xref: /openbmc/linux/net/ceph/messenger.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166 
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170 
171 static void queue_con(struct ceph_connection *con);
172 static void cancel_con(struct ceph_connection *con);
173 static void ceph_con_workfn(struct work_struct *);
174 static void con_fault(struct ceph_connection *con);
175 
176 /*
177  * Nicely render a sockaddr as a string.  An array of formatted
178  * strings is used, to approximate reentrancy.
179  */
180 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
181 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
182 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
183 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
184 
185 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
186 static atomic_t addr_str_seq = ATOMIC_INIT(0);
187 
188 static struct page *zero_page;		/* used in certain error cases */
189 
190 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
191 {
192 	int i;
193 	char *s;
194 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
195 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
196 
197 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198 	s = addr_str[i];
199 
200 	switch (ss->ss_family) {
201 	case AF_INET:
202 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
203 			 ntohs(in4->sin_port));
204 		break;
205 
206 	case AF_INET6:
207 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
208 			 ntohs(in6->sin6_port));
209 		break;
210 
211 	default:
212 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
213 			 ss->ss_family);
214 	}
215 
216 	return s;
217 }
218 EXPORT_SYMBOL(ceph_pr_addr);
219 
220 static void encode_my_addr(struct ceph_messenger *msgr)
221 {
222 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
223 	ceph_encode_addr(&msgr->my_enc_addr);
224 }
225 
226 /*
227  * work queue for all reading and writing to/from the socket.
228  */
229 static struct workqueue_struct *ceph_msgr_wq;
230 
231 static int ceph_msgr_slab_init(void)
232 {
233 	BUG_ON(ceph_msg_cache);
234 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
235 	if (!ceph_msg_cache)
236 		return -ENOMEM;
237 
238 	BUG_ON(ceph_msg_data_cache);
239 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
240 	if (ceph_msg_data_cache)
241 		return 0;
242 
243 	kmem_cache_destroy(ceph_msg_cache);
244 	ceph_msg_cache = NULL;
245 
246 	return -ENOMEM;
247 }
248 
249 static void ceph_msgr_slab_exit(void)
250 {
251 	BUG_ON(!ceph_msg_data_cache);
252 	kmem_cache_destroy(ceph_msg_data_cache);
253 	ceph_msg_data_cache = NULL;
254 
255 	BUG_ON(!ceph_msg_cache);
256 	kmem_cache_destroy(ceph_msg_cache);
257 	ceph_msg_cache = NULL;
258 }
259 
260 static void _ceph_msgr_exit(void)
261 {
262 	if (ceph_msgr_wq) {
263 		destroy_workqueue(ceph_msgr_wq);
264 		ceph_msgr_wq = NULL;
265 	}
266 
267 	BUG_ON(zero_page == NULL);
268 	put_page(zero_page);
269 	zero_page = NULL;
270 
271 	ceph_msgr_slab_exit();
272 }
273 
274 int __init ceph_msgr_init(void)
275 {
276 	if (ceph_msgr_slab_init())
277 		return -ENOMEM;
278 
279 	BUG_ON(zero_page != NULL);
280 	zero_page = ZERO_PAGE(0);
281 	get_page(zero_page);
282 
283 	/*
284 	 * The number of active work items is limited by the number of
285 	 * connections, so leave @max_active at default.
286 	 */
287 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
288 	if (ceph_msgr_wq)
289 		return 0;
290 
291 	pr_err("msgr_init failed to create workqueue\n");
292 	_ceph_msgr_exit();
293 
294 	return -ENOMEM;
295 }
296 
297 void ceph_msgr_exit(void)
298 {
299 	BUG_ON(ceph_msgr_wq == NULL);
300 
301 	_ceph_msgr_exit();
302 }
303 
304 void ceph_msgr_flush(void)
305 {
306 	flush_workqueue(ceph_msgr_wq);
307 }
308 EXPORT_SYMBOL(ceph_msgr_flush);
309 
310 /* Connection socket state transition functions */
311 
312 static void con_sock_state_init(struct ceph_connection *con)
313 {
314 	int old_state;
315 
316 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
317 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
318 		printk("%s: unexpected old state %d\n", __func__, old_state);
319 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
320 	     CON_SOCK_STATE_CLOSED);
321 }
322 
323 static void con_sock_state_connecting(struct ceph_connection *con)
324 {
325 	int old_state;
326 
327 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
328 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
329 		printk("%s: unexpected old state %d\n", __func__, old_state);
330 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
331 	     CON_SOCK_STATE_CONNECTING);
332 }
333 
334 static void con_sock_state_connected(struct ceph_connection *con)
335 {
336 	int old_state;
337 
338 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
339 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
340 		printk("%s: unexpected old state %d\n", __func__, old_state);
341 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
342 	     CON_SOCK_STATE_CONNECTED);
343 }
344 
345 static void con_sock_state_closing(struct ceph_connection *con)
346 {
347 	int old_state;
348 
349 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
350 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
351 			old_state != CON_SOCK_STATE_CONNECTED &&
352 			old_state != CON_SOCK_STATE_CLOSING))
353 		printk("%s: unexpected old state %d\n", __func__, old_state);
354 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
355 	     CON_SOCK_STATE_CLOSING);
356 }
357 
358 static void con_sock_state_closed(struct ceph_connection *con)
359 {
360 	int old_state;
361 
362 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
363 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
364 		    old_state != CON_SOCK_STATE_CLOSING &&
365 		    old_state != CON_SOCK_STATE_CONNECTING &&
366 		    old_state != CON_SOCK_STATE_CLOSED))
367 		printk("%s: unexpected old state %d\n", __func__, old_state);
368 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 	     CON_SOCK_STATE_CLOSED);
370 }
371 
372 /*
373  * socket callback functions
374  */
375 
376 /* data available on socket, or listen socket received a connect */
377 static void ceph_sock_data_ready(struct sock *sk)
378 {
379 	struct ceph_connection *con = sk->sk_user_data;
380 	if (atomic_read(&con->msgr->stopping)) {
381 		return;
382 	}
383 
384 	if (sk->sk_state != TCP_CLOSE_WAIT) {
385 		dout("%s on %p state = %lu, queueing work\n", __func__,
386 		     con, con->state);
387 		queue_con(con);
388 	}
389 }
390 
391 /* socket has buffer space for writing */
392 static void ceph_sock_write_space(struct sock *sk)
393 {
394 	struct ceph_connection *con = sk->sk_user_data;
395 
396 	/* only queue to workqueue if there is data we want to write,
397 	 * and there is sufficient space in the socket buffer to accept
398 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
399 	 * doesn't get called again until try_write() fills the socket
400 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
401 	 * and net/core/stream.c:sk_stream_write_space().
402 	 */
403 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
404 		if (sk_stream_is_writeable(sk)) {
405 			dout("%s %p queueing write work\n", __func__, con);
406 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
407 			queue_con(con);
408 		}
409 	} else {
410 		dout("%s %p nothing to write\n", __func__, con);
411 	}
412 }
413 
414 /* socket's state has changed */
415 static void ceph_sock_state_change(struct sock *sk)
416 {
417 	struct ceph_connection *con = sk->sk_user_data;
418 
419 	dout("%s %p state = %lu sk_state = %u\n", __func__,
420 	     con, con->state, sk->sk_state);
421 
422 	switch (sk->sk_state) {
423 	case TCP_CLOSE:
424 		dout("%s TCP_CLOSE\n", __func__);
425 		/* fall through */
426 	case TCP_CLOSE_WAIT:
427 		dout("%s TCP_CLOSE_WAIT\n", __func__);
428 		con_sock_state_closing(con);
429 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
430 		queue_con(con);
431 		break;
432 	case TCP_ESTABLISHED:
433 		dout("%s TCP_ESTABLISHED\n", __func__);
434 		con_sock_state_connected(con);
435 		queue_con(con);
436 		break;
437 	default:	/* Everything else is uninteresting */
438 		break;
439 	}
440 }
441 
442 /*
443  * set up socket callbacks
444  */
445 static void set_sock_callbacks(struct socket *sock,
446 			       struct ceph_connection *con)
447 {
448 	struct sock *sk = sock->sk;
449 	sk->sk_user_data = con;
450 	sk->sk_data_ready = ceph_sock_data_ready;
451 	sk->sk_write_space = ceph_sock_write_space;
452 	sk->sk_state_change = ceph_sock_state_change;
453 }
454 
455 
456 /*
457  * socket helpers
458  */
459 
460 /*
461  * initiate connection to a remote socket.
462  */
463 static int ceph_tcp_connect(struct ceph_connection *con)
464 {
465 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
466 	struct socket *sock;
467 	unsigned int noio_flag;
468 	int ret;
469 
470 	BUG_ON(con->sock);
471 
472 	/* sock_create_kern() allocates with GFP_KERNEL */
473 	noio_flag = memalloc_noio_save();
474 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
475 			       SOCK_STREAM, IPPROTO_TCP, &sock);
476 	memalloc_noio_restore(noio_flag);
477 	if (ret)
478 		return ret;
479 	sock->sk->sk_allocation = GFP_NOFS;
480 
481 #ifdef CONFIG_LOCKDEP
482 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484 
485 	set_sock_callbacks(sock, con);
486 
487 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488 
489 	con_sock_state_connecting(con);
490 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 				 O_NONBLOCK);
492 	if (ret == -EINPROGRESS) {
493 		dout("connect %s EINPROGRESS sk_state = %u\n",
494 		     ceph_pr_addr(&con->peer_addr.in_addr),
495 		     sock->sk->sk_state);
496 	} else if (ret < 0) {
497 		pr_err("connect %s error %d\n",
498 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 		sock_release(sock);
500 		return ret;
501 	}
502 
503 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 		int optval = 1;
505 
506 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 					(char *)&optval, sizeof(optval));
508 		if (ret)
509 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 			       ret);
511 	}
512 
513 	con->sock = sock;
514 	return 0;
515 }
516 
517 /*
518  * If @buf is NULL, discard up to @len bytes.
519  */
520 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
521 {
522 	struct kvec iov = {buf, len};
523 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
524 	int r;
525 
526 	if (!buf)
527 		msg.msg_flags |= MSG_TRUNC;
528 
529 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 	if (r == -EAGAIN)
532 		r = 0;
533 	return r;
534 }
535 
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 		     int page_offset, size_t length)
538 {
539 	struct bio_vec bvec = {
540 		.bv_page = page,
541 		.bv_offset = page_offset,
542 		.bv_len = length
543 	};
544 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 	int r;
546 
547 	BUG_ON(page_offset + length > PAGE_SIZE);
548 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 	if (r == -EAGAIN)
551 		r = 0;
552 	return r;
553 }
554 
555 /*
556  * write something.  @more is true if caller will be sending more data
557  * shortly.
558  */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 		     size_t kvlen, size_t len, int more)
561 {
562 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 	int r;
564 
565 	if (more)
566 		msg.msg_flags |= MSG_MORE;
567 	else
568 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
569 
570 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 	if (r == -EAGAIN)
572 		r = 0;
573 	return r;
574 }
575 
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 		     int offset, size_t size, bool more)
578 {
579 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 	int ret;
581 
582 	ret = kernel_sendpage(sock, page, offset, size, flags);
583 	if (ret == -EAGAIN)
584 		ret = 0;
585 
586 	return ret;
587 }
588 
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 		     int offset, size_t size, bool more)
591 {
592 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 	struct bio_vec bvec;
594 	int ret;
595 
596 	/* sendpage cannot properly handle pages with page_count == 0,
597 	 * we need to fallback to sendmsg if that's the case */
598 	if (page_count(page) >= 1)
599 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
600 
601 	bvec.bv_page = page;
602 	bvec.bv_offset = offset;
603 	bvec.bv_len = size;
604 
605 	if (more)
606 		msg.msg_flags |= MSG_MORE;
607 	else
608 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
609 
610 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 	ret = sock_sendmsg(sock, &msg);
612 	if (ret == -EAGAIN)
613 		ret = 0;
614 
615 	return ret;
616 }
617 
618 /*
619  * Shutdown/close the socket for the given connection.
620  */
621 static int con_close_socket(struct ceph_connection *con)
622 {
623 	int rc = 0;
624 
625 	dout("con_close_socket on %p sock %p\n", con, con->sock);
626 	if (con->sock) {
627 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 		sock_release(con->sock);
629 		con->sock = NULL;
630 	}
631 
632 	/*
633 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
634 	 * independent of the connection mutex, and we could have
635 	 * received a socket close event before we had the chance to
636 	 * shut the socket down.
