1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/ceph_features.h> 19 #include <linux/ceph/libceph.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/export.h> 24 25 #define list_entry_next(pos, member) \ 26 list_entry(pos->member.next, typeof(*pos), member) 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void con_work(struct work_struct *); 178 static void con_fault(struct ceph_connection *con); 179 180 /* 181 * Nicely render a sockaddr as a string. An array of formatted 182 * strings is used, to approximate reentrancy. 183 */ 184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 188 189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 190 static atomic_t addr_str_seq = ATOMIC_INIT(0); 191 192 static struct page *zero_page; /* used in certain error cases */ 193 194 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 195 { 196 int i; 197 char *s; 198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 200 201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 202 s = addr_str[i]; 203 204 switch (ss->ss_family) { 205 case AF_INET: 206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 207 ntohs(in4->sin_port)); 208 break; 209 210 case AF_INET6: 211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 212 ntohs(in6->sin6_port)); 213 break; 214 215 default: 216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 217 ss->ss_family); 218 } 219 220 return s; 221 } 222 EXPORT_SYMBOL(ceph_pr_addr); 223 224 static void encode_my_addr(struct ceph_messenger *msgr) 225 { 226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 227 ceph_encode_addr(&msgr->my_enc_addr); 228 } 229 230 /* 231 * work queue for all reading and writing to/from the socket. 232 */ 233 static struct workqueue_struct *ceph_msgr_wq; 234 235 static int ceph_msgr_slab_init(void) 236 { 237 BUG_ON(ceph_msg_cache); 238 ceph_msg_cache = kmem_cache_create("ceph_msg", 239 sizeof (struct ceph_msg), 240 __alignof__(struct ceph_msg), 0, NULL); 241 242 if (!ceph_msg_cache) 243 return -ENOMEM; 244 245 BUG_ON(ceph_msg_data_cache); 246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 247 sizeof (struct ceph_msg_data), 248 __alignof__(struct ceph_msg_data), 249 0, NULL); 250 if (ceph_msg_data_cache) 251 return 0; 252 253 kmem_cache_destroy(ceph_msg_cache); 254 ceph_msg_cache = NULL; 255 256 return -ENOMEM; 257 } 258 259 static void ceph_msgr_slab_exit(void) 260 { 261 BUG_ON(!ceph_msg_data_cache); 262 kmem_cache_destroy(ceph_msg_data_cache); 263 ceph_msg_data_cache = NULL; 264 265 BUG_ON(!ceph_msg_cache); 266 kmem_cache_destroy(ceph_msg_cache); 267 ceph_msg_cache = NULL; 268 } 269 270 static void _ceph_msgr_exit(void) 271 { 272 if (ceph_msgr_wq) { 273 destroy_workqueue(ceph_msgr_wq); 274 ceph_msgr_wq = NULL; 275 } 276 277 ceph_msgr_slab_exit(); 278 279 BUG_ON(zero_page == NULL); 280 kunmap(zero_page); 281 page_cache_release(zero_page); 282 zero_page = NULL; 283 } 284 285 int ceph_msgr_init(void) 286 { 287 BUG_ON(zero_page != NULL); 288 zero_page = ZERO_PAGE(0); 289 page_cache_get(zero_page); 290 291 if (ceph_msgr_slab_init()) 292 return -ENOMEM; 293 294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0); 295 if (ceph_msgr_wq) 296 return 0; 297 298 pr_err("msgr_init failed to create workqueue\n"); 299 _ceph_msgr_exit(); 300 301 return -ENOMEM; 302 } 303 EXPORT_SYMBOL(ceph_msgr_init); 304 305 void ceph_msgr_exit(void) 306 { 307 BUG_ON(ceph_msgr_wq == NULL); 308 309 _ceph_msgr_exit(); 310 } 311 EXPORT_SYMBOL(ceph_msgr_exit); 312 313 void ceph_msgr_flush(void) 314 { 315 flush_workqueue(ceph_msgr_wq); 316 } 317 EXPORT_SYMBOL(ceph_msgr_flush); 318 319 /* Connection socket state transition functions */ 320 321 static void con_sock_state_init(struct ceph_connection *con) 322 { 323 int old_state; 324 325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 327 printk("%s: unexpected old state %d\n", __func__, old_state); 328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 329 CON_SOCK_STATE_CLOSED); 330 } 331 332 static void con_sock_state_connecting(struct ceph_connection *con) 333 { 334 int old_state; 335 336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 338 printk("%s: unexpected old state %d\n", __func__, old_state); 339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 340 CON_SOCK_STATE_CONNECTING); 341 } 342 343 static void con_sock_state_connected(struct ceph_connection *con) 344 { 345 int old_state; 346 347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 349 printk("%s: unexpected old state %d\n", __func__, old_state); 350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 351 CON_SOCK_STATE_CONNECTED); 352 } 353 354 static void con_sock_state_closing(struct ceph_connection *con) 355 { 356 int old_state; 357 358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 360 old_state != CON_SOCK_STATE_CONNECTED && 361 old_state != CON_SOCK_STATE_CLOSING)) 362 printk("%s: unexpected old state %d\n", __func__, old_state); 363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 364 CON_SOCK_STATE_CLOSING); 365 } 366 367 static void con_sock_state_closed(struct ceph_connection *con) 368 { 369 int old_state; 370 371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 373 old_state != CON_SOCK_STATE_CLOSING && 374 old_state != CON_SOCK_STATE_CONNECTING && 375 old_state != CON_SOCK_STATE_CLOSED)) 376 printk("%s: unexpected old state %d\n", __func__, old_state); 377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 378 CON_SOCK_STATE_CLOSED); 379 } 380 381 /* 382 * socket callback functions 383 */ 384 385 /* data available on socket, or listen socket received a connect */ 386 static void ceph_sock_data_ready(struct sock *sk, int count_unused) 387 { 388 struct ceph_connection *con = sk->sk_user_data; 389 if (atomic_read(&con->msgr->stopping)) { 390 return; 391 } 392 393 if (sk->sk_state != TCP_CLOSE_WAIT) { 394 dout("%s on %p state = %lu, queueing work\n", __func__, 395 con, con->state); 396 queue_con(con); 397 } 398 } 399 400 /* socket has buffer space for writing */ 401 static void ceph_sock_write_space(struct sock *sk) 402 { 403 struct ceph_connection *con = sk->sk_user_data; 404 405 /* only queue to workqueue if there is data we want to write, 406 * and there is sufficient space in the socket buffer to accept 407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 408 * doesn't get called again until try_write() fills the socket 409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 410 * and net/core/stream.c:sk_stream_write_space(). 411 */ 412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 413 if (sk_stream_is_writeable(sk)) { 414 dout("%s %p queueing write work\n", __func__, con); 415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 416 queue_con(con); 417 } 418 } else { 419 dout("%s %p nothing to write\n", __func__, con); 420 } 421 } 422 423 /* socket's state has changed */ 424 static void ceph_sock_state_change(struct sock *sk) 425 { 426 struct ceph_connection *con = sk->sk_user_data; 427 428 dout("%s %p state = %lu sk_state = %u\n", __func__, 429 con, con->state, sk->sk_state); 430 431 switch (sk->sk_state) { 432 case TCP_CLOSE: 433 dout("%s TCP_CLOSE\n", __func__); 434 case TCP_CLOSE_WAIT: 435 dout("%s TCP_CLOSE_WAIT\n", __func__); 436 con_sock_state_closing(con); 437 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 438 queue_con(con); 439 break; 440 case TCP_ESTABLISHED: 441 dout("%s TCP_ESTABLISHED\n", __func__); 442 con_sock_state_connected(con); 443 queue_con(con); 444 break; 445 default: /* Everything else is uninteresting */ 446 break; 447 } 448 } 449 450 /* 451 * set up socket callbacks 452 */ 453 static void set_sock_callbacks(struct socket *sock, 454 struct ceph_connection *con) 455 { 456 struct sock *sk = sock->sk; 457 sk->sk_user_data = con; 458 sk->sk_data_ready = ceph_sock_data_ready; 459 sk->sk_write_space = ceph_sock_write_space; 460 sk->sk_state_change = ceph_sock_state_change; 461 } 462 463 464 /* 465 * socket helpers 466 */ 467 468 /* 469 * initiate connection to a remote socket. 470 */ 471 static int ceph_tcp_connect(struct ceph_connection *con) 472 { 473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 474 struct socket *sock; 475 int ret; 476 477 BUG_ON(con->sock); 478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 479 IPPROTO_TCP, &sock); 480 if (ret) 481 return ret; 482 sock->sk->sk_allocation = GFP_NOFS; 483 484 #ifdef CONFIG_LOCKDEP 485 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 486 #endif 487 488 set_sock_callbacks(sock, con); 489 490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 491 492 con_sock_state_connecting(con); 493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 494 O_NONBLOCK); 495 if (ret == -EINPROGRESS) { 496 dout("connect %s EINPROGRESS sk_state = %u\n", 497 ceph_pr_addr(&con->peer_addr.in_addr), 498 sock->sk->sk_state); 499 } else if (ret < 0) { 500 pr_err("connect %s error %d\n", 501 ceph_pr_addr(&con->peer_addr.in_addr), ret); 502 sock_release(sock); 503 con->error_msg = "connect error"; 504 505 return ret; 506 } 507 con->sock = sock; 508 return 0; 509 } 510 511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 512 { 513 struct kvec iov = {buf, len}; 514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 515 int r; 516 517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 518 if (r == -EAGAIN) 519 r = 0; 520 return r; 521 } 522 523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 524 int page_offset, size_t length) 525 { 526 void *kaddr; 527 int ret; 528 529 BUG_ON(page_offset + length > PAGE_SIZE); 530 531 kaddr = kmap(page); 532 BUG_ON(!kaddr); 533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 534 kunmap(page); 535 536 return ret; 537 } 538 539 /* 540 * write something. @more is true if caller will be sending more data 541 * shortly. 542 */ 543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 544 size_t kvlen, size_t len, int more) 545 { 546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 547 int r; 548 549 if (more) 550 msg.msg_flags |= MSG_MORE; 551 else 552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 553 554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 555 if (r == -EAGAIN) 556 r = 0; 557 return r; 558 } 559 560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 561 int offset, size_t size, bool more) 562 { 563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 564 int ret; 565 566 ret = kernel_sendpage(sock, page, offset, size, flags); 567 if (ret == -EAGAIN) 568 ret = 0; 569 570 return ret; 571 } 572 573 574 /* 575 * Shutdown/close the socket for the given connection. 