1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/ceph_features.h> 19 #include <linux/ceph/libceph.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/export.h> 24 25 #define list_entry_next(pos, member) \ 26 list_entry(pos->member.next, typeof(*pos), member) 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void cancel_con(struct ceph_connection *con); 178 static void con_work(struct work_struct *); 179 static void con_fault(struct ceph_connection *con); 180 181 /* 182 * Nicely render a sockaddr as a string. An array of formatted 183 * strings is used, to approximate reentrancy. 184 */ 185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 189 190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 191 static atomic_t addr_str_seq = ATOMIC_INIT(0); 192 193 static struct page *zero_page; /* used in certain error cases */ 194 195 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 196 { 197 int i; 198 char *s; 199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 201 202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 203 s = addr_str[i]; 204 205 switch (ss->ss_family) { 206 case AF_INET: 207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 208 ntohs(in4->sin_port)); 209 break; 210 211 case AF_INET6: 212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 213 ntohs(in6->sin6_port)); 214 break; 215 216 default: 217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 218 ss->ss_family); 219 } 220 221 return s; 222 } 223 EXPORT_SYMBOL(ceph_pr_addr); 224 225 static void encode_my_addr(struct ceph_messenger *msgr) 226 { 227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 228 ceph_encode_addr(&msgr->my_enc_addr); 229 } 230 231 /* 232 * work queue for all reading and writing to/from the socket. 233 */ 234 static struct workqueue_struct *ceph_msgr_wq; 235 236 static int ceph_msgr_slab_init(void) 237 { 238 BUG_ON(ceph_msg_cache); 239 ceph_msg_cache = kmem_cache_create("ceph_msg", 240 sizeof (struct ceph_msg), 241 __alignof__(struct ceph_msg), 0, NULL); 242 243 if (!ceph_msg_cache) 244 return -ENOMEM; 245 246 BUG_ON(ceph_msg_data_cache); 247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 248 sizeof (struct ceph_msg_data), 249 __alignof__(struct ceph_msg_data), 250 0, NULL); 251 if (ceph_msg_data_cache) 252 return 0; 253 254 kmem_cache_destroy(ceph_msg_cache); 255 ceph_msg_cache = NULL; 256 257 return -ENOMEM; 258 } 259 260 static void ceph_msgr_slab_exit(void) 261 { 262 BUG_ON(!ceph_msg_data_cache); 263 kmem_cache_destroy(ceph_msg_data_cache); 264 ceph_msg_data_cache = NULL; 265 266 BUG_ON(!ceph_msg_cache); 267 kmem_cache_destroy(ceph_msg_cache); 268 ceph_msg_cache = NULL; 269 } 270 271 static void _ceph_msgr_exit(void) 272 { 273 if (ceph_msgr_wq) { 274 destroy_workqueue(ceph_msgr_wq); 275 ceph_msgr_wq = NULL; 276 } 277 278 ceph_msgr_slab_exit(); 279 280 BUG_ON(zero_page == NULL); 281 kunmap(zero_page); 282 page_cache_release(zero_page); 283 zero_page = NULL; 284 } 285 286 int ceph_msgr_init(void) 287 { 288 BUG_ON(zero_page != NULL); 289 zero_page = ZERO_PAGE(0); 290 page_cache_get(zero_page); 291 292 if (ceph_msgr_slab_init()) 293 return -ENOMEM; 294 295 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0); 296 if (ceph_msgr_wq) 297 return 0; 298 299 pr_err("msgr_init failed to create workqueue\n"); 300 _ceph_msgr_exit(); 301 302 return -ENOMEM; 303 } 304 EXPORT_SYMBOL(ceph_msgr_init); 305 306 void ceph_msgr_exit(void) 307 { 308 BUG_ON(ceph_msgr_wq == NULL); 309 310 _ceph_msgr_exit(); 311 } 312 EXPORT_SYMBOL(ceph_msgr_exit); 313 314 void ceph_msgr_flush(void) 315 { 316 flush_workqueue(ceph_msgr_wq); 317 } 318 EXPORT_SYMBOL(ceph_msgr_flush); 319 320 /* Connection socket state transition functions */ 321 322 static void con_sock_state_init(struct ceph_connection *con) 323 { 324 int old_state; 325 326 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 327 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 328 printk("%s: unexpected old state %d\n", __func__, old_state); 329 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 330 CON_SOCK_STATE_CLOSED); 331 } 332 333 static void con_sock_state_connecting(struct ceph_connection *con) 334 { 335 int old_state; 336 337 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 338 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 339 printk("%s: unexpected old state %d\n", __func__, old_state); 340 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 341 CON_SOCK_STATE_CONNECTING); 342 } 343 344 static void con_sock_state_connected(struct ceph_connection *con) 345 { 346 int old_state; 347 348 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 349 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 350 printk("%s: unexpected old state %d\n", __func__, old_state); 351 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 352 CON_SOCK_STATE_CONNECTED); 353 } 354 355 static void con_sock_state_closing(struct ceph_connection *con) 356 { 357 int old_state; 358 359 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 360 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 361 old_state != CON_SOCK_STATE_CONNECTED && 362 old_state != CON_SOCK_STATE_CLOSING)) 363 printk("%s: unexpected old state %d\n", __func__, old_state); 364 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 365 CON_SOCK_STATE_CLOSING); 366 } 367 368 static void con_sock_state_closed(struct ceph_connection *con) 369 { 370 int old_state; 371 372 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 373 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 374 old_state != CON_SOCK_STATE_CLOSING && 375 old_state != CON_SOCK_STATE_CONNECTING && 376 old_state != CON_SOCK_STATE_CLOSED)) 377 printk("%s: unexpected old state %d\n", __func__, old_state); 378 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 379 CON_SOCK_STATE_CLOSED); 380 } 381 382 /* 383 * socket callback functions 384 */ 385 386 /* data available on socket, or listen socket received a connect */ 387 static void ceph_sock_data_ready(struct sock *sk) 388 { 389 struct ceph_connection *con = sk->sk_user_data; 390 if (atomic_read(&con->msgr->stopping)) { 391 return; 392 } 393 394 if (sk->sk_state != TCP_CLOSE_WAIT) { 395 dout("%s on %p state = %lu, queueing work\n", __func__, 396 con, con->state); 397 queue_con(con); 398 } 399 } 400 401 /* socket has buffer space for writing */ 402 static void ceph_sock_write_space(struct sock *sk) 403 { 404 struct ceph_connection *con = sk->sk_user_data; 405 406 /* only queue to workqueue if there is data we want to write, 407 * and there is sufficient space in the socket buffer to accept 408 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 409 * doesn't get called again until try_write() fills the socket 410 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 411 * and net/core/stream.c:sk_stream_write_space(). 412 */ 413 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 414 if (sk_stream_is_writeable(sk)) { 415 dout("%s %p queueing write work\n", __func__, con); 416 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 417 queue_con(con); 418 } 419 } else { 420 dout("%s %p nothing to write\n", __func__, con); 421 } 422 } 423 424 /* socket's state has changed */ 425 static void ceph_sock_state_change(struct sock *sk) 426 { 427 struct ceph_connection *con = sk->sk_user_data; 428 429 dout("%s %p state = %lu sk_state = %u\n", __func__, 430 con, con->state, sk->sk_state); 431 432 switch (sk->sk_state) { 433 case TCP_CLOSE: 434 dout("%s TCP_CLOSE\n", __func__); 435 case TCP_CLOSE_WAIT: 436 dout("%s TCP_CLOSE_WAIT\n", __func__); 437 con_sock_state_closing(con); 438 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 439 queue_con(con); 440 break; 441 case TCP_ESTABLISHED: 442 dout("%s TCP_ESTABLISHED\n", __func__); 443 con_sock_state_connected(con); 444 queue_con(con); 445 break; 446 default: /* Everything else is uninteresting */ 447 break; 448 } 449 } 450 451 /* 452 * set up socket callbacks 453 */ 454 static void set_sock_callbacks(struct socket *sock, 455 struct ceph_connection *con) 456 { 457 struct sock *sk = sock->sk; 458 sk->sk_user_data = con; 459 sk->sk_data_ready = ceph_sock_data_ready; 460 sk->sk_write_space = ceph_sock_write_space; 461 sk->sk_state_change = ceph_sock_state_change; 462 } 463 464 465 /* 466 * socket helpers 467 */ 468 469 /* 470 * initiate connection to a remote socket. 471 */ 472 static int ceph_tcp_connect(struct ceph_connection *con) 473 { 474 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 475 struct socket *sock; 476 int ret; 477 478 BUG_ON(con->sock); 479 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 480 IPPROTO_TCP, &sock); 481 if (ret) 482 return ret; 483 sock->sk->sk_allocation = GFP_NOFS; 484 485 #ifdef CONFIG_LOCKDEP 486 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 487 #endif 488 489 set_sock_callbacks(sock, con); 490 491 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 492 493 con_sock_state_connecting(con); 494 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 495 O_NONBLOCK); 496 if (ret == -EINPROGRESS) { 497 dout("connect %s EINPROGRESS sk_state = %u\n", 498 ceph_pr_addr(&con->peer_addr.in_addr), 499 sock->sk->sk_state); 500 } else if (ret < 0) { 501 pr_err("connect %s error %d\n", 502 ceph_pr_addr(&con->peer_addr.in_addr), ret); 503 sock_release(sock); 504 con->error_msg = "connect error"; 505 506 return ret; 507 } 508 con->sock = sock; 509 return 0; 510 } 511 512 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 513 { 514 struct kvec iov = {buf, len}; 515 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 516 int r; 517 518 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 519 if (r == -EAGAIN) 520 r = 0; 521 return r; 522 } 523 524 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 525 int page_offset, size_t length) 526 { 527 void *kaddr; 528 int ret; 529 530 BUG_ON(page_offset + length > PAGE_SIZE); 531 532 kaddr = kmap(page); 533 BUG_ON(!kaddr); 534 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 535 kunmap(page); 536 537 return ret; 538 } 539 540 /* 541 * write something. @more is true if caller will be sending more data 542 * shortly. 543 */ 544 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 545 size_t kvlen, size_t len, int more) 546 { 547 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 548 int r; 549 550 if (more) 551 msg.msg_flags |= MSG_MORE; 552 else 553 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 554 555 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 556 if (r == -EAGAIN) 557 r = 0; 558 return r; 559 } 560 561 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 562 int offset, size_t size, bool more) 563 { 564 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 565 int ret; 566 567 ret = kernel_sendpage(sock, page, offset, size, flags); 568 if (ret == -EAGAIN) 569 ret = 0; 570 571 return ret; 572 } 573 574 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 575 int offset, size_t size, bool more) 576 { 577 int ret; 578 struct kvec iov; 579 580 /* sendpage cannot properly handle pages with page_count == 0, 581 * we need to fallback to sendmsg if that's the case */ 582 if (page_count(page) >= 1) 583 return __ceph_tcp_sendpage(sock, page, offset, size, more); 584 585 iov.iov_base = kmap(page) + offset; 586 iov.iov_len = size; 587 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 588 kunmap(page); 589 590 return ret; 591 } 592 593 /* 594 * Shutdown/close the socket for the given connection. 