637 	 */
638 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639 
640 	con_sock_state_closed(con);
641 	return rc;
642 }
643 
644 /*
645  * Reset a connection.  Discard all incoming and outgoing messages
646  * and clear *_seq state.
647  */
648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 	list_del_init(&msg->list_head);
651 
652 	ceph_msg_put(msg);
653 }
654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 	while (!list_empty(head)) {
657 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 							list_head);
659 		ceph_msg_remove(msg);
660 	}
661 }
662 
663 static void reset_connection(struct ceph_connection *con)
664 {
665 	/* reset connection, out_queue, msg_ and connect_seq */
666 	/* discard existing out_queue and msg_seq */
667 	dout("reset_connection %p\n", con);
668 	ceph_msg_remove_list(&con->out_queue);
669 	ceph_msg_remove_list(&con->out_sent);
670 
671 	if (con->in_msg) {
672 		BUG_ON(con->in_msg->con != con);
673 		ceph_msg_put(con->in_msg);
674 		con->in_msg = NULL;
675 	}
676 
677 	con->connect_seq = 0;
678 	con->out_seq = 0;
679 	if (con->out_msg) {
680 		BUG_ON(con->out_msg->con != con);
681 		ceph_msg_put(con->out_msg);
682 		con->out_msg = NULL;
683 	}
684 	con->in_seq = 0;
685 	con->in_seq_acked = 0;
686 
687 	con->out_skip = 0;
688 }
689 
690 /*
691  * mark a peer down.  drop any open connections.
692  */
693 void ceph_con_close(struct ceph_connection *con)
694 {
695 	mutex_lock(&con->mutex);
696 	dout("con_close %p peer %s\n", con,
697 	     ceph_pr_addr(&con->peer_addr.in_addr));
698 	con->state = CON_STATE_CLOSED;
699 
700 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
701 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 	con_flag_clear(con, CON_FLAG_BACKOFF);
704 
705 	reset_connection(con);
706 	con->peer_global_seq = 0;
707 	cancel_con(con);
708 	con_close_socket(con);
709 	mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712 
713 /*
714  * Reopen a closed connection, with a new peer address.
715  */
716 void ceph_con_open(struct ceph_connection *con,
717 		   __u8 entity_type, __u64 entity_num,
718 		   struct ceph_entity_addr *addr)
719 {
720 	mutex_lock(&con->mutex);
721 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722 
723 	WARN_ON(con->state != CON_STATE_CLOSED);
724 	con->state = CON_STATE_PREOPEN;
725 
726 	con->peer_name.type = (__u8) entity_type;
727 	con->peer_name.num = cpu_to_le64(entity_num);
728 
729 	memcpy(&con->peer_addr, addr, sizeof(*addr));
730 	con->delay = 0;      /* reset backoff memory */
731 	mutex_unlock(&con->mutex);
732 	queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735 
736 /*
737  * return true if this connection ever successfully opened
738  */
739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 	return con->connect_seq > 0;
742 }
743 
744 /*
745  * initialize a new connection.
746  */
747 void ceph_con_init(struct ceph_connection *con, void *private,
748 	const struct ceph_connection_operations *ops,
749 	struct ceph_messenger *msgr)
750 {
751 	dout("con_init %p\n", con);
752 	memset(con, 0, sizeof(*con));
753 	con->private = private;
754 	con->ops = ops;
755 	con->msgr = msgr;
756 
757 	con_sock_state_init(con);
758 
759 	mutex_init(&con->mutex);
760 	INIT_LIST_HEAD(&con->out_queue);
761 	INIT_LIST_HEAD(&con->out_sent);
762 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763 
764 	con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767 
768 
769 /*
770  * We maintain a global counter to order connection attempts.  Get
771  * a unique seq greater than @gt.
772  */
773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 	u32 ret;
776 
777 	spin_lock(&msgr->global_seq_lock);
778 	if (msgr->global_seq < gt)
779 		msgr->global_seq = gt;
780 	ret = ++msgr->global_seq;
781 	spin_unlock(&msgr->global_seq_lock);
782 	return ret;
783 }
784 
785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 	BUG_ON(con->out_skip);
788 
789 	con->out_kvec_left = 0;
790 	con->out_kvec_bytes = 0;
791 	con->out_kvec_cur = &con->out_kvec[0];
792 }
793 
794 static void con_out_kvec_add(struct ceph_connection *con,
795 				size_t size, void *data)
796 {
797 	int index = con->out_kvec_left;
798 
799 	BUG_ON(con->out_skip);
800 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801 
802 	con->out_kvec[index].iov_len = size;
803 	con->out_kvec[index].iov_base = data;
804 	con->out_kvec_left++;
805 	con->out_kvec_bytes += size;
806 }
807 
808 /*
809  * Chop off a kvec from the end.  Return residual number of bytes for
810  * that kvec, i.e. how many bytes would have been written if the kvec
811  * hadn't been nuked.
812  */
813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 	int off = con->out_kvec_cur - con->out_kvec;
816 	int skip = 0;
817 
818 	if (con->out_kvec_bytes > 0) {
819 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 		BUG_ON(con->out_kvec_bytes < skip);
821 		BUG_ON(!con->out_kvec_left);
822 		con->out_kvec_bytes -= skip;
823 		con->out_kvec_left--;
824 	}
825 
826 	return skip;
827 }
828 
829 #ifdef CONFIG_BLOCK
830 
831 /*
832  * For a bio data item, a piece is whatever remains of the next
833  * entry in the current bio iovec, or the first entry in the next
834  * bio in the list.
835  */
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 					size_t length)
838 {
839 	struct ceph_msg_data *data = cursor->data;
840 	struct ceph_bio_iter *it = &cursor->bio_iter;
841 
842 	cursor->resid = min_t(size_t, length, data->bio_length);
843 	*it = data->bio_pos;
844 	if (cursor->resid < it->iter.bi_size)
845 		it->iter.bi_size = cursor->resid;
846 
847 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
848 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
849 }
850 
851 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
852 						size_t *page_offset,
853 						size_t *length)
854 {
855 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
856 					   cursor->bio_iter.iter);
857 
858 	*page_offset = bv.bv_offset;
859 	*length = bv.bv_len;
860 	return bv.bv_page;
861 }
862 
863 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
864 					size_t bytes)
865 {
866 	struct ceph_bio_iter *it = &cursor->bio_iter;
867 
868 	BUG_ON(bytes > cursor->resid);
869 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
870 	cursor->resid -= bytes;
871 	bio_advance_iter(it->bio, &it->iter, bytes);
872 
873 	if (!cursor->resid) {
874 		BUG_ON(!cursor->last_piece);
875 		return false;   /* no more data */
876 	}
877 
878 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
879 		return false;	/* more bytes to process in this segment */
880 
881 	if (!it->iter.bi_size) {
882 		it->bio = it->bio->bi_next;
883 		it->iter = it->bio->bi_iter;
884 		if (cursor->resid < it->iter.bi_size)
885 			it->iter.bi_size = cursor->resid;
886 	}
887 
888 	BUG_ON(cursor->last_piece);
889 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
890 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
891 	return true;
892 }
893 #endif /* CONFIG_BLOCK */
894 
895 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
896 					size_t length)
897 {
898 	struct ceph_msg_data *data = cursor->data;
899 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
900 
901 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
902 	cursor->bvec_iter = data->bvec_pos.iter;
903 	cursor->bvec_iter.bi_size = cursor->resid;
904 
905 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
906 	cursor->last_piece =
907 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
908 }
909 
910 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
911 						size_t *page_offset,
912 						size_t *length)
913 {
914 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
915 					   cursor->bvec_iter);
916 
917 	*page_offset = bv.bv_offset;
918 	*length = bv.bv_len;
919 	return bv.bv_page;
920 }
921 
922 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
923 					size_t bytes)
924 {
925 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
926 
927 	BUG_ON(bytes > cursor->resid);
928 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
929 	cursor->resid -= bytes;
930 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
931 
932 	if (!cursor->resid) {
933 		BUG_ON(!cursor->last_piece);
934 		return false;   /* no more data */
935 	}
936 
937 	if (!bytes || cursor->bvec_iter.bi_bvec_done)
938 		return false;	/* more bytes to process in this segment */
939 
940 	BUG_ON(cursor->last_piece);
941 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
942 	cursor->last_piece =
943 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
944 	return true;
945 }
946 
947 /*
948  * For a page array, a piece comes from the first page in the array
949  * that has not already been fully consumed.
950  */
951 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
952 					size_t length)
953 {
954 	struct ceph_msg_data *data = cursor->data;
955 	int page_count;
956 
957 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
958 
959 	BUG_ON(!data->pages);
960 	BUG_ON(!data->length);
961 
962 	cursor->resid = min(length, data->length);
963 	page_count = calc_pages_for(data->alignment, (u64)data->length);
964 	cursor->page_offset = data->alignment & ~PAGE_MASK;
965 	cursor->page_index = 0;
966 	BUG_ON(page_count > (int)USHRT_MAX);
967 	cursor->page_count = (unsigned short)page_count;
968 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
969 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
970 }
971 
972 static struct page *
973 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
974 					size_t *page_offset, size_t *length)
975 {
976 	struct ceph_msg_data *data = cursor->data;
977 
978 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
979 
980 	BUG_ON(cursor->page_index >= cursor->page_count);
981 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
982 
983 	*page_offset = cursor->page_offset;
984 	if (cursor->last_piece)
985 		*length = cursor->resid;
986 	else
987 		*length = PAGE_SIZE - *page_offset;
988 
989 	return data->pages[cursor->page_index];
990 }
991 
992 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
993 						size_t bytes)
994 {
995 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
996 
997 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
998 
999 	/* Advance the cursor page offset */
1000 
1001 	cursor->resid -= bytes;
1002 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1003 	if (!bytes || cursor->page_offset)
1004 		return false;	/* more bytes to process in the current page */
1005 
1006 	if (!cursor->resid)
1007 		return false;   /* no more data */
1008 
1009 	/* Move on to the next page; offset is already at 0 */
1010 
1011 	BUG_ON(cursor->page_index >= cursor->page_count);
1012 	cursor->page_index++;
1013 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1014 
1015 	return true;
1016 }
1017 
1018 /*
1019  * For a pagelist, a piece is whatever remains to be consumed in the
1020  * first page in the list, or the front of the next page.
1021  */
1022 static void
1023 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1024 					size_t length)
1025 {
1026 	struct ceph_msg_data *data = cursor->data;
1027 	struct ceph_pagelist *pagelist;
1028 	struct page *page;
1029 
1030 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031 
1032 	pagelist = data->pagelist;
1033 	BUG_ON(!pagelist);
1034 
1035 	if (!length)
1036 		return;		/* pagelist can be assigned but empty */
1037 
1038 	BUG_ON(list_empty(&pagelist->head));
1039 	page = list_first_entry(&pagelist->head, struct page, lru);
1040 
1041 	cursor->resid = min(length, pagelist->length);
1042 	cursor->page = page;
1043 	cursor->offset = 0;
1044 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1045 }
1046 
1047 static struct page *
1048 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1049 				size_t *page_offset, size_t *length)
1050 {
1051 	struct ceph_msg_data *data = cursor->data;
1052 	struct ceph_pagelist *pagelist;
1053 
1054 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055 
1056 	pagelist = data->pagelist;
1057 	BUG_ON(!pagelist);
1058 
1059 	BUG_ON(!cursor->page);
1060 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1061 
1062 	/* offset of first page in pagelist is always 0 */
1063 	*page_offset = cursor->offset & ~PAGE_MASK;
1064 	if (cursor->last_piece)
1065 		*length = cursor->resid;
1066 	else
1067 		*length = PAGE_SIZE - *page_offset;
1068 
1069 	return cursor->page;
1070 }
1071 
1072 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1073 						size_t bytes)
1074 {
1075 	struct ceph_msg_data *data = cursor->data;
1076 	struct ceph_pagelist *pagelist;
1077 
1078 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1079 
1080 	pagelist = data->pagelist;
1081 	BUG_ON(!pagelist);
1082 
1083 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1084 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1085 
1086 	/* Advance the cursor offset */
1087 
1088 	cursor->resid -= bytes;
1089 	cursor->offset += bytes;
1090 	/* offset of first page in pagelist is always 0 */
1091 	if (!bytes || cursor->offset & ~PAGE_MASK)
1092 		return false;	/* more bytes to process in the current page */
1093 
1094 	if (!cursor->resid)
1095 		return false;   /* no more data */
1096 
1097 	/* Move on to the next page */
1098 
1099 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1100 	cursor->page = list_next_entry(cursor->page, lru);
1101 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1102 
1103 	return true;
1104 }
1105 
1106 /*
1107  * Message data is handled (sent or received) in pieces, where each
1108  * piece resides on a single page.  The network layer might not
1109  * consume an entire piece at once.  A data item's cursor keeps
1110  * track of which piece is next to process and how much remains to
1111  * be processed in that piece.  It also tracks whether the current
1112  * piece is the last one in the data item.
