
2371 		return -EBADMSG;
2372 	}
2373 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2374 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2375 		       m, con->in_middle_crc, m->footer.middle_crc);
2376 		return -EBADMSG;
2377 	}
2378 	if (do_datacrc &&
2379 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2380 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2381 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2382 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2383 		return -EBADMSG;
2384 	}
2385 
2386 	return 1; /* done! */
2387 }
2388 
2389 /*
2390  * Process message.  This happens in the worker thread.  The callback should
2391  * be careful not to do anything that waits on other incoming messages or it
2392  * may deadlock.
2393  */
2394 static void process_message(struct ceph_connection *con)
2395 {
2396 	struct ceph_msg *msg;
2397 
2398 	BUG_ON(con->in_msg->con != con);
2399 	con->in_msg->con = NULL;
2400 	msg = con->in_msg;
2401 	con->in_msg = NULL;
2402 	con->ops->put(con);
2403 
2404 	/* if first message, set peer_name */
2405 	if (con->peer_name.type == 0)
2406 		con->peer_name = msg->hdr.src;
2407 
2408 	con->in_seq++;
2409 	mutex_unlock(&con->mutex);
2410 
2411 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2412 	     msg, le64_to_cpu(msg->hdr.seq),
2413 	     ENTITY_NAME(msg->hdr.src),
2414 	     le16_to_cpu(msg->hdr.type),
2415 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2416 	     le32_to_cpu(msg->hdr.front_len),
2417 	     le32_to_cpu(msg->hdr.data_len),
2418 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2419 	con->ops->dispatch(con, msg);
2420 
2421 	mutex_lock(&con->mutex);
2422 }
2423 
2424 
2425 /*
2426  * Write something to the socket.  Called in a worker thread when the
2427  * socket appears to be writeable and we have something ready to send.
2428  */
2429 static int try_write(struct ceph_connection *con)
2430 {
2431 	int ret = 1;
2432 
2433 	dout("try_write start %p state %lu\n", con, con->state);
2434 
2435 more:
2436 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2437 
2438 	/* open the socket first? */
2439 	if (con->state == CON_STATE_PREOPEN) {
2440 		BUG_ON(con->sock);
2441 		con->state = CON_STATE_CONNECTING;
2442 
2443 		con_out_kvec_reset(con);
2444 		prepare_write_banner(con);
2445 		prepare_read_banner(con);
2446 
2447 		BUG_ON(con->in_msg);
2448 		con->in_tag = CEPH_MSGR_TAG_READY;
2449 		dout("try_write initiating connect on %p new state %lu\n",
2450 		     con, con->state);
2451 		ret = ceph_tcp_connect(con);
2452 		if (ret < 0) {
2453 			con->error_msg = "connect error";
2454 			goto out;
2455 		}
2456 	}
2457 
2458 more_kvec:
2459 	/* kvec data queued? */
2460 	if (con->out_skip) {
2461 		ret = write_partial_skip(con);
2462 		if (ret <= 0)
2463 			goto out;
2464 	}
2465 	if (con->out_kvec_left) {
2466 		ret = write_partial_kvec(con);
2467 		if (ret <= 0)
2468 			goto out;
2469 	}
2470 
2471 	/* msg pages? */
2472 	if (con->out_msg) {
2473 		if (con->out_msg_done) {
2474 			ceph_msg_put(con->out_msg);
2475 			con->out_msg = NULL;   /* we're done with this one */
2476 			goto do_next;
2477 		}
2478 
2479 		ret = write_partial_message_data(con);
2480 		if (ret == 1)
2481 			goto more_kvec;  /* we need to send the footer, too! */
2482 		if (ret == 0)
2483 			goto out;
2484 		if (ret < 0) {
2485 			dout("try_write write_partial_message_data err %d\n",
2486 			     ret);
2487 			goto out;
2488 		}
2489 	}
2490 
2491 do_next:
2492 	if (con->state == CON_STATE_OPEN) {
2493 		/* is anything else pending? */
2494 		if (!list_empty(&con->out_queue)) {
2495 			prepare_write_message(con);
2496 			goto more;
2497 		}
2498 		if (con->in_seq > con->in_seq_acked) {
2499 			prepare_write_ack(con);
2500 			goto more;
2501 		}
2502 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2503 			prepare_write_keepalive(con);
2504 			goto more;
2505 		}
2506 	}
2507 
2508 	/* Nothing to do! */
2509 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2510 	dout("try_write nothing else to write.\n");
2511 	ret = 0;
2512 out:
2513 	dout("try_write done on %p ret %d\n", con, ret);
2514 	return ret;
2515 }
2516 
2517 
2518 
2519 /*
2520  * Read what we can from the socket.