595 */ 596 static int con_close_socket(struct ceph_connection *con) 597 { 598 int rc = 0; 599 600 dout("con_close_socket on %p sock %p\n", con, con->sock); 601 if (con->sock) { 602 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 603 sock_release(con->sock); 604 con->sock = NULL; 605 } 606 607 /* 608 * Forcibly clear the SOCK_CLOSED flag. It gets set 609 * independent of the connection mutex, and we could have 610 * received a socket close event before we had the chance to 611 * shut the socket down. 612 */ 613 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 614 615 con_sock_state_closed(con); 616 return rc; 617 } 618 619 /* 620 * Reset a connection. Discard all incoming and outgoing messages 621 * and clear *_seq state. 622 */ 623 static void ceph_msg_remove(struct ceph_msg *msg) 624 { 625 list_del_init(&msg->list_head); 626 BUG_ON(msg->con == NULL); 627 msg->con->ops->put(msg->con); 628 msg->con = NULL; 629 630 ceph_msg_put(msg); 631 } 632 static void ceph_msg_remove_list(struct list_head *head) 633 { 634 while (!list_empty(head)) { 635 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 636 list_head); 637 ceph_msg_remove(msg); 638 } 639 } 640 641 static void reset_connection(struct ceph_connection *con) 642 { 643 /* reset connection, out_queue, msg_ and connect_seq */ 644 /* discard existing out_queue and msg_seq */ 645 dout("reset_connection %p\n", con); 646 ceph_msg_remove_list(&con->out_queue); 647 ceph_msg_remove_list(&con->out_sent); 648 649 if (con->in_msg) { 650 BUG_ON(con->in_msg->con != con); 651 con->in_msg->con = NULL; 652 ceph_msg_put(con->in_msg); 653 con->in_msg = NULL; 654 con->ops->put(con); 655 } 656 657 con->connect_seq = 0; 658 con->out_seq = 0; 659 if (con->out_msg) { 660 ceph_msg_put(con->out_msg); 661 con->out_msg = NULL; 662 } 663 con->in_seq = 0; 664 con->in_seq_acked = 0; 665 } 666 667 /* 668 * mark a peer down. drop any open connections. 669 */ 670 void ceph_con_close(struct ceph_connection *con) 671 { 672 mutex_lock(&con->mutex); 673 dout("con_close %p peer %s\n", con, 674 ceph_pr_addr(&con->peer_addr.in_addr)); 675 con->state = CON_STATE_CLOSED; 676 677 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 678 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 679 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 680 con_flag_clear(con, CON_FLAG_BACKOFF); 681 682 reset_connection(con); 683 con->peer_global_seq = 0; 684 cancel_con(con); 685 con_close_socket(con); 686 mutex_unlock(&con->mutex); 687 } 688 EXPORT_SYMBOL(ceph_con_close); 689 690 /* 691 * Reopen a closed connection, with a new peer address. 692 */ 693 void ceph_con_open(struct ceph_connection *con, 694 __u8 entity_type, __u64 entity_num, 695 struct ceph_entity_addr *addr) 696 { 697 mutex_lock(&con->mutex); 698 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 699 700 WARN_ON(con->state != CON_STATE_CLOSED); 701 con->state = CON_STATE_PREOPEN; 702 703 con->peer_name.type = (__u8) entity_type; 704 con->peer_name.num = cpu_to_le64(entity_num); 705 706 memcpy(&con->peer_addr, addr, sizeof(*addr)); 707 con->delay = 0; /* reset backoff memory */ 708 mutex_unlock(&con->mutex); 709 queue_con(con); 710 } 711 EXPORT_SYMBOL(ceph_con_open); 712 713 /* 714 * return true if this connection ever successfully opened 715 */ 716 bool ceph_con_opened(struct ceph_connection *con) 717 { 718 return con->connect_seq > 0; 719 } 720 721 /* 722 * initialize a new connection. 723 */ 724 void ceph_con_init(struct ceph_connection *con, void *private, 725 const struct ceph_connection_operations *ops, 726 struct ceph_messenger *msgr) 727 { 728 dout("con_init %p\n", con); 729 memset(con, 0, sizeof(*con)); 730 con->private = private; 731 con->ops = ops; 732 con->msgr = msgr; 733 734 con_sock_state_init(con); 735 736 mutex_init(&con->mutex); 737 INIT_LIST_HEAD(&con->out_queue); 738 INIT_LIST_HEAD(&con->out_sent); 739 INIT_DELAYED_WORK(&con->work, con_work); 740 741 con->state = CON_STATE_CLOSED; 742 } 743 EXPORT_SYMBOL(ceph_con_init); 744 745 746 /* 747 * We maintain a global counter to order connection attempts. Get 748 * a unique seq greater than @gt. 749 */ 750 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 751 { 752 u32 ret; 753 754 spin_lock(&msgr->global_seq_lock); 755 if (msgr->global_seq < gt) 756 msgr->global_seq = gt; 757 ret = ++msgr->global_seq; 758 spin_unlock(&msgr->global_seq_lock); 759 return ret; 760 } 761 762 static void con_out_kvec_reset(struct ceph_connection *con) 763 { 764 con->out_kvec_left = 0; 765 con->out_kvec_bytes = 0; 766 con->out_kvec_cur = &con->out_kvec[0]; 767 } 768 769 static void con_out_kvec_add(struct ceph_connection *con, 770 size_t size, void *data) 771 { 772 int index; 773 774 index = con->out_kvec_left; 775 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 776 777 con->out_kvec[index].iov_len = size; 778 con->out_kvec[index].iov_base = data; 779 con->out_kvec_left++; 780 con->out_kvec_bytes += size; 781 } 782 783 #ifdef CONFIG_BLOCK 784 785 /* 786 * For a bio data item, a piece is whatever remains of the next 787 * entry in the current bio iovec, or the first entry in the next 788 * bio in the list. 789 */ 790 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 791 size_t length) 792 { 793 struct ceph_msg_data *data = cursor->data; 794 struct bio *bio; 795 796 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 797 798 bio = data->bio; 799 BUG_ON(!bio); 800 801 cursor->resid = min(length, data->bio_length); 802 cursor->bio = bio; 803 cursor->bvec_iter = bio->bi_iter; 804 cursor->last_piece = 805 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 806 } 807 808 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 809 size_t *page_offset, 810 size_t *length) 811 { 812 struct ceph_msg_data *data = cursor->data; 813 struct bio *bio; 814 struct bio_vec bio_vec; 815 816 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 817 818 bio = cursor->bio; 819 BUG_ON(!bio); 820 821 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 822 823 *page_offset = (size_t) bio_vec.bv_offset; 824 BUG_ON(*page_offset >= PAGE_SIZE); 825 if (cursor->last_piece) /* pagelist offset is always 0 */ 826 *length = cursor->resid; 827 else 828 *length = (size_t) bio_vec.bv_len; 829 BUG_ON(*length > cursor->resid); 830 BUG_ON(*page_offset + *length > PAGE_SIZE); 831 832 return bio_vec.bv_page; 833 } 834 835 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 836 size_t bytes) 837 { 838 struct bio *bio; 839 struct bio_vec bio_vec; 840 841 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 842 843 bio = cursor->bio; 844 BUG_ON(!bio); 845 846 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 847 848 /* Advance the cursor offset */ 849 850 BUG_ON(cursor->resid < bytes); 851 cursor->resid -= bytes; 852 853 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 854 855 if (bytes < bio_vec.bv_len) 856 return false; /* more bytes to process in this segment */ 857 858 /* Move on to the next segment, and possibly the next bio */ 859 860 if (!cursor->bvec_iter.bi_size) { 861 bio = bio->bi_next; 862 cursor->bio = bio; 863 if (bio) 864 cursor->bvec_iter = bio->bi_iter; 865 else 866 memset(&cursor->bvec_iter, 0, 867 sizeof(cursor->bvec_iter)); 868 } 869 870 if (!cursor->last_piece) { 871 BUG_ON(!cursor->resid); 872 BUG_ON(!bio); 873 /* A short read is OK, so use <= rather than == */ 874 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 875 cursor->last_piece = true; 876 } 877 878 return true; 879 } 880 #endif /* CONFIG_BLOCK */ 881 882 /* 883 * For a page array, a piece comes from the first page in the array 884 * that has not already been fully consumed. 885 */ 886 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 887 size_t length) 888 { 889 struct ceph_msg_data *data = cursor->data; 890 int page_count; 891 892 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 893 894 BUG_ON(!data->pages); 895 BUG_ON(!data->length); 896 897 cursor->resid = min(length, data->length); 898 page_count = calc_pages_for(data->alignment, (u64)data->length); 899 cursor->page_offset = data->alignment & ~PAGE_MASK; 900 cursor->page_index = 0; 901 BUG_ON(page_count > (int)USHRT_MAX); 902 cursor->page_count = (unsigned short)page_count; 903 BUG_ON(length > SIZE_MAX - cursor->page_offset); 904 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 905 } 906 907 static struct page * 908 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 909 size_t *page_offset, size_t *length) 910 { 911 struct ceph_msg_data *data = cursor->data; 912 913 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 914 915 BUG_ON(cursor->page_index >= cursor->page_count); 916 BUG_ON(cursor->page_offset >= PAGE_SIZE); 917 918 *page_offset = cursor->page_offset; 919 if (cursor->last_piece) 920 *length = cursor->resid; 921 else 922 *length = PAGE_SIZE - *page_offset; 923 924 return data->pages[cursor->page_index]; 925 } 926 927 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 928 size_t bytes) 929 { 930 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 931 932 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 933 934 /* Advance the cursor page offset */ 935 936 cursor->resid -= bytes; 937 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 938 if (!bytes || cursor->page_offset) 939 return false; /* more bytes to process in the current page */ 940 941 if (!cursor->resid) 942 return false; /* no more data */ 943 944 /* Move on to the next page; offset is already at 0 */ 945 946 BUG_ON(cursor->page_index >= cursor->page_count); 947 cursor->page_index++; 948 cursor->last_piece = cursor->resid <= PAGE_SIZE; 949 950 return true; 951 } 952 953 /* 954 * For a pagelist, a piece is whatever remains to be consumed in the 955 * first page in the list, or the front of the next page. 956 */ 957 static void 958 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 959 size_t length) 960 { 961 struct ceph_msg_data *data = cursor->data; 962 struct ceph_pagelist *pagelist; 963 struct page *page; 964 965 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 966 967 pagelist = data->pagelist; 968 BUG_ON(!pagelist); 969 970 if (!length) 971 return; /* pagelist can be assigned but empty */ 972 973 BUG_ON(list_empty(&pagelist->head)); 974 page = list_first_entry(&pagelist->head, struct page, lru); 975 976 cursor->resid = min(length, pagelist->length); 977 cursor->page = page; 978 cursor->offset = 0; 979 cursor->last_piece = cursor->resid <= PAGE_SIZE; 980 } 981 982 static struct page * 983 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 984 size_t *page_offset, size_t *length) 985 { 986 struct ceph_msg_data *data = cursor->data; 987 struct ceph_pagelist *pagelist; 988 989 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 990 991 pagelist = data->pagelist; 992 BUG_ON(!pagelist); 993 994 BUG_ON(!cursor->page); 995 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 996 997 /* offset of first page in pagelist is always 0 */ 998 *page_offset = cursor->offset & ~PAGE_MASK; 999 if (cursor->last_piece) 1000 *length = cursor->resid; 1001 else 1002 *length = PAGE_SIZE - *page_offset; 1003 1004 return cursor->page; 1005 } 1006 1007 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1008 size_t bytes) 1009 { 1010 struct ceph_msg_data *data = cursor->data; 1011 struct ceph_pagelist *pagelist; 1012 1013 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1014 1015 pagelist = data->pagelist; 1016 BUG_ON(!pagelist); 1017 1018 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1019 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1020 1021 /* Advance the cursor offset */ 1022 1023 cursor->resid -= bytes; 1024 cursor->offset += bytes; 1025 /* offset of first page in pagelist is always 0 */ 1026 if (!bytes || cursor->offset & ~PAGE_MASK) 1027 return false; /* more bytes to process in the current page */ 1028 1029 if (!cursor->resid) 1030 return false; /* no more data */ 1031 1032 /* Move on to the next page */ 1033 1034 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1035 cursor->page = list_entry_next(cursor->page, lru); 1036 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1037 1038 return true; 1039 } 1040 1041 /* 1042 * Message data is handled (sent or received) in pieces, where each 1043 * piece resides on a single page. The network layer might not 1044 * consume an entire piece at once. A data item's cursor keeps 1045 * track of which piece is next to process and how much remains to 1046 * be processed in that piece. It also tracks whether the current 1047 * piece is the last one in the data item. 1048 */ 1049 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1050 { 1051 size_t length = cursor->total_resid; 1052 1053 switch (cursor->data->type) { 1054 case CEPH_MSG_DATA_PAGELIST: 1055 ceph_msg_data_pagelist_cursor_init(cursor, length); 1056 break; 1057 case CEPH_MSG_DATA_PAGES: 1058 ceph_msg_data_pages_cursor_init(cursor, length); 1059 break; 1060 #ifdef CONFIG_BLOCK 1061 case CEPH_MSG_DATA_BIO: 1062 ceph_msg_data_bio_cursor_init(cursor, length); 1063 break; 1064 #endif /* CONFIG_BLOCK */ 1065 case CEPH_MSG_DATA_NONE: 1066 default: 1067 /* BUG(); */ 1068 break; 1069 } 1070 cursor->need_crc = true; 1071 } 1072 1073 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1074 { 1075 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1076 struct ceph_msg_data *data; 1077 1078 BUG_ON(!length); 1079 BUG_ON(length > msg->data_length); 1080 BUG_ON(list_empty(&msg->data)); 1081 1082 cursor->data_head = &msg->data; 1083 cursor->total_resid = length; 1084 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1085 cursor->data = data; 1086 1087 __ceph_msg_data_cursor_init(cursor); 1088 } 1089 1090 /* 1091 * Return the page containing the next piece to process for a given 1092 * data item, and supply the page offset and length of that piece. 1093 * Indicate whether this is the last piece in this data item. 1094 */ 1095 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1096 size_t *page_offset, size_t *length, 1097 bool *last_piece) 1098 { 1099 struct page *page; 1100 1101 switch (cursor->data->type) { 1102 case CEPH_MSG_DATA_PAGELIST: 1103 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1104 break; 1105 case CEPH_MSG_DATA_PAGES: 1106 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1107 break; 1108 #ifdef CONFIG_BLOCK 1109 case CEPH_MSG_DATA_BIO: 1110 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1111 break; 1112 #endif /* CONFIG_BLOCK */ 1113 case CEPH_MSG_DATA_NONE: 1114 default: 1115 page = NULL; 1116 break; 1117 } 1118 BUG_ON(!page); 1119 BUG_ON(*page_offset + *length > PAGE_SIZE); 1120 BUG_ON(!*length); 1121 if (last_piece) 1122 *last_piece = cursor->last_piece; 1123 1124 return page; 1125 } 1126 1127 /* 1128 * Returns true if the result moves the cursor on to the next piece 1129 * of the data item. 1130 */ 1131 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1132 size_t bytes) 1133 { 1134 bool new_piece; 1135 1136 BUG_ON(bytes > cursor->resid); 1137 switch (cursor->data->type) { 1138 case CEPH_MSG_DATA_PAGELIST: 1139 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1140 break; 1141 case CEPH_MSG_DATA_PAGES: 1142 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1143 break; 1144 #ifdef CONFIG_BLOCK 1145 case CEPH_MSG_DATA_BIO: 1146 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1147 break; 1148 #endif /* CONFIG_BLOCK */ 1149 case CEPH_MSG_DATA_NONE: 1150 default: 1151 BUG(); 1152 break; 1153 } 1154 cursor->total_resid -= bytes; 1155 1156 if (!cursor->resid && cursor->total_resid) { 1157 WARN_ON(!cursor->last_piece); 1158 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1159 cursor->data = list_entry_next(cursor->data, links); 1160 __ceph_msg_data_cursor_init(cursor); 1161 new_piece = true; 1162 } 1163 cursor->need_crc = new_piece; 1164 1165 return new_piece; 1166 } 1167 1168 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1169 { 1170 BUG_ON(!msg); 1171 BUG_ON(!data_len); 1172 1173 /* Initialize data cursor */ 1174 1175 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1176 } 1177 1178 /* 1179 * Prepare footer for currently outgoing message, and finish things 1180 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1181 */ 1182 static void prepare_write_message_footer(struct ceph_connection *con) 1183 { 1184 struct ceph_msg *m = con->out_msg; 1185 int v = con->out_kvec_left; 1186 1187 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1188 1189 dout("prepare_write_message_footer %p\n", con); 1190 con->out_kvec_is_msg = true; 1191 con->out_kvec[v].iov_base = &m->footer; 1192 con->out_kvec[v].iov_len = sizeof(m->footer); 1193 con->out_kvec_bytes += sizeof(m->footer); 1194 con->out_kvec_left++; 1195 con->out_more = m->more_to_follow; 1196 con->out_msg_done = true; 1197 } 1198 1199 /* 1200 * Prepare headers for the next outgoing message. 1201 */ 1202 static void prepare_write_message(struct ceph_connection *con) 1203 { 1204 struct ceph_msg *m; 1205 u32 crc; 1206 1207 con_out_kvec_reset(con); 1208 con->out_kvec_is_msg = true; 1209 con->out_msg_done = false; 1210 1211 /* Sneak an ack in there first? If we can get it into the same 1212 * TCP packet that's a good thing. */ 1213 if (con->in_seq > con->in_seq_acked) { 1214 con->in_seq_acked = con->in_seq; 1215 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1216 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1217 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1218 &con->out_temp_ack); 1219 } 1220 1221 BUG_ON(list_empty(&con->out_queue)); 1222 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1223 con->out_msg = m; 1224 BUG_ON(m->con != con); 1225 1226 /* put message on sent list */ 1227 ceph_msg_get(m); 1228 list_move_tail(&m->list_head, &con->out_sent); 1229 1230 /* 1231 * only assign outgoing seq # if we haven't sent this message 1232 * yet. if it is requeued, resend with it's original seq. 1233 */ 1234 if (m->needs_out_seq) { 1235 m->hdr.seq = cpu_to_le64(++con->out_seq); 1236 m->needs_out_seq = false; 1237 } 1238 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1239 1240 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1241 m, con->out_seq, le16_to_cpu(m->hdr.type), 1242 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1243 m->data_length); 1244 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1245 1246 /* tag + hdr + front + middle */ 1247 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1248 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1249 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1250 1251 if (m->middle) 1252 con_out_kvec_add(con, m->middle->vec.iov_len, 1253 m->middle->vec.iov_base); 1254 1255 /* fill in crc (except data pages), footer */ 1256 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1257 con->out_msg->hdr.crc = cpu_to_le32(crc); 1258 con->out_msg->footer.flags = 0; 1259 1260 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1261 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1262 if (m->middle) { 1263 crc = crc32c(0, m->middle->vec.iov_base, 1264 m->middle->vec.iov_len); 1265 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1266 } else 1267 con->out_msg->footer.middle_crc = 0; 1268 dout("%s front_crc %u middle_crc %u\n", __func__, 1269 le32_to_cpu(con->out_msg->footer.front_crc), 1270 le32_to_cpu(con->out_msg->footer.middle_crc)); 1271 1272 /* is there a data payload? */ 1273 con->out_msg->footer.data_crc = 0; 1274 if (m->data_length) { 1275 prepare_message_data(con->out_msg, m->data_length); 1276 con->out_more = 1; /* data + footer will follow */ 1277 } else { 1278 /* no, queue up footer too and be done */ 1279 prepare_write_message_footer(con); 1280 } 1281 1282 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1283 } 1284 1285 /* 1286 * Prepare an ack. 1287 */ 1288 static void prepare_write_ack(struct ceph_connection *con) 1289 { 1290 dout("prepare_write_ack %p %llu -> %llu\n", con, 1291 con->in_seq_acked, con->in_seq); 1292 con->in_seq_acked = con->in_seq; 1293 1294 con_out_kvec_reset(con); 1295 1296 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1297 1298 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1299 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1300 &con->out_temp_ack); 1301 1302 con->out_more = 1; /* more will follow.. eventually.. */ 1303 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1304 } 1305 1306 /* 1307 * Prepare to share the seq during handshake 1308 */ 1309 static void prepare_write_seq(struct ceph_connection *con) 1310 { 1311 dout("prepare_write_seq %p %llu -> %llu\n", con, 1312 con->in_seq_acked, con->in_seq); 1313 con->in_seq_acked = con->in_seq; 1314 1315 con_out_kvec_reset(con); 1316 1317 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1318 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1319 &con->out_temp_ack); 1320 1321 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1322 } 1323 1324 /* 1325 * Prepare to write keepalive byte. 1326 */ 1327 static void prepare_write_keepalive(struct ceph_connection *con) 1328 { 1329 dout("prepare_write_keepalive %p\n", con); 1330 con_out_kvec_reset(con); 1331 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1332 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1333 } 1334 1335 /* 1336 * Connection negotiation. 