1113  */
1114 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1115 {
1116 	size_t length = cursor->total_resid;
1117 
1118 	switch (cursor->data->type) {
1119 	case CEPH_MSG_DATA_PAGELIST:
1120 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1121 		break;
1122 	case CEPH_MSG_DATA_PAGES:
1123 		ceph_msg_data_pages_cursor_init(cursor, length);
1124 		break;
1125 #ifdef CONFIG_BLOCK
1126 	case CEPH_MSG_DATA_BIO:
1127 		ceph_msg_data_bio_cursor_init(cursor, length);
1128 		break;
1129 #endif /* CONFIG_BLOCK */
1130 	case CEPH_MSG_DATA_BVECS:
1131 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1132 		break;
1133 	case CEPH_MSG_DATA_NONE:
1134 	default:
1135 		/* BUG(); */
1136 		break;
1137 	}
1138 	cursor->need_crc = true;
1139 }
1140 
1141 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1142 {
1143 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1144 	struct ceph_msg_data *data;
1145 
1146 	BUG_ON(!length);
1147 	BUG_ON(length > msg->data_length);
1148 	BUG_ON(list_empty(&msg->data));
1149 
1150 	cursor->data_head = &msg->data;
1151 	cursor->total_resid = length;
1152 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1153 	cursor->data = data;
1154 
1155 	__ceph_msg_data_cursor_init(cursor);
1156 }
1157 
1158 /*
1159  * Return the page containing the next piece to process for a given
1160  * data item, and supply the page offset and length of that piece.
1161  * Indicate whether this is the last piece in this data item.
1162  */
1163 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1164 					size_t *page_offset, size_t *length,
1165 					bool *last_piece)
1166 {
1167 	struct page *page;
1168 
1169 	switch (cursor->data->type) {
1170 	case CEPH_MSG_DATA_PAGELIST:
1171 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1172 		break;
1173 	case CEPH_MSG_DATA_PAGES:
1174 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1175 		break;
1176 #ifdef CONFIG_BLOCK
1177 	case CEPH_MSG_DATA_BIO:
1178 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1179 		break;
1180 #endif /* CONFIG_BLOCK */
1181 	case CEPH_MSG_DATA_BVECS:
1182 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1183 		break;
1184 	case CEPH_MSG_DATA_NONE:
1185 	default:
1186 		page = NULL;
1187 		break;
1188 	}
1189 
1190 	BUG_ON(!page);
1191 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1192 	BUG_ON(!*length);
1193 	BUG_ON(*length > cursor->resid);
1194 	if (last_piece)
1195 		*last_piece = cursor->last_piece;
1196 
1197 	return page;
1198 }
1199 
1200 /*
1201  * Returns true if the result moves the cursor on to the next piece
1202  * of the data item.
1203  */
1204 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1205 				  size_t bytes)
1206 {
1207 	bool new_piece;
1208 
1209 	BUG_ON(bytes > cursor->resid);
1210 	switch (cursor->data->type) {
1211 	case CEPH_MSG_DATA_PAGELIST:
1212 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1213 		break;
1214 	case CEPH_MSG_DATA_PAGES:
1215 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1216 		break;
1217 #ifdef CONFIG_BLOCK
1218 	case CEPH_MSG_DATA_BIO:
1219 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1220 		break;
1221 #endif /* CONFIG_BLOCK */
1222 	case CEPH_MSG_DATA_BVECS:
1223 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1224 		break;
1225 	case CEPH_MSG_DATA_NONE:
1226 	default:
1227 		BUG();
1228 		break;
1229 	}
1230 	cursor->total_resid -= bytes;
1231 
1232 	if (!cursor->resid && cursor->total_resid) {
1233 		WARN_ON(!cursor->last_piece);
1234 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1235 		cursor->data = list_next_entry(cursor->data, links);
1236 		__ceph_msg_data_cursor_init(cursor);
1237 		new_piece = true;
1238 	}
1239 	cursor->need_crc = new_piece;
1240 }
1241 
1242 static size_t sizeof_footer(struct ceph_connection *con)
1243 {
1244 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1245 	    sizeof(struct ceph_msg_footer) :
1246 	    sizeof(struct ceph_msg_footer_old);
1247 }
1248 
1249 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1250 {
1251 	BUG_ON(!msg);
1252 	BUG_ON(!data_len);
1253 
1254 	/* Initialize data cursor */
1255 
1256 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1257 }
1258 
1259 /*
1260  * Prepare footer for currently outgoing message, and finish things
1261  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1262  */
1263 static void prepare_write_message_footer(struct ceph_connection *con)
1264 {
1265 	struct ceph_msg *m = con->out_msg;
1266 
1267 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1268 
1269 	dout("prepare_write_message_footer %p\n", con);
1270 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1271 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1272 		if (con->ops->sign_message)
1273 			con->ops->sign_message(m);
1274 		else
1275 			m->footer.sig = 0;
1276 	} else {
1277 		m->old_footer.flags = m->footer.flags;
1278 	}
1279 	con->out_more = m->more_to_follow;
1280 	con->out_msg_done = true;
1281 }
1282 
1283 /*
1284  * Prepare headers for the next outgoing message.
1285  */
1286 static void prepare_write_message(struct ceph_connection *con)
1287 {
1288 	struct ceph_msg *m;
1289 	u32 crc;
1290 
1291 	con_out_kvec_reset(con);
1292 	con->out_msg_done = false;
1293 
1294 	/* Sneak an ack in there first?  If we can get it into the same
1295 	 * TCP packet that's a good thing. */
1296 	if (con->in_seq > con->in_seq_acked) {
1297 		con->in_seq_acked = con->in_seq;
1298 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1299 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1300 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1301 			&con->out_temp_ack);
1302 	}
1303 
1304 	BUG_ON(list_empty(&con->out_queue));
1305 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1306 	con->out_msg = m;
1307 	BUG_ON(m->con != con);
1308 
1309 	/* put message on sent list */
1310 	ceph_msg_get(m);
1311 	list_move_tail(&m->list_head, &con->out_sent);
1312 
1313 	/*
1314 	 * only assign outgoing seq # if we haven't sent this message
1315 	 * yet.  if it is requeued, resend with it's original seq.
1316 	 */
1317 	if (m->needs_out_seq) {
1318 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1319 		m->needs_out_seq = false;
1320 
1321 		if (con->ops->reencode_message)
1322 			con->ops->reencode_message(m);
1323 	}
1324 
1325 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1327 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1328 	     m->data_length);
1329 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1330 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1331 
1332 	/* tag + hdr + front + middle */
1333 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1334 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1335 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1336 
1337 	if (m->middle)
1338 		con_out_kvec_add(con, m->middle->vec.iov_len,
1339 			m->middle->vec.iov_base);
1340 
1341 	/* fill in hdr crc and finalize hdr */
1342 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1343 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1344 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1345 
1346 	/* fill in front and middle crc, footer */
1347 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1348 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1349 	if (m->middle) {
1350 		crc = crc32c(0, m->middle->vec.iov_base,
1351 				m->middle->vec.iov_len);
1352 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1353 	} else
1354 		con->out_msg->footer.middle_crc = 0;
1355 	dout("%s front_crc %u middle_crc %u\n", __func__,
1356 	     le32_to_cpu(con->out_msg->footer.front_crc),
1357 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1358 	con->out_msg->footer.flags = 0;
1359 
1360 	/* is there a data payload? */
1361 	con->out_msg->footer.data_crc = 0;
1362 	if (m->data_length) {
1363 		prepare_message_data(con->out_msg, m->data_length);
1364 		con->out_more = 1;  /* data + footer will follow */
1365 	} else {
1366 		/* no, queue up footer too and be done */
1367 		prepare_write_message_footer(con);
1368 	}
1369 
1370 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371 }
1372 
1373 /*
1374  * Prepare an ack.
1375  */
1376 static void prepare_write_ack(struct ceph_connection *con)
1377 {
1378 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1379 	     con->in_seq_acked, con->in_seq);
1380 	con->in_seq_acked = con->in_seq;
1381 
1382 	con_out_kvec_reset(con);
1383 
1384 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1385 
1386 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1387 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1388 				&con->out_temp_ack);
1389 
1390 	con->out_more = 1;  /* more will follow.. eventually.. */
1391 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1392 }
1393 
1394 /*
1395  * Prepare to share the seq during handshake
1396  */
1397 static void prepare_write_seq(struct ceph_connection *con)
1398 {
1399 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1400 	     con->in_seq_acked, con->in_seq);
1401 	con->in_seq_acked = con->in_seq;
1402 
1403 	con_out_kvec_reset(con);
1404 
1405 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1406 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1407 			 &con->out_temp_ack);
1408 
1409 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1410 }
1411 
1412 /*
1413  * Prepare to write keepalive byte.
1414  */
1415 static void prepare_write_keepalive(struct ceph_connection *con)
1416 {
1417 	dout("prepare_write_keepalive %p\n", con);
1418 	con_out_kvec_reset(con);
1419 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1420 		struct timespec64 now;
1421 
1422 		ktime_get_real_ts64(&now);
1423 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1424 		ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1425 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1426 				 &con->out_temp_keepalive2);
1427 	} else {
1428 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1429 	}
1430 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431 }
1432 
1433 /*
1434  * Connection negotiation.
1435  */
1436 
1437 static int get_connect_authorizer(struct ceph_connection *con)
1438 {
1439 	struct ceph_auth_handshake *auth;
1440 	int auth_proto;
1441 
1442 	if (!con->ops->get_authorizer) {
1443 		con->auth = NULL;
1444 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1445 		con->out_connect.authorizer_len = 0;
1446 		return 0;
1447 	}
1448 
1449 	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1450 	if (IS_ERR(auth))
1451 		return PTR_ERR(auth);
1452 
1453 	con->auth = auth;
1454 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1455 	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1456 	return 0;
1457 }
1458 
1459 /*
1460  * We connected to a peer and are saying hello.
1461  */
1462 static void prepare_write_banner(struct ceph_connection *con)
1463 {
1464 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1465 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1466 					&con->msgr->my_enc_addr);
1467 
1468 	con->out_more = 0;
1469 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1470 }
1471 
1472 static void __prepare_write_connect(struct ceph_connection *con)
1473 {
1474 	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1475 	if (con->auth)
1476 		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1477 				 con->auth->authorizer_buf);
1478 
1479 	con->out_more = 0;
1480 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1481 }
1482 
1483 static int prepare_write_connect(struct ceph_connection *con)
1484 {
1485 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1486 	int proto;
1487 	int ret;
1488 
1489 	switch (con->peer_name.type) {
1490 	case CEPH_ENTITY_TYPE_MON:
1491 		proto = CEPH_MONC_PROTOCOL;
1492 		break;
1493 	case CEPH_ENTITY_TYPE_OSD:
1494 		proto = CEPH_OSDC_PROTOCOL;
1495 		break;
1496 	case CEPH_ENTITY_TYPE_MDS:
1497 		proto = CEPH_MDSC_PROTOCOL;
1498 		break;
1499 	default:
1500 		BUG();
1501 	}
1502 
1503 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1504 	     con->connect_seq, global_seq, proto);
1505 
1506 	con->out_connect.features =
1507 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1508 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1509 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1510 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1511 	con->out_connect.protocol_version = cpu_to_le32(proto);
1512 	con->out_connect.flags = 0;
1513 
1514 	ret = get_connect_authorizer(con);
1515 	if (ret)
1516 		return ret;
1517 
1518 	__prepare_write_connect(con);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * write as much of pending kvecs to the socket as we can.
