1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #include <linux/bio.h> 13 #include <linux/blkdev.h> 14 #include <net/tcp.h> 15 16 #include <linux/ceph/libceph.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 21 /* 22 * Ceph uses the messenger to exchange ceph_msg messages with other 23 * hosts in the system. The messenger provides ordered and reliable 24 * delivery. We tolerate TCP disconnects by reconnecting (with 25 * exponential backoff) in the case of a fault (disconnection, bad 26 * crc, protocol error). Acks allow sent messages to be discarded by 27 * the sender. 28 */ 29 30 /* static tag bytes (protocol control messages) */ 31 static char tag_msg = CEPH_MSGR_TAG_MSG; 32 static char tag_ack = CEPH_MSGR_TAG_ACK; 33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 34 35 #ifdef CONFIG_LOCKDEP 36 static struct lock_class_key socket_class; 37 #endif 38 39 40 static void queue_con(struct ceph_connection *con); 41 static void con_work(struct work_struct *); 42 static void ceph_fault(struct ceph_connection *con); 43 44 /* 45 * nicely render a sockaddr as a string. 46 */ 47 #define MAX_ADDR_STR 20 48 #define MAX_ADDR_STR_LEN 60 49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN]; 50 static DEFINE_SPINLOCK(addr_str_lock); 51 static int last_addr_str; 52 53 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 54 { 55 int i; 56 char *s; 57 struct sockaddr_in *in4 = (void *)ss; 58 struct sockaddr_in6 *in6 = (void *)ss; 59 60 spin_lock(&addr_str_lock); 61 i = last_addr_str++; 62 if (last_addr_str == MAX_ADDR_STR) 63 last_addr_str = 0; 64 spin_unlock(&addr_str_lock); 65 s = addr_str[i]; 66 67 switch (ss->ss_family) { 68 case AF_INET: 69 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr, 70 (unsigned int)ntohs(in4->sin_port)); 71 break; 72 73 case AF_INET6: 74 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr, 75 (unsigned int)ntohs(in6->sin6_port)); 76 break; 77 78 default: 79 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family); 80 } 81 82 return s; 83 } 84 EXPORT_SYMBOL(ceph_pr_addr); 85 86 static void encode_my_addr(struct ceph_messenger *msgr) 87 { 88 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 89 ceph_encode_addr(&msgr->my_enc_addr); 90 } 91 92 /* 93 * work queue for all reading and writing to/from the socket. 94 */ 95 struct workqueue_struct *ceph_msgr_wq; 96 97 int ceph_msgr_init(void) 98 { 99 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0); 100 if (!ceph_msgr_wq) { 101 pr_err("msgr_init failed to create workqueue\n"); 102 return -ENOMEM; 103 } 104 return 0; 105 } 106 EXPORT_SYMBOL(ceph_msgr_init); 107 108 void ceph_msgr_exit(void) 109 { 110 destroy_workqueue(ceph_msgr_wq); 111 } 112 EXPORT_SYMBOL(ceph_msgr_exit); 113 114 void ceph_msgr_flush(void) 115 { 116 flush_workqueue(ceph_msgr_wq); 117 } 118 EXPORT_SYMBOL(ceph_msgr_flush); 119 120 121 /* 122 * socket callback functions 123 */ 124 125 /* data available on socket, or listen socket received a connect */ 126 static void ceph_data_ready(struct sock *sk, int count_unused) 127 { 128 struct ceph_connection *con = 129 (struct ceph_connection *)sk->sk_user_data; 130 if (sk->sk_state != TCP_CLOSE_WAIT) { 131 dout("ceph_data_ready on %p state = %lu, queueing work\n", 132 con, con->state); 133 queue_con(con); 134 } 135 } 136 137 /* socket has buffer space for writing */ 138 static void ceph_write_space(struct sock *sk) 139 { 140 struct ceph_connection *con = 141 (struct ceph_connection *)sk->sk_user_data; 142 143 /* only queue to workqueue if there is data we want to write. */ 144 if (test_bit(WRITE_PENDING, &con->state)) { 145 dout("ceph_write_space %p queueing write work\n", con); 146 queue_con(con); 147 } else { 148 dout("ceph_write_space %p nothing to write\n", con); 149 } 150 151 /* since we have our own write_space, clear the SOCK_NOSPACE flag */ 152 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 153 } 154 155 /* socket's state has changed */ 156 static void ceph_state_change(struct sock *sk) 157 { 158 struct ceph_connection *con = 159 (struct ceph_connection *)sk->sk_user_data; 160 161 dout("ceph_state_change %p state = %lu sk_state = %u\n", 162 con, con->state, sk->sk_state); 163 164 if (test_bit(CLOSED, &con->state)) 165 return; 166 167 switch (sk->sk_state) { 168 case TCP_CLOSE: 169 dout("ceph_state_change TCP_CLOSE\n"); 170 case TCP_CLOSE_WAIT: 171 dout("ceph_state_change TCP_CLOSE_WAIT\n"); 172 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) { 173 if (test_bit(CONNECTING, &con->state)) 174 con->error_msg = "connection failed"; 175 else 176 con->error_msg = "socket closed"; 177 queue_con(con); 178 } 179 break; 180 case TCP_ESTABLISHED: 181 dout("ceph_state_change TCP_ESTABLISHED\n"); 182 queue_con(con); 183 break; 184 } 185 } 186 187 /* 188 * set up socket callbacks 189 */ 190 static void set_sock_callbacks(struct socket *sock, 191 struct ceph_connection *con) 192 { 193 struct sock *sk = sock->sk; 194 sk->sk_user_data = (void *)con; 195 sk->sk_data_ready = ceph_data_ready; 196 sk->sk_write_space = ceph_write_space; 197 sk->sk_state_change = ceph_state_change; 198 } 199 200 201 /* 202 * socket helpers 203 */ 204 205 /* 206 * initiate connection to a remote socket. 207 */ 208 static struct socket *ceph_tcp_connect(struct ceph_connection *con) 209 { 210 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 211 struct socket *sock; 212 int ret; 213 214 BUG_ON(con->sock); 215 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 216 IPPROTO_TCP, &sock); 217 if (ret) 218 return ERR_PTR(ret); 219 con->sock = sock; 220 sock->sk->sk_allocation = GFP_NOFS; 221 222 #ifdef CONFIG_LOCKDEP 223 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 224 #endif 225 226 set_sock_callbacks(sock, con); 227 228 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 229 230 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 231 O_NONBLOCK); 232 if (ret == -EINPROGRESS) { 233 dout("connect %s EINPROGRESS sk_state = %u\n", 234 ceph_pr_addr(&con->peer_addr.in_addr), 235 sock->sk->sk_state); 236 ret = 0; 237 } 238 if (ret < 0) { 239 pr_err("connect %s error %d\n", 240 ceph_pr_addr(&con->peer_addr.in_addr), ret); 241 sock_release(sock); 242 con->sock = NULL; 243 con->error_msg = "connect error"; 244 } 245 246 if (ret < 0) 247 return ERR_PTR(ret); 248 return sock; 249 } 250 251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 252 { 253 struct kvec iov = {buf, len}; 254 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 255 int r; 256 257 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 258 if (r == -EAGAIN) 259 r = 0; 260 return r; 261 } 262 263 /* 264 * write something. @more is true if caller will be sending more data 265 * shortly. 266 */ 267 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 268 size_t kvlen, size_t len, int more) 269 { 270 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 271 int r; 272 273 if (more) 274 msg.msg_flags |= MSG_MORE; 275 else 276 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 277 278 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 279 if (r == -EAGAIN) 280 r = 0; 281 return r; 282 } 283 284 285 /* 286 * Shutdown/close the socket for the given connection. 287 */ 288 static int con_close_socket(struct ceph_connection *con) 289 { 290 int rc; 291 292 dout("con_close_socket on %p sock %p\n", con, con->sock); 293 if (!con->sock) 294 return 0; 295 set_bit(SOCK_CLOSED, &con->state); 296 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 297 sock_release(con->sock); 298 con->sock = NULL; 299 clear_bit(SOCK_CLOSED, &con->state); 300 return rc; 301 } 302 303 /* 304 * Reset a connection. Discard all incoming and outgoing messages 305 * and clear *_seq state. 