576 */ 577 static int con_close_socket(struct ceph_connection *con) 578 { 579 int rc = 0; 580 581 dout("con_close_socket on %p sock %p\n", con, con->sock); 582 if (con->sock) { 583 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 584 sock_release(con->sock); 585 con->sock = NULL; 586 } 587 588 /* 589 * Forcibly clear the SOCK_CLOSED flag. It gets set 590 * independent of the connection mutex, and we could have 591 * received a socket close event before we had the chance to 592 * shut the socket down. 593 */ 594 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 595 596 con_sock_state_closed(con); 597 return rc; 598 } 599 600 /* 601 * Reset a connection. Discard all incoming and outgoing messages 602 * and clear *_seq state. 603 */ 604 static void ceph_msg_remove(struct ceph_msg *msg) 605 { 606 list_del_init(&msg->list_head); 607 BUG_ON(msg->con == NULL); 608 msg->con->ops->put(msg->con); 609 msg->con = NULL; 610 611 ceph_msg_put(msg); 612 } 613 static void ceph_msg_remove_list(struct list_head *head) 614 { 615 while (!list_empty(head)) { 616 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 617 list_head); 618 ceph_msg_remove(msg); 619 } 620 } 621 622 static void reset_connection(struct ceph_connection *con) 623 { 624 /* reset connection, out_queue, msg_ and connect_seq */ 625 /* discard existing out_queue and msg_seq */ 626 dout("reset_connection %p\n", con); 627 ceph_msg_remove_list(&con->out_queue); 628 ceph_msg_remove_list(&con->out_sent); 629 630 if (con->in_msg) { 631 BUG_ON(con->in_msg->con != con); 632 con->in_msg->con = NULL; 633 ceph_msg_put(con->in_msg); 634 con->in_msg = NULL; 635 con->ops->put(con); 636 } 637 638 con->connect_seq = 0; 639 con->out_seq = 0; 640 if (con->out_msg) { 641 ceph_msg_put(con->out_msg); 642 con->out_msg = NULL; 643 } 644 con->in_seq = 0; 645 con->in_seq_acked = 0; 646 } 647 648 /* 649 * mark a peer down. drop any open connections. 650 */ 651 void ceph_con_close(struct ceph_connection *con) 652 { 653 mutex_lock(&con->mutex); 654 dout("con_close %p peer %s\n", con, 655 ceph_pr_addr(&con->peer_addr.in_addr)); 656 con->state = CON_STATE_CLOSED; 657 658 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 659 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 660 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 661 con_flag_clear(con, CON_FLAG_BACKOFF); 662 663 reset_connection(con); 664 con->peer_global_seq = 0; 665 cancel_delayed_work(&con->work); 666 con_close_socket(con); 667 mutex_unlock(&con->mutex); 668 } 669 EXPORT_SYMBOL(ceph_con_close); 670 671 /* 672 * Reopen a closed connection, with a new peer address. 673 */ 674 void ceph_con_open(struct ceph_connection *con, 675 __u8 entity_type, __u64 entity_num, 676 struct ceph_entity_addr *addr) 677 { 678 mutex_lock(&con->mutex); 679 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 680 681 WARN_ON(con->state != CON_STATE_CLOSED); 682 con->state = CON_STATE_PREOPEN; 683 684 con->peer_name.type = (__u8) entity_type; 685 con->peer_name.num = cpu_to_le64(entity_num); 686 687 memcpy(&con->peer_addr, addr, sizeof(*addr)); 688 con->delay = 0; /* reset backoff memory */ 689 mutex_unlock(&con->mutex); 690 queue_con(con); 691 } 692 EXPORT_SYMBOL(ceph_con_open); 693 694 /* 695 * return true if this connection ever successfully opened 696 */ 697 bool ceph_con_opened(struct ceph_connection *con) 698 { 699 return con->connect_seq > 0; 700 } 701 702 /* 703 * initialize a new connection. 704 */ 705 void ceph_con_init(struct ceph_connection *con, void *private, 706 const struct ceph_connection_operations *ops, 707 struct ceph_messenger *msgr) 708 { 709 dout("con_init %p\n", con); 710 memset(con, 0, sizeof(*con)); 711 con->private = private; 712 con->ops = ops; 713 con->msgr = msgr; 714 715 con_sock_state_init(con); 716 717 mutex_init(&con->mutex); 718 INIT_LIST_HEAD(&con->out_queue); 719 INIT_LIST_HEAD(&con->out_sent); 720 INIT_DELAYED_WORK(&con->work, con_work); 721 722 con->state = CON_STATE_CLOSED; 723 } 724 EXPORT_SYMBOL(ceph_con_init); 725 726 727 /* 728 * We maintain a global counter to order connection attempts. Get 729 * a unique seq greater than @gt. 730 */ 731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 732 { 733 u32 ret; 734 735 spin_lock(&msgr->global_seq_lock); 736 if (msgr->global_seq < gt) 737 msgr->global_seq = gt; 738 ret = ++msgr->global_seq; 739 spin_unlock(&msgr->global_seq_lock); 740 return ret; 741 } 742 743 static void con_out_kvec_reset(struct ceph_connection *con) 744 { 745 con->out_kvec_left = 0; 746 con->out_kvec_bytes = 0; 747 con->out_kvec_cur = &con->out_kvec[0]; 748 } 749 750 static void con_out_kvec_add(struct ceph_connection *con, 751 size_t size, void *data) 752 { 753 int index; 754 755 index = con->out_kvec_left; 756 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 757 758 con->out_kvec[index].iov_len = size; 759 con->out_kvec[index].iov_base = data; 760 con->out_kvec_left++; 761 con->out_kvec_bytes += size; 762 } 763 764 #ifdef CONFIG_BLOCK 765 766 /* 767 * For a bio data item, a piece is whatever remains of the next 768 * entry in the current bio iovec, or the first entry in the next 769 * bio in the list. 770 */ 771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 772 size_t length) 773 { 774 struct ceph_msg_data *data = cursor->data; 775 struct bio *bio; 776 777 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 778 779 bio = data->bio; 780 BUG_ON(!bio); 781 782 cursor->resid = min(length, data->bio_length); 783 cursor->bio = bio; 784 cursor->bvec_iter = bio->bi_iter; 785 cursor->last_piece = 786 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 787 } 788 789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 790 size_t *page_offset, 791 size_t *length) 792 { 793 struct ceph_msg_data *data = cursor->data; 794 struct bio *bio; 795 struct bio_vec bio_vec; 796 797 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 798 799 bio = cursor->bio; 800 BUG_ON(!bio); 801 802 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 803 804 *page_offset = (size_t) bio_vec.bv_offset; 805 BUG_ON(*page_offset >= PAGE_SIZE); 806 if (cursor->last_piece) /* pagelist offset is always 0 */ 807 *length = cursor->resid; 808 else 809 *length = (size_t) bio_vec.bv_len; 810 BUG_ON(*length > cursor->resid); 811 BUG_ON(*page_offset + *length > PAGE_SIZE); 812 813 return bio_vec.bv_page; 814 } 815 816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 817 size_t bytes) 818 { 819 struct bio *bio; 820 struct bio_vec bio_vec; 821 822 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 823 824 bio = cursor->bio; 825 BUG_ON(!bio); 826 827 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 828 829 /* Advance the cursor offset */ 830 831 BUG_ON(cursor->resid < bytes); 832 cursor->resid -= bytes; 833 834 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 835 836 if (bytes < bio_vec.bv_len) 837 return false; /* more bytes to process in this segment */ 838 839 /* Move on to the next segment, and possibly the next bio */ 840 841 if (!cursor->bvec_iter.bi_size) { 842 bio = bio->bi_next; 843 cursor->bio = bio; 844 if (bio) 845 cursor->bvec_iter = bio->bi_iter; 846 else 847 memset(&cursor->bvec_iter, 0, 848 sizeof(cursor->bvec_iter)); 849 } 850 851 if (!cursor->last_piece) { 852 BUG_ON(!cursor->resid); 853 BUG_ON(!bio); 854 /* A short read is OK, so use <= rather than == */ 855 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 856 cursor->last_piece = true; 857 } 858 859 return true; 860 } 861 #endif /* CONFIG_BLOCK */ 862 863 /* 864 * For a page array, a piece comes from the first page in the array 865 * that has not already been fully consumed. 866 */ 867 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 868 size_t length) 869 { 870 struct ceph_msg_data *data = cursor->data; 871 int page_count; 872 873 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 874 875 BUG_ON(!data->pages); 876 BUG_ON(!data->length); 877 878 cursor->resid = min(length, data->length); 879 page_count = calc_pages_for(data->alignment, (u64)data->length); 880 cursor->page_offset = data->alignment & ~PAGE_MASK; 881 cursor->page_index = 0; 882 BUG_ON(page_count > (int)USHRT_MAX); 883 cursor->page_count = (unsigned short)page_count; 884 BUG_ON(length > SIZE_MAX - cursor->page_offset); 885 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE; 886 } 887 888 static struct page * 889 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 890 size_t *page_offset, size_t *length) 891 { 892 struct ceph_msg_data *data = cursor->data; 893 894 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 895 896 BUG_ON(cursor->page_index >= cursor->page_count); 897 BUG_ON(cursor->page_offset >= PAGE_SIZE); 898 899 *page_offset = cursor->page_offset; 900 if (cursor->last_piece) 901 *length = cursor->resid; 902 else 903 *length = PAGE_SIZE - *page_offset; 904 905 return data->pages[cursor->page_index]; 906 } 907 908 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 909 size_t bytes) 910 { 911 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 912 913 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 914 915 /* Advance the cursor page offset */ 916 917 cursor->resid -= bytes; 918 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 919 if (!bytes || cursor->page_offset) 920 return false; /* more bytes to process in the current page */ 921 922 /* Move on to the next page; offset is already at 0 */ 923 924 BUG_ON(cursor->page_index >= cursor->page_count); 925 cursor->page_index++; 926 cursor->last_piece = cursor->resid <= PAGE_SIZE; 927 928 return true; 929 } 930 931 /* 932 * For a pagelist, a piece is whatever remains to be consumed in the 933 * first page in the list, or the front of the next page. 934 */ 935 static void 936 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 937 size_t length) 938 { 939 struct ceph_msg_data *data = cursor->data; 940 struct ceph_pagelist *pagelist; 941 struct page *page; 942 943 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 944 945 pagelist = data->pagelist; 946 BUG_ON(!pagelist); 947 948 if (!length) 949 return; /* pagelist can be assigned but empty */ 950 951 BUG_ON(list_empty(&pagelist->head)); 952 page = list_first_entry(&pagelist->head, struct page, lru); 953 954 cursor->resid = min(length, pagelist->length); 955 cursor->page = page; 956 cursor->offset = 0; 957 cursor->last_piece = cursor->resid <= PAGE_SIZE; 958 } 959 960 static struct page * 961 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 962 size_t *page_offset, size_t *length) 963 { 964 struct ceph_msg_data *data = cursor->data; 965 struct ceph_pagelist *pagelist; 966 967 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 968 969 pagelist = data->pagelist; 970 BUG_ON(!pagelist); 971 972 BUG_ON(!cursor->page); 973 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 974 975 /* offset of first page in pagelist is always 0 */ 976 *page_offset = cursor->offset & ~PAGE_MASK; 977 if (cursor->last_piece) 978 *length = cursor->resid; 979 else 980 *length = PAGE_SIZE - *page_offset; 981 982 return cursor->page; 983 } 984 985 