1524  *  1 -> done
1525  *  0 -> socket full, but more to do
1526  * <0 -> error
1527  */
1528 static int write_partial_kvec(struct ceph_connection *con)
1529 {
1530 	int ret;
1531 
1532 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1533 	while (con->out_kvec_bytes > 0) {
1534 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1535 				       con->out_kvec_left, con->out_kvec_bytes,
1536 				       con->out_more);
1537 		if (ret <= 0)
1538 			goto out;
1539 		con->out_kvec_bytes -= ret;
1540 		if (con->out_kvec_bytes == 0)
1541 			break;            /* done */
1542 
1543 		/* account for full iov entries consumed */
1544 		while (ret >= con->out_kvec_cur->iov_len) {
1545 			BUG_ON(!con->out_kvec_left);
1546 			ret -= con->out_kvec_cur->iov_len;
1547 			con->out_kvec_cur++;
1548 			con->out_kvec_left--;
1549 		}
1550 		/* and for a partially-consumed entry */
1551 		if (ret) {
1552 			con->out_kvec_cur->iov_len -= ret;
1553 			con->out_kvec_cur->iov_base += ret;
1554 		}
1555 	}
1556 	con->out_kvec_left = 0;
1557 	ret = 1;
1558 out:
1559 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1560 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1561 	return ret;  /* done! */
1562 }
1563 
1564 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1565 				unsigned int page_offset,
1566 				unsigned int length)
1567 {
1568 	char *kaddr;
1569 
1570 	kaddr = kmap(page);
1571 	BUG_ON(kaddr == NULL);
1572 	crc = crc32c(crc, kaddr + page_offset, length);
1573 	kunmap(page);
1574 
1575 	return crc;
1576 }
1577 /*
1578  * Write as much message data payload as we can.  If we finish, queue
1579  * up the footer.
1580  *  1 -> done, footer is now queued in out_kvec[].
1581  *  0 -> socket full, but more to do
1582  * <0 -> error
1583  */
1584 static int write_partial_message_data(struct ceph_connection *con)
1585 {
1586 	struct ceph_msg *msg = con->out_msg;
1587 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1588 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1589 	u32 crc;
1590 
1591 	dout("%s %p msg %p\n", __func__, con, msg);
1592 
1593 	if (list_empty(&msg->data))
1594 		return -EINVAL;
1595 
1596 	/*
1597 	 * Iterate through each page that contains data to be
1598 	 * written, and send as much as possible for each.
1599 	 *
1600 	 * If we are calculating the data crc (the default), we will
1601 	 * need to map the page.  If we have no pages, they have
1602 	 * been revoked, so use the zero page.
1603 	 */
1604 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1605 	while (cursor->total_resid) {
1606 		struct page *page;
1607 		size_t page_offset;
1608 		size_t length;
1609 		bool last_piece;
1610 		int ret;
1611 
1612 		if (!cursor->resid) {
1613 			ceph_msg_data_advance(cursor, 0);
1614 			continue;
1615 		}
1616 
1617 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1618 					  &last_piece);
1619 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1620 					length, !last_piece);
1621 		if (ret <= 0) {
1622 			if (do_datacrc)
1623 				msg->footer.data_crc = cpu_to_le32(crc);
1624 
1625 			return ret;
1626 		}
1627 		if (do_datacrc && cursor->need_crc)
1628 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1629 		ceph_msg_data_advance(cursor, (size_t)ret);
1630 	}
1631 
1632 	dout("%s %p msg %p done\n", __func__, con, msg);
1633 
1634 	/* prepare and queue up footer, too */
1635 	if (do_datacrc)
1636 		msg->footer.data_crc = cpu_to_le32(crc);
1637 	else
1638 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1639 	con_out_kvec_reset(con);
1640 	prepare_write_message_footer(con);
1641 
1642 	return 1;	/* must return > 0 to indicate success */
1643 }
1644 
1645 /*
1646  * write some zeros
1647  */
1648 static int write_partial_skip(struct ceph_connection *con)
1649 {
1650 	int ret;
1651 
1652 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1653 	while (con->out_skip > 0) {
1654 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1655 
1656 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1657 		if (ret <= 0)
1658 			goto out;
1659 		con->out_skip -= ret;
1660 	}
1661 	ret = 1;
1662 out:
1663 	return ret;
1664 }
1665 
1666 /*
1667  * Prepare to read connection handshake, or an ack.
1668  */
1669 static void prepare_read_banner(struct ceph_connection *con)
1670 {
1671 	dout("prepare_read_banner %p\n", con);
1672 	con->in_base_pos = 0;
1673 }
1674 
1675 static void prepare_read_connect(struct ceph_connection *con)
1676 {
1677 	dout("prepare_read_connect %p\n", con);
1678 	con->in_base_pos = 0;
1679 }
1680 
1681 static void prepare_read_ack(struct ceph_connection *con)
1682 {
1683 	dout("prepare_read_ack %p\n", con);
1684 	con->in_base_pos = 0;
1685 }
1686 
1687 static void prepare_read_seq(struct ceph_connection *con)
1688 {
1689 	dout("prepare_read_seq %p\n", con);
1690 	con->in_base_pos = 0;
1691 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1692 }
1693 
1694 static void prepare_read_tag(struct ceph_connection *con)
1695 {
1696 	dout("prepare_read_tag %p\n", con);
1697 	con->in_base_pos = 0;
1698 	con->in_tag = CEPH_MSGR_TAG_READY;
1699 }
1700 
1701 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1702 {
1703 	dout("prepare_read_keepalive_ack %p\n", con);
1704 	con->in_base_pos = 0;
1705 }
1706 
1707 /*
1708  * Prepare to read a message.
1709  */
1710 static int prepare_read_message(struct ceph_connection *con)
1711 {
1712 	dout("prepare_read_message %p\n", con);
1713 	BUG_ON(con->in_msg != NULL);
1714 	con->in_base_pos = 0;
1715 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1716 	return 0;
1717 }
1718 
1719 
1720 static int read_partial(struct ceph_connection *con,
1721 			int end, int size, void *object)
1722 {
1723 	while (con->in_base_pos < end) {
1724 		int left = end - con->in_base_pos;
1725 		int have = size - left;
1726 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1727 		if (ret <= 0)
1728 			return ret;
1729 		con->in_base_pos += ret;
1730 	}
1731 	return 1;
1732 }
1733 
1734 
1735 /*
1736  * Read all or part of the connect-side handshake on a new connection
1737  */
1738 static int read_partial_banner(struct ceph_connection *con)
1739 {
1740 	int size;
1741 	int end;
1742 	int ret;
1743 
1744 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1745 
1746 	/* peer's banner */
1747 	size = strlen(CEPH_BANNER);
1748 	end = size;
1749 	ret = read_partial(con, end, size, con->in_banner);
1750 	if (ret <= 0)
1751 		goto out;
1752 
1753 	size = sizeof (con->actual_peer_addr);
1754 	end += size;
1755 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1756 	if (ret <= 0)
1757 		goto out;
1758 
1759 	size = sizeof (con->peer_addr_for_me);
1760 	end += size;
1761 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1762 	if (ret <= 0)
1763 		goto out;
1764 
1765 out:
1766 	return ret;
1767 }
1768 
1769 static int read_partial_connect(struct ceph_connection *con)
1770 {
1771 	int size;
1772 	int end;
1773 	int ret;
1774 
1775 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1776 
1777 	size = sizeof (con->in_reply);
1778 	end = size;
1779 	ret = read_partial(con, end, size, &con->in_reply);
1780 	if (ret <= 0)
1781 		goto out;
1782 
1783 	if (con->auth) {
1784 		size = le32_to_cpu(con->in_reply.authorizer_len);
1785 		if (size > con->auth->authorizer_reply_buf_len) {
1786 			pr_err("authorizer reply too big: %d > %zu\n", size,
1787 			       con->auth->authorizer_reply_buf_len);
1788 			ret = -EINVAL;
1789 			goto out;
1790 		}
1791 
1792 		end += size;
1793 		ret = read_partial(con, end, size,
1794 				   con->auth->authorizer_reply_buf);
1795 		if (ret <= 0)
1796 			goto out;
1797 	}
1798 
1799 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1800 	     con, (int)con->in_reply.tag,
1801 	     le32_to_cpu(con->in_reply.connect_seq),
1802 	     le32_to_cpu(con->in_reply.global_seq));
1803 out:
1804 	return ret;
1805 }
1806 
1807 /*
1808  * Verify the hello banner looks okay.
1809  */
1810 static int verify_hello(struct ceph_connection *con)
1811 {
1812 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1813 		pr_err("connect to %s got bad banner\n",
1814 		       ceph_pr_addr(&con->peer_addr.in_addr));
1815 		con->error_msg = "protocol error, bad banner";
1816 		return -1;
1817 	}
1818 	return 0;
1819 }
1820 
1821 static bool addr_is_blank(struct sockaddr_storage *ss)
1822 {
1823 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1824 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1825 
1826 	switch (ss->ss_family) {
1827 	case AF_INET:
1828 		return addr->s_addr == htonl(INADDR_ANY);
1829 	case AF_INET6:
1830 		return ipv6_addr_any(addr6);
1831 	default:
1832 		return true;
1833 	}
1834 }
1835 
1836 static int addr_port(struct sockaddr_storage *ss)
1837 {
1838 	switch (ss->ss_family) {
1839 	case AF_INET:
1840 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1841 	case AF_INET6:
1842 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1843 	}
1844 	return 0;
1845 }
1846 
1847 static void addr_set_port(struct sockaddr_storage *ss, int p)
1848 {
1849 	switch (ss->ss_family) {
1850 	case AF_INET:
1851 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1852 		break;
1853 	case AF_INET6:
1854 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1855 		break;
1856 	}
1857 }
1858 
1859 /*
1860  * Unlike other *_pton function semantics, zero indicates success.
1861  */
1862 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1863 		char delim, const char **ipend)
1864 {
1865 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1866 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1867 
1868 	memset(ss, 0, sizeof(*ss));
1869 
1870 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1871 		ss->ss_family = AF_INET;
1872 		return 0;
1873 	}
1874 
1875 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1876 		ss->ss_family = AF_INET6;
1877 		return 0;
1878 	}
1879 
1880 	return -EINVAL;
1881 }
1882 
1883 /*
1884  * Extract hostname string and resolve using kernel DNS facility.
1885  */
1886 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1887 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1888 		struct sockaddr_storage *ss, char delim, const char **ipend)
1889 {
1890 	const char *end, *delim_p;
1891 	char *colon_p, *ip_addr = NULL;
1892 	int ip_len, ret;
1893 
1894 	/*
1895 	 * The end of the hostname occurs immediately preceding the delimiter or
1896 	 * the port marker (':') where the delimiter takes precedence.
1897 	 */
1898 	delim_p = memchr(name, delim, namelen);
1899 	colon_p = memchr(name, ':', namelen);
1900 
1901 	if (delim_p && colon_p)
1902 		end = delim_p < colon_p ? delim_p : colon_p;
1903 	else if (!delim_p && colon_p)
1904 		end = colon_p;
1905 	else {
1906 		end = delim_p;
1907 		if (!end) /* case: hostname:/ */
1908 			end = name + namelen;
1909 	}
1910 
1911 	if (end <= name)
1912 		return -EINVAL;
1913 
1914 	/* do dns_resolve upcall */
1915 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1916 	if (ip_len > 0)
1917 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1918 	else
1919 		ret = -ESRCH;
1920 
1921 	kfree(ip_addr);
1922 
1923 	*ipend = end;
1924 
1925 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1926 			ret, ret ? "failed" : ceph_pr_addr(ss));
1927 
1928 	return ret;
1929 }
1930 #else
1931 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1932 		struct sockaddr_storage *ss, char delim, const char **ipend)
1933 {
1934 	return -EINVAL;
1935 }
1936 #endif
1937 
1938 /*
1939  * Parse a server name (IP or hostname). If a valid IP address is not found
1940  * then try to extract a hostname to resolve using userspace DNS upcall.
1941  */
1942 static int ceph_parse_server_name(const char *name, size_t namelen,
1943 			struct sockaddr_storage *ss, char delim, const char **ipend)
1944 {
1945 	int ret;
1946 
1947 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1948 	if (ret)
1949 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1950 
1951 	return ret;
1952 }
1953 
1954 /*
1955  * Parse an ip[:port] list into an addr array.  Use the default
1956  * monitor port if a port isn't specified.