1337 */ 1338 1339 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1340 int *auth_proto) 1341 { 1342 struct ceph_auth_handshake *auth; 1343 1344 if (!con->ops->get_authorizer) { 1345 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1346 con->out_connect.authorizer_len = 0; 1347 return NULL; 1348 } 1349 1350 /* Can't hold the mutex while getting authorizer */ 1351 mutex_unlock(&con->mutex); 1352 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1353 mutex_lock(&con->mutex); 1354 1355 if (IS_ERR(auth)) 1356 return auth; 1357 if (con->state != CON_STATE_NEGOTIATING) 1358 return ERR_PTR(-EAGAIN); 1359 1360 con->auth_reply_buf = auth->authorizer_reply_buf; 1361 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1362 return auth; 1363 } 1364 1365 /* 1366 * We connected to a peer and are saying hello. 1367 */ 1368 static void prepare_write_banner(struct ceph_connection *con) 1369 { 1370 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1371 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1372 &con->msgr->my_enc_addr); 1373 1374 con->out_more = 0; 1375 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1376 } 1377 1378 static int prepare_write_connect(struct ceph_connection *con) 1379 { 1380 unsigned int global_seq = get_global_seq(con->msgr, 0); 1381 int proto; 1382 int auth_proto; 1383 struct ceph_auth_handshake *auth; 1384 1385 switch (con->peer_name.type) { 1386 case CEPH_ENTITY_TYPE_MON: 1387 proto = CEPH_MONC_PROTOCOL; 1388 break; 1389 case CEPH_ENTITY_TYPE_OSD: 1390 proto = CEPH_OSDC_PROTOCOL; 1391 break; 1392 case CEPH_ENTITY_TYPE_MDS: 1393 proto = CEPH_MDSC_PROTOCOL; 1394 break; 1395 default: 1396 BUG(); 1397 } 1398 1399 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1400 con->connect_seq, global_seq, proto); 1401 1402 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1403 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1404 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1405 con->out_connect.global_seq = cpu_to_le32(global_seq); 1406 con->out_connect.protocol_version = cpu_to_le32(proto); 1407 con->out_connect.flags = 0; 1408 1409 auth_proto = CEPH_AUTH_UNKNOWN; 1410 auth = get_connect_authorizer(con, &auth_proto); 1411 if (IS_ERR(auth)) 1412 return PTR_ERR(auth); 1413 1414 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1415 con->out_connect.authorizer_len = auth ? 1416 cpu_to_le32(auth->authorizer_buf_len) : 0; 1417 1418 con_out_kvec_add(con, sizeof (con->out_connect), 1419 &con->out_connect); 1420 if (auth && auth->authorizer_buf_len) 1421 con_out_kvec_add(con, auth->authorizer_buf_len, 1422 auth->authorizer_buf); 1423 1424 con->out_more = 0; 1425 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1426 1427 return 0; 1428 } 1429 1430 /* 1431 * write as much of pending kvecs to the socket as we can. 1432 * 1 -> done 1433 * 0 -> socket full, but more to do 1434 * <0 -> error 1435 */ 1436 static int write_partial_kvec(struct ceph_connection *con) 1437 { 1438 int ret; 1439 1440 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1441 while (con->out_kvec_bytes > 0) { 1442 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1443 con->out_kvec_left, con->out_kvec_bytes, 1444 con->out_more); 1445 if (ret <= 0) 1446 goto out; 1447 con->out_kvec_bytes -= ret; 1448 if (con->out_kvec_bytes == 0) 1449 break; /* done */ 1450 1451 /* account for full iov entries consumed */ 1452 while (ret >= con->out_kvec_cur->iov_len) { 1453 BUG_ON(!con->out_kvec_left); 1454 ret -= con->out_kvec_cur->iov_len; 1455 con->out_kvec_cur++; 1456 con->out_kvec_left--; 1457 } 1458 /* and for a partially-consumed entry */ 1459 if (ret) { 1460 con->out_kvec_cur->iov_len -= ret; 1461 con->out_kvec_cur->iov_base += ret; 1462 } 1463 } 1464 con->out_kvec_left = 0; 1465 con->out_kvec_is_msg = false; 1466 ret = 1; 1467 out: 1468 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1469 con->out_kvec_bytes, con->out_kvec_left, ret); 1470 return ret; /* done! */ 1471 } 1472 1473 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1474 unsigned int page_offset, 1475 unsigned int length) 1476 { 1477 char *kaddr; 1478 1479 kaddr = kmap(page); 1480 BUG_ON(kaddr == NULL); 1481 crc = crc32c(crc, kaddr + page_offset, length); 1482 kunmap(page); 1483 1484 return crc; 1485 } 1486 /* 1487 * Write as much message data payload as we can. If we finish, queue 1488 * up the footer. 1489 * 1 -> done, footer is now queued in out_kvec[]. 1490 * 0 -> socket full, but more to do 1491 * <0 -> error 1492 */ 1493 static int write_partial_message_data(struct ceph_connection *con) 1494 { 1495 struct ceph_msg *msg = con->out_msg; 1496 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1497 bool do_datacrc = !con->msgr->nocrc; 1498 u32 crc; 1499 1500 dout("%s %p msg %p\n", __func__, con, msg); 1501 1502 if (list_empty(&msg->data)) 1503 return -EINVAL; 1504 1505 /* 1506 * Iterate through each page that contains data to be 1507 * written, and send as much as possible for each. 1508 * 1509 * If we are calculating the data crc (the default), we will 1510 * need to map the page. If we have no pages, they have 1511 * been revoked, so use the zero page. 1512 */ 1513 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1514 while (cursor->resid) { 1515 struct page *page; 1516 size_t page_offset; 1517 size_t length; 1518 bool last_piece; 1519 bool need_crc; 1520 int ret; 1521 1522 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1523 &last_piece); 1524 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1525 length, last_piece); 1526 if (ret <= 0) { 1527 if (do_datacrc) 1528 msg->footer.data_crc = cpu_to_le32(crc); 1529 1530 return ret; 1531 } 1532 if (do_datacrc && cursor->need_crc) 1533 crc = ceph_crc32c_page(crc, page, page_offset, length); 1534 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1535 } 1536 1537 dout("%s %p msg %p done\n", __func__, con, msg); 1538 1539 /* prepare and queue up footer, too */ 1540 if (do_datacrc) 1541 msg->footer.data_crc = cpu_to_le32(crc); 1542 else 1543 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1544 con_out_kvec_reset(con); 1545 prepare_write_message_footer(con); 1546 1547 return 1; /* must return > 0 to indicate success */ 1548 } 1549 1550 /* 1551 * write some zeros 1552 */ 1553 static int write_partial_skip(struct ceph_connection *con) 1554 { 1555 int ret; 1556 1557 while (con->out_skip > 0) { 1558 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1559 1560 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1561 if (ret <= 0) 1562 goto out; 1563 con->out_skip -= ret; 1564 } 1565 ret = 1; 1566 out: 1567 return ret; 1568 } 1569 1570 /* 1571 * Prepare to read connection handshake, or an ack. 1572 */ 1573 static void prepare_read_banner(struct ceph_connection *con) 1574 { 1575 dout("prepare_read_banner %p\n", con); 1576 con->in_base_pos = 0; 1577 } 1578 1579 static void prepare_read_connect(struct ceph_connection *con) 1580 { 1581 dout("prepare_read_connect %p\n", con); 1582 con->in_base_pos = 0; 1583 } 1584 1585 static void prepare_read_ack(struct ceph_connection *con) 1586 { 1587 dout("prepare_read_ack %p\n", con); 1588 con->in_base_pos = 0; 1589 } 1590 1591 static void prepare_read_seq(struct ceph_connection *con) 1592 { 1593 dout("prepare_read_seq %p\n", con); 1594 con->in_base_pos = 0; 1595 con->in_tag = CEPH_MSGR_TAG_SEQ; 1596 } 1597 1598 static void prepare_read_tag(struct ceph_connection *con) 1599 { 1600 dout("prepare_read_tag %p\n", con); 1601 con->in_base_pos = 0; 1602 con->in_tag = CEPH_MSGR_TAG_READY; 1603 } 1604 1605 /* 1606 * Prepare to read a message. 1607 */ 1608 static int prepare_read_message(struct ceph_connection *con) 1609 { 1610 dout("prepare_read_message %p\n", con); 1611 BUG_ON(con->in_msg != NULL); 1612 con->in_base_pos = 0; 1613 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1614 return 0; 1615 } 1616 1617 1618 static int read_partial(struct ceph_connection *con, 1619 int end, int size, void *object) 1620 { 1621 while (con->in_base_pos < end) { 1622 int left = end - con->in_base_pos; 1623 int have = size - left; 1624 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1625 if (ret <= 0) 1626 return ret; 1627 con->in_base_pos += ret; 1628 } 1629 return 1; 1630 } 1631 1632 1633 /* 1634 * Read all or part of the connect-side handshake on a new connection 1635 */ 1636 static int read_partial_banner(struct ceph_connection *con) 1637 { 1638 int size; 1639 int end; 1640 int ret; 1641 1642 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1643 1644 /* peer's banner */ 1645 size = strlen(CEPH_BANNER); 1646 end = size; 1647 ret = read_partial(con, end, size, con->in_banner); 1648 if (ret <= 0) 1649 goto out; 1650 1651 size = sizeof (con->actual_peer_addr); 1652 end += size; 1653 ret = read_partial(con, end, size, &con->actual_peer_addr); 1654 if (ret <= 0) 1655 goto out; 1656 1657 size = sizeof (con->peer_addr_for_me); 1658 end += size; 1659 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1660 if (ret <= 0) 1661 goto out; 1662 1663 out: 1664 return ret; 1665 } 1666 1667 static int read_partial_connect(struct ceph_connection *con) 1668 { 1669 int size; 1670 int end; 1671 int ret; 1672 1673 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1674 1675 size = sizeof (con->in_reply); 1676 end = size; 1677 ret = read_partial(con, end, size, &con->in_reply); 1678 if (ret <= 0) 1679 goto out; 1680 1681 size = le32_to_cpu(con->in_reply.authorizer_len); 1682 end += size; 1683 ret = read_partial(con, end, size, con->auth_reply_buf); 1684 if (ret <= 0) 1685 goto out; 1686 1687 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1688 con, (int)con->in_reply.tag, 1689 le32_to_cpu(con->in_reply.connect_seq), 1690 le32_to_cpu(con->in_reply.global_seq)); 1691 out: 1692 return ret; 1693 1694 } 1695 1696 /* 1697 * Verify the hello banner looks okay. 1698 */ 1699 static int verify_hello(struct ceph_connection *con) 1700 { 1701 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1702 pr_err("connect to %s got bad banner\n", 1703 ceph_pr_addr(&con->peer_addr.in_addr)); 1704 con->error_msg = "protocol error, bad banner"; 1705 return -1; 1706 } 1707 return 0; 1708 } 1709 1710 static bool addr_is_blank(struct sockaddr_storage *ss) 1711 { 1712 switch (ss->ss_family) { 1713 case AF_INET: 1714 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1715 case AF_INET6: 1716 return 1717 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1718 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1719 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1720 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1721 } 1722 return false; 1723 } 1724 1725 static int addr_port(struct sockaddr_storage *ss) 1726 { 1727 switch (ss->ss_family) { 1728 case AF_INET: 1729 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1730 case AF_INET6: 1731 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1732 } 1733 return 0; 1734 } 1735 1736 static void addr_set_port(struct sockaddr_storage *ss, int p) 1737 { 1738 switch (ss->ss_family) { 1739 case AF_INET: 1740 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1741 break; 1742 case AF_INET6: 1743 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1744 break; 1745 } 1746 } 1747 1748 /* 1749 * Unlike other *_pton function semantics, zero indicates success. 