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 986 size_t bytes) 987 { 988 struct ceph_msg_data *data = cursor->data; 989 struct ceph_pagelist *pagelist; 990 991 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 992 993 pagelist = data->pagelist; 994 BUG_ON(!pagelist); 995 996 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 997 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 998 999 /* Advance the cursor offset */ 1000 1001 cursor->resid -= bytes; 1002 cursor->offset += bytes; 1003 /* offset of first page in pagelist is always 0 */ 1004 if (!bytes || cursor->offset & ~PAGE_MASK) 1005 return false; /* more bytes to process in the current page */ 1006 1007 /* Move on to the next page */ 1008 1009 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1010 cursor->page = list_entry_next(cursor->page, lru); 1011 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1012 1013 return true; 1014 } 1015 1016 /* 1017 * Message data is handled (sent or received) in pieces, where each 1018 * piece resides on a single page. The network layer might not 1019 * consume an entire piece at once. A data item's cursor keeps 1020 * track of which piece is next to process and how much remains to 1021 * be processed in that piece. It also tracks whether the current 1022 * piece is the last one in the data item. 1023 */ 1024 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1025 { 1026 size_t length = cursor->total_resid; 1027 1028 switch (cursor->data->type) { 1029 case CEPH_MSG_DATA_PAGELIST: 1030 ceph_msg_data_pagelist_cursor_init(cursor, length); 1031 break; 1032 case CEPH_MSG_DATA_PAGES: 1033 ceph_msg_data_pages_cursor_init(cursor, length); 1034 break; 1035 #ifdef CONFIG_BLOCK 1036 case CEPH_MSG_DATA_BIO: 1037 ceph_msg_data_bio_cursor_init(cursor, length); 1038 break; 1039 #endif /* CONFIG_BLOCK */ 1040 case CEPH_MSG_DATA_NONE: 1041 default: 1042 /* BUG(); */ 1043 break; 1044 } 1045 cursor->need_crc = true; 1046 } 1047 1048 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1049 { 1050 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1051 struct ceph_msg_data *data; 1052 1053 BUG_ON(!length); 1054 BUG_ON(length > msg->data_length); 1055 BUG_ON(list_empty(&msg->data)); 1056 1057 cursor->data_head = &msg->data; 1058 cursor->total_resid = length; 1059 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1060 cursor->data = data; 1061 1062 __ceph_msg_data_cursor_init(cursor); 1063 } 1064 1065 /* 1066 * Return the page containing the next piece to process for a given 1067 * data item, and supply the page offset and length of that piece. 1068 * Indicate whether this is the last piece in this data item. 1069 */ 1070 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1071 size_t *page_offset, size_t *length, 1072 bool *last_piece) 1073 { 1074 struct page *page; 1075 1076 switch (cursor->data->type) { 1077 case CEPH_MSG_DATA_PAGELIST: 1078 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1079 break; 1080 case CEPH_MSG_DATA_PAGES: 1081 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1082 break; 1083 #ifdef CONFIG_BLOCK 1084 case CEPH_MSG_DATA_BIO: 1085 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1086 break; 1087 #endif /* CONFIG_BLOCK */ 1088 case CEPH_MSG_DATA_NONE: 1089 default: 1090 page = NULL; 1091 break; 1092 } 1093 BUG_ON(!page); 1094 BUG_ON(*page_offset + *length > PAGE_SIZE); 1095 BUG_ON(!*length); 1096 if (last_piece) 1097 *last_piece = cursor->last_piece; 1098 1099 return page; 1100 } 1101 1102 /* 1103 * Returns true if the result moves the cursor on to the next piece 1104 * of the data item. 1105 */ 1106 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1107 size_t bytes) 1108 { 1109 bool new_piece; 1110 1111 BUG_ON(bytes > cursor->resid); 1112 switch (cursor->data->type) { 1113 case CEPH_MSG_DATA_PAGELIST: 1114 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1115 break; 1116 case CEPH_MSG_DATA_PAGES: 1117 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1118 break; 1119 #ifdef CONFIG_BLOCK 1120 case CEPH_MSG_DATA_BIO: 1121 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1122 break; 1123 #endif /* CONFIG_BLOCK */ 1124 case CEPH_MSG_DATA_NONE: 1125 default: 1126 BUG(); 1127 break; 1128 } 1129 cursor->total_resid -= bytes; 1130 1131 if (!cursor->resid && cursor->total_resid) { 1132 WARN_ON(!cursor->last_piece); 1133 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1134 cursor->data = list_entry_next(cursor->data, links); 1135 __ceph_msg_data_cursor_init(cursor); 1136 new_piece = true; 1137 } 1138 cursor->need_crc = new_piece; 1139 1140 return new_piece; 1141 } 1142 1143 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1144 { 1145 BUG_ON(!msg); 1146 BUG_ON(!data_len); 1147 1148 /* Initialize data cursor */ 1149 1150 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1151 } 1152 1153 /* 1154 * Prepare footer for currently outgoing message, and finish things 1155 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1156 */ 1157 static void prepare_write_message_footer(struct ceph_connection *con) 1158 { 1159 struct ceph_msg *m = con->out_msg; 1160 int v = con->out_kvec_left; 1161 1162 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1163 1164 dout("prepare_write_message_footer %p\n", con); 1165 con->out_kvec_is_msg = true; 1166 con->out_kvec[v].iov_base = &m->footer; 1167 con->out_kvec[v].iov_len = sizeof(m->footer); 1168 con->out_kvec_bytes += sizeof(m->footer); 1169 con->out_kvec_left++; 1170 con->out_more = m->more_to_follow; 1171 con->out_msg_done = true; 1172 } 1173 1174 /* 1175 * Prepare headers for the next outgoing message. 1176 */ 1177 static void prepare_write_message(struct ceph_connection *con) 1178 { 1179 struct ceph_msg *m; 1180 u32 crc; 1181 1182 con_out_kvec_reset(con); 1183 con->out_kvec_is_msg = true; 1184 con->out_msg_done = false; 1185 1186 /* Sneak an ack in there first? If we can get it into the same 1187 * TCP packet that's a good thing. */ 1188 if (con->in_seq > con->in_seq_acked) { 1189 con->in_seq_acked = con->in_seq; 1190 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1191 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1192 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1193 &con->out_temp_ack); 1194 } 1195 1196 BUG_ON(list_empty(&con->out_queue)); 1197 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1198 con->out_msg = m; 1199 BUG_ON(m->con != con); 1200 1201 /* put message on sent list */ 1202 ceph_msg_get(m); 1203 list_move_tail(&m->list_head, &con->out_sent); 1204 1205 /* 1206 * only assign outgoing seq # if we haven't sent this message 1207 * yet. if it is requeued, resend with it's original seq. 1208 */ 1209 if (m->needs_out_seq) { 1210 m->hdr.seq = cpu_to_le64(++con->out_seq); 1211 m->needs_out_seq = false; 1212 } 1213 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1214 1215 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1216 m, con->out_seq, le16_to_cpu(m->hdr.type), 1217 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1218 m->data_length); 1219 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1220 1221 /* tag + hdr + front + middle */ 1222 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1223 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1224 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1225 1226 if (m->middle) 1227 con_out_kvec_add(con, m->middle->vec.iov_len, 1228 m->middle->vec.iov_base); 1229 1230 /* fill in crc (except data pages), footer */ 1231 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1232 con->out_msg->hdr.crc = cpu_to_le32(crc); 1233 con->out_msg->footer.flags = 0; 1234 1235 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1236 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1237 if (m->middle) { 1238 crc = crc32c(0, m->middle->vec.iov_base, 1239 m->middle->vec.iov_len); 1240 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1241 } else 1242 con->out_msg->footer.middle_crc = 0; 1243 dout("%s front_crc %u middle_crc %u\n", __func__, 1244 le32_to_cpu(con->out_msg->footer.front_crc), 1245 le32_to_cpu(con->out_msg->footer.middle_crc)); 1246 1247 /* is there a data payload? */ 1248 con->out_msg->footer.data_crc = 0; 1249 if (m->data_length) { 1250 prepare_message_data(con->out_msg, m->data_length); 1251 con->out_more = 1; /* data + footer will follow */ 1252 } else { 1253 /* no, queue up footer too and be done */ 1254 prepare_write_message_footer(con); 1255 } 1256 1257 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1258 } 1259 1260 /* 1261 * Prepare an ack. 1262 */ 1263 static void prepare_write_ack(struct ceph_connection *con) 1264 { 1265 dout("prepare_write_ack %p %llu -> %llu\n", con, 1266 con->in_seq_acked, con->in_seq); 1267 con->in_seq_acked = con->in_seq; 1268 1269 con_out_kvec_reset(con); 1270 1271 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1272 1273 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1274 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1275 &con->out_temp_ack); 1276 1277 con->out_more = 1; /* more will follow.. eventually.. */ 1278 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1279 } 1280 1281 /* 1282 * Prepare to share the seq during handshake 1283 */ 1284 static void prepare_write_seq(struct ceph_connection *con) 1285 { 1286 dout("prepare_write_seq %p %llu -> %llu\n", con, 1287 con->in_seq_acked, con->in_seq); 1288 con->in_seq_acked = con->in_seq; 1289 1290 con_out_kvec_reset(con); 1291 1292 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1293 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1294 &con->out_temp_ack); 1295 1296 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1297 } 1298 1299 /* 1300 * Prepare to write keepalive byte. 1301 */ 1302 static void prepare_write_keepalive(struct ceph_connection *con) 1303 { 1304 dout("prepare_write_keepalive %p\n", con); 1305 con_out_kvec_reset(con); 1306 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1307 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1308 } 1309 1310 /* 1311 * Connection negotiation. 1312 */ 1313 1314 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1315 int *auth_proto) 1316 { 1317 struct ceph_auth_handshake *auth; 1318 1319 if (!con->ops->get_authorizer) { 1320 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1321 con->out_connect.authorizer_len = 0; 1322 return NULL; 1323 } 1324 1325 /* Can't hold the mutex while getting authorizer */ 1326 mutex_unlock(&con->mutex); 1327 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1328 mutex_lock(&con->mutex); 1329 1330 if (IS_ERR(auth)) 1331 return auth; 1332 if (con->state != CON_STATE_NEGOTIATING) 1333 return ERR_PTR(-EAGAIN); 1334 1335 con->auth_reply_buf = auth->authorizer_reply_buf; 1336 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1337 return auth; 1338 } 1339 1340 /* 1341 * We connected to a peer and are saying hello. 