xref: /openbmc/linux/net/ceph/messenger.c (revision f6723b56)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
185 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;		/* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 	int i;
197 	char *s;
198 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 	s = addr_str[i];
203 
204 	switch (ss->ss_family) {
205 	case AF_INET:
206 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 			 ntohs(in4->sin_port));
208 		break;
209 
210 	case AF_INET6:
211 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 			 ntohs(in6->sin6_port));
213 		break;
214 
215 	default:
216 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 			 ss->ss_family);
218 	}
219 
220 	return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 	ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237 	BUG_ON(ceph_msg_cache);
238 	ceph_msg_cache = kmem_cache_create("ceph_msg",
239 					sizeof (struct ceph_msg),
240 					__alignof__(struct ceph_msg), 0, NULL);
241 
242 	if (!ceph_msg_cache)
243 		return -ENOMEM;
244 
245 	BUG_ON(ceph_msg_data_cache);
246 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 					sizeof (struct ceph_msg_data),
248 					__alignof__(struct ceph_msg_data),
249 					0, NULL);
250 	if (ceph_msg_data_cache)
251 		return 0;
252 
253 	kmem_cache_destroy(ceph_msg_cache);
254 	ceph_msg_cache = NULL;
255 
256 	return -ENOMEM;
257 }
258 
259 static void ceph_msgr_slab_exit(void)
260 {
261 	BUG_ON(!ceph_msg_data_cache);
262 	kmem_cache_destroy(ceph_msg_data_cache);
263 	ceph_msg_data_cache = NULL;
264 
265 	BUG_ON(!ceph_msg_cache);
266 	kmem_cache_destroy(ceph_msg_cache);
267 	ceph_msg_cache = NULL;
268 }
269 
270 static void _ceph_msgr_exit(void)
271 {
272 	if (ceph_msgr_wq) {
273 		destroy_workqueue(ceph_msgr_wq);
274 		ceph_msgr_wq = NULL;
275 	}
276 
277 	ceph_msgr_slab_exit();
278 
279 	BUG_ON(zero_page == NULL);
280 	kunmap(zero_page);
281 	page_cache_release(zero_page);
282 	zero_page = NULL;
283 }
284 
285 int ceph_msgr_init(void)
286 {
287 	BUG_ON(zero_page != NULL);
288 	zero_page = ZERO_PAGE(0);
289 	page_cache_get(zero_page);
290 
291 	if (ceph_msgr_slab_init())
292 		return -ENOMEM;
293 
294 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 	if (ceph_msgr_wq)
296 		return 0;
297 
298 	pr_err("msgr_init failed to create workqueue\n");
299 	_ceph_msgr_exit();
300 
301 	return -ENOMEM;
302 }
303 EXPORT_SYMBOL(ceph_msgr_init);
304 
305 void ceph_msgr_exit(void)
306 {
307 	BUG_ON(ceph_msgr_wq == NULL);
308 
309 	_ceph_msgr_exit();
310 }
311 EXPORT_SYMBOL(ceph_msgr_exit);
312 
313 void ceph_msgr_flush(void)
314 {
315 	flush_workqueue(ceph_msgr_wq);
316 }
317 EXPORT_SYMBOL(ceph_msgr_flush);
318 
319 /* Connection socket state transition functions */
320 
321 static void con_sock_state_init(struct ceph_connection *con)
322 {
323 	int old_state;
324 
325 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 		printk("%s: unexpected old state %d\n", __func__, old_state);
328 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 	     CON_SOCK_STATE_CLOSED);
330 }
331 
332 static void con_sock_state_connecting(struct ceph_connection *con)
333 {
334 	int old_state;
335 
336 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 		printk("%s: unexpected old state %d\n", __func__, old_state);
339 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 	     CON_SOCK_STATE_CONNECTING);
341 }
342 
343 static void con_sock_state_connected(struct ceph_connection *con)
344 {
345 	int old_state;
346 
347 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 		printk("%s: unexpected old state %d\n", __func__, old_state);
350 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 	     CON_SOCK_STATE_CONNECTED);
352 }
353 
354 static void con_sock_state_closing(struct ceph_connection *con)
355 {
356 	int old_state;
357 
358 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 			old_state != CON_SOCK_STATE_CONNECTED &&
361 			old_state != CON_SOCK_STATE_CLOSING))
362 		printk("%s: unexpected old state %d\n", __func__, old_state);
363 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 	     CON_SOCK_STATE_CLOSING);
365 }
366 
367 static void con_sock_state_closed(struct ceph_connection *con)
368 {
369 	int old_state;
370 
371 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 		    old_state != CON_SOCK_STATE_CLOSING &&
374 		    old_state != CON_SOCK_STATE_CONNECTING &&
375 		    old_state != CON_SOCK_STATE_CLOSED))
376 		printk("%s: unexpected old state %d\n", __func__, old_state);
377 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 	     CON_SOCK_STATE_CLOSED);
379 }
380 
381 /*
382  * socket callback functions
383  */
384 
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
387 {
388 	struct ceph_connection *con = sk->sk_user_data;
389 	if (atomic_read(&con->msgr->stopping)) {
390 		return;
391 	}
392 
393 	if (sk->sk_state != TCP_CLOSE_WAIT) {
394 		dout("%s on %p state = %lu, queueing work\n", __func__,
395 		     con, con->state);
396 		queue_con(con);
397 	}
398 }
399 
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
402 {
403 	struct ceph_connection *con = sk->sk_user_data;
404 
405 	/* only queue to workqueue if there is data we want to write,
406 	 * and there is sufficient space in the socket buffer to accept
407 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
408 	 * doesn't get called again until try_write() fills the socket
409 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 	 * and net/core/stream.c:sk_stream_write_space().
411 	 */
412 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 		if (sk_stream_is_writeable(sk)) {
414 			dout("%s %p queueing write work\n", __func__, con);
415 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 			queue_con(con);
417 		}
418 	} else {
419 		dout("%s %p nothing to write\n", __func__, con);
420 	}
421 }
422 
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
425 {
426 	struct ceph_connection *con = sk->sk_user_data;
427 
428 	dout("%s %p state = %lu sk_state = %u\n", __func__,
429 	     con, con->state, sk->sk_state);
430 
431 	switch (sk->sk_state) {
432 	case TCP_CLOSE:
433 		dout("%s TCP_CLOSE\n", __func__);
434 	case TCP_CLOSE_WAIT:
435 		dout("%s TCP_CLOSE_WAIT\n", __func__);
436 		con_sock_state_closing(con);
437 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 		queue_con(con);
439 		break;
440 	case TCP_ESTABLISHED:
441 		dout("%s TCP_ESTABLISHED\n", __func__);
442 		con_sock_state_connected(con);
443 		queue_con(con);
444 		break;
445 	default:	/* Everything else is uninteresting */
446 		break;
447 	}
448 }
449 
450 /*
451  * set up socket callbacks
452  */
453 static void set_sock_callbacks(struct socket *sock,
454 			       struct ceph_connection *con)
455 {
456 	struct sock *sk = sock->sk;
457 	sk->sk_user_data = con;
458 	sk->sk_data_ready = ceph_sock_data_ready;
459 	sk->sk_write_space = ceph_sock_write_space;
460 	sk->sk_state_change = ceph_sock_state_change;
461 }
462 
463 
464 /*
465  * socket helpers
466  */
467 
468 /*
469  * initiate connection to a remote socket.
470  */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 	struct socket *sock;
475 	int ret;
476 
477 	BUG_ON(con->sock);
478 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 			       IPPROTO_TCP, &sock);
480 	if (ret)
481 		return ret;
482 	sock->sk->sk_allocation = GFP_NOFS;
483 
484 #ifdef CONFIG_LOCKDEP
485 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
487 
488 	set_sock_callbacks(sock, con);
489 
490 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491 
492 	con_sock_state_connecting(con);
493 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 				 O_NONBLOCK);
495 	if (ret == -EINPROGRESS) {
496 		dout("connect %s EINPROGRESS sk_state = %u\n",
497 		     ceph_pr_addr(&con->peer_addr.in_addr),
498 		     sock->sk->sk_state);
499 	} else if (ret < 0) {
500 		pr_err("connect %s error %d\n",
501 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 		sock_release(sock);
503 		con->error_msg = "connect error";
504 
505 		return ret;
506 	}
507 	con->sock = sock;
508 	return 0;
509 }
510 
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512 {
513 	struct kvec iov = {buf, len};
514 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 	int r;
516 
517 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 	if (r == -EAGAIN)
519 		r = 0;
520 	return r;
521 }
522 
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 		     int page_offset, size_t length)
525 {
526 	void *kaddr;
527 	int ret;
528 
529 	BUG_ON(page_offset + length > PAGE_SIZE);
530 
531 	kaddr = kmap(page);
532 	BUG_ON(!kaddr);
533 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 	kunmap(page);
535 
536 	return ret;
537 }
538 
539 /*
540  * write something.  @more is true if caller will be sending more data
541  * shortly.
542  */
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 		     size_t kvlen, size_t len, int more)
545 {
546 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 	int r;
548 
549 	if (more)
550 		msg.msg_flags |= MSG_MORE;
551 	else
552 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
553 
554 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 	if (r == -EAGAIN)
556 		r = 0;
557 	return r;
558 }
559 
560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 		     int offset, size_t size, bool more)
562 {
563 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 	int ret;
565 
566 	ret = kernel_sendpage(sock, page, offset, size, flags);
567 	if (ret == -EAGAIN)
568 		ret = 0;
569 
570 	return ret;
571 }
572 
573 
574 /*
575  * Shutdown/close the socket for the given connection.
576  */
577 static int con_close_socket(struct ceph_connection *con)
578 {
579 	int rc = 0;
580 
581 	dout("con_close_socket on %p sock %p\n", con, con->sock);
582 	if (con->sock) {
583 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
584 		sock_release(con->sock);
585 		con->sock = NULL;
586 	}
587 
588 	/*
589 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
590 	 * independent of the connection mutex, and we could have
591 	 * received a socket close event before we had the chance to
592 	 * shut the socket down.
593 	 */
594 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
595 
596 	con_sock_state_closed(con);
597 	return rc;
598 }
599 
600 /*
601  * Reset a connection.  Discard all incoming and outgoing messages
602  * and clear *_seq state.
603  */
604 static void ceph_msg_remove(struct ceph_msg *msg)
605 {
606 	list_del_init(&msg->list_head);
607 	BUG_ON(msg->con == NULL);
608 	msg->con->ops->put(msg->con);
609 	msg->con = NULL;
610 
611 	ceph_msg_put(msg);
612 }
613 static void ceph_msg_remove_list(struct list_head *head)
614 {
615 	while (!list_empty(head)) {
616 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
617 							list_head);
618 		ceph_msg_remove(msg);
619 	}
620 }
621 
622 static void reset_connection(struct ceph_connection *con)
623 {
624 	/* reset connection, out_queue, msg_ and connect_seq */
625 	/* discard existing out_queue and msg_seq */
626 	dout("reset_connection %p\n", con);
627 	ceph_msg_remove_list(&con->out_queue);
628 	ceph_msg_remove_list(&con->out_sent);
629 
630 	if (con->in_msg) {
631 		BUG_ON(con->in_msg->con != con);
632 		con->in_msg->con = NULL;
633 		ceph_msg_put(con->in_msg);
634 		con->in_msg = NULL;
635 		con->ops->put(con);
636 	}
637 
638 	con->connect_seq = 0;
639 	con->out_seq = 0;
640 	if (con->out_msg) {
641 		ceph_msg_put(con->out_msg);
642 		con->out_msg = NULL;
643 	}
644 	con->in_seq = 0;
645 	con->in_seq_acked = 0;
646 }
647 
648 /*
649  * mark a peer down.  drop any open connections.
