xref: /openbmc/linux/net/ceph/messenger.c (revision e6c81cce)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	kunmap(zero_page);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 }
285 
286 int ceph_msgr_init(void)
287 {
288 	BUG_ON(zero_page != NULL);
289 	zero_page = ZERO_PAGE(0);
290 	page_cache_get(zero_page);
291 
292 	if (ceph_msgr_slab_init())
293 		return -ENOMEM;
294 
295 	/*
296 	 * The number of active work items is limited by the number of
297 	 * connections, so leave @max_active at default.
298 	 */
299 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 	if (ceph_msgr_wq)
301 		return 0;
302 
303 	pr_err("msgr_init failed to create workqueue\n");
304 	_ceph_msgr_exit();
305 
306 	return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309 
310 void ceph_msgr_exit(void)
311 {
312 	BUG_ON(ceph_msgr_wq == NULL);
313 
314 	_ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317 
318 void ceph_msgr_flush(void)
319 {
320 	flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323 
324 /* Connection socket state transition functions */
325 
326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 	int old_state;
329 
330 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 		printk("%s: unexpected old state %d\n", __func__, old_state);
333 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 	     CON_SOCK_STATE_CLOSED);
335 }
336 
337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 	int old_state;
340 
341 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 		printk("%s: unexpected old state %d\n", __func__, old_state);
344 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 	     CON_SOCK_STATE_CONNECTING);
346 }
347 
348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 	int old_state;
351 
352 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CONNECTED);
357 }
358 
359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 	int old_state;
362 
363 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 			old_state != CON_SOCK_STATE_CONNECTED &&
366 			old_state != CON_SOCK_STATE_CLOSING))
367 		printk("%s: unexpected old state %d\n", __func__, old_state);
368 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 	     CON_SOCK_STATE_CLOSING);
370 }
371 
372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 	int old_state;
375 
376 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 		    old_state != CON_SOCK_STATE_CLOSING &&
379 		    old_state != CON_SOCK_STATE_CONNECTING &&
380 		    old_state != CON_SOCK_STATE_CLOSED))
381 		printk("%s: unexpected old state %d\n", __func__, old_state);
382 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 	     CON_SOCK_STATE_CLOSED);
384 }
385 
386 /*
387  * socket callback functions
388  */
389 
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 	struct ceph_connection *con = sk->sk_user_data;
394 	if (atomic_read(&con->msgr->stopping)) {
395 		return;
396 	}
397 
398 	if (sk->sk_state != TCP_CLOSE_WAIT) {
399 		dout("%s on %p state = %lu, queueing work\n", __func__,
400 		     con, con->state);
401 		queue_con(con);
402 	}
403 }
404 
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 	struct ceph_connection *con = sk->sk_user_data;
409 
410 	/* only queue to workqueue if there is data we want to write,
411 	 * and there is sufficient space in the socket buffer to accept
412 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
413 	 * doesn't get called again until try_write() fills the socket
414 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 	 * and net/core/stream.c:sk_stream_write_space().
416 	 */
417 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 		if (sk_stream_is_writeable(sk)) {
419 			dout("%s %p queueing write work\n", __func__, con);
420 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 			queue_con(con);
422 		}
423 	} else {
424 		dout("%s %p nothing to write\n", __func__, con);
425 	}
426 }
427 
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 	struct ceph_connection *con = sk->sk_user_data;
432 
433 	dout("%s %p state = %lu sk_state = %u\n", __func__,
434 	     con, con->state, sk->sk_state);
435 
436 	switch (sk->sk_state) {
437 	case TCP_CLOSE:
438 		dout("%s TCP_CLOSE\n", __func__);
439 	case TCP_CLOSE_WAIT:
440 		dout("%s TCP_CLOSE_WAIT\n", __func__);
441 		con_sock_state_closing(con);
442 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 		queue_con(con);
444 		break;
445 	case TCP_ESTABLISHED:
446 		dout("%s TCP_ESTABLISHED\n", __func__);
447 		con_sock_state_connected(con);
448 		queue_con(con);
449 		break;
450 	default:	/* Everything else is uninteresting */
451 		break;
452 	}
453 }
454 
455 /*
456  * set up socket callbacks
457  */
458 static void set_sock_callbacks(struct socket *sock,
459 			       struct ceph_connection *con)
460 {
461 	struct sock *sk = sock->sk;
462 	sk->sk_user_data = con;
463 	sk->sk_data_ready = ceph_sock_data_ready;
464 	sk->sk_write_space = ceph_sock_write_space;
465 	sk->sk_state_change = ceph_sock_state_change;
466 }
467 
468 
469 /*
470  * socket helpers
471  */
472 
473 /*
474  * initiate connection to a remote socket.
475  */
476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 	struct socket *sock;
480 	int ret;
481 
482 	BUG_ON(con->sock);
483 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 			       IPPROTO_TCP, &sock);
485 	if (ret)
486 		return ret;
487 	sock->sk->sk_allocation = GFP_NOFS;
488 
489 #ifdef CONFIG_LOCKDEP
490 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492 
493 	set_sock_callbacks(sock, con);
494 
495 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496 
497 	con_sock_state_connecting(con);
498 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 				 O_NONBLOCK);
500 	if (ret == -EINPROGRESS) {
501 		dout("connect %s EINPROGRESS sk_state = %u\n",
502 		     ceph_pr_addr(&con->peer_addr.in_addr),
503 		     sock->sk->sk_state);
504 	} else if (ret < 0) {
505 		pr_err("connect %s error %d\n",
506 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 		sock_release(sock);
508 		con->error_msg = "connect error";
509 
510 		return ret;
511 	}
512 
513 	if (con->msgr->tcp_nodelay) {
514 		int optval = 1;
515 
516 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
517 					(char *)&optval, sizeof(optval));
518 		if (ret)
519 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
520 			       ret);
521 	}
522 
523 	con->sock = sock;
524 	return 0;
525 }
526 
527 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
528 {
529 	struct kvec iov = {buf, len};
530 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
531 	int r;
532 
533 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
534 	if (r == -EAGAIN)
535 		r = 0;
536 	return r;
537 }
538 
539 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
540 		     int page_offset, size_t length)
541 {
542 	void *kaddr;
543 	int ret;
544 
545 	BUG_ON(page_offset + length > PAGE_SIZE);
546 
547 	kaddr = kmap(page);
548 	BUG_ON(!kaddr);
549 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
550 	kunmap(page);
551 
552 	return ret;
553 }
554 
555 /*
556  * write something.  @more is true if caller will be sending more data
557  * shortly.
558  */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 		     size_t kvlen, size_t len, int more)
561 {
562 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 	int r;
564 
565 	if (more)
566 		msg.msg_flags |= MSG_MORE;
567 	else
568 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
569 
570 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 	if (r == -EAGAIN)
572 		r = 0;
573 	return r;
574 }
575 
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 		     int offset, size_t size, bool more)
578 {
579 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 	int ret;
581 
582 	ret = kernel_sendpage(sock, page, offset, size, flags);
583 	if (ret == -EAGAIN)
584 		ret = 0;
585 
586 	return ret;
587 }
588 
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 		     int offset, size_t size, bool more)
591 {
592 	int ret;
593 	struct kvec iov;
594 
595 	/* sendpage cannot properly handle pages with page_count == 0,
596 	 * we need to fallback to sendmsg if that's the case */
597 	if (page_count(page) >= 1)
598 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
599 
600 	iov.iov_base = kmap(page) + offset;
601 	iov.iov_len = size;
602 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
603 	kunmap(page);
604 
605 	return ret;
606 }
607 
608 /*
609  * Shutdown/close the socket for the given connection.
610  */
611 static int con_close_socket(struct ceph_connection *con)
612 {
613 	int rc = 0;
614 
615 	dout("con_close_socket on %p sock %p\n", con, con->sock);
616 	if (con->sock) {
617 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
618 		sock_release(con->sock);
619 		con->sock = NULL;
620 	}
621 
622 	/*
623 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
624 	 * independent of the connection mutex, and we could have
625 	 * received a socket close event before we had the chance to
626 	 * shut the socket down.
627 	 */
628 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
629 
630 	con_sock_state_closed(con);
631 	return rc;
632 }
633 
634 /*
635  * Reset a connection.  Discard all incoming and outgoing messages
636  * and clear *_seq state.
637  */
638 static void ceph_msg_remove(struct ceph_msg *msg)
639 {
640 	list_del_init(&msg->list_head);
641 	BUG_ON(msg->con == NULL);
642 	msg->con->ops->put(msg->con);
643 	msg->con = NULL;
644 
645 	ceph_msg_put(msg);
646 }
647 static void ceph_msg_remove_list(struct list_head *head)
648 {
649 	while (!list_empty(head)) {
650 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
651 							list_head);
652 		ceph_msg_remove(msg);
653 	}
654 }
655 
656 static void reset_connection(struct ceph_connection *con)
657 {
658 	/* reset connection, out_queue, msg_ and connect_seq */
659 	/* discard existing out_queue and msg_seq */
660 	dout("reset_connection %p\n", con);
661 	ceph_msg_remove_list(&con->out_queue);
662 	ceph_msg_remove_list(&con->out_sent);
663 
664 	if (con->in_msg) {
665 		BUG_ON(con->in_msg->con != con);
666 		con->in_msg->con = NULL;
667 		ceph_msg_put(con->in_msg);
668 		con->in_msg = NULL;
669 		con->ops->put(con);
670 	}
671 
672 	con->connect_seq = 0;
673 	con->out_seq = 0;
674 	if (con->out_msg) {
675 		ceph_msg_put(con->out_msg);
676 		con->out_msg = NULL;
677 	}
678 	con->in_seq = 0;
679 	con->in_seq_acked = 0;
680 }
681 
682 /*
683  * mark a peer down.  drop any open connections.
684  */
685 void ceph_con_close(struct ceph_connection *con)
686 {
687 	mutex_lock(&con->mutex);
688 	dout("con_close %p peer %s\n", con,
689 	     ceph_pr_addr(&con->peer_addr.in_addr));
690 	con->state = CON_STATE_CLOSED;
691 
692 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
693 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
694 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
695 	con_flag_clear(con, CON_FLAG_BACKOFF);
696 
697 	reset_connection(con);
698 	con->peer_global_seq = 0;
699 	cancel_con(con);
700 	con_close_socket(con);
701 	mutex_unlock(&con->mutex);
702 }
703 EXPORT_SYMBOL(ceph_con_close);
704 
705 /*
706  * Reopen a closed connection, with a new peer address.
707  */
708 void ceph_con_open(struct ceph_connection *con,
709 		   __u8 entity_type, __u64 entity_num,
710 		   struct ceph_entity_addr *addr)
711 {
712 	mutex_lock(&con->mutex);
713 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
714 
715 	WARN_ON(con->state != CON_STATE_CLOSED);
716 	con->state = CON_STATE_PREOPEN;
717 
718 	con->peer_name.type = (__u8) entity_type;
719 	con->peer_name.num = cpu_to_le64(entity_num);
720 
721 	memcpy(&con->peer_addr, addr, sizeof(*addr));
722 	con->delay = 0;      /* reset backoff memory */
723 	mutex_unlock(&con->mutex);
724 	queue_con(con);
725 }
726 EXPORT_SYMBOL(ceph_con_open);
727 
728 /*
729  * return true if this connection ever successfully opened
730  */
731 bool ceph_con_opened(struct ceph_connection *con)
732 {
733 	return con->connect_seq > 0;
734 }
735 
736 /*
737  * initialize a new connection.