2521  */
2522 static int try_read(struct ceph_connection *con)
2523 {
2524 	int ret = -1;
2525 
2526 more:
2527 	dout("try_read start on %p state %lu\n", con, con->state);
2528 	if (con->state != CON_STATE_CONNECTING &&
2529 	    con->state != CON_STATE_NEGOTIATING &&
2530 	    con->state != CON_STATE_OPEN)
2531 		return 0;
2532 
2533 	BUG_ON(!con->sock);
2534 
2535 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2536 	     con->in_base_pos);
2537 
2538 	if (con->state == CON_STATE_CONNECTING) {
2539 		dout("try_read connecting\n");
2540 		ret = read_partial_banner(con);
2541 		if (ret <= 0)
2542 			goto out;
2543 		ret = process_banner(con);
2544 		if (ret < 0)
2545 			goto out;
2546 
2547 		con->state = CON_STATE_NEGOTIATING;
2548 
2549 		/*
2550 		 * Received banner is good, exchange connection info.
2551 		 * Do not reset out_kvec, as sending our banner raced
2552 		 * with receiving peer banner after connect completed.
2553 		 */
2554 		ret = prepare_write_connect(con);
2555 		if (ret < 0)
2556 			goto out;
2557 		prepare_read_connect(con);
2558 
2559 		/* Send connection info before awaiting response */
2560 		goto out;
2561 	}
2562 
2563 	if (con->state == CON_STATE_NEGOTIATING) {
2564 		dout("try_read negotiating\n");
2565 		ret = read_partial_connect(con);
2566 		if (ret <= 0)
2567 			goto out;
2568 		ret = process_connect(con);
2569 		if (ret < 0)
2570 			goto out;
2571 		goto more;
2572 	}
2573 
2574 	WARN_ON(con->state != CON_STATE_OPEN);
2575 
2576 	if (con->in_base_pos < 0) {
2577 		/*
2578 		 * skipping + discarding content.
2579 		 *
2580 		 * FIXME: there must be a better way to do this!
2581 		 */
2582 		static char buf[SKIP_BUF_SIZE];
2583 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2584 
2585 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2586 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2587 		if (ret <= 0)
2588 			goto out;
2589 		con->in_base_pos += ret;
2590 		if (con->in_base_pos)
2591 			goto more;
2592 	}
2593 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2594 		/*
2595 		 * what's next?