1342 */ 1343 static void prepare_write_banner(struct ceph_connection *con) 1344 { 1345 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1346 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1347 &con->msgr->my_enc_addr); 1348 1349 con->out_more = 0; 1350 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1351 } 1352 1353 static int prepare_write_connect(struct ceph_connection *con) 1354 { 1355 unsigned int global_seq = get_global_seq(con->msgr, 0); 1356 int proto; 1357 int auth_proto; 1358 struct ceph_auth_handshake *auth; 1359 1360 switch (con->peer_name.type) { 1361 case CEPH_ENTITY_TYPE_MON: 1362 proto = CEPH_MONC_PROTOCOL; 1363 break; 1364 case CEPH_ENTITY_TYPE_OSD: 1365 proto = CEPH_OSDC_PROTOCOL; 1366 break; 1367 case CEPH_ENTITY_TYPE_MDS: 1368 proto = CEPH_MDSC_PROTOCOL; 1369 break; 1370 default: 1371 BUG(); 1372 } 1373 1374 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1375 con->connect_seq, global_seq, proto); 1376 1377 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1378 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1379 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1380 con->out_connect.global_seq = cpu_to_le32(global_seq); 1381 con->out_connect.protocol_version = cpu_to_le32(proto); 1382 con->out_connect.flags = 0; 1383 1384 auth_proto = CEPH_AUTH_UNKNOWN; 1385 auth = get_connect_authorizer(con, &auth_proto); 1386 if (IS_ERR(auth)) 1387 return PTR_ERR(auth); 1388 1389 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1390 con->out_connect.authorizer_len = auth ? 1391 cpu_to_le32(auth->authorizer_buf_len) : 0; 1392 1393 con_out_kvec_add(con, sizeof (con->out_connect), 1394 &con->out_connect); 1395 if (auth && auth->authorizer_buf_len) 1396 con_out_kvec_add(con, auth->authorizer_buf_len, 1397 auth->authorizer_buf); 1398 1399 con->out_more = 0; 1400 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * write as much of pending kvecs to the socket as we can. 1407 * 1 -> done 1408 * 0 -> socket full, but more to do 1409 * <0 -> error 1410 */ 1411 static int write_partial_kvec(struct ceph_connection *con) 1412 { 1413 int ret; 1414 1415 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1416 while (con->out_kvec_bytes > 0) { 1417 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1418 con->out_kvec_left, con->out_kvec_bytes, 1419 con->out_more); 1420 if (ret <= 0) 1421 goto out; 1422 con->out_kvec_bytes -= ret; 1423 if (con->out_kvec_bytes == 0) 1424 break; /* done */ 1425 1426 /* account for full iov entries consumed */ 1427 while (ret >= con->out_kvec_cur->iov_len) { 1428 BUG_ON(!con->out_kvec_left); 1429 ret -= con->out_kvec_cur->iov_len; 1430 con->out_kvec_cur++; 1431 con->out_kvec_left--; 1432 } 1433 /* and for a partially-consumed entry */ 1434 if (ret) { 1435 con->out_kvec_cur->iov_len -= ret; 1436 con->out_kvec_cur->iov_base += ret; 1437 } 1438 } 1439 con->out_kvec_left = 0; 1440 con->out_kvec_is_msg = false; 1441 ret = 1; 1442 out: 1443 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1444 con->out_kvec_bytes, con->out_kvec_left, ret); 1445 return ret; /* done! */ 1446 } 1447 1448 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1449 unsigned int page_offset, 1450 unsigned int length) 1451 { 1452 char *kaddr; 1453 1454 kaddr = kmap(page); 1455 BUG_ON(kaddr == NULL); 1456 crc = crc32c(crc, kaddr + page_offset, length); 1457 kunmap(page); 1458 1459 return crc; 1460 } 1461 /* 1462 * Write as much message data payload as we can. If we finish, queue 1463 * up the footer. 1464 * 1 -> done, footer is now queued in out_kvec[]. 1465 * 0 -> socket full, but more to do 1466 * <0 -> error 1467 */ 1468 static int write_partial_message_data(struct ceph_connection *con) 1469 { 1470 struct ceph_msg *msg = con->out_msg; 1471 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1472 bool do_datacrc = !con->msgr->nocrc; 1473 u32 crc; 1474 1475 dout("%s %p msg %p\n", __func__, con, msg); 1476 1477 if (list_empty(&msg->data)) 1478 return -EINVAL; 1479 1480 /* 1481 * Iterate through each page that contains data to be 1482 * written, and send as much as possible for each. 1483 * 1484 * If we are calculating the data crc (the default), we will 1485 * need to map the page. If we have no pages, they have 1486 * been revoked, so use the zero page. 1487 */ 1488 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1489 while (cursor->resid) { 1490 struct page *page; 1491 size_t page_offset; 1492 size_t length; 1493 bool last_piece; 1494 bool need_crc; 1495 int ret; 1496 1497 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1498 &last_piece); 1499 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1500 length, last_piece); 1501 if (ret <= 0) { 1502 if (do_datacrc) 1503 msg->footer.data_crc = cpu_to_le32(crc); 1504 1505 return ret; 1506 } 1507 if (do_datacrc && cursor->need_crc) 1508 crc = ceph_crc32c_page(crc, page, page_offset, length); 1509 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1510 } 1511 1512 dout("%s %p msg %p done\n", __func__, con, msg); 1513 1514 /* prepare and queue up footer, too */ 1515 if (do_datacrc) 1516 msg->footer.data_crc = cpu_to_le32(crc); 1517 else 1518 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1519 con_out_kvec_reset(con); 1520 prepare_write_message_footer(con); 1521 1522 return 1; /* must return > 0 to indicate success */ 1523 } 1524 1525 /* 1526 * write some zeros 1527 */ 1528 static int write_partial_skip(struct ceph_connection *con) 1529 { 1530 int ret; 1531 1532 while (con->out_skip > 0) { 1533 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1534 1535 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1536 if (ret <= 0) 1537 goto out; 1538 con->out_skip -= ret; 1539 } 1540 ret = 1; 1541 out: 1542 return ret; 1543 } 1544 1545 /* 1546 * Prepare to read connection handshake, or an ack. 1547 */ 1548 static void prepare_read_banner(struct ceph_connection *con) 1549 { 1550 dout("prepare_read_banner %p\n", con); 1551 con->in_base_pos = 0; 1552 } 1553 1554 static void prepare_read_connect(struct ceph_connection *con) 1555 { 1556 dout("prepare_read_connect %p\n", con); 1557 con->in_base_pos = 0; 1558 } 1559 1560 static void prepare_read_ack(struct ceph_connection *con) 1561 { 1562 dout("prepare_read_ack %p\n", con); 1563 con->in_base_pos = 0; 1564 } 1565 1566 static void prepare_read_seq(struct ceph_connection *con) 1567 { 1568 dout("prepare_read_seq %p\n", con); 1569 con->in_base_pos = 0; 1570 con->in_tag = CEPH_MSGR_TAG_SEQ; 1571 } 1572 1573 static void prepare_read_tag(struct ceph_connection *con) 1574 { 1575 dout("prepare_read_tag %p\n", con); 1576 con->in_base_pos = 0; 1577 con->in_tag = CEPH_MSGR_TAG_READY; 1578 } 1579 1580 /* 1581 * Prepare to read a message. 1582 */ 1583 static int prepare_read_message(struct ceph_connection *con) 1584 { 1585 dout("prepare_read_message %p\n", con); 1586 BUG_ON(con->in_msg != NULL); 1587 con->in_base_pos = 0; 1588 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1589 return 0; 1590 } 1591 1592 1593 static int read_partial(struct ceph_connection *con, 1594 int end, int size, void *object) 1595 { 1596 while (con->in_base_pos < end) { 1597 int left = end - con->in_base_pos; 1598 int have = size - left; 1599 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1600 if (ret <= 0) 1601 return ret; 1602 con->in_base_pos += ret; 1603 } 1604 return 1; 1605 } 1606 1607 1608 /* 1609 * Read all or part of the connect-side handshake on a new connection 1610 */ 1611 static int read_partial_banner(struct ceph_connection *con) 1612 { 1613 int size; 1614 int end; 1615 int ret; 1616 1617 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1618 1619 /* peer's banner */ 1620 size = strlen(CEPH_BANNER); 1621 end = size; 1622 ret = read_partial(con, end, size, con->in_banner); 1623 if (ret <= 0) 1624 goto out; 1625 1626 size = sizeof (con->actual_peer_addr); 1627 end += size; 1628 ret = read_partial(con, end, size, &con->actual_peer_addr); 1629 if (ret <= 0) 1630 goto out; 1631 1632 size = sizeof (con->peer_addr_for_me); 1633 end += size; 1634 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1635 if (ret <= 0) 1636 goto out; 1637 1638 out: 1639 return ret; 1640 } 1641 1642 static int read_partial_connect(struct ceph_connection *con) 1643 { 1644 int size; 1645 int end; 1646 int ret; 1647 1648 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1649 1650 size = sizeof (con->in_reply); 1651 end = size; 1652 ret = read_partial(con, end, size, &con->in_reply); 1653 if (ret <= 0) 1654 goto out; 1655 1656 size = le32_to_cpu(con->in_reply.authorizer_len); 1657 end += size; 1658 ret = read_partial(con, end, size, con->auth_reply_buf); 1659 if (ret <= 0) 1660 goto out; 1661 1662 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1663 con, (int)con->in_reply.tag, 1664 le32_to_cpu(con->in_reply.connect_seq), 1665 le32_to_cpu(con->in_reply.global_seq)); 1666 out: 1667 return ret; 1668 1669 } 1670 1671 /* 1672 * Verify the hello banner looks okay. 1673 */ 1674 static int verify_hello(struct ceph_connection *con) 1675 { 1676 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1677 pr_err("connect to %s got bad banner\n", 1678 ceph_pr_addr(&con->peer_addr.in_addr)); 1679 con->error_msg = "protocol error, bad banner"; 1680 return -1; 1681 } 1682 return 0; 1683 } 1684 1685 static bool addr_is_blank(struct sockaddr_storage *ss) 1686 { 1687 switch (ss->ss_family) { 1688 case AF_INET: 1689 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1690 case AF_INET6: 1691 return 1692 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1693 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1694 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1695 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1696 } 1697 return false; 1698 } 1699 1700 static int addr_port(struct sockaddr_storage *ss) 1701 { 1702 switch (ss->ss_family) { 1703 case AF_INET: 1704 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1705 case AF_INET6: 1706 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1707 } 1708 return 0; 1709 } 1710 1711 static void addr_set_port(struct sockaddr_storage *ss, int p) 1712 { 1713 switch (ss->ss_family) { 1714 case AF_INET: 1715 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1716 break; 1717 case AF_INET6: 1718 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1719 break; 1720 } 1721 } 1722 1723 /* 1724 * Unlike other *_pton function semantics, zero indicates success. 1725 */ 1726 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1727 char delim, const char **ipend) 1728 { 1729 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1730 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1731 1732 memset(ss, 0, sizeof(*ss)); 1733 1734 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1735 ss->ss_family = AF_INET; 1736 return 0; 1737 } 1738 1739 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1740 ss->ss_family = AF_INET6; 1741 return 0; 1742 } 1743 1744 return -EINVAL; 1745 } 1746 1747 /* 1748 * Extract hostname string and resolve using kernel DNS facility. 