738  */
739 void ceph_con_init(struct ceph_connection *con, void *private,
740 	const struct ceph_connection_operations *ops,
741 	struct ceph_messenger *msgr)
742 {
743 	dout("con_init %p\n", con);
744 	memset(con, 0, sizeof(*con));
745 	con->private = private;
746 	con->ops = ops;
747 	con->msgr = msgr;
748 
749 	con_sock_state_init(con);
750 
751 	mutex_init(&con->mutex);
752 	INIT_LIST_HEAD(&con->out_queue);
753 	INIT_LIST_HEAD(&con->out_sent);
754 	INIT_DELAYED_WORK(&con->work, con_work);
755 
756 	con->state = CON_STATE_CLOSED;
757 }
758 EXPORT_SYMBOL(ceph_con_init);
759 
760 
761 /*
762  * We maintain a global counter to order connection attempts.  Get
763  * a unique seq greater than @gt.
764  */
765 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
766 {
767 	u32 ret;
768 
769 	spin_lock(&msgr->global_seq_lock);
770 	if (msgr->global_seq < gt)
771 		msgr->global_seq = gt;
772 	ret = ++msgr->global_seq;
773 	spin_unlock(&msgr->global_seq_lock);
774 	return ret;
775 }
776 
777 static void con_out_kvec_reset(struct ceph_connection *con)
778 {
779 	con->out_kvec_left = 0;
780 	con->out_kvec_bytes = 0;
781 	con->out_kvec_cur = &con->out_kvec[0];
782 }
783 
784 static void con_out_kvec_add(struct ceph_connection *con,
785 				size_t size, void *data)
786 {
787 	int index;
788 
789 	index = con->out_kvec_left;
790 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
791 
792 	con->out_kvec[index].iov_len = size;
793 	con->out_kvec[index].iov_base = data;
794 	con->out_kvec_left++;
795 	con->out_kvec_bytes += size;
796 }
797 
798 #ifdef CONFIG_BLOCK
799 
800 /*
801  * For a bio data item, a piece is whatever remains of the next
802  * entry in the current bio iovec, or the first entry in the next
803  * bio in the list.
804  */
805 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
806 					size_t length)
807 {
808 	struct ceph_msg_data *data = cursor->data;
809 	struct bio *bio;
810 
811 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
812 
813 	bio = data->bio;
814 	BUG_ON(!bio);
815 
816 	cursor->resid = min(length, data->bio_length);
817 	cursor->bio = bio;
818 	cursor->bvec_iter = bio->bi_iter;
819 	cursor->last_piece =
820 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
821 }
822 
823 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
824 						size_t *page_offset,
825 						size_t *length)
826 {
827 	struct ceph_msg_data *data = cursor->data;
828 	struct bio *bio;
829 	struct bio_vec bio_vec;
830 
831 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
832 
833 	bio = cursor->bio;
834 	BUG_ON(!bio);
835 
836 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
837 
838 	*page_offset = (size_t) bio_vec.bv_offset;
839 	BUG_ON(*page_offset >= PAGE_SIZE);
840 	if (cursor->last_piece) /* pagelist offset is always 0 */
841 		*length = cursor->resid;
842 	else
843 		*length = (size_t) bio_vec.bv_len;
844 	BUG_ON(*length > cursor->resid);
845 	BUG_ON(*page_offset + *length > PAGE_SIZE);
846 
847 	return bio_vec.bv_page;
848 }
849 
850 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
851 					size_t bytes)
852 {
853 	struct bio *bio;
854 	struct bio_vec bio_vec;
855 
856 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
857 
858 	bio = cursor->bio;
859 	BUG_ON(!bio);
860 
861 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
862 
863 	/* Advance the cursor offset */
864 
865 	BUG_ON(cursor->resid < bytes);
866 	cursor->resid -= bytes;
867 
868 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
869 
870 	if (bytes < bio_vec.bv_len)
871 		return false;	/* more bytes to process in this segment */
872 
873 	/* Move on to the next segment, and possibly the next bio */
874 
875 	if (!cursor->bvec_iter.bi_size) {
876 		bio = bio->bi_next;
877 		cursor->bio = bio;
878 		if (bio)
879 			cursor->bvec_iter = bio->bi_iter;
880 		else
881 			memset(&cursor->bvec_iter, 0,
882 			       sizeof(cursor->bvec_iter));
883 	}
884 
885 	if (!cursor->last_piece) {
886 		BUG_ON(!cursor->resid);
887 		BUG_ON(!bio);
888 		/* A short read is OK, so use <= rather than == */
889 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
890 			cursor->last_piece = true;
891 	}
892 
893 	return true;
894 }
895 #endif /* CONFIG_BLOCK */
896 
897 /*
898  * For a page array, a piece comes from the first page in the array
899  * that has not already been fully consumed.
900  */
901 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
902 					size_t length)
903 {
904 	struct ceph_msg_data *data = cursor->data;
905 	int page_count;
906 
907 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
908 
909 	BUG_ON(!data->pages);
910 	BUG_ON(!data->length);
911 
912 	cursor->resid = min(length, data->length);
913 	page_count = calc_pages_for(data->alignment, (u64)data->length);
914 	cursor->page_offset = data->alignment & ~PAGE_MASK;
915 	cursor->page_index = 0;
916 	BUG_ON(page_count > (int)USHRT_MAX);
917 	cursor->page_count = (unsigned short)page_count;
918 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
919 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
920 }
921 
922 static struct page *
923 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
924 					size_t *page_offset, size_t *length)
925 {
926 	struct ceph_msg_data *data = cursor->data;
927 
928 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
929 
930 	BUG_ON(cursor->page_index >= cursor->page_count);
931 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
932 
933 	*page_offset = cursor->page_offset;
934 	if (cursor->last_piece)
935 		*length = cursor->resid;
936 	else
937 		*length = PAGE_SIZE - *page_offset;
938 
939 	return data->pages[cursor->page_index];
940 }
941 
942 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
943 						size_t bytes)
944 {
945 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
946 
947 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
948 
949 	/* Advance the cursor page offset */
950 
951 	cursor->resid -= bytes;
952 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
953 	if (!bytes || cursor->page_offset)
954 		return false;	/* more bytes to process in the current page */
955 
956 	if (!cursor->resid)
957 		return false;   /* no more data */
958 
959 	/* Move on to the next page; offset is already at 0 */
960 
961 	BUG_ON(cursor->page_index >= cursor->page_count);
962 	cursor->page_index++;
963 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
964 
965 	return true;
966 }
967 
968 /*
969  * For a pagelist, a piece is whatever remains to be consumed in the
970  * first page in the list, or the front of the next page.
971  */
972 static void
973 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
974 					size_t length)
975 {
976 	struct ceph_msg_data *data = cursor->data;
977 	struct ceph_pagelist *pagelist;
978 	struct page *page;
979 
980 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
981 
982 	pagelist = data->pagelist;
983 	BUG_ON(!pagelist);
984 
985 	if (!length)
986 		return;		/* pagelist can be assigned but empty */
987 
988 	BUG_ON(list_empty(&pagelist->head));
989 	page = list_first_entry(&pagelist->head, struct page, lru);
990 
991 	cursor->resid = min(length, pagelist->length);
992 	cursor->page = page;
993 	cursor->offset = 0;
994 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
995 }
996 
997 static struct page *
998 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
999 				size_t *page_offset, size_t *length)
1000 {
1001 	struct ceph_msg_data *data = cursor->data;
1002 	struct ceph_pagelist *pagelist;
1003 
1004 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1005 
1006 	pagelist = data->pagelist;
1007 	BUG_ON(!pagelist);
1008 
1009 	BUG_ON(!cursor->page);
1010 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1011 
1012 	/* offset of first page in pagelist is always 0 */
1013 	*page_offset = cursor->offset & ~PAGE_MASK;
1014 	if (cursor->last_piece)
1015 		*length = cursor->resid;
1016 	else
1017 		*length = PAGE_SIZE - *page_offset;
1018 
1019 	return cursor->page;
1020 }
1021 
1022 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1023 						size_t bytes)
1024 {
1025 	struct ceph_msg_data *data = cursor->data;
1026 	struct ceph_pagelist *pagelist;
1027 
1028 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1029 
1030 	pagelist = data->pagelist;
1031 	BUG_ON(!pagelist);
1032 
1033 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1034 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1035 
1036 	/* Advance the cursor offset */
1037 
1038 	cursor->resid -= bytes;
1039 	cursor->offset += bytes;
1040 	/* offset of first page in pagelist is always 0 */
1041 	if (!bytes || cursor->offset & ~PAGE_MASK)
1042 		return false;	/* more bytes to process in the current page */
1043 
1044 	if (!cursor->resid)
1045 		return false;   /* no more data */
1046 
1047 	/* Move on to the next page */
1048 
1049 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1050 	cursor->page = list_entry_next(cursor->page, lru);
1051 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1052 
1053 	return true;
1054 }
1055 
1056 /*
1057  * Message data is handled (sent or received) in pieces, where each
1058  * piece resides on a single page.  The network layer might not
1059  * consume an entire piece at once.  A data item's cursor keeps
1060  * track of which piece is next to process and how much remains to
1061  * be processed in that piece.  It also tracks whether the current
1062  * piece is the last one in the data item.
1063  */
1064 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1065 {
1066 	size_t length = cursor->total_resid;
1067 
1068 	switch (cursor->data->type) {
1069 	case CEPH_MSG_DATA_PAGELIST:
1070 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1071 		break;
1072 	case CEPH_MSG_DATA_PAGES:
1073 		ceph_msg_data_pages_cursor_init(cursor, length);
1074 		break;
1075 #ifdef CONFIG_BLOCK
1076 	case CEPH_MSG_DATA_BIO:
1077 		ceph_msg_data_bio_cursor_init(cursor, length);
1078 		break;
1079 #endif /* CONFIG_BLOCK */
1080 	case CEPH_MSG_DATA_NONE:
1081 	default:
1082 		/* BUG(); */
1083 		break;
1084 	}
1085 	cursor->need_crc = true;
1086 }
1087 
1088 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1089 {
1090 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1091 	struct ceph_msg_data *data;
1092 
1093 	BUG_ON(!length);
1094 	BUG_ON(length > msg->data_length);
1095 	BUG_ON(list_empty(&msg->data));
1096 
1097 	cursor->data_head = &msg->data;
1098 	cursor->total_resid = length;
1099 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1100 	cursor->data = data;
1101 
1102 	__ceph_msg_data_cursor_init(cursor);
1103 }
1104 
1105 /*
1106  * Return the page containing the next piece to process for a given
1107  * data item, and supply the page offset and length of that piece.
1108  * Indicate whether this is the last piece in this data item.
1109  */
1110 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1111 					size_t *page_offset, size_t *length,
1112 					bool *last_piece)
1113 {
1114 	struct page *page;
1115 
1116 	switch (cursor->data->type) {
1117 	case CEPH_MSG_DATA_PAGELIST:
1118 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1119 		break;
1120 	case CEPH_MSG_DATA_PAGES:
1121 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1122 		break;
1123 #ifdef CONFIG_BLOCK
1124 	case CEPH_MSG_DATA_BIO:
1125 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1126 		break;
1127 #endif /* CONFIG_BLOCK */
1128 	case CEPH_MSG_DATA_NONE:
1129 	default:
1130 		page = NULL;
1131 		break;
1132 	}
1133 	BUG_ON(!page);
1134 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1135 	BUG_ON(!*length);
1136 	if (last_piece)
1137 		*last_piece = cursor->last_piece;
1138 
1139 	return page;
1140 }
1141 
1142 /*
1143  * Returns true if the result moves the cursor on to the next piece
1144  * of the data item.
