xref: /openbmc/linux/net/ceph/messenger.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15 
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 
21 /*
22  * Ceph uses the messenger to exchange ceph_msg messages with other
23  * hosts in the system.  The messenger provides ordered and reliable
24  * delivery.  We tolerate TCP disconnects by reconnecting (with
25  * exponential backoff) in the case of a fault (disconnection, bad
26  * crc, protocol error).  Acks allow sent messages to be discarded by
27  * the sender.
28  */
29 
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34 
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38 
39 
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43 
44 /*
45  * nicely render a sockaddr as a string.
46  */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52 
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55 	int i;
56 	char *s;
57 	struct sockaddr_in *in4 = (void *)ss;
58 	struct sockaddr_in6 *in6 = (void *)ss;
59 
60 	spin_lock(&addr_str_lock);
61 	i = last_addr_str++;
62 	if (last_addr_str == MAX_ADDR_STR)
63 		last_addr_str = 0;
64 	spin_unlock(&addr_str_lock);
65 	s = addr_str[i];
66 
67 	switch (ss->ss_family) {
68 	case AF_INET:
69 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 			 (unsigned int)ntohs(in4->sin_port));
71 		break;
72 
73 	case AF_INET6:
74 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 			 (unsigned int)ntohs(in6->sin6_port));
76 		break;
77 
78 	default:
79 		sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
80 	}
81 
82 	return s;
83 }
84 EXPORT_SYMBOL(ceph_pr_addr);
85 
86 static void encode_my_addr(struct ceph_messenger *msgr)
87 {
88 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89 	ceph_encode_addr(&msgr->my_enc_addr);
90 }
91 
92 /*
93  * work queue for all reading and writing to/from the socket.
94  */
95 struct workqueue_struct *ceph_msgr_wq;
96 
97 int ceph_msgr_init(void)
98 {
99 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
100 	if (!ceph_msgr_wq) {
101 		pr_err("msgr_init failed to create workqueue\n");
102 		return -ENOMEM;
103 	}
104 	return 0;
105 }
106 EXPORT_SYMBOL(ceph_msgr_init);
107 
108 void ceph_msgr_exit(void)
109 {
110 	destroy_workqueue(ceph_msgr_wq);
111 }
112 EXPORT_SYMBOL(ceph_msgr_exit);
113 
114 void ceph_msgr_flush(void)
115 {
116 	flush_workqueue(ceph_msgr_wq);
117 }
118 EXPORT_SYMBOL(ceph_msgr_flush);
119 
120 
121 /*
122  * socket callback functions
123  */
124 
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock *sk, int count_unused)
127 {
128 	struct ceph_connection *con =
129 		(struct ceph_connection *)sk->sk_user_data;
130 	if (sk->sk_state != TCP_CLOSE_WAIT) {
131 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
132 		     con, con->state);
133 		queue_con(con);
134 	}
135 }
136 
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock *sk)
139 {
140 	struct ceph_connection *con =
141 		(struct ceph_connection *)sk->sk_user_data;
142 
143 	/* only queue to workqueue if there is data we want to write. */
144 	if (test_bit(WRITE_PENDING, &con->state)) {
145 		dout("ceph_write_space %p queueing write work\n", con);
146 		queue_con(con);
147 	} else {
148 		dout("ceph_write_space %p nothing to write\n", con);
149 	}
150 
151 	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
152 	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
153 }
154 
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock *sk)
157 {
158 	struct ceph_connection *con =
159 		(struct ceph_connection *)sk->sk_user_data;
160 
161 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
162 	     con, con->state, sk->sk_state);
163 
164 	if (test_bit(CLOSED, &con->state))
165 		return;
166 
167 	switch (sk->sk_state) {
168 	case TCP_CLOSE:
169 		dout("ceph_state_change TCP_CLOSE\n");
170 	case TCP_CLOSE_WAIT:
171 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
172 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
173 			if (test_bit(CONNECTING, &con->state))
174 				con->error_msg = "connection failed";
175 			else
176 				con->error_msg = "socket closed";
177 			queue_con(con);
178 		}
179 		break;
180 	case TCP_ESTABLISHED:
181 		dout("ceph_state_change TCP_ESTABLISHED\n");
182 		queue_con(con);
183 		break;
184 	}
185 }
186 
187 /*
188  * set up socket callbacks
189  */
190 static void set_sock_callbacks(struct socket *sock,
191 			       struct ceph_connection *con)
192 {
193 	struct sock *sk = sock->sk;
194 	sk->sk_user_data = (void *)con;
195 	sk->sk_data_ready = ceph_data_ready;
196 	sk->sk_write_space = ceph_write_space;
197 	sk->sk_state_change = ceph_state_change;
198 }
199 
200 
201 /*
202  * socket helpers
203  */
204 
205 /*
206  * initiate connection to a remote socket.
207  */
208 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
209 {
210 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
211 	struct socket *sock;
212 	int ret;
213 
214 	BUG_ON(con->sock);
215 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
216 			       IPPROTO_TCP, &sock);
217 	if (ret)
218 		return ERR_PTR(ret);
219 	con->sock = sock;
220 	sock->sk->sk_allocation = GFP_NOFS;
221 
222 #ifdef CONFIG_LOCKDEP
223 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
224 #endif
225 
226 	set_sock_callbacks(sock, con);
227 
228 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
229 
230 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
231 				 O_NONBLOCK);
232 	if (ret == -EINPROGRESS) {
233 		dout("connect %s EINPROGRESS sk_state = %u\n",
234 		     ceph_pr_addr(&con->peer_addr.in_addr),
235 		     sock->sk->sk_state);
236 		ret = 0;
237 	}
238 	if (ret < 0) {
239 		pr_err("connect %s error %d\n",
240 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
241 		sock_release(sock);
242 		con->sock = NULL;
243 		con->error_msg = "connect error";
244 	}
245 
246 	if (ret < 0)
247 		return ERR_PTR(ret);
248 	return sock;
249 }
250 
251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
252 {
253 	struct kvec iov = {buf, len};
254 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
255 	int r;
256 
257 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
258 	if (r == -EAGAIN)
259 		r = 0;
260 	return r;
261 }
262 
263 /*
264  * write something.  @more is true if caller will be sending more data
265  * shortly.
266  */
267 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
268 		     size_t kvlen, size_t len, int more)
269 {
270 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
271 	int r;
272 
273 	if (more)
274 		msg.msg_flags |= MSG_MORE;
275 	else
276 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
277 
278 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
279 	if (r == -EAGAIN)
280 		r = 0;
281 	return r;
282 }
283 
284 
285 /*
286  * Shutdown/close the socket for the given connection.
287  */
288 static int con_close_socket(struct ceph_connection *con)
289 {
290 	int rc;
291 
292 	dout("con_close_socket on %p sock %p\n", con, con->sock);
293 	if (!con->sock)
294 		return 0;
295 	set_bit(SOCK_CLOSED, &con->state);
296 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
297 	sock_release(con->sock);
298 	con->sock = NULL;
299 	clear_bit(SOCK_CLOSED, &con->state);
300 	return rc;
301 }
302 
303 /*
304  * Reset a connection.  Discard all incoming and outgoing messages
305  * and clear *_seq state.
306  */
307 static void ceph_msg_remove(struct ceph_msg *msg)
308 {
309 	list_del_init(&msg->list_head);
310 	ceph_msg_put(msg);
311 }
312 static void ceph_msg_remove_list(struct list_head *head)
313 {
314 	while (!list_empty(head)) {
315 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
316 							list_head);
317 		ceph_msg_remove(msg);
318 	}
319 }
320 
321 static void reset_connection(struct ceph_connection *con)
322 {
323 	/* reset connection, out_queue, msg_ and connect_seq */
324 	/* discard existing out_queue and msg_seq */
325 	ceph_msg_remove_list(&con->out_queue);
326 	ceph_msg_remove_list(&con->out_sent);
327 
328 	if (con->in_msg) {
329 		ceph_msg_put(con->in_msg);
330 		con->in_msg = NULL;
331 	}
332 
333 	con->connect_seq = 0;
334 	con->out_seq = 0;
335 	if (con->out_msg) {
336 		ceph_msg_put(con->out_msg);
337 		con->out_msg = NULL;
338 	}
339 	con->out_keepalive_pending = false;
340 	con->in_seq = 0;
341 	con->in_seq_acked = 0;
342 }
343 
344 /*
345  * mark a peer down.  drop any open connections.
346  */
347 void ceph_con_close(struct ceph_connection *con)
348 {
349 	dout("con_close %p peer %s\n", con,
350 	     ceph_pr_addr(&con->peer_addr.in_addr));
351 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
352 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
353 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
354 	clear_bit(KEEPALIVE_PENDING, &con->state);
355 	clear_bit(WRITE_PENDING, &con->state);
356 	mutex_lock(&con->mutex);
357 	reset_connection(con);
358 	con->peer_global_seq = 0;
359 	cancel_delayed_work(&con->work);
360 	mutex_unlock(&con->mutex);
361 	queue_con(con);
362 }
363 EXPORT_SYMBOL(ceph_con_close);
364 
365 /*
366  * Reopen a closed connection, with a new peer address.