306 */ 307 static void ceph_msg_remove(struct ceph_msg *msg) 308 { 309 list_del_init(&msg->list_head); 310 ceph_msg_put(msg); 311 } 312 static void ceph_msg_remove_list(struct list_head *head) 313 { 314 while (!list_empty(head)) { 315 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 316 list_head); 317 ceph_msg_remove(msg); 318 } 319 } 320 321 static void reset_connection(struct ceph_connection *con) 322 { 323 /* reset connection, out_queue, msg_ and connect_seq */ 324 /* discard existing out_queue and msg_seq */ 325 ceph_msg_remove_list(&con->out_queue); 326 ceph_msg_remove_list(&con->out_sent); 327 328 if (con->in_msg) { 329 ceph_msg_put(con->in_msg); 330 con->in_msg = NULL; 331 } 332 333 con->connect_seq = 0; 334 con->out_seq = 0; 335 if (con->out_msg) { 336 ceph_msg_put(con->out_msg); 337 con->out_msg = NULL; 338 } 339 con->out_keepalive_pending = false; 340 con->in_seq = 0; 341 con->in_seq_acked = 0; 342 } 343 344 /* 345 * mark a peer down. drop any open connections. 346 */ 347 void ceph_con_close(struct ceph_connection *con) 348 { 349 dout("con_close %p peer %s\n", con, 350 ceph_pr_addr(&con->peer_addr.in_addr)); 351 set_bit(CLOSED, &con->state); /* in case there's queued work */ 352 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */ 353 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */ 354 clear_bit(KEEPALIVE_PENDING, &con->state); 355 clear_bit(WRITE_PENDING, &con->state); 356 mutex_lock(&con->mutex); 357 reset_connection(con); 358 con->peer_global_seq = 0; 359 cancel_delayed_work(&con->work); 360 mutex_unlock(&con->mutex); 361 queue_con(con); 362 } 363 EXPORT_SYMBOL(ceph_con_close); 364 365 /* 366 * Reopen a closed connection, with a new peer address. 367 */ 368 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr) 369 { 370 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 371 set_bit(OPENING, &con->state); 372 clear_bit(CLOSED, &con->state); 373 memcpy(&con->peer_addr, addr, sizeof(*addr)); 374 con->delay = 0; /* reset backoff memory */ 375 queue_con(con); 376 } 377 EXPORT_SYMBOL(ceph_con_open); 378 379 /* 380 * return true if this connection ever successfully opened 381 */ 382 bool ceph_con_opened(struct ceph_connection *con) 383 { 384 return con->connect_seq > 0; 385 } 386 387 /* 388 * generic get/put 389 */ 390 struct ceph_connection *ceph_con_get(struct ceph_connection *con) 391 { 392 dout("con_get %p nref = %d -> %d\n", con, 393 atomic_read(&con->nref), atomic_read(&con->nref) + 1); 394 if (atomic_inc_not_zero(&con->nref)) 395 return con; 396 return NULL; 397 } 398 399 void ceph_con_put(struct ceph_connection *con) 400 { 401 dout("con_put %p nref = %d -> %d\n", con, 402 atomic_read(&con->nref), atomic_read(&con->nref) - 1); 403 BUG_ON(atomic_read(&con->nref) == 0); 404 if (atomic_dec_and_test(&con->nref)) { 405 BUG_ON(con->sock); 406 kfree(con); 407 } 408 } 409 410 /* 411 * initialize a new connection. 412 */ 413 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con) 414 { 415 dout("con_init %p\n", con); 416 memset(con, 0, sizeof(*con)); 417 atomic_set(&con->nref, 1); 418 con->msgr = msgr; 419 mutex_init(&con->mutex); 420 INIT_LIST_HEAD(&con->out_queue); 421 INIT_LIST_HEAD(&con->out_sent); 422 INIT_DELAYED_WORK(&con->work, con_work); 423 } 424 EXPORT_SYMBOL(ceph_con_init); 425 426 427 /* 428 * We maintain a global counter to order connection attempts. Get 429 * a unique seq greater than @gt. 430 */ 431 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 432 { 433 u32 ret; 434 435 spin_lock(&msgr->global_seq_lock); 436 if (msgr->global_seq < gt) 437 msgr->global_seq = gt; 438 ret = ++msgr->global_seq; 439 spin_unlock(&msgr->global_seq_lock); 440 return ret; 441 } 442 443 444 /* 445 * Prepare footer for currently outgoing message, and finish things 446 * off. Assumes out_kvec* are already valid.. we just add on to the end. 447 */ 448 static void prepare_write_message_footer(struct ceph_connection *con, int v) 449 { 450 struct ceph_msg *m = con->out_msg; 451 452 dout("prepare_write_message_footer %p\n", con); 453 con->out_kvec_is_msg = true; 454 con->out_kvec[v].iov_base = &m->footer; 455 con->out_kvec[v].iov_len = sizeof(m->footer); 456 con->out_kvec_bytes += sizeof(m->footer); 457 con->out_kvec_left++; 458 con->out_more = m->more_to_follow; 459 con->out_msg_done = true; 460 } 461 462 /* 463 * Prepare headers for the next outgoing message. 464 */ 465 static void prepare_write_message(struct ceph_connection *con) 466 { 467 struct ceph_msg *m; 468 int v = 0; 469 470 con->out_kvec_bytes = 0; 471 con->out_kvec_is_msg = true; 472 con->out_msg_done = false; 473 474 /* Sneak an ack in there first? If we can get it into the same 475 * TCP packet that's a good thing. */ 476 if (con->in_seq > con->in_seq_acked) { 477 con->in_seq_acked = con->in_seq; 478 con->out_kvec[v].iov_base = &tag_ack; 479 con->out_kvec[v++].iov_len = 1; 480 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 481 con->out_kvec[v].iov_base = &con->out_temp_ack; 482 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack); 483 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); 484 } 485 486 m = list_first_entry(&con->out_queue, 487 struct ceph_msg, list_head); 488 con->out_msg = m; 489 if (test_bit(LOSSYTX, &con->state)) { 490 list_del_init(&m->list_head); 491 } else { 492 /* put message on sent list */ 493 ceph_msg_get(m); 494 list_move_tail(&m->list_head, &con->out_sent); 495 } 496 497 /* 498 * only assign outgoing seq # if we haven't sent this message 499 * yet. if it is requeued, resend with it's original seq. 500 */ 501 if (m->needs_out_seq) { 502 m->hdr.seq = cpu_to_le64(++con->out_seq); 503 m->needs_out_seq = false; 504 } 505 506 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", 507 m, con->out_seq, le16_to_cpu(m->hdr.type), 508 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 509 le32_to_cpu(m->hdr.data_len), 510 m->nr_pages); 511 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 512 513 /* tag + hdr + front + middle */ 514 con->out_kvec[v].iov_base = &tag_msg; 515 con->out_kvec[v++].iov_len = 1; 516 con->out_kvec[v].iov_base = &m->hdr; 517 con->out_kvec[v++].iov_len = sizeof(m->hdr); 518 con->out_kvec[v++] = m->front; 519 if (m->middle) 520 con->out_kvec[v++] = m->middle->vec; 521 con->out_kvec_left = v; 522 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len + 523 (m->middle ? m->middle->vec.iov_len : 0); 524 con->out_kvec_cur = con->out_kvec; 525 526 /* fill in crc (except data pages), footer */ 527 con->out_msg->hdr.crc = 528 cpu_to_le32(crc32c(0, (void *)&m->hdr, 529 sizeof(m->hdr) - sizeof(m->hdr.crc))); 530 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE; 531 con->out_msg->footer.front_crc = 532 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len)); 533 if (m->middle) 534 con->out_msg->footer.middle_crc = 535 cpu_to_le32(crc32c(0, m->middle->vec.iov_base, 536 m->middle->vec.iov_len)); 537 else 538 con->out_msg->footer.middle_crc = 0; 539 con->out_msg->footer.data_crc = 0; 540 dout("prepare_write_message front_crc %u data_crc %u\n", 541 le32_to_cpu(con->out_msg->footer.front_crc), 542 le32_to_cpu(con->out_msg->footer.middle_crc)); 543 544 /* is there a data payload? */ 545 if (le32_to_cpu(m->hdr.data_len) > 0) { 546 /* initialize page iterator */ 547 con->out_msg_pos.page = 0; 548 if (m->pages) 549 con->out_msg_pos.page_pos = m->page_alignment; 550 else 551 con->out_msg_pos.page_pos = 0; 552 con->out_msg_pos.data_pos = 0; 553 con->out_msg_pos.did_page_crc = 0; 554 con->out_more = 1; /* data + footer will follow */ 555 } else { 556 /* no, queue up footer too and be done */ 557 prepare_write_message_footer(con, v); 558 } 559 560 set_bit(WRITE_PENDING, &con->state); 561 } 562 563 /* 564 * Prepare an ack. 565 */ 566 static void prepare_write_ack(struct ceph_connection *con) 567 { 568 dout("prepare_write_ack %p %llu -> %llu\n", con, 569 con->in_seq_acked, con->in_seq); 570 con->in_seq_acked = con->in_seq; 571 572 con->out_kvec[0].iov_base = &tag_ack; 573 con->out_kvec[0].iov_len = 1; 574 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 575 con->out_kvec[1].iov_base = &con->out_temp_ack; 576 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack); 577 con->out_kvec_left = 2; 578 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); 579 con->out_kvec_cur = con->out_kvec; 580 con->out_more = 1; /* more will follow.. eventually.. */ 581 set_bit(WRITE_PENDING, &con->state); 582 } 583 584 /* 585 * Prepare to write keepalive byte. 586 */ 587 static void prepare_write_keepalive(struct ceph_connection *con) 588 { 589 dout("prepare_write_keepalive %p\n", con); 590 con->out_kvec[0].iov_base = &tag_keepalive; 591 con->out_kvec[0].iov_len = 1; 592 con->out_kvec_left = 1; 593 con->out_kvec_bytes = 1; 594 con->out_kvec_cur = con->out_kvec; 595 set_bit(WRITE_PENDING, &con->state); 596 } 597 598 /* 599 * Connection negotiation. 