2596 		 */
2597 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2598 		if (ret <= 0)
2599 			goto out;
2600 		dout("try_read got tag %d\n", (int)con->in_tag);
2601 		switch (con->in_tag) {
2602 		case CEPH_MSGR_TAG_MSG:
2603 			prepare_read_message(con);
2604 			break;
2605 		case CEPH_MSGR_TAG_ACK:
2606 			prepare_read_ack(con);
2607 			break;
2608 		case CEPH_MSGR_TAG_CLOSE:
2609 			con_close_socket(con);
2610 			con->state = CON_STATE_CLOSED;
2611 			goto out;
2612 		default:
2613 			goto bad_tag;
2614 		}
2615 	}
2616 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2617 		ret = read_partial_message(con);
2618 		if (ret <= 0) {
2619 			switch (ret) {
2620 			case -EBADMSG:
2621 				con->error_msg = "bad crc";
2622 				ret = -EIO;
2623 				break;
2624 			case -EIO:
2625 				con->error_msg = "io error";
2626 				break;
2627 			}
2628 			goto out;
2629 		}
2630 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2631 			goto more;
2632 		process_message(con);
2633 		if (con->state == CON_STATE_OPEN)
2634 			prepare_read_tag(con);
2635 		goto more;
2636 	}
2637 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2638 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2639 		/*
2640 		 * the final handshake seq exchange is semantically
2641 		 * equivalent to an ACK
2642 		 */
2643 		ret = read_partial_ack(con);
2644 		if (ret <= 0)
2645 			goto out;
2646 		process_ack(con);
2647 		goto more;
2648 	}
2649 
2650 out:
2651 	dout("try_read done on %p ret %d\n", con, ret);
2652 	return ret;
2653 
2654 bad_tag:
2655 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2656 	con->error_msg = "protocol error, garbage tag";
2657 	ret = -1;
2658 	goto out;
2659 }
2660 
2661 
2662 /*
2663  * Atomically queue work on a connection after the specified delay.
2664  * Bump @con reference to avoid races with connection teardown.
2665  * Returns 0 if work was queued, or an error code otherwise.
2666  */
2667 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2668 {
2669 	if (!con->ops->get(con)) {
2670 		dout("%s %p ref count 0\n", __func__, con);
2671 		return -ENOENT;
2672 	}
2673 
2674 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2675 		dout("%s %p - already queued\n", __func__, con);
2676 		con->ops->put(con);
2677 		return -EBUSY;
2678 	}
2679 
2680 	dout("%s %p %lu\n", __func__, con, delay);
2681 	return 0;
2682 }
2683 
2684 static void queue_con(struct ceph_connection *con)
2685 {
2686 	(void) queue_con_delay(con, 0);
2687 }
2688 
2689 static void cancel_con(struct ceph_connection *con)
2690 {
2691 	if (cancel_delayed_work(&con->work)) {
2692 		dout("%s %p\n", __func__, con);
2693 		con->ops->put(con);
2694 	}
2695 }
2696 
2697 static bool con_sock_closed(struct ceph_connection *con)
2698 {
2699 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2700 		return false;
2701 
2702 #define CASE(x)								\
2703 	case CON_STATE_ ## x:						\
2704 		con->error_msg = "socket closed (con state " #x ")";	\
2705 		break;
2706 
2707 	switch (con->state) {
2708 	CASE(CLOSED);
2709 	CASE(PREOPEN);
2710 	CASE(CONNECTING);
2711 	CASE(NEGOTIATING);
2712 	CASE(OPEN);
2713 	CASE(STANDBY);
2714 	default:
2715 		pr_warning("%s con %p unrecognized state %lu\n",
2716 			__func__, con, con->state);
2717 		con->error_msg = "unrecognized con state";
2718 		BUG();
2719 		break;
2720 	}
2721 #undef CASE
2722 
2723 	return true;
2724 }
2725 
2726 static bool con_backoff(struct ceph_connection *con)
2727 {
2728 	int ret;
2729 
2730 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2731 		return false;
2732 
2733 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2734 	if (ret) {
2735 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2736 			con, con->delay);
2737 		BUG_ON(ret == -ENOENT);
2738 		con_flag_set(con, CON_FLAG_BACKOFF);
2739 	}
2740 
2741 	return true;
2742 }
2743 
2744 /* Finish fault handling; con->mutex must *not* be held here */
2745 
2746 static void con_fault_finish(struct ceph_connection *con)
2747 {
2748 	/*
2749 	 * in case we faulted due to authentication, invalidate our
2750 	 * current tickets so that we can get new ones.
2751 	 */
2752 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2753 		dout("calling invalidate_authorizer()\n");
2754 		con->ops->invalidate_authorizer(con);
2755 	}
2756 
2757 	if (con->ops->fault)
2758 		con->ops->fault(con);
2759 }
2760 
2761 /*
2762  * Do some work on a connection.  Drop a connection ref when we're done.