650  */
651 void ceph_con_close(struct ceph_connection *con)
652 {
653 	mutex_lock(&con->mutex);
654 	dout("con_close %p peer %s\n", con,
655 	     ceph_pr_addr(&con->peer_addr.in_addr));
656 	con->state = CON_STATE_CLOSED;
657 
658 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
659 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
660 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
661 	con_flag_clear(con, CON_FLAG_BACKOFF);
662 
663 	reset_connection(con);
664 	con->peer_global_seq = 0;
665 	cancel_delayed_work(&con->work);
666 	con_close_socket(con);
667 	mutex_unlock(&con->mutex);
668 }
669 EXPORT_SYMBOL(ceph_con_close);
670 
671 /*
672  * Reopen a closed connection, with a new peer address.
673  */
674 void ceph_con_open(struct ceph_connection *con,
675 		   __u8 entity_type, __u64 entity_num,
676 		   struct ceph_entity_addr *addr)
677 {
678 	mutex_lock(&con->mutex);
679 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
680 
681 	WARN_ON(con->state != CON_STATE_CLOSED);
682 	con->state = CON_STATE_PREOPEN;
683 
684 	con->peer_name.type = (__u8) entity_type;
685 	con->peer_name.num = cpu_to_le64(entity_num);
686 
687 	memcpy(&con->peer_addr, addr, sizeof(*addr));
688 	con->delay = 0;      /* reset backoff memory */
689 	mutex_unlock(&con->mutex);
690 	queue_con(con);
691 }
692 EXPORT_SYMBOL(ceph_con_open);
693 
694 /*
695  * return true if this connection ever successfully opened
696  */
697 bool ceph_con_opened(struct ceph_connection *con)
698 {
699 	return con->connect_seq > 0;
700 }
701 
702 /*
703  * initialize a new connection.
704  */
705 void ceph_con_init(struct ceph_connection *con, void *private,
706 	const struct ceph_connection_operations *ops,
707 	struct ceph_messenger *msgr)
708 {
709 	dout("con_init %p\n", con);
710 	memset(con, 0, sizeof(*con));
711 	con->private = private;
712 	con->ops = ops;
713 	con->msgr = msgr;
714 
715 	con_sock_state_init(con);
716 
717 	mutex_init(&con->mutex);
718 	INIT_LIST_HEAD(&con->out_queue);
719 	INIT_LIST_HEAD(&con->out_sent);
720 	INIT_DELAYED_WORK(&con->work, con_work);
721 
722 	con->state = CON_STATE_CLOSED;
723 }
724 EXPORT_SYMBOL(ceph_con_init);
725 
726 
727 /*
728  * We maintain a global counter to order connection attempts.  Get
729  * a unique seq greater than @gt.
730  */
731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
732 {
733 	u32 ret;
734 
735 	spin_lock(&msgr->global_seq_lock);
736 	if (msgr->global_seq < gt)
737 		msgr->global_seq = gt;
738 	ret = ++msgr->global_seq;
739 	spin_unlock(&msgr->global_seq_lock);
740 	return ret;
741 }
742 
743 static void con_out_kvec_reset(struct ceph_connection *con)
744 {
745 	con->out_kvec_left = 0;
746 	con->out_kvec_bytes = 0;
747 	con->out_kvec_cur = &con->out_kvec[0];
748 }
749 
750 static void con_out_kvec_add(struct ceph_connection *con,
751 				size_t size, void *data)
752 {
753 	int index;
754 
755 	index = con->out_kvec_left;
756 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
757 
758 	con->out_kvec[index].iov_len = size;
759 	con->out_kvec[index].iov_base = data;
760 	con->out_kvec_left++;
761 	con->out_kvec_bytes += size;
762 }
763 
764 #ifdef CONFIG_BLOCK
765 
766 /*
767  * For a bio data item, a piece is whatever remains of the next
768  * entry in the current bio iovec, or the first entry in the next
769  * bio in the list.
770  */
771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
772 					size_t length)
773 {
774 	struct ceph_msg_data *data = cursor->data;
775 	struct bio *bio;
776 
777 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
778 
779 	bio = data->bio;
780 	BUG_ON(!bio);
781 
782 	cursor->resid = min(length, data->bio_length);
783 	cursor->bio = bio;
784 	cursor->bvec_iter = bio->bi_iter;
785 	cursor->last_piece =
786 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
787 }
788 
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 						size_t *page_offset,
791 						size_t *length)
792 {
793 	struct ceph_msg_data *data = cursor->data;
794 	struct bio *bio;
795 	struct bio_vec bio_vec;
796 
797 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
798 
799 	bio = cursor->bio;
800 	BUG_ON(!bio);
801 
802 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
803 
804 	*page_offset = (size_t) bio_vec.bv_offset;
805 	BUG_ON(*page_offset >= PAGE_SIZE);
806 	if (cursor->last_piece) /* pagelist offset is always 0 */
807 		*length = cursor->resid;
808 	else
809 		*length = (size_t) bio_vec.bv_len;
810 	BUG_ON(*length > cursor->resid);
811 	BUG_ON(*page_offset + *length > PAGE_SIZE);
812 
813 	return bio_vec.bv_page;
814 }
815 
816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
817 					size_t bytes)
818 {
819 	struct bio *bio;
820 	struct bio_vec bio_vec;
821 
822 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
823 
824 	bio = cursor->bio;
825 	BUG_ON(!bio);
826 
827 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
828 
829 	/* Advance the cursor offset */
830 
831 	BUG_ON(cursor->resid < bytes);
832 	cursor->resid -= bytes;
833 
834 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
835 
836 	if (bytes < bio_vec.bv_len)
837 		return false;	/* more bytes to process in this segment */
838 
839 	/* Move on to the next segment, and possibly the next bio */
840 
841 	if (!cursor->bvec_iter.bi_size) {
842 		bio = bio->bi_next;
843 		cursor->bio = bio;
844 		if (bio)
845 			cursor->bvec_iter = bio->bi_iter;
846 		else
847 			memset(&cursor->bvec_iter, 0,
848 			       sizeof(cursor->bvec_iter));
849 	}
850 
851 	if (!cursor->last_piece) {
852 		BUG_ON(!cursor->resid);
853 		BUG_ON(!bio);
854 		/* A short read is OK, so use <= rather than == */
855 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
856 			cursor->last_piece = true;
857 	}
858 
859 	return true;
860 }
861 #endif /* CONFIG_BLOCK */
862 
863 /*
864  * For a page array, a piece comes from the first page in the array
865  * that has not already been fully consumed.
866  */
867 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
868 					size_t length)
869 {
870 	struct ceph_msg_data *data = cursor->data;
871 	int page_count;
872 
873 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
874 
875 	BUG_ON(!data->pages);
876 	BUG_ON(!data->length);
877 
878 	cursor->resid = min(length, data->length);
879 	page_count = calc_pages_for(data->alignment, (u64)data->length);
880 	cursor->page_offset = data->alignment & ~PAGE_MASK;
881 	cursor->page_index = 0;
882 	BUG_ON(page_count > (int)USHRT_MAX);
883 	cursor->page_count = (unsigned short)page_count;
884 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
885 	cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
886 }
887 
888 static struct page *
889 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
890 					size_t *page_offset, size_t *length)
891 {
892 	struct ceph_msg_data *data = cursor->data;
893 
894 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
895 
896 	BUG_ON(cursor->page_index >= cursor->page_count);
897 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
898 
899 	*page_offset = cursor->page_offset;
900 	if (cursor->last_piece)
901 		*length = cursor->resid;
902 	else
903 		*length = PAGE_SIZE - *page_offset;
904 
905 	return data->pages[cursor->page_index];
906 }
907 
908 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
909 						size_t bytes)
910 {
911 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
912 
913 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
914 
915 	/* Advance the cursor page offset */
916 
917 	cursor->resid -= bytes;
918 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
919 	if (!bytes || cursor->page_offset)
920 		return false;	/* more bytes to process in the current page */
921 
922 	/* Move on to the next page; offset is already at 0 */
923 
924 	BUG_ON(cursor->page_index >= cursor->page_count);
925 	cursor->page_index++;
926 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
927 
928 	return true;
929 }
930 
931 /*
932  * For a pagelist, a piece is whatever remains to be consumed in the
933  * first page in the list, or the front of the next page.
934  */
935 static void
936 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
937 					size_t length)
938 {
939 	struct ceph_msg_data *data = cursor->data;
940 	struct ceph_pagelist *pagelist;
941 	struct page *page;
942 
943 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
944 
945 	pagelist = data->pagelist;
946 	BUG_ON(!pagelist);
947 
948 	if (!length)
949 		return;		/* pagelist can be assigned but empty */
950 
951 	BUG_ON(list_empty(&pagelist->head));
952 	page = list_first_entry(&pagelist->head, struct page, lru);
953 
954 	cursor->resid = min(length, pagelist->length);
955 	cursor->page = page;
956 	cursor->offset = 0;
957 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
958 }
959 
960 static struct page *
961 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
962 				size_t *page_offset, size_t *length)
963 {
964 	struct ceph_msg_data *data = cursor->data;
965 	struct ceph_pagelist *pagelist;
966 
967 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
968 
969 	pagelist = data->pagelist;
970 	BUG_ON(!pagelist);
971 
972 	BUG_ON(!cursor->page);
973 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
974 
975 	/* offset of first page in pagelist is always 0 */
976 	*page_offset = cursor->offset & ~PAGE_MASK;
977 	if (cursor->last_piece)
978 		*length = cursor->resid;
979 	else
980 		*length = PAGE_SIZE - *page_offset;
981 
982 	return cursor->page;
983 }
984 
985 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
986 						size_t bytes)
987 {
988 	struct ceph_msg_data *data = cursor->data;
989 	struct ceph_pagelist *pagelist;
990 
991 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
992 
993 	pagelist = data->pagelist;
994 	BUG_ON(!pagelist);
995 
996 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
997 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
998 
999 	/* Advance the cursor offset */
1000 
1001 	cursor->resid -= bytes;
1002 	cursor->offset += bytes;
1003 	/* offset of first page in pagelist is always 0 */
1004 	if (!bytes || cursor->offset & ~PAGE_MASK)
1005 		return false;	/* more bytes to process in the current page */
1006 
1007 	/* Move on to the next page */
1008 
1009 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1010 	cursor->page = list_entry_next(cursor->page, lru);
1011 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1012 
1013 	return true;
1014 }
1015 
1016 /*
1017  * Message data is handled (sent or received) in pieces, where each
1018  * piece resides on a single page.  The network layer might not
1019  * consume an entire piece at once.  A data item's cursor keeps
1020  * track of which piece is next to process and how much remains to
1021  * be processed in that piece.  It also tracks whether the current
1022  * piece is the last one in the data item.
1023  */
1024 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1025 {
1026 	size_t length = cursor->total_resid;
1027 
1028 	switch (cursor->data->type) {
1029 	case CEPH_MSG_DATA_PAGELIST:
1030 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1031 		break;
1032 	case CEPH_MSG_DATA_PAGES:
1033 		ceph_msg_data_pages_cursor_init(cursor, length);
1034 		break;
1035 #ifdef CONFIG_BLOCK
1036 	case CEPH_MSG_DATA_BIO:
1037 		ceph_msg_data_bio_cursor_init(cursor, length);
1038 		break;
1039 #endif /* CONFIG_BLOCK */
1040 	case CEPH_MSG_DATA_NONE:
1041 	default:
1042 		/* BUG(); */
1043 		break;
1044 	}
1045 	cursor->need_crc = true;
1046 }
1047 
1048 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1049 {
1050 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1051 	struct ceph_msg_data *data;
1052 
1053 	BUG_ON(!length);
1054 	BUG_ON(length > msg->data_length);
1055 	BUG_ON(list_empty(&msg->data));
1056 
1057 	cursor->data_head = &msg->data;
1058 	cursor->total_resid = length;
1059 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1060 	cursor->data = data;
1061 
1062 	__ceph_msg_data_cursor_init(cursor);
1063 }
1064 
1065 /*
1066  * Return the page containing the next piece to process for a given
1067  * data item, and supply the page offset and length of that piece.