600 */ 601 602 static void prepare_connect_authorizer(struct ceph_connection *con) 603 { 604 void *auth_buf; 605 int auth_len = 0; 606 int auth_protocol = 0; 607 608 mutex_unlock(&con->mutex); 609 if (con->ops->get_authorizer) 610 con->ops->get_authorizer(con, &auth_buf, &auth_len, 611 &auth_protocol, &con->auth_reply_buf, 612 &con->auth_reply_buf_len, 613 con->auth_retry); 614 mutex_lock(&con->mutex); 615 616 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol); 617 con->out_connect.authorizer_len = cpu_to_le32(auth_len); 618 619 con->out_kvec[con->out_kvec_left].iov_base = auth_buf; 620 con->out_kvec[con->out_kvec_left].iov_len = auth_len; 621 con->out_kvec_left++; 622 con->out_kvec_bytes += auth_len; 623 } 624 625 /* 626 * We connected to a peer and are saying hello. 627 */ 628 static void prepare_write_banner(struct ceph_messenger *msgr, 629 struct ceph_connection *con) 630 { 631 int len = strlen(CEPH_BANNER); 632 633 con->out_kvec[0].iov_base = CEPH_BANNER; 634 con->out_kvec[0].iov_len = len; 635 con->out_kvec[1].iov_base = &msgr->my_enc_addr; 636 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr); 637 con->out_kvec_left = 2; 638 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr); 639 con->out_kvec_cur = con->out_kvec; 640 con->out_more = 0; 641 set_bit(WRITE_PENDING, &con->state); 642 } 643 644 static void prepare_write_connect(struct ceph_messenger *msgr, 645 struct ceph_connection *con, 646 int after_banner) 647 { 648 unsigned global_seq = get_global_seq(con->msgr, 0); 649 int proto; 650 651 switch (con->peer_name.type) { 652 case CEPH_ENTITY_TYPE_MON: 653 proto = CEPH_MONC_PROTOCOL; 654 break; 655 case CEPH_ENTITY_TYPE_OSD: 656 proto = CEPH_OSDC_PROTOCOL; 657 break; 658 case CEPH_ENTITY_TYPE_MDS: 659 proto = CEPH_MDSC_PROTOCOL; 660 break; 661 default: 662 BUG(); 663 } 664 665 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 666 con->connect_seq, global_seq, proto); 667 668 con->out_connect.features = cpu_to_le64(msgr->supported_features); 669 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 670 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 671 con->out_connect.global_seq = cpu_to_le32(global_seq); 672 con->out_connect.protocol_version = cpu_to_le32(proto); 673 con->out_connect.flags = 0; 674 675 if (!after_banner) { 676 con->out_kvec_left = 0; 677 con->out_kvec_bytes = 0; 678 } 679 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect; 680 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect); 681 con->out_kvec_left++; 682 con->out_kvec_bytes += sizeof(con->out_connect); 683 con->out_kvec_cur = con->out_kvec; 684 con->out_more = 0; 685 set_bit(WRITE_PENDING, &con->state); 686 687 prepare_connect_authorizer(con); 688 } 689 690 691 /* 692 * write as much of pending kvecs to the socket as we can. 693 * 1 -> done 694 * 0 -> socket full, but more to do 695 * <0 -> error 696 */ 697 static int write_partial_kvec(struct ceph_connection *con) 698 { 699 int ret; 700 701 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 702 while (con->out_kvec_bytes > 0) { 703 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 704 con->out_kvec_left, con->out_kvec_bytes, 705 con->out_more); 706 if (ret <= 0) 707 goto out; 708 con->out_kvec_bytes -= ret; 709 if (con->out_kvec_bytes == 0) 710 break; /* done */ 711 while (ret > 0) { 712 if (ret >= con->out_kvec_cur->iov_len) { 713 ret -= con->out_kvec_cur->iov_len; 714 con->out_kvec_cur++; 715 con->out_kvec_left--; 716 } else { 717 con->out_kvec_cur->iov_len -= ret; 718 con->out_kvec_cur->iov_base += ret; 719 ret = 0; 720 break; 721 } 722 } 723 } 724 con->out_kvec_left = 0; 725 con->out_kvec_is_msg = false; 726 ret = 1; 727 out: 728 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 729 con->out_kvec_bytes, con->out_kvec_left, ret); 730 return ret; /* done! */ 731 } 732 733 #ifdef CONFIG_BLOCK 734 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg) 735 { 736 if (!bio) { 737 *iter = NULL; 738 *seg = 0; 739 return; 740 } 741 *iter = bio; 742 *seg = bio->bi_idx; 743 } 744 745 static void iter_bio_next(struct bio **bio_iter, int *seg) 746 { 747 if (*bio_iter == NULL) 748 return; 749 750 BUG_ON(*seg >= (*bio_iter)->bi_vcnt); 751 752 (*seg)++; 753 if (*seg == (*bio_iter)->bi_vcnt) 754 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg); 755 } 756 #endif 757 758 /* 759 * Write as much message data payload as we can. If we finish, queue 760 * up the footer. 761 * 1 -> done, footer is now queued in out_kvec[]. 762 * 0 -> socket full, but more to do 763 * <0 -> error 764 */ 765 static int write_partial_msg_pages(struct ceph_connection *con) 766 { 767 struct ceph_msg *msg = con->out_msg; 768 unsigned data_len = le32_to_cpu(msg->hdr.data_len); 769 size_t len; 770 int crc = con->msgr->nocrc; 771 int ret; 772 int total_max_write; 773 int in_trail = 0; 774 size_t trail_len = (msg->trail ? msg->trail->length : 0); 775 776 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", 777 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages, 778 con->out_msg_pos.page_pos); 779 780 #ifdef CONFIG_BLOCK 781 if (msg->bio && !msg->bio_iter) 782 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg); 783 #endif 784 785 while (data_len > con->out_msg_pos.data_pos) { 786 struct page *page = NULL; 787 void *kaddr = NULL; 788 int max_write = PAGE_SIZE; 789 int page_shift = 0; 790 791 total_max_write = data_len - trail_len - 792 con->out_msg_pos.data_pos; 793 794 /* 795 * if we are calculating the data crc (the default), we need 796 * to map the page. if our pages[] has been revoked, use the 797 * zero page. 798 */ 799 800 /* have we reached the trail part of the data? */ 801 if (con->out_msg_pos.data_pos >= data_len - trail_len) { 802 in_trail = 1; 803 804 total_max_write = data_len - con->out_msg_pos.data_pos; 805 806 page = list_first_entry(&msg->trail->head, 807 struct page, lru); 808 if (crc) 809 kaddr = kmap(page); 810 max_write = PAGE_SIZE; 811 } else if (msg->pages) { 812 page = msg->pages[con->out_msg_pos.page]; 813 if (crc) 814 kaddr = kmap(page); 815 } else if (msg->pagelist) { 816 page = list_first_entry(&msg->pagelist->head, 817 struct page, lru); 818 if (crc) 819 kaddr = kmap(page); 820 #ifdef CONFIG_BLOCK 821 } else if (msg->bio) { 822 struct bio_vec *bv; 823 824 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg); 825 page = bv->bv_page; 826 page_shift = bv->bv_offset; 827 if (crc) 828 kaddr = kmap(page) + page_shift; 829 max_write = bv->bv_len; 830 #endif 831 } else { 832 page = con->msgr->zero_page; 833 if (crc) 834 kaddr = page_address(con->msgr->zero_page); 835 } 836 len = min_t(int, max_write - con->out_msg_pos.page_pos, 837 total_max_write); 838 839 if (crc && !con->out_msg_pos.did_page_crc) { 840 void *base = kaddr + con->out_msg_pos.page_pos; 841 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc); 842 843 BUG_ON(kaddr == NULL); 844 con->out_msg->footer.data_crc = 845 