1957  */
1958 int ceph_parse_ips(const char *c, const char *end,
1959 		   struct ceph_entity_addr *addr,
1960 		   int max_count, int *count)
1961 {
1962 	int i, ret = -EINVAL;
1963 	const char *p = c;
1964 
1965 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1966 	for (i = 0; i < max_count; i++) {
1967 		const char *ipend;
1968 		struct sockaddr_storage *ss = &addr[i].in_addr;
1969 		int port;
1970 		char delim = ',';
1971 
1972 		if (*p == '[') {
1973 			delim = ']';
1974 			p++;
1975 		}
1976 
1977 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1978 		if (ret)
1979 			goto bad;
1980 		ret = -EINVAL;
1981 
1982 		p = ipend;
1983 
1984 		if (delim == ']') {
1985 			if (*p != ']') {
1986 				dout("missing matching ']'\n");
1987 				goto bad;
1988 			}
1989 			p++;
1990 		}
1991 
1992 		/* port? */
1993 		if (p < end && *p == ':') {
1994 			port = 0;
1995 			p++;
1996 			while (p < end && *p >= '0' && *p <= '9') {
1997 				port = (port * 10) + (*p - '0');
1998 				p++;
1999 			}
2000 			if (port == 0)
2001 				port = CEPH_MON_PORT;
2002 			else if (port > 65535)
2003 				goto bad;
2004 		} else {
2005 			port = CEPH_MON_PORT;
2006 		}
2007 
2008 		addr_set_port(ss, port);
2009 
2010 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
2011 
2012 		if (p == end)
2013 			break;
2014 		if (*p != ',')
2015 			goto bad;
2016 		p++;
2017 	}
2018 
2019 	if (p != end)
2020 		goto bad;
2021 
2022 	if (count)
2023 		*count = i + 1;
2024 	return 0;
2025 
2026 bad:
2027 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL(ceph_parse_ips);
2031 
2032 static int process_banner(struct ceph_connection *con)
2033 {
2034 	dout("process_banner on %p\n", con);
2035 
2036 	if (verify_hello(con) < 0)
2037 		return -1;
2038 
2039 	ceph_decode_addr(&con->actual_peer_addr);
2040 	ceph_decode_addr(&con->peer_addr_for_me);
2041 
2042 	/*
2043 	 * Make sure the other end is who we wanted.  note that the other
2044 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2045 	 * them the benefit of the doubt.
2046 	 */
2047 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2048 		   sizeof(con->peer_addr)) != 0 &&
2049 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2050 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2051 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2052 			ceph_pr_addr(&con->peer_addr.in_addr),
2053 			(int)le32_to_cpu(con->peer_addr.nonce),
2054 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2055 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2056 		con->error_msg = "wrong peer at address";
2057 		return -1;
2058 	}
2059 
2060 	/*
2061 	 * did we learn our address?
2062 	 */
2063 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2064 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2065 
2066 		memcpy(&con->msgr->inst.addr.in_addr,
2067 		       &con->peer_addr_for_me.in_addr,
2068 		       sizeof(con->peer_addr_for_me.in_addr));
2069 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2070 		encode_my_addr(con->msgr);
2071 		dout("process_banner learned my addr is %s\n",
2072 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static int process_connect(struct ceph_connection *con)
2079 {
2080 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2081 	u64 req_feat = from_msgr(con->msgr)->required_features;
2082 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2083 	int ret;
2084 
2085 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2086 
2087 	if (con->auth) {
2088 		/*
2089 		 * Any connection that defines ->get_authorizer()
2090 		 * should also define ->add_authorizer_challenge() and
2091 		 * ->verify_authorizer_reply().
2092 		 *
2093 		 * See get_connect_authorizer().
2094 		 */
2095 		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2096 			ret = con->ops->add_authorizer_challenge(
2097 				    con, con->auth->authorizer_reply_buf,
2098 				    le32_to_cpu(con->in_reply.authorizer_len));
2099 			if (ret < 0)
2100 				return ret;
2101 
2102 			con_out_kvec_reset(con);
2103 			__prepare_write_connect(con);
2104 			prepare_read_connect(con);
2105 			return 0;
2106 		}
2107 
2108 		ret = con->ops->verify_authorizer_reply(con);
2109 		if (ret < 0) {
2110 			con->error_msg = "bad authorize reply";
2111 			return ret;
2112 		}
2113 	}
2114 
2115 	switch (con->in_reply.tag) {
2116 	case CEPH_MSGR_TAG_FEATURES:
2117 		pr_err("%s%lld %s feature set mismatch,"
2118 		       " my %llx < server's %llx, missing %llx\n",
2119 		       ENTITY_NAME(con->peer_name),
2120 		       ceph_pr_addr(&con->peer_addr.in_addr),
2121 		       sup_feat, server_feat, server_feat & ~sup_feat);
2122 		con->error_msg = "missing required protocol features";
2123 		reset_connection(con);
2124 		return -1;
2125 
2126 	case CEPH_MSGR_TAG_BADPROTOVER:
2127 		pr_err("%s%lld %s protocol version mismatch,"
2128 		       " my %d != server's %d\n",
2129 		       ENTITY_NAME(con->peer_name),
2130 		       ceph_pr_addr(&con->peer_addr.in_addr),
2131 		       le32_to_cpu(con->out_connect.protocol_version),
2132 		       le32_to_cpu(con->in_reply.protocol_version));
2133 		con->error_msg = "protocol version mismatch";
2134 		reset_connection(con);
2135 		return -1;
2136 
2137 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2138 		con->auth_retry++;
2139 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2140 		     con->auth_retry);
2141 		if (con->auth_retry == 2) {
2142 			con->error_msg = "connect authorization failure";
2143 			return -1;
2144 		}
2145 		con_out_kvec_reset(con);
2146 		ret = prepare_write_connect(con);
2147 		if (ret < 0)
2148 			return ret;
2149 		prepare_read_connect(con);
2150 		break;
2151 
2152 	case CEPH_MSGR_TAG_RESETSESSION:
2153 		/*
2154 		 * If we connected with a large connect_seq but the peer
2155 		 * has no record of a session with us (no connection, or
2156 		 * connect_seq == 0), they will send RESETSESION to indicate
2157 		 * that they must have reset their session, and may have
2158 		 * dropped messages.
2159 		 */
2160 		dout("process_connect got RESET peer seq %u\n",
2161 		     le32_to_cpu(con->in_reply.connect_seq));
2162 		pr_err("%s%lld %s connection reset\n",
2163 		       ENTITY_NAME(con->peer_name),
2164 		       ceph_pr_addr(&con->peer_addr.in_addr));
2165 		reset_connection(con);
2166 		con_out_kvec_reset(con);
2167 		ret = prepare_write_connect(con);
2168 		if (ret < 0)
2169 			return ret;
2170 		prepare_read_connect(con);
2171 
2172 		/* Tell ceph about it. */
2173 		mutex_unlock(&con->mutex);
2174 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2175 		if (con->ops->peer_reset)
2176 			con->ops->peer_reset(con);
2177 		mutex_lock(&con->mutex);
2178 		if (con->state != CON_STATE_NEGOTIATING)
2179 			return -EAGAIN;
2180 		break;
2181 
2182 	case CEPH_MSGR_TAG_RETRY_SESSION:
2183 		/*
2184 		 * If we sent a smaller connect_seq than the peer has, try
2185 		 * again with a larger value.
2186 		 */
2187 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2188 		     le32_to_cpu(con->out_connect.connect_seq),
2189 		     le32_to_cpu(con->in_reply.connect_seq));
2190 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2191 		con_out_kvec_reset(con);
2192 		ret = prepare_write_connect(con);
2193 		if (ret < 0)
2194 			return ret;
2195 		prepare_read_connect(con);
2196 		break;
2197 
2198 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2199 		/*
2200 		 * If we sent a smaller global_seq than the peer has, try
2201 		 * again with a larger value.
2202 		 */
2203 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2204 		     con->peer_global_seq,
2205 		     le32_to_cpu(con->in_reply.global_seq));
2206 		get_global_seq(con->msgr,
2207 			       le32_to_cpu(con->in_reply.global_seq));
2208 		con_out_kvec_reset(con);
2209 		ret = prepare_write_connect(con);
2210 		if (ret < 0)
2211 			return ret;
2212 		prepare_read_connect(con);
2213 		break;
2214 
2215 	case CEPH_MSGR_TAG_SEQ:
2216 	case CEPH_MSGR_TAG_READY:
2217 		if (req_feat & ~server_feat) {
2218 			pr_err("%s%lld %s protocol feature mismatch,"
2219 			       " my required %llx > server's %llx, need %llx\n",
2220 			       ENTITY_NAME(con->peer_name),
2221 			       ceph_pr_addr(&con->peer_addr.in_addr),
2222 			       req_feat, server_feat, req_feat & ~server_feat);
2223 			con->error_msg = "missing required protocol features";
2224 			reset_connection(con);
2225 			return -1;
2226 		}
2227 
2228 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2229 		con->state = CON_STATE_OPEN;
2230 		con->auth_retry = 0;    /* we authenticated; clear flag */
2231 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2232 		con->connect_seq++;
2233 		con->peer_features = server_feat;
2234 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2235 		     con->peer_global_seq,
2236 		     le32_to_cpu(con->in_reply.connect_seq),
2237 		     con->connect_seq);
2238 		WARN_ON(con->connect_seq !=
2239 			le32_to_cpu(con->in_reply.connect_seq));
2240 
2241 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2242 			con_flag_set(con, CON_FLAG_LOSSYTX);
2243 
2244 		con->delay = 0;      /* reset backoff memory */
2245 
2246 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2247 			prepare_write_seq(con);
2248 			prepare_read_seq(con);
2249 		} else {
2250 			prepare_read_tag(con);
2251 		}
2252 		break;
2253 
2254 	case CEPH_MSGR_TAG_WAIT:
2255 		/*
2256 		 * If there is a connection race (we are opening
2257 		 * connections to each other), one of us may just have
2258 		 * to WAIT.  This shouldn't happen if we are the
2259 		 * client.
2260 		 */
2261 		con->error_msg = "protocol error, got WAIT as client";
2262 		return -1;
2263 
2264 	default:
2265 		con->error_msg = "protocol error, garbage tag during connect";
2266 		return -1;
2267 	}
2268 	return 0;
2269 }
2270 
2271 
2272 /*
2273  * read (part of) an ack
2274  */
2275 static int read_partial_ack(struct ceph_connection *con)
2276 {
2277 	int size = sizeof (con->in_temp_ack);
2278 	int end = size;
2279 
2280 	return read_partial(con, end, size, &con->in_temp_ack);
2281 }
2282 
2283 /*
2284  * We can finally discard anything that's been acked.
2285  */
2286 static void process_ack(struct ceph_connection *con)
2287 {
2288 	struct ceph_msg *m;
2289 	u64 ack = le64_to_cpu(con->in_temp_ack);
2290 	u64 seq;
2291 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2292 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2293 
2294 	/*
2295 	 * In the reconnect case, con_fault() has requeued messages
2296 	 * in out_sent. We should cleanup old messages according to
2297 	 * the reconnect seq.
2298 	 */
2299 	while (!list_empty(list)) {
2300 		m = list_first_entry(list, struct ceph_msg, list_head);
2301 		if (reconnect && m->needs_out_seq)
2302 			break;
2303 		seq = le64_to_cpu(m->hdr.seq);
2304 		if (seq > ack)
2305 			break;
2306 		dout("got ack for seq %llu type %d at %p\n", seq,
2307 		     le16_to_cpu(m->hdr.type), m);
2308 		m->ack_stamp = jiffies;
2309 		ceph_msg_remove(m);
2310 	}
2311 
2312 	prepare_read_tag(con);
2313 }
2314 
2315 
2316 static int read_partial_message_section(struct ceph_connection *con,
2317 					struct kvec *section,
2318 					unsigned int sec_len, u32 *crc)
2319 {
2320 	int ret, left;
2321 
2322 	BUG_ON(!section);
2323 
2324 	while (section->iov_len < sec_len) {
2325 		BUG_ON(section->iov_base == NULL);
2326 		left = sec_len - section->iov_len;
2327 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2328 				       section->iov_len, left);
2329 		if (ret <= 0)
2330 			return ret;
2331 		section->iov_len += ret;
2332 	}
2333 	if (section->iov_len == sec_len)
2334 		*crc = crc32c(0, section->iov_base, section->iov_len);
2335 
2336 	return 1;
2337 }
2338 
2339 static int read_partial_msg_data(struct ceph_connection *con)
2340 {
2341 	struct ceph_msg *msg = con->in_msg;
2342 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2343 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2344 	struct page *page;
2345 	size_t page_offset;
2346 	size_t length;
2347 	u32 crc = 0;
2348 	int ret;
2349 
2350 	BUG_ON(!msg);
2351 	if (list_empty(&msg->data))
2352 		return -EIO;
2353 
2354 	if (do_datacrc)
2355 		crc = con->in_data_crc;
2356 	while (cursor->total_resid) {
2357 		if (!cursor->resid) {
2358 			ceph_msg_data_advance(cursor, 0);
2359 			continue;
2360 		}
2361 
2362 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2363 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2364 		if (ret <= 0) {
2365 			if (do_datacrc)
2366 				con->in_data_crc = crc;
2367 
2368 			return ret;
2369 		}
2370 
2371 		if (do_datacrc)
2372 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2373 		ceph_msg_data_advance(cursor, (size_t)ret);
2374 	}
2375 	if (do_datacrc)
2376 		con->in_data_crc = crc;
2377 
2378 	return 1;	/* must return > 0 to indicate success */
2379 }
2380 
2381 /*
2382  * read (part of) a message.