1145  */
1146 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1147 				size_t bytes)
1148 {
1149 	bool new_piece;
1150 
1151 	BUG_ON(bytes > cursor->resid);
1152 	switch (cursor->data->type) {
1153 	case CEPH_MSG_DATA_PAGELIST:
1154 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1155 		break;
1156 	case CEPH_MSG_DATA_PAGES:
1157 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1158 		break;
1159 #ifdef CONFIG_BLOCK
1160 	case CEPH_MSG_DATA_BIO:
1161 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1162 		break;
1163 #endif /* CONFIG_BLOCK */
1164 	case CEPH_MSG_DATA_NONE:
1165 	default:
1166 		BUG();
1167 		break;
1168 	}
1169 	cursor->total_resid -= bytes;
1170 
1171 	if (!cursor->resid && cursor->total_resid) {
1172 		WARN_ON(!cursor->last_piece);
1173 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1174 		cursor->data = list_entry_next(cursor->data, links);
1175 		__ceph_msg_data_cursor_init(cursor);
1176 		new_piece = true;
1177 	}
1178 	cursor->need_crc = new_piece;
1179 
1180 	return new_piece;
1181 }
1182 
1183 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1184 {
1185 	BUG_ON(!msg);
1186 	BUG_ON(!data_len);
1187 
1188 	/* Initialize data cursor */
1189 
1190 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1191 }
1192 
1193 /*
1194  * Prepare footer for currently outgoing message, and finish things
1195  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1196  */
1197 static void prepare_write_message_footer(struct ceph_connection *con)
1198 {
1199 	struct ceph_msg *m = con->out_msg;
1200 	int v = con->out_kvec_left;
1201 
1202 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1203 
1204 	dout("prepare_write_message_footer %p\n", con);
1205 	con->out_kvec_is_msg = true;
1206 	con->out_kvec[v].iov_base = &m->footer;
1207 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1208 		if (con->ops->sign_message)
1209 			con->ops->sign_message(con, m);
1210 		else
1211 			m->footer.sig = 0;
1212 		con->out_kvec[v].iov_len = sizeof(m->footer);
1213 		con->out_kvec_bytes += sizeof(m->footer);
1214 	} else {
1215 		m->old_footer.flags = m->footer.flags;
1216 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1217 		con->out_kvec_bytes += sizeof(m->old_footer);
1218 	}
1219 	con->out_kvec_left++;
1220 	con->out_more = m->more_to_follow;
1221 	con->out_msg_done = true;
1222 }
1223 
1224 /*
1225  * Prepare headers for the next outgoing message.
1226  */
1227 static void prepare_write_message(struct ceph_connection *con)
1228 {
1229 	struct ceph_msg *m;
1230 	u32 crc;
1231 
1232 	con_out_kvec_reset(con);
1233 	con->out_kvec_is_msg = true;
1234 	con->out_msg_done = false;
1235 
1236 	/* Sneak an ack in there first?  If we can get it into the same
1237 	 * TCP packet that's a good thing. */
1238 	if (con->in_seq > con->in_seq_acked) {
1239 		con->in_seq_acked = con->in_seq;
1240 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1241 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1242 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1243 			&con->out_temp_ack);
1244 	}
1245 
1246 	BUG_ON(list_empty(&con->out_queue));
1247 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1248 	con->out_msg = m;
1249 	BUG_ON(m->con != con);
1250 
1251 	/* put message on sent list */
1252 	ceph_msg_get(m);
1253 	list_move_tail(&m->list_head, &con->out_sent);
1254 
1255 	/*
1256 	 * only assign outgoing seq # if we haven't sent this message
1257 	 * yet.  if it is requeued, resend with it's original seq.
1258 	 */
1259 	if (m->needs_out_seq) {
1260 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1261 		m->needs_out_seq = false;
1262 	}
1263 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1264 
1265 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1266 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1267 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1268 	     m->data_length);
1269 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1270 
1271 	/* tag + hdr + front + middle */
1272 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1273 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1274 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1275 
1276 	if (m->middle)
1277 		con_out_kvec_add(con, m->middle->vec.iov_len,
1278 			m->middle->vec.iov_base);
1279 
1280 	/* fill in crc (except data pages), footer */
1281 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1282 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1283 	con->out_msg->footer.flags = 0;
1284 
1285 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1286 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1287 	if (m->middle) {
1288 		crc = crc32c(0, m->middle->vec.iov_base,
1289 				m->middle->vec.iov_len);
1290 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1291 	} else
1292 		con->out_msg->footer.middle_crc = 0;
1293 	dout("%s front_crc %u middle_crc %u\n", __func__,
1294 	     le32_to_cpu(con->out_msg->footer.front_crc),
1295 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1296 
1297 	/* is there a data payload? */
1298 	con->out_msg->footer.data_crc = 0;
1299 	if (m->data_length) {
1300 		prepare_message_data(con->out_msg, m->data_length);
1301 		con->out_more = 1;  /* data + footer will follow */
1302 	} else {
1303 		/* no, queue up footer too and be done */
1304 		prepare_write_message_footer(con);
1305 	}
1306 
1307 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1308 }
1309 
1310 /*
1311  * Prepare an ack.
1312  */
1313 static void prepare_write_ack(struct ceph_connection *con)
1314 {
1315 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1316 	     con->in_seq_acked, con->in_seq);
1317 	con->in_seq_acked = con->in_seq;
1318 
1319 	con_out_kvec_reset(con);
1320 
1321 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1322 
1323 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1324 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1325 				&con->out_temp_ack);
1326 
1327 	con->out_more = 1;  /* more will follow.. eventually.. */
1328 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1329 }
1330 
1331 /*
1332  * Prepare to share the seq during handshake
1333  */
1334 static void prepare_write_seq(struct ceph_connection *con)
1335 {
1336 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1337 	     con->in_seq_acked, con->in_seq);
1338 	con->in_seq_acked = con->in_seq;
1339 
1340 	con_out_kvec_reset(con);
1341 
1342 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1343 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1344 			 &con->out_temp_ack);
1345 
1346 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1347 }
1348 
1349 /*
1350  * Prepare to write keepalive byte.
1351  */
1352 static void prepare_write_keepalive(struct ceph_connection *con)
1353 {
1354 	dout("prepare_write_keepalive %p\n", con);
1355 	con_out_kvec_reset(con);
1356 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1357 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1358 }
1359 
1360 /*
1361  * Connection negotiation.
1362  */
1363 
1364 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1365 						int *auth_proto)
1366 {
1367 	struct ceph_auth_handshake *auth;
1368 
1369 	if (!con->ops->get_authorizer) {
1370 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1371 		con->out_connect.authorizer_len = 0;
1372 		return NULL;
1373 	}
1374 
1375 	/* Can't hold the mutex while getting authorizer */
1376 	mutex_unlock(&con->mutex);
1377 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1378 	mutex_lock(&con->mutex);
1379 
1380 	if (IS_ERR(auth))
1381 		return auth;
1382 	if (con->state != CON_STATE_NEGOTIATING)
1383 		return ERR_PTR(-EAGAIN);
1384 
1385 	con->auth_reply_buf = auth->authorizer_reply_buf;
1386 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1387 	return auth;
1388 }
1389 
1390 /*
1391  * We connected to a peer and are saying hello.
1392  */
1393 static void prepare_write_banner(struct ceph_connection *con)
1394 {
1395 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1396 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1397 					&con->msgr->my_enc_addr);
1398 
1399 	con->out_more = 0;
1400 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1401 }
1402 
1403 static int prepare_write_connect(struct ceph_connection *con)
1404 {
1405 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1406 	int proto;
1407 	int auth_proto;
1408 	struct ceph_auth_handshake *auth;
1409 
1410 	switch (con->peer_name.type) {
1411 	case CEPH_ENTITY_TYPE_MON:
1412 		proto = CEPH_MONC_PROTOCOL;
1413 		break;
1414 	case CEPH_ENTITY_TYPE_OSD:
1415 		proto = CEPH_OSDC_PROTOCOL;
1416 		break;
1417 	case CEPH_ENTITY_TYPE_MDS:
1418 		proto = CEPH_MDSC_PROTOCOL;
1419 		break;
1420 	default:
1421 		BUG();
1422 	}
1423 
1424 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1425 	     con->connect_seq, global_seq, proto);
1426 
1427 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1428 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1429 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1430 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1431 	con->out_connect.protocol_version = cpu_to_le32(proto);
1432 	con->out_connect.flags = 0;
1433 
1434 	auth_proto = CEPH_AUTH_UNKNOWN;
1435 	auth = get_connect_authorizer(con, &auth_proto);
1436 	if (IS_ERR(auth))
1437 		return PTR_ERR(auth);
1438 
1439 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1440 	con->out_connect.authorizer_len = auth ?
1441 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1442 
1443 	con_out_kvec_add(con, sizeof (con->out_connect),
1444 					&con->out_connect);
1445 	if (auth && auth->authorizer_buf_len)
1446 		con_out_kvec_add(con, auth->authorizer_buf_len,
1447 					auth->authorizer_buf);
1448 
1449 	con->out_more = 0;
1450 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1451 
1452 	return 0;
1453 }
1454 
1455 /*
1456  * write as much of pending kvecs to the socket as we can.
1457  *  1 -> done
1458  *  0 -> socket full, but more to do
1459  * <0 -> error
1460  */
1461 static int write_partial_kvec(struct ceph_connection *con)
1462 {
1463 	int ret;
1464 
1465 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1466 	while (con->out_kvec_bytes > 0) {
1467 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1468 				       con->out_kvec_left, con->out_kvec_bytes,
1469 				       con->out_more);
1470 		if (ret <= 0)
1471 			goto out;
1472 		con->out_kvec_bytes -= ret;
1473 		if (con->out_kvec_bytes == 0)
1474 			break;            /* done */
1475 
1476 		/* account for full iov entries consumed */
1477 		while (ret >= con->out_kvec_cur->iov_len) {
1478 			BUG_ON(!con->out_kvec_left);
1479 			ret -= con->out_kvec_cur->iov_len;
1480 			con->out_kvec_cur++;
1481 			con->out_kvec_left--;
1482 		}
1483 		/* and for a partially-consumed entry */
1484 		if (ret) {
1485 			con->out_kvec_cur->iov_len -= ret;
1486 			con->out_kvec_cur->iov_base += ret;
1487 		}
1488 	}
1489 	con->out_kvec_left = 0;
1490 	con->out_kvec_is_msg = false;
1491 	ret = 1;
1492 out:
1493 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1494 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1495 	return ret;  /* done! */
1496 }
1497 
1498 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1499 				unsigned int page_offset,
1500 				unsigned int length)
1501 {
1502 	char *kaddr;
1503 
1504 	kaddr = kmap(page);
1505 	BUG_ON(kaddr == NULL);
1506 	crc = crc32c(crc, kaddr + page_offset, length);
1507 	kunmap(page);
1508 
1509 	return crc;
1510 }
1511 /*
1512  * Write as much message data payload as we can.  If we finish, queue
1513  * up the footer.
1514  *  1 -> done, footer is now queued in out_kvec[].
1515  *  0 -> socket full, but more to do
1516  * <0 -> error
1517  */
1518 static int write_partial_message_data(struct ceph_connection *con)
1519 {
1520 	struct ceph_msg *msg = con->out_msg;
1521 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1522 	bool do_datacrc = !con->msgr->nocrc;
1523 	u32 crc;
1524 
1525 	dout("%s %p msg %p\n", __func__, con, msg);
1526 
1527 	if (list_empty(&msg->data))
1528 		return -EINVAL;
1529 
1530 	/*
1531 	 * Iterate through each page that contains data to be
1532 	 * written, and send as much as possible for each.