367  */
368 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
369 {
370 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
371 	set_bit(OPENING, &con->state);
372 	clear_bit(CLOSED, &con->state);
373 	memcpy(&con->peer_addr, addr, sizeof(*addr));
374 	con->delay = 0;      /* reset backoff memory */
375 	queue_con(con);
376 }
377 EXPORT_SYMBOL(ceph_con_open);
378 
379 /*
380  * return true if this connection ever successfully opened
381  */
382 bool ceph_con_opened(struct ceph_connection *con)
383 {
384 	return con->connect_seq > 0;
385 }
386 
387 /*
388  * generic get/put
389  */
390 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
391 {
392 	dout("con_get %p nref = %d -> %d\n", con,
393 	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
394 	if (atomic_inc_not_zero(&con->nref))
395 		return con;
396 	return NULL;
397 }
398 
399 void ceph_con_put(struct ceph_connection *con)
400 {
401 	dout("con_put %p nref = %d -> %d\n", con,
402 	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
403 	BUG_ON(atomic_read(&con->nref) == 0);
404 	if (atomic_dec_and_test(&con->nref)) {
405 		BUG_ON(con->sock);
406 		kfree(con);
407 	}
408 }
409 
410 /*
411  * initialize a new connection.
412  */
413 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
414 {
415 	dout("con_init %p\n", con);
416 	memset(con, 0, sizeof(*con));
417 	atomic_set(&con->nref, 1);
418 	con->msgr = msgr;
419 	mutex_init(&con->mutex);
420 	INIT_LIST_HEAD(&con->out_queue);
421 	INIT_LIST_HEAD(&con->out_sent);
422 	INIT_DELAYED_WORK(&con->work, con_work);
423 }
424 EXPORT_SYMBOL(ceph_con_init);
425 
426 
427 /*
428  * We maintain a global counter to order connection attempts.  Get
429  * a unique seq greater than @gt.
430  */
431 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
432 {
433 	u32 ret;
434 
435 	spin_lock(&msgr->global_seq_lock);
436 	if (msgr->global_seq < gt)
437 		msgr->global_seq = gt;
438 	ret = ++msgr->global_seq;
439 	spin_unlock(&msgr->global_seq_lock);
440 	return ret;
441 }
442 
443 
444 /*
445  * Prepare footer for currently outgoing message, and finish things
446  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
447  */
448 static void prepare_write_message_footer(struct ceph_connection *con, int v)
449 {
450 	struct ceph_msg *m = con->out_msg;
451 
452 	dout("prepare_write_message_footer %p\n", con);
453 	con->out_kvec_is_msg = true;
454 	con->out_kvec[v].iov_base = &m->footer;
455 	con->out_kvec[v].iov_len = sizeof(m->footer);
456 	con->out_kvec_bytes += sizeof(m->footer);
457 	con->out_kvec_left++;
458 	con->out_more = m->more_to_follow;
459 	con->out_msg_done = true;
460 }
461 
462 /*
463  * Prepare headers for the next outgoing message.
464  */
465 static void prepare_write_message(struct ceph_connection *con)
466 {
467 	struct ceph_msg *m;
468 	int v = 0;
469 
470 	con->out_kvec_bytes = 0;
471 	con->out_kvec_is_msg = true;
472 	con->out_msg_done = false;
473 
474 	/* Sneak an ack in there first?  If we can get it into the same
475 	 * TCP packet that's a good thing. */
476 	if (con->in_seq > con->in_seq_acked) {
477 		con->in_seq_acked = con->in_seq;
478 		con->out_kvec[v].iov_base = &tag_ack;
479 		con->out_kvec[v++].iov_len = 1;
480 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
481 		con->out_kvec[v].iov_base = &con->out_temp_ack;
482 		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
483 		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
484 	}
485 
486 	m = list_first_entry(&con->out_queue,
487 		       struct ceph_msg, list_head);
488 	con->out_msg = m;
489 	if (test_bit(LOSSYTX, &con->state)) {
490 		list_del_init(&m->list_head);
491 	} else {
492 		/* put message on sent list */
493 		ceph_msg_get(m);
494 		list_move_tail(&m->list_head, &con->out_sent);
495 	}
496 
497 	/*
498 	 * only assign outgoing seq # if we haven't sent this message
499 	 * yet.  if it is requeued, resend with it's original seq.
500 	 */
501 	if (m->needs_out_seq) {
502 		m->hdr.seq = cpu_to_le64(++con->out_seq);
503 		m->needs_out_seq = false;
504 	}
505 
506 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
507 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
508 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
509 	     le32_to_cpu(m->hdr.data_len),
510 	     m->nr_pages);
511 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
512 
513 	/* tag + hdr + front + middle */
514 	con->out_kvec[v].iov_base = &tag_msg;
515 	con->out_kvec[v++].iov_len = 1;
516 	con->out_kvec[v].iov_base = &m->hdr;
517 	con->out_kvec[v++].iov_len = sizeof(m->hdr);
518 	con->out_kvec[v++] = m->front;
519 	if (m->middle)
520 		con->out_kvec[v++] = m->middle->vec;
521 	con->out_kvec_left = v;
522 	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
523 		(m->middle ? m->middle->vec.iov_len : 0);
524 	con->out_kvec_cur = con->out_kvec;
525 
526 	/* fill in crc (except data pages), footer */
527 	con->out_msg->hdr.crc =
528 		cpu_to_le32(crc32c(0, (void *)&m->hdr,
529 				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
530 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
531 	con->out_msg->footer.front_crc =
532 		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
533 	if (m->middle)
534 		con->out_msg->footer.middle_crc =
535 			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
536 					   m->middle->vec.iov_len));
537 	else
538 		con->out_msg->footer.middle_crc = 0;
539 	con->out_msg->footer.data_crc = 0;
540 	dout("prepare_write_message front_crc %u data_crc %u\n",
541 	     le32_to_cpu(con->out_msg->footer.front_crc),
542 	     le32_to_cpu(con->out_msg->footer.middle_crc));
543 
544 	/* is there a data payload? */
545 	if (le32_to_cpu(m->hdr.data_len) > 0) {
546 		/* initialize page iterator */
547 		con->out_msg_pos.page = 0;
548 		if (m->pages)
549 			con->out_msg_pos.page_pos = m->page_alignment;
550 		else
551 			con->out_msg_pos.page_pos = 0;
552 		con->out_msg_pos.data_pos = 0;
553 		con->out_msg_pos.did_page_crc = 0;
554 		con->out_more = 1;  /* data + footer will follow */
555 	} else {
556 		/* no, queue up footer too and be done */
557 		prepare_write_message_footer(con, v);
558 	}
559 
560 	set_bit(WRITE_PENDING, &con->state);
561 }
562 
563 /*
564  * Prepare an ack.
565  */
566 static void prepare_write_ack(struct ceph_connection *con)
567 {
568 	dout("prepare_write_ack %p %llu -> %llu\n", con,
569 	     con->in_seq_acked, con->in_seq);
570 	con->in_seq_acked = con->in_seq;
571 
572 	con->out_kvec[0].iov_base = &tag_ack;
573 	con->out_kvec[0].iov_len = 1;
574 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
575 	con->out_kvec[1].iov_base = &con->out_temp_ack;
576 	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
577 	con->out_kvec_left = 2;
578 	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
579 	con->out_kvec_cur = con->out_kvec;
580 	con->out_more = 1;  /* more will follow.. eventually.. */
581 	set_bit(WRITE_PENDING, &con->state);
582 }
583 
584 /*
585  * Prepare to write keepalive byte.
586  */
587 static void prepare_write_keepalive(struct ceph_connection *con)
588 {
589 	dout("prepare_write_keepalive %p\n", con);
590 	con->out_kvec[0].iov_base = &tag_keepalive;
591 	con->out_kvec[0].iov_len = 1;
592 	con->out_kvec_left = 1;
593 	con->out_kvec_bytes = 1;
594 	con->out_kvec_cur = con->out_kvec;
595 	set_bit(WRITE_PENDING, &con->state);
596 }
597 
598 /*
599  * Connection negotiation.
600  */
601 
602 static void prepare_connect_authorizer(struct ceph_connection *con)
603 {
604 	void *auth_buf;
605 	int auth_len = 0;
606 	int auth_protocol = 0;
607 
608 	mutex_unlock(&con->mutex);
609 	if (con->ops->get_authorizer)
610 		con->ops->get_authorizer(con, &auth_buf, &auth_len,
611 					 &auth_protocol, &con->auth_reply_buf,
612 					 &con->auth_reply_buf_len,
613 					 con->auth_retry);
614 	mutex_lock(&con->mutex);
615 
616 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
617 	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
618 
619 	con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
620 	con->out_kvec[con->out_kvec_left].iov_len = auth_len;
621 	con->out_kvec_left++;
622 	con->out_kvec_bytes += auth_len;
623 }
624 
625 /*
626  * We connected to a peer and are saying hello.