cpu_to_le32(crc32c(tmpcrc, base, len)); 846 con->out_msg_pos.did_page_crc = 1; 847 } 848 ret = kernel_sendpage(con->sock, page, 849 con->out_msg_pos.page_pos + page_shift, 850 len, 851 MSG_DONTWAIT | MSG_NOSIGNAL | 852 MSG_MORE); 853 854 if (crc && 855 (msg->pages || msg->pagelist || msg->bio || in_trail)) 856 kunmap(page); 857 858 if (ret == -EAGAIN) 859 ret = 0; 860 if (ret <= 0) 861 goto out; 862 863 con->out_msg_pos.data_pos += ret; 864 con->out_msg_pos.page_pos += ret; 865 if (ret == len) { 866 con->out_msg_pos.page_pos = 0; 867 con->out_msg_pos.page++; 868 con->out_msg_pos.did_page_crc = 0; 869 if (in_trail) 870 list_move_tail(&page->lru, 871 &msg->trail->head); 872 else if (msg->pagelist) 873 list_move_tail(&page->lru, 874 &msg->pagelist->head); 875 #ifdef CONFIG_BLOCK 876 else if (msg->bio) 877 iter_bio_next(&msg->bio_iter, &msg->bio_seg); 878 #endif 879 } 880 } 881 882 dout("write_partial_msg_pages %p msg %p done\n", con, msg); 883 884 /* prepare and queue up footer, too */ 885 if (!crc) 886 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 887 con->out_kvec_bytes = 0; 888 con->out_kvec_left = 0; 889 con->out_kvec_cur = con->out_kvec; 890 prepare_write_message_footer(con, 0); 891 ret = 1; 892 out: 893 return ret; 894 } 895 896 /* 897 * write some zeros 898 */ 899 static int write_partial_skip(struct ceph_connection *con) 900 { 901 int ret; 902 903 while (con->out_skip > 0) { 904 struct kvec iov = { 905 .iov_base = page_address(con->msgr->zero_page), 906 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE) 907 }; 908 909 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1); 910 if (ret <= 0) 911 goto out; 912 con->out_skip -= ret; 913 } 914 ret = 1; 915 out: 916 return ret; 917 } 918 919 /* 920 * Prepare to read connection handshake, or an ack. 921 */ 922 static void prepare_read_banner(struct ceph_connection *con) 923 { 924 dout("prepare_read_banner %p\n", con); 925 con->in_base_pos = 0; 926 } 927 928 static void prepare_read_connect(struct ceph_connection *con) 929 { 930 dout("prepare_read_connect %p\n", con); 931 con->in_base_pos = 0; 932 } 933 934 static void prepare_read_ack(struct ceph_connection *con) 935 { 936 dout("prepare_read_ack %p\n", con); 937 con->in_base_pos = 0; 938 } 939 940 static void prepare_read_tag(struct ceph_connection *con) 941 { 942 dout("prepare_read_tag %p\n", con); 943 con->in_base_pos = 0; 944 con->in_tag = CEPH_MSGR_TAG_READY; 945 } 946 947 /* 948 * Prepare to read a message. 949 */ 950 static int prepare_read_message(struct ceph_connection *con) 951 { 952 dout("prepare_read_message %p\n", con); 953 BUG_ON(con->in_msg != NULL); 954 con->in_base_pos = 0; 955 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 956 return 0; 957 } 958 959 960 static int read_partial(struct ceph_connection *con, 961 int *to, int size, void *object) 962 { 963 *to += size; 964 while (con->in_base_pos < *to) { 965 int left = *to - con->in_base_pos; 966 int have = size - left; 967 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 968 if (ret <= 0) 969 return ret; 970 con->in_base_pos += ret; 971 } 972 return 1; 973 } 974 975 976 /* 977 * Read all or part of the connect-side handshake on a new connection 978 */ 979 static int read_partial_banner(struct ceph_connection *con) 980 { 981 int ret, to = 0; 982 983 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 984 985 /* peer's banner */ 986 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner); 987 if (ret <= 0) 988 goto out; 989 ret = read_partial(con, &to, sizeof(con->actual_peer_addr), 990 &con->actual_peer_addr); 991 if (ret <= 0) 992 goto out; 993 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me), 994 &con->peer_addr_for_me); 995 if (ret <= 0) 996 goto out; 997 out: 998 return ret; 999 } 1000 1001 static int read_partial_connect(struct ceph_connection *con) 1002 { 1003 int ret, to = 0; 1004 1005 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1006 1007 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply); 1008 if (ret <= 0) 1009 goto out; 1010 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len), 1011 con->auth_reply_buf); 1012 if (ret <= 0) 1013 goto out; 1014 1015 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1016 con, (int)con->in_reply.tag, 1017 le32_to_cpu(con->in_reply.connect_seq), 1018 le32_to_cpu(con->in_reply.global_seq)); 1019 out: 1020 return ret; 1021 1022 } 1023 1024 /* 1025 * Verify the hello banner looks okay. 1026 */ 1027 static int verify_hello(struct ceph_connection *con) 1028 { 1029 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1030 pr_err("connect to %s got bad banner\n", 1031 ceph_pr_addr(&con->peer_addr.in_addr)); 1032 con->error_msg = "protocol error, bad banner"; 1033 return -1; 1034 } 1035 return 0; 1036 } 1037 1038 static bool addr_is_blank(struct sockaddr_storage *ss) 1039 { 1040 switch (ss->ss_family) { 1041 case AF_INET: 1042 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1043 case AF_INET6: 1044 return 1045 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1046 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1047 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1048 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1049 } 1050 return false; 1051 } 1052 1053 static int addr_port(struct sockaddr_storage *ss) 1054 { 1055 switch (ss->ss_family) { 1056 case AF_INET: 1057 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1058 case AF_INET6: 1059 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1060 } 1061 return 0; 1062 } 1063 1064 static void addr_set_port(struct sockaddr_storage *ss, int p) 1065 { 1066 switch (ss->ss_family) { 1067 case AF_INET: 1068 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1069 case AF_INET6: 1070 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1071 } 1072 } 1073 1074 /* 1075 * Parse an ip[:port] list into an addr array. Use the default 1076 * monitor port if a port isn't specified. 1077 */ 1078 int ceph_parse_ips(const char *c, const char *end, 1079 struct ceph_entity_addr *addr, 1080 int max_count, int *count) 1081 { 1082 int i; 1083 const char *p = c; 1084 1085 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1086 for (i = 0; i < max_count; i++) { 1087 const char *ipend; 1088 struct sockaddr_storage *ss = &addr[i].in_addr; 1089 struct sockaddr_in *in4 = (void *)ss; 1090 struct sockaddr_in6 *in6 = (void *)ss; 1091 int port; 1092 char delim = ','; 1093 1094 if (*p == '[') { 1095 delim = ']'; 1096 p++; 1097 } 1098 1099 memset(ss, 0, sizeof(*ss)); 1100 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr, 1101 delim, &ipend)) 1102 ss->ss_family = AF_INET; 1103 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr, 1104 delim, &ipend)) 1105 ss->ss_family = AF_INET6; 1106 else 1107 goto bad; 1108 p = ipend; 1109 1110 if (delim == ']') { 1111 if (*p != ']') { 1112 dout("missing matching ']'\n"); 1113 goto bad; 1114 } 1115 p++; 1116 } 1117 1118 /* port? */ 1119 if (p < end && *p == ':') { 1120 port = 0; 1121 p++; 1122 while (p < end && *p >= '0' && *p <= '9') { 1123 port = (port * 10) + (*p - '0'); 1124 p++; 1125 } 1126 if (port > 65535 || port == 0) 1127 goto bad; 1128 } else { 1129 port = CEPH_MON_PORT; 1130 } 1131 1132 addr_set_port(ss, port); 1133 1134 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1135 1136 if (p == end) 1137 break; 1138 if (*p != ',') 1139 goto bad; 1140 p++; 1141 } 1142 1143 if (p != end) 1144 goto bad; 1145 1146 if (count) 1147 *count = i + 1; 1148 return 0; 1149 1150 bad: 1151 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1152 return -EINVAL; 1153 } 1154 EXPORT_SYMBOL(ceph_parse_ips); 1155 1156 static int process_banner(struct ceph_connection *con) 1157 { 1158 dout("process_banner on %p\n", con); 1159 1160 if (verify_hello(con) < 0) 1161 return -1; 1162 1163 ceph_decode_addr(&con->actual_peer_addr); 1164 ceph_decode_addr(&con->peer_addr_for_me); 1165 1166 /* 1167 * Make sure the other end is who we wanted. note that the other 1168 * end may not yet know their ip address, so if it's 0.0.0.0, give 1169 * them the benefit of the doubt. 