1533 	 *
1534 	 * If we are calculating the data crc (the default), we will
1535 	 * need to map the page.  If we have no pages, they have
1536 	 * been revoked, so use the zero page.
1537 	 */
1538 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1539 	while (cursor->resid) {
1540 		struct page *page;
1541 		size_t page_offset;
1542 		size_t length;
1543 		bool last_piece;
1544 		bool need_crc;
1545 		int ret;
1546 
1547 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1548 							&last_piece);
1549 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1550 				      length, last_piece);
1551 		if (ret <= 0) {
1552 			if (do_datacrc)
1553 				msg->footer.data_crc = cpu_to_le32(crc);
1554 
1555 			return ret;
1556 		}
1557 		if (do_datacrc && cursor->need_crc)
1558 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1559 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1560 	}
1561 
1562 	dout("%s %p msg %p done\n", __func__, con, msg);
1563 
1564 	/* prepare and queue up footer, too */
1565 	if (do_datacrc)
1566 		msg->footer.data_crc = cpu_to_le32(crc);
1567 	else
1568 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1569 	con_out_kvec_reset(con);
1570 	prepare_write_message_footer(con);
1571 
1572 	return 1;	/* must return > 0 to indicate success */
1573 }
1574 
1575 /*
1576  * write some zeros
1577  */
1578 static int write_partial_skip(struct ceph_connection *con)
1579 {
1580 	int ret;
1581 
1582 	while (con->out_skip > 0) {
1583 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1584 
1585 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1586 		if (ret <= 0)
1587 			goto out;
1588 		con->out_skip -= ret;
1589 	}
1590 	ret = 1;
1591 out:
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Prepare to read connection handshake, or an ack.
1597  */
1598 static void prepare_read_banner(struct ceph_connection *con)
1599 {
1600 	dout("prepare_read_banner %p\n", con);
1601 	con->in_base_pos = 0;
1602 }
1603 
1604 static void prepare_read_connect(struct ceph_connection *con)
1605 {
1606 	dout("prepare_read_connect %p\n", con);
1607 	con->in_base_pos = 0;
1608 }
1609 
1610 static void prepare_read_ack(struct ceph_connection *con)
1611 {
1612 	dout("prepare_read_ack %p\n", con);
1613 	con->in_base_pos = 0;
1614 }
1615 
1616 static void prepare_read_seq(struct ceph_connection *con)
1617 {
1618 	dout("prepare_read_seq %p\n", con);
1619 	con->in_base_pos = 0;
1620 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1621 }
1622 
1623 static void prepare_read_tag(struct ceph_connection *con)
1624 {
1625 	dout("prepare_read_tag %p\n", con);
1626 	con->in_base_pos = 0;
1627 	con->in_tag = CEPH_MSGR_TAG_READY;
1628 }
1629 
1630 /*
1631  * Prepare to read a message.
1632  */
1633 static int prepare_read_message(struct ceph_connection *con)
1634 {
1635 	dout("prepare_read_message %p\n", con);
1636 	BUG_ON(con->in_msg != NULL);
1637 	con->in_base_pos = 0;
1638 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1639 	return 0;
1640 }
1641 
1642 
1643 static int read_partial(struct ceph_connection *con,
1644 			int end, int size, void *object)
1645 {
1646 	while (con->in_base_pos < end) {
1647 		int left = end - con->in_base_pos;
1648 		int have = size - left;
1649 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1650 		if (ret <= 0)
1651 			return ret;
1652 		con->in_base_pos += ret;
1653 	}
1654 	return 1;
1655 }
1656 
1657 
1658 /*
1659  * Read all or part of the connect-side handshake on a new connection
1660  */
1661 static int read_partial_banner(struct ceph_connection *con)
1662 {
1663 	int size;
1664 	int end;
1665 	int ret;
1666 
1667 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1668 
1669 	/* peer's banner */
1670 	size = strlen(CEPH_BANNER);
1671 	end = size;
1672 	ret = read_partial(con, end, size, con->in_banner);
1673 	if (ret <= 0)
1674 		goto out;
1675 
1676 	size = sizeof (con->actual_peer_addr);
1677 	end += size;
1678 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1679 	if (ret <= 0)
1680 		goto out;
1681 
1682 	size = sizeof (con->peer_addr_for_me);
1683 	end += size;
1684 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1685 	if (ret <= 0)
1686 		goto out;
1687 
1688 out:
1689 	return ret;
1690 }
1691 
1692 static int read_partial_connect(struct ceph_connection *con)
1693 {
1694 	int size;
1695 	int end;
1696 	int ret;
1697 
1698 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1699 
1700 	size = sizeof (con->in_reply);
1701 	end = size;
1702 	ret = read_partial(con, end, size, &con->in_reply);
1703 	if (ret <= 0)
1704 		goto out;
1705 
1706 	size = le32_to_cpu(con->in_reply.authorizer_len);
1707 	end += size;
1708 	ret = read_partial(con, end, size, con->auth_reply_buf);
1709 	if (ret <= 0)
1710 		goto out;
1711 
1712 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1713 	     con, (int)con->in_reply.tag,
1714 	     le32_to_cpu(con->in_reply.connect_seq),
1715 	     le32_to_cpu(con->in_reply.global_seq));
1716 out:
1717 	return ret;
1718 
1719 }
1720 
1721 /*
1722  * Verify the hello banner looks okay.
1723  */
1724 static int verify_hello(struct ceph_connection *con)
1725 {
1726 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1727 		pr_err("connect to %s got bad banner\n",
1728 		       ceph_pr_addr(&con->peer_addr.in_addr));
1729 		con->error_msg = "protocol error, bad banner";
1730 		return -1;
1731 	}
1732 	return 0;
1733 }
1734 
1735 static bool addr_is_blank(struct sockaddr_storage *ss)
1736 {
1737 	switch (ss->ss_family) {
1738 	case AF_INET:
1739 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1740 	case AF_INET6:
1741 		return
1742 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1743 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1744 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1745 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1746 	}
1747 	return false;
1748 }
1749 
1750 static int addr_port(struct sockaddr_storage *ss)
1751 {
1752 	switch (ss->ss_family) {
1753 	case AF_INET:
1754 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1755 	case AF_INET6:
1756 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1757 	}
1758 	return 0;
1759 }
1760 
1761 static void addr_set_port(struct sockaddr_storage *ss, int p)
1762 {
1763 	switch (ss->ss_family) {
1764 	case AF_INET:
1765 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1766 		break;
1767 	case AF_INET6:
1768 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1769 		break;
1770 	}
1771 }
1772 
1773 /*
1774  * Unlike other *_pton function semantics, zero indicates success.
1775  */
1776 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1777 		char delim, const char **ipend)
1778 {
1779 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1780 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1781 
1782 	memset(ss, 0, sizeof(*ss));
1783 
1784 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1785 		ss->ss_family = AF_INET;
1786 		return 0;
1787 	}
1788 
1789 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1790 		ss->ss_family = AF_INET6;
1791 		return 0;
1792 	}
1793 
1794 	return -EINVAL;
1795 }
1796 
1797 /*
1798  * Extract hostname string and resolve using kernel DNS facility.
1799  */
1800 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1801 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1802 		struct sockaddr_storage *ss, char delim, const char **ipend)
1803 {
1804 	const char *end, *delim_p;
1805 	char *colon_p, *ip_addr = NULL;
1806 	int ip_len, ret;
1807 
1808 	/*
1809 	 * The end of the hostname occurs immediately preceding the delimiter or
1810 	 * the port marker (':') where the delimiter takes precedence.
1811 	 */
1812 	delim_p = memchr(name, delim, namelen);
1813 	colon_p = memchr(name, ':', namelen);
1814 
1815 	if (delim_p && colon_p)
1816 		end = delim_p < colon_p ? delim_p : colon_p;
1817 	else if (!delim_p && colon_p)
1818 		end = colon_p;
1819 	else {
1820 		end = delim_p;
1821 		if (!end) /* case: hostname:/ */
1822 			end = name + namelen;
1823 	}
1824 
1825 	if (end <= name)
1826 		return -EINVAL;
1827 
1828 	/* do dns_resolve upcall */
1829 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1830 	if (ip_len > 0)
1831 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1832 	else
1833 		ret = -ESRCH;
1834 
1835 	kfree(ip_addr);
1836 
1837 	*ipend = end;
1838 
1839 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1840 			ret, ret ? "failed" : ceph_pr_addr(ss));
1841 
1842 	return ret;
1843 }
1844 #else
1845 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1846 		struct sockaddr_storage *ss, char delim, const char **ipend)
1847 {
1848 	return -EINVAL;
1849 }
1850 #endif
1851 
1852 /*
1853  * Parse a server name (IP or hostname). If a valid IP address is not found
1854  * then try to extract a hostname to resolve using userspace DNS upcall.
1855  */
1856 static int ceph_parse_server_name(const char *name, size_t namelen,
1857 			struct sockaddr_storage *ss, char delim, const char **ipend)
1858 {
1859 	int ret;
1860 
1861 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1862 	if (ret)
1863 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1864 
1865 	return ret;
1866 }
1867 
1868 /*
1869  * Parse an ip[:port] list into an addr array.  Use the default
1870  * monitor port if a port isn't specified.
1871  */
1872 int ceph_parse_ips(const char *c, const char *end,
1873 		   struct ceph_entity_addr *addr,
1874 		   int max_count, int *count)
1875 {
1876 	int i, ret = -EINVAL;
1877 	const char *p = c;
1878 
1879 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1880 	for (i = 0; i < max_count; i++) {
1881 		const char *ipend;
1882 		struct sockaddr_storage *ss = &addr[i].in_addr;
1883 		int port;
1884 		char delim = ',';
1885 
1886 		if (*p == '[') {
1887 			delim = ']';
1888 			p++;
1889 		}
1890 
1891 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1892 		if (ret)
1893 			goto bad;
1894 		ret = -EINVAL;
1895 
1896 		p = ipend;
1897 
1898 		if (delim == ']') {
1899 			if (*p != ']') {
1900 				dout("missing matching ']'\n");
1901 				goto bad;
1902 			}
1903 			p++;
1904 		}
1905 
1906 		/* port? */
1907 		if (p < end && *p == ':') {
1908 			port = 0;
1909 			p++;
1910 			while (p < end && *p >= '0' && *p <= '9') {
1911 				port = (port * 10) + (*p - '0');
1912 				p++;
1913 			}
1914 			if (port == 0)
1915 				port = CEPH_MON_PORT;
1916 			else if (port > 65535)
1917 				goto bad;
1918 		} else {
1919 			port = CEPH_MON_PORT;
1920 		}
1921 
1922 		addr_set_port(ss, port);
1923 
1924 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1925 
1926 		if (p == end)
1927 			break;
1928 		if (*p != ',')
1929 			goto bad;
1930 		p++;
1931 	}
1932 
1933 	if (p != end)
1934 		goto bad;
1935 
1936 	if (count)
1937 		*count = i + 1;
1938 	return 0;
1939 
1940 bad:
1941 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1942 	return ret;
1943 }
1944 EXPORT_SYMBOL(ceph_parse_ips);
1945 
1946 static int process_banner(struct ceph_connection *con)
1947 {
1948 	dout("process_banner on %p\n", con);
1949 
1950 	if (verify_hello(con) < 0)
1951 		return -1;
1952 
1953 	ceph_decode_addr(&con->actual_peer_addr);
1954 	ceph_decode_addr(&con->peer_addr_for_me);
1955 
1956 	/*
1957 	 * Make sure the other end is who we wanted.  note that the other
1958 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1959 	 * them the benefit of the doubt.