627  */
628 static void prepare_write_banner(struct ceph_messenger *msgr,
629 				 struct ceph_connection *con)
630 {
631 	int len = strlen(CEPH_BANNER);
632 
633 	con->out_kvec[0].iov_base = CEPH_BANNER;
634 	con->out_kvec[0].iov_len = len;
635 	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
636 	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
637 	con->out_kvec_left = 2;
638 	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
639 	con->out_kvec_cur = con->out_kvec;
640 	con->out_more = 0;
641 	set_bit(WRITE_PENDING, &con->state);
642 }
643 
644 static void prepare_write_connect(struct ceph_messenger *msgr,
645 				  struct ceph_connection *con,
646 				  int after_banner)
647 {
648 	unsigned global_seq = get_global_seq(con->msgr, 0);
649 	int proto;
650 
651 	switch (con->peer_name.type) {
652 	case CEPH_ENTITY_TYPE_MON:
653 		proto = CEPH_MONC_PROTOCOL;
654 		break;
655 	case CEPH_ENTITY_TYPE_OSD:
656 		proto = CEPH_OSDC_PROTOCOL;
657 		break;
658 	case CEPH_ENTITY_TYPE_MDS:
659 		proto = CEPH_MDSC_PROTOCOL;
660 		break;
661 	default:
662 		BUG();
663 	}
664 
665 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
666 	     con->connect_seq, global_seq, proto);
667 
668 	con->out_connect.features = cpu_to_le64(msgr->supported_features);
669 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
670 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
671 	con->out_connect.global_seq = cpu_to_le32(global_seq);
672 	con->out_connect.protocol_version = cpu_to_le32(proto);
673 	con->out_connect.flags = 0;
674 
675 	if (!after_banner) {
676 		con->out_kvec_left = 0;
677 		con->out_kvec_bytes = 0;
678 	}
679 	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
680 	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
681 	con->out_kvec_left++;
682 	con->out_kvec_bytes += sizeof(con->out_connect);
683 	con->out_kvec_cur = con->out_kvec;
684 	con->out_more = 0;
685 	set_bit(WRITE_PENDING, &con->state);
686 
687 	prepare_connect_authorizer(con);
688 }
689 
690 
691 /*
692  * write as much of pending kvecs to the socket as we can.
693  *  1 -> done
694  *  0 -> socket full, but more to do
695  * <0 -> error
696  */
697 static int write_partial_kvec(struct ceph_connection *con)
698 {
699 	int ret;
700 
701 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
702 	while (con->out_kvec_bytes > 0) {
703 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
704 				       con->out_kvec_left, con->out_kvec_bytes,
705 				       con->out_more);
706 		if (ret <= 0)
707 			goto out;
708 		con->out_kvec_bytes -= ret;
709 		if (con->out_kvec_bytes == 0)
710 			break;            /* done */
711 		while (ret > 0) {
712 			if (ret >= con->out_kvec_cur->iov_len) {
713 				ret -= con->out_kvec_cur->iov_len;
714 				con->out_kvec_cur++;
715 				con->out_kvec_left--;
716 			} else {
717 				con->out_kvec_cur->iov_len -= ret;
718 				con->out_kvec_cur->iov_base += ret;
719 				ret = 0;
720 				break;
721 			}
722 		}
723 	}
724 	con->out_kvec_left = 0;
725 	con->out_kvec_is_msg = false;
726 	ret = 1;
727 out:
728 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
729 	     con->out_kvec_bytes, con->out_kvec_left, ret);
730 	return ret;  /* done! */
731 }
732 
733 #ifdef CONFIG_BLOCK
734 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
735 {
736 	if (!bio) {
737 		*iter = NULL;
738 		*seg = 0;
739 		return;
740 	}
741 	*iter = bio;
742 	*seg = bio->bi_idx;
743 }
744 
745 static void iter_bio_next(struct bio **bio_iter, int *seg)
746 {
747 	if (*bio_iter == NULL)
748 		return;
749 
750 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
751 
752 	(*seg)++;
753 	if (*seg == (*bio_iter)->bi_vcnt)
754 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
755 }
756 #endif
757 
758 /*
759  * Write as much message data payload as we can.  If we finish, queue
760  * up the footer.
761  *  1 -> done, footer is now queued in out_kvec[].
762  *  0 -> socket full, but more to do
763  * <0 -> error
764  */
765 static int write_partial_msg_pages(struct ceph_connection *con)
766 {
767 	struct ceph_msg *msg = con->out_msg;
768 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
769 	size_t len;
770 	int crc = con->msgr->nocrc;
771 	int ret;
772 	int total_max_write;
773 	int in_trail = 0;
774 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
775 
776 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
777 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
778 	     con->out_msg_pos.page_pos);
779 
780 #ifdef CONFIG_BLOCK
781 	if (msg->bio && !msg->bio_iter)
782 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
783 #endif
784 
785 	while (data_len > con->out_msg_pos.data_pos) {
786 		struct page *page = NULL;
787 		void *kaddr = NULL;
788 		int max_write = PAGE_SIZE;
789 		int page_shift = 0;
790 
791 		total_max_write = data_len - trail_len -
792 			con->out_msg_pos.data_pos;
793 
794 		/*
795 		 * if we are calculating the data crc (the default), we need
796 		 * to map the page.  if our pages[] has been revoked, use the
797 		 * zero page.
798 		 */
799 
800 		/* have we reached the trail part of the data? */
801 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
802 			in_trail = 1;
803 
804 			total_max_write = data_len - con->out_msg_pos.data_pos;
805 
806 			page = list_first_entry(&msg->trail->head,
807 						struct page, lru);
808 			if (crc)
809 				kaddr = kmap(page);
810 			max_write = PAGE_SIZE;
811 		} else if (msg->pages) {
812 			page = msg->pages[con->out_msg_pos.page];
813 			if (crc)
814 				kaddr = kmap(page);
815 		} else if (msg->pagelist) {
816 			page = list_first_entry(&msg->pagelist->head,
817 						struct page, lru);
818 			if (crc)
819 				kaddr = kmap(page);
820 #ifdef CONFIG_BLOCK
821 		} else if (msg->bio) {
822 			struct bio_vec *bv;
823 
824 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
825 			page = bv->bv_page;
826 			page_shift = bv->bv_offset;
827 			if (crc)
828 				kaddr = kmap(page) + page_shift;
829 			max_write = bv->bv_len;
830 #endif
831 		} else {
832 			page = con->msgr->zero_page;
833 			if (crc)
834 				kaddr = page_address(con->msgr->zero_page);
835 		}
836 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
837 			    total_max_write);
838 
839 		if (crc && !con->out_msg_pos.did_page_crc) {
840 			void *base = kaddr + con->out_msg_pos.page_pos;
841 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
842 
843 			BUG_ON(kaddr == NULL);
844 			con->out_msg->footer.data_crc =
845 				cpu_to_le32(crc32c(tmpcrc, base, len));
846 			con->out_msg_pos.did_page_crc = 1;
847 		}
848 		ret = kernel_sendpage(con->sock, page,
849 				      con->out_msg_pos.page_pos + page_shift,
850 				      len,
851 				      MSG_DONTWAIT | MSG_NOSIGNAL |
852 				      MSG_MORE);
853 
854 		if (crc &&
855 		    (msg->pages || msg->pagelist || msg->bio || in_trail))
856 			kunmap(page);
857 
858 		if (ret == -EAGAIN)
859 			ret = 0;
860 		if (ret <= 0)
861 			goto out;
862 
863 		con->out_msg_pos.data_pos += ret;
864 		con->out_msg_pos.page_pos += ret;
865 		if (ret == len) {
866 			con->out_msg_pos.page_pos = 0;
867 			con->out_msg_pos.page++;
868 			con->out_msg_pos.did_page_crc = 0;
869 			if (in_trail)
870 				list_move_tail(&page->lru,
871 					       &msg->trail->head);
872 			else if (msg->pagelist)
873 				list_move_tail(&page->lru,
874 					       &msg->pagelist->head);
875 #ifdef CONFIG_BLOCK
876 			else if (msg->bio)
877 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
878 #endif
879 		}
880 	}
881 
882 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
883 
884 	/* prepare and queue up footer, too */
885 	if (!crc)
886 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
887 	con->out_kvec_bytes = 0;
888 	con->out_kvec_left = 0;
889 	con->out_kvec_cur = con->out_kvec;
890 	prepare_write_message_footer(con, 0);
891 	ret = 1;
892 out:
893 	return ret;
894 }
895 
896 /*
897  * write some zeros
898  */
899 static int write_partial_skip(struct ceph_connection *con)
900 {
901 	int ret;
902 
903 	while (con->out_skip > 0) {
904 		struct kvec iov = {
905 			.iov_base = page_address(con->msgr->zero_page),
906 			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
907 		};
908 
909 		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
910 		if (ret <= 0)
911 			goto out;
912 		con->out_skip -= ret;
913 	}
914 	ret = 1;
915 out:
916 	return ret;
917 }
918 
919 /*
920  * Prepare to read connection handshake, or an ack.
921  */
922 static void prepare_read_banner(struct ceph_connection *con)
923 {
924 	dout("prepare_read_banner %p\n", con);
925 	con->in_base_pos = 0;
926 }
927 
928 static void prepare_read_connect(struct ceph_connection *con)
929 {
930 	dout("prepare_read_connect %p\n", con);
931 	con->in_base_pos = 0;
932 }
933 
934 static void prepare_read_ack(struct ceph_connection *con)
935 {
936 	dout("prepare_read_ack %p\n", con);
937 	con->in_base_pos = 0;
938 }
939 
940 static void prepare_read_tag(struct ceph_connection *con)
941 {
942 	dout("prepare_read_tag %p\n", con);
943 	con->in_base_pos = 0;
944 	con->in_tag = CEPH_MSGR_TAG_READY;
945 }
946 
947 /*
948  * Prepare to read a message.