1749 */ 1750 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1751 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1752 struct sockaddr_storage *ss, char delim, const char **ipend) 1753 { 1754 const char *end, *delim_p; 1755 char *colon_p, *ip_addr = NULL; 1756 int ip_len, ret; 1757 1758 /* 1759 * The end of the hostname occurs immediately preceding the delimiter or 1760 * the port marker (':') where the delimiter takes precedence. 1761 */ 1762 delim_p = memchr(name, delim, namelen); 1763 colon_p = memchr(name, ':', namelen); 1764 1765 if (delim_p && colon_p) 1766 end = delim_p < colon_p ? delim_p : colon_p; 1767 else if (!delim_p && colon_p) 1768 end = colon_p; 1769 else { 1770 end = delim_p; 1771 if (!end) /* case: hostname:/ */ 1772 end = name + namelen; 1773 } 1774 1775 if (end <= name) 1776 return -EINVAL; 1777 1778 /* do dns_resolve upcall */ 1779 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1780 if (ip_len > 0) 1781 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1782 else 1783 ret = -ESRCH; 1784 1785 kfree(ip_addr); 1786 1787 *ipend = end; 1788 1789 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1790 ret, ret ? "failed" : ceph_pr_addr(ss)); 1791 1792 return ret; 1793 } 1794 #else 1795 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1796 struct sockaddr_storage *ss, char delim, const char **ipend) 1797 { 1798 return -EINVAL; 1799 } 1800 #endif 1801 1802 /* 1803 * Parse a server name (IP or hostname). If a valid IP address is not found 1804 * then try to extract a hostname to resolve using userspace DNS upcall. 1805 */ 1806 static int ceph_parse_server_name(const char *name, size_t namelen, 1807 struct sockaddr_storage *ss, char delim, const char **ipend) 1808 { 1809 int ret; 1810 1811 ret = ceph_pton(name, namelen, ss, delim, ipend); 1812 if (ret) 1813 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1814 1815 return ret; 1816 } 1817 1818 /* 1819 * Parse an ip[:port] list into an addr array. Use the default 1820 * monitor port if a port isn't specified. 1821 */ 1822 int ceph_parse_ips(const char *c, const char *end, 1823 struct ceph_entity_addr *addr, 1824 int max_count, int *count) 1825 { 1826 int i, ret = -EINVAL; 1827 const char *p = c; 1828 1829 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1830 for (i = 0; i < max_count; i++) { 1831 const char *ipend; 1832 struct sockaddr_storage *ss = &addr[i].in_addr; 1833 int port; 1834 char delim = ','; 1835 1836 if (*p == '[') { 1837 delim = ']'; 1838 p++; 1839 } 1840 1841 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1842 if (ret) 1843 goto bad; 1844 ret = -EINVAL; 1845 1846 p = ipend; 1847 1848 if (delim == ']') { 1849 if (*p != ']') { 1850 dout("missing matching ']'\n"); 1851 goto bad; 1852 } 1853 p++; 1854 } 1855 1856 /* port? */ 1857 if (p < end && *p == ':') { 1858 port = 0; 1859 p++; 1860 while (p < end && *p >= '0' && *p <= '9') { 1861 port = (port * 10) + (*p - '0'); 1862 p++; 1863 } 1864 if (port == 0) 1865 port = CEPH_MON_PORT; 1866 else if (port > 65535) 1867 goto bad; 1868 } else { 1869 port = CEPH_MON_PORT; 1870 } 1871 1872 addr_set_port(ss, port); 1873 1874 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1875 1876 if (p == end) 1877 break; 1878 if (*p != ',') 1879 goto bad; 1880 p++; 1881 } 1882 1883 if (p != end) 1884 goto bad; 1885 1886 if (count) 1887 *count = i + 1; 1888 return 0; 1889 1890 bad: 1891 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1892 return ret; 1893 } 1894 EXPORT_SYMBOL(ceph_parse_ips); 1895 1896 static int process_banner(struct ceph_connection *con) 1897 { 1898 dout("process_banner on %p\n", con); 1899 1900 if (verify_hello(con) < 0) 1901 return -1; 1902 1903 ceph_decode_addr(&con->actual_peer_addr); 1904 ceph_decode_addr(&con->peer_addr_for_me); 1905 1906 /* 1907 * Make sure the other end is who we wanted. note that the other 1908 * end may not yet know their ip address, so if it's 0.0.0.0, give 1909 * them the benefit of the doubt. 1910 */ 1911 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1912 sizeof(con->peer_addr)) != 0 && 1913 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1914 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1915 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1916 ceph_pr_addr(&con->peer_addr.in_addr), 1917 (int)le32_to_cpu(con->peer_addr.nonce), 1918 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1919 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1920 con->error_msg = "wrong peer at address"; 1921 return -1; 1922 } 1923 1924 /* 1925 * did we learn our address? 1926 */ 1927 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1928 int port = addr_port(&con->msgr->inst.addr.in_addr); 1929 1930 memcpy(&con->msgr->inst.addr.in_addr, 1931 &con->peer_addr_for_me.in_addr, 1932 sizeof(con->peer_addr_for_me.in_addr)); 1933 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1934 encode_my_addr(con->msgr); 1935 dout("process_banner learned my addr is %s\n", 1936 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1937 } 1938 1939 return 0; 1940 } 1941 1942 static int process_connect(struct ceph_connection *con) 1943 { 1944 u64 sup_feat = con->msgr->supported_features; 1945 u64 req_feat = con->msgr->required_features; 1946 u64 server_feat = ceph_sanitize_features( 1947 le64_to_cpu(con->in_reply.features)); 1948 int ret; 1949 1950 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1951 1952 switch (con->in_reply.tag) { 1953 case CEPH_MSGR_TAG_FEATURES: 1954 pr_err("%s%lld %s feature set mismatch," 1955 " my %llx < server's %llx, missing %llx\n", 1956 ENTITY_NAME(con->peer_name), 1957 ceph_pr_addr(&con->peer_addr.in_addr), 1958 sup_feat, server_feat, server_feat & ~sup_feat); 1959 con->error_msg = "missing required protocol features"; 1960 reset_connection(con); 1961 return -1; 1962 1963 case CEPH_MSGR_TAG_BADPROTOVER: 1964 pr_err("%s%lld %s protocol version mismatch," 1965 " my %d != server's %d\n", 1966 ENTITY_NAME(con->peer_name), 1967 ceph_pr_addr(&con->peer_addr.in_addr), 1968 le32_to_cpu(con->out_connect.protocol_version), 1969 le32_to_cpu(con->in_reply.protocol_version)); 1970 con->error_msg = "protocol version mismatch"; 1971 reset_connection(con); 1972 return -1; 1973 1974 case CEPH_MSGR_TAG_BADAUTHORIZER: 1975 con->auth_retry++; 1976 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1977 con->auth_retry); 1978 if (con->auth_retry == 2) { 1979 con->error_msg = "connect authorization failure"; 1980 return -1; 1981 } 1982 con_out_kvec_reset(con); 1983 ret = prepare_write_connect(con); 1984 if (ret < 0) 1985 return ret; 1986 prepare_read_connect(con); 1987 break; 1988 1989 case CEPH_MSGR_TAG_RESETSESSION: 1990 /* 1991 * If we connected with a large connect_seq but the peer 1992 * has no record of a session with us (no connection, or 1993 * connect_seq == 0), they will send RESETSESION to indicate 1994 * that they must have reset their session, and may have 1995 * dropped messages. 1996 */ 1997 dout("process_connect got RESET peer seq %u\n", 1998 le32_to_cpu(con->in_reply.connect_seq)); 1999 pr_err("%s%lld %s connection reset\n", 2000 ENTITY_NAME(con->peer_name), 2001 ceph_pr_addr(&con->peer_addr.in_addr)); 2002 reset_connection(con); 2003 con_out_kvec_reset(con); 2004 ret = prepare_write_connect(con); 2005 if (ret < 0) 2006 return ret; 2007 prepare_read_connect(con); 2008 2009 /* Tell ceph about it. */ 2010 mutex_unlock(&con->mutex); 2011 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2012 if (con->ops->peer_reset) 2013 con->ops->peer_reset(con); 2014 mutex_lock(&con->mutex); 2015 if (con->state != CON_STATE_NEGOTIATING) 2016 return -EAGAIN; 2017 break; 2018 2019 case CEPH_MSGR_TAG_RETRY_SESSION: 2020 /* 2021 * If we sent a smaller connect_seq than the peer has, try 2022 * again with a larger value. 2023 */ 2024 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2025 le32_to_cpu(con->out_connect.connect_seq), 2026 le32_to_cpu(con->in_reply.connect_seq)); 2027 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2028 con_out_kvec_reset(con); 2029 ret = prepare_write_connect(con); 2030 if (ret < 0) 2031 return ret; 2032 prepare_read_connect(con); 2033 break; 2034 2035 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2036 /* 2037 * If we sent a smaller global_seq than the peer has, try 2038 * again with a larger value. 2039 */ 2040 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2041 con->peer_global_seq, 2042 le32_to_cpu(con->in_reply.global_seq)); 2043 get_global_seq(con->msgr, 2044 le32_to_cpu(con->in_reply.global_seq)); 2045 con_out_kvec_reset(con); 2046 ret = prepare_write_connect(con); 2047 if (ret < 0) 2048 return ret; 2049 prepare_read_connect(con); 2050 break; 2051 2052 case CEPH_MSGR_TAG_SEQ: 2053 case CEPH_MSGR_TAG_READY: 2054 if (req_feat & ~server_feat) { 2055 pr_err("%s%lld %s protocol feature mismatch," 2056 " my required %llx > server's %llx, need %llx\n", 2057 ENTITY_NAME(con->peer_name), 2058 ceph_pr_addr(&con->peer_addr.in_addr), 2059 req_feat, server_feat, req_feat & ~server_feat); 2060 con->error_msg = "missing required protocol features"; 2061 reset_connection(con); 2062 return -1; 2063 } 2064 2065 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2066 con->state = CON_STATE_OPEN; 2067 con->auth_retry = 0; /* we authenticated; clear flag */ 2068 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2069 con->connect_seq++; 2070 con->peer_features = server_feat; 2071 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2072 con->peer_global_seq, 2073 le32_to_cpu(con->in_reply.connect_seq), 2074 con->connect_seq); 2075 WARN_ON(con->connect_seq != 2076 le32_to_cpu(con->in_reply.connect_seq)); 2077 2078 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2079 con_flag_set(con, CON_FLAG_LOSSYTX); 2080 2081 con->delay = 0; /* reset backoff memory */ 2082 2083 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2084 prepare_write_seq(con); 2085 prepare_read_seq(con); 2086 } else { 2087 prepare_read_tag(con); 2088 } 2089 break; 2090 2091 case CEPH_MSGR_TAG_WAIT: 2092 /* 2093 * If there is a connection race (we are opening 2094 * connections to each other), one of us may just have 2095 * to WAIT. This shouldn't happen if we are the 2096 * client. 2097 */ 2098 pr_err("process_connect got WAIT as client\n"); 2099 con->error_msg = "protocol error, got WAIT as client"; 2100 return -1; 2101 2102 default: 2103 pr_err("connect protocol error, will retry\n"); 2104 con->error_msg = "protocol error, garbage tag during connect"; 2105 return -1; 2106 } 2107 return 0; 2108 } 2109 2110 2111 /* 2112 * read (part of) an ack 2113 */ 2114 static int read_partial_ack(struct ceph_connection *con) 2115 { 2116 int size = sizeof (con->in_temp_ack); 2117 int end = size; 2118 2119 return read_partial(con, end, size, &con->in_temp_ack); 2120 } 2121 2122 /* 2123 * We can finally discard anything that's been acked. 