1960 	 */
1961 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1962 		   sizeof(con->peer_addr)) != 0 &&
1963 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1964 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1965 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1966 			ceph_pr_addr(&con->peer_addr.in_addr),
1967 			(int)le32_to_cpu(con->peer_addr.nonce),
1968 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1969 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1970 		con->error_msg = "wrong peer at address";
1971 		return -1;
1972 	}
1973 
1974 	/*
1975 	 * did we learn our address?
1976 	 */
1977 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1978 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1979 
1980 		memcpy(&con->msgr->inst.addr.in_addr,
1981 		       &con->peer_addr_for_me.in_addr,
1982 		       sizeof(con->peer_addr_for_me.in_addr));
1983 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1984 		encode_my_addr(con->msgr);
1985 		dout("process_banner learned my addr is %s\n",
1986 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static int process_connect(struct ceph_connection *con)
1993 {
1994 	u64 sup_feat = con->msgr->supported_features;
1995 	u64 req_feat = con->msgr->required_features;
1996 	u64 server_feat = ceph_sanitize_features(
1997 				le64_to_cpu(con->in_reply.features));
1998 	int ret;
1999 
2000 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2001 
2002 	switch (con->in_reply.tag) {
2003 	case CEPH_MSGR_TAG_FEATURES:
2004 		pr_err("%s%lld %s feature set mismatch,"
2005 		       " my %llx < server's %llx, missing %llx\n",
2006 		       ENTITY_NAME(con->peer_name),
2007 		       ceph_pr_addr(&con->peer_addr.in_addr),
2008 		       sup_feat, server_feat, server_feat & ~sup_feat);
2009 		con->error_msg = "missing required protocol features";
2010 		reset_connection(con);
2011 		return -1;
2012 
2013 	case CEPH_MSGR_TAG_BADPROTOVER:
2014 		pr_err("%s%lld %s protocol version mismatch,"
2015 		       " my %d != server's %d\n",
2016 		       ENTITY_NAME(con->peer_name),
2017 		       ceph_pr_addr(&con->peer_addr.in_addr),
2018 		       le32_to_cpu(con->out_connect.protocol_version),
2019 		       le32_to_cpu(con->in_reply.protocol_version));
2020 		con->error_msg = "protocol version mismatch";
2021 		reset_connection(con);
2022 		return -1;
2023 
2024 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2025 		con->auth_retry++;
2026 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2027 		     con->auth_retry);
2028 		if (con->auth_retry == 2) {
2029 			con->error_msg = "connect authorization failure";
2030 			return -1;
2031 		}
2032 		con_out_kvec_reset(con);
2033 		ret = prepare_write_connect(con);
2034 		if (ret < 0)
2035 			return ret;
2036 		prepare_read_connect(con);
2037 		break;
2038 
2039 	case CEPH_MSGR_TAG_RESETSESSION:
2040 		/*
2041 		 * If we connected with a large connect_seq but the peer
2042 		 * has no record of a session with us (no connection, or
2043 		 * connect_seq == 0), they will send RESETSESION to indicate
2044 		 * that they must have reset their session, and may have
2045 		 * dropped messages.
2046 		 */
2047 		dout("process_connect got RESET peer seq %u\n",
2048 		     le32_to_cpu(con->in_reply.connect_seq));
2049 		pr_err("%s%lld %s connection reset\n",
2050 		       ENTITY_NAME(con->peer_name),
2051 		       ceph_pr_addr(&con->peer_addr.in_addr));
2052 		reset_connection(con);
2053 		con_out_kvec_reset(con);
2054 		ret = prepare_write_connect(con);
2055 		if (ret < 0)
2056 			return ret;
2057 		prepare_read_connect(con);
2058 
2059 		/* Tell ceph about it. */
2060 		mutex_unlock(&con->mutex);
2061 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2062 		if (con->ops->peer_reset)
2063 			con->ops->peer_reset(con);
2064 		mutex_lock(&con->mutex);
2065 		if (con->state != CON_STATE_NEGOTIATING)
2066 			return -EAGAIN;
2067 		break;
2068 
2069 	case CEPH_MSGR_TAG_RETRY_SESSION:
2070 		/*
2071 		 * If we sent a smaller connect_seq than the peer has, try
2072 		 * again with a larger value.
2073 		 */
2074 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2075 		     le32_to_cpu(con->out_connect.connect_seq),
2076 		     le32_to_cpu(con->in_reply.connect_seq));
2077 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2078 		con_out_kvec_reset(con);
2079 		ret = prepare_write_connect(con);
2080 		if (ret < 0)
2081 			return ret;
2082 		prepare_read_connect(con);
2083 		break;
2084 
2085 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2086 		/*
2087 		 * If we sent a smaller global_seq than the peer has, try
2088 		 * again with a larger value.
2089 		 */
2090 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2091 		     con->peer_global_seq,
2092 		     le32_to_cpu(con->in_reply.global_seq));
2093 		get_global_seq(con->msgr,
2094 			       le32_to_cpu(con->in_reply.global_seq));
2095 		con_out_kvec_reset(con);
2096 		ret = prepare_write_connect(con);
2097 		if (ret < 0)
2098 			return ret;
2099 		prepare_read_connect(con);
2100 		break;
2101 
2102 	case CEPH_MSGR_TAG_SEQ:
2103 	case CEPH_MSGR_TAG_READY:
2104 		if (req_feat & ~server_feat) {
2105 			pr_err("%s%lld %s protocol feature mismatch,"
2106 			       " my required %llx > server's %llx, need %llx\n",
2107 			       ENTITY_NAME(con->peer_name),
2108 			       ceph_pr_addr(&con->peer_addr.in_addr),
2109 			       req_feat, server_feat, req_feat & ~server_feat);
2110 			con->error_msg = "missing required protocol features";
2111 			reset_connection(con);
2112 			return -1;
2113 		}
2114 
2115 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2116 		con->state = CON_STATE_OPEN;
2117 		con->auth_retry = 0;    /* we authenticated; clear flag */
2118 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2119 		con->connect_seq++;
2120 		con->peer_features = server_feat;
2121 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2122 		     con->peer_global_seq,
2123 		     le32_to_cpu(con->in_reply.connect_seq),
2124 		     con->connect_seq);
2125 		WARN_ON(con->connect_seq !=
2126 			le32_to_cpu(con->in_reply.connect_seq));
2127 
2128 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2129 			con_flag_set(con, CON_FLAG_LOSSYTX);
2130 
2131 		con->delay = 0;      /* reset backoff memory */
2132 
2133 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2134 			prepare_write_seq(con);
2135 			prepare_read_seq(con);
2136 		} else {
2137 			prepare_read_tag(con);
2138 		}
2139 		break;
2140 
2141 	case CEPH_MSGR_TAG_WAIT:
2142 		/*
2143 		 * If there is a connection race (we are opening
2144 		 * connections to each other), one of us may just have
2145 		 * to WAIT.  This shouldn't happen if we are the
2146 		 * client.
2147 		 */
2148 		pr_err("process_connect got WAIT as client\n");
2149 		con->error_msg = "protocol error, got WAIT as client";
2150 		return -1;
2151 
2152 	default:
2153 		pr_err("connect protocol error, will retry\n");
2154 		con->error_msg = "protocol error, garbage tag during connect";
2155 		return -1;
2156 	}
2157 	return 0;
2158 }
2159 
2160 
2161 /*
2162  * read (part of) an ack
2163  */
2164 static int read_partial_ack(struct ceph_connection *con)
2165 {
2166 	int size = sizeof (con->in_temp_ack);
2167 	int end = size;
2168 
2169 	return read_partial(con, end, size, &con->in_temp_ack);
2170 }
2171 
2172 /*
2173  * We can finally discard anything that's been acked.
2174  */
2175 static void process_ack(struct ceph_connection *con)
2176 {
2177 	struct ceph_msg *m;
2178 	u64 ack = le64_to_cpu(con->in_temp_ack);
2179 	u64 seq;
2180 
2181 	while (!list_empty(&con->out_sent)) {
2182 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2183 				     list_head);
2184 		seq = le64_to_cpu(m->hdr.seq);
2185 		if (seq > ack)
2186 			break;
2187 		dout("got ack for seq %llu type %d at %p\n", seq,
2188 		     le16_to_cpu(m->hdr.type), m);
2189 		m->ack_stamp = jiffies;
2190 		ceph_msg_remove(m);
2191 	}
2192 	prepare_read_tag(con);
2193 }
2194 
2195 
2196 static int read_partial_message_section(struct ceph_connection *con,
2197 					struct kvec *section,
2198 					unsigned int sec_len, u32 *crc)
2199 {
2200 	int ret, left;
2201 
2202 	BUG_ON(!section);
2203 
2204 	while (section->iov_len < sec_len) {
2205 		BUG_ON(section->iov_base == NULL);
2206 		left = sec_len - section->iov_len;
2207 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2208 				       section->iov_len, left);
2209 		if (ret <= 0)
2210 			return ret;
2211 		section->iov_len += ret;
2212 	}
2213 	if (section->iov_len == sec_len)
2214 		*crc = crc32c(0, section->iov_base, section->iov_len);
2215 
2216 	return 1;
2217 }
2218 
2219 static int read_partial_msg_data(struct ceph_connection *con)
2220 {
2221 	struct ceph_msg *msg = con->in_msg;
2222 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2223 	const bool do_datacrc = !con->msgr->nocrc;
2224 	struct page *page;
2225 	size_t page_offset;
2226 	size_t length;
2227 	u32 crc = 0;
2228 	int ret;
2229 
2230 	BUG_ON(!msg);
2231 	if (list_empty(&msg->data))
2232 		return -EIO;
2233 
2234 	if (do_datacrc)
2235 		crc = con->in_data_crc;
2236 	while (cursor->resid) {
2237 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2238 							NULL);
2239 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2240 		if (ret <= 0) {
2241 			if (do_datacrc)
2242 				con->in_data_crc = crc;
2243 
2244 			return ret;
2245 		}
2246 
2247 		if (do_datacrc)
2248 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2249 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2250 	}
2251 	if (do_datacrc)
2252 		con->in_data_crc = crc;
2253 
2254 	return 1;	/* must return > 0 to indicate success */
2255 }
2256 
2257 /*
2258  * read (part of) a message.