1068  * Indicate whether this is the last piece in this data item.
1069  */
1070 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1071 					size_t *page_offset, size_t *length,
1072 					bool *last_piece)
1073 {
1074 	struct page *page;
1075 
1076 	switch (cursor->data->type) {
1077 	case CEPH_MSG_DATA_PAGELIST:
1078 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1079 		break;
1080 	case CEPH_MSG_DATA_PAGES:
1081 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1082 		break;
1083 #ifdef CONFIG_BLOCK
1084 	case CEPH_MSG_DATA_BIO:
1085 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1086 		break;
1087 #endif /* CONFIG_BLOCK */
1088 	case CEPH_MSG_DATA_NONE:
1089 	default:
1090 		page = NULL;
1091 		break;
1092 	}
1093 	BUG_ON(!page);
1094 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1095 	BUG_ON(!*length);
1096 	if (last_piece)
1097 		*last_piece = cursor->last_piece;
1098 
1099 	return page;
1100 }
1101 
1102 /*
1103  * Returns true if the result moves the cursor on to the next piece
1104  * of the data item.
1105  */
1106 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1107 				size_t bytes)
1108 {
1109 	bool new_piece;
1110 
1111 	BUG_ON(bytes > cursor->resid);
1112 	switch (cursor->data->type) {
1113 	case CEPH_MSG_DATA_PAGELIST:
1114 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1115 		break;
1116 	case CEPH_MSG_DATA_PAGES:
1117 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1118 		break;
1119 #ifdef CONFIG_BLOCK
1120 	case CEPH_MSG_DATA_BIO:
1121 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1122 		break;
1123 #endif /* CONFIG_BLOCK */
1124 	case CEPH_MSG_DATA_NONE:
1125 	default:
1126 		BUG();
1127 		break;
1128 	}
1129 	cursor->total_resid -= bytes;
1130 
1131 	if (!cursor->resid && cursor->total_resid) {
1132 		WARN_ON(!cursor->last_piece);
1133 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1134 		cursor->data = list_entry_next(cursor->data, links);
1135 		__ceph_msg_data_cursor_init(cursor);
1136 		new_piece = true;
1137 	}
1138 	cursor->need_crc = new_piece;
1139 
1140 	return new_piece;
1141 }
1142 
1143 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1144 {
1145 	BUG_ON(!msg);
1146 	BUG_ON(!data_len);
1147 
1148 	/* Initialize data cursor */
1149 
1150 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1151 }
1152 
1153 /*
1154  * Prepare footer for currently outgoing message, and finish things
1155  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1156  */
1157 static void prepare_write_message_footer(struct ceph_connection *con)
1158 {
1159 	struct ceph_msg *m = con->out_msg;
1160 	int v = con->out_kvec_left;
1161 
1162 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1163 
1164 	dout("prepare_write_message_footer %p\n", con);
1165 	con->out_kvec_is_msg = true;
1166 	con->out_kvec[v].iov_base = &m->footer;
1167 	con->out_kvec[v].iov_len = sizeof(m->footer);
1168 	con->out_kvec_bytes += sizeof(m->footer);
1169 	con->out_kvec_left++;
1170 	con->out_more = m->more_to_follow;
1171 	con->out_msg_done = true;
1172 }
1173 
1174 /*
1175  * Prepare headers for the next outgoing message.
1176  */
1177 static void prepare_write_message(struct ceph_connection *con)
1178 {
1179 	struct ceph_msg *m;
1180 	u32 crc;
1181 
1182 	con_out_kvec_reset(con);
1183 	con->out_kvec_is_msg = true;
1184 	con->out_msg_done = false;
1185 
1186 	/* Sneak an ack in there first?  If we can get it into the same
1187 	 * TCP packet that's a good thing. */
1188 	if (con->in_seq > con->in_seq_acked) {
1189 		con->in_seq_acked = con->in_seq;
1190 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1191 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1192 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1193 			&con->out_temp_ack);
1194 	}
1195 
1196 	BUG_ON(list_empty(&con->out_queue));
1197 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1198 	con->out_msg = m;
1199 	BUG_ON(m->con != con);
1200 
1201 	/* put message on sent list */
1202 	ceph_msg_get(m);
1203 	list_move_tail(&m->list_head, &con->out_sent);
1204 
1205 	/*
1206 	 * only assign outgoing seq # if we haven't sent this message
1207 	 * yet.  if it is requeued, resend with it's original seq.
1208 	 */
1209 	if (m->needs_out_seq) {
1210 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1211 		m->needs_out_seq = false;
1212 	}
1213 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1214 
1215 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1216 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1217 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1218 	     m->data_length);
1219 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1220 
1221 	/* tag + hdr + front + middle */
1222 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1223 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1224 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1225 
1226 	if (m->middle)
1227 		con_out_kvec_add(con, m->middle->vec.iov_len,
1228 			m->middle->vec.iov_base);
1229 
1230 	/* fill in crc (except data pages), footer */
1231 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1232 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1233 	con->out_msg->footer.flags = 0;
1234 
1235 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1236 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1237 	if (m->middle) {
1238 		crc = crc32c(0, m->middle->vec.iov_base,
1239 				m->middle->vec.iov_len);
1240 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1241 	} else
1242 		con->out_msg->footer.middle_crc = 0;
1243 	dout("%s front_crc %u middle_crc %u\n", __func__,
1244 	     le32_to_cpu(con->out_msg->footer.front_crc),
1245 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1246 
1247 	/* is there a data payload? */
1248 	con->out_msg->footer.data_crc = 0;
1249 	if (m->data_length) {
1250 		prepare_message_data(con->out_msg, m->data_length);
1251 		con->out_more = 1;  /* data + footer will follow */
1252 	} else {
1253 		/* no, queue up footer too and be done */
1254 		prepare_write_message_footer(con);
1255 	}
1256 
1257 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1258 }
1259 
1260 /*
1261  * Prepare an ack.
1262  */
1263 static void prepare_write_ack(struct ceph_connection *con)
1264 {
1265 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1266 	     con->in_seq_acked, con->in_seq);
1267 	con->in_seq_acked = con->in_seq;
1268 
1269 	con_out_kvec_reset(con);
1270 
1271 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1272 
1273 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1274 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1275 				&con->out_temp_ack);
1276 
1277 	con->out_more = 1;  /* more will follow.. eventually.. */
1278 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1279 }
1280 
1281 /*
1282  * Prepare to share the seq during handshake
1283  */
1284 static void prepare_write_seq(struct ceph_connection *con)
1285 {
1286 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1287 	     con->in_seq_acked, con->in_seq);
1288 	con->in_seq_acked = con->in_seq;
1289 
1290 	con_out_kvec_reset(con);
1291 
1292 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1293 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1294 			 &con->out_temp_ack);
1295 
1296 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1297 }
1298 
1299 /*
1300  * Prepare to write keepalive byte.
1301  */
1302 static void prepare_write_keepalive(struct ceph_connection *con)
1303 {
1304 	dout("prepare_write_keepalive %p\n", con);
1305 	con_out_kvec_reset(con);
1306 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1307 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1308 }
1309 
1310 /*
1311  * Connection negotiation.
1312  */
1313 
1314 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1315 						int *auth_proto)
1316 {
1317 	struct ceph_auth_handshake *auth;
1318 
1319 	if (!con->ops->get_authorizer) {
1320 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1321 		con->out_connect.authorizer_len = 0;
1322 		return NULL;
1323 	}
1324 
1325 	/* Can't hold the mutex while getting authorizer */
1326 	mutex_unlock(&con->mutex);
1327 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1328 	mutex_lock(&con->mutex);
1329 
1330 	if (IS_ERR(auth))
1331 		return auth;
1332 	if (con->state != CON_STATE_NEGOTIATING)
1333 		return ERR_PTR(-EAGAIN);
1334 
1335 	con->auth_reply_buf = auth->authorizer_reply_buf;
1336 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1337 	return auth;
1338 }
1339 
1340 /*
1341  * We connected to a peer and are saying hello.
1342  */
1343 static void prepare_write_banner(struct ceph_connection *con)
1344 {
1345 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1346 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1347 					&con->msgr->my_enc_addr);
1348 
1349 	con->out_more = 0;
1350 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1351 }
1352 
1353 static int prepare_write_connect(struct ceph_connection *con)
1354 {
1355 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1356 	int proto;
1357 	int auth_proto;
1358 	struct ceph_auth_handshake *auth;
1359 
1360 	switch (con->peer_name.type) {
1361 	case CEPH_ENTITY_TYPE_MON:
1362 		proto = CEPH_MONC_PROTOCOL;
1363 		break;
1364 	case CEPH_ENTITY_TYPE_OSD:
1365 		proto = CEPH_OSDC_PROTOCOL;
1366 		break;
1367 	case CEPH_ENTITY_TYPE_MDS:
1368 		proto = CEPH_MDSC_PROTOCOL;
1369 		break;
1370 	default:
1371 		BUG();
1372 	}
1373 
1374 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1375 	     con->connect_seq, global_seq, proto);
1376 
1377 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1378 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1379 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1380 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1381 	con->out_connect.protocol_version = cpu_to_le32(proto);
1382 	con->out_connect.flags = 0;
1383 
1384 	auth_proto = CEPH_AUTH_UNKNOWN;
1385 	auth = get_connect_authorizer(con, &auth_proto);
1386 	if (IS_ERR(auth))
1387 		return PTR_ERR(auth);
1388 
1389 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1390 	con->out_connect.authorizer_len = auth ?
1391 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1392 
1393 	con_out_kvec_add(con, sizeof (con->out_connect),
1394 					&con->out_connect);
1395 	if (auth && auth->authorizer_buf_len)
1396 		con_out_kvec_add(con, auth->authorizer_buf_len,
1397 					auth->authorizer_buf);
1398 
1399 	con->out_more = 0;
1400 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * write as much of pending kvecs to the socket as we can.
1407  *  1 -> done
1408  *  0 -> socket full, but more to do
1409  * <0 -> error
1410  */
1411 static int write_partial_kvec(struct ceph_connection *con)
1412 {
1413 	int ret;
1414 
1415 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1416 	while (con->out_kvec_bytes > 0) {
1417 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1418 				       con->out_kvec_left, con->out_kvec_bytes,
1419 				       con->out_more);
1420 		if (ret <= 0)
1421 			goto out;
1422 		con->out_kvec_bytes -= ret;
1423 		if (con->out_kvec_bytes == 0)
1424 			break;            /* done */
1425 
1426 		/* account for full iov entries consumed */
1427 		while (ret >= con->out_kvec_cur->iov_len) {
1428 			BUG_ON(!con->out_kvec_left);
1429 			ret -= con->out_kvec_cur->iov_len;
1430 			con->out_kvec_cur++;
1431 			con->out_kvec_left--;
1432 		}
1433 		/* and for a partially-consumed entry */
1434 		if (ret) {
1435 			con->out_kvec_cur->iov_len -= ret;
1436 			con->out_kvec_cur->iov_base += ret;
1437 		}
1438 	}
1439 	con->out_kvec_left = 0;
1440 	con->out_kvec_is_msg = false;
1441 	ret = 1;
1442 out:
1443 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1444 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1445 	return ret;  /* done! */
1446 }
1447 
1448 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1449 				unsigned int page_offset,
1450 				unsigned int length)
1451 {
1452 	char *kaddr;
1453 
1454 	kaddr = kmap(page);
1455 	BUG_ON(kaddr == NULL);
1456 	crc = crc32c(crc, kaddr + page_offset, length);
1457 	kunmap(page);
1458 
1459 	return crc;
1460 }
1461 /*
1462  * Write as much message data payload as we can.  If we finish, queue
1463  * up the footer.