2124 */ 2125 static void process_ack(struct ceph_connection *con) 2126 { 2127 struct ceph_msg *m; 2128 u64 ack = le64_to_cpu(con->in_temp_ack); 2129 u64 seq; 2130 2131 while (!list_empty(&con->out_sent)) { 2132 m = list_first_entry(&con->out_sent, struct ceph_msg, 2133 list_head); 2134 seq = le64_to_cpu(m->hdr.seq); 2135 if (seq > ack) 2136 break; 2137 dout("got ack for seq %llu type %d at %p\n", seq, 2138 le16_to_cpu(m->hdr.type), m); 2139 m->ack_stamp = jiffies; 2140 ceph_msg_remove(m); 2141 } 2142 prepare_read_tag(con); 2143 } 2144 2145 2146 static int read_partial_message_section(struct ceph_connection *con, 2147 struct kvec *section, 2148 unsigned int sec_len, u32 *crc) 2149 { 2150 int ret, left; 2151 2152 BUG_ON(!section); 2153 2154 while (section->iov_len < sec_len) { 2155 BUG_ON(section->iov_base == NULL); 2156 left = sec_len - section->iov_len; 2157 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2158 section->iov_len, left); 2159 if (ret <= 0) 2160 return ret; 2161 section->iov_len += ret; 2162 } 2163 if (section->iov_len == sec_len) 2164 *crc = crc32c(0, section->iov_base, section->iov_len); 2165 2166 return 1; 2167 } 2168 2169 static int read_partial_msg_data(struct ceph_connection *con) 2170 { 2171 struct ceph_msg *msg = con->in_msg; 2172 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2173 const bool do_datacrc = !con->msgr->nocrc; 2174 struct page *page; 2175 size_t page_offset; 2176 size_t length; 2177 u32 crc = 0; 2178 int ret; 2179 2180 BUG_ON(!msg); 2181 if (list_empty(&msg->data)) 2182 return -EIO; 2183 2184 if (do_datacrc) 2185 crc = con->in_data_crc; 2186 while (cursor->resid) { 2187 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2188 NULL); 2189 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2190 if (ret <= 0) { 2191 if (do_datacrc) 2192 con->in_data_crc = crc; 2193 2194 return ret; 2195 } 2196 2197 if (do_datacrc) 2198 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2199 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2200 } 2201 if (do_datacrc) 2202 con->in_data_crc = crc; 2203 2204 return 1; /* must return > 0 to indicate success */ 2205 } 2206 2207 /* 2208 * read (part of) a message. 2209 */ 2210 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2211 2212 static int read_partial_message(struct ceph_connection *con) 2213 { 2214 struct ceph_msg *m = con->in_msg; 2215 int size; 2216 int end; 2217 int ret; 2218 unsigned int front_len, middle_len, data_len; 2219 bool do_datacrc = !con->msgr->nocrc; 2220 u64 seq; 2221 u32 crc; 2222 2223 dout("read_partial_message con %p msg %p\n", con, m); 2224 2225 /* header */ 2226 size = sizeof (con->in_hdr); 2227 end = size; 2228 ret = read_partial(con, end, size, &con->in_hdr); 2229 if (ret <= 0) 2230 return ret; 2231 2232 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2233 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2234 pr_err("read_partial_message bad hdr " 2235 " crc %u != expected %u\n", 2236 crc, con->in_hdr.crc); 2237 return -EBADMSG; 2238 } 2239 2240 front_len = le32_to_cpu(con->in_hdr.front_len); 2241 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2242 return -EIO; 2243 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2244 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2245 return -EIO; 2246 data_len = le32_to_cpu(con->in_hdr.data_len); 2247 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2248 return -EIO; 2249 2250 /* verify seq# */ 2251 seq = le64_to_cpu(con->in_hdr.seq); 2252 if ((s64)seq - (s64)con->in_seq < 1) { 2253 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2254 ENTITY_NAME(con->peer_name), 2255 ceph_pr_addr(&con->peer_addr.in_addr), 2256 seq, con->in_seq + 1); 2257 con->in_base_pos = -front_len - middle_len - data_len - 2258 sizeof(m->footer); 2259 con->in_tag = CEPH_MSGR_TAG_READY; 2260 return 0; 2261 } else if ((s64)seq - (s64)con->in_seq > 1) { 2262 pr_err("read_partial_message bad seq %lld expected %lld\n", 2263 seq, con->in_seq + 1); 2264 con->error_msg = "bad message sequence # for incoming message"; 2265 return -EBADMSG; 2266 } 2267 2268 /* allocate message? */ 2269 if (!con->in_msg) { 2270 int skip = 0; 2271 2272 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2273 front_len, data_len); 2274 ret = ceph_con_in_msg_alloc(con, &skip); 2275 if (ret < 0) 2276 return ret; 2277 2278 BUG_ON(!con->in_msg ^ skip); 2279 if (con->in_msg && data_len > con->in_msg->data_length) { 2280 pr_warning("%s skipping long message (%u > %zd)\n", 2281 __func__, data_len, con->in_msg->data_length); 2282 ceph_msg_put(con->in_msg); 2283 con->in_msg = NULL; 2284 skip = 1; 2285 } 2286 if (skip) { 2287 /* skip this message */ 2288 dout("alloc_msg said skip message\n"); 2289 con->in_base_pos = -front_len - middle_len - data_len - 2290 sizeof(m->footer); 2291 con->in_tag = CEPH_MSGR_TAG_READY; 2292 con->in_seq++; 2293 return 0; 2294 } 2295 2296 BUG_ON(!con->in_msg); 2297 BUG_ON(con->in_msg->con != con); 2298 m = con->in_msg; 2299 m->front.iov_len = 0; /* haven't read it yet */ 2300 if (m->middle) 2301 m->middle->vec.iov_len = 0; 2302 2303 /* prepare for data payload, if any */ 2304 2305 if (data_len) 2306 prepare_message_data(con->in_msg, data_len); 2307 } 2308 2309 /* front */ 2310 ret = read_partial_message_section(con, &m->front, front_len, 2311 &con->in_front_crc); 2312 if (ret <= 0) 2313 return ret; 2314 2315 /* middle */ 2316 if (m->middle) { 2317 ret = read_partial_message_section(con, &m->middle->vec, 2318 middle_len, 2319 &con->in_middle_crc); 2320 if (ret <= 0) 2321 return ret; 2322 } 2323 2324 /* (page) data */ 2325 if (data_len) { 2326 ret = read_partial_msg_data(con); 2327 if (ret <= 0) 2328 return ret; 2329 } 2330 2331 /* footer */ 2332 size = sizeof (m->footer); 2333 end += size; 2334 ret = read_partial(con, end, size, &m->footer); 2335 if (ret <= 0) 2336 return ret; 2337 2338 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2339 m, front_len, m->footer.front_crc, middle_len, 2340 m->footer.middle_crc, data_len, m->footer.data_crc); 2341 2342 /* crc ok? */ 2343 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2344 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2345 m, con->in_front_crc, m->footer.front_crc); 2346 return -EBADMSG; 2347 } 2348 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2349 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2350 m, con->in_middle_crc, m->footer.middle_crc); 2351 return -EBADMSG; 2352 } 2353 if (do_datacrc && 2354 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2355 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2356 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2357 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2358 return -EBADMSG; 2359 } 2360 2361 return 1; /* done! */ 2362 } 2363 2364 /* 2365 * Process message. This happens in the worker thread. The callback should 2366 * be careful not to do anything that waits on other incoming messages or it 2367 * may deadlock. 2368 */ 2369 static void process_message(struct ceph_connection *con) 2370 { 2371 struct ceph_msg *msg; 2372 2373 BUG_ON(con->in_msg->con != con); 2374 con->in_msg->con = NULL; 2375 msg = con->in_msg; 2376 con->in_msg = NULL; 2377 con->ops->put(con); 2378 2379 /* if first message, set peer_name */ 2380 if (con->peer_name.type == 0) 2381 con->peer_name = msg->hdr.src; 2382 2383 con->in_seq++; 2384 mutex_unlock(&con->mutex); 2385 2386 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2387 msg, le64_to_cpu(msg->hdr.seq), 2388 ENTITY_NAME(msg->hdr.src), 2389 le16_to_cpu(msg->hdr.type), 2390 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2391 le32_to_cpu(msg->hdr.front_len), 2392 le32_to_cpu(msg->hdr.data_len), 2393 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2394 con->ops->dispatch(con, msg); 2395 2396 mutex_lock(&con->mutex); 2397 } 2398 2399 2400 /* 2401 * Write something to the socket. Called in a worker thread when the 2402 * socket appears to be writeable and we have something ready to send. 2403 */ 2404 static int try_write(struct ceph_connection *con) 2405 { 2406 int ret = 1; 2407 2408 dout("try_write start %p state %lu\n", con, con->state); 2409 2410 more: 2411 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2412 2413 /* open the socket first? */ 2414 if (con->state == CON_STATE_PREOPEN) { 2415 BUG_ON(con->sock); 2416 con->state = CON_STATE_CONNECTING; 2417 2418 con_out_kvec_reset(con); 2419 prepare_write_banner(con); 2420 prepare_read_banner(con); 2421 2422 BUG_ON(con->in_msg); 2423 con->in_tag = CEPH_MSGR_TAG_READY; 2424 dout("try_write initiating connect on %p new state %lu\n", 2425 con, con->state); 2426 ret = ceph_tcp_connect(con); 2427 if (ret < 0) { 2428 con->error_msg = "connect error"; 2429 goto out; 2430 } 2431 } 2432 2433 more_kvec: 2434 /* kvec data queued? */ 2435 if (con->out_skip) { 2436 ret = write_partial_skip(con); 2437 if (ret <= 0) 2438 goto out; 2439 } 2440 if (con->out_kvec_left) { 2441 ret = write_partial_kvec(con); 2442 if (ret <= 0) 2443 goto out; 2444 } 2445 2446 /* msg pages? */ 2447 if (con->out_msg) { 2448 if (con->out_msg_done) { 2449 ceph_msg_put(con->out_msg); 2450 con->out_msg = NULL; /* we're done with this one */ 2451 goto do_next; 2452 } 2453 2454 ret = write_partial_message_data(con); 2455 if (ret == 1) 2456 goto more_kvec; /* we need to send the footer, too! */ 2457 if (ret == 0) 2458 goto out; 2459 if (ret < 0) { 2460 dout("try_write write_partial_message_data err %d\n", 2461 ret); 2462 goto out; 2463 } 2464 } 2465 2466 do_next: 2467 if (con->state == CON_STATE_OPEN) { 2468 /* is anything else pending? */ 2469 if (!list_empty(&con->out_queue)) { 2470 prepare_write_message(con); 2471 goto more; 2472 } 2473 if (con->in_seq > con->in_seq_acked) { 2474 prepare_write_ack(con); 2475 goto more; 2476 } 2477 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2478 prepare_write_keepalive(con); 2479 goto more; 2480 } 2481 } 2482 2483 /* Nothing to do! */ 2484 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2485 dout("try_write nothing else to write.\n"); 2486 ret = 0; 2487 out: 2488 dout("try_write done on %p ret %d\n", con, ret); 2489 return ret; 2490 } 2491 2492 2493 2494 /* 2495 * Read what we can from the socket. 