2763  */
2764 static void con_work(struct work_struct *work)
2765 {
2766 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2767 						   work.work);
2768 	bool fault;
2769 
2770 	mutex_lock(&con->mutex);
2771 	while (true) {
2772 		int ret;
2773 
2774 		if ((fault = con_sock_closed(con))) {
2775 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2776 			break;
2777 		}
2778 		if (con_backoff(con)) {
2779 			dout("%s: con %p BACKOFF\n", __func__, con);
2780 			break;
2781 		}
2782 		if (con->state == CON_STATE_STANDBY) {
2783 			dout("%s: con %p STANDBY\n", __func__, con);
2784 			break;
2785 		}
2786 		if (con->state == CON_STATE_CLOSED) {
2787 			dout("%s: con %p CLOSED\n", __func__, con);
2788 			BUG_ON(con->sock);
2789 			break;
2790 		}
2791 		if (con->state == CON_STATE_PREOPEN) {
2792 			dout("%s: con %p PREOPEN\n", __func__, con);
2793 			BUG_ON(con->sock);
2794 		}
2795 
2796 		ret = try_read(con);
2797 		if (ret < 0) {
2798 			if (ret == -EAGAIN)
2799 				continue;
2800 			con->error_msg = "socket error on read";
2801 			fault = true;
2802 			break;
2803 		}
2804 
2805 		ret = try_write(con);
2806 		if (ret < 0) {
2807 			if (ret == -EAGAIN)
2808 				continue;
2809 			con->error_msg = "socket error on write";
2810 			fault = true;
2811 		}
2812 
2813 		break;	/* If we make it to here, we're done */
2814 	}
2815 	if (fault)
2816 		con_fault(con);
2817 	mutex_unlock(&con->mutex);
2818 
2819 	if (fault)
2820 		con_fault_finish(con);
2821 
2822 	con->ops->put(con);
2823 }
2824 
2825 /*
2826  * Generic error/fault handler.  A retry mechanism is used with
2827  * exponential backoff
2828  */
2829 static void con_fault(struct ceph_connection *con)
2830 {
2831 	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2832 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2833 	dout("fault %p state %lu to peer %s\n",
2834 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2835 
2836 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2837 	       con->state != CON_STATE_NEGOTIATING &&
2838 	       con->state != CON_STATE_OPEN);
2839 
2840 	con_close_socket(con);
2841 
2842 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2843 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2844 		con->state = CON_STATE_CLOSED;
2845 		return;
2846 	}
2847 
2848 	if (con->in_msg) {
2849 		BUG_ON(con->in_msg->con != con);
2850 		con->in_msg->con = NULL;
2851 		ceph_msg_put(con->in_msg);
2852 		con->in_msg = NULL;
2853 		con->ops->put(con);
2854 	}
2855 
2856 	/* Requeue anything that hasn't been acked */
2857 	list_splice_init(&con->out_sent, &con->out_queue);
2858 
2859 	/* If there are no messages queued or keepalive pending, place
2860 	 * the connection in a STANDBY state */
2861 	if (list_empty(&con->out_queue) &&
2862 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2863 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2864 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2865 		con->state = CON_STATE_STANDBY;
2866 	} else {
2867 		/* retry after a delay. */
2868 		con->state = CON_STATE_PREOPEN;
2869 		if (con->delay == 0)
2870 			con->delay = BASE_DELAY_INTERVAL;
2871 		else if (con->delay < MAX_DELAY_INTERVAL)
2872 			con->delay *= 2;
2873 		con_flag_set(con, CON_FLAG_BACKOFF);
2874 		queue_con(con);
2875 	}
2876 }
2877 
2878 
2879 
2880 /*
2881  * initialize a new messenger instance
2882  */
2883 void ceph_messenger_init(struct ceph_messenger *msgr,
2884 			struct ceph_entity_addr *myaddr,
2885 			u64 supported_features,
2886 			u64 required_features,
2887 			bool nocrc)
2888 {
2889 	msgr->supported_features = supported_features;