1170 */ 1171 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1172 sizeof(con->peer_addr)) != 0 && 1173 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1174 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1175 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1176 ceph_pr_addr(&con->peer_addr.in_addr), 1177 (int)le32_to_cpu(con->peer_addr.nonce), 1178 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1179 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1180 con->error_msg = "wrong peer at address"; 1181 return -1; 1182 } 1183 1184 /* 1185 * did we learn our address? 1186 */ 1187 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1188 int port = addr_port(&con->msgr->inst.addr.in_addr); 1189 1190 memcpy(&con->msgr->inst.addr.in_addr, 1191 &con->peer_addr_for_me.in_addr, 1192 sizeof(con->peer_addr_for_me.in_addr)); 1193 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1194 encode_my_addr(con->msgr); 1195 dout("process_banner learned my addr is %s\n", 1196 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1197 } 1198 1199 set_bit(NEGOTIATING, &con->state); 1200 prepare_read_connect(con); 1201 return 0; 1202 } 1203 1204 static void fail_protocol(struct ceph_connection *con) 1205 { 1206 reset_connection(con); 1207 set_bit(CLOSED, &con->state); /* in case there's queued work */ 1208 1209 mutex_unlock(&con->mutex); 1210 if (con->ops->bad_proto) 1211 con->ops->bad_proto(con); 1212 mutex_lock(&con->mutex); 1213 } 1214 1215 static int process_connect(struct ceph_connection *con) 1216 { 1217 u64 sup_feat = con->msgr->supported_features; 1218 u64 req_feat = con->msgr->required_features; 1219 u64 server_feat = le64_to_cpu(con->in_reply.features); 1220 1221 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1222 1223 switch (con->in_reply.tag) { 1224 case CEPH_MSGR_TAG_FEATURES: 1225 pr_err("%s%lld %s feature set mismatch," 1226 " my %llx < server's %llx, missing %llx\n", 1227 ENTITY_NAME(con->peer_name), 1228 ceph_pr_addr(&con->peer_addr.in_addr), 1229 sup_feat, server_feat, server_feat & ~sup_feat); 1230 con->error_msg = "missing required protocol features"; 1231 fail_protocol(con); 1232 return -1; 1233 1234 case CEPH_MSGR_TAG_BADPROTOVER: 1235 pr_err("%s%lld %s protocol version mismatch," 1236 " my %d != server's %d\n", 1237 ENTITY_NAME(con->peer_name), 1238 ceph_pr_addr(&con->peer_addr.in_addr), 1239 le32_to_cpu(con->out_connect.protocol_version), 1240 le32_to_cpu(con->in_reply.protocol_version)); 1241 con->error_msg = "protocol version mismatch"; 1242 fail_protocol(con); 1243 return -1; 1244 1245 case CEPH_MSGR_TAG_BADAUTHORIZER: 1246 con->auth_retry++; 1247 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1248 con->auth_retry); 1249 if (con->auth_retry == 2) { 1250 con->error_msg = "connect authorization failure"; 1251 reset_connection(con); 1252 set_bit(CLOSED, &con->state); 1253 return -1; 1254 } 1255 con->auth_retry = 1; 1256 prepare_write_connect(con->msgr, con, 0); 1257 prepare_read_connect(con); 1258 break; 1259 1260 case CEPH_MSGR_TAG_RESETSESSION: 1261 /* 1262 * If we connected with a large connect_seq but the peer 1263 * has no record of a session with us (no connection, or 1264 * connect_seq == 0), they will send RESETSESION to indicate 1265 * that they must have reset their session, and may have 1266 * dropped messages. 1267 */ 1268 dout("process_connect got RESET peer seq %u\n", 1269 le32_to_cpu(con->in_connect.connect_seq)); 1270 pr_err("%s%lld %s connection reset\n", 1271 ENTITY_NAME(con->peer_name), 1272 ceph_pr_addr(&con->peer_addr.in_addr)); 1273 reset_connection(con); 1274 prepare_write_connect(con->msgr, con, 0); 1275 prepare_read_connect(con); 1276 1277 /* Tell ceph about it. */ 1278 mutex_unlock(&con->mutex); 1279 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 1280 if (con->ops->peer_reset) 1281 con->ops->peer_reset(con); 1282 mutex_lock(&con->mutex); 1283 break; 1284 1285 case CEPH_MSGR_TAG_RETRY_SESSION: 1286 /* 1287 * If we sent a smaller connect_seq than the peer has, try 1288 * again with a larger value. 1289 */ 1290 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n", 1291 le32_to_cpu(con->out_connect.connect_seq), 1292 le32_to_cpu(con->in_connect.connect_seq)); 1293 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq); 1294 prepare_write_connect(con->msgr, con, 0); 1295 prepare_read_connect(con); 1296 break; 1297 1298 case CEPH_MSGR_TAG_RETRY_GLOBAL: 1299 /* 1300 * If we sent a smaller global_seq than the peer has, try 1301 * again with a larger value. 1302 */ 1303 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 1304 con->peer_global_seq, 1305 le32_to_cpu(con->in_connect.global_seq)); 1306 get_global_seq(con->msgr, 1307 le32_to_cpu(con->in_connect.global_seq)); 1308 prepare_write_connect(con->msgr, con, 0); 1309 prepare_read_connect(con); 1310 break; 1311 1312 case CEPH_MSGR_TAG_READY: 1313 if (req_feat & ~server_feat) { 1314 pr_err("%s%lld %s protocol feature mismatch," 1315 " my required %llx > server's %llx, need %llx\n", 1316 ENTITY_NAME(con->peer_name), 1317 ceph_pr_addr(&con->peer_addr.in_addr), 1318 req_feat, server_feat, req_feat & ~server_feat); 1319 con->error_msg = "missing required protocol features"; 1320 fail_protocol(con); 1321 return -1; 1322 } 1323 clear_bit(CONNECTING, &con->state); 1324 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 1325 con->connect_seq++; 1326 con->peer_features = server_feat; 1327 dout("process_connect got READY gseq %d cseq %d (%d)\n", 1328 con->peer_global_seq, 1329 le32_to_cpu(con->in_reply.connect_seq), 1330 con->connect_seq); 1331 WARN_ON(con->connect_seq != 1332 le32_to_cpu(con->in_reply.connect_seq)); 1333 1334 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 1335 set_bit(LOSSYTX, &con->state); 1336 1337 prepare_read_tag(con); 1338 break; 1339 1340 case CEPH_MSGR_TAG_WAIT: 1341 /* 1342 * If there is a connection race (we are opening 1343 * connections to each other), one of us may just have 1344 * to WAIT. This shouldn't happen if we are the 1345 * client. 1346 */ 1347 pr_err("process_connect peer connecting WAIT\n"); 1348 1349 default: 1350 pr_err("connect protocol error, will retry\n"); 1351 con->error_msg = "protocol error, garbage tag during connect"; 1352 return -1; 1353 } 1354 return 0; 1355 } 1356 1357 1358 /* 1359 * read (part of) an ack 1360 */ 1361 static int read_partial_ack(struct ceph_connection *con) 1362 { 1363 int to = 0; 1364 1365 return read_partial(con, &to, sizeof(con->in_temp_ack), 1366 &con->in_temp_ack); 1367 } 1368 1369 1370 /* 1371 * We can finally discard anything that's been acked. 