1750 */ 1751 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1752 char delim, const char **ipend) 1753 { 1754 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1755 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1756 1757 memset(ss, 0, sizeof(*ss)); 1758 1759 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1760 ss->ss_family = AF_INET; 1761 return 0; 1762 } 1763 1764 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1765 ss->ss_family = AF_INET6; 1766 return 0; 1767 } 1768 1769 return -EINVAL; 1770 } 1771 1772 /* 1773 * Extract hostname string and resolve using kernel DNS facility. 1774 */ 1775 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1776 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1777 struct sockaddr_storage *ss, char delim, const char **ipend) 1778 { 1779 const char *end, *delim_p; 1780 char *colon_p, *ip_addr = NULL; 1781 int ip_len, ret; 1782 1783 /* 1784 * The end of the hostname occurs immediately preceding the delimiter or 1785 * the port marker (':') where the delimiter takes precedence. 1786 */ 1787 delim_p = memchr(name, delim, namelen); 1788 colon_p = memchr(name, ':', namelen); 1789 1790 if (delim_p && colon_p) 1791 end = delim_p < colon_p ? delim_p : colon_p; 1792 else if (!delim_p && colon_p) 1793 end = colon_p; 1794 else { 1795 end = delim_p; 1796 if (!end) /* case: hostname:/ */ 1797 end = name + namelen; 1798 } 1799 1800 if (end <= name) 1801 return -EINVAL; 1802 1803 /* do dns_resolve upcall */ 1804 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1805 if (ip_len > 0) 1806 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1807 else 1808 ret = -ESRCH; 1809 1810 kfree(ip_addr); 1811 1812 *ipend = end; 1813 1814 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1815 ret, ret ? "failed" : ceph_pr_addr(ss)); 1816 1817 return ret; 1818 } 1819 #else 1820 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1821 struct sockaddr_storage *ss, char delim, const char **ipend) 1822 { 1823 return -EINVAL; 1824 } 1825 #endif 1826 1827 /* 1828 * Parse a server name (IP or hostname). If a valid IP address is not found 1829 * then try to extract a hostname to resolve using userspace DNS upcall. 1830 */ 1831 static int ceph_parse_server_name(const char *name, size_t namelen, 1832 struct sockaddr_storage *ss, char delim, const char **ipend) 1833 { 1834 int ret; 1835 1836 ret = ceph_pton(name, namelen, ss, delim, ipend); 1837 if (ret) 1838 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1839 1840 return ret; 1841 } 1842 1843 /* 1844 * Parse an ip[:port] list into an addr array. Use the default 1845 * monitor port if a port isn't specified. 1846 */ 1847 int ceph_parse_ips(const char *c, const char *end, 1848 struct ceph_entity_addr *addr, 1849 int max_count, int *count) 1850 { 1851 int i, ret = -EINVAL; 1852 const char *p = c; 1853 1854 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1855 for (i = 0; i < max_count; i++) { 1856 const char *ipend; 1857 struct sockaddr_storage *ss = &addr[i].in_addr; 1858 int port; 1859 char delim = ','; 1860 1861 if (*p == '[') { 1862 delim = ']'; 1863 p++; 1864 } 1865 1866 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1867 if (ret) 1868 goto bad; 1869 ret = -EINVAL; 1870 1871 p = ipend; 1872 1873 if (delim == ']') { 1874 if (*p != ']') { 1875 dout("missing matching ']'\n"); 1876 goto bad; 1877 } 1878 p++; 1879 } 1880 1881 /* port? */ 1882 if (p < end && *p == ':') { 1883 port = 0; 1884 p++; 1885 while (p < end && *p >= '0' && *p <= '9') { 1886 port = (port * 10) + (*p - '0'); 1887 p++; 1888 } 1889 if (port == 0) 1890 port = CEPH_MON_PORT; 1891 else if (port > 65535) 1892 goto bad; 1893 } else { 1894 port = CEPH_MON_PORT; 1895 } 1896 1897 addr_set_port(ss, port); 1898 1899 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1900 1901 if (p == end) 1902 break; 1903 if (*p != ',') 1904 goto bad; 1905 p++; 1906 } 1907 1908 if (p != end) 1909 goto bad; 1910 1911 if (count) 1912 *count = i + 1; 1913 return 0; 1914 1915 bad: 1916 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1917 return ret; 1918 } 1919 EXPORT_SYMBOL(ceph_parse_ips); 1920 1921 static int process_banner(struct ceph_connection *con) 1922 { 1923 dout("process_banner on %p\n", con); 1924 1925 if (verify_hello(con) < 0) 1926 return -1; 1927 1928 ceph_decode_addr(&con->actual_peer_addr); 1929 ceph_decode_addr(&con->peer_addr_for_me); 1930 1931 /* 1932 * Make sure the other end is who we wanted. note that the other 1933 * end may not yet know their ip address, so if it's 0.0.0.0, give 1934 * them the benefit of the doubt. 1935 */ 1936 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1937 sizeof(con->peer_addr)) != 0 && 1938 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1939 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1940 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1941 ceph_pr_addr(&con->peer_addr.in_addr), 1942 (int)le32_to_cpu(con->peer_addr.nonce), 1943 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1944 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1945 con->error_msg = "wrong peer at address"; 1946 return -1; 1947 } 1948 1949 /* 1950 * did we learn our address? 1951 */ 1952 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1953 int port = addr_port(&con->msgr->inst.addr.in_addr); 1954 1955 memcpy(&con->msgr->inst.addr.in_addr, 1956 &con->peer_addr_for_me.in_addr, 1957 sizeof(con->peer_addr_for_me.in_addr)); 1958 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1959 encode_my_addr(con->msgr); 1960 dout("process_banner learned my addr is %s\n", 1961 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1962 } 1963 1964 return 0; 1965 } 1966 1967 static int process_connect(struct ceph_connection *con) 1968 { 1969 u64 sup_feat = con->msgr->supported_features; 1970 u64 req_feat = con->msgr->required_features; 1971 u64 server_feat = ceph_sanitize_features( 1972 le64_to_cpu(con->in_reply.features)); 1973 int ret; 1974 1975 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1976 1977 switch (con->in_reply.tag) { 1978 case CEPH_MSGR_TAG_FEATURES: 1979 pr_err("%s%lld %s feature set mismatch," 1980 " my %llx < server's %llx, missing %llx\n", 1981 ENTITY_NAME(con->peer_name), 1982 ceph_pr_addr(&con->peer_addr.in_addr), 1983 sup_feat, server_feat, server_feat & ~sup_feat); 1984 con->error_msg = "missing required protocol features"; 1985 reset_connection(con); 1986 return -1; 1987 1988 case CEPH_MSGR_TAG_BADPROTOVER: 1989 pr_err("%s%lld %s protocol version mismatch," 1990 " my %d != server's %d\n", 1991 ENTITY_NAME(con->peer_name), 1992 ceph_pr_addr(&con->peer_addr.in_addr), 1993 le32_to_cpu(con->out_connect.protocol_version), 1994 le32_to_cpu(con->in_reply.protocol_version)); 1995 con->error_msg = "protocol version mismatch"; 1996 reset_connection(con); 1997 return -1; 1998 1999 case CEPH_MSGR_TAG_BADAUTHORIZER: 2000 con->auth_retry++; 2001 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2002 con->auth_retry); 2003 if (con->auth_retry == 2) { 2004 con->error_msg = "connect authorization failure"; 2005 return -1; 2006 } 2007 con_out_kvec_reset(con); 2008 ret = prepare_write_connect(con); 2009 if (ret < 0) 2010 return ret; 2011 prepare_read_connect(con); 2012 break; 2013 2014 case CEPH_MSGR_TAG_RESETSESSION: 2015 /* 2016 * If we connected with a large connect_seq but the peer 2017 * has no record of a session with us (no connection, or 2018 * connect_seq == 0), they will send RESETSESION to indicate 2019 * that they must have reset their session, and may have 2020 * dropped messages. 2021 */ 2022 dout("process_connect got RESET peer seq %u\n", 2023 le32_to_cpu(con->in_reply.connect_seq)); 2024 pr_err("%s%lld %s connection reset\n", 2025 ENTITY_NAME(con->peer_name), 2026 ceph_pr_addr(&con->peer_addr.in_addr)); 2027 reset_connection(con); 2028 con_out_kvec_reset(con); 2029 ret = prepare_write_connect(con); 2030 if (ret < 0) 2031 return ret; 2032 prepare_read_connect(con); 2033 2034 /* Tell ceph about it. */ 2035 mutex_unlock(&con->mutex); 2036 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2037 if (con->ops->peer_reset) 2038 con->ops->peer_reset(con); 2039 mutex_lock(&con->mutex); 2040 if (con->state != CON_STATE_NEGOTIATING) 2041 return -EAGAIN; 2042 break; 2043 2044 case CEPH_MSGR_TAG_RETRY_SESSION: 2045 /* 2046 * If we sent a smaller connect_seq than the peer has, try 2047 * again with a larger value. 2048 */ 2049 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2050 le32_to_cpu(con->out_connect.connect_seq), 2051 le32_to_cpu(con->in_reply.connect_seq)); 2052 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2053 con_out_kvec_reset(con); 2054 ret = prepare_write_connect(con); 2055 if (ret < 0) 2056 return ret; 2057 prepare_read_connect(con); 2058 break; 2059 2060 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2061 /* 2062 * If we sent a smaller global_seq than the peer has, try 2063 * again with a larger value. 2064 */ 2065 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2066 con->peer_global_seq, 2067 le32_to_cpu(con->in_reply.global_seq)); 2068 get_global_seq(con->msgr, 2069 le32_to_cpu(con->in_reply.global_seq)); 2070 con_out_kvec_reset(con); 2071 ret = prepare_write_connect(con); 2072 if (ret < 0) 2073 return ret; 2074 prepare_read_connect(con); 2075 break; 2076 2077 case CEPH_MSGR_TAG_SEQ: 2078 case CEPH_MSGR_TAG_READY: 2079 if (req_feat & ~server_feat) { 2080 pr_err("%s%lld %s protocol feature mismatch," 2081 " my required %llx > server's %llx, need %llx\n", 2082 ENTITY_NAME(con->peer_name), 2083 ceph_pr_addr(&con->peer_addr.in_addr), 2084 req_feat, server_feat, req_feat & ~server_feat); 2085 con->error_msg = "missing required protocol features"; 2086 reset_connection(con); 2087 return -1; 2088 } 2089 2090 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2091 con->state = CON_STATE_OPEN; 2092 con->auth_retry = 0; /* we authenticated; clear flag */ 2093 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2094 con->connect_seq++; 2095 con->peer_features = server_feat; 2096 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2097 con->peer_global_seq, 2098 le32_to_cpu(con->in_reply.connect_seq), 2099 con->connect_seq); 2100 WARN_ON(con->connect_seq != 2101 le32_to_cpu(con->in_reply.connect_seq)); 2102 2103 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2104 con_flag_set(con, CON_FLAG_LOSSYTX); 2105 2106 con->delay = 0; /* reset backoff memory */ 2107 2108 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2109 prepare_write_seq(con); 2110 prepare_read_seq(con); 2111 } else { 2112 prepare_read_tag(con); 2113 } 2114 break; 2115 2116 case CEPH_MSGR_TAG_WAIT: 2117 /* 2118 * If there is a connection race (we are opening 2119 * connections to each other), one of us may just have 2120 * to WAIT. This shouldn't happen if we are the 2121 * client. 2122 */ 2123 pr_err("process_connect got WAIT as client\n"); 2124 con->error_msg = "protocol error, got WAIT as client"; 2125 return -1; 2126 2127 default: 2128 pr_err("connect protocol error, will retry\n"); 2129 con->error_msg = "protocol error, garbage tag during connect"; 2130 return -1; 2131 } 2132 return 0; 2133 } 2134 2135 2136 /* 2137 * read (part of) an ack 2138 */ 2139 static int read_partial_ack(struct ceph_connection *con) 2140 { 2141 int size = sizeof (con->in_temp_ack); 2142 int end = size; 2143 2144 return read_partial(con, end, size, &con->in_temp_ack); 2145 } 2146 2147 /* 2148 * We can finally discard anything that's been acked. 