2383  */
2384 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2385 
2386 static int read_partial_message(struct ceph_connection *con)
2387 {
2388 	struct ceph_msg *m = con->in_msg;
2389 	int size;
2390 	int end;
2391 	int ret;
2392 	unsigned int front_len, middle_len, data_len;
2393 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2394 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2395 	u64 seq;
2396 	u32 crc;
2397 
2398 	dout("read_partial_message con %p msg %p\n", con, m);
2399 
2400 	/* header */
2401 	size = sizeof (con->in_hdr);
2402 	end = size;
2403 	ret = read_partial(con, end, size, &con->in_hdr);
2404 	if (ret <= 0)
2405 		return ret;
2406 
2407 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2408 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2409 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2410 		       crc, con->in_hdr.crc);
2411 		return -EBADMSG;
2412 	}
2413 
2414 	front_len = le32_to_cpu(con->in_hdr.front_len);
2415 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2416 		return -EIO;
2417 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2418 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2419 		return -EIO;
2420 	data_len = le32_to_cpu(con->in_hdr.data_len);
2421 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2422 		return -EIO;
2423 
2424 	/* verify seq# */
2425 	seq = le64_to_cpu(con->in_hdr.seq);
2426 	if ((s64)seq - (s64)con->in_seq < 1) {
2427 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2428 			ENTITY_NAME(con->peer_name),
2429 			ceph_pr_addr(&con->peer_addr.in_addr),
2430 			seq, con->in_seq + 1);
2431 		con->in_base_pos = -front_len - middle_len - data_len -
2432 			sizeof_footer(con);
2433 		con->in_tag = CEPH_MSGR_TAG_READY;
2434 		return 1;
2435 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2436 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2437 		       seq, con->in_seq + 1);
2438 		con->error_msg = "bad message sequence # for incoming message";
2439 		return -EBADE;
2440 	}
2441 
2442 	/* allocate message? */
2443 	if (!con->in_msg) {
2444 		int skip = 0;
2445 
2446 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2447 		     front_len, data_len);
2448 		ret = ceph_con_in_msg_alloc(con, &skip);
2449 		if (ret < 0)
2450 			return ret;
2451 
2452 		BUG_ON(!con->in_msg ^ skip);
2453 		if (skip) {
2454 			/* skip this message */
2455 			dout("alloc_msg said skip message\n");
2456 			con->in_base_pos = -front_len - middle_len - data_len -
2457 				sizeof_footer(con);
2458 			con->in_tag = CEPH_MSGR_TAG_READY;
2459 			con->in_seq++;
2460 			return 1;
2461 		}
2462 
2463 		BUG_ON(!con->in_msg);
2464 		BUG_ON(con->in_msg->con != con);
2465 		m = con->in_msg;
2466 		m->front.iov_len = 0;    /* haven't read it yet */
2467 		if (m->middle)
2468 			m->middle->vec.iov_len = 0;
2469 
2470 		/* prepare for data payload, if any */
2471 
2472 		if (data_len)
2473 			prepare_message_data(con->in_msg, data_len);
2474 	}
2475 
2476 	/* front */
2477 	ret = read_partial_message_section(con, &m->front, front_len,
2478 					   &con->in_front_crc);
2479 	if (ret <= 0)
2480 		return ret;
2481 
2482 	/* middle */
2483 	if (m->middle) {
2484 		ret = read_partial_message_section(con, &m->middle->vec,
2485 						   middle_len,
2486 						   &con->in_middle_crc);
2487 		if (ret <= 0)
2488 			return ret;
2489 	}
2490 
2491 	/* (page) data */
2492 	if (data_len) {
2493 		ret = read_partial_msg_data(con);
2494 		if (ret <= 0)
2495 			return ret;
2496 	}
2497 
2498 	/* footer */
2499 	size = sizeof_footer(con);
2500 	end += size;
2501 	ret = read_partial(con, end, size, &m->footer);
2502 	if (ret <= 0)
2503 		return ret;
2504 
2505 	if (!need_sign) {
2506 		m->footer.flags = m->old_footer.flags;
2507 		m->footer.sig = 0;
2508 	}
2509 
2510 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2511 	     m, front_len, m->footer.front_crc, middle_len,
2512 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2513 
2514 	/* crc ok? */
2515 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2516 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2517 		       m, con->in_front_crc, m->footer.front_crc);
2518 		return -EBADMSG;
2519 	}
2520 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2521 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2522 		       m, con->in_middle_crc, m->footer.middle_crc);
2523 		return -EBADMSG;
2524 	}
2525 	if (do_datacrc &&
2526 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2527 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2528 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2529 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2530 		return -EBADMSG;
2531 	}
2532 
2533 	if (need_sign && con->ops->check_message_signature &&
2534 	    con->ops->check_message_signature(m)) {
2535 		pr_err("read_partial_message %p signature check failed\n", m);
2536 		return -EBADMSG;
2537 	}
2538 
2539 	return 1; /* done! */
2540 }
2541 
2542 /*
2543  * Process message.  This happens in the worker thread.  The callback should
2544  * be careful not to do anything that waits on other incoming messages or it
2545  * may deadlock.
2546  */
2547 static void process_message(struct ceph_connection *con)
2548 {
2549 	struct ceph_msg *msg = con->in_msg;
2550 
2551 	BUG_ON(con->in_msg->con != con);
2552 	con->in_msg = NULL;
2553 
2554 	/* if first message, set peer_name */
2555 	if (con->peer_name.type == 0)
2556 		con->peer_name = msg->hdr.src;
2557 
2558 	con->in_seq++;
2559 	mutex_unlock(&con->mutex);
2560 
2561 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2562 	     msg, le64_to_cpu(msg->hdr.seq),
2563 	     ENTITY_NAME(msg->hdr.src),
2564 	     le16_to_cpu(msg->hdr.type),
2565 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2566 	     le32_to_cpu(msg->hdr.front_len),
2567 	     le32_to_cpu(msg->hdr.data_len),
2568 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2569 	con->ops->dispatch(con, msg);
2570 
2571 	mutex_lock(&con->mutex);
2572 }
2573 
2574 static int read_keepalive_ack(struct ceph_connection *con)
2575 {
2576 	struct ceph_timespec ceph_ts;
2577 	size_t size = sizeof(ceph_ts);
2578 	int ret = read_partial(con, size, size, &ceph_ts);
2579 	if (ret <= 0)
2580 		return ret;
2581 	ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2582 	prepare_read_tag(con);
2583 	return 1;
2584 }
2585 
2586 /*
2587  * Write something to the socket.  Called in a worker thread when the
2588  * socket appears to be writeable and we have something ready to send.
2589  */
2590 static int try_write(struct ceph_connection *con)
2591 {
2592 	int ret = 1;
2593 
2594 	dout("try_write start %p state %lu\n", con, con->state);
2595 	if (con->state != CON_STATE_PREOPEN &&
2596 	    con->state != CON_STATE_CONNECTING &&
2597 	    con->state != CON_STATE_NEGOTIATING &&
2598 	    con->state != CON_STATE_OPEN)
2599 		return 0;
2600 
2601 	/* open the socket first? */
2602 	if (con->state == CON_STATE_PREOPEN) {
2603 		BUG_ON(con->sock);
2604 		con->state = CON_STATE_CONNECTING;
2605 
2606 		con_out_kvec_reset(con);
2607 		prepare_write_banner(con);
2608 		prepare_read_banner(con);
2609 
2610 		BUG_ON(con->in_msg);
2611 		con->in_tag = CEPH_MSGR_TAG_READY;
2612 		dout("try_write initiating connect on %p new state %lu\n",
2613 		     con, con->state);
2614 		ret = ceph_tcp_connect(con);
2615 		if (ret < 0) {
2616 			con->error_msg = "connect error";
2617 			goto out;
2618 		}
2619 	}
2620 
2621 more:
2622 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2623 	BUG_ON(!con->sock);
2624 
2625 	/* kvec data queued? */
2626 	if (con->out_kvec_left) {
2627 		ret = write_partial_kvec(con);
2628 		if (ret <= 0)
2629 			goto out;
2630 	}
2631 	if (con->out_skip) {
2632 		ret = write_partial_skip(con);
2633 		if (ret <= 0)
2634 			goto out;
2635 	}
2636 
2637 	/* msg pages? */
2638 	if (con->out_msg) {
2639 		if (con->out_msg_done) {
2640 			ceph_msg_put(con->out_msg);
2641 			con->out_msg = NULL;   /* we're done with this one */
2642 			goto do_next;
2643 		}
2644 
2645 		ret = write_partial_message_data(con);
2646 		if (ret == 1)
2647 			goto more;  /* we need to send the footer, too! */
2648 		if (ret == 0)
2649 			goto out;
2650 		if (ret < 0) {
2651 			dout("try_write write_partial_message_data err %d\n",
2652 			     ret);
2653 			goto out;
2654 		}
2655 	}
2656 
2657 do_next:
2658 	if (con->state == CON_STATE_OPEN) {
2659 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2660 			prepare_write_keepalive(con);
2661 			goto more;
2662 		}
2663 		/* is anything else pending? */
2664 		if (!list_empty(&con->out_queue)) {
2665 			prepare_write_message(con);
2666 			goto more;
2667 		}
2668 		if (con->in_seq > con->in_seq_acked) {
2669 			prepare_write_ack(con);
2670 			goto more;
2671 		}
2672 	}
2673 
2674 	/* Nothing to do! */
2675 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2676 	dout("try_write nothing else to write.\n");
2677 	ret = 0;
2678 out:
2679 	dout("try_write done on %p ret %d\n", con, ret);
2680 	return ret;
2681 }
2682 
2683 /*
2684  * Read what we can from the socket.
2685  */
2686 static int try_read(struct ceph_connection *con)
2687 {
2688 	int ret = -1;
2689 
2690 more:
2691 	dout("try_read start on %p state %lu\n", con, con->state);
2692 	if (con->state != CON_STATE_CONNECTING &&
2693 	    con->state != CON_STATE_NEGOTIATING &&
2694 	    con->state != CON_STATE_OPEN)
2695 		return 0;
2696 
2697 	BUG_ON(!con->sock);
2698 
2699 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2700 	     con->in_base_pos);
2701 
2702 	if (con->state == CON_STATE_CONNECTING) {
2703 		dout("try_read connecting\n");
2704 		ret = read_partial_banner(con);
2705 		if (ret <= 0)
2706 			goto out;
2707 		ret = process_banner(con);
2708 		if (ret < 0)
2709 			goto out;
2710 
2711 		con->state = CON_STATE_NEGOTIATING;
2712 
2713 		/*
2714 		 * Received banner is good, exchange connection info.
2715 		 * Do not reset out_kvec, as sending our banner raced
2716 		 * with receiving peer banner after connect completed.
2717 		 */
2718 		ret = prepare_write_connect(con);
2719 		if (ret < 0)
2720 			goto out;
2721 		prepare_read_connect(con);
2722 
2723 		/* Send connection info before awaiting response */
2724 		goto out;
2725 	}
2726 
2727 	if (con->state == CON_STATE_NEGOTIATING) {
2728 		dout("try_read negotiating\n");
2729 		ret = read_partial_connect(con);
2730 		if (ret <= 0)
2731 			goto out;
2732 		ret = process_connect(con);
2733 		if (ret < 0)
2734 			goto out;
2735 		goto more;
2736 	}
2737 
2738 	WARN_ON(con->state != CON_STATE_OPEN);
2739 
2740 	if (con->in_base_pos < 0) {
2741 		/*
2742 		 * skipping + discarding content.
2743 		 */
2744 		ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2745 		if (ret <= 0)
2746 			goto out;
2747 		dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2748 		con->in_base_pos += ret;
2749 		if (con->in_base_pos)
2750 			goto more;
2751 	}
2752 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2753 		/*
2754 		 * what's next?