949  */
950 static int prepare_read_message(struct ceph_connection *con)
951 {
952 	dout("prepare_read_message %p\n", con);
953 	BUG_ON(con->in_msg != NULL);
954 	con->in_base_pos = 0;
955 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
956 	return 0;
957 }
958 
959 
960 static int read_partial(struct ceph_connection *con,
961 			int *to, int size, void *object)
962 {
963 	*to += size;
964 	while (con->in_base_pos < *to) {
965 		int left = *to - con->in_base_pos;
966 		int have = size - left;
967 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
968 		if (ret <= 0)
969 			return ret;
970 		con->in_base_pos += ret;
971 	}
972 	return 1;
973 }
974 
975 
976 /*
977  * Read all or part of the connect-side handshake on a new connection
978  */
979 static int read_partial_banner(struct ceph_connection *con)
980 {
981 	int ret, to = 0;
982 
983 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
984 
985 	/* peer's banner */
986 	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
987 	if (ret <= 0)
988 		goto out;
989 	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
990 			   &con->actual_peer_addr);
991 	if (ret <= 0)
992 		goto out;
993 	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
994 			   &con->peer_addr_for_me);
995 	if (ret <= 0)
996 		goto out;
997 out:
998 	return ret;
999 }
1000 
1001 static int read_partial_connect(struct ceph_connection *con)
1002 {
1003 	int ret, to = 0;
1004 
1005 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1006 
1007 	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1008 	if (ret <= 0)
1009 		goto out;
1010 	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1011 			   con->auth_reply_buf);
1012 	if (ret <= 0)
1013 		goto out;
1014 
1015 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1016 	     con, (int)con->in_reply.tag,
1017 	     le32_to_cpu(con->in_reply.connect_seq),
1018 	     le32_to_cpu(con->in_reply.global_seq));
1019 out:
1020 	return ret;
1021 
1022 }
1023 
1024 /*
1025  * Verify the hello banner looks okay.
1026  */
1027 static int verify_hello(struct ceph_connection *con)
1028 {
1029 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1030 		pr_err("connect to %s got bad banner\n",
1031 		       ceph_pr_addr(&con->peer_addr.in_addr));
1032 		con->error_msg = "protocol error, bad banner";
1033 		return -1;
1034 	}
1035 	return 0;
1036 }
1037 
1038 static bool addr_is_blank(struct sockaddr_storage *ss)
1039 {
1040 	switch (ss->ss_family) {
1041 	case AF_INET:
1042 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1043 	case AF_INET6:
1044 		return
1045 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1046 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1047 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1048 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1049 	}
1050 	return false;
1051 }
1052 
1053 static int addr_port(struct sockaddr_storage *ss)
1054 {
1055 	switch (ss->ss_family) {
1056 	case AF_INET:
1057 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1058 	case AF_INET6:
1059 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1060 	}
1061 	return 0;
1062 }
1063 
1064 static void addr_set_port(struct sockaddr_storage *ss, int p)
1065 {
1066 	switch (ss->ss_family) {
1067 	case AF_INET:
1068 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1069 	case AF_INET6:
1070 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1071 	}
1072 }
1073 
1074 /*
1075  * Parse an ip[:port] list into an addr array.  Use the default
1076  * monitor port if a port isn't specified.
1077  */
1078 int ceph_parse_ips(const char *c, const char *end,
1079 		   struct ceph_entity_addr *addr,
1080 		   int max_count, int *count)
1081 {
1082 	int i;
1083 	const char *p = c;
1084 
1085 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1086 	for (i = 0; i < max_count; i++) {
1087 		const char *ipend;
1088 		struct sockaddr_storage *ss = &addr[i].in_addr;
1089 		struct sockaddr_in *in4 = (void *)ss;
1090 		struct sockaddr_in6 *in6 = (void *)ss;
1091 		int port;
1092 		char delim = ',';
1093 
1094 		if (*p == '[') {
1095 			delim = ']';
1096 			p++;
1097 		}
1098 
1099 		memset(ss, 0, sizeof(*ss));
1100 		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1101 			     delim, &ipend))
1102 			ss->ss_family = AF_INET;
1103 		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1104 				  delim, &ipend))
1105 			ss->ss_family = AF_INET6;
1106 		else
1107 			goto bad;
1108 		p = ipend;
1109 
1110 		if (delim == ']') {
1111 			if (*p != ']') {
1112 				dout("missing matching ']'\n");
1113 				goto bad;
1114 			}
1115 			p++;
1116 		}
1117 
1118 		/* port? */
1119 		if (p < end && *p == ':') {
1120 			port = 0;
1121 			p++;
1122 			while (p < end && *p >= '0' && *p <= '9') {
1123 				port = (port * 10) + (*p - '0');
1124 				p++;
1125 			}
1126 			if (port > 65535 || port == 0)
1127 				goto bad;
1128 		} else {
1129 			port = CEPH_MON_PORT;
1130 		}
1131 
1132 		addr_set_port(ss, port);
1133 
1134 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1135 
1136 		if (p == end)
1137 			break;
1138 		if (*p != ',')
1139 			goto bad;
1140 		p++;
1141 	}
1142 
1143 	if (p != end)
1144 		goto bad;
1145 
1146 	if (count)
1147 		*count = i + 1;
1148 	return 0;
1149 
1150 bad:
1151 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1152 	return -EINVAL;
1153 }
1154 EXPORT_SYMBOL(ceph_parse_ips);
1155 
1156 static int process_banner(struct ceph_connection *con)
1157 {
1158 	dout("process_banner on %p\n", con);
1159 
1160 	if (verify_hello(con) < 0)
1161 		return -1;
1162 
1163 	ceph_decode_addr(&con->actual_peer_addr);
1164 	ceph_decode_addr(&con->peer_addr_for_me);
1165 
1166 	/*
1167 	 * Make sure the other end is who we wanted.  note that the other
1168 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1169 	 * them the benefit of the doubt.
1170 	 */
1171 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1172 		   sizeof(con->peer_addr)) != 0 &&
1173 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1174 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1175 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1176 			   ceph_pr_addr(&con->peer_addr.in_addr),
1177 			   (int)le32_to_cpu(con->peer_addr.nonce),
1178 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1179 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1180 		con->error_msg = "wrong peer at address";
1181 		return -1;
1182 	}
1183 
1184 	/*
1185 	 * did we learn our address?
1186 	 */
1187 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1188 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1189 
1190 		memcpy(&con->msgr->inst.addr.in_addr,
1191 		       &con->peer_addr_for_me.in_addr,
1192 		       sizeof(con->peer_addr_for_me.in_addr));
1193 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1194 		encode_my_addr(con->msgr);
1195 		dout("process_banner learned my addr is %s\n",
1196 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1197 	}
1198 
1199 	set_bit(NEGOTIATING, &con->state);
1200 	prepare_read_connect(con);
1201 	return 0;
1202 }
1203 
1204 static void fail_protocol(struct ceph_connection *con)
1205 {
1206 	reset_connection(con);
1207 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1208 
1209 	mutex_unlock(&con->mutex);
1210 	if (con->ops->bad_proto)
1211 		con->ops->bad_proto(con);
1212 	mutex_lock(&con->mutex);
1213 }
1214 
1215 static int process_connect(struct ceph_connection *con)
1216 {
1217 	u64 sup_feat = con->msgr->supported_features;
1218 	u64 req_feat = con->msgr->required_features;
1219 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1220 
1221 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1222 
1223 	switch (con->in_reply.tag) {
1224 	case CEPH_MSGR_TAG_FEATURES:
1225 		pr_err("%s%lld %s feature set mismatch,"
1226 		       " my %llx < server's %llx, missing %llx\n",
1227 		       ENTITY_NAME(con->peer_name),
1228 		       ceph_pr_addr(&con->peer_addr.in_addr),
1229 		       sup_feat, server_feat, server_feat & ~sup_feat);
1230 		con->error_msg = "missing required protocol features";
1231 		fail_protocol(con);
1232 		return -1;
1233 
1234 	case CEPH_MSGR_TAG_BADPROTOVER:
1235 		pr_err("%s%lld %s protocol version mismatch,"
1236 		       " my %d != server's %d\n",
1237 		       ENTITY_NAME(con->peer_name),
1238 		       ceph_pr_addr(&con->peer_addr.in_addr),
1239 		       le32_to_cpu(con->out_connect.protocol_version),
1240 		       le32_to_cpu(con->in_reply.protocol_version));
1241 		con->error_msg = "protocol version mismatch";
1242 		fail_protocol(con);
1243 		return -1;
1244 
1245 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1246 		con->auth_retry++;
1247 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1248 		     con->auth_retry);
1249 		if (con->auth_retry == 2) {
1250 			con->error_msg = "connect authorization failure";
1251 			reset_connection(con);
1252 			set_bit(CLOSED, &con->state);
1253 			return -1;
1254 		}
1255 		con->auth_retry = 1;
1256 		prepare_write_connect(con->msgr, con, 0);
1257 		prepare_read_connect(con);
1258 		break;
1259 
1260 	case CEPH_MSGR_TAG_RESETSESSION:
1261 		/*
1262 		 * If we connected with a large connect_seq but the peer
1263 		 * has no record of a session with us (no connection, or
1264 		 * connect_seq == 0), they will send RESETSESION to indicate
1265 		 * that they must have reset their session, and may have
1266 		 * dropped messages.