2149 */ 2150 static void process_ack(struct ceph_connection *con) 2151 { 2152 struct ceph_msg *m; 2153 u64 ack = le64_to_cpu(con->in_temp_ack); 2154 u64 seq; 2155 2156 while (!list_empty(&con->out_sent)) { 2157 m = list_first_entry(&con->out_sent, struct ceph_msg, 2158 list_head); 2159 seq = le64_to_cpu(m->hdr.seq); 2160 if (seq > ack) 2161 break; 2162 dout("got ack for seq %llu type %d at %p\n", seq, 2163 le16_to_cpu(m->hdr.type), m); 2164 m->ack_stamp = jiffies; 2165 ceph_msg_remove(m); 2166 } 2167 prepare_read_tag(con); 2168 } 2169 2170 2171 static int read_partial_message_section(struct ceph_connection *con, 2172 struct kvec *section, 2173 unsigned int sec_len, u32 *crc) 2174 { 2175 int ret, left; 2176 2177 BUG_ON(!section); 2178 2179 while (section->iov_len < sec_len) { 2180 BUG_ON(section->iov_base == NULL); 2181 left = sec_len - section->iov_len; 2182 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2183 section->iov_len, left); 2184 if (ret <= 0) 2185 return ret; 2186 section->iov_len += ret; 2187 } 2188 if (section->iov_len == sec_len) 2189 *crc = crc32c(0, section->iov_base, section->iov_len); 2190 2191 return 1; 2192 } 2193 2194 static int read_partial_msg_data(struct ceph_connection *con) 2195 { 2196 struct ceph_msg *msg = con->in_msg; 2197 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2198 const bool do_datacrc = !con->msgr->nocrc; 2199 struct page *page; 2200 size_t page_offset; 2201 size_t length; 2202 u32 crc = 0; 2203 int ret; 2204 2205 BUG_ON(!msg); 2206 if (list_empty(&msg->data)) 2207 return -EIO; 2208 2209 if (do_datacrc) 2210 crc = con->in_data_crc; 2211 while (cursor->resid) { 2212 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2213 NULL); 2214 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2215 if (ret <= 0) { 2216 if (do_datacrc) 2217 con->in_data_crc = crc; 2218 2219 return ret; 2220 } 2221 2222 if (do_datacrc) 2223 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2224 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2225 } 2226 if (do_datacrc) 2227 con->in_data_crc = crc; 2228 2229 return 1; /* must return > 0 to indicate success */ 2230 } 2231 2232 /* 2233 * read (part of) a message. 2234 */ 2235 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2236 2237 static int read_partial_message(struct ceph_connection *con) 2238 { 2239 struct ceph_msg *m = con->in_msg; 2240 int size; 2241 int end; 2242 int ret; 2243 unsigned int front_len, middle_len, data_len; 2244 bool do_datacrc = !con->msgr->nocrc; 2245 u64 seq; 2246 u32 crc; 2247 2248 dout("read_partial_message con %p msg %p\n", con, m); 2249 2250 /* header */ 2251 size = sizeof (con->in_hdr); 2252 end = size; 2253 ret = read_partial(con, end, size, &con->in_hdr); 2254 if (ret <= 0) 2255 return ret; 2256 2257 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2258 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2259 pr_err("read_partial_message bad hdr " 2260 " crc %u != expected %u\n", 2261 crc, con->in_hdr.crc); 2262 return -EBADMSG; 2263 } 2264 2265 front_len = le32_to_cpu(con->in_hdr.front_len); 2266 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2267 return -EIO; 2268 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2269 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2270 return -EIO; 2271 data_len = le32_to_cpu(con->in_hdr.data_len); 2272 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2273 return -EIO; 2274 2275 /* verify seq# */ 2276 seq = le64_to_cpu(con->in_hdr.seq); 2277 if ((s64)seq - (s64)con->in_seq < 1) { 2278 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2279 ENTITY_NAME(con->peer_name), 2280 ceph_pr_addr(&con->peer_addr.in_addr), 2281 seq, con->in_seq + 1); 2282 con->in_base_pos = -front_len - middle_len - data_len - 2283 sizeof(m->footer); 2284 con->in_tag = CEPH_MSGR_TAG_READY; 2285 return 0; 2286 } else if ((s64)seq - (s64)con->in_seq > 1) { 2287 pr_err("read_partial_message bad seq %lld expected %lld\n", 2288 seq, con->in_seq + 1); 2289 con->error_msg = "bad message sequence # for incoming message"; 2290 return -EBADMSG; 2291 } 2292 2293 /* allocate message? */ 2294 if (!con->in_msg) { 2295 int skip = 0; 2296 2297 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2298 front_len, data_len); 2299 ret = ceph_con_in_msg_alloc(con, &skip); 2300 if (ret < 0) 2301 return ret; 2302 2303 BUG_ON(!con->in_msg ^ skip); 2304 if (con->in_msg && data_len > con->in_msg->data_length) { 2305 pr_warning("%s skipping long message (%u > %zd)\n", 2306 __func__, data_len, con->in_msg->data_length); 2307 ceph_msg_put(con->in_msg); 2308 con->in_msg = NULL; 2309 skip = 1; 2310 } 2311 if (skip) { 2312 /* skip this message */ 2313 dout("alloc_msg said skip message\n"); 2314 con->in_base_pos = -front_len - middle_len - data_len - 2315 sizeof(m->footer); 2316 con->in_tag = CEPH_MSGR_TAG_READY; 2317 con->in_seq++; 2318 return 0; 2319 } 2320 2321 BUG_ON(!con->in_msg); 2322 BUG_ON(con->in_msg->con != con); 2323 m = con->in_msg; 2324 m->front.iov_len = 0; /* haven't read it yet */ 2325 if (m->middle) 2326 m->middle->vec.iov_len = 0; 2327 2328 /* prepare for data payload, if any */ 2329 2330 if (data_len) 2331 prepare_message_data(con->in_msg, data_len); 2332 } 2333 2334 /* front */ 2335 ret = read_partial_message_section(con, &m->front, front_len, 2336 &con->in_front_crc); 2337 if (ret <= 0) 2338 return ret; 2339 2340 /* middle */ 2341 if (m->middle) { 2342 ret = read_partial_message_section(con, &m->middle->vec, 2343 middle_len, 2344 &con->in_middle_crc); 2345 if (ret <= 0) 2346 return ret; 2347 } 2348 2349 /* (page) data */ 2350 if (data_len) { 2351 ret = read_partial_msg_data(con); 2352 if (ret <= 0) 2353 return ret; 2354 } 2355 2356 /* footer */ 2357 size = sizeof (m->footer); 2358 end += size; 2359 ret = read_partial(con, end, size, &m->footer); 2360 if (ret <= 0) 2361 return ret; 2362 2363 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2364 m, front_len, m->footer.front_crc, middle_len, 2365 m->footer.middle_crc, data_len, m->footer.data_crc); 2366 2367 /* crc ok? */ 2368 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2369 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2370 m, con->in_front_crc, m->footer.front_crc); 2371 return -EBADMSG; 2372 } 2373 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2374 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2375 m, con->in_middle_crc, m->footer.middle_crc); 2376 return -EBADMSG; 2377 } 2378 if (do_datacrc && 2379 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2380 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2381 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2382 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2383 return -EBADMSG; 2384 } 2385 2386 return 1; /* done! */ 2387 } 2388 2389 /* 2390 * Process message. This happens in the worker thread. The callback should 2391 * be careful not to do anything that waits on other incoming messages or it 2392 * may deadlock. 2393 */ 2394 static void process_message(struct ceph_connection *con) 2395 { 2396 struct ceph_msg *msg; 2397 2398 BUG_ON(con->in_msg->con != con); 2399 con->in_msg->con = NULL; 2400 msg = con->in_msg; 2401 con->in_msg = NULL; 2402 con->ops->put(con); 2403 2404 /* if first message, set peer_name */ 2405 if (con->peer_name.type == 0) 2406 con->peer_name = msg->hdr.src; 2407 2408 con->in_seq++; 2409 mutex_unlock(&con->mutex); 2410 2411 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2412 msg, le64_to_cpu(msg->hdr.seq), 2413 ENTITY_NAME(msg->hdr.src), 2414 le16_to_cpu(msg->hdr.type), 2415 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2416 le32_to_cpu(msg->hdr.front_len), 2417 le32_to_cpu(msg->hdr.data_len), 2418 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2419 con->ops->dispatch(con, msg); 2420 2421 mutex_lock(&con->mutex); 2422 } 2423 2424 2425 /* 2426 * Write something to the socket. Called in a worker thread when the 2427 * socket appears to be writeable and we have something ready to send. 2428 */ 2429 static int try_write(struct ceph_connection *con) 2430 { 2431 int ret = 1; 2432 2433 dout("try_write start %p state %lu\n", con, con->state); 2434 2435 more: 2436 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2437 2438 /* open the socket first? */ 2439 if (con->state == CON_STATE_PREOPEN) { 2440 BUG_ON(con->sock); 2441 con->state = CON_STATE_CONNECTING; 2442 2443 con_out_kvec_reset(con); 2444 prepare_write_banner(con); 2445 prepare_read_banner(con); 2446 2447 BUG_ON(con->in_msg); 2448 con->in_tag = CEPH_MSGR_TAG_READY; 2449 dout("try_write initiating connect on %p new state %lu\n", 2450 con, con->state); 2451 ret = ceph_tcp_connect(con); 2452 if (ret < 0) { 2453 con->error_msg = "connect error"; 2454 goto out; 2455 } 2456 } 2457 2458 more_kvec: 2459 /* kvec data queued? */ 2460 if (con->out_skip) { 2461 ret = write_partial_skip(con); 2462 if (ret <= 0) 2463 goto out; 2464 } 2465 if (con->out_kvec_left) { 2466 ret = write_partial_kvec(con); 2467 if (ret <= 0) 2468 goto out; 2469 } 2470 2471 /* msg pages? */ 2472 if (con->out_msg) { 2473 if (con->out_msg_done) { 2474 ceph_msg_put(con->out_msg); 2475 con->out_msg = NULL; /* we're done with this one */ 2476 goto do_next; 2477 } 2478 2479 ret = write_partial_message_data(con); 2480 if (ret == 1) 2481 goto more_kvec; /* we need to send the footer, too! */ 2482 if (ret == 0) 2483 goto out; 2484 if (ret < 0) { 2485 dout("try_write write_partial_message_data err %d\n", 2486 ret); 2487 goto out; 2488 } 2489 } 2490 2491 do_next: 2492 if (con->state == CON_STATE_OPEN) { 2493 /* is anything else pending? */ 2494 if (!list_empty(&con->out_queue)) { 2495 prepare_write_message(con); 2496 goto more; 2497 } 2498 if (con->in_seq > con->in_seq_acked) { 2499 prepare_write_ack(con); 2500 goto more; 2501 } 2502 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2503 prepare_write_keepalive(con); 2504 goto more; 2505 } 2506 } 2507 2508 /* Nothing to do! */ 2509 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2510 dout("try_write nothing else to write.\n"); 2511 ret = 0; 2512 out: 2513 dout("try_write done on %p ret %d\n", con, ret); 2514 return ret; 2515 } 2516 2517 2518 2519 /* 2520 * Read what we can from the socket. 2521 */ 2522 static int try_read(struct ceph_connection *con) 2523 { 2524 int ret = -1; 2525 2526 more: 2527 dout("try_read start on %p state %lu\n", con, con->state); 2528 if (con->state != CON_STATE_CONNECTING && 2529 con->state != CON_STATE_NEGOTIATING && 2530 con->state != CON_STATE_OPEN) 2531 return 0; 2532 2533 BUG_ON(!con->sock); 2534 2535 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2536 con->in_base_pos); 2537 2538 if (con->state == CON_STATE_CONNECTING) { 2539 dout("try_read connecting\n"); 2540 ret = read_partial_banner(con); 2541 if (ret <= 0) 2542 goto out; 2543 ret = process_banner(con); 2544 if (ret < 0) 2545 goto out; 2546 2547 con->state = CON_STATE_NEGOTIATING; 2548 2549 /* 2550 * Received banner is good, exchange connection info. 2551 * Do not reset out_kvec, as sending our banner raced 2552 * with receiving peer banner after connect completed. 