2890 	msgr->required_features = required_features;
2891 
2892 	spin_lock_init(&msgr->global_seq_lock);
2893 
2894 	if (myaddr)
2895 		msgr->inst.addr = *myaddr;
2896 
2897 	/* select a random nonce */
2898 	msgr->inst.addr.type = 0;
2899 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2900 	encode_my_addr(msgr);
2901 	msgr->nocrc = nocrc;
2902 
2903 	atomic_set(&msgr->stopping, 0);
2904 
2905 	dout("%s %p\n", __func__, msgr);
2906 }
2907 EXPORT_SYMBOL(ceph_messenger_init);
2908 
2909 static void clear_standby(struct ceph_connection *con)
2910 {
2911 	/* come back from STANDBY? */
2912 	if (con->state == CON_STATE_STANDBY) {
2913 		dout("clear_standby %p and ++connect_seq\n", con);
2914 		con->state = CON_STATE_PREOPEN;
2915 		con->connect_seq++;
2916 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2917 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2918 	}
2919 }
2920 
2921 /*
2922  * Queue up an outgoing message on the given connection.
2923  */
2924 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2925 {
2926 	/* set src+dst */
2927 	msg->hdr.src = con->msgr->inst.name;
2928 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2929 	msg->needs_out_seq = true;
2930 
2931 	mutex_lock(&con->mutex);
2932 
2933 	if (con->state == CON_STATE_CLOSED) {
2934 		dout("con_send %p closed, dropping %p\n", con, msg);
2935 		ceph_msg_put(msg);
2936 		mutex_unlock(&con->mutex);
2937 		return;
2938 	}
2939 
2940 	BUG_ON(msg->con != NULL);
2941 	msg->con = con->ops->get(con);
2942 	BUG_ON(msg->con == NULL);
2943 
2944 	BUG_ON(!list_empty(&msg->list_head));
2945 	list_add_tail(&msg->list_head, &con->out_queue);
2946 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2947 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2948 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2949 	     le32_to_cpu(msg->hdr.front_len),
2950 	     le32_to_cpu(msg->hdr.middle_len),
2951 	     le32_to_cpu(msg->hdr.data_len));
2952 
2953 	clear_standby(con);
2954 	mutex_unlock(&con->mutex);
2955 
2956 	/* if there wasn't anything waiting to send before, queue
2957 	 * new work */
2958 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2959 		queue_con(con);
2960 }
2961 EXPORT_SYMBOL(ceph_con_send);
2962 
2963 /*
2964  * Revoke a message that was previously queued for send
2965  */
2966 void ceph_msg_revoke(struct ceph_msg *msg)
2967 {
2968 	struct ceph_connection *con = msg->con;
2969 
2970 	if (!con)
2971 		return;		/* Message not in our possession */
2972 
2973 	mutex_lock(&con->mutex);
2974 	if (!list_empty(&msg->list_head)) {
2975 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2976 		list_del_init(&msg->list_head);
2977 		BUG_ON(msg->con == NULL);
2978 		msg->con->ops->put(msg->con);
2979 		msg->con = NULL;
2980 		msg->hdr.seq = 0;
2981 
2982 		ceph_msg_put(msg);
2983 	}
2984 	if (con->out_msg == msg) {
2985 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2986 		con->out_msg = NULL;
2987 		if (con->out_kvec_is_msg) {
2988 			con->out_skip = con->out_kvec_bytes;
2989 			con->out_kvec_is_msg = false;
2990 		}
2991 		msg->hdr.seq = 0;
2992 
2993 		ceph_msg_put(msg);
2994 	}
2995 	mutex_unlock(&con->mutex);
2996 }
2997 
2998 /*
2999  * Revoke a message that we may be reading data into
3000  */
3001 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3002 {
3003 	struct ceph_connection *con;
3004 
3005 	BUG_ON(msg == NULL);
3006 	if (!msg->con) {
3007 		dout("%s msg %p null con\n", __func__, msg);
3008 
3009 		return;		/* Message not in our possession */
3010 	}
3011 
3012 	con = msg->con;
3013 	mutex_lock(&con->mutex);