1372 */ 1373 static void process_ack(struct ceph_connection *con) 1374 { 1375 struct ceph_msg *m; 1376 u64 ack = le64_to_cpu(con->in_temp_ack); 1377 u64 seq; 1378 1379 while (!list_empty(&con->out_sent)) { 1380 m = list_first_entry(&con->out_sent, struct ceph_msg, 1381 list_head); 1382 seq = le64_to_cpu(m->hdr.seq); 1383 if (seq > ack) 1384 break; 1385 dout("got ack for seq %llu type %d at %p\n", seq, 1386 le16_to_cpu(m->hdr.type), m); 1387 ceph_msg_remove(m); 1388 } 1389 prepare_read_tag(con); 1390 } 1391 1392 1393 1394 1395 static int read_partial_message_section(struct ceph_connection *con, 1396 struct kvec *section, 1397 unsigned int sec_len, u32 *crc) 1398 { 1399 int ret, left; 1400 1401 BUG_ON(!section); 1402 1403 while (section->iov_len < sec_len) { 1404 BUG_ON(section->iov_base == NULL); 1405 left = sec_len - section->iov_len; 1406 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 1407 section->iov_len, left); 1408 if (ret <= 0) 1409 return ret; 1410 section->iov_len += ret; 1411 if (section->iov_len == sec_len) 1412 *crc = crc32c(0, section->iov_base, 1413 section->iov_len); 1414 } 1415 1416 return 1; 1417 } 1418 1419 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, 1420 struct ceph_msg_header *hdr, 1421 int *skip); 1422 1423 1424 static int read_partial_message_pages(struct ceph_connection *con, 1425 struct page **pages, 1426 unsigned data_len, int datacrc) 1427 { 1428 void *p; 1429 int ret; 1430 int left; 1431 1432 left = min((int)(data_len - con->in_msg_pos.data_pos), 1433 (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); 1434 /* (page) data */ 1435 BUG_ON(pages == NULL); 1436 p = kmap(pages[con->in_msg_pos.page]); 1437 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1438 left); 1439 if (ret > 0 && datacrc) 1440 con->in_data_crc = 1441 crc32c(con->in_data_crc, 1442 p + con->in_msg_pos.page_pos, ret); 1443 kunmap(pages[con->in_msg_pos.page]); 1444 if (ret <= 0) 1445 return ret; 1446 con->in_msg_pos.data_pos += ret; 1447 con->in_msg_pos.page_pos += ret; 1448 if (con->in_msg_pos.page_pos == PAGE_SIZE) { 1449 con->in_msg_pos.page_pos = 0; 1450 con->in_msg_pos.page++; 1451 } 1452 1453 return ret; 1454 } 1455 1456 #ifdef CONFIG_BLOCK 1457 static int read_partial_message_bio(struct ceph_connection *con, 1458 struct bio **bio_iter, int *bio_seg, 1459 unsigned data_len, int datacrc) 1460 { 1461 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg); 1462 void *p; 1463 int ret, left; 1464 1465 if (IS_ERR(bv)) 1466 return PTR_ERR(bv); 1467 1468 left = min((int)(data_len - con->in_msg_pos.data_pos), 1469 (int)(bv->bv_len - con->in_msg_pos.page_pos)); 1470 1471 p = kmap(bv->bv_page) + bv->bv_offset; 1472 1473 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1474 left); 1475 if (ret > 0 && datacrc) 1476 con->in_data_crc = 1477 crc32c(con->in_data_crc, 1478 p + con->in_msg_pos.page_pos, ret); 1479 kunmap(bv->bv_page); 1480 if (ret <= 0) 1481 return ret; 1482 con->in_msg_pos.data_pos += ret; 1483 con->in_msg_pos.page_pos += ret; 1484 if (con->in_msg_pos.page_pos == bv->bv_len) { 1485 con->in_msg_pos.page_pos = 0; 1486 iter_bio_next(bio_iter, bio_seg); 1487 } 1488 1489 return ret; 1490 } 1491 #endif 1492 1493 /* 1494 * read (part of) a message. 1495 */ 1496 static int read_partial_message(struct ceph_connection *con) 1497 { 1498 struct ceph_msg *m = con->in_msg; 1499 int ret; 1500 int to, left; 1501 unsigned front_len, middle_len, data_len; 1502 int datacrc = con->msgr->nocrc; 1503 int skip; 1504 u64 seq; 1505 1506 dout("read_partial_message con %p msg %p\n", con, m); 1507 1508 /* header */ 1509 while (con->in_base_pos < sizeof(con->in_hdr)) { 1510 left = sizeof(con->in_hdr) - con->in_base_pos; 1511 ret = ceph_tcp_recvmsg(con->sock, 1512 (char *)&con->in_hdr + con->in_base_pos, 1513 left); 1514 if (ret <= 0) 1515 return ret; 1516 con->in_base_pos += ret; 1517 if (con->in_base_pos == sizeof(con->in_hdr)) { 1518 u32 crc = crc32c(0, (void *)&con->in_hdr, 1519 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc)); 1520 if (crc != le32_to_cpu(con->in_hdr.crc)) { 1521 pr_err("read_partial_message bad hdr " 1522 " crc %u != expected %u\n", 1523 crc, con->in_hdr.crc); 1524 return -EBADMSG; 1525 } 1526 } 1527 } 1528 front_len = le32_to_cpu(con->in_hdr.front_len); 1529 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 1530 return -EIO; 1531 middle_len = le32_to_cpu(con->in_hdr.middle_len); 1532 if (middle_len > CEPH_MSG_MAX_DATA_LEN) 1533 return -EIO; 1534 data_len = le32_to_cpu(con->in_hdr.data_len); 1535 if (data_len > CEPH_MSG_MAX_DATA_LEN) 1536 return -EIO; 1537 1538 /* verify seq# */ 1539 seq = le64_to_cpu(con->in_hdr.seq); 1540 if ((s64)seq - (s64)con->in_seq < 1) { 1541 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 1542 ENTITY_NAME(con->peer_name), 1543 ceph_pr_addr(&con->peer_addr.in_addr), 1544 seq, con->in_seq + 1); 1545 con->in_base_pos = -front_len - middle_len - data_len - 1546 sizeof(m->footer); 1547 con->in_tag = CEPH_MSGR_TAG_READY; 1548 return 0; 1549 } else if ((s64)seq - (s64)con->in_seq > 1) { 1550 pr_err("read_partial_message bad seq %lld expected %lld\n", 1551 seq, con->in_seq + 1); 1552 con->error_msg = "bad message sequence # for incoming message"; 1553 return -EBADMSG; 1554 } 1555 1556 /* allocate message? */ 1557 if (!con->in_msg) { 1558 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 1559 con->in_hdr.front_len, con->in_hdr.data_len); 1560 skip = 0; 1561 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip); 1562 if (skip) { 1563 /* skip this message */ 1564 dout("alloc_msg said skip message\n"); 1565 BUG_ON(con->in_msg); 1566 con->in_base_pos = -front_len - middle_len - data_len - 1567 sizeof(m->footer); 1568 con->in_tag = CEPH_MSGR_TAG_READY; 1569 con->in_seq++; 1570 return 0; 1571 } 1572 if (!con->in_msg) { 1573 con->error_msg = 1574 "error allocating memory for incoming message"; 1575 return -ENOMEM; 1576 } 1577 m = con->in_msg; 1578 m->front.iov_len = 0; /* haven't read it yet */ 1579 if (m->middle) 1580 m->middle->vec.iov_len = 0; 1581 1582 con->in_msg_pos.page = 0; 1583 if (m->pages) 1584 con->in_msg_pos.page_pos = m->page_alignment; 1585 else 1586 con->in_msg_pos.page_pos = 0; 1587 con->in_msg_pos.data_pos = 0; 1588 } 1589 1590 /* front */ 1591 ret = read_partial_message_section(con, &m->front, front_len, 1592 &con->in_front_crc); 1593 if (ret <= 0) 1594 return ret; 1595 1596 /* middle */ 1597 if (m->middle) { 1598 ret = read_partial_message_section(con, &m->middle->vec, 1599 middle_len, 1600 &con->in_middle_crc); 1601 if (ret <= 0) 1602 return ret; 1603 } 1604 #ifdef CONFIG_BLOCK 1605 if (m->bio && !m->bio_iter) 1606 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg); 1607 #endif 1608 1609 /* (page) data */ 1610 while (con->in_msg_pos.data_pos < data_len) { 1611 if (m->pages) { 1612 ret = read_partial_message_pages(con, m->pages, 1613 data_len, datacrc); 1614 if (ret <= 0) 1615 return ret; 1616 #ifdef CONFIG_BLOCK 1617 } else if (m->bio) { 1618 1619 ret = read_partial_message_bio(con, 1620 &m->bio_iter, &m->bio_seg, 1621 data_len, datacrc); 1622 if (ret <= 0) 1623 return ret; 1624 #endif 1625 } else { 1626 BUG_ON(1); 1627 } 1628 } 1629 1630 /* footer */ 1631 to = sizeof(m->hdr) + sizeof(m->footer); 1632 while (con->in_base_pos < to) { 1633 left = to - con->in_base_pos; 1634 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer + 1635 (con->in_base_pos - sizeof(m->hdr)), 1636 left); 1637 if (ret <= 0) 1638 return ret; 1639 con->in_base_pos += ret; 1640 } 1641 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 1642 m, front_len, m->footer.front_crc, middle_len, 1643 m->footer.middle_crc, data_len, m->footer.data_crc); 1644 1645 /* crc ok? */ 1646 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 1647 pr_err("read_partial_message %p front crc %u != exp. %u\n", 1648 m, con->in_front_crc, m->footer.front_crc); 1649 return -EBADMSG; 1650 } 1651 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 1652 pr_err("read_partial_message %p middle crc %u != exp %u\n", 1653 m, con->in_middle_crc, m->footer.middle_crc); 1654 return -EBADMSG; 1655 } 1656 if (datacrc && 1657 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 1658 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 1659 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 1660 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 1661 return -EBADMSG; 1662 } 1663 1664 return 1; /* done! */ 1665 } 1666 1667 /* 1668 * Process message. This happens in the worker thread. The callback should 1669 * be careful not to do anything that waits on other incoming messages or it 1670 * may deadlock. 