2553 */ 2554 ret = prepare_write_connect(con); 2555 if (ret < 0) 2556 goto out; 2557 prepare_read_connect(con); 2558 2559 /* Send connection info before awaiting response */ 2560 goto out; 2561 } 2562 2563 if (con->state == CON_STATE_NEGOTIATING) { 2564 dout("try_read negotiating\n"); 2565 ret = read_partial_connect(con); 2566 if (ret <= 0) 2567 goto out; 2568 ret = process_connect(con); 2569 if (ret < 0) 2570 goto out; 2571 goto more; 2572 } 2573 2574 WARN_ON(con->state != CON_STATE_OPEN); 2575 2576 if (con->in_base_pos < 0) { 2577 /* 2578 * skipping + discarding content. 2579 * 2580 * FIXME: there must be a better way to do this! 2581 */ 2582 static char buf[SKIP_BUF_SIZE]; 2583 int skip = min((int) sizeof (buf), -con->in_base_pos); 2584 2585 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2586 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2587 if (ret <= 0) 2588 goto out; 2589 con->in_base_pos += ret; 2590 if (con->in_base_pos) 2591 goto more; 2592 } 2593 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2594 /* 2595 * what's next? 2596 */ 2597 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2598 if (ret <= 0) 2599 goto out; 2600 dout("try_read got tag %d\n", (int)con->in_tag); 2601 switch (con->in_tag) { 2602 case CEPH_MSGR_TAG_MSG: 2603 prepare_read_message(con); 2604 break; 2605 case CEPH_MSGR_TAG_ACK: 2606 prepare_read_ack(con); 2607 break; 2608 case CEPH_MSGR_TAG_CLOSE: 2609 con_close_socket(con); 2610 con->state = CON_STATE_CLOSED; 2611 goto out; 2612 default: 2613 goto bad_tag; 2614 } 2615 } 2616 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2617 ret = read_partial_message(con); 2618 if (ret <= 0) { 2619 switch (ret) { 2620 case -EBADMSG: 2621 con->error_msg = "bad crc"; 2622 ret = -EIO; 2623 break; 2624 case -EIO: 2625 con->error_msg = "io error"; 2626 break; 2627 } 2628 goto out; 2629 } 2630 if (con->in_tag == CEPH_MSGR_TAG_READY) 2631 goto more; 2632 process_message(con); 2633 if (con->state == CON_STATE_OPEN) 2634 prepare_read_tag(con); 2635 goto more; 2636 } 2637 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2638 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2639 /* 2640 * the final handshake seq exchange is semantically 2641 * equivalent to an ACK 2642 */ 2643 ret = read_partial_ack(con); 2644 if (ret <= 0) 2645 goto out; 2646 process_ack(con); 2647 goto more; 2648 } 2649 2650 out: 2651 dout("try_read done on %p ret %d\n", con, ret); 2652 return ret; 2653 2654 bad_tag: 2655 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2656 con->error_msg = "protocol error, garbage tag"; 2657 ret = -1; 2658 goto out; 2659 } 2660 2661 2662 /* 2663 * Atomically queue work on a connection after the specified delay. 2664 * Bump @con reference to avoid races with connection teardown. 2665 * Returns 0 if work was queued, or an error code otherwise. 2666 */ 2667 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2668 { 2669 if (!con->ops->get(con)) { 2670 dout("%s %p ref count 0\n", __func__, con); 2671 return -ENOENT; 2672 } 2673 2674 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2675 dout("%s %p - already queued\n", __func__, con); 2676 con->ops->put(con); 2677 return -EBUSY; 2678 } 2679 2680 dout("%s %p %lu\n", __func__, con, delay); 2681 return 0; 2682 } 2683 2684 static void queue_con(struct ceph_connection *con) 2685 { 2686 (void) queue_con_delay(con, 0); 2687 } 2688 2689 static void cancel_con(struct ceph_connection *con) 2690 { 2691 if (cancel_delayed_work(&con->work)) { 2692 dout("%s %p\n", __func__, con); 2693 con->ops->put(con); 2694 } 2695 } 2696 2697 static bool con_sock_closed(struct ceph_connection *con) 2698 { 2699 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2700 return false; 2701 2702 #define CASE(x) \ 2703 case CON_STATE_ ## x: \ 2704 con->error_msg = "socket closed (con state " #x ")"; \ 2705 break; 2706 2707 switch (con->state) { 2708 CASE(CLOSED); 2709 CASE(PREOPEN); 2710 CASE(CONNECTING); 2711 CASE(NEGOTIATING); 2712 CASE(OPEN); 2713 CASE(STANDBY); 2714 default: 2715 pr_warning("%s con %p unrecognized state %lu\n", 2716 __func__, con, con->state); 2717 con->error_msg = "unrecognized con state"; 2718 BUG(); 2719 break; 2720 } 2721 #undef CASE 2722 2723 return true; 2724 } 2725 2726 static bool con_backoff(struct ceph_connection *con) 2727 { 2728 int ret; 2729 2730 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2731 return false; 2732 2733 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2734 if (ret) { 2735 dout("%s: con %p FAILED to back off %lu\n", __func__, 2736 con, con->delay); 2737 BUG_ON(ret == -ENOENT); 2738 con_flag_set(con, CON_FLAG_BACKOFF); 2739 } 2740 2741 return true; 2742 } 2743 2744 /* Finish fault handling; con->mutex must *not* be held here */ 2745 2746 static void con_fault_finish(struct ceph_connection *con) 2747 { 2748 /* 2749 * in case we faulted due to authentication, invalidate our 2750 * current tickets so that we can get new ones. 2751 */ 2752 if (con->auth_retry && con->ops->invalidate_authorizer) { 2753 dout("calling invalidate_authorizer()\n"); 2754 con->ops->invalidate_authorizer(con); 2755 } 2756 2757 if (con->ops->fault) 2758 con->ops->fault(con); 2759 } 2760 2761 /* 2762 * Do some work on a connection. Drop a connection ref when we're done. 2763 */ 2764 static void con_work(struct work_struct *work) 2765 { 2766 struct ceph_connection *con = container_of(work, struct ceph_connection, 2767 work.work); 2768 bool fault; 2769 2770 mutex_lock(&con->mutex); 2771 while (true) { 2772 int ret; 2773 2774 if ((fault = con_sock_closed(con))) { 2775 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2776 break; 2777 } 2778 if (con_backoff(con)) { 2779 dout("%s: con %p BACKOFF\n", __func__, con); 2780 break; 2781 } 2782 if (con->state == CON_STATE_STANDBY) { 2783 dout("%s: con %p STANDBY\n", __func__, con); 2784 break; 2785 } 2786 if (con->state == CON_STATE_CLOSED) { 2787 dout("%s: con %p CLOSED\n", __func__, con); 2788 BUG_ON(con->sock); 2789 break; 2790 } 2791 if (con->state == CON_STATE_PREOPEN) { 2792 dout("%s: con %p PREOPEN\n", __func__, con); 2793 BUG_ON(con->sock); 2794 } 2795 2796 ret = try_read(con); 2797 if (ret < 0) { 2798 if (ret == -EAGAIN) 2799 continue; 2800 con->error_msg = "socket error on read"; 2801 fault = true; 2802 break; 2803 } 2804 2805 ret = try_write(con); 2806 if (ret < 0) { 2807 if (ret == -EAGAIN) 2808 continue; 2809 con->error_msg = "socket error on write"; 2810 fault = true; 2811 } 2812 2813 break; /* If we make it to here, we're done */ 2814 } 2815 if (fault) 2816 con_fault(con); 2817 mutex_unlock(&con->mutex); 2818 2819 if (fault) 2820 con_fault_finish(con); 2821 2822 con->ops->put(con); 2823 } 2824 2825 /* 2826 * Generic error/fault handler. A retry mechanism is used with 2827 * exponential backoff 2828 */ 2829 static void con_fault(struct ceph_connection *con) 2830 { 2831 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2832 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2833 dout("fault %p state %lu to peer %s\n", 2834 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2835 2836 WARN_ON(con->state != CON_STATE_CONNECTING && 2837 con->state != CON_STATE_NEGOTIATING && 2838 con->state != CON_STATE_OPEN); 2839 2840 con_close_socket(con); 2841 2842 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2843 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2844 con->state = CON_STATE_CLOSED; 2845 return; 2846 } 2847 2848 if (con->in_msg) { 2849 BUG_ON(con->in_msg->con != con); 2850 con->in_msg->con = NULL; 2851 ceph_msg_put(con->in_msg); 2852 con->in_msg = NULL; 2853 con->ops->put(con); 2854 } 2855 2856 /* Requeue anything that hasn't been acked */ 2857 list_splice_init(&con->out_sent, &con->out_queue); 2858 2859 /* If there are no messages queued or keepalive pending, place 2860 * the connection in a STANDBY state */ 2861 if (list_empty(&con->out_queue) && 2862 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2863 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2864 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2865 con->state = CON_STATE_STANDBY; 2866 } else { 2867 /* retry after a delay. */ 2868 con->state = CON_STATE_PREOPEN; 2869 if (con->delay == 0) 2870 con->delay = BASE_DELAY_INTERVAL; 2871 else if (con->delay < MAX_DELAY_INTERVAL) 2872 con->delay *= 2; 2873 con_flag_set(con, CON_FLAG_BACKOFF); 2874 queue_con(con); 2875 } 2876 } 2877 2878 2879 2880 /* 2881 * initialize a new messenger instance 2882 */ 2883 void ceph_messenger_init(struct ceph_messenger *msgr, 2884 struct ceph_entity_addr *myaddr, 2885 u64 supported_features, 2886 u64 required_features, 2887 bool nocrc) 2888 { 2889 msgr->supported_features = supported_features; 2890 msgr->required_features = required_features; 2891 2892 spin_lock_init(&msgr->global_seq_lock); 2893 2894 if (myaddr) 2895 msgr->inst.addr = *myaddr; 2896 2897 /* select a random nonce */ 2898 msgr->inst.addr.type = 0; 2899 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2900 encode_my_addr(msgr); 2901 msgr->nocrc = nocrc; 2902 2903 atomic_set(&msgr->stopping, 0); 2904 2905 dout("%s %p\n", __func__, msgr); 2906 } 2907 EXPORT_SYMBOL(ceph_messenger_init); 2908 2909 static void clear_standby(struct ceph_connection *con) 2910 { 2911 /* come back from STANDBY? */ 2912 if (con->state == CON_STATE_STANDBY) { 2913 dout("clear_standby %p and ++connect_seq\n", con); 2914 con->state = CON_STATE_PREOPEN; 2915 con->connect_seq++; 2916 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2917 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2918 } 2919 } 2920 2921 /* 2922 * Queue up an outgoing message on the given connection. 