1267 		 */
1268 		dout("process_connect got RESET peer seq %u\n",
1269 		     le32_to_cpu(con->in_connect.connect_seq));
1270 		pr_err("%s%lld %s connection reset\n",
1271 		       ENTITY_NAME(con->peer_name),
1272 		       ceph_pr_addr(&con->peer_addr.in_addr));
1273 		reset_connection(con);
1274 		prepare_write_connect(con->msgr, con, 0);
1275 		prepare_read_connect(con);
1276 
1277 		/* Tell ceph about it. */
1278 		mutex_unlock(&con->mutex);
1279 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1280 		if (con->ops->peer_reset)
1281 			con->ops->peer_reset(con);
1282 		mutex_lock(&con->mutex);
1283 		break;
1284 
1285 	case CEPH_MSGR_TAG_RETRY_SESSION:
1286 		/*
1287 		 * If we sent a smaller connect_seq than the peer has, try
1288 		 * again with a larger value.
1289 		 */
1290 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1291 		     le32_to_cpu(con->out_connect.connect_seq),
1292 		     le32_to_cpu(con->in_connect.connect_seq));
1293 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1294 		prepare_write_connect(con->msgr, con, 0);
1295 		prepare_read_connect(con);
1296 		break;
1297 
1298 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1299 		/*
1300 		 * If we sent a smaller global_seq than the peer has, try
1301 		 * again with a larger value.
1302 		 */
1303 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1304 		     con->peer_global_seq,
1305 		     le32_to_cpu(con->in_connect.global_seq));
1306 		get_global_seq(con->msgr,
1307 			       le32_to_cpu(con->in_connect.global_seq));
1308 		prepare_write_connect(con->msgr, con, 0);
1309 		prepare_read_connect(con);
1310 		break;
1311 
1312 	case CEPH_MSGR_TAG_READY:
1313 		if (req_feat & ~server_feat) {
1314 			pr_err("%s%lld %s protocol feature mismatch,"
1315 			       " my required %llx > server's %llx, need %llx\n",
1316 			       ENTITY_NAME(con->peer_name),
1317 			       ceph_pr_addr(&con->peer_addr.in_addr),
1318 			       req_feat, server_feat, req_feat & ~server_feat);
1319 			con->error_msg = "missing required protocol features";
1320 			fail_protocol(con);
1321 			return -1;
1322 		}
1323 		clear_bit(CONNECTING, &con->state);
1324 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1325 		con->connect_seq++;
1326 		con->peer_features = server_feat;
1327 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1328 		     con->peer_global_seq,
1329 		     le32_to_cpu(con->in_reply.connect_seq),
1330 		     con->connect_seq);
1331 		WARN_ON(con->connect_seq !=
1332 			le32_to_cpu(con->in_reply.connect_seq));
1333 
1334 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1335 			set_bit(LOSSYTX, &con->state);
1336 
1337 		prepare_read_tag(con);
1338 		break;
1339 
1340 	case CEPH_MSGR_TAG_WAIT:
1341 		/*
1342 		 * If there is a connection race (we are opening
1343 		 * connections to each other), one of us may just have
1344 		 * to WAIT.  This shouldn't happen if we are the
1345 		 * client.
1346 		 */
1347 		pr_err("process_connect peer connecting WAIT\n");
1348 
1349 	default:
1350 		pr_err("connect protocol error, will retry\n");
1351 		con->error_msg = "protocol error, garbage tag during connect";
1352 		return -1;
1353 	}
1354 	return 0;
1355 }
1356 
1357 
1358 /*
1359  * read (part of) an ack
1360  */
1361 static int read_partial_ack(struct ceph_connection *con)
1362 {
1363 	int to = 0;
1364 
1365 	return read_partial(con, &to, sizeof(con->in_temp_ack),
1366 			    &con->in_temp_ack);
1367 }
1368 
1369 
1370 /*
1371  * We can finally discard anything that's been acked.
1372  */
1373 static void process_ack(struct ceph_connection *con)
1374 {
1375 	struct ceph_msg *m;
1376 	u64 ack = le64_to_cpu(con->in_temp_ack);
1377 	u64 seq;
1378 
1379 	while (!list_empty(&con->out_sent)) {
1380 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1381 				     list_head);
1382 		seq = le64_to_cpu(m->hdr.seq);
1383 		if (seq > ack)
1384 			break;
1385 		dout("got ack for seq %llu type %d at %p\n", seq,
1386 		     le16_to_cpu(m->hdr.type), m);
1387 		ceph_msg_remove(m);
1388 	}
1389 	prepare_read_tag(con);
1390 }
1391 
1392 
1393 
1394 
1395 static int read_partial_message_section(struct ceph_connection *con,
1396 					struct kvec *section,
1397 					unsigned int sec_len, u32 *crc)
1398 {
1399 	int ret, left;
1400 
1401 	BUG_ON(!section);
1402 
1403 	while (section->iov_len < sec_len) {
1404 		BUG_ON(section->iov_base == NULL);
1405 		left = sec_len - section->iov_len;
1406 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1407 				       section->iov_len, left);
1408 		if (ret <= 0)
1409 			return ret;
1410 		section->iov_len += ret;
1411 		if (section->iov_len == sec_len)
1412 			*crc = crc32c(0, section->iov_base,
1413 				      section->iov_len);
1414 	}
1415 
1416 	return 1;
1417 }
1418 
1419 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1420 				struct ceph_msg_header *hdr,
1421 				int *skip);
1422 
1423 
1424 static int read_partial_message_pages(struct ceph_connection *con,
1425 				      struct page **pages,
1426 				      unsigned data_len, int datacrc)
1427 {
1428 	void *p;
1429 	int ret;
1430 	int left;
1431 
1432 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1433 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1434 	/* (page) data */
1435 	BUG_ON(pages == NULL);
1436 	p = kmap(pages[con->in_msg_pos.page]);
1437 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1438 			       left);
1439 	if (ret > 0 && datacrc)
1440 		con->in_data_crc =
1441 			crc32c(con->in_data_crc,
1442 				  p + con->in_msg_pos.page_pos, ret);
1443 	kunmap(pages[con->in_msg_pos.page]);
1444 	if (ret <= 0)
1445 		return ret;
1446 	con->in_msg_pos.data_pos += ret;
1447 	con->in_msg_pos.page_pos += ret;
1448 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1449 		con->in_msg_pos.page_pos = 0;
1450 		con->in_msg_pos.page++;
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 #ifdef CONFIG_BLOCK
1457 static int read_partial_message_bio(struct ceph_connection *con,
1458 				    struct bio **bio_iter, int *bio_seg,
1459 				    unsigned data_len, int datacrc)
1460 {
1461 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1462 	void *p;
1463 	int ret, left;
1464 
1465 	if (IS_ERR(bv))
1466 		return PTR_ERR(bv);
1467 
1468 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1469 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1470 
1471 	p = kmap(bv->bv_page) + bv->bv_offset;
1472 
1473 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1474 			       left);
1475 	if (ret > 0 && datacrc)
1476 		con->in_data_crc =
1477 			crc32c(con->in_data_crc,
1478 				  p + con->in_msg_pos.page_pos, ret);
1479 	kunmap(bv->bv_page);
1480 	if (ret <= 0)
1481 		return ret;
1482 	con->in_msg_pos.data_pos += ret;
1483 	con->in_msg_pos.page_pos += ret;
1484 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1485 		con->in_msg_pos.page_pos = 0;
1486 		iter_bio_next(bio_iter, bio_seg);
1487 	}
1488 
1489 	return ret;
1490 }
1491 #endif
1492 
1493 /*
1494  * read (part of) a message.