3014 	if (con->in_msg == msg) {
3015 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3016 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3017 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3018 
3019 		/* skip rest of message */
3020 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3021 		con->in_base_pos = con->in_base_pos -
3022 				sizeof(struct ceph_msg_header) -
3023 				front_len -
3024 				middle_len -
3025 				data_len -
3026 				sizeof(struct ceph_msg_footer);
3027 		ceph_msg_put(con->in_msg);
3028 		con->in_msg = NULL;
3029 		con->in_tag = CEPH_MSGR_TAG_READY;
3030 		con->in_seq++;
3031 	} else {
3032 		dout("%s %p in_msg %p msg %p no-op\n",
3033 		     __func__, con, con->in_msg, msg);
3034 	}
3035 	mutex_unlock(&con->mutex);
3036 }
3037 
3038 /*
3039  * Queue a keepalive byte to ensure the tcp connection is alive.
3040  */
3041 void ceph_con_keepalive(struct ceph_connection *con)
3042 {
3043 	dout("con_keepalive %p\n", con);
3044 	mutex_lock(&con->mutex);
3045 	clear_standby(con);
3046 	mutex_unlock(&con->mutex);
3047 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3048 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3049 		queue_con(con);
3050 }
3051 EXPORT_SYMBOL(ceph_con_keepalive);
3052 
3053 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3054 {
3055 	struct ceph_msg_data *data;
3056 
3057 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3058 		return NULL;
3059 
3060 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3061 	if (data)
3062 		data->type = type;
3063 	INIT_LIST_HEAD(&data->links);
3064 
3065 	return data;
3066 }
3067 
3068 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3069 {
3070 	if (!data)
3071 		return;
3072 
3073 	WARN_ON(!list_empty(&data->links));
3074 	if (data->type == CEPH_MSG_DATA_PAGELIST) {
3075 		ceph_pagelist_release(data->pagelist);
3076 		kfree(data->pagelist);
3077 	}
3078 	kmem_cache_free(ceph_msg_data_cache, data);
3079 }
3080 
3081 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3082 		size_t length, size_t alignment)
3083 {
3084 	struct ceph_msg_data *data;
3085 
3086 	BUG_ON(!pages);
3087 	BUG_ON(!length);
3088 
3089 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3090 	BUG_ON(!data);
3091 	data->pages = pages;
3092 	data->length = length;
3093 	data->alignment = alignment & ~PAGE_MASK;
3094 
3095 	list_add_tail(&data->links, &msg->data);
3096 	msg->data_length += length;
3097 }
3098 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3099 
3100 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3101 				struct ceph_pagelist *pagelist)
3102 {
3103 	struct ceph_msg_data *data;
3104 
3105 	BUG_ON(!pagelist);
3106 	BUG_ON(!pagelist->length);
3107 
3108 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3109 	BUG_ON(!data);
3110 	data->pagelist = pagelist;
3111 
3112 	list_add_tail(&data->links, &msg->data);
3113 	msg->data_length += pagelist->length;
3114 }
3115 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3116 
3117 #ifdef	CONFIG_BLOCK
3118 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3119 		size_t length)
3120 {
3121 	struct ceph_msg_data *data;
3122 
3123 	BUG_ON(!bio);
3124 
3125 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3126 	BUG_ON(!data);
3127 	data->bio = bio;
3128 	data->bio_length = length;
3129 
3130 	list_add_tail(&data->links, &msg->data);
3131 	msg->data_length += length;
3132 }
3133 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3134 #endif	/* CONFIG_BLOCK */
3135 
3136 /*
3137  * construct a new message with given type, size
3138  * the new msg has a ref count of 1.