2923 */ 2924 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2925 { 2926 /* set src+dst */ 2927 msg->hdr.src = con->msgr->inst.name; 2928 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2929 msg->needs_out_seq = true; 2930 2931 mutex_lock(&con->mutex); 2932 2933 if (con->state == CON_STATE_CLOSED) { 2934 dout("con_send %p closed, dropping %p\n", con, msg); 2935 ceph_msg_put(msg); 2936 mutex_unlock(&con->mutex); 2937 return; 2938 } 2939 2940 BUG_ON(msg->con != NULL); 2941 msg->con = con->ops->get(con); 2942 BUG_ON(msg->con == NULL); 2943 2944 BUG_ON(!list_empty(&msg->list_head)); 2945 list_add_tail(&msg->list_head, &con->out_queue); 2946 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2947 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2948 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2949 le32_to_cpu(msg->hdr.front_len), 2950 le32_to_cpu(msg->hdr.middle_len), 2951 le32_to_cpu(msg->hdr.data_len)); 2952 2953 clear_standby(con); 2954 mutex_unlock(&con->mutex); 2955 2956 /* if there wasn't anything waiting to send before, queue 2957 * new work */ 2958 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2959 queue_con(con); 2960 } 2961 EXPORT_SYMBOL(ceph_con_send); 2962 2963 /* 2964 * Revoke a message that was previously queued for send 2965 */ 2966 void ceph_msg_revoke(struct ceph_msg *msg) 2967 { 2968 struct ceph_connection *con = msg->con; 2969 2970 if (!con) 2971 return; /* Message not in our possession */ 2972 2973 mutex_lock(&con->mutex); 2974 if (!list_empty(&msg->list_head)) { 2975 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2976 list_del_init(&msg->list_head); 2977 BUG_ON(msg->con == NULL); 2978 msg->con->ops->put(msg->con); 2979 msg->con = NULL; 2980 msg->hdr.seq = 0; 2981 2982 ceph_msg_put(msg); 2983 } 2984 if (con->out_msg == msg) { 2985 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2986 con->out_msg = NULL; 2987 if (con->out_kvec_is_msg) { 2988 con->out_skip = con->out_kvec_bytes; 2989 con->out_kvec_is_msg = false; 2990 } 2991 msg->hdr.seq = 0; 2992 2993 ceph_msg_put(msg); 2994 } 2995 mutex_unlock(&con->mutex); 2996 } 2997 2998 /* 2999 * Revoke a message that we may be reading data into 3000 */ 3001 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3002 { 3003 struct ceph_connection *con; 3004 3005 BUG_ON(msg == NULL); 3006 if (!msg->con) { 3007 dout("%s msg %p null con\n", __func__, msg); 3008 3009 return; /* Message not in our possession */ 3010 } 3011 3012 con = msg->con; 3013 mutex_lock(&con->mutex); 3014 if (con->in_msg == msg) { 3015 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3016 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3017 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3018 3019 /* skip rest of message */ 3020 dout("%s %p msg %p revoked\n", __func__, con, msg); 3021 con->in_base_pos = con->in_base_pos - 3022 sizeof(struct ceph_msg_header) - 3023 front_len - 3024 middle_len - 3025 data_len - 3026 sizeof(struct ceph_msg_footer); 3027 ceph_msg_put(con->in_msg); 3028 con->in_msg = NULL; 3029 con->in_tag = CEPH_MSGR_TAG_READY; 3030 con->in_seq++; 3031 } else { 3032 dout("%s %p in_msg %p msg %p no-op\n", 3033 __func__, con, con->in_msg, msg); 3034 } 3035 mutex_unlock(&con->mutex); 3036 } 3037 3038 /* 3039 * Queue a keepalive byte to ensure the tcp connection is alive. 3040 */ 3041 void ceph_con_keepalive(struct ceph_connection *con) 3042 { 3043 dout("con_keepalive %p\n", con); 3044 mutex_lock(&con->mutex); 3045 clear_standby(con); 3046 mutex_unlock(&con->mutex); 3047 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3048 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3049 queue_con(con); 3050 } 3051 EXPORT_SYMBOL(ceph_con_keepalive); 3052 3053 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3054 { 3055 struct ceph_msg_data *data; 3056 3057 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3058 return NULL; 3059 3060 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3061 if (data) 3062 data->type = type; 3063 INIT_LIST_HEAD(&data->links); 3064 3065 return data; 3066 } 3067 3068 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3069 { 3070 if (!data) 3071 return; 3072 3073 WARN_ON(!list_empty(&data->links)); 3074 if (data->type == CEPH_MSG_DATA_PAGELIST) { 3075 ceph_pagelist_release(data->pagelist); 3076 kfree(data->pagelist); 3077 } 3078 kmem_cache_free(ceph_msg_data_cache, data); 3079 } 3080 3081 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3082 size_t length, size_t alignment) 3083 { 3084 struct ceph_msg_data *data; 3085 3086 BUG_ON(!pages); 3087 BUG_ON(!length); 3088 3089 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3090 BUG_ON(!data); 3091 data->pages = pages; 3092 data->length = length; 3093 data->alignment = alignment & ~PAGE_MASK; 3094 3095 list_add_tail(&data->links, &msg->data); 3096 msg->data_length += length; 3097 } 3098 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3099 3100 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3101 struct ceph_pagelist *pagelist) 3102 { 3103 struct ceph_msg_data *data; 3104 3105 BUG_ON(!pagelist); 3106 BUG_ON(!pagelist->length); 3107 3108 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3109 BUG_ON(!data); 3110 data->pagelist = pagelist; 3111 3112 list_add_tail(&data->links, &msg->data); 3113 msg->data_length += pagelist->length; 3114 } 3115 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3116 3117 #ifdef CONFIG_BLOCK 3118 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3119 size_t length) 3120 { 3121 struct ceph_msg_data *data; 3122 3123 BUG_ON(!bio); 3124 3125 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3126 BUG_ON(!data); 3127 data->bio = bio; 3128 data->bio_length = length; 3129 3130 list_add_tail(&data->links, &msg->data); 3131 msg->data_length += length; 3132 } 3133 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3134 #endif /* CONFIG_BLOCK */ 3135 3136 /* 3137 * construct a new message with given type, size 3138 * the new msg has a ref count of 1. 3139 */ 3140 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3141 bool can_fail) 3142 { 3143 struct ceph_msg *m; 3144 3145 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3146 if (m == NULL) 3147 goto out; 3148 3149 m->hdr.type = cpu_to_le16(type); 3150 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3151 m->hdr.front_len = cpu_to_le32(front_len); 3152 3153 INIT_LIST_HEAD(&m->list_head); 3154 kref_init(&m->kref); 3155 INIT_LIST_HEAD(&m->data); 3156 3157 /* front */ 3158 if (front_len) { 3159 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3160 if (m->front.iov_base == NULL) { 3161 dout("ceph_msg_new can't allocate %d bytes\n", 3162 front_len); 3163 goto out2; 3164 } 3165 } else { 3166 m->front.iov_base = NULL; 3167 } 3168 m->front_alloc_len = m->front.iov_len = front_len; 3169 3170 dout("ceph_msg_new %p front %d\n", m, front_len); 3171 return m; 3172 3173 out2: 3174 ceph_msg_put(m); 3175 out: 3176 if (!can_fail) { 3177 pr_err("msg_new can't create type %d front %d\n", type, 3178 front_len); 3179 WARN_ON(1); 3180 } else { 3181 dout("msg_new can't create type %d front %d\n", type, 3182 front_len); 3183 } 3184 return NULL; 3185 } 3186 EXPORT_SYMBOL(ceph_msg_new); 3187 3188 /* 3189 * Allocate "middle" portion of a message, if it is needed and wasn't 3190 * allocated by alloc_msg. This allows us to read a small fixed-size 3191 * per-type header in the front and then gracefully fail (i.e., 3192 * propagate the error to the caller based on info in the front) when 3193 * the middle is too large. 3194 */ 3195 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3196 { 3197 int type = le16_to_cpu(msg->hdr.type); 3198 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3199 3200 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3201 ceph_msg_type_name(type), middle_len); 3202 BUG_ON(!middle_len); 3203 BUG_ON(msg->middle); 3204 3205 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3206 if (!msg->middle) 3207 return -ENOMEM; 3208 return 0; 3209 } 3210 3211 /* 3212 * Allocate a message for receiving an incoming message on a 3213 * connection, and save the result in con->in_msg. Uses the 3214 * connection's private alloc_msg op if available. 3215 * 3216 * Returns 0 on success, or a negative error code. 3217 * 3218 * On success, if we set *skip = 1: 3219 * - the next message should be skipped and ignored. 3220 * - con->in_msg == NULL 3221 * or if we set *skip = 0: 3222 * - con->in_msg is non-null. 3223 * On error (ENOMEM, EAGAIN, ...), 3224 * - con->in_msg == NULL 3225 */ 3226 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3227 { 3228 struct ceph_msg_header *hdr = &con->in_hdr; 3229 int middle_len = le32_to_cpu(hdr->middle_len); 3230 struct ceph_msg *msg; 3231 int ret = 0; 3232 3233 BUG_ON(con->in_msg != NULL); 3234 BUG_ON(!con->ops->alloc_msg); 3235 3236 mutex_unlock(&con->mutex); 3237 msg = con->ops->alloc_msg(con, hdr, skip); 3238 mutex_lock(&con->mutex); 3239 if (con->state != CON_STATE_OPEN) { 3240 if (msg) 3241 ceph_msg_put(msg); 3242 return -EAGAIN; 3243 } 3244 if (msg) { 3245 BUG_ON(*skip); 3246 con->in_msg = msg; 3247 con->in_msg->con = con->ops->get(con); 3248 BUG_ON(con->in_msg->con == NULL); 3249 } else { 3250 /* 3251 * Null message pointer means either we should skip 3252 * this message or we couldn't allocate memory. The 3253 * former is not an error. 3254 */ 3255 if (*skip) 3256 return 0; 3257 con->error_msg = "error allocating memory for incoming message"; 3258 3259 return -ENOMEM; 3260 } 3261 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3262 3263 if (middle_len && !con->in_msg->middle) { 3264 ret = ceph_alloc_middle(con, con->in_msg); 3265 if (ret < 0) { 3266 ceph_msg_put(con->in_msg); 3267 con->in_msg = NULL; 3268 } 3269 } 3270 3271 return ret; 3272 } 3273 3274 3275 /* 3276 * Free a generically kmalloc'd message. 3277 */ 3278 static void ceph_msg_free(struct ceph_msg *m) 3279 { 3280 dout("%s %p\n", __func__, m); 3281 ceph_kvfree(m->front.iov_base); 3282 kmem_cache_free(ceph_msg_cache, m); 3283 } 3284 3285 static void ceph_msg_release(struct kref *kref) 3286 { 3287 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3288 LIST_HEAD(data); 3289 struct list_head *links; 3290 struct list_head *next; 3291 3292 dout("%s %p\n", __func__, m); 3293 WARN_ON(!list_empty(&m->list_head)); 3294 3295 /* drop middle, data, if any */ 3296 if (m->middle) { 3297 ceph_buffer_put(m->middle); 3298 m->middle = NULL; 3299 } 3300 3301 list_splice_init(&m->data, &data); 3302 list_for_each_safe(links, next, &data) { 3303 struct ceph_msg_data *data; 3304 3305 data = list_entry(links, struct ceph_msg_data, links); 3306 list_del_init(links); 3307 ceph_msg_data_destroy(data); 3308 } 3309 m->data_length = 0; 3310 3311 if (m->pool) 3312 ceph_msgpool_put(m->pool, m); 3313 else 3314 ceph_msg_free(m); 3315 } 3316 3317 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3318 { 3319 dout("%s %p (was %d)\n", __func__, msg, 3320 atomic_read(&msg->kref.refcount)); 3321 kref_get(&msg->kref); 3322 return msg; 3323 } 3324 EXPORT_SYMBOL(ceph_msg_get); 3325 3326 void ceph_msg_put(struct ceph_msg *msg) 3327 { 3328 dout("%s %p (was %d)\n", __func__, msg, 3329 atomic_read(&msg->kref.refcount)); 3330 kref_put(&msg->kref, ceph_msg_release); 3331 } 3332 EXPORT_SYMBOL(ceph_msg_put); 3333 3334 void ceph_msg_dump(struct ceph_msg *msg) 3335 { 3336 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3337 msg->front_alloc_len, msg->data_length); 3338 print_hex_dump(KERN_DEBUG, "header: ", 3339 DUMP_PREFIX_OFFSET, 16, 1, 3340 &msg->hdr, sizeof(msg->hdr), true); 3341 print_hex_dump(KERN_DEBUG, " front: ", 3342 DUMP_PREFIX_OFFSET, 16, 1, 3343 msg->front.iov_base, msg->front.iov_len, true); 3344 if (msg->middle) 3345 print_hex_dump(KERN_DEBUG, "middle: ", 3346 DUMP_PREFIX_OFFSET, 16, 1, 3347 msg->middle->vec.iov_base, 3348 msg->middle->vec.iov_len, true); 3349 print_hex_dump(KERN_DEBUG, "footer: ", 3350 DUMP_PREFIX_OFFSET, 16, 1, 3351 &msg->footer, sizeof(msg->footer), true); 3352 } 3353 EXPORT_SYMBOL(ceph_msg_dump); 3354