1464  *  1 -> done, footer is now queued in out_kvec[].
1465  *  0 -> socket full, but more to do
1466  * <0 -> error
1467  */
1468 static int write_partial_message_data(struct ceph_connection *con)
1469 {
1470 	struct ceph_msg *msg = con->out_msg;
1471 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1472 	bool do_datacrc = !con->msgr->nocrc;
1473 	u32 crc;
1474 
1475 	dout("%s %p msg %p\n", __func__, con, msg);
1476 
1477 	if (list_empty(&msg->data))
1478 		return -EINVAL;
1479 
1480 	/*
1481 	 * Iterate through each page that contains data to be
1482 	 * written, and send as much as possible for each.
1483 	 *
1484 	 * If we are calculating the data crc (the default), we will
1485 	 * need to map the page.  If we have no pages, they have
1486 	 * been revoked, so use the zero page.
1487 	 */
1488 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1489 	while (cursor->resid) {
1490 		struct page *page;
1491 		size_t page_offset;
1492 		size_t length;
1493 		bool last_piece;
1494 		bool need_crc;
1495 		int ret;
1496 
1497 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1498 							&last_piece);
1499 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1500 				      length, last_piece);
1501 		if (ret <= 0) {
1502 			if (do_datacrc)
1503 				msg->footer.data_crc = cpu_to_le32(crc);
1504 
1505 			return ret;
1506 		}
1507 		if (do_datacrc && cursor->need_crc)
1508 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1509 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1510 	}
1511 
1512 	dout("%s %p msg %p done\n", __func__, con, msg);
1513 
1514 	/* prepare and queue up footer, too */
1515 	if (do_datacrc)
1516 		msg->footer.data_crc = cpu_to_le32(crc);
1517 	else
1518 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1519 	con_out_kvec_reset(con);
1520 	prepare_write_message_footer(con);
1521 
1522 	return 1;	/* must return > 0 to indicate success */
1523 }
1524 
1525 /*
1526  * write some zeros
1527  */
1528 static int write_partial_skip(struct ceph_connection *con)
1529 {
1530 	int ret;
1531 
1532 	while (con->out_skip > 0) {
1533 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1534 
1535 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1536 		if (ret <= 0)
1537 			goto out;
1538 		con->out_skip -= ret;
1539 	}
1540 	ret = 1;
1541 out:
1542 	return ret;
1543 }
1544 
1545 /*
1546  * Prepare to read connection handshake, or an ack.
1547  */
1548 static void prepare_read_banner(struct ceph_connection *con)
1549 {
1550 	dout("prepare_read_banner %p\n", con);
1551 	con->in_base_pos = 0;
1552 }
1553 
1554 static void prepare_read_connect(struct ceph_connection *con)
1555 {
1556 	dout("prepare_read_connect %p\n", con);
1557 	con->in_base_pos = 0;
1558 }
1559 
1560 static void prepare_read_ack(struct ceph_connection *con)
1561 {
1562 	dout("prepare_read_ack %p\n", con);
1563 	con->in_base_pos = 0;
1564 }
1565 
1566 static void prepare_read_seq(struct ceph_connection *con)
1567 {
1568 	dout("prepare_read_seq %p\n", con);
1569 	con->in_base_pos = 0;
1570 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1571 }
1572 
1573 static void prepare_read_tag(struct ceph_connection *con)
1574 {
1575 	dout("prepare_read_tag %p\n", con);
1576 	con->in_base_pos = 0;
1577 	con->in_tag = CEPH_MSGR_TAG_READY;
1578 }
1579 
1580 /*
1581  * Prepare to read a message.
1582  */
1583 static int prepare_read_message(struct ceph_connection *con)
1584 {
1585 	dout("prepare_read_message %p\n", con);
1586 	BUG_ON(con->in_msg != NULL);
1587 	con->in_base_pos = 0;
1588 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1589 	return 0;
1590 }
1591 
1592 
1593 static int read_partial(struct ceph_connection *con,
1594 			int end, int size, void *object)
1595 {
1596 	while (con->in_base_pos < end) {
1597 		int left = end - con->in_base_pos;
1598 		int have = size - left;
1599 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1600 		if (ret <= 0)
1601 			return ret;
1602 		con->in_base_pos += ret;
1603 	}
1604 	return 1;
1605 }
1606 
1607 
1608 /*
1609  * Read all or part of the connect-side handshake on a new connection
1610  */
1611 static int read_partial_banner(struct ceph_connection *con)
1612 {
1613 	int size;
1614 	int end;
1615 	int ret;
1616 
1617 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1618 
1619 	/* peer's banner */
1620 	size = strlen(CEPH_BANNER);
1621 	end = size;
1622 	ret = read_partial(con, end, size, con->in_banner);
1623 	if (ret <= 0)
1624 		goto out;
1625 
1626 	size = sizeof (con->actual_peer_addr);
1627 	end += size;
1628 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1629 	if (ret <= 0)
1630 		goto out;
1631 
1632 	size = sizeof (con->peer_addr_for_me);
1633 	end += size;
1634 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1635 	if (ret <= 0)
1636 		goto out;
1637 
1638 out:
1639 	return ret;
1640 }
1641 
1642 static int read_partial_connect(struct ceph_connection *con)
1643 {
1644 	int size;
1645 	int end;
1646 	int ret;
1647 
1648 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1649 
1650 	size = sizeof (con->in_reply);
1651 	end = size;
1652 	ret = read_partial(con, end, size, &con->in_reply);
1653 	if (ret <= 0)
1654 		goto out;
1655 
1656 	size = le32_to_cpu(con->in_reply.authorizer_len);
1657 	end += size;
1658 	ret = read_partial(con, end, size, con->auth_reply_buf);
1659 	if (ret <= 0)
1660 		goto out;
1661 
1662 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1663 	     con, (int)con->in_reply.tag,
1664 	     le32_to_cpu(con->in_reply.connect_seq),
1665 	     le32_to_cpu(con->in_reply.global_seq));
1666 out:
1667 	return ret;
1668 
1669 }
1670 
1671 /*
1672  * Verify the hello banner looks okay.
1673  */
1674 static int verify_hello(struct ceph_connection *con)
1675 {
1676 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1677 		pr_err("connect to %s got bad banner\n",
1678 		       ceph_pr_addr(&con->peer_addr.in_addr));
1679 		con->error_msg = "protocol error, bad banner";
1680 		return -1;
1681 	}
1682 	return 0;
1683 }
1684 
1685 static bool addr_is_blank(struct sockaddr_storage *ss)
1686 {
1687 	switch (ss->ss_family) {
1688 	case AF_INET:
1689 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1690 	case AF_INET6:
1691 		return
1692 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1693 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1694 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1695 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1696 	}
1697 	return false;
1698 }
1699 
1700 static int addr_port(struct sockaddr_storage *ss)
1701 {
1702 	switch (ss->ss_family) {
1703 	case AF_INET:
1704 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1705 	case AF_INET6:
1706 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1707 	}
1708 	return 0;
1709 }
1710 
1711 static void addr_set_port(struct sockaddr_storage *ss, int p)
1712 {
1713 	switch (ss->ss_family) {
1714 	case AF_INET:
1715 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1716 		break;
1717 	case AF_INET6:
1718 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1719 		break;
1720 	}
1721 }
1722 
1723 /*
1724  * Unlike other *_pton function semantics, zero indicates success.
1725  */
1726 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1727 		char delim, const char **ipend)
1728 {
1729 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1730 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1731 
1732 	memset(ss, 0, sizeof(*ss));
1733 
1734 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1735 		ss->ss_family = AF_INET;
1736 		return 0;
1737 	}
1738 
1739 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1740 		ss->ss_family = AF_INET6;
1741 		return 0;
1742 	}
1743 
1744 	return -EINVAL;
1745 }
1746 
1747 /*
1748  * Extract hostname string and resolve using kernel DNS facility.
1749  */
1750 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1751 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1752 		struct sockaddr_storage *ss, char delim, const char **ipend)
1753 {
1754 	const char *end, *delim_p;
1755 	char *colon_p, *ip_addr = NULL;
1756 	int ip_len, ret;
1757 
1758 	/*
1759 	 * The end of the hostname occurs immediately preceding the delimiter or
1760 	 * the port marker (':') where the delimiter takes precedence.
1761 	 */
1762 	delim_p = memchr(name, delim, namelen);
1763 	colon_p = memchr(name, ':', namelen);
1764 
1765 	if (delim_p && colon_p)
1766 		end = delim_p < colon_p ? delim_p : colon_p;
1767 	else if (!delim_p && colon_p)
1768 		end = colon_p;
1769 	else {
1770 		end = delim_p;
1771 		if (!end) /* case: hostname:/ */
1772 			end = name + namelen;
1773 	}
1774 
1775 	if (end <= name)
1776 		return -EINVAL;
1777 
1778 	/* do dns_resolve upcall */
1779 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1780 	if (ip_len > 0)
1781 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1782 	else
1783 		ret = -ESRCH;
1784 
1785 	kfree(ip_addr);
1786 
1787 	*ipend = end;
1788 
1789 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1790 			ret, ret ? "failed" : ceph_pr_addr(ss));
1791 
1792 	return ret;
1793 }
1794 #else
1795 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1796 		struct sockaddr_storage *ss, char delim, const char **ipend)
1797 {
1798 	return -EINVAL;
1799 }
1800 #endif
1801 
1802 /*
1803  * Parse a server name (IP or hostname). If a valid IP address is not found
1804  * then try to extract a hostname to resolve using userspace DNS upcall.
1805  */
1806 static int ceph_parse_server_name(const char *name, size_t namelen,
1807 			struct sockaddr_storage *ss, char delim, const char **ipend)
1808 {
1809 	int ret;
1810 
1811 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1812 	if (ret)
1813 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1814 
1815 	return ret;
1816 }
1817 
1818 /*
1819  * Parse an ip[:port] list into an addr array.  Use the default
1820  * monitor port if a port isn't specified.