2496 */ 2497 static int try_read(struct ceph_connection *con) 2498 { 2499 int ret = -1; 2500 2501 more: 2502 dout("try_read start on %p state %lu\n", con, con->state); 2503 if (con->state != CON_STATE_CONNECTING && 2504 con->state != CON_STATE_NEGOTIATING && 2505 con->state != CON_STATE_OPEN) 2506 return 0; 2507 2508 BUG_ON(!con->sock); 2509 2510 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2511 con->in_base_pos); 2512 2513 if (con->state == CON_STATE_CONNECTING) { 2514 dout("try_read connecting\n"); 2515 ret = read_partial_banner(con); 2516 if (ret <= 0) 2517 goto out; 2518 ret = process_banner(con); 2519 if (ret < 0) 2520 goto out; 2521 2522 con->state = CON_STATE_NEGOTIATING; 2523 2524 /* 2525 * Received banner is good, exchange connection info. 2526 * Do not reset out_kvec, as sending our banner raced 2527 * with receiving peer banner after connect completed. 2528 */ 2529 ret = prepare_write_connect(con); 2530 if (ret < 0) 2531 goto out; 2532 prepare_read_connect(con); 2533 2534 /* Send connection info before awaiting response */ 2535 goto out; 2536 } 2537 2538 if (con->state == CON_STATE_NEGOTIATING) { 2539 dout("try_read negotiating\n"); 2540 ret = read_partial_connect(con); 2541 if (ret <= 0) 2542 goto out; 2543 ret = process_connect(con); 2544 if (ret < 0) 2545 goto out; 2546 goto more; 2547 } 2548 2549 WARN_ON(con->state != CON_STATE_OPEN); 2550 2551 if (con->in_base_pos < 0) { 2552 /* 2553 * skipping + discarding content. 2554 * 2555 * FIXME: there must be a better way to do this! 2556 */ 2557 static char buf[SKIP_BUF_SIZE]; 2558 int skip = min((int) sizeof (buf), -con->in_base_pos); 2559 2560 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2561 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2562 if (ret <= 0) 2563 goto out; 2564 con->in_base_pos += ret; 2565 if (con->in_base_pos) 2566 goto more; 2567 } 2568 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2569 /* 2570 * what's next? 2571 */ 2572 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2573 if (ret <= 0) 2574 goto out; 2575 dout("try_read got tag %d\n", (int)con->in_tag); 2576 switch (con->in_tag) { 2577 case CEPH_MSGR_TAG_MSG: 2578 prepare_read_message(con); 2579 break; 2580 case CEPH_MSGR_TAG_ACK: 2581 prepare_read_ack(con); 2582 break; 2583 case CEPH_MSGR_TAG_CLOSE: 2584 con_close_socket(con); 2585 con->state = CON_STATE_CLOSED; 2586 goto out; 2587 default: 2588 goto bad_tag; 2589 } 2590 } 2591 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2592 ret = read_partial_message(con); 2593 if (ret <= 0) { 2594 switch (ret) { 2595 case -EBADMSG: 2596 con->error_msg = "bad crc"; 2597 ret = -EIO; 2598 break; 2599 case -EIO: 2600 con->error_msg = "io error"; 2601 break; 2602 } 2603 goto out; 2604 } 2605 if (con->in_tag == CEPH_MSGR_TAG_READY) 2606 goto more; 2607 process_message(con); 2608 if (con->state == CON_STATE_OPEN) 2609 prepare_read_tag(con); 2610 goto more; 2611 } 2612 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2613 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2614 /* 2615 * the final handshake seq exchange is semantically 2616 * equivalent to an ACK 2617 */ 2618 ret = read_partial_ack(con); 2619 if (ret <= 0) 2620 goto out; 2621 process_ack(con); 2622 goto more; 2623 } 2624 2625 out: 2626 dout("try_read done on %p ret %d\n", con, ret); 2627 return ret; 2628 2629 bad_tag: 2630 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2631 con->error_msg = "protocol error, garbage tag"; 2632 ret = -1; 2633 goto out; 2634 } 2635 2636 2637 /* 2638 * Atomically queue work on a connection after the specified delay. 2639 * Bump @con reference to avoid races with connection teardown. 2640 * Returns 0 if work was queued, or an error code otherwise. 2641 */ 2642 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2643 { 2644 if (!con->ops->get(con)) { 2645 dout("%s %p ref count 0\n", __func__, con); 2646 2647 return -ENOENT; 2648 } 2649 2650 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2651 dout("%s %p - already queued\n", __func__, con); 2652 con->ops->put(con); 2653 2654 return -EBUSY; 2655 } 2656 2657 dout("%s %p %lu\n", __func__, con, delay); 2658 2659 return 0; 2660 } 2661 2662 static void queue_con(struct ceph_connection *con) 2663 { 2664 (void) queue_con_delay(con, 0); 2665 } 2666 2667 static bool con_sock_closed(struct ceph_connection *con) 2668 { 2669 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2670 return false; 2671 2672 #define CASE(x) \ 2673 case CON_STATE_ ## x: \ 2674 con->error_msg = "socket closed (con state " #x ")"; \ 2675 break; 2676 2677 switch (con->state) { 2678 CASE(CLOSED); 2679 CASE(PREOPEN); 2680 CASE(CONNECTING); 2681 CASE(NEGOTIATING); 2682 CASE(OPEN); 2683 CASE(STANDBY); 2684 default: 2685 pr_warning("%s con %p unrecognized state %lu\n", 2686 __func__, con, con->state); 2687 con->error_msg = "unrecognized con state"; 2688 BUG(); 2689 break; 2690 } 2691 #undef CASE 2692 2693 return true; 2694 } 2695 2696 static bool con_backoff(struct ceph_connection *con) 2697 { 2698 int ret; 2699 2700 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2701 return false; 2702 2703 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2704 if (ret) { 2705 dout("%s: con %p FAILED to back off %lu\n", __func__, 2706 con, con->delay); 2707 BUG_ON(ret == -ENOENT); 2708 con_flag_set(con, CON_FLAG_BACKOFF); 2709 } 2710 2711 return true; 2712 } 2713 2714 /* Finish fault handling; con->mutex must *not* be held here */ 2715 2716 static void con_fault_finish(struct ceph_connection *con) 2717 { 2718 /* 2719 * in case we faulted due to authentication, invalidate our 2720 * current tickets so that we can get new ones. 2721 */ 2722 if (con->auth_retry && con->ops->invalidate_authorizer) { 2723 dout("calling invalidate_authorizer()\n"); 2724 con->ops->invalidate_authorizer(con); 2725 } 2726 2727 if (con->ops->fault) 2728 con->ops->fault(con); 2729 } 2730 2731 /* 2732 * Do some work on a connection. Drop a connection ref when we're done. 2733 */ 2734 static void con_work(struct work_struct *work) 2735 { 2736 struct ceph_connection *con = container_of(work, struct ceph_connection, 2737 work.work); 2738 bool fault; 2739 2740 mutex_lock(&con->mutex); 2741 while (true) { 2742 int ret; 2743 2744 if ((fault = con_sock_closed(con))) { 2745 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2746 break; 2747 } 2748 if (con_backoff(con)) { 2749 dout("%s: con %p BACKOFF\n", __func__, con); 2750 break; 2751 } 2752 if (con->state == CON_STATE_STANDBY) { 2753 dout("%s: con %p STANDBY\n", __func__, con); 2754 break; 2755 } 2756 if (con->state == CON_STATE_CLOSED) { 2757 dout("%s: con %p CLOSED\n", __func__, con); 2758 BUG_ON(con->sock); 2759 break; 2760 } 2761 if (con->state == CON_STATE_PREOPEN) { 2762 dout("%s: con %p PREOPEN\n", __func__, con); 2763 BUG_ON(con->sock); 2764 } 2765 2766 ret = try_read(con); 2767 if (ret < 0) { 2768 if (ret == -EAGAIN) 2769 continue; 2770 con->error_msg = "socket error on read"; 2771 fault = true; 2772 break; 2773 } 2774 2775 ret = try_write(con); 2776 if (ret < 0) { 2777 if (ret == -EAGAIN) 2778 continue; 2779 con->error_msg = "socket error on write"; 2780 fault = true; 2781 } 2782 2783 break; /* If we make it to here, we're done */ 2784 } 2785 if (fault) 2786 con_fault(con); 2787 mutex_unlock(&con->mutex); 2788 2789 if (fault) 2790 con_fault_finish(con); 2791 2792 con->ops->put(con); 2793 } 2794 2795 /* 2796 * Generic error/fault handler. A retry mechanism is used with 2797 * exponential backoff 2798 */ 2799 static void con_fault(struct ceph_connection *con) 2800 { 2801 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2802 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2803 dout("fault %p state %lu to peer %s\n", 2804 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2805 2806 WARN_ON(con->state != CON_STATE_CONNECTING && 2807 con->state != CON_STATE_NEGOTIATING && 2808 con->state != CON_STATE_OPEN); 2809 2810 con_close_socket(con); 2811 2812 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2813 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2814 con->state = CON_STATE_CLOSED; 2815 return; 2816 } 2817 2818 if (con->in_msg) { 2819 BUG_ON(con->in_msg->con != con); 2820 con->in_msg->con = NULL; 2821 ceph_msg_put(con->in_msg); 2822 con->in_msg = NULL; 2823 con->ops->put(con); 2824 } 2825 2826 /* Requeue anything that hasn't been acked */ 2827 list_splice_init(&con->out_sent, &con->out_queue); 2828 2829 /* If there are no messages queued or keepalive pending, place 2830 * the connection in a STANDBY state */ 2831 if (list_empty(&con->out_queue) && 2832 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2833 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2834 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2835 con->state = CON_STATE_STANDBY; 2836 } else { 2837 /* retry after a delay. */ 2838 con->state = CON_STATE_PREOPEN; 2839 if (con->delay == 0) 2840 con->delay = BASE_DELAY_INTERVAL; 2841 else if (con->delay < MAX_DELAY_INTERVAL) 2842 con->delay *= 2; 2843 con_flag_set(con, CON_FLAG_BACKOFF); 2844 queue_con(con); 2845 } 2846 } 2847 2848 2849 2850 /* 2851 * initialize a new messenger instance 2852 */ 2853 void ceph_messenger_init(struct ceph_messenger *msgr, 2854 struct ceph_entity_addr *myaddr, 2855 u64 supported_features, 2856 u64 required_features, 2857 bool nocrc) 2858 { 2859 msgr->supported_features = supported_features; 2860 msgr->required_features = required_features; 2861 2862 spin_lock_init(&msgr->global_seq_lock); 2863 2864 if (myaddr) 2865 msgr->inst.addr = *myaddr; 2866 2867 /* select a random nonce */ 2868 msgr->inst.addr.type = 0; 2869 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2870 encode_my_addr(msgr); 2871 msgr->nocrc = nocrc; 2872 2873 atomic_set(&msgr->stopping, 0); 2874 2875 dout("%s %p\n", __func__, msgr); 2876 } 2877 EXPORT_SYMBOL(ceph_messenger_init); 2878 2879 static void clear_standby(struct ceph_connection *con) 2880 { 2881 /* come back from STANDBY? */ 2882 if (con->state == CON_STATE_STANDBY) { 2883 dout("clear_standby %p and ++connect_seq\n", con); 2884 con->state = CON_STATE_PREOPEN; 2885 con->connect_seq++; 2886 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2887 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2888 } 2889 } 2890 2891 /* 2892 * Queue up an outgoing message on the given connection. 