1495  */
1496 static int read_partial_message(struct ceph_connection *con)
1497 {
1498 	struct ceph_msg *m = con->in_msg;
1499 	int ret;
1500 	int to, left;
1501 	unsigned front_len, middle_len, data_len;
1502 	int datacrc = con->msgr->nocrc;
1503 	int skip;
1504 	u64 seq;
1505 
1506 	dout("read_partial_message con %p msg %p\n", con, m);
1507 
1508 	/* header */
1509 	while (con->in_base_pos < sizeof(con->in_hdr)) {
1510 		left = sizeof(con->in_hdr) - con->in_base_pos;
1511 		ret = ceph_tcp_recvmsg(con->sock,
1512 				       (char *)&con->in_hdr + con->in_base_pos,
1513 				       left);
1514 		if (ret <= 0)
1515 			return ret;
1516 		con->in_base_pos += ret;
1517 		if (con->in_base_pos == sizeof(con->in_hdr)) {
1518 			u32 crc = crc32c(0, (void *)&con->in_hdr,
1519 				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1520 			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1521 				pr_err("read_partial_message bad hdr "
1522 				       " crc %u != expected %u\n",
1523 				       crc, con->in_hdr.crc);
1524 				return -EBADMSG;
1525 			}
1526 		}
1527 	}
1528 	front_len = le32_to_cpu(con->in_hdr.front_len);
1529 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1530 		return -EIO;
1531 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1532 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1533 		return -EIO;
1534 	data_len = le32_to_cpu(con->in_hdr.data_len);
1535 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1536 		return -EIO;
1537 
1538 	/* verify seq# */
1539 	seq = le64_to_cpu(con->in_hdr.seq);
1540 	if ((s64)seq - (s64)con->in_seq < 1) {
1541 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1542 			ENTITY_NAME(con->peer_name),
1543 			ceph_pr_addr(&con->peer_addr.in_addr),
1544 			seq, con->in_seq + 1);
1545 		con->in_base_pos = -front_len - middle_len - data_len -
1546 			sizeof(m->footer);
1547 		con->in_tag = CEPH_MSGR_TAG_READY;
1548 		return 0;
1549 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1550 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1551 		       seq, con->in_seq + 1);
1552 		con->error_msg = "bad message sequence # for incoming message";
1553 		return -EBADMSG;
1554 	}
1555 
1556 	/* allocate message? */
1557 	if (!con->in_msg) {
1558 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1559 		     con->in_hdr.front_len, con->in_hdr.data_len);
1560 		skip = 0;
1561 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1562 		if (skip) {
1563 			/* skip this message */
1564 			dout("alloc_msg said skip message\n");
1565 			BUG_ON(con->in_msg);
1566 			con->in_base_pos = -front_len - middle_len - data_len -
1567 				sizeof(m->footer);
1568 			con->in_tag = CEPH_MSGR_TAG_READY;
1569 			con->in_seq++;
1570 			return 0;
1571 		}
1572 		if (!con->in_msg) {
1573 			con->error_msg =
1574 				"error allocating memory for incoming message";
1575 			return -ENOMEM;
1576 		}
1577 		m = con->in_msg;
1578 		m->front.iov_len = 0;    /* haven't read it yet */
1579 		if (m->middle)
1580 			m->middle->vec.iov_len = 0;
1581 
1582 		con->in_msg_pos.page = 0;
1583 		if (m->pages)
1584 			con->in_msg_pos.page_pos = m->page_alignment;
1585 		else
1586 			con->in_msg_pos.page_pos = 0;
1587 		con->in_msg_pos.data_pos = 0;
1588 	}
1589 
1590 	/* front */
1591 	ret = read_partial_message_section(con, &m->front, front_len,
1592 					   &con->in_front_crc);
1593 	if (ret <= 0)
1594 		return ret;
1595 
1596 	/* middle */
1597 	if (m->middle) {
1598 		ret = read_partial_message_section(con, &m->middle->vec,
1599 						   middle_len,
1600 						   &con->in_middle_crc);
1601 		if (ret <= 0)
1602 			return ret;
1603 	}
1604 #ifdef CONFIG_BLOCK
1605 	if (m->bio && !m->bio_iter)
1606 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1607 #endif
1608 
1609 	/* (page) data */
1610 	while (con->in_msg_pos.data_pos < data_len) {
1611 		if (m->pages) {
1612 			ret = read_partial_message_pages(con, m->pages,
1613 						 data_len, datacrc);
1614 			if (ret <= 0)
1615 				return ret;
1616 #ifdef CONFIG_BLOCK
1617 		} else if (m->bio) {
1618 
1619 			ret = read_partial_message_bio(con,
1620 						 &m->bio_iter, &m->bio_seg,
1621 						 data_len, datacrc);
1622 			if (ret <= 0)
1623 				return ret;
1624 #endif
1625 		} else {
1626 			BUG_ON(1);
1627 		}
1628 	}
1629 
1630 	/* footer */
1631 	to = sizeof(m->hdr) + sizeof(m->footer);
1632 	while (con->in_base_pos < to) {
1633 		left = to - con->in_base_pos;
1634 		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1635 				       (con->in_base_pos - sizeof(m->hdr)),
1636 				       left);
1637 		if (ret <= 0)
1638 			return ret;
1639 		con->in_base_pos += ret;
1640 	}
1641 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1642 	     m, front_len, m->footer.front_crc, middle_len,
1643 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1644 
1645 	/* crc ok? */
1646 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1647 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1648 		       m, con->in_front_crc, m->footer.front_crc);
1649 		return -EBADMSG;
1650 	}
1651 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1652 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1653 		       m, con->in_middle_crc, m->footer.middle_crc);
1654 		return -EBADMSG;
1655 	}
1656 	if (datacrc &&
1657 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1658 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1659 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1660 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1661 		return -EBADMSG;
1662 	}
1663 
1664 	return 1; /* done! */
1665 }
1666 
1667 /*
1668  * Process message.  This happens in the worker thread.  The callback should
1669  * be careful not to do anything that waits on other incoming messages or it
1670  * may deadlock.
1671  */
1672 static void process_message(struct ceph_connection *con)
1673 {
1674 	struct ceph_msg *msg;
1675 
1676 	msg = con->in_msg;
1677 	con->in_msg = NULL;
1678 
1679 	/* if first message, set peer_name */
1680 	if (con->peer_name.type == 0)
1681 		con->peer_name = msg->hdr.src;
1682 
1683 	con->in_seq++;
1684 	mutex_unlock(&con->mutex);
1685 
1686 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1687 	     msg, le64_to_cpu(msg->hdr.seq),
1688 	     ENTITY_NAME(msg->hdr.src),
1689 	     le16_to_cpu(msg->hdr.type),
1690 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1691 	     le32_to_cpu(msg->hdr.front_len),
1692 	     le32_to_cpu(msg->hdr.data_len),
1693 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1694 	con->ops->dispatch(con, msg);
1695 
1696 	mutex_lock(&con->mutex);
1697 	prepare_read_tag(con);
1698 }
1699 
1700 
1701 /*
1702  * Write something to the socket.  Called in a worker thread when the
1703  * socket appears to be writeable and we have something ready to send.
1704  */
1705 static int try_write(struct ceph_connection *con)
1706 {
1707 	struct ceph_messenger *msgr = con->msgr;
1708 	int ret = 1;
1709 
1710 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1711 	     atomic_read(&con->nref));
1712 
1713 more:
1714 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1715 
1716 	/* open the socket first? */
1717 	if (con->sock == NULL) {
1718 		/*
1719 		 * if we were STANDBY and are reconnecting _this_
1720 		 * connection, bump connect_seq now.  Always bump
1721 		 * global_seq.
1722 		 */
1723 		if (test_and_clear_bit(STANDBY, &con->state))
1724 			con->connect_seq++;
1725 
1726 		prepare_write_banner(msgr, con);
1727 		prepare_write_connect(msgr, con, 1);
1728 		prepare_read_banner(con);
1729 		set_bit(CONNECTING, &con->state);
1730 		clear_bit(NEGOTIATING, &con->state);
1731 
1732 		BUG_ON(con->in_msg);
1733 		con->in_tag = CEPH_MSGR_TAG_READY;
1734 		dout("try_write initiating connect on %p new state %lu\n",
1735 		     con, con->state);
1736 		con->sock = ceph_tcp_connect(con);
1737 		if (IS_ERR(con->sock)) {
1738 			con->sock = NULL;
1739 			con->error_msg = "connect error";
1740 			ret = -1;
1741 			goto out;
1742 		}
1743 	}
1744 
1745 more_kvec:
1746 	/* kvec data queued? */
1747 	if (con->out_skip) {
1748 		ret = write_partial_skip(con);
1749 		if (ret <= 0)
1750 			goto out;
1751 	}
1752 	if (con->out_kvec_left) {
1753 		ret = write_partial_kvec(con);
1754 		if (ret <= 0)
1755 			goto out;
1756 	}
1757 
1758 	/* msg pages? */
1759 	if (con->out_msg) {
1760 		if (con->out_msg_done) {
1761 			ceph_msg_put(con->out_msg);
1762 			con->out_msg = NULL;   /* we're done with this one */
1763 			goto do_next;
1764 		}
1765 
1766 		ret = write_partial_msg_pages(con);
1767 		if (ret == 1)
1768 			goto more_kvec;  /* we need to send the footer, too! */
1769 		if (ret == 0)
1770 			goto out;
1771 		if (ret < 0) {
1772 			dout("try_write write_partial_msg_pages err %d\n",
1773 			     ret);
1774 			goto out;
1775 		}
1776 	}
1777 
1778 do_next:
1779 	if (!test_bit(CONNECTING, &con->state)) {
1780 		/* is anything else pending? */
1781 		if (!list_empty(&con->out_queue)) {
1782 			prepare_write_message(con);
1783 			goto more;
1784 		}
1785 		if (con->in_seq > con->in_seq_acked) {
1786 			prepare_write_ack(con);
1787 			goto more;
1788 		}
1789 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1790 			prepare_write_keepalive(con);
1791 			goto more;
1792 		}
1793 	}
1794 
1795 	/* Nothing to do! */
1796 	clear_bit(WRITE_PENDING, &con->state);
1797 	dout("try_write nothing else to write.\n");
1798 	ret = 0;
1799 out:
1800 	dout("try_write done on %p ret %d\n", con, ret);
1801 	return ret;
1802 }
1803 
1804 
1805 
1806 /*
1807  * Read what we can from the socket.
1808  */
1809 static int try_read(struct ceph_connection *con)
1810 {
1811 	int ret = -1;
1812 
1813 	if (!con->sock)
1814 		return 0;
1815 
1816 	if (test_bit(STANDBY, &con->state))
1817 		return 0;
1818 
1819 	dout("try_read start on %p\n", con);
1820 
1821 more:
1822 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1823 	     con->in_base_pos);
1824 	if (test_bit(CONNECTING, &con->state)) {
1825 		if (!test_bit(NEGOTIATING, &con->state)) {
1826 			dout("try_read connecting\n");
1827 			ret = read_partial_banner(con);
1828 			if (ret <= 0)
1829 				goto out;
1830 			ret = process_banner(con);
1831 			if (ret < 0)
1832 				goto out;
1833 		}
1834 		ret = read_partial_connect(con);
1835 		if (ret <= 0)
1836 			goto out;
1837 		ret = process_connect(con);
1838 		if (ret < 0)
1839 			goto out;
1840 		goto more;
1841 	}
1842 
1843 	if (con->in_base_pos < 0) {
1844 		/*
1845 		 * skipping + discarding content.