3139  */
3140 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3141 			      bool can_fail)
3142 {
3143 	struct ceph_msg *m;
3144 
3145 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3146 	if (m == NULL)
3147 		goto out;
3148 
3149 	m->hdr.type = cpu_to_le16(type);
3150 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3151 	m->hdr.front_len = cpu_to_le32(front_len);
3152 
3153 	INIT_LIST_HEAD(&m->list_head);
3154 	kref_init(&m->kref);
3155 	INIT_LIST_HEAD(&m->data);
3156 
3157 	/* front */
3158 	if (front_len) {
3159 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3160 		if (m->front.iov_base == NULL) {
3161 			dout("ceph_msg_new can't allocate %d bytes\n",
3162 			     front_len);
3163 			goto out2;
3164 		}
3165 	} else {
3166 		m->front.iov_base = NULL;
3167 	}
3168 	m->front_alloc_len = m->front.iov_len = front_len;
3169 
3170 	dout("ceph_msg_new %p front %d\n", m, front_len);
3171 	return m;
3172 
3173 out2:
3174 	ceph_msg_put(m);
3175 out:
3176 	if (!can_fail) {
3177 		pr_err("msg_new can't create type %d front %d\n", type,
3178 		       front_len);
3179 		WARN_ON(1);
3180 	} else {
3181 		dout("msg_new can't create type %d front %d\n", type,
3182 		     front_len);
3183 	}
3184 	return NULL;
3185 }
3186 EXPORT_SYMBOL(ceph_msg_new);
3187 
3188 /*
3189  * Allocate "middle" portion of a message, if it is needed and wasn't
3190  * allocated by alloc_msg.  This allows us to read a small fixed-size
3191  * per-type header in the front and then gracefully fail (i.e.,
3192  * propagate the error to the caller based on info in the front) when
3193  * the middle is too large.
3194  */
3195 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3196 {
3197 	int type = le16_to_cpu(msg->hdr.type);
3198 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3199 
3200 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3201 	     ceph_msg_type_name(type), middle_len);
3202 	BUG_ON(!middle_len);
3203 	BUG_ON(msg->middle);
3204 
3205 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3206 	if (!msg->middle)
3207 		return -ENOMEM;
3208 	return 0;
3209 }
3210 
3211 /*
3212  * Allocate a message for receiving an incoming message on a
3213  * connection, and save the result in con->in_msg.  Uses the
3214  * connection's private alloc_msg op if available.
3215  *
3216  * Returns 0 on success, or a negative error code.
3217  *
3218  * On success, if we set *skip = 1:
3219  *  - the next message should be skipped and ignored.
3220  *  - con->in_msg == NULL
3221  * or if we set *skip = 0:
3222  *  - con->in_msg is non-null.
3223  * On error (ENOMEM, EAGAIN, ...),
3224  *  - con->in_msg == NULL
3225  */
3226 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3227 {
3228 	struct ceph_msg_header *hdr = &con->in_hdr;
3229 	int middle_len = le32_to_cpu(hdr->middle_len);
3230 	struct ceph_msg *msg;
3231 	int ret = 0;
3232 
3233 	BUG_ON(con->in_msg != NULL);
3234 	BUG_ON(!con->ops->alloc_msg);
3235 
3236 	mutex_unlock(&con->mutex);
3237 	msg = con->ops->alloc_msg(con, hdr, skip);
3238 	mutex_lock(&con->mutex);
3239 	if (con->state != CON_STATE_OPEN) {
3240 		if (msg)
3241 			ceph_msg_put(msg);
3242 		return -EAGAIN;
3243 	}
3244 	if (msg) {
3245 		BUG_ON(*skip);
3246 		con->in_msg = msg;
3247 		con->in_msg->con = con->ops->get(con);
3248 		BUG_ON(con->in_msg->con == NULL);
3249 	} else {
3250 		/*
3251 		 * Null message pointer means either we should skip
3252 		 * this message or we couldn't allocate memory.  The
3253 		 * former is not an error.