2893 */ 2894 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2895 { 2896 /* set src+dst */ 2897 msg->hdr.src = con->msgr->inst.name; 2898 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2899 msg->needs_out_seq = true; 2900 2901 mutex_lock(&con->mutex); 2902 2903 if (con->state == CON_STATE_CLOSED) { 2904 dout("con_send %p closed, dropping %p\n", con, msg); 2905 ceph_msg_put(msg); 2906 mutex_unlock(&con->mutex); 2907 return; 2908 } 2909 2910 BUG_ON(msg->con != NULL); 2911 msg->con = con->ops->get(con); 2912 BUG_ON(msg->con == NULL); 2913 2914 BUG_ON(!list_empty(&msg->list_head)); 2915 list_add_tail(&msg->list_head, &con->out_queue); 2916 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2917 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2918 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2919 le32_to_cpu(msg->hdr.front_len), 2920 le32_to_cpu(msg->hdr.middle_len), 2921 le32_to_cpu(msg->hdr.data_len)); 2922 2923 clear_standby(con); 2924 mutex_unlock(&con->mutex); 2925 2926 /* if there wasn't anything waiting to send before, queue 2927 * new work */ 2928 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2929 queue_con(con); 2930 } 2931 EXPORT_SYMBOL(ceph_con_send); 2932 2933 /* 2934 * Revoke a message that was previously queued for send 2935 */ 2936 void ceph_msg_revoke(struct ceph_msg *msg) 2937 { 2938 struct ceph_connection *con = msg->con; 2939 2940 if (!con) 2941 return; /* Message not in our possession */ 2942 2943 mutex_lock(&con->mutex); 2944 if (!list_empty(&msg->list_head)) { 2945 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2946 list_del_init(&msg->list_head); 2947 BUG_ON(msg->con == NULL); 2948 msg->con->ops->put(msg->con); 2949 msg->con = NULL; 2950 msg->hdr.seq = 0; 2951 2952 ceph_msg_put(msg); 2953 } 2954 if (con->out_msg == msg) { 2955 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2956 con->out_msg = NULL; 2957 if (con->out_kvec_is_msg) { 2958 con->out_skip = con->out_kvec_bytes; 2959 con->out_kvec_is_msg = false; 2960 } 2961 msg->hdr.seq = 0; 2962 2963 ceph_msg_put(msg); 2964 } 2965 mutex_unlock(&con->mutex); 2966 } 2967 2968 /* 2969 * Revoke a message that we may be reading data into 2970 */ 2971 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 2972 { 2973 struct ceph_connection *con; 2974 2975 BUG_ON(msg == NULL); 2976 if (!msg->con) { 2977 dout("%s msg %p null con\n", __func__, msg); 2978 2979 return; /* Message not in our possession */ 2980 } 2981 2982 con = msg->con; 2983 mutex_lock(&con->mutex); 2984 if (con->in_msg == msg) { 2985 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 2986 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 2987 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 2988 2989 /* skip rest of message */ 2990 dout("%s %p msg %p revoked\n", __func__, con, msg); 2991 con->in_base_pos = con->in_base_pos - 2992 sizeof(struct ceph_msg_header) - 2993 front_len - 2994 middle_len - 2995 data_len - 2996 sizeof(struct ceph_msg_footer); 2997 ceph_msg_put(con->in_msg); 2998 con->in_msg = NULL; 2999 con->in_tag = CEPH_MSGR_TAG_READY; 3000 con->in_seq++; 3001 } else { 3002 dout("%s %p in_msg %p msg %p no-op\n", 3003 __func__, con, con->in_msg, msg); 3004 } 3005 mutex_unlock(&con->mutex); 3006 } 3007 3008 /* 3009 * Queue a keepalive byte to ensure the tcp connection is alive. 3010 */ 3011 void ceph_con_keepalive(struct ceph_connection *con) 3012 { 3013 dout("con_keepalive %p\n", con); 3014 mutex_lock(&con->mutex); 3015 clear_standby(con); 3016 mutex_unlock(&con->mutex); 3017 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3018 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3019 queue_con(con); 3020 } 3021 EXPORT_SYMBOL(ceph_con_keepalive); 3022 3023 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3024 { 3025 struct ceph_msg_data *data; 3026 3027 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3028 return NULL; 3029 3030 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3031 if (data) 3032 data->type = type; 3033 INIT_LIST_HEAD(&data->links); 3034 3035 return data; 3036 } 3037 3038 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3039 { 3040 if (!data) 3041 return; 3042 3043 WARN_ON(!list_empty(&data->links)); 3044 if (data->type == CEPH_MSG_DATA_PAGELIST) { 3045 ceph_pagelist_release(data->pagelist); 3046 kfree(data->pagelist); 3047 } 3048 kmem_cache_free(ceph_msg_data_cache, data); 3049 } 3050 3051 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3052 size_t length, size_t alignment) 3053 { 3054 struct ceph_msg_data *data; 3055 3056 BUG_ON(!pages); 3057 BUG_ON(!length); 3058 3059 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3060 BUG_ON(!data); 3061 data->pages = pages; 3062 data->length = length; 3063 data->alignment = alignment & ~PAGE_MASK; 3064 3065 list_add_tail(&data->links, &msg->data); 3066 msg->data_length += length; 3067 } 3068 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3069 3070 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3071 struct ceph_pagelist *pagelist) 3072 { 3073 struct ceph_msg_data *data; 3074 3075 BUG_ON(!pagelist); 3076 BUG_ON(!pagelist->length); 3077 3078 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3079 BUG_ON(!data); 3080 data->pagelist = pagelist; 3081 3082 list_add_tail(&data->links, &msg->data); 3083 msg->data_length += pagelist->length; 3084 } 3085 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3086 3087 #ifdef CONFIG_BLOCK 3088 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3089 size_t length) 3090 { 3091 struct ceph_msg_data *data; 3092 3093 BUG_ON(!bio); 3094 3095 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3096 BUG_ON(!data); 3097 data->bio = bio; 3098 data->bio_length = length; 3099 3100 list_add_tail(&data->links, &msg->data); 3101 msg->data_length += length; 3102 } 3103 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3104 #endif /* CONFIG_BLOCK */ 3105 3106 /* 3107 * construct a new message with given type, size 3108 * the new msg has a ref count of 1. 3109 */ 3110 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3111 bool can_fail) 3112 { 3113 struct ceph_msg *m; 3114 3115 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3116 if (m == NULL) 3117 goto out; 3118 3119 m->hdr.type = cpu_to_le16(type); 3120 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3121 m->hdr.front_len = cpu_to_le32(front_len); 3122 3123 INIT_LIST_HEAD(&m->list_head); 3124 kref_init(&m->kref); 3125 INIT_LIST_HEAD(&m->data); 3126 3127 /* front */ 3128 if (front_len) { 3129 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3130 if (m->front.iov_base == NULL) { 3131 dout("ceph_msg_new can't allocate %d bytes\n", 3132 front_len); 3133 goto out2; 3134 } 3135 } else { 3136 m->front.iov_base = NULL; 3137 } 3138 m->front_alloc_len = m->front.iov_len = front_len; 3139 3140 dout("ceph_msg_new %p front %d\n", m, front_len); 3141 return m; 3142 3143 out2: 3144 ceph_msg_put(m); 3145 out: 3146 if (!can_fail) { 3147 pr_err("msg_new can't create type %d front %d\n", type, 3148 front_len); 3149 WARN_ON(1); 3150 } else { 3151 dout("msg_new can't create type %d front %d\n", type, 3152 front_len); 3153 } 3154 return NULL; 3155 } 3156 EXPORT_SYMBOL(ceph_msg_new); 3157 3158 /* 3159 * Allocate "middle" portion of a message, if it is needed and wasn't 3160 * allocated by alloc_msg. This allows us to read a small fixed-size 3161 * per-type header in the front and then gracefully fail (i.e., 3162 * propagate the error to the caller based on info in the front) when 3163 * the middle is too large. 3164 */ 3165 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3166 { 3167 int type = le16_to_cpu(msg->hdr.type); 3168 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3169 3170 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3171 ceph_msg_type_name(type), middle_len); 3172 BUG_ON(!middle_len); 3173 BUG_ON(msg->middle); 3174 3175 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3176 if (!msg->middle) 3177 return -ENOMEM; 3178 return 0; 3179 } 3180 3181 /* 3182 * Allocate a message for receiving an incoming message on a 3183 * connection, and save the result in con->in_msg. Uses the 3184 * connection's private alloc_msg op if available. 3185 * 3186 * Returns 0 on success, or a negative error code. 3187 * 3188 * On success, if we set *skip = 1: 3189 * - the next message should be skipped and ignored. 3190 * - con->in_msg == NULL 3191 * or if we set *skip = 0: 3192 * - con->in_msg is non-null. 3193 * On error (ENOMEM, EAGAIN, ...), 3194 * - con->in_msg == NULL 3195 */ 3196 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3197 { 3198 struct ceph_msg_header *hdr = &con->in_hdr; 3199 int middle_len = le32_to_cpu(hdr->middle_len); 3200 struct ceph_msg *msg; 3201 int ret = 0; 3202 3203 BUG_ON(con->in_msg != NULL); 3204 BUG_ON(!con->ops->alloc_msg); 3205 3206 mutex_unlock(&con->mutex); 3207 msg = con->ops->alloc_msg(con, hdr, skip); 3208 mutex_lock(&con->mutex); 3209 if (con->state != CON_STATE_OPEN) { 3210 if (msg) 3211 ceph_msg_put(msg); 3212 return -EAGAIN; 3213 } 3214 if (msg) { 3215 BUG_ON(*skip); 3216 con->in_msg = msg; 3217 con->in_msg->con = con->ops->get(con); 3218 BUG_ON(con->in_msg->con == NULL); 3219 } else { 3220 /* 3221 * Null message pointer means either we should skip 3222 * this message or we couldn't allocate memory. The 3223 * former is not an error. 3224 */ 3225 if (*skip) 3226 return 0; 3227 con->error_msg = "error allocating memory for incoming message"; 3228 3229 return -ENOMEM; 3230 } 3231 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3232 3233 if (middle_len && !con->in_msg->middle) { 3234 ret = ceph_alloc_middle(con, con->in_msg); 3235 if (ret < 0) { 3236 ceph_msg_put(con->in_msg); 3237 con->in_msg = NULL; 3238 } 3239 } 3240 3241 return ret; 3242 } 3243 3244 3245 /* 3246 * Free a generically kmalloc'd message. 3247 */ 3248 void ceph_msg_kfree(struct ceph_msg *m) 3249 { 3250 dout("msg_kfree %p\n", m); 3251 ceph_kvfree(m->front.iov_base); 3252 kmem_cache_free(ceph_msg_cache, m); 3253 } 3254 3255 /* 3256 * Drop a msg ref. Destroy as needed. 3257 */ 3258 void ceph_msg_last_put(struct kref *kref) 3259 { 3260 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3261 LIST_HEAD(data); 3262 struct list_head *links; 3263 struct list_head *next; 3264 3265 dout("ceph_msg_put last one on %p\n", m); 3266 WARN_ON(!list_empty(&m->list_head)); 3267 3268 /* drop middle, data, if any */ 3269 if (m->middle) { 3270 ceph_buffer_put(m->middle); 3271 m->middle = NULL; 3272 } 3273 3274 list_splice_init(&m->data, &data); 3275 list_for_each_safe(links, next, &data) { 3276 struct ceph_msg_data *data; 3277 3278 data = list_entry(links, struct ceph_msg_data, links); 3279 list_del_init(links); 3280 ceph_msg_data_destroy(data); 3281 } 3282 m->data_length = 0; 3283 3284 if (m->pool) 3285 ceph_msgpool_put(m->pool, m); 3286 else 3287 ceph_msg_kfree(m); 3288 } 3289 EXPORT_SYMBOL(ceph_msg_last_put); 3290 3291 void ceph_msg_dump(struct ceph_msg *msg) 3292 { 3293 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3294 msg->front_alloc_len, msg->data_length); 3295 print_hex_dump(KERN_DEBUG, "header: ", 3296 DUMP_PREFIX_OFFSET, 16, 1, 3297 &msg->hdr, sizeof(msg->hdr), true); 3298 print_hex_dump(KERN_DEBUG, " front: ", 3299 DUMP_PREFIX_OFFSET, 16, 1, 3300 msg->front.iov_base, msg->front.iov_len, true); 3301 if (msg->middle) 3302 print_hex_dump(KERN_DEBUG, "middle: ", 3303 DUMP_PREFIX_OFFSET, 16, 1, 3304 msg->middle->vec.iov_base, 3305 msg->middle->vec.iov_len, true); 3306 print_hex_dump(KERN_DEBUG, "footer: ", 3307 DUMP_PREFIX_OFFSET, 16, 1, 3308 &msg->footer, sizeof(msg->footer), true); 3309 } 3310 EXPORT_SYMBOL(ceph_msg_dump); 3311