1846 		 *
1847 		 * FIXME: there must be a better way to do this!
1848 		 */
1849 		static char buf[1024];
1850 		int skip = min(1024, -con->in_base_pos);
1851 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1852 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1853 		if (ret <= 0)
1854 			goto out;
1855 		con->in_base_pos += ret;
1856 		if (con->in_base_pos)
1857 			goto more;
1858 	}
1859 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1860 		/*
1861 		 * what's next?
1862 		 */
1863 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1864 		if (ret <= 0)
1865 			goto out;
1866 		dout("try_read got tag %d\n", (int)con->in_tag);
1867 		switch (con->in_tag) {
1868 		case CEPH_MSGR_TAG_MSG:
1869 			prepare_read_message(con);
1870 			break;
1871 		case CEPH_MSGR_TAG_ACK:
1872 			prepare_read_ack(con);
1873 			break;
1874 		case CEPH_MSGR_TAG_CLOSE:
1875 			set_bit(CLOSED, &con->state);   /* fixme */
1876 			goto out;
1877 		default:
1878 			goto bad_tag;
1879 		}
1880 	}
1881 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1882 		ret = read_partial_message(con);
1883 		if (ret <= 0) {
1884 			switch (ret) {
1885 			case -EBADMSG:
1886 				con->error_msg = "bad crc";
1887 				ret = -EIO;
1888 				break;
1889 			case -EIO:
1890 				con->error_msg = "io error";
1891 				break;
1892 			}
1893 			goto out;
1894 		}
1895 		if (con->in_tag == CEPH_MSGR_TAG_READY)
1896 			goto more;
1897 		process_message(con);
1898 		goto more;
1899 	}
1900 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1901 		ret = read_partial_ack(con);
1902 		if (ret <= 0)
1903 			goto out;
1904 		process_ack(con);
1905 		goto more;
1906 	}
1907 
1908 out:
1909 	dout("try_read done on %p ret %d\n", con, ret);
1910 	return ret;
1911 
1912 bad_tag:
1913 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1914 	con->error_msg = "protocol error, garbage tag";
1915 	ret = -1;
1916 	goto out;
1917 }
1918 
1919 
1920 /*
1921  * Atomically queue work on a connection.  Bump @con reference to
1922  * avoid races with connection teardown.
1923  */
1924 static void queue_con(struct ceph_connection *con)
1925 {
1926 	if (test_bit(DEAD, &con->state)) {
1927 		dout("queue_con %p ignoring: DEAD\n",
1928 		     con);
1929 		return;
1930 	}
1931 
1932 	if (!con->ops->get(con)) {
1933 		dout("queue_con %p ref count 0\n", con);
1934 		return;
1935 	}
1936 
1937 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1938 		dout("queue_con %p - already queued\n", con);
1939 		con->ops->put(con);
1940 	} else {
1941 		dout("queue_con %p\n", con);
1942 	}
1943 }
1944 
1945 /*
1946  * Do some work on a connection.  Drop a connection ref when we're done.
1947  */
1948 static void con_work(struct work_struct *work)
1949 {
1950 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1951 						   work.work);
1952 
1953 	mutex_lock(&con->mutex);
1954 
1955 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1956 		dout("con_work CLOSED\n");
1957 		con_close_socket(con);
1958 		goto done;
1959 	}
1960 	if (test_and_clear_bit(OPENING, &con->state)) {
1961 		/* reopen w/ new peer */
1962 		dout("con_work OPENING\n");
1963 		con_close_socket(con);
1964 	}
1965 
1966 	if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1967 	    try_read(con) < 0 ||
1968 	    try_write(con) < 0) {
1969 		mutex_unlock(&con->mutex);
1970 		ceph_fault(con);     /* error/fault path */
1971 		goto done_unlocked;
1972 	}
1973 
1974 done:
1975 	mutex_unlock(&con->mutex);
1976 done_unlocked:
1977 	con->ops->put(con);
1978 }
1979 
1980 
1981 /*
1982  * Generic error/fault handler.  A retry mechanism is used with
1983  * exponential backoff
1984  */
1985 static void ceph_fault(struct ceph_connection *con)
1986 {
1987 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1988 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
1989 	dout("fault %p state %lu to peer %s\n",
1990 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
1991 
1992 	if (test_bit(LOSSYTX, &con->state)) {
1993 		dout("fault on LOSSYTX channel\n");
1994 		goto out;
1995 	}
1996 
1997 	mutex_lock(&con->mutex);
1998 	if (test_bit(CLOSED, &con->state))
1999 		goto out_unlock;
2000 
2001 	con_close_socket(con);
2002 
2003 	if (con->in_msg) {
2004 		ceph_msg_put(con->in_msg);
2005 		con->in_msg = NULL;
2006 	}
2007 
2008 	/* Requeue anything that hasn't been acked */
2009 	list_splice_init(&con->out_sent, &con->out_queue);
2010 
2011 	/* If there are no messages in the queue, place the connection
2012 	 * in a STANDBY state (i.e., don't try to reconnect just yet). */
2013 	if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
2014 		dout("fault setting STANDBY\n");
2015 		set_bit(STANDBY, &con->state);
2016 	} else {
2017 		/* retry after a delay. */
2018 		if (con->delay == 0)
2019 			con->delay = BASE_DELAY_INTERVAL;
2020 		else if (con->delay < MAX_DELAY_INTERVAL)
2021 			con->delay *= 2;
2022 		dout("fault queueing %p delay %lu\n", con, con->delay);
2023 		con->ops->get(con);
2024 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2025 				       round_jiffies_relative(con->delay)) == 0)
2026 			con->ops->put(con);
2027 	}
2028 
2029 out_unlock:
2030 	mutex_unlock(&con->mutex);
2031 out:
2032 	/*
2033 	 * in case we faulted due to authentication, invalidate our
2034 	 * current tickets so that we can get new ones.
2035 	 */
2036 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2037 		dout("calling invalidate_authorizer()\n");
2038 		con->ops->invalidate_authorizer(con);
2039 	}
2040 
2041 	if (con->ops->fault)
2042 		con->ops->fault(con);
2043 }
2044 
2045 
2046 
2047 /*
2048  * create a new messenger instance
2049  */
2050 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2051 					     u32 supported_features,
2052 					     u32 required_features)
2053 {
2054 	struct ceph_messenger *msgr;
2055 
2056 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2057 	if (msgr == NULL)
2058 		return ERR_PTR(-ENOMEM);
2059 
2060 	msgr->supported_features = supported_features;
2061 	msgr->required_features = required_features;
2062 
2063 	spin_lock_init(&msgr->global_seq_lock);
2064 
2065 	/* the zero page is needed if a request is "canceled" while the message
2066 	 * is being written over the socket */
2067 	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2068 	if (!msgr->zero_page) {
2069 		kfree(msgr);
2070 		return ERR_PTR(-ENOMEM);
2071 	}
2072 	kmap(msgr->zero_page);
2073 
2074 	if (myaddr)
2075 		msgr->inst.addr = *myaddr;
2076 
2077 	/* select a random nonce */
2078 	msgr->inst.addr.type = 0;
2079 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2080 	encode_my_addr(msgr);
2081 
2082 	dout("messenger_create %p\n", msgr);
2083 	return msgr;
2084 }
2085 EXPORT_SYMBOL(ceph_messenger_create);
2086 
2087 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2088 {
2089 	dout("destroy %p\n", msgr);
2090 	kunmap(msgr->zero_page);
2091 	__free_page(msgr->zero_page);
2092 	kfree(msgr);
2093 	dout("destroyed messenger %p\n", msgr);
2094 }
2095 EXPORT_SYMBOL(ceph_messenger_destroy);
2096 
2097 /*
2098  * Queue up an outgoing message on the given connection.