2259  */
2260 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2261 
2262 static int read_partial_message(struct ceph_connection *con)
2263 {
2264 	struct ceph_msg *m = con->in_msg;
2265 	int size;
2266 	int end;
2267 	int ret;
2268 	unsigned int front_len, middle_len, data_len;
2269 	bool do_datacrc = !con->msgr->nocrc;
2270 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2271 	u64 seq;
2272 	u32 crc;
2273 
2274 	dout("read_partial_message con %p msg %p\n", con, m);
2275 
2276 	/* header */
2277 	size = sizeof (con->in_hdr);
2278 	end = size;
2279 	ret = read_partial(con, end, size, &con->in_hdr);
2280 	if (ret <= 0)
2281 		return ret;
2282 
2283 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2284 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2285 		pr_err("read_partial_message bad hdr "
2286 		       " crc %u != expected %u\n",
2287 		       crc, con->in_hdr.crc);
2288 		return -EBADMSG;
2289 	}
2290 
2291 	front_len = le32_to_cpu(con->in_hdr.front_len);
2292 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2293 		return -EIO;
2294 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2295 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2296 		return -EIO;
2297 	data_len = le32_to_cpu(con->in_hdr.data_len);
2298 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2299 		return -EIO;
2300 
2301 	/* verify seq# */
2302 	seq = le64_to_cpu(con->in_hdr.seq);
2303 	if ((s64)seq - (s64)con->in_seq < 1) {
2304 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2305 			ENTITY_NAME(con->peer_name),
2306 			ceph_pr_addr(&con->peer_addr.in_addr),
2307 			seq, con->in_seq + 1);
2308 		con->in_base_pos = -front_len - middle_len - data_len -
2309 			sizeof(m->footer);
2310 		con->in_tag = CEPH_MSGR_TAG_READY;
2311 		return 0;
2312 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2313 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2314 		       seq, con->in_seq + 1);
2315 		con->error_msg = "bad message sequence # for incoming message";
2316 		return -EBADMSG;
2317 	}
2318 
2319 	/* allocate message? */
2320 	if (!con->in_msg) {
2321 		int skip = 0;
2322 
2323 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2324 		     front_len, data_len);
2325 		ret = ceph_con_in_msg_alloc(con, &skip);
2326 		if (ret < 0)
2327 			return ret;
2328 
2329 		BUG_ON(!con->in_msg ^ skip);
2330 		if (con->in_msg && data_len > con->in_msg->data_length) {
2331 			pr_warn("%s skipping long message (%u > %zd)\n",
2332 				__func__, data_len, con->in_msg->data_length);
2333 			ceph_msg_put(con->in_msg);
2334 			con->in_msg = NULL;
2335 			skip = 1;
2336 		}
2337 		if (skip) {
2338 			/* skip this message */
2339 			dout("alloc_msg said skip message\n");
2340 			con->in_base_pos = -front_len - middle_len - data_len -
2341 				sizeof(m->footer);
2342 			con->in_tag = CEPH_MSGR_TAG_READY;
2343 			con->in_seq++;
2344 			return 0;
2345 		}
2346 
2347 		BUG_ON(!con->in_msg);
2348 		BUG_ON(con->in_msg->con != con);
2349 		m = con->in_msg;
2350 		m->front.iov_len = 0;    /* haven't read it yet */
2351 		if (m->middle)
2352 			m->middle->vec.iov_len = 0;
2353 
2354 		/* prepare for data payload, if any */
2355 
2356 		if (data_len)
2357 			prepare_message_data(con->in_msg, data_len);
2358 	}
2359 
2360 	/* front */
2361 	ret = read_partial_message_section(con, &m->front, front_len,
2362 					   &con->in_front_crc);
2363 	if (ret <= 0)
2364 		return ret;
2365 
2366 	/* middle */
2367 	if (m->middle) {
2368 		ret = read_partial_message_section(con, &m->middle->vec,
2369 						   middle_len,
2370 						   &con->in_middle_crc);
2371 		if (ret <= 0)
2372 			return ret;
2373 	}
2374 
2375 	/* (page) data */
2376 	if (data_len) {
2377 		ret = read_partial_msg_data(con);
2378 		if (ret <= 0)
2379 			return ret;
2380 	}
2381 
2382 	/* footer */
2383 	if (need_sign)
2384 		size = sizeof(m->footer);
2385 	else
2386 		size = sizeof(m->old_footer);
2387 
2388 	end += size;
2389 	ret = read_partial(con, end, size, &m->footer);
2390 	if (ret <= 0)
2391 		return ret;
2392 
2393 	if (!need_sign) {
2394 		m->footer.flags = m->old_footer.flags;
2395 		m->footer.sig = 0;
2396 	}
2397 
2398 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2399 	     m, front_len, m->footer.front_crc, middle_len,
2400 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2401 
2402 	/* crc ok? */
2403 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2404 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2405 		       m, con->in_front_crc, m->footer.front_crc);
2406 		return -EBADMSG;
2407 	}
2408 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2409 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2410 		       m, con->in_middle_crc, m->footer.middle_crc);
2411 		return -EBADMSG;
2412 	}
2413 	if (do_datacrc &&
2414 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2415 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2416 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2417 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2418 		return -EBADMSG;
2419 	}
2420 
2421 	if (need_sign && con->ops->check_message_signature &&
2422 	    con->ops->check_message_signature(con, m)) {
2423 		pr_err("read_partial_message %p signature check failed\n", m);
2424 		return -EBADMSG;
2425 	}
2426 
2427 	return 1; /* done! */
2428 }
2429 
2430 /*
2431  * Process message.  This happens in the worker thread.  The callback should
2432  * be careful not to do anything that waits on other incoming messages or it
2433  * may deadlock.
2434  */
2435 static void process_message(struct ceph_connection *con)
2436 {
2437 	struct ceph_msg *msg;
2438 
2439 	BUG_ON(con->in_msg->con != con);
2440 	con->in_msg->con = NULL;
2441 	msg = con->in_msg;
2442 	con->in_msg = NULL;
2443 	con->ops->put(con);
2444 
2445 	/* if first message, set peer_name */
2446 	if (con->peer_name.type == 0)
2447 		con->peer_name = msg->hdr.src;
2448 
2449 	con->in_seq++;
2450 	mutex_unlock(&con->mutex);
2451 
2452 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2453 	     msg, le64_to_cpu(msg->hdr.seq),
2454 	     ENTITY_NAME(msg->hdr.src),
2455 	     le16_to_cpu(msg->hdr.type),
2456 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2457 	     le32_to_cpu(msg->hdr.front_len),
2458 	     le32_to_cpu(msg->hdr.data_len),
2459 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2460 	con->ops->dispatch(con, msg);
2461 
2462 	mutex_lock(&con->mutex);
2463 }
2464 
2465 
2466 /*
2467  * Write something to the socket.  Called in a worker thread when the
2468  * socket appears to be writeable and we have something ready to send.
2469  */
2470 static int try_write(struct ceph_connection *con)
2471 {
2472 	int ret = 1;
2473 
2474 	dout("try_write start %p state %lu\n", con, con->state);
2475 
2476 more:
2477 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2478 
2479 	/* open the socket first? */
2480 	if (con->state == CON_STATE_PREOPEN) {
2481 		BUG_ON(con->sock);
2482 		con->state = CON_STATE_CONNECTING;
2483 
2484 		con_out_kvec_reset(con);
2485 		prepare_write_banner(con);
2486 		prepare_read_banner(con);
2487 
2488 		BUG_ON(con->in_msg);
2489 		con->in_tag = CEPH_MSGR_TAG_READY;
2490 		dout("try_write initiating connect on %p new state %lu\n",
2491 		     con, con->state);
2492 		ret = ceph_tcp_connect(con);
2493 		if (ret < 0) {
2494 			con->error_msg = "connect error";
2495 			goto out;
2496 		}
2497 	}
2498 
2499 more_kvec:
2500 	/* kvec data queued? */
2501 	if (con->out_skip) {
2502 		ret = write_partial_skip(con);
2503 		if (ret <= 0)
2504 			goto out;
2505 	}
2506 	if (con->out_kvec_left) {
2507 		ret = write_partial_kvec(con);
2508 		if (ret <= 0)
2509 			goto out;
2510 	}
2511 
2512 	/* msg pages? */
2513 	if (con->out_msg) {
2514 		if (con->out_msg_done) {
2515 			ceph_msg_put(con->out_msg);
2516 			con->out_msg = NULL;   /* we're done with this one */
2517 			goto do_next;
2518 		}
2519 
2520 		ret = write_partial_message_data(con);
2521 		if (ret == 1)
2522 			goto more_kvec;  /* we need to send the footer, too! */
2523 		if (ret == 0)
2524 			goto out;
2525 		if (ret < 0) {
2526 			dout("try_write write_partial_message_data err %d\n",
2527 			     ret);
2528 			goto out;
2529 		}
2530 	}
2531 
2532 do_next:
2533 	if (con->state == CON_STATE_OPEN) {
2534 		/* is anything else pending? */
2535 		if (!list_empty(&con->out_queue)) {
2536 			prepare_write_message(con);
2537 			goto more;
2538 		}
2539 		if (con->in_seq > con->in_seq_acked) {
2540 			prepare_write_ack(con);
2541 			goto more;
2542 		}
2543 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2544 			prepare_write_keepalive(con);
2545 			goto more;
2546 		}
2547 	}
2548 
2549 	/* Nothing to do! */
2550 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2551 	dout("try_write nothing else to write.\n");
2552 	ret = 0;
2553 out:
2554 	dout("try_write done on %p ret %d\n", con, ret);
2555 	return ret;
2556 }
2557 
2558 
2559 
2560 /*
2561  * Read what we can from the socket.
2562  */
2563 static int try_read(struct ceph_connection *con)
2564 {
2565 	int ret = -1;
2566 
2567 more:
2568 	dout("try_read start on %p state %lu\n", con, con->state);
2569 	if (con->state != CON_STATE_CONNECTING &&
2570 	    con->state != CON_STATE_NEGOTIATING &&
2571 	    con->state != CON_STATE_OPEN)
2572 		return 0;
2573 
2574 	BUG_ON(!con->sock);
2575 
2576 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2577 	     con->in_base_pos);
2578 
2579 	if (con->state == CON_STATE_CONNECTING) {
2580 		dout("try_read connecting\n");
2581 		ret = read_partial_banner(con);
2582 		if (ret <= 0)
2583 			goto out;
2584 		ret = process_banner(con);
2585 		if (ret < 0)
2586 			goto out;
2587 
2588 		con->state = CON_STATE_NEGOTIATING;
2589 
2590 		/*
2591 		 * Received banner is good, exchange connection info.
2592 		 * Do not reset out_kvec, as sending our banner raced
2593 		 * with receiving peer banner after connect completed.
2594 		 */
2595 		ret = prepare_write_connect(con);
2596 		if (ret < 0)
2597 			goto out;
2598 		prepare_read_connect(con);
2599 
2600 		/* Send connection info before awaiting response */
2601 		goto out;
2602 	}
2603 
2604 	if (con->state == CON_STATE_NEGOTIATING) {
2605 		dout("try_read negotiating\n");
2606 		ret = read_partial_connect(con);
2607 		if (ret <= 0)
2608 			goto out;
2609 		ret = process_connect(con);
2610 		if (ret < 0)
2611 			goto out;
2612 		goto more;
2613 	}
2614 
2615 	WARN_ON(con->state != CON_STATE_OPEN);
2616 
2617 	if (con->in_base_pos < 0) {
2618 		/*
2619 		 * skipping + discarding content.
2620 		 *
2621 		 * FIXME: there must be a better way to do this!
2622 		 */
2623 		static char buf[SKIP_BUF_SIZE];
2624 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2625 
2626 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2627 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2628 		if (ret <= 0)
2629 			goto out;
2630 		con->in_base_pos += ret;
2631 		if (con->in_base_pos)
2632 			goto more;
2633 	}
2634 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2635 		/*
2636 		 * what's next?