2755 		 */
2756 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2757 		if (ret <= 0)
2758 			goto out;
2759 		dout("try_read got tag %d\n", (int)con->in_tag);
2760 		switch (con->in_tag) {
2761 		case CEPH_MSGR_TAG_MSG:
2762 			prepare_read_message(con);
2763 			break;
2764 		case CEPH_MSGR_TAG_ACK:
2765 			prepare_read_ack(con);
2766 			break;
2767 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2768 			prepare_read_keepalive_ack(con);
2769 			break;
2770 		case CEPH_MSGR_TAG_CLOSE:
2771 			con_close_socket(con);
2772 			con->state = CON_STATE_CLOSED;
2773 			goto out;
2774 		default:
2775 			goto bad_tag;
2776 		}
2777 	}
2778 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2779 		ret = read_partial_message(con);
2780 		if (ret <= 0) {
2781 			switch (ret) {
2782 			case -EBADMSG:
2783 				con->error_msg = "bad crc/signature";
2784 				/* fall through */
2785 			case -EBADE:
2786 				ret = -EIO;
2787 				break;
2788 			case -EIO:
2789 				con->error_msg = "io error";
2790 				break;
2791 			}
2792 			goto out;
2793 		}
2794 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2795 			goto more;
2796 		process_message(con);
2797 		if (con->state == CON_STATE_OPEN)
2798 			prepare_read_tag(con);
2799 		goto more;
2800 	}
2801 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2802 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2803 		/*
2804 		 * the final handshake seq exchange is semantically
2805 		 * equivalent to an ACK
2806 		 */
2807 		ret = read_partial_ack(con);
2808 		if (ret <= 0)
2809 			goto out;
2810 		process_ack(con);
2811 		goto more;
2812 	}
2813 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2814 		ret = read_keepalive_ack(con);
2815 		if (ret <= 0)
2816 			goto out;
2817 		goto more;
2818 	}
2819 
2820 out:
2821 	dout("try_read done on %p ret %d\n", con, ret);
2822 	return ret;
2823 
2824 bad_tag:
2825 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2826 	con->error_msg = "protocol error, garbage tag";
2827 	ret = -1;
2828 	goto out;
2829 }
2830 
2831 
2832 /*
2833  * Atomically queue work on a connection after the specified delay.
2834  * Bump @con reference to avoid races with connection teardown.
2835  * Returns 0 if work was queued, or an error code otherwise.
2836  */
2837 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2838 {
2839 	if (!con->ops->get(con)) {
2840 		dout("%s %p ref count 0\n", __func__, con);
2841 		return -ENOENT;
2842 	}
2843 
2844 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2845 		dout("%s %p - already queued\n", __func__, con);
2846 		con->ops->put(con);
2847 		return -EBUSY;
2848 	}
2849 
2850 	dout("%s %p %lu\n", __func__, con, delay);
2851 	return 0;
2852 }
2853 
2854 static void queue_con(struct ceph_connection *con)
2855 {
2856 	(void) queue_con_delay(con, 0);
2857 }
2858 
2859 static void cancel_con(struct ceph_connection *con)
2860 {
2861 	if (cancel_delayed_work(&con->work)) {
2862 		dout("%s %p\n", __func__, con);
2863 		con->ops->put(con);
2864 	}
2865 }
2866 
2867 static bool con_sock_closed(struct ceph_connection *con)
2868 {
2869 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2870 		return false;
2871 
2872 #define CASE(x)								\
2873 	case CON_STATE_ ## x:						\
2874 		con->error_msg = "socket closed (con state " #x ")";	\
2875 		break;
2876 
2877 	switch (con->state) {
2878 	CASE(CLOSED);
2879 	CASE(PREOPEN);
2880 	CASE(CONNECTING);
2881 	CASE(NEGOTIATING);
2882 	CASE(OPEN);
2883 	CASE(STANDBY);
2884 	default:
2885 		pr_warn("%s con %p unrecognized state %lu\n",
2886 			__func__, con, con->state);
2887 		con->error_msg = "unrecognized con state";
2888 		BUG();
2889 		break;
2890 	}
2891 #undef CASE
2892 
2893 	return true;
2894 }
2895 
2896 static bool con_backoff(struct ceph_connection *con)
2897 {
2898 	int ret;
2899 
2900 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2901 		return false;
2902 
2903 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2904 	if (ret) {
2905 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2906 			con, con->delay);
2907 		BUG_ON(ret == -ENOENT);
2908 		con_flag_set(con, CON_FLAG_BACKOFF);
2909 	}
2910 
2911 	return true;
2912 }
2913 
2914 /* Finish fault handling; con->mutex must *not* be held here */
2915 
2916 static void con_fault_finish(struct ceph_connection *con)
2917 {
2918 	dout("%s %p\n", __func__, con);
2919 
2920 	/*
2921 	 * in case we faulted due to authentication, invalidate our
2922 	 * current tickets so that we can get new ones.
2923 	 */
2924 	if (con->auth_retry) {
2925 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2926 		if (con->ops->invalidate_authorizer)
2927 			con->ops->invalidate_authorizer(con);
2928 		con->auth_retry = 0;
2929 	}
2930 
2931 	if (con->ops->fault)
2932 		con->ops->fault(con);
2933 }
2934 
2935 /*
2936  * Do some work on a connection.  Drop a connection ref when we're done.
2937  */
2938 static void ceph_con_workfn(struct work_struct *work)
2939 {
2940 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2941 						   work.work);
2942 	bool fault;
2943 
2944 	mutex_lock(&con->mutex);
2945 	while (true) {
2946 		int ret;
2947 
2948 		if ((fault = con_sock_closed(con))) {
2949 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2950 			break;
2951 		}
2952 		if (con_backoff(con)) {
2953 			dout("%s: con %p BACKOFF\n", __func__, con);
2954 			break;
2955 		}
2956 		if (con->state == CON_STATE_STANDBY) {
2957 			dout("%s: con %p STANDBY\n", __func__, con);
2958 			break;
2959 		}
2960 		if (con->state == CON_STATE_CLOSED) {
2961 			dout("%s: con %p CLOSED\n", __func__, con);
2962 			BUG_ON(con->sock);
2963 			break;
2964 		}
2965 		if (con->state == CON_STATE_PREOPEN) {
2966 			dout("%s: con %p PREOPEN\n", __func__, con);
2967 			BUG_ON(con->sock);
2968 		}
2969 
2970 		ret = try_read(con);
2971 		if (ret < 0) {
2972 			if (ret == -EAGAIN)
2973 				continue;
2974 			if (!con->error_msg)
2975 				con->error_msg = "socket error on read";
2976 			fault = true;
2977 			break;
2978 		}
2979 
2980 		ret = try_write(con);
2981 		if (ret < 0) {
2982 			if (ret == -EAGAIN)
2983 				continue;
2984 			if (!con->error_msg)
2985 				con->error_msg = "socket error on write";
2986 			fault = true;
2987 		}
2988 
2989 		break;	/* If we make it to here, we're done */
2990 	}
2991 	if (fault)
2992 		con_fault(con);
2993 	mutex_unlock(&con->mutex);
2994 
2995 	if (fault)
2996 		con_fault_finish(con);
2997 
2998 	con->ops->put(con);
2999 }
3000 
3001 /*
3002  * Generic error/fault handler.  A retry mechanism is used with
3003  * exponential backoff
3004  */
3005 static void con_fault(struct ceph_connection *con)
3006 {
3007 	dout("fault %p state %lu to peer %s\n",
3008 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
3009 
3010 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
3011 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
3012 	con->error_msg = NULL;
3013 
3014 	WARN_ON(con->state != CON_STATE_CONNECTING &&
3015 	       con->state != CON_STATE_NEGOTIATING &&
3016 	       con->state != CON_STATE_OPEN);
3017 
3018 	con_close_socket(con);
3019 
3020 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3021 		dout("fault on LOSSYTX channel, marking CLOSED\n");
3022 		con->state = CON_STATE_CLOSED;
3023 		return;
3024 	}
3025 
3026 	if (con->in_msg) {
3027 		BUG_ON(con->in_msg->con != con);
3028 		ceph_msg_put(con->in_msg);
3029 		con->in_msg = NULL;
3030 	}
3031 
3032 	/* Requeue anything that hasn't been acked */
3033 	list_splice_init(&con->out_sent, &con->out_queue);
3034 
3035 	/* If there are no messages queued or keepalive pending, place
3036 	 * the connection in a STANDBY state */
3037 	if (list_empty(&con->out_queue) &&
3038 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3039 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3040 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3041 		con->state = CON_STATE_STANDBY;
3042 	} else {
3043 		/* retry after a delay. */
3044 		con->state = CON_STATE_PREOPEN;
3045 		if (con->delay == 0)
3046 			con->delay = BASE_DELAY_INTERVAL;
3047 		else if (con->delay < MAX_DELAY_INTERVAL)
3048 			con->delay *= 2;
3049 		con_flag_set(con, CON_FLAG_BACKOFF);
3050 		queue_con(con);
3051 	}
3052 }
3053 
3054 
3055 
3056 /*
3057  * initialize a new messenger instance
3058  */
3059 void ceph_messenger_init(struct ceph_messenger *msgr,
3060 			 struct ceph_entity_addr *myaddr)
3061 {
3062 	spin_lock_init(&msgr->global_seq_lock);
3063 
3064 	if (myaddr)
3065 		msgr->inst.addr = *myaddr;
3066 
3067 	/* select a random nonce */
3068 	msgr->inst.addr.type = 0;
3069 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3070 	encode_my_addr(msgr);
3071 
3072 	atomic_set(&msgr->stopping, 0);
3073 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3074 
3075 	dout("%s %p\n", __func__, msgr);
3076 }
3077 EXPORT_SYMBOL(ceph_messenger_init);
3078 
3079 void ceph_messenger_fini(struct ceph_messenger *msgr)
3080 {
3081 	put_net(read_pnet(&msgr->net));
3082 }
3083 EXPORT_SYMBOL(ceph_messenger_fini);
3084 
3085 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3086 {
3087 	if (msg->con)
3088 		msg->con->ops->put(msg->con);
3089 
3090 	msg->con = con ? con->ops->get(con) : NULL;
3091 	BUG_ON(msg->con != con);
3092 }
3093 
3094 static void clear_standby(struct ceph_connection *con)
3095 {
3096 	/* come back from STANDBY? */
3097 	if (con->state == CON_STATE_STANDBY) {
3098 		dout("clear_standby %p and ++connect_seq\n", con);
3099 		con->state = CON_STATE_PREOPEN;
3100 		con->connect_seq++;
3101 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3102 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3103 	}
3104 }
3105 
3106 /*
3107  * Queue up an outgoing message on the given connection.
3108  */
3109 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3110 {
3111 	/* set src+dst */
3112 	msg->hdr.src = con->msgr->inst.name;
3113 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3114 	msg->needs_out_seq = true;
3115 
3116 	mutex_lock(&con->mutex);
3117 
3118 	if (con->state == CON_STATE_CLOSED) {
3119 		dout("con_send %p closed, dropping %p\n", con, msg);
3120 		ceph_msg_put(msg);
3121 		mutex_unlock(&con->mutex);
3122 		return;
3123 	}
3124 
3125 	msg_con_set(msg, con);
3126 
3127 	BUG_ON(!list_empty(&msg->list_head));
3128 	list_add_tail(&msg->list_head, &con->out_queue);
3129 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3130 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3131 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3132 	     le32_to_cpu(msg->hdr.front_len),
3133 	     le32_to_cpu(msg->hdr.middle_len),
3134 	     le32_to_cpu(msg->hdr.data_len));
3135 
3136 	clear_standby(con);
3137 	mutex_unlock(&con->mutex);
3138 
3139 	/* if there wasn't anything waiting to send before, queue
3140 	 * new work */
3141 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3142 		queue_con(con);
3143 }
3144 EXPORT_SYMBOL(ceph_con_send);
3145 
3146 /*
3147  * Revoke a message that was previously queued for send
3148  */
3149 void ceph_msg_revoke(struct ceph_msg *msg)
3150 {
3151 	struct ceph_connection *con = msg->con;
3152 
3153 	if (!con) {
3154 		dout("%s msg %p null con\n", __func__, msg);
3155 		return;		/* Message not in our possession */
3156 	}
3157 
3158 	mutex_lock(&con->mutex);
3159 	if (!list_empty(&msg->list_head)) {
3160 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3161 		list_del_init(&msg->list_head);
3162 		msg->hdr.seq = 0;
3163 
3164 		ceph_msg_put(msg);
3165 	}
3166 	if (con->out_msg == msg) {
3167 		BUG_ON(con->out_skip);
3168 		/* footer */
3169 		if (con->out_msg_done) {
3170 			con->out_skip += con_out_kvec_skip(con);
3171 		} else {
3172 			BUG_ON(!msg->data_length);
3173 			con->out_skip += sizeof_footer(con);
3174 		}
3175 		/* data, middle, front */
3176 		if (msg->data_length)
3177 			con->out_skip += msg->cursor.total_resid;
3178 		if (msg->middle)
3179 			con->out_skip += con_out_kvec_skip(con);
3180 		con->out_skip += con_out_kvec_skip(con);
3181 
3182 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3183 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3184 		msg->hdr.seq = 0;
3185 		con->out_msg = NULL;
3186 		ceph_msg_put(msg);
3187 	}
3188 
3189 	mutex_unlock(&con->mutex);
3190 }
3191 
3192 /*
3193  * Revoke a message that we may be reading data into
3194  */
3195 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3196 {
3197 	struct ceph_connection *con = msg->con;
3198 
3199 	if (!con) {
3200 		dout("%s msg %p null con\n", __func__, msg);
3201 		return;		/* Message not in our possession */
3202 	}
3203 
3204 	mutex_lock(&con->mutex);
3205 	if (con->in_msg == msg) {
3206 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3207 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3208 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3209 
3210 		/* skip rest of message */
3211 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3212 		con->in_base_pos = con->in_base_pos -
3213 				sizeof(struct ceph_msg_header) -
3214 				front_len -
3215 				middle_len -
3216 				data_len -
3217 				sizeof(struct ceph_msg_footer);
3218 		ceph_msg_put(con->in_msg);
3219 		con->in_msg = NULL;
3220 		con->in_tag = CEPH_MSGR_TAG_READY;
3221 		con->in_seq++;
3222 	} else {
3223 		dout("%s %p in_msg %p msg %p no-op\n",
3224 		     __func__, con, con->in_msg, msg);
3225 	}
3226 	mutex_unlock(&con->mutex);
3227 }
3228 
3229 /*
3230  * Queue a keepalive byte to ensure the tcp connection is alive.