1821  */
1822 int ceph_parse_ips(const char *c, const char *end,
1823 		   struct ceph_entity_addr *addr,
1824 		   int max_count, int *count)
1825 {
1826 	int i, ret = -EINVAL;
1827 	const char *p = c;
1828 
1829 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1830 	for (i = 0; i < max_count; i++) {
1831 		const char *ipend;
1832 		struct sockaddr_storage *ss = &addr[i].in_addr;
1833 		int port;
1834 		char delim = ',';
1835 
1836 		if (*p == '[') {
1837 			delim = ']';
1838 			p++;
1839 		}
1840 
1841 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1842 		if (ret)
1843 			goto bad;
1844 		ret = -EINVAL;
1845 
1846 		p = ipend;
1847 
1848 		if (delim == ']') {
1849 			if (*p != ']') {
1850 				dout("missing matching ']'\n");
1851 				goto bad;
1852 			}
1853 			p++;
1854 		}
1855 
1856 		/* port? */
1857 		if (p < end && *p == ':') {
1858 			port = 0;
1859 			p++;
1860 			while (p < end && *p >= '0' && *p <= '9') {
1861 				port = (port * 10) + (*p - '0');
1862 				p++;
1863 			}
1864 			if (port == 0)
1865 				port = CEPH_MON_PORT;
1866 			else if (port > 65535)
1867 				goto bad;
1868 		} else {
1869 			port = CEPH_MON_PORT;
1870 		}
1871 
1872 		addr_set_port(ss, port);
1873 
1874 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1875 
1876 		if (p == end)
1877 			break;
1878 		if (*p != ',')
1879 			goto bad;
1880 		p++;
1881 	}
1882 
1883 	if (p != end)
1884 		goto bad;
1885 
1886 	if (count)
1887 		*count = i + 1;
1888 	return 0;
1889 
1890 bad:
1891 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1892 	return ret;
1893 }
1894 EXPORT_SYMBOL(ceph_parse_ips);
1895 
1896 static int process_banner(struct ceph_connection *con)
1897 {
1898 	dout("process_banner on %p\n", con);
1899 
1900 	if (verify_hello(con) < 0)
1901 		return -1;
1902 
1903 	ceph_decode_addr(&con->actual_peer_addr);
1904 	ceph_decode_addr(&con->peer_addr_for_me);
1905 
1906 	/*
1907 	 * Make sure the other end is who we wanted.  note that the other
1908 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1909 	 * them the benefit of the doubt.
1910 	 */
1911 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1912 		   sizeof(con->peer_addr)) != 0 &&
1913 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1914 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1915 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1916 			   ceph_pr_addr(&con->peer_addr.in_addr),
1917 			   (int)le32_to_cpu(con->peer_addr.nonce),
1918 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1919 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1920 		con->error_msg = "wrong peer at address";
1921 		return -1;
1922 	}
1923 
1924 	/*
1925 	 * did we learn our address?
1926 	 */
1927 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1928 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1929 
1930 		memcpy(&con->msgr->inst.addr.in_addr,
1931 		       &con->peer_addr_for_me.in_addr,
1932 		       sizeof(con->peer_addr_for_me.in_addr));
1933 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1934 		encode_my_addr(con->msgr);
1935 		dout("process_banner learned my addr is %s\n",
1936 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 static int process_connect(struct ceph_connection *con)
1943 {
1944 	u64 sup_feat = con->msgr->supported_features;
1945 	u64 req_feat = con->msgr->required_features;
1946 	u64 server_feat = ceph_sanitize_features(
1947 				le64_to_cpu(con->in_reply.features));
1948 	int ret;
1949 
1950 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1951 
1952 	switch (con->in_reply.tag) {
1953 	case CEPH_MSGR_TAG_FEATURES:
1954 		pr_err("%s%lld %s feature set mismatch,"
1955 		       " my %llx < server's %llx, missing %llx\n",
1956 		       ENTITY_NAME(con->peer_name),
1957 		       ceph_pr_addr(&con->peer_addr.in_addr),
1958 		       sup_feat, server_feat, server_feat & ~sup_feat);
1959 		con->error_msg = "missing required protocol features";
1960 		reset_connection(con);
1961 		return -1;
1962 
1963 	case CEPH_MSGR_TAG_BADPROTOVER:
1964 		pr_err("%s%lld %s protocol version mismatch,"
1965 		       " my %d != server's %d\n",
1966 		       ENTITY_NAME(con->peer_name),
1967 		       ceph_pr_addr(&con->peer_addr.in_addr),
1968 		       le32_to_cpu(con->out_connect.protocol_version),
1969 		       le32_to_cpu(con->in_reply.protocol_version));
1970 		con->error_msg = "protocol version mismatch";
1971 		reset_connection(con);
1972 		return -1;
1973 
1974 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1975 		con->auth_retry++;
1976 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1977 		     con->auth_retry);
1978 		if (con->auth_retry == 2) {
1979 			con->error_msg = "connect authorization failure";
1980 			return -1;
1981 		}
1982 		con_out_kvec_reset(con);
1983 		ret = prepare_write_connect(con);
1984 		if (ret < 0)
1985 			return ret;
1986 		prepare_read_connect(con);
1987 		break;
1988 
1989 	case CEPH_MSGR_TAG_RESETSESSION:
1990 		/*
1991 		 * If we connected with a large connect_seq but the peer
1992 		 * has no record of a session with us (no connection, or
1993 		 * connect_seq == 0), they will send RESETSESION to indicate
1994 		 * that they must have reset their session, and may have
1995 		 * dropped messages.
1996 		 */
1997 		dout("process_connect got RESET peer seq %u\n",
1998 		     le32_to_cpu(con->in_reply.connect_seq));
1999 		pr_err("%s%lld %s connection reset\n",
2000 		       ENTITY_NAME(con->peer_name),
2001 		       ceph_pr_addr(&con->peer_addr.in_addr));
2002 		reset_connection(con);
2003 		con_out_kvec_reset(con);
2004 		ret = prepare_write_connect(con);
2005 		if (ret < 0)
2006 			return ret;
2007 		prepare_read_connect(con);
2008 
2009 		/* Tell ceph about it. */
2010 		mutex_unlock(&con->mutex);
2011 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2012 		if (con->ops->peer_reset)
2013 			con->ops->peer_reset(con);
2014 		mutex_lock(&con->mutex);
2015 		if (con->state != CON_STATE_NEGOTIATING)
2016 			return -EAGAIN;
2017 		break;
2018 
2019 	case CEPH_MSGR_TAG_RETRY_SESSION:
2020 		/*
2021 		 * If we sent a smaller connect_seq than the peer has, try
2022 		 * again with a larger value.
2023 		 */
2024 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2025 		     le32_to_cpu(con->out_connect.connect_seq),
2026 		     le32_to_cpu(con->in_reply.connect_seq));
2027 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2028 		con_out_kvec_reset(con);
2029 		ret = prepare_write_connect(con);
2030 		if (ret < 0)
2031 			return ret;
2032 		prepare_read_connect(con);
2033 		break;
2034 
2035 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2036 		/*
2037 		 * If we sent a smaller global_seq than the peer has, try
2038 		 * again with a larger value.
2039 		 */
2040 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2041 		     con->peer_global_seq,
2042 		     le32_to_cpu(con->in_reply.global_seq));
2043 		get_global_seq(con->msgr,
2044 			       le32_to_cpu(con->in_reply.global_seq));
2045 		con_out_kvec_reset(con);
2046 		ret = prepare_write_connect(con);
2047 		if (ret < 0)
2048 			return ret;
2049 		prepare_read_connect(con);
2050 		break;
2051 
2052 	case CEPH_MSGR_TAG_SEQ:
2053 	case CEPH_MSGR_TAG_READY:
2054 		if (req_feat & ~server_feat) {
2055 			pr_err("%s%lld %s protocol feature mismatch,"
2056 			       " my required %llx > server's %llx, need %llx\n",
2057 			       ENTITY_NAME(con->peer_name),
2058 			       ceph_pr_addr(&con->peer_addr.in_addr),
2059 			       req_feat, server_feat, req_feat & ~server_feat);
2060 			con->error_msg = "missing required protocol features";
2061 			reset_connection(con);
2062 			return -1;
2063 		}
2064 
2065 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2066 		con->state = CON_STATE_OPEN;
2067 		con->auth_retry = 0;    /* we authenticated; clear flag */
2068 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2069 		con->connect_seq++;
2070 		con->peer_features = server_feat;
2071 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2072 		     con->peer_global_seq,
2073 		     le32_to_cpu(con->in_reply.connect_seq),
2074 		     con->connect_seq);
2075 		WARN_ON(con->connect_seq !=
2076 			le32_to_cpu(con->in_reply.connect_seq));
2077 
2078 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2079 			con_flag_set(con, CON_FLAG_LOSSYTX);
2080 
2081 		con->delay = 0;      /* reset backoff memory */
2082 
2083 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2084 			prepare_write_seq(con);
2085 			prepare_read_seq(con);
2086 		} else {
2087 			prepare_read_tag(con);
2088 		}
2089 		break;
2090 
2091 	case CEPH_MSGR_TAG_WAIT:
2092 		/*
2093 		 * If there is a connection race (we are opening
2094 		 * connections to each other), one of us may just have
2095 		 * to WAIT.  This shouldn't happen if we are the
2096 		 * client.
2097 		 */
2098 		pr_err("process_connect got WAIT as client\n");
2099 		con->error_msg = "protocol error, got WAIT as client";
2100 		return -1;
2101 
2102 	default:
2103 		pr_err("connect protocol error, will retry\n");
2104 		con->error_msg = "protocol error, garbage tag during connect";
2105 		return -1;
2106 	}
2107 	return 0;
2108 }
2109 
2110 
2111 /*
2112  * read (part of) an ack
2113  */
2114 static int read_partial_ack(struct ceph_connection *con)
2115 {
2116 	int size = sizeof (con->in_temp_ack);
2117 	int end = size;
2118 
2119 	return read_partial(con, end, size, &con->in_temp_ack);
2120 }
2121 
2122 /*
2123  * We can finally discard anything that's been acked.
2124  */
2125 static void process_ack(struct ceph_connection *con)
2126 {
2127 	struct ceph_msg *m;
2128 	u64 ack = le64_to_cpu(con->in_temp_ack);
2129 	u64 seq;
2130 
2131 	while (!list_empty(&con->out_sent)) {
2132 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2133 				     list_head);
2134 		seq = le64_to_cpu(m->hdr.seq);
2135 		if (seq > ack)
2136 			break;
2137 		dout("got ack for seq %llu type %d at %p\n", seq,
2138 		     le16_to_cpu(m->hdr.type), m);
2139 		m->ack_stamp = jiffies;
2140 		ceph_msg_remove(m);
2141 	}
2142 	prepare_read_tag(con);
2143 }
2144 
2145 
2146 static int read_partial_message_section(struct ceph_connection *con,
2147 					struct kvec *section,
2148 					unsigned int sec_len, u32 *crc)
2149 {
2150 	int ret, left;
2151 
2152 	BUG_ON(!section);
2153 
2154 	while (section->iov_len < sec_len) {
2155 		BUG_ON(section->iov_base == NULL);
2156 		left = sec_len - section->iov_len;
2157 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2158 				       section->iov_len, left);
2159 		if (ret <= 0)
2160 			return ret;
2161 		section->iov_len += ret;
2162 	}
2163 	if (section->iov_len == sec_len)
2164 		*crc = crc32c(0, section->iov_base, section->iov_len);
2165 
2166 	return 1;
2167 }
2168 
2169 static int read_partial_msg_data(struct ceph_connection *con)
2170 {
2171 	struct ceph_msg *msg = con->in_msg;
2172 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2173 	const bool do_datacrc = !con->msgr->nocrc;
2174 	struct page *page;
2175 	size_t page_offset;
2176 	size_t length;
2177 	u32 crc = 0;
2178 	int ret;
2179 
2180 	BUG_ON(!msg);
2181 	if (list_empty(&msg->data))
2182 		return -EIO;
2183 
2184 	if (do_datacrc)
2185 		crc = con->in_data_crc;
2186 	while (cursor->resid) {
2187 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2188 							NULL);
2189 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2190 		if (ret <= 0) {
2191 			if (do_datacrc)
2192 				con->in_data_crc = crc;
2193 
2194 			return ret;
2195 		}
2196 
2197 		if (do_datacrc)
2198 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2199 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2200 	}
2201 	if (do_datacrc)
2202 		con->in_data_crc = crc;
2203 
2204 	return 1;	/* must return > 0 to indicate success */
2205 }
2206 
2207 /*
2208  * read (part of) a message.