2637 		 */
2638 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2639 		if (ret <= 0)
2640 			goto out;
2641 		dout("try_read got tag %d\n", (int)con->in_tag);
2642 		switch (con->in_tag) {
2643 		case CEPH_MSGR_TAG_MSG:
2644 			prepare_read_message(con);
2645 			break;
2646 		case CEPH_MSGR_TAG_ACK:
2647 			prepare_read_ack(con);
2648 			break;
2649 		case CEPH_MSGR_TAG_CLOSE:
2650 			con_close_socket(con);
2651 			con->state = CON_STATE_CLOSED;
2652 			goto out;
2653 		default:
2654 			goto bad_tag;
2655 		}
2656 	}
2657 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2658 		ret = read_partial_message(con);
2659 		if (ret <= 0) {
2660 			switch (ret) {
2661 			case -EBADMSG:
2662 				con->error_msg = "bad crc";
2663 				ret = -EIO;
2664 				break;
2665 			case -EIO:
2666 				con->error_msg = "io error";
2667 				break;
2668 			}
2669 			goto out;
2670 		}
2671 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2672 			goto more;
2673 		process_message(con);
2674 		if (con->state == CON_STATE_OPEN)
2675 			prepare_read_tag(con);
2676 		goto more;
2677 	}
2678 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2679 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2680 		/*
2681 		 * the final handshake seq exchange is semantically
2682 		 * equivalent to an ACK
2683 		 */
2684 		ret = read_partial_ack(con);
2685 		if (ret <= 0)
2686 			goto out;
2687 		process_ack(con);
2688 		goto more;
2689 	}
2690 
2691 out:
2692 	dout("try_read done on %p ret %d\n", con, ret);
2693 	return ret;
2694 
2695 bad_tag:
2696 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2697 	con->error_msg = "protocol error, garbage tag";
2698 	ret = -1;
2699 	goto out;
2700 }
2701 
2702 
2703 /*
2704  * Atomically queue work on a connection after the specified delay.
2705  * Bump @con reference to avoid races with connection teardown.
2706  * Returns 0 if work was queued, or an error code otherwise.
2707  */
2708 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2709 {
2710 	if (!con->ops->get(con)) {
2711 		dout("%s %p ref count 0\n", __func__, con);
2712 		return -ENOENT;
2713 	}
2714 
2715 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2716 		dout("%s %p - already queued\n", __func__, con);
2717 		con->ops->put(con);
2718 		return -EBUSY;
2719 	}
2720 
2721 	dout("%s %p %lu\n", __func__, con, delay);
2722 	return 0;
2723 }
2724 
2725 static void queue_con(struct ceph_connection *con)
2726 {
2727 	(void) queue_con_delay(con, 0);
2728 }
2729 
2730 static void cancel_con(struct ceph_connection *con)
2731 {
2732 	if (cancel_delayed_work(&con->work)) {
2733 		dout("%s %p\n", __func__, con);
2734 		con->ops->put(con);
2735 	}
2736 }
2737 
2738 static bool con_sock_closed(struct ceph_connection *con)
2739 {
2740 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2741 		return false;
2742 
2743 #define CASE(x)								\
2744 	case CON_STATE_ ## x:						\
2745 		con->error_msg = "socket closed (con state " #x ")";	\
2746 		break;
2747 
2748 	switch (con->state) {
2749 	CASE(CLOSED);
2750 	CASE(PREOPEN);
2751 	CASE(CONNECTING);
2752 	CASE(NEGOTIATING);
2753 	CASE(OPEN);
2754 	CASE(STANDBY);
2755 	default:
2756 		pr_warn("%s con %p unrecognized state %lu\n",
2757 			__func__, con, con->state);
2758 		con->error_msg = "unrecognized con state";
2759 		BUG();
2760 		break;
2761 	}
2762 #undef CASE
2763 
2764 	return true;
2765 }
2766 
2767 static bool con_backoff(struct ceph_connection *con)
2768 {
2769 	int ret;
2770 
2771 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2772 		return false;
2773 
2774 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2775 	if (ret) {
2776 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2777 			con, con->delay);
2778 		BUG_ON(ret == -ENOENT);
2779 		con_flag_set(con, CON_FLAG_BACKOFF);
2780 	}
2781 
2782 	return true;
2783 }
2784 
2785 /* Finish fault handling; con->mutex must *not* be held here */
2786 
2787 static void con_fault_finish(struct ceph_connection *con)
2788 {
2789 	/*
2790 	 * in case we faulted due to authentication, invalidate our
2791 	 * current tickets so that we can get new ones.
2792 	 */
2793 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2794 		dout("calling invalidate_authorizer()\n");
2795 		con->ops->invalidate_authorizer(con);
2796 	}
2797 
2798 	if (con->ops->fault)
2799 		con->ops->fault(con);
2800 }
2801 
2802 /*
2803  * Do some work on a connection.  Drop a connection ref when we're done.
2804  */
2805 static void con_work(struct work_struct *work)
2806 {
2807 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2808 						   work.work);
2809 	bool fault;
2810 
2811 	mutex_lock(&con->mutex);
2812 	while (true) {
2813 		int ret;
2814 
2815 		if ((fault = con_sock_closed(con))) {
2816 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2817 			break;
2818 		}
2819 		if (con_backoff(con)) {
2820 			dout("%s: con %p BACKOFF\n", __func__, con);
2821 			break;
2822 		}
2823 		if (con->state == CON_STATE_STANDBY) {
2824 			dout("%s: con %p STANDBY\n", __func__, con);
2825 			break;
2826 		}
2827 		if (con->state == CON_STATE_CLOSED) {
2828 			dout("%s: con %p CLOSED\n", __func__, con);
2829 			BUG_ON(con->sock);
2830 			break;
2831 		}
2832 		if (con->state == CON_STATE_PREOPEN) {
2833 			dout("%s: con %p PREOPEN\n", __func__, con);
2834 			BUG_ON(con->sock);
2835 		}
2836 
2837 		ret = try_read(con);
2838 		if (ret < 0) {
2839 			if (ret == -EAGAIN)
2840 				continue;
2841 			con->error_msg = "socket error on read";
2842 			fault = true;
2843 			break;
2844 		}
2845 
2846 		ret = try_write(con);
2847 		if (ret < 0) {
2848 			if (ret == -EAGAIN)
2849 				continue;
2850 			con->error_msg = "socket error on write";
2851 			fault = true;
2852 		}
2853 
2854 		break;	/* If we make it to here, we're done */
2855 	}
2856 	if (fault)
2857 		con_fault(con);
2858 	mutex_unlock(&con->mutex);
2859 
2860 	if (fault)
2861 		con_fault_finish(con);
2862 
2863 	con->ops->put(con);
2864 }
2865 
2866 /*
2867  * Generic error/fault handler.  A retry mechanism is used with
2868  * exponential backoff
2869  */
2870 static void con_fault(struct ceph_connection *con)
2871 {
2872 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2873 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2874 	dout("fault %p state %lu to peer %s\n",
2875 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2876 
2877 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2878 	       con->state != CON_STATE_NEGOTIATING &&
2879 	       con->state != CON_STATE_OPEN);
2880 
2881 	con_close_socket(con);
2882 
2883 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2884 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2885 		con->state = CON_STATE_CLOSED;
2886 		return;
2887 	}
2888 
2889 	if (con->in_msg) {
2890 		BUG_ON(con->in_msg->con != con);
2891 		con->in_msg->con = NULL;
2892 		ceph_msg_put(con->in_msg);
2893 		con->in_msg = NULL;
2894 		con->ops->put(con);
2895 	}
2896 
2897 	/* Requeue anything that hasn't been acked */
2898 	list_splice_init(&con->out_sent, &con->out_queue);
2899 
2900 	/* If there are no messages queued or keepalive pending, place
2901 	 * the connection in a STANDBY state */
2902 	if (list_empty(&con->out_queue) &&
2903 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2904 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2905 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2906 		con->state = CON_STATE_STANDBY;
2907 	} else {
2908 		/* retry after a delay. */
2909 		con->state = CON_STATE_PREOPEN;
2910 		if (con->delay == 0)
2911 			con->delay = BASE_DELAY_INTERVAL;
2912 		else if (con->delay < MAX_DELAY_INTERVAL)
2913 			con->delay *= 2;
2914 		con_flag_set(con, CON_FLAG_BACKOFF);
2915 		queue_con(con);
2916 	}
2917 }
2918 
2919 
2920 
2921 /*
2922  * initialize a new messenger instance
2923  */
2924 void ceph_messenger_init(struct ceph_messenger *msgr,
2925 			struct ceph_entity_addr *myaddr,
2926 			u64 supported_features,
2927 			u64 required_features,
2928 			bool nocrc,
2929 			bool tcp_nodelay)
2930 {
2931 	msgr->supported_features = supported_features;
2932 	msgr->required_features = required_features;
2933 
2934 	spin_lock_init(&msgr->global_seq_lock);
2935 
2936 	if (myaddr)
2937 		msgr->inst.addr = *myaddr;
2938 
2939 	/* select a random nonce */
2940 	msgr->inst.addr.type = 0;
2941 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2942 	encode_my_addr(msgr);
2943 	msgr->nocrc = nocrc;
2944 	msgr->tcp_nodelay = tcp_nodelay;
2945 
2946 	atomic_set(&msgr->stopping, 0);
2947 
2948 	dout("%s %p\n", __func__, msgr);
2949 }
2950 EXPORT_SYMBOL(ceph_messenger_init);
2951 
2952 static void clear_standby(struct ceph_connection *con)
2953 {
2954 	/* come back from STANDBY? */
2955 	if (con->state == CON_STATE_STANDBY) {
2956 		dout("clear_standby %p and ++connect_seq\n", con);
2957 		con->state = CON_STATE_PREOPEN;
2958 		con->connect_seq++;
2959 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2960 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2961 	}
2962 }
2963 
2964 /*
2965  * Queue up an outgoing message on the given connection.
2966  */
2967 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2968 {
2969 	/* set src+dst */
2970 	msg->hdr.src = con->msgr->inst.name;
2971 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2972 	msg->needs_out_seq = true;
2973 
2974 	mutex_lock(&con->mutex);
2975 
2976 	if (con->state == CON_STATE_CLOSED) {
2977 		dout("con_send %p closed, dropping %p\n", con, msg);
2978 		ceph_msg_put(msg);
2979 		mutex_unlock(&con->mutex);
2980 		return;
2981 	}
2982 
2983 	BUG_ON(msg->con != NULL);
2984 	msg->con = con->ops->get(con);
2985 	BUG_ON(msg->con == NULL);
2986 
2987 	BUG_ON(!list_empty(&msg->list_head));
2988 	list_add_tail(&msg->list_head, &con->out_queue);
2989 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2990 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2991 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2992 	     le32_to_cpu(msg->hdr.front_len),
2993 	     le32_to_cpu(msg->hdr.middle_len),
2994 	     le32_to_cpu(msg->hdr.data_len));
2995 
2996 	clear_standby(con);
2997 	mutex_unlock(&con->mutex);
2998 
2999 	/* if there wasn't anything waiting to send before, queue
3000 	 * new work */
3001 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3002 		queue_con(con);
3003 }
3004 EXPORT_SYMBOL(ceph_con_send);
3005 
3006 /*
3007  * Revoke a message that was previously queued for send
3008  */
3009 void ceph_msg_revoke(struct ceph_msg *msg)
3010 {
3011 	struct ceph_connection *con = msg->con;
3012 
3013 	if (!con)
3014 		return;		/* Message not in our possession */
3015 
3016 	mutex_lock(&con->mutex);
3017 	if (!list_empty(&msg->list_head)) {
3018 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3019 		list_del_init(&msg->list_head);
3020 		BUG_ON(msg->con == NULL);
3021 		msg->con->ops->put(msg->con);
3022 		msg->con = NULL;
3023 		msg->hdr.seq = 0;
3024 
3025 		ceph_msg_put(msg);
3026 	}
3027 	if (con->out_msg == msg) {
3028 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3029 		con->out_msg = NULL;
3030 		if (con->out_kvec_is_msg) {
3031 			con->out_skip = con->out_kvec_bytes;
3032 			con->out_kvec_is_msg = false;
3033 		}
3034 		msg->hdr.seq = 0;
3035 
3036 		ceph_msg_put(msg);
3037 	}
3038 	mutex_unlock(&con->mutex);
3039 }
3040 
3041 /*
3042  * Revoke a message that we may be reading data into
3043  */
3044 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3045 {
3046 	struct ceph_connection *con;
3047 
3048 	BUG_ON(msg == NULL);
3049 	if (!msg->con) {
3050 		dout("%s msg %p null con\n", __func__, msg);
3051 
3052 		return;		/* Message not in our possession */
3053 	}
3054 
3055 	con = msg->con;
3056 	mutex_lock(&con->mutex);
3057 	if (con->in_msg == msg) {
3058 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3059 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3060 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3061 
3062 		/* skip rest of message */
3063 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3064 		con->in_base_pos = con->in_base_pos -
3065 				sizeof(struct ceph_msg_header) -
3066 				front_len -
3067 				middle_len -
3068 				data_len -
3069 				sizeof(struct ceph_msg_footer);
3070 		ceph_msg_put(con->in_msg);
3071 		con->in_msg = NULL;
3072 		con->in_tag = CEPH_MSGR_TAG_READY;
3073 		con->in_seq++;
3074 	} else {
3075 		dout("%s %p in_msg %p msg %p no-op\n",
3076 		     __func__, con, con->in_msg, msg);
3077 	}
3078 	mutex_unlock(&con->mutex);
3079 }
3080 
3081 /*
3082  * Queue a keepalive byte to ensure the tcp connection is alive.