3231  */
3232 void ceph_con_keepalive(struct ceph_connection *con)
3233 {
3234 	dout("con_keepalive %p\n", con);
3235 	mutex_lock(&con->mutex);
3236 	clear_standby(con);
3237 	mutex_unlock(&con->mutex);
3238 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3239 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3240 		queue_con(con);
3241 }
3242 EXPORT_SYMBOL(ceph_con_keepalive);
3243 
3244 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3245 			       unsigned long interval)
3246 {
3247 	if (interval > 0 &&
3248 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3249 		struct timespec64 now;
3250 		struct timespec64 ts;
3251 		ktime_get_real_ts64(&now);
3252 		jiffies_to_timespec64(interval, &ts);
3253 		ts = timespec64_add(con->last_keepalive_ack, ts);
3254 		return timespec64_compare(&now, &ts) >= 0;
3255 	}
3256 	return false;
3257 }
3258 
3259 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3260 {
3261 	struct ceph_msg_data *data;
3262 
3263 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3264 		return NULL;
3265 
3266 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3267 	if (!data)
3268 		return NULL;
3269 
3270 	data->type = type;
3271 	INIT_LIST_HEAD(&data->links);
3272 
3273 	return data;
3274 }
3275 
3276 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3277 {
3278 	if (!data)
3279 		return;
3280 
3281 	WARN_ON(!list_empty(&data->links));
3282 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3283 		ceph_pagelist_release(data->pagelist);
3284 	kmem_cache_free(ceph_msg_data_cache, data);
3285 }
3286 
3287 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3288 		size_t length, size_t alignment)
3289 {
3290 	struct ceph_msg_data *data;
3291 
3292 	BUG_ON(!pages);
3293 	BUG_ON(!length);
3294 
3295 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3296 	BUG_ON(!data);
3297 	data->pages = pages;
3298 	data->length = length;
3299 	data->alignment = alignment & ~PAGE_MASK;
3300 
3301 	list_add_tail(&data->links, &msg->data);
3302 	msg->data_length += length;
3303 }
3304 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3305 
3306 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3307 				struct ceph_pagelist *pagelist)
3308 {
3309 	struct ceph_msg_data *data;
3310 
3311 	BUG_ON(!pagelist);
3312 	BUG_ON(!pagelist->length);
3313 
3314 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3315 	BUG_ON(!data);
3316 	data->pagelist = pagelist;
3317 
3318 	list_add_tail(&data->links, &msg->data);
3319 	msg->data_length += pagelist->length;
3320 }
3321 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3322 
3323 #ifdef	CONFIG_BLOCK
3324 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3325 			   u32 length)
3326 {
3327 	struct ceph_msg_data *data;
3328 
3329 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3330 	BUG_ON(!data);
3331 	data->bio_pos = *bio_pos;
3332 	data->bio_length = length;
3333 
3334 	list_add_tail(&data->links, &msg->data);
3335 	msg->data_length += length;
3336 }
3337 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3338 #endif	/* CONFIG_BLOCK */
3339 
3340 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3341 			     struct ceph_bvec_iter *bvec_pos)
3342 {
3343 	struct ceph_msg_data *data;
3344 
3345 	data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3346 	BUG_ON(!data);
3347 	data->bvec_pos = *bvec_pos;
3348 
3349 	list_add_tail(&data->links, &msg->data);
3350 	msg->data_length += bvec_pos->iter.bi_size;
3351 }
3352 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3353 
3354 /*
3355  * construct a new message with given type, size
3356  * the new msg has a ref count of 1.
3357  */
3358 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3359 			      bool can_fail)
3360 {
3361 	struct ceph_msg *m;
3362 
3363 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3364 	if (m == NULL)
3365 		goto out;
3366 
3367 	m->hdr.type = cpu_to_le16(type);
3368 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3369 	m->hdr.front_len = cpu_to_le32(front_len);
3370 
3371 	INIT_LIST_HEAD(&m->list_head);
3372 	kref_init(&m->kref);
3373 	INIT_LIST_HEAD(&m->data);
3374 
3375 	/* front */
3376 	if (front_len) {
3377 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3378 		if (m->front.iov_base == NULL) {
3379 			dout("ceph_msg_new can't allocate %d bytes\n",
3380 			     front_len);
3381 			goto out2;
3382 		}
3383 	} else {
3384 		m->front.iov_base = NULL;
3385 	}
3386 	m->front_alloc_len = m->front.iov_len = front_len;
3387 
3388 	dout("ceph_msg_new %p front %d\n", m, front_len);
3389 	return m;
3390 
3391 out2:
3392 	ceph_msg_put(m);
3393 out:
3394 	if (!can_fail) {
3395 		pr_err("msg_new can't create type %d front %d\n", type,
3396 		       front_len);
3397 		WARN_ON(1);
3398 	} else {
3399 		dout("msg_new can't create type %d front %d\n", type,
3400 		     front_len);
3401 	}
3402 	return NULL;
3403 }
3404 EXPORT_SYMBOL(ceph_msg_new);
3405 
3406 /*
3407  * Allocate "middle" portion of a message, if it is needed and wasn't
3408  * allocated by alloc_msg.  This allows us to read a small fixed-size
3409  * per-type header in the front and then gracefully fail (i.e.,
3410  * propagate the error to the caller based on info in the front) when
3411  * the middle is too large.
3412  */
3413 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3414 {
3415 	int type = le16_to_cpu(msg->hdr.type);
3416 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3417 
3418 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3419 	     ceph_msg_type_name(type), middle_len);
3420 	BUG_ON(!middle_len);
3421 	BUG_ON(msg->middle);
3422 
3423 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3424 	if (!msg->middle)
3425 		return -ENOMEM;
3426 	return 0;
3427 }
3428 
3429 /*
3430  * Allocate a message for receiving an incoming message on a
3431  * connection, and save the result in con->in_msg.  Uses the
3432  * connection's private alloc_msg op if available.
3433  *
3434  * Returns 0 on success, or a negative error code.
3435  *
3436  * On success, if we set *skip = 1:
3437  *  - the next message should be skipped and ignored.
3438  *  - con->in_msg == NULL
3439  * or if we set *skip = 0:
3440  *  - con->in_msg is non-null.
3441  * On error (ENOMEM, EAGAIN, ...),
3442  *  - con->in_msg == NULL
3443  */
3444 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3445 {
3446 	struct ceph_msg_header *hdr = &con->in_hdr;
3447 	int middle_len = le32_to_cpu(hdr->middle_len);
3448 	struct ceph_msg *msg;
3449 	int ret = 0;
3450 
3451 	BUG_ON(con->in_msg != NULL);
3452 	BUG_ON(!con->ops->alloc_msg);
3453 
3454 	mutex_unlock(&con->mutex);
3455 	msg = con->ops->alloc_msg(con, hdr, skip);
3456 	mutex_lock(&con->mutex);
3457 	if (con->state != CON_STATE_OPEN) {
3458 		if (msg)
3459 			ceph_msg_put(msg);
3460 		return -EAGAIN;
3461 	}
3462 	if (msg) {
3463 		BUG_ON(*skip);
3464 		msg_con_set(msg, con);
3465 		con->in_msg = msg;
3466 	} else {
3467 		/*
3468 		 * Null message pointer means either we should skip
3469 		 * this message or we couldn't allocate memory.  The
3470 		 * former is not an error.
3471 		 */
3472 		if (*skip)
3473 			return 0;
3474 
3475 		con->error_msg = "error allocating memory for incoming message";
3476 		return -ENOMEM;
3477 	}
3478 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3479 
3480 	if (middle_len && !con->in_msg->middle) {
3481 		ret = ceph_alloc_middle(con, con->in_msg);
3482 		if (ret < 0) {
3483 			ceph_msg_put(con->in_msg);
3484 			con->in_msg = NULL;
3485 		}
3486 	}
3487 
3488 	return ret;
3489 }
3490 
3491 
3492 /*
3493  * Free a generically kmalloc'd message.
3494  */
3495 static void ceph_msg_free(struct ceph_msg *m)
3496 {
3497 	dout("%s %p\n", __func__, m);
3498 	kvfree(m->front.iov_base);
3499 	kmem_cache_free(ceph_msg_cache, m);
3500 }
3501 
3502 static void ceph_msg_release(struct kref *kref)
3503 {
3504 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3505 	struct ceph_msg_data *data, *next;
3506 
3507 	dout("%s %p\n", __func__, m);
3508 	WARN_ON(!list_empty(&m->list_head));
3509 
3510 	msg_con_set(m, NULL);
3511 
3512 	/* drop middle, data, if any */
3513 	if (m->middle) {
3514 		ceph_buffer_put(m->middle);
3515 		m->middle = NULL;
3516 	}
3517 
3518 	list_for_each_entry_safe(data, next, &m->data, links) {
3519 		list_del_init(&data->links);
3520 		ceph_msg_data_destroy(data);
3521 	}
3522 	m->data_length = 0;
3523 
3524 	if (m->pool)
3525 		ceph_msgpool_put(m->pool, m);
3526 	else
3527 		ceph_msg_free(m);
3528 }
3529 
3530 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3531 {
3532 	dout("%s %p (was %d)\n", __func__, msg,
3533 	     kref_read(&msg->kref));
3534 	kref_get(&msg->kref);
3535 	return msg;
3536 }
3537 EXPORT_SYMBOL(ceph_msg_get);
3538 
3539 void ceph_msg_put(struct ceph_msg *msg)
3540 {
3541 	dout("%s %p (was %d)\n", __func__, msg,
3542 	     kref_read(&msg->kref));
3543 	kref_put(&msg->kref, ceph_msg_release);
3544 }
3545 EXPORT_SYMBOL(ceph_msg_put);
3546 
3547 void ceph_msg_dump(struct ceph_msg *msg)
3548 {
3549 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3550 		 msg->front_alloc_len, msg->data_length);
3551 	print_hex_dump(KERN_DEBUG, "header: ",
3552 		       DUMP_PREFIX_OFFSET, 16, 1,
3553 		       &msg->hdr, sizeof(msg->hdr), true);
3554 	print_hex_dump(KERN_DEBUG, " front: ",
3555 		       DUMP_PREFIX_OFFSET, 16, 1,
3556 		       msg->front.iov_base, msg->front.iov_len, true);
3557 	if (msg->middle)
3558 		print_hex_dump(KERN_DEBUG, "middle: ",
3559 			       DUMP_PREFIX_OFFSET, 16, 1,
3560 			       msg->middle->vec.iov_base,
3561 			       msg->middle->vec.iov_len, true);
3562 	print_hex_dump(KERN_DEBUG, "footer: ",
3563 		       DUMP_PREFIX_OFFSET, 16, 1,
3564 		       &msg->footer, sizeof(msg->footer), true);
3565 }
3566 EXPORT_SYMBOL(ceph_msg_dump);
3567