2209  */
2210 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2211 
2212 static int read_partial_message(struct ceph_connection *con)
2213 {
2214 	struct ceph_msg *m = con->in_msg;
2215 	int size;
2216 	int end;
2217 	int ret;
2218 	unsigned int front_len, middle_len, data_len;
2219 	bool do_datacrc = !con->msgr->nocrc;
2220 	u64 seq;
2221 	u32 crc;
2222 
2223 	dout("read_partial_message con %p msg %p\n", con, m);
2224 
2225 	/* header */
2226 	size = sizeof (con->in_hdr);
2227 	end = size;
2228 	ret = read_partial(con, end, size, &con->in_hdr);
2229 	if (ret <= 0)
2230 		return ret;
2231 
2232 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2233 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2234 		pr_err("read_partial_message bad hdr "
2235 		       " crc %u != expected %u\n",
2236 		       crc, con->in_hdr.crc);
2237 		return -EBADMSG;
2238 	}
2239 
2240 	front_len = le32_to_cpu(con->in_hdr.front_len);
2241 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2242 		return -EIO;
2243 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2244 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2245 		return -EIO;
2246 	data_len = le32_to_cpu(con->in_hdr.data_len);
2247 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2248 		return -EIO;
2249 
2250 	/* verify seq# */
2251 	seq = le64_to_cpu(con->in_hdr.seq);
2252 	if ((s64)seq - (s64)con->in_seq < 1) {
2253 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2254 			ENTITY_NAME(con->peer_name),
2255 			ceph_pr_addr(&con->peer_addr.in_addr),
2256 			seq, con->in_seq + 1);
2257 		con->in_base_pos = -front_len - middle_len - data_len -
2258 			sizeof(m->footer);
2259 		con->in_tag = CEPH_MSGR_TAG_READY;
2260 		return 0;
2261 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2262 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2263 		       seq, con->in_seq + 1);
2264 		con->error_msg = "bad message sequence # for incoming message";
2265 		return -EBADMSG;
2266 	}
2267 
2268 	/* allocate message? */
2269 	if (!con->in_msg) {
2270 		int skip = 0;
2271 
2272 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2273 		     front_len, data_len);
2274 		ret = ceph_con_in_msg_alloc(con, &skip);
2275 		if (ret < 0)
2276 			return ret;
2277 
2278 		BUG_ON(!con->in_msg ^ skip);
2279 		if (con->in_msg && data_len > con->in_msg->data_length) {
2280 			pr_warning("%s skipping long message (%u > %zd)\n",
2281 				__func__, data_len, con->in_msg->data_length);
2282 			ceph_msg_put(con->in_msg);
2283 			con->in_msg = NULL;
2284 			skip = 1;
2285 		}
2286 		if (skip) {
2287 			/* skip this message */
2288 			dout("alloc_msg said skip message\n");
2289 			con->in_base_pos = -front_len - middle_len - data_len -
2290 				sizeof(m->footer);
2291 			con->in_tag = CEPH_MSGR_TAG_READY;
2292 			con->in_seq++;
2293 			return 0;
2294 		}
2295 
2296 		BUG_ON(!con->in_msg);
2297 		BUG_ON(con->in_msg->con != con);
2298 		m = con->in_msg;
2299 		m->front.iov_len = 0;    /* haven't read it yet */
2300 		if (m->middle)
2301 			m->middle->vec.iov_len = 0;
2302 
2303 		/* prepare for data payload, if any */
2304 
2305 		if (data_len)
2306 			prepare_message_data(con->in_msg, data_len);
2307 	}
2308 
2309 	/* front */
2310 	ret = read_partial_message_section(con, &m->front, front_len,
2311 					   &con->in_front_crc);
2312 	if (ret <= 0)
2313 		return ret;
2314 
2315 	/* middle */
2316 	if (m->middle) {
2317 		ret = read_partial_message_section(con, &m->middle->vec,
2318 						   middle_len,
2319 						   &con->in_middle_crc);
2320 		if (ret <= 0)
2321 			return ret;
2322 	}
2323 
2324 	/* (page) data */
2325 	if (data_len) {
2326 		ret = read_partial_msg_data(con);
2327 		if (ret <= 0)
2328 			return ret;
2329 	}
2330 
2331 	/* footer */
2332 	size = sizeof (m->footer);
2333 	end += size;
2334 	ret = read_partial(con, end, size, &m->footer);
2335 	if (ret <= 0)
2336 		return ret;
2337 
2338 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2339 	     m, front_len, m->footer.front_crc, middle_len,
2340 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2341 
2342 	/* crc ok? */
2343 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2344 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2345 		       m, con->in_front_crc, m->footer.front_crc);
2346 		return -EBADMSG;
2347 	}
2348 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2349 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2350 		       m, con->in_middle_crc, m->footer.middle_crc);
2351 		return -EBADMSG;
2352 	}
2353 	if (do_datacrc &&
2354 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2355 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2356 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2357 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2358 		return -EBADMSG;
2359 	}
2360 
2361 	return 1; /* done! */
2362 }
2363 
2364 /*
2365  * Process message.  This happens in the worker thread.  The callback should
2366  * be careful not to do anything that waits on other incoming messages or it
2367  * may deadlock.
2368  */
2369 static void process_message(struct ceph_connection *con)
2370 {
2371 	struct ceph_msg *msg;
2372 
2373 	BUG_ON(con->in_msg->con != con);
2374 	con->in_msg->con = NULL;
2375 	msg = con->in_msg;
2376 	con->in_msg = NULL;
2377 	con->ops->put(con);
2378 
2379 	/* if first message, set peer_name */
2380 	if (con->peer_name.type == 0)
2381 		con->peer_name = msg->hdr.src;
2382 
2383 	con->in_seq++;
2384 	mutex_unlock(&con->mutex);
2385 
2386 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2387 	     msg, le64_to_cpu(msg->hdr.seq),
2388 	     ENTITY_NAME(msg->hdr.src),
2389 	     le16_to_cpu(msg->hdr.type),
2390 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2391 	     le32_to_cpu(msg->hdr.front_len),
2392 	     le32_to_cpu(msg->hdr.data_len),
2393 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2394 	con->ops->dispatch(con, msg);
2395 
2396 	mutex_lock(&con->mutex);
2397 }
2398 
2399 
2400 /*
2401  * Write something to the socket.  Called in a worker thread when the
2402  * socket appears to be writeable and we have something ready to send.
2403  */
2404 static int try_write(struct ceph_connection *con)
2405 {
2406 	int ret = 1;
2407 
2408 	dout("try_write start %p state %lu\n", con, con->state);
2409 
2410 more:
2411 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2412 
2413 	/* open the socket first? */
2414 	if (con->state == CON_STATE_PREOPEN) {
2415 		BUG_ON(con->sock);
2416 		con->state = CON_STATE_CONNECTING;
2417 
2418 		con_out_kvec_reset(con);
2419 		prepare_write_banner(con);
2420 		prepare_read_banner(con);
2421 
2422 		BUG_ON(con->in_msg);
2423 		con->in_tag = CEPH_MSGR_TAG_READY;
2424 		dout("try_write initiating connect on %p new state %lu\n",
2425 		     con, con->state);
2426 		ret = ceph_tcp_connect(con);
2427 		if (ret < 0) {
2428 			con->error_msg = "connect error";
2429 			goto out;
2430 		}
2431 	}
2432 
2433 more_kvec:
2434 	/* kvec data queued? */
2435 	if (con->out_skip) {
2436 		ret = write_partial_skip(con);
2437 		if (ret <= 0)
2438 			goto out;
2439 	}
2440 	if (con->out_kvec_left) {
2441 		ret = write_partial_kvec(con);
2442 		if (ret <= 0)
2443 			goto out;
2444 	}
2445 
2446 	/* msg pages? */
2447 	if (con->out_msg) {
2448 		if (con->out_msg_done) {
2449 			ceph_msg_put(con->out_msg);
2450 			con->out_msg = NULL;   /* we're done with this one */
2451 			goto do_next;
2452 		}
2453 
2454 		ret = write_partial_message_data(con);
2455 		if (ret == 1)
2456 			goto more_kvec;  /* we need to send the footer, too! */
2457 		if (ret == 0)
2458 			goto out;
2459 		if (ret < 0) {
2460 			dout("try_write write_partial_message_data err %d\n",
2461 			     ret);
2462 			goto out;
2463 		}
2464 	}
2465 
2466 do_next:
2467 	if (con->state == CON_STATE_OPEN) {
2468 		/* is anything else pending? */
2469 		if (!list_empty(&con->out_queue)) {
2470 			prepare_write_message(con);
2471 			goto more;
2472 		}
2473 		if (con->in_seq > con->in_seq_acked) {
2474 			prepare_write_ack(con);
2475 			goto more;
2476 		}
2477 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2478 			prepare_write_keepalive(con);
2479 			goto more;
2480 		}
2481 	}
2482 
2483 	/* Nothing to do! */
2484 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2485 	dout("try_write nothing else to write.\n");
2486 	ret = 0;
2487 out:
2488 	dout("try_write done on %p ret %d\n", con, ret);
2489 	return ret;
2490 }
2491 
2492 
2493 
2494 /*
2495  * Read what we can from the socket.
2496  */
2497 static int try_read(struct ceph_connection *con)
2498 {
2499 	int ret = -1;
2500 
2501 more:
2502 	dout("try_read start on %p state %lu\n", con, con->state);
2503 	if (con->state != CON_STATE_CONNECTING &&
2504 	    con->state != CON_STATE_NEGOTIATING &&
2505 	    con->state != CON_STATE_OPEN)
2506 		return 0;
2507 
2508 	BUG_ON(!con->sock);
2509 
2510 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2511 	     con->in_base_pos);
2512 
2513 	if (con->state == CON_STATE_CONNECTING) {
2514 		dout("try_read connecting\n");
2515 		ret = read_partial_banner(con);
2516 		if (ret <= 0)
2517 			goto out;
2518 		ret = process_banner(con);
2519 		if (ret < 0)
2520 			goto out;
2521 
2522 		con->state = CON_STATE_NEGOTIATING;
2523 
2524 		/*
2525 		 * Received banner is good, exchange connection info.
2526 		 * Do not reset out_kvec, as sending our banner raced
2527 		 * with receiving peer banner after connect completed.
2528 		 */
2529 		ret = prepare_write_connect(con);
2530 		if (ret < 0)
2531 			goto out;
2532 		prepare_read_connect(con);
2533 
2534 		/* Send connection info before awaiting response */
2535 		goto out;
2536 	}
2537 
2538 	if (con->state == CON_STATE_NEGOTIATING) {
2539 		dout("try_read negotiating\n");
2540 		ret = read_partial_connect(con);
2541 		if (ret <= 0)
2542 			goto out;
2543 		ret = process_connect(con);
2544 		if (ret < 0)
2545 			goto out;
2546 		goto more;
2547 	}
2548 
2549 	WARN_ON(con->state != CON_STATE_OPEN);
2550 
2551 	if (con->in_base_pos < 0) {
2552 		/*
2553 		 * skipping + discarding content.
2554 		 *
2555 		 * FIXME: there must be a better way to do this!
2556 		 */
2557 		static char buf[SKIP_BUF_SIZE];
2558 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2559 
2560 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2561 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2562 		if (ret <= 0)
2563 			goto out;
2564 		con->in_base_pos += ret;
2565 		if (con->in_base_pos)
2566 			goto more;
2567 	}
2568 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2569 		/*
2570 		 * what's next?