2099  */
2100 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2101 {
2102 	if (test_bit(CLOSED, &con->state)) {
2103 		dout("con_send %p closed, dropping %p\n", con, msg);
2104 		ceph_msg_put(msg);
2105 		return;
2106 	}
2107 
2108 	/* set src+dst */
2109 	msg->hdr.src = con->msgr->inst.name;
2110 
2111 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2112 
2113 	msg->needs_out_seq = true;
2114 
2115 	/* queue */
2116 	mutex_lock(&con->mutex);
2117 	BUG_ON(!list_empty(&msg->list_head));
2118 	list_add_tail(&msg->list_head, &con->out_queue);
2119 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2120 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2121 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2122 	     le32_to_cpu(msg->hdr.front_len),
2123 	     le32_to_cpu(msg->hdr.middle_len),
2124 	     le32_to_cpu(msg->hdr.data_len));
2125 	mutex_unlock(&con->mutex);
2126 
2127 	/* if there wasn't anything waiting to send before, queue
2128 	 * new work */
2129 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2130 		queue_con(con);
2131 }
2132 EXPORT_SYMBOL(ceph_con_send);
2133 
2134 /*
2135  * Revoke a message that was previously queued for send
2136  */
2137 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2138 {
2139 	mutex_lock(&con->mutex);
2140 	if (!list_empty(&msg->list_head)) {
2141 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2142 		list_del_init(&msg->list_head);
2143 		ceph_msg_put(msg);
2144 		msg->hdr.seq = 0;
2145 	}
2146 	if (con->out_msg == msg) {
2147 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2148 		con->out_msg = NULL;
2149 		if (con->out_kvec_is_msg) {
2150 			con->out_skip = con->out_kvec_bytes;
2151 			con->out_kvec_is_msg = false;
2152 		}
2153 		ceph_msg_put(msg);
2154 		msg->hdr.seq = 0;
2155 	}
2156 	mutex_unlock(&con->mutex);
2157 }
2158 
2159 /*
2160  * Revoke a message that we may be reading data into
2161  */
2162 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2163 {
2164 	mutex_lock(&con->mutex);
2165 	if (con->in_msg && con->in_msg == msg) {
2166 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2167 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2168 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2169 
2170 		/* skip rest of message */
2171 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2172 			con->in_base_pos = con->in_base_pos -
2173 				sizeof(struct ceph_msg_header) -
2174 				front_len -
2175 				middle_len -
2176 				data_len -
2177 				sizeof(struct ceph_msg_footer);
2178 		ceph_msg_put(con->in_msg);
2179 		con->in_msg = NULL;
2180 		con->in_tag = CEPH_MSGR_TAG_READY;
2181 		con->in_seq++;
2182 	} else {
2183 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2184 		     con, con->in_msg, msg);
2185 	}
2186 	mutex_unlock(&con->mutex);
2187 }
2188 
2189 /*
2190  * Queue a keepalive byte to ensure the tcp connection is alive.
2191  */
2192 void ceph_con_keepalive(struct ceph_connection *con)
2193 {
2194 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2195 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2196 		queue_con(con);
2197 }
2198 EXPORT_SYMBOL(ceph_con_keepalive);
2199 
2200 
2201 /*
2202  * construct a new message with given type, size
2203  * the new msg has a ref count of 1.
2204  */
2205 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2206 {
2207 	struct ceph_msg *m;
2208 
2209 	m = kmalloc(sizeof(*m), flags);
2210 	if (m == NULL)
2211 		goto out;
2212 	kref_init(&m->kref);
2213 	INIT_LIST_HEAD(&m->list_head);
2214 
2215 	m->hdr.tid = 0;
2216 	m->hdr.type = cpu_to_le16(type);
2217 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2218 	m->hdr.version = 0;
2219 	m->hdr.front_len = cpu_to_le32(front_len);
2220 	m->hdr.middle_len = 0;
2221 	m->hdr.data_len = 0;
2222 	m->hdr.data_off = 0;
2223 	m->hdr.reserved = 0;
2224 	m->footer.front_crc = 0;
2225 	m->footer.middle_crc = 0;
2226 	m->footer.data_crc = 0;
2227 	m->footer.flags = 0;
2228 	m->front_max = front_len;
2229 	m->front_is_vmalloc = false;
2230 	m->more_to_follow = false;
2231 	m->pool = NULL;
2232 
2233 	/* front */
2234 	if (front_len) {
2235 		if (front_len > PAGE_CACHE_SIZE) {
2236 			m->front.iov_base = __vmalloc(front_len, flags,
2237 						      PAGE_KERNEL);
2238 			m->front_is_vmalloc = true;
2239 		} else {
2240 			m->front.iov_base = kmalloc(front_len, flags);
2241 		}
2242 		if (m->front.iov_base == NULL) {
2243 			pr_err("msg_new can't allocate %d bytes\n",
2244 			     front_len);
2245 			goto out2;
2246 		}
2247 	} else {
2248 		m->front.iov_base = NULL;
2249 	}
2250 	m->front.iov_len = front_len;
2251 
2252 	/* middle */
2253 	m->middle = NULL;
2254 
2255 	/* data */
2256 	m->nr_pages = 0;
2257 	m->page_alignment = 0;
2258 	m->pages = NULL;
2259 	m->pagelist = NULL;
2260 	m->bio = NULL;
2261 	m->bio_iter = NULL;
2262 	m->bio_seg = 0;
2263 	m->trail = NULL;
2264 
2265 	dout("ceph_msg_new %p front %d\n", m, front_len);
2266 	return m;
2267 
2268 out2:
2269 	ceph_msg_put(m);
2270 out:
2271 	pr_err("msg_new can't create type %d front %d\n", type, front_len);
2272 	return NULL;
2273 }
2274 EXPORT_SYMBOL(ceph_msg_new);
2275 
2276 /*
2277  * Allocate "middle" portion of a message, if it is needed and wasn't
2278  * allocated by alloc_msg.  This allows us to read a small fixed-size
2279  * per-type header in the front and then gracefully fail (i.e.,
2280  * propagate the error to the caller based on info in the front) when
2281  * the middle is too large.
2282  */
2283 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2284 {
2285 	int type = le16_to_cpu(msg->hdr.type);
2286 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2287 
2288 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2289 	     ceph_msg_type_name(type), middle_len);
2290 	BUG_ON(!middle_len);
2291 	BUG_ON(msg->middle);
2292 
2293 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2294 	if (!msg->middle)
2295 		return -ENOMEM;
2296 	return 0;
2297 }
2298 
2299 /*
2300  * Generic message allocator, for incoming messages.
2301  */
2302 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2303 				struct ceph_msg_header *hdr,
2304 				int *skip)
2305 {
2306 	int type = le16_to_cpu(hdr->type);
2307 	int front_len = le32_to_cpu(hdr->front_len);
2308 	int middle_len = le32_to_cpu(hdr->middle_len);
2309 	struct ceph_msg *msg = NULL;
2310 	int ret;
2311 
2312 	if (con->ops->alloc_msg) {
2313 		mutex_unlock(&con->mutex);
2314 		msg = con->ops->alloc_msg(con, hdr, skip);
2315 		mutex_lock(&con->mutex);
2316 		if (!msg || *skip)
2317 			return NULL;
2318 	}
2319 	if (!msg) {
2320 		*skip = 0;
2321 		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2322 		if (!msg) {
2323 			pr_err("unable to allocate msg type %d len %d\n",
2324 			       type, front_len);
2325 			return NULL;
2326 		}
2327 		msg->page_alignment = le16_to_cpu(hdr->data_off);
2328 	}
2329 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2330 
2331 	if (middle_len && !msg->middle) {
2332 		ret = ceph_alloc_middle(con, msg);
2333 		if (ret < 0) {
2334 			ceph_msg_put(msg);
2335 			return NULL;
2336 		}
2337 	}
2338 
2339 	return msg;
2340 }
2341 
2342 
2343 /*
2344  * Free a generically kmalloc'd message.
2345  */
2346 void ceph_msg_kfree(struct ceph_msg *m)
2347 {
2348 	dout("msg_kfree %p\n", m);
2349 	if (m->front_is_vmalloc)
2350 		vfree(m->front.iov_base);
2351 	else
2352 		kfree(m->front.iov_base);
2353 	kfree(m);
2354 }
2355 
2356 /*
2357  * Drop a msg ref.  Destroy as needed.
2358  */
2359 void ceph_msg_last_put(struct kref *kref)
2360 {
2361 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2362 
2363 	dout("ceph_msg_put last one on %p\n", m);
2364 	WARN_ON(!list_empty(&m->list_head));
2365 
2366 	/* drop middle, data, if any */
2367 	if (m->middle) {
2368 		ceph_buffer_put(m->middle);
2369 		m->middle = NULL;
2370 	}
2371 	m->nr_pages = 0;
2372 	m->pages = NULL;
2373 
2374 	if (m->pagelist) {
2375 		ceph_pagelist_release(m->pagelist);
2376 		kfree(m->pagelist);
2377 		m->pagelist = NULL;
2378 	}
2379 
2380 	m->trail = NULL;
2381 
2382 	if (m->pool)
2383 		ceph_msgpool_put(m->pool, m);
2384 	else
2385 		ceph_msg_kfree(m);
2386 }
2387 EXPORT_SYMBOL(ceph_msg_last_put);
2388 
2389 void ceph_msg_dump(struct ceph_msg *msg)
2390 {
2391 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2392 		 msg->front_max, msg->nr_pages);
2393 	print_hex_dump(KERN_DEBUG, "header: ",
2394 		       DUMP_PREFIX_OFFSET, 16, 1,
2395 		       &msg->hdr, sizeof(msg->hdr), true);
2396 	print_hex_dump(KERN_DEBUG, " front: ",
2397 		       DUMP_PREFIX_OFFSET, 16, 1,
2398 		       msg->front.iov_base, msg->front.iov_len, true);
2399 	if (msg->middle)
2400 		print_hex_dump(KERN_DEBUG, "middle: ",
2401 			       DUMP_PREFIX_OFFSET, 16, 1,
2402 			       msg->middle->vec.iov_base,
2403 			       msg->middle->vec.iov_len, true);
2404 	print_hex_dump(KERN_DEBUG, "footer: ",
2405 		       DUMP_PREFIX_OFFSET, 16, 1,
2406 		       &msg->footer, sizeof(msg->footer), true);
2407 }
2408 EXPORT_SYMBOL(ceph_msg_dump);
2409