3083  */
3084 void ceph_con_keepalive(struct ceph_connection *con)
3085 {
3086 	dout("con_keepalive %p\n", con);
3087 	mutex_lock(&con->mutex);
3088 	clear_standby(con);
3089 	mutex_unlock(&con->mutex);
3090 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3091 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3092 		queue_con(con);
3093 }
3094 EXPORT_SYMBOL(ceph_con_keepalive);
3095 
3096 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3097 {
3098 	struct ceph_msg_data *data;
3099 
3100 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3101 		return NULL;
3102 
3103 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3104 	if (data)
3105 		data->type = type;
3106 	INIT_LIST_HEAD(&data->links);
3107 
3108 	return data;
3109 }
3110 
3111 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3112 {
3113 	if (!data)
3114 		return;
3115 
3116 	WARN_ON(!list_empty(&data->links));
3117 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3118 		ceph_pagelist_release(data->pagelist);
3119 	kmem_cache_free(ceph_msg_data_cache, data);
3120 }
3121 
3122 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3123 		size_t length, size_t alignment)
3124 {
3125 	struct ceph_msg_data *data;
3126 
3127 	BUG_ON(!pages);
3128 	BUG_ON(!length);
3129 
3130 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3131 	BUG_ON(!data);
3132 	data->pages = pages;
3133 	data->length = length;
3134 	data->alignment = alignment & ~PAGE_MASK;
3135 
3136 	list_add_tail(&data->links, &msg->data);
3137 	msg->data_length += length;
3138 }
3139 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3140 
3141 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3142 				struct ceph_pagelist *pagelist)
3143 {
3144 	struct ceph_msg_data *data;
3145 
3146 	BUG_ON(!pagelist);
3147 	BUG_ON(!pagelist->length);
3148 
3149 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3150 	BUG_ON(!data);
3151 	data->pagelist = pagelist;
3152 
3153 	list_add_tail(&data->links, &msg->data);
3154 	msg->data_length += pagelist->length;
3155 }
3156 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3157 
3158 #ifdef	CONFIG_BLOCK
3159 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3160 		size_t length)
3161 {
3162 	struct ceph_msg_data *data;
3163 
3164 	BUG_ON(!bio);
3165 
3166 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3167 	BUG_ON(!data);
3168 	data->bio = bio;
3169 	data->bio_length = length;
3170 
3171 	list_add_tail(&data->links, &msg->data);
3172 	msg->data_length += length;
3173 }
3174 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3175 #endif	/* CONFIG_BLOCK */
3176 
3177 /*
3178  * construct a new message with given type, size
3179  * the new msg has a ref count of 1.
3180  */
3181 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3182 			      bool can_fail)
3183 {
3184 	struct ceph_msg *m;
3185 
3186 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3187 	if (m == NULL)
3188 		goto out;
3189 
3190 	m->hdr.type = cpu_to_le16(type);
3191 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3192 	m->hdr.front_len = cpu_to_le32(front_len);
3193 
3194 	INIT_LIST_HEAD(&m->list_head);
3195 	kref_init(&m->kref);
3196 	INIT_LIST_HEAD(&m->data);
3197 
3198 	/* front */
3199 	if (front_len) {
3200 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3201 		if (m->front.iov_base == NULL) {
3202 			dout("ceph_msg_new can't allocate %d bytes\n",
3203 			     front_len);
3204 			goto out2;
3205 		}
3206 	} else {
3207 		m->front.iov_base = NULL;
3208 	}
3209 	m->front_alloc_len = m->front.iov_len = front_len;
3210 
3211 	dout("ceph_msg_new %p front %d\n", m, front_len);
3212 	return m;
3213 
3214 out2:
3215 	ceph_msg_put(m);
3216 out:
3217 	if (!can_fail) {
3218 		pr_err("msg_new can't create type %d front %d\n", type,
3219 		       front_len);
3220 		WARN_ON(1);
3221 	} else {
3222 		dout("msg_new can't create type %d front %d\n", type,
3223 		     front_len);
3224 	}
3225 	return NULL;
3226 }
3227 EXPORT_SYMBOL(ceph_msg_new);
3228 
3229 /*
3230  * Allocate "middle" portion of a message, if it is needed and wasn't
3231  * allocated by alloc_msg.  This allows us to read a small fixed-size
3232  * per-type header in the front and then gracefully fail (i.e.,
3233  * propagate the error to the caller based on info in the front) when
3234  * the middle is too large.
3235  */
3236 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3237 {
3238 	int type = le16_to_cpu(msg->hdr.type);
3239 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3240 
3241 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3242 	     ceph_msg_type_name(type), middle_len);
3243 	BUG_ON(!middle_len);
3244 	BUG_ON(msg->middle);
3245 
3246 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3247 	if (!msg->middle)
3248 		return -ENOMEM;
3249 	return 0;
3250 }
3251 
3252 /*
3253  * Allocate a message for receiving an incoming message on a
3254  * connection, and save the result in con->in_msg.  Uses the
3255  * connection's private alloc_msg op if available.
3256  *
3257  * Returns 0 on success, or a negative error code.
3258  *
3259  * On success, if we set *skip = 1:
3260  *  - the next message should be skipped and ignored.
3261  *  - con->in_msg == NULL
3262  * or if we set *skip = 0:
3263  *  - con->in_msg is non-null.
3264  * On error (ENOMEM, EAGAIN, ...),
3265  *  - con->in_msg == NULL
3266  */
3267 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3268 {
3269 	struct ceph_msg_header *hdr = &con->in_hdr;
3270 	int middle_len = le32_to_cpu(hdr->middle_len);
3271 	struct ceph_msg *msg;
3272 	int ret = 0;
3273 
3274 	BUG_ON(con->in_msg != NULL);
3275 	BUG_ON(!con->ops->alloc_msg);
3276 
3277 	mutex_unlock(&con->mutex);
3278 	msg = con->ops->alloc_msg(con, hdr, skip);
3279 	mutex_lock(&con->mutex);
3280 	if (con->state != CON_STATE_OPEN) {
3281 		if (msg)
3282 			ceph_msg_put(msg);
3283 		return -EAGAIN;
3284 	}
3285 	if (msg) {
3286 		BUG_ON(*skip);
3287 		con->in_msg = msg;
3288 		con->in_msg->con = con->ops->get(con);
3289 		BUG_ON(con->in_msg->con == NULL);
3290 	} else {
3291 		/*
3292 		 * Null message pointer means either we should skip
3293 		 * this message or we couldn't allocate memory.  The
3294 		 * former is not an error.
3295 		 */
3296 		if (*skip)
3297 			return 0;
3298 		con->error_msg = "error allocating memory for incoming message";
3299 
3300 		return -ENOMEM;
3301 	}
3302 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3303 
3304 	if (middle_len && !con->in_msg->middle) {
3305 		ret = ceph_alloc_middle(con, con->in_msg);
3306 		if (ret < 0) {
3307 			ceph_msg_put(con->in_msg);
3308 			con->in_msg = NULL;
3309 		}
3310 	}
3311 
3312 	return ret;
3313 }
3314 
3315 
3316 /*
3317  * Free a generically kmalloc'd message.
3318  */
3319 static void ceph_msg_free(struct ceph_msg *m)
3320 {
3321 	dout("%s %p\n", __func__, m);
3322 	kvfree(m->front.iov_base);
3323 	kmem_cache_free(ceph_msg_cache, m);
3324 }
3325 
3326 static void ceph_msg_release(struct kref *kref)
3327 {
3328 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3329 	LIST_HEAD(data);
3330 	struct list_head *links;
3331 	struct list_head *next;
3332 
3333 	dout("%s %p\n", __func__, m);
3334 	WARN_ON(!list_empty(&m->list_head));
3335 
3336 	/* drop middle, data, if any */
3337 	if (m->middle) {
3338 		ceph_buffer_put(m->middle);
3339 		m->middle = NULL;
3340 	}
3341 
3342 	list_splice_init(&m->data, &data);
3343 	list_for_each_safe(links, next, &data) {
3344 		struct ceph_msg_data *data;
3345 
3346 		data = list_entry(links, struct ceph_msg_data, links);
3347 		list_del_init(links);
3348 		ceph_msg_data_destroy(data);
3349 	}
3350 	m->data_length = 0;
3351 
3352 	if (m->pool)
3353 		ceph_msgpool_put(m->pool, m);
3354 	else
3355 		ceph_msg_free(m);
3356 }
3357 
3358 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3359 {
3360 	dout("%s %p (was %d)\n", __func__, msg,
3361 	     atomic_read(&msg->kref.refcount));
3362 	kref_get(&msg->kref);
3363 	return msg;
3364 }
3365 EXPORT_SYMBOL(ceph_msg_get);
3366 
3367 void ceph_msg_put(struct ceph_msg *msg)
3368 {
3369 	dout("%s %p (was %d)\n", __func__, msg,
3370 	     atomic_read(&msg->kref.refcount));
3371 	kref_put(&msg->kref, ceph_msg_release);
3372 }
3373 EXPORT_SYMBOL(ceph_msg_put);
3374 
3375 void ceph_msg_dump(struct ceph_msg *msg)
3376 {
3377 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3378 		 msg->front_alloc_len, msg->data_length);
3379 	print_hex_dump(KERN_DEBUG, "header: ",
3380 		       DUMP_PREFIX_OFFSET, 16, 1,
3381 		       &msg->hdr, sizeof(msg->hdr), true);
3382 	print_hex_dump(KERN_DEBUG, " front: ",
3383 		       DUMP_PREFIX_OFFSET, 16, 1,
3384 		       msg->front.iov_base, msg->front.iov_len, true);
3385 	if (msg->middle)
3386 		print_hex_dump(KERN_DEBUG, "middle: ",
3387 			       DUMP_PREFIX_OFFSET, 16, 1,
3388 			       msg->middle->vec.iov_base,
3389 			       msg->middle->vec.iov_len, true);
3390 	print_hex_dump(KERN_DEBUG, "footer: ",
3391 		       DUMP_PREFIX_OFFSET, 16, 1,
3392 		       &msg->footer, sizeof(msg->footer), true);
3393 }
3394 EXPORT_SYMBOL(ceph_msg_dump);
3395