2571 		 */
2572 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2573 		if (ret <= 0)
2574 			goto out;
2575 		dout("try_read got tag %d\n", (int)con->in_tag);
2576 		switch (con->in_tag) {
2577 		case CEPH_MSGR_TAG_MSG:
2578 			prepare_read_message(con);
2579 			break;
2580 		case CEPH_MSGR_TAG_ACK:
2581 			prepare_read_ack(con);
2582 			break;
2583 		case CEPH_MSGR_TAG_CLOSE:
2584 			con_close_socket(con);
2585 			con->state = CON_STATE_CLOSED;
2586 			goto out;
2587 		default:
2588 			goto bad_tag;
2589 		}
2590 	}
2591 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2592 		ret = read_partial_message(con);
2593 		if (ret <= 0) {
2594 			switch (ret) {
2595 			case -EBADMSG:
2596 				con->error_msg = "bad crc";
2597 				ret = -EIO;
2598 				break;
2599 			case -EIO:
2600 				con->error_msg = "io error";
2601 				break;
2602 			}
2603 			goto out;
2604 		}
2605 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2606 			goto more;
2607 		process_message(con);
2608 		if (con->state == CON_STATE_OPEN)
2609 			prepare_read_tag(con);
2610 		goto more;
2611 	}
2612 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2613 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2614 		/*
2615 		 * the final handshake seq exchange is semantically
2616 		 * equivalent to an ACK
2617 		 */
2618 		ret = read_partial_ack(con);
2619 		if (ret <= 0)
2620 			goto out;
2621 		process_ack(con);
2622 		goto more;
2623 	}
2624 
2625 out:
2626 	dout("try_read done on %p ret %d\n", con, ret);
2627 	return ret;
2628 
2629 bad_tag:
2630 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2631 	con->error_msg = "protocol error, garbage tag";
2632 	ret = -1;
2633 	goto out;
2634 }
2635 
2636 
2637 /*
2638  * Atomically queue work on a connection after the specified delay.
2639  * Bump @con reference to avoid races with connection teardown.
2640  * Returns 0 if work was queued, or an error code otherwise.
2641  */
2642 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2643 {
2644 	if (!con->ops->get(con)) {
2645 		dout("%s %p ref count 0\n", __func__, con);
2646 
2647 		return -ENOENT;
2648 	}
2649 
2650 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2651 		dout("%s %p - already queued\n", __func__, con);
2652 		con->ops->put(con);
2653 
2654 		return -EBUSY;
2655 	}
2656 
2657 	dout("%s %p %lu\n", __func__, con, delay);
2658 
2659 	return 0;
2660 }
2661 
2662 static void queue_con(struct ceph_connection *con)
2663 {
2664 	(void) queue_con_delay(con, 0);
2665 }
2666 
2667 static bool con_sock_closed(struct ceph_connection *con)
2668 {
2669 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2670 		return false;
2671 
2672 #define CASE(x)								\
2673 	case CON_STATE_ ## x:						\
2674 		con->error_msg = "socket closed (con state " #x ")";	\
2675 		break;
2676 
2677 	switch (con->state) {
2678 	CASE(CLOSED);
2679 	CASE(PREOPEN);
2680 	CASE(CONNECTING);
2681 	CASE(NEGOTIATING);
2682 	CASE(OPEN);
2683 	CASE(STANDBY);
2684 	default:
2685 		pr_warning("%s con %p unrecognized state %lu\n",
2686 			__func__, con, con->state);
2687 		con->error_msg = "unrecognized con state";
2688 		BUG();
2689 		break;
2690 	}
2691 #undef CASE
2692 
2693 	return true;
2694 }
2695 
2696 static bool con_backoff(struct ceph_connection *con)
2697 {
2698 	int ret;
2699 
2700 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2701 		return false;
2702 
2703 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2704 	if (ret) {
2705 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2706 			con, con->delay);
2707 		BUG_ON(ret == -ENOENT);
2708 		con_flag_set(con, CON_FLAG_BACKOFF);
2709 	}
2710 
2711 	return true;
2712 }
2713 
2714 /* Finish fault handling; con->mutex must *not* be held here */
2715 
2716 static void con_fault_finish(struct ceph_connection *con)
2717 {
2718 	/*
2719 	 * in case we faulted due to authentication, invalidate our
2720 	 * current tickets so that we can get new ones.
2721 	 */
2722 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2723 		dout("calling invalidate_authorizer()\n");
2724 		con->ops->invalidate_authorizer(con);
2725 	}
2726 
2727 	if (con->ops->fault)
2728 		con->ops->fault(con);
2729 }
2730 
2731 /*
2732  * Do some work on a connection.  Drop a connection ref when we're done.
2733  */
2734 static void con_work(struct work_struct *work)
2735 {
2736 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2737 						   work.work);
2738 	bool fault;
2739 
2740 	mutex_lock(&con->mutex);
2741 	while (true) {
2742 		int ret;
2743 
2744 		if ((fault = con_sock_closed(con))) {
2745 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2746 			break;
2747 		}
2748 		if (con_backoff(con)) {
2749 			dout("%s: con %p BACKOFF\n", __func__, con);
2750 			break;
2751 		}
2752 		if (con->state == CON_STATE_STANDBY) {
2753 			dout("%s: con %p STANDBY\n", __func__, con);
2754 			break;
2755 		}
2756 		if (con->state == CON_STATE_CLOSED) {
2757 			dout("%s: con %p CLOSED\n", __func__, con);
2758 			BUG_ON(con->sock);
2759 			break;
2760 		}
2761 		if (con->state == CON_STATE_PREOPEN) {
2762 			dout("%s: con %p PREOPEN\n", __func__, con);
2763 			BUG_ON(con->sock);
2764 		}
2765 
2766 		ret = try_read(con);
2767 		if (ret < 0) {
2768 			if (ret == -EAGAIN)
2769 				continue;
2770 			con->error_msg = "socket error on read";
2771 			fault = true;
2772 			break;
2773 		}
2774 
2775 		ret = try_write(con);
2776 		if (ret < 0) {
2777 			if (ret == -EAGAIN)
2778 				continue;
2779 			con->error_msg = "socket error on write";
2780 			fault = true;
2781 		}
2782 
2783 		break;	/* If we make it to here, we're done */
2784 	}
2785 	if (fault)
2786 		con_fault(con);
2787 	mutex_unlock(&con->mutex);
2788 
2789 	if (fault)
2790 		con_fault_finish(con);
2791 
2792 	con->ops->put(con);
2793 }
2794 
2795 /*
2796  * Generic error/fault handler.  A retry mechanism is used with
2797  * exponential backoff
2798  */
2799 static void con_fault(struct ceph_connection *con)
2800 {
2801 	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2802 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2803 	dout("fault %p state %lu to peer %s\n",
2804 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2805 
2806 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2807 	       con->state != CON_STATE_NEGOTIATING &&
2808 	       con->state != CON_STATE_OPEN);
2809 
2810 	con_close_socket(con);
2811 
2812 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2813 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2814 		con->state = CON_STATE_CLOSED;
2815 		return;
2816 	}
2817 
2818 	if (con->in_msg) {
2819 		BUG_ON(con->in_msg->con != con);
2820 		con->in_msg->con = NULL;
2821 		ceph_msg_put(con->in_msg);
2822 		con->in_msg = NULL;
2823 		con->ops->put(con);
2824 	}
2825 
2826 	/* Requeue anything that hasn't been acked */
2827 	list_splice_init(&con->out_sent, &con->out_queue);
2828 
2829 	/* If there are no messages queued or keepalive pending, place
2830 	 * the connection in a STANDBY state */
2831 	if (list_empty(&con->out_queue) &&
2832 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2833 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2834 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2835 		con->state = CON_STATE_STANDBY;
2836 	} else {
2837 		/* retry after a delay. */
2838 		con->state = CON_STATE_PREOPEN;
2839 		if (con->delay == 0)
2840 			con->delay = BASE_DELAY_INTERVAL;
2841 		else if (con->delay < MAX_DELAY_INTERVAL)
2842 			con->delay *= 2;
2843 		con_flag_set(con, CON_FLAG_BACKOFF);
2844 		queue_con(con);
2845 	}
2846 }
2847 
2848 
2849 
2850 /*
2851  * initialize a new messenger instance
2852  */
2853 void ceph_messenger_init(struct ceph_messenger *msgr,
2854 			struct ceph_entity_addr *myaddr,
2855 			u64 supported_features,
2856 			u64 required_features,
2857 			bool nocrc)
2858 {
2859 	msgr->supported_features = supported_features;
2860 	msgr->required_features = required_features;
2861 
2862 	spin_lock_init(&msgr->global_seq_lock);
2863 
2864 	if (myaddr)
2865 		msgr->inst.addr = *myaddr;
2866 
2867 	/* select a random nonce */
2868 	msgr->inst.addr.type = 0;
2869 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2870 	encode_my_addr(msgr);
2871 	msgr->nocrc = nocrc;
2872 
2873 	atomic_set(&msgr->stopping, 0);
2874 
2875 	dout("%s %p\n", __func__, msgr);
2876 }
2877 EXPORT_SYMBOL(ceph_messenger_init);
2878 
2879 static void clear_standby(struct ceph_connection *con)
2880 {
2881 	/* come back from STANDBY? */
2882 	if (con->state == CON_STATE_STANDBY) {
2883 		dout("clear_standby %p and ++connect_seq\n", con);
2884 		con->state = CON_STATE_PREOPEN;
2885 		con->connect_seq++;
2886 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2887 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2888 	}
2889 }
2890 
2891 /*
2892  * Queue up an outgoing message on the given connection.
2893  */
2894 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2895 {
2896 	/* set src+dst */
2897 	msg->hdr.src = con->msgr->inst.name;
2898 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2899 	msg->needs_out_seq = true;
2900 
2901 	mutex_lock(&con->mutex);
2902 
2903 	if (con->state == CON_STATE_CLOSED) {
2904 		dout("con_send %p closed, dropping %p\n", con, msg);
2905 		ceph_msg_put(msg);
2906 		mutex_unlock(&con->mutex);
2907 		return;
2908 	}
2909 
2910 	BUG_ON(msg->con != NULL);
2911 	msg->con = con->ops->get(con);
2912 	BUG_ON(msg->con == NULL);
2913 
2914 	BUG_ON(!list_empty(&msg->list_head));
2915 	list_add_tail(&msg->list_head, &con->out_queue);
2916 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2917 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2918 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2919 	     le32_to_cpu(msg->hdr.front_len),
2920 	     le32_to_cpu(msg->hdr.middle_len),
2921 	     le32_to_cpu(msg->hdr.data_len));
2922 
2923 	clear_standby(con);
2924 	mutex_unlock(&con->mutex);
2925 
2926 	/* if there wasn't anything waiting to send before, queue
2927 	 * new work */
2928 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2929 		queue_con(con);
2930 }
2931 EXPORT_SYMBOL(ceph_con_send);
2932 
2933 /*
2934  * Revoke a message that was previously queued for send
2935  */
2936 void ceph_msg_revoke(struct ceph_msg *msg)
2937 {
2938 	struct ceph_connection *con = msg->con;
2939 
2940 	if (!con)
2941 		return;		/* Message not in our possession */
2942 
2943 	mutex_lock(&con->mutex);
2944 	if (!list_empty(&msg->list_head)) {
2945 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2946 		list_del_init(&msg->list_head);
2947 		BUG_ON(msg->con == NULL);
2948 		msg->con->ops->put(msg->con);
2949 		msg->con = NULL;
2950 		msg->hdr.seq = 0;
2951 
2952 		ceph_msg_put(msg);
2953 	}
2954 	if (con->out_msg == msg) {
2955 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2956 		con->out_msg = NULL;
2957 		if (con->out_kvec_is_msg) {
2958 			con->out_skip = con->out_kvec_bytes;
2959 			con->out_kvec_is_msg = false;
2960 		}
2961 		msg->hdr.seq = 0;
2962 
2963 		ceph_msg_put(msg);
2964 	}
2965 	mutex_unlock(&con->mutex);
2966 }
2967 
2968 /*
2969  * Revoke a message that we may be reading data into
2970  */
2971 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2972 {
2973 	struct ceph_connection *con;
2974 
2975 	BUG_ON(msg == NULL);
2976 	if (!msg->con) {
2977 		dout("%s msg %p null con\n", __func__, msg);
2978 
2979 		return;		/* Message not in our possession */
2980 	}
2981 
2982 	con = msg->con;
2983 	mutex_lock(&con->mutex);
2984 	if (con->in_msg == msg) {
2985 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2986 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2987 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2988 
2989 		/* skip rest of message */
2990 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2991 		con->in_base_pos = con->in_base_pos -
2992 				sizeof(struct ceph_msg_header) -
2993 				front_len -
2994 				middle_len -
2995 				data_len -
2996 				sizeof(struct ceph_msg_footer);
2997 		ceph_msg_put(con->in_msg);
2998 		con->in_msg = NULL;
2999 		con->in_tag = CEPH_MSGR_TAG_READY;
3000 		con->in_seq++;
3001 	} else {
3002 		dout("%s %p in_msg %p msg %p no-op\n",
3003 		     __func__, con, con->in_msg, msg);
3004 	}
3005 	mutex_unlock(&con->mutex);
3006 }
3007 
3008 /*
3009  * Queue a keepalive byte to ensure the tcp connection is alive.