3254 		 */
3255 		if (*skip)
3256 			return 0;
3257 		con->error_msg = "error allocating memory for incoming message";
3258 
3259 		return -ENOMEM;
3260 	}
3261 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3262 
3263 	if (middle_len && !con->in_msg->middle) {
3264 		ret = ceph_alloc_middle(con, con->in_msg);
3265 		if (ret < 0) {
3266 			ceph_msg_put(con->in_msg);
3267 			con->in_msg = NULL;
3268 		}
3269 	}
3270 
3271 	return ret;
3272 }
3273 
3274 
3275 /*
3276  * Free a generically kmalloc'd message.
3277  */
3278 static void ceph_msg_free(struct ceph_msg *m)
3279 {
3280 	dout("%s %p\n", __func__, m);
3281 	ceph_kvfree(m->front.iov_base);
3282 	kmem_cache_free(ceph_msg_cache, m);
3283 }
3284 
3285 static void ceph_msg_release(struct kref *kref)
3286 {
3287 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3288 	LIST_HEAD(data);
3289 	struct list_head *links;
3290 	struct list_head *next;
3291 
3292 	dout("%s %p\n", __func__, m);
3293 	WARN_ON(!list_empty(&m->list_head));
3294 
3295 	/* drop middle, data, if any */
3296 	if (m->middle) {
3297 		ceph_buffer_put(m->middle);
3298 		m->middle = NULL;
3299 	}
3300 
3301 	list_splice_init(&m->data, &data);
3302 	list_for_each_safe(links, next, &data) {
3303 		struct ceph_msg_data *data;
3304 
3305 		data = list_entry(links, struct ceph_msg_data, links);
3306 		list_del_init(links);
3307 		ceph_msg_data_destroy(data);
3308 	}
3309 	m->data_length = 0;
3310 
3311 	if (m->pool)
3312 		ceph_msgpool_put(m->pool, m);
3313 	else
3314 		ceph_msg_free(m);
3315 }
3316 
3317 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3318 {
3319 	dout("%s %p (was %d)\n", __func__, msg,
3320 	     atomic_read(&msg->kref.refcount));
3321 	kref_get(&msg->kref);
3322 	return msg;
3323 }
3324 EXPORT_SYMBOL(ceph_msg_get);
3325 
3326 void ceph_msg_put(struct ceph_msg *msg)
3327 {
3328 	dout("%s %p (was %d)\n", __func__, msg,
3329 	     atomic_read(&msg->kref.refcount));
3330 	kref_put(&msg->kref, ceph_msg_release);
3331 }
3332 EXPORT_SYMBOL(ceph_msg_put);
3333 
3334 void ceph_msg_dump(struct ceph_msg *msg)
3335 {
3336 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3337 		 msg->front_alloc_len, msg->data_length);
3338 	print_hex_dump(KERN_DEBUG, "header: ",
3339 		       DUMP_PREFIX_OFFSET, 16, 1,
3340 		       &msg->hdr, sizeof(msg->hdr), true);
3341 	print_hex_dump(KERN_DEBUG, " front: ",
3342 		       DUMP_PREFIX_OFFSET, 16, 1,
3343 		       msg->front.iov_base, msg->front.iov_len, true);
3344 	if (msg->middle)
3345 		print_hex_dump(KERN_DEBUG, "middle: ",
3346 			       DUMP_PREFIX_OFFSET, 16, 1,
3347 			       msg->middle->vec.iov_base,
3348 			       msg->middle->vec.iov_len, true);
3349 	print_hex_dump(KERN_DEBUG, "footer: ",
3350 		       DUMP_PREFIX_OFFSET, 16, 1,
3351 		       &msg->footer, sizeof(msg->footer), true);
3352 }
3353 EXPORT_SYMBOL(ceph_msg_dump);
3354