3010  */
3011 void ceph_con_keepalive(struct ceph_connection *con)
3012 {
3013 	dout("con_keepalive %p\n", con);
3014 	mutex_lock(&con->mutex);
3015 	clear_standby(con);
3016 	mutex_unlock(&con->mutex);
3017 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3018 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3019 		queue_con(con);
3020 }
3021 EXPORT_SYMBOL(ceph_con_keepalive);
3022 
3023 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3024 {
3025 	struct ceph_msg_data *data;
3026 
3027 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3028 		return NULL;
3029 
3030 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3031 	if (data)
3032 		data->type = type;
3033 	INIT_LIST_HEAD(&data->links);
3034 
3035 	return data;
3036 }
3037 
3038 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3039 {
3040 	if (!data)
3041 		return;
3042 
3043 	WARN_ON(!list_empty(&data->links));
3044 	if (data->type == CEPH_MSG_DATA_PAGELIST) {
3045 		ceph_pagelist_release(data->pagelist);
3046 		kfree(data->pagelist);
3047 	}
3048 	kmem_cache_free(ceph_msg_data_cache, data);
3049 }
3050 
3051 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3052 		size_t length, size_t alignment)
3053 {
3054 	struct ceph_msg_data *data;
3055 
3056 	BUG_ON(!pages);
3057 	BUG_ON(!length);
3058 
3059 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3060 	BUG_ON(!data);
3061 	data->pages = pages;
3062 	data->length = length;
3063 	data->alignment = alignment & ~PAGE_MASK;
3064 
3065 	list_add_tail(&data->links, &msg->data);
3066 	msg->data_length += length;
3067 }
3068 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3069 
3070 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3071 				struct ceph_pagelist *pagelist)
3072 {
3073 	struct ceph_msg_data *data;
3074 
3075 	BUG_ON(!pagelist);
3076 	BUG_ON(!pagelist->length);
3077 
3078 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3079 	BUG_ON(!data);
3080 	data->pagelist = pagelist;
3081 
3082 	list_add_tail(&data->links, &msg->data);
3083 	msg->data_length += pagelist->length;
3084 }
3085 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3086 
3087 #ifdef	CONFIG_BLOCK
3088 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3089 		size_t length)
3090 {
3091 	struct ceph_msg_data *data;
3092 
3093 	BUG_ON(!bio);
3094 
3095 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3096 	BUG_ON(!data);
3097 	data->bio = bio;
3098 	data->bio_length = length;
3099 
3100 	list_add_tail(&data->links, &msg->data);
3101 	msg->data_length += length;
3102 }
3103 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3104 #endif	/* CONFIG_BLOCK */
3105 
3106 /*
3107  * construct a new message with given type, size
3108  * the new msg has a ref count of 1.
3109  */
3110 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3111 			      bool can_fail)
3112 {
3113 	struct ceph_msg *m;
3114 
3115 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3116 	if (m == NULL)
3117 		goto out;
3118 
3119 	m->hdr.type = cpu_to_le16(type);
3120 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3121 	m->hdr.front_len = cpu_to_le32(front_len);
3122 
3123 	INIT_LIST_HEAD(&m->list_head);
3124 	kref_init(&m->kref);
3125 	INIT_LIST_HEAD(&m->data);
3126 
3127 	/* front */
3128 	if (front_len) {
3129 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3130 		if (m->front.iov_base == NULL) {
3131 			dout("ceph_msg_new can't allocate %d bytes\n",
3132 			     front_len);
3133 			goto out2;
3134 		}
3135 	} else {
3136 		m->front.iov_base = NULL;
3137 	}
3138 	m->front_alloc_len = m->front.iov_len = front_len;
3139 
3140 	dout("ceph_msg_new %p front %d\n", m, front_len);
3141 	return m;
3142 
3143 out2:
3144 	ceph_msg_put(m);
3145 out:
3146 	if (!can_fail) {
3147 		pr_err("msg_new can't create type %d front %d\n", type,
3148 		       front_len);
3149 		WARN_ON(1);
3150 	} else {
3151 		dout("msg_new can't create type %d front %d\n", type,
3152 		     front_len);
3153 	}
3154 	return NULL;
3155 }
3156 EXPORT_SYMBOL(ceph_msg_new);
3157 
3158 /*
3159  * Allocate "middle" portion of a message, if it is needed and wasn't
3160  * allocated by alloc_msg.  This allows us to read a small fixed-size
3161  * per-type header in the front and then gracefully fail (i.e.,
3162  * propagate the error to the caller based on info in the front) when
3163  * the middle is too large.
3164  */
3165 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3166 {
3167 	int type = le16_to_cpu(msg->hdr.type);
3168 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3169 
3170 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3171 	     ceph_msg_type_name(type), middle_len);
3172 	BUG_ON(!middle_len);
3173 	BUG_ON(msg->middle);
3174 
3175 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3176 	if (!msg->middle)
3177 		return -ENOMEM;
3178 	return 0;
3179 }
3180 
3181 /*
3182  * Allocate a message for receiving an incoming message on a
3183  * connection, and save the result in con->in_msg.  Uses the
3184  * connection's private alloc_msg op if available.
3185  *
3186  * Returns 0 on success, or a negative error code.
3187  *
3188  * On success, if we set *skip = 1:
3189  *  - the next message should be skipped and ignored.
3190  *  - con->in_msg == NULL
3191  * or if we set *skip = 0:
3192  *  - con->in_msg is non-null.
3193  * On error (ENOMEM, EAGAIN, ...),
3194  *  - con->in_msg == NULL
3195  */
3196 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3197 {
3198 	struct ceph_msg_header *hdr = &con->in_hdr;
3199 	int middle_len = le32_to_cpu(hdr->middle_len);
3200 	struct ceph_msg *msg;
3201 	int ret = 0;
3202 
3203 	BUG_ON(con->in_msg != NULL);
3204 	BUG_ON(!con->ops->alloc_msg);
3205 
3206 	mutex_unlock(&con->mutex);
3207 	msg = con->ops->alloc_msg(con, hdr, skip);
3208 	mutex_lock(&con->mutex);
3209 	if (con->state != CON_STATE_OPEN) {
3210 		if (msg)
3211 			ceph_msg_put(msg);
3212 		return -EAGAIN;
3213 	}
3214 	if (msg) {
3215 		BUG_ON(*skip);
3216 		con->in_msg = msg;
3217 		con->in_msg->con = con->ops->get(con);
3218 		BUG_ON(con->in_msg->con == NULL);
3219 	} else {
3220 		/*
3221 		 * Null message pointer means either we should skip
3222 		 * this message or we couldn't allocate memory.  The
3223 		 * former is not an error.
3224 		 */
3225 		if (*skip)
3226 			return 0;
3227 		con->error_msg = "error allocating memory for incoming message";
3228 
3229 		return -ENOMEM;
3230 	}
3231 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3232 
3233 	if (middle_len && !con->in_msg->middle) {
3234 		ret = ceph_alloc_middle(con, con->in_msg);
3235 		if (ret < 0) {
3236 			ceph_msg_put(con->in_msg);
3237 			con->in_msg = NULL;
3238 		}
3239 	}
3240 
3241 	return ret;
3242 }
3243 
3244 
3245 /*
3246  * Free a generically kmalloc'd message.
3247  */
3248 void ceph_msg_kfree(struct ceph_msg *m)
3249 {
3250 	dout("msg_kfree %p\n", m);
3251 	ceph_kvfree(m->front.iov_base);
3252 	kmem_cache_free(ceph_msg_cache, m);
3253 }
3254 
3255 /*
3256  * Drop a msg ref.  Destroy as needed.
3257  */
3258 void ceph_msg_last_put(struct kref *kref)
3259 {
3260 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3261 	LIST_HEAD(data);
3262 	struct list_head *links;
3263 	struct list_head *next;
3264 
3265 	dout("ceph_msg_put last one on %p\n", m);
3266 	WARN_ON(!list_empty(&m->list_head));
3267 
3268 	/* drop middle, data, if any */
3269 	if (m->middle) {
3270 		ceph_buffer_put(m->middle);
3271 		m->middle = NULL;
3272 	}
3273 
3274 	list_splice_init(&m->data, &data);
3275 	list_for_each_safe(links, next, &data) {
3276 		struct ceph_msg_data *data;
3277 
3278 		data = list_entry(links, struct ceph_msg_data, links);
3279 		list_del_init(links);
3280 		ceph_msg_data_destroy(data);
3281 	}
3282 	m->data_length = 0;
3283 
3284 	if (m->pool)
3285 		ceph_msgpool_put(m->pool, m);
3286 	else
3287 		ceph_msg_kfree(m);
3288 }
3289 EXPORT_SYMBOL(ceph_msg_last_put);
3290 
3291 void ceph_msg_dump(struct ceph_msg *msg)
3292 {
3293 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3294 		 msg->front_alloc_len, msg->data_length);
3295 	print_hex_dump(KERN_DEBUG, "header: ",
3296 		       DUMP_PREFIX_OFFSET, 16, 1,
3297 		       &msg->hdr, sizeof(msg->hdr), true);
3298 	print_hex_dump(KERN_DEBUG, " front: ",
3299 		       DUMP_PREFIX_OFFSET, 16, 1,
3300 		       msg->front.iov_base, msg->front.iov_len, true);
3301 	if (msg->middle)
3302 		print_hex_dump(KERN_DEBUG, "middle: ",
3303 			       DUMP_PREFIX_OFFSET, 16, 1,
3304 			       msg->middle->vec.iov_base,
3305 			       msg->middle->vec.iov_len, true);
3306 	print_hex_dump(KERN_DEBUG, "footer: ",
3307 		       DUMP_PREFIX_OFFSET, 16, 1,
3308 		       &msg->footer, sizeof(msg->footer), true);
3309 }
3310 EXPORT_SYMBOL(ceph_msg_dump);
3311