1671 */ 1672 static void process_message(struct ceph_connection *con) 1673 { 1674 struct ceph_msg *msg; 1675 1676 msg = con->in_msg; 1677 con->in_msg = NULL; 1678 1679 /* if first message, set peer_name */ 1680 if (con->peer_name.type == 0) 1681 con->peer_name = msg->hdr.src; 1682 1683 con->in_seq++; 1684 mutex_unlock(&con->mutex); 1685 1686 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 1687 msg, le64_to_cpu(msg->hdr.seq), 1688 ENTITY_NAME(msg->hdr.src), 1689 le16_to_cpu(msg->hdr.type), 1690 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1691 le32_to_cpu(msg->hdr.front_len), 1692 le32_to_cpu(msg->hdr.data_len), 1693 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 1694 con->ops->dispatch(con, msg); 1695 1696 mutex_lock(&con->mutex); 1697 prepare_read_tag(con); 1698 } 1699 1700 1701 /* 1702 * Write something to the socket. Called in a worker thread when the 1703 * socket appears to be writeable and we have something ready to send. 1704 */ 1705 static int try_write(struct ceph_connection *con) 1706 { 1707 struct ceph_messenger *msgr = con->msgr; 1708 int ret = 1; 1709 1710 dout("try_write start %p state %lu nref %d\n", con, con->state, 1711 atomic_read(&con->nref)); 1712 1713 more: 1714 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 1715 1716 /* open the socket first? */ 1717 if (con->sock == NULL) { 1718 /* 1719 * if we were STANDBY and are reconnecting _this_ 1720 * connection, bump connect_seq now. Always bump 1721 * global_seq. 1722 */ 1723 if (test_and_clear_bit(STANDBY, &con->state)) 1724 con->connect_seq++; 1725 1726 prepare_write_banner(msgr, con); 1727 prepare_write_connect(msgr, con, 1); 1728 prepare_read_banner(con); 1729 set_bit(CONNECTING, &con->state); 1730 clear_bit(NEGOTIATING, &con->state); 1731 1732 BUG_ON(con->in_msg); 1733 con->in_tag = CEPH_MSGR_TAG_READY; 1734 dout("try_write initiating connect on %p new state %lu\n", 1735 con, con->state); 1736 con->sock = ceph_tcp_connect(con); 1737 if (IS_ERR(con->sock)) { 1738 con->sock = NULL; 1739 con->error_msg = "connect error"; 1740 ret = -1; 1741 goto out; 1742 } 1743 } 1744 1745 more_kvec: 1746 /* kvec data queued? */ 1747 if (con->out_skip) { 1748 ret = write_partial_skip(con); 1749 if (ret <= 0) 1750 goto out; 1751 } 1752 if (con->out_kvec_left) { 1753 ret = write_partial_kvec(con); 1754 if (ret <= 0) 1755 goto out; 1756 } 1757 1758 /* msg pages? */ 1759 if (con->out_msg) { 1760 if (con->out_msg_done) { 1761 ceph_msg_put(con->out_msg); 1762 con->out_msg = NULL; /* we're done with this one */ 1763 goto do_next; 1764 } 1765 1766 ret = write_partial_msg_pages(con); 1767 if (ret == 1) 1768 goto more_kvec; /* we need to send the footer, too! */ 1769 if (ret == 0) 1770 goto out; 1771 if (ret < 0) { 1772 dout("try_write write_partial_msg_pages err %d\n", 1773 ret); 1774 goto out; 1775 } 1776 } 1777 1778 do_next: 1779 if (!test_bit(CONNECTING, &con->state)) { 1780 /* is anything else pending? */ 1781 if (!list_empty(&con->out_queue)) { 1782 prepare_write_message(con); 1783 goto more; 1784 } 1785 if (con->in_seq > con->in_seq_acked) { 1786 prepare_write_ack(con); 1787 goto more; 1788 } 1789 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) { 1790 prepare_write_keepalive(con); 1791 goto more; 1792 } 1793 } 1794 1795 /* Nothing to do! */ 1796 clear_bit(WRITE_PENDING, &con->state); 1797 dout("try_write nothing else to write.\n"); 1798 ret = 0; 1799 out: 1800 dout("try_write done on %p ret %d\n", con, ret); 1801 return ret; 1802 } 1803 1804 1805 1806 /* 1807 * Read what we can from the socket. 1808 */ 1809 static int try_read(struct ceph_connection *con) 1810 { 1811 int ret = -1; 1812 1813 if (!con->sock) 1814 return 0; 1815 1816 if (test_bit(STANDBY, &con->state)) 1817 return 0; 1818 1819 dout("try_read start on %p\n", con); 1820 1821 more: 1822 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 1823 con->in_base_pos); 1824 if (test_bit(CONNECTING, &con->state)) { 1825 if (!test_bit(NEGOTIATING, &con->state)) { 1826 dout("try_read connecting\n"); 1827 ret = read_partial_banner(con); 1828 if (ret <= 0) 1829 goto out; 1830 ret = process_banner(con); 1831 if (ret < 0) 1832 goto out; 1833 } 1834 ret = read_partial_connect(con); 1835 if (ret <= 0) 1836 goto out; 1837 ret = process_connect(con); 1838 if (ret < 0) 1839 goto out; 1840 goto more; 1841 } 1842 1843 if (con->in_base_pos < 0) { 1844 /* 1845 * skipping + discarding content. 1846 * 1847 * FIXME: there must be a better way to do this! 1848 */ 1849 static char buf[1024]; 1850 int skip = min(1024, -con->in_base_pos); 1851 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 1852 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 1853 if (ret <= 0) 1854 goto out; 1855 con->in_base_pos += ret; 1856 if (con->in_base_pos) 1857 goto more; 1858 } 1859 if (con->in_tag == CEPH_MSGR_TAG_READY) { 1860 /* 1861 * what's next? 1862 */ 1863 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 1864 if (ret <= 0) 1865 goto out; 1866 dout("try_read got tag %d\n", (int)con->in_tag); 1867 switch (con->in_tag) { 1868 case CEPH_MSGR_TAG_MSG: 1869 prepare_read_message(con); 1870 break; 1871 case CEPH_MSGR_TAG_ACK: 1872 prepare_read_ack(con); 1873 break; 1874 case CEPH_MSGR_TAG_CLOSE: 1875 set_bit(CLOSED, &con->state); /* fixme */ 1876 goto out; 1877 default: 1878 goto bad_tag; 1879 } 1880 } 1881 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 1882 ret = read_partial_message(con); 1883 if (ret <= 0) { 1884 switch (ret) { 1885 case -EBADMSG: 1886 con->error_msg = "bad crc"; 1887 ret = -EIO; 1888 break; 1889 case -EIO: 1890 con->error_msg = "io error"; 1891 break; 1892 } 1893 goto out; 1894 } 1895 if (con->in_tag == CEPH_MSGR_TAG_READY) 1896 goto more; 1897 process_message(con); 1898 goto more; 1899 } 1900 if (con->in_tag == CEPH_MSGR_TAG_ACK) { 1901 ret = read_partial_ack(con); 1902 if (ret <= 0) 1903 goto out; 1904 process_ack(con); 1905 goto more; 1906 } 1907 1908 out: 1909 dout("try_read done on %p ret %d\n", con, ret); 1910 return ret; 1911 1912 bad_tag: 1913 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 1914 con->error_msg = "protocol error, garbage tag"; 1915 ret = -1; 1916 goto out; 1917 } 1918 1919 1920 /* 1921 * Atomically queue work on a connection. Bump @con reference to 1922 * avoid races with connection teardown. 1923 */ 1924 static void queue_con(struct ceph_connection *con) 1925 { 1926 if (test_bit(DEAD, &con->state)) { 1927 dout("queue_con %p ignoring: DEAD\n", 1928 con); 1929 return; 1930 } 1931 1932 if (!con->ops->get(con)) { 1933 dout("queue_con %p ref count 0\n", con); 1934 return; 1935 } 1936 1937 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) { 1938 dout("queue_con %p - already queued\n", con); 1939 con->ops->put(con); 1940 } else { 1941 dout("queue_con %p\n", con); 1942 } 1943 } 1944 1945 /* 1946 * Do some work on a connection. Drop a connection ref when we're done. 1947 */ 1948 static void con_work(struct work_struct *work) 1949 { 1950 struct ceph_connection *con = container_of(work, struct ceph_connection, 1951 work.work); 1952 1953 mutex_lock(&con->mutex); 1954 1955 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */ 1956 dout("con_work CLOSED\n"); 1957 con_close_socket(con); 1958 goto done; 1959 } 1960 if (test_and_clear_bit(OPENING, &con->state)) { 1961 /* reopen w/ new peer */ 1962 dout("con_work OPENING\n"); 1963 con_close_socket(con); 1964 } 1965 1966 if (test_and_clear_bit(SOCK_CLOSED, &con->state) || 1967 try_read(con) < 0 || 1968 try_write(con) < 0) { 1969 mutex_unlock(&con->mutex); 1970 ceph_fault(con); /* error/fault path */ 1971 goto done_unlocked; 1972 } 1973 1974 done: 1975 mutex_unlock(&con->mutex); 1976 done_unlocked: 1977 con->ops->put(con); 1978 } 1979 1980 1981 /* 1982 * Generic error/fault handler. A retry mechanism is used with 1983 * exponential backoff 1984 */ 1985 static void ceph_fault(struct ceph_connection *con) 1986 { 1987 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 1988 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 1989 dout("fault %p state %lu to peer %s\n", 1990 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 1991 1992 if (test_bit(LOSSYTX, &con->state)) { 1993 dout("fault on LOSSYTX channel\n"); 1994 goto out; 1995 } 1996 1997 mutex_lock(&con->mutex); 1998 if (test_bit(CLOSED, &con->state)) 1999 goto out_unlock; 2000 2001 con_close_socket(con); 2002 2003 if (con->in_msg) { 2004 ceph_msg_put(con->in_msg); 2005 con->in_msg = NULL; 2006 } 2007 2008 /* Requeue anything that hasn't been acked */ 2009 list_splice_init(&con->out_sent, &con->out_queue); 2010 2011 /* If there are no messages in the queue, place the connection 2012 * in a STANDBY state (i.e., don't try to reconnect just yet). */ 2013 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) { 2014 dout("fault setting STANDBY\n"); 2015 set_bit(STANDBY, &con->state); 2016 } else { 2017 /* retry after a delay. */ 2018 if (con->delay == 0) 2019 con->delay = BASE_DELAY_INTERVAL; 2020 else if (con->delay < MAX_DELAY_INTERVAL) 2021 con->delay *= 2; 2022 dout("fault queueing %p delay %lu\n", con, con->delay); 2023 con->ops->get(con); 2024 if (queue_delayed_work(ceph_msgr_wq, &con->work, 2025 round_jiffies_relative(con->delay)) == 0) 2026 con->ops->put(con); 2027 } 2028 2029 out_unlock: 2030 mutex_unlock(&con->mutex); 2031 out: 2032 /* 2033 * in case we faulted due to authentication, invalidate our 2034 * current tickets so that we can get new ones. 2035 */ 2036 if (con->auth_retry && con->ops->invalidate_authorizer) { 2037 dout("calling invalidate_authorizer()\n"); 2038 con->ops->invalidate_authorizer(con); 2039 } 2040 2041 if (con->ops->fault) 2042 con->ops->fault(con); 2043 } 2044 2045 2046 2047 /* 2048 * create a new messenger instance 2049 */ 2050 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr, 2051 u32 supported_features, 2052 u32 required_features) 2053 { 2054 struct ceph_messenger *msgr; 2055 2056 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL); 2057 if (msgr == NULL) 2058 return ERR_PTR(-ENOMEM); 2059 2060 msgr->supported_features = supported_features; 2061 msgr->required_features = required_features; 2062 2063 spin_lock_init(&msgr->global_seq_lock); 2064 2065 /* the zero page is needed if a request is "canceled" while the message 2066 * is being written over the socket */ 2067 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO); 2068 if (!msgr->zero_page) { 2069 kfree(msgr); 2070 return ERR_PTR(-ENOMEM); 2071 } 2072 kmap(msgr->zero_page); 2073 2074 if (myaddr) 2075 msgr->inst.addr = *myaddr; 2076 2077 /* select a random nonce */ 2078 msgr->inst.addr.type = 0; 2079 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2080 encode_my_addr(msgr); 2081 2082 dout("messenger_create %p\n", msgr); 2083 return msgr; 2084 } 2085 EXPORT_SYMBOL(ceph_messenger_create); 2086 2087 void ceph_messenger_destroy(struct ceph_messenger *msgr) 2088 { 2089 dout("destroy %p\n", msgr); 2090 kunmap(msgr->zero_page); 2091 __free_page(msgr->zero_page); 2092 kfree(msgr); 2093 dout("destroyed messenger %p\n", msgr); 2094 } 2095 EXPORT_SYMBOL(ceph_messenger_destroy); 2096 2097 /* 2098 * Queue up an outgoing message on the given connection. 2099 */ 2100 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2101 { 2102 if (test_bit(CLOSED, &con->state)) { 2103 dout("con_send %p closed, dropping %p\n", con, msg); 2104 ceph_msg_put(msg); 2105 return; 2106 } 2107 2108 /* set src+dst */ 2109 msg->hdr.src = con->msgr->inst.name; 2110 2111 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2112 2113 msg->needs_out_seq = true; 2114 2115 /* queue */ 2116 mutex_lock(&con->mutex); 2117 BUG_ON(!list_empty(&msg->list_head)); 2118 list_add_tail(&msg->list_head, &con->out_queue); 2119 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2120 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2121 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2122 le32_to_cpu(msg->hdr.front_len), 2123 le32_to_cpu(msg->hdr.middle_len), 2124 le32_to_cpu(msg->hdr.data_len)); 2125 mutex_unlock(&con->mutex); 2126 2127 /* if there wasn't anything waiting to send before, queue 2128 * new work */ 2129 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0) 2130 queue_con(con); 2131 } 2132 EXPORT_SYMBOL(ceph_con_send); 2133 2134 /* 2135 * Revoke a message that was previously queued for send 2136 */ 2137 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg) 2138 { 2139 mutex_lock(&con->mutex); 2140 if (!list_empty(&msg->list_head)) { 2141 dout("con_revoke %p msg %p - was on queue\n", con, msg); 2142 list_del_init(&msg->list_head); 2143 ceph_msg_put(msg); 2144 msg->hdr.seq = 0; 2145 } 2146 if (con->out_msg == msg) { 2147 dout("con_revoke %p msg %p - was sending\n", con, msg); 2148 con->out_msg = NULL; 2149 if (con->out_kvec_is_msg) { 2150 con->out_skip = con->out_kvec_bytes; 2151 con->out_kvec_is_msg = false; 2152 } 2153 ceph_msg_put(msg); 2154 msg->hdr.seq = 0; 2155 } 2156 mutex_unlock(&con->mutex); 2157 } 2158 2159 /* 2160 * Revoke a message that we may be reading data into 2161 */ 2162 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg) 2163 { 2164 mutex_lock(&con->mutex); 2165 if (con->in_msg && con->in_msg == msg) { 2166 unsigned front_len = le32_to_cpu(con->in_hdr.front_len); 2167 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len); 2168 unsigned data_len = le32_to_cpu(con->in_hdr.data_len); 2169 2170 /* skip rest of message */ 2171 dout("con_revoke_pages %p msg %p revoked\n", con, msg); 2172 con->in_base_pos = con->in_base_pos - 2173 sizeof(struct ceph_msg_header) - 2174 front_len - 2175 middle_len - 2176 data_len - 2177 sizeof(struct ceph_msg_footer); 2178 ceph_msg_put(con->in_msg); 2179 con->in_msg = NULL; 2180 con->in_tag = CEPH_MSGR_TAG_READY; 2181 con->in_seq++; 2182 } else { 2183 dout("con_revoke_pages %p msg %p pages %p no-op\n", 2184 con, con->in_msg, msg); 2185 } 2186 mutex_unlock(&con->mutex); 2187 } 2188 2189 /* 2190 * Queue a keepalive byte to ensure the tcp connection is alive. 2191 */ 2192 void ceph_con_keepalive(struct ceph_connection *con) 2193 { 2194 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 && 2195 test_and_set_bit(WRITE_PENDING, &con->state) == 0) 2196 queue_con(con); 2197 } 2198 EXPORT_SYMBOL(ceph_con_keepalive); 2199 2200 2201 /* 2202 * construct a new message with given type, size 2203 * the new msg has a ref count of 1. 2204 */ 2205 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags) 2206 { 2207 struct ceph_msg *m; 2208 2209 m = kmalloc(sizeof(*m), flags); 2210 if (m == NULL) 2211 goto out; 2212 kref_init(&m->kref); 2213 INIT_LIST_HEAD(&m->list_head); 2214 2215 m->hdr.tid = 0; 2216 m->hdr.type = cpu_to_le16(type); 2217 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 2218 m->hdr.version = 0; 2219 m->hdr.front_len = cpu_to_le32(front_len); 2220 m->hdr.middle_len = 0; 2221 m->hdr.data_len = 0; 2222 m->hdr.data_off = 0; 2223 m->hdr.reserved = 0; 2224 m->footer.front_crc = 0; 2225 m->footer.middle_crc = 0; 2226 m->footer.data_crc = 0; 2227 m->footer.flags = 0; 2228 m->front_max = front_len; 2229 m->front_is_vmalloc = false; 2230 m->more_to_follow = false; 2231 m->pool = NULL; 2232 2233 /* front */ 2234 if (front_len) { 2235 if (front_len > PAGE_CACHE_SIZE) { 2236 m->front.iov_base = __vmalloc(front_len, flags, 2237 PAGE_KERNEL); 2238 m->front_is_vmalloc = true; 2239 } else { 2240 m->front.iov_base = kmalloc(front_len, flags); 2241 } 2242 if (m->front.iov_base == NULL) { 2243 pr_err("msg_new can't allocate %d bytes\n", 2244 front_len); 2245 goto out2; 2246 } 2247 } else { 2248 m->front.iov_base = NULL; 2249 } 2250 m->front.iov_len = front_len; 2251 2252 /* middle */ 2253 m->middle = NULL; 2254 2255 /* data */ 2256 m->nr_pages = 0; 2257 m->page_alignment = 0; 2258 m->pages = NULL; 2259 m->pagelist = NULL; 2260 m->bio = NULL; 2261 m->bio_iter = NULL; 2262 m->bio_seg = 0; 2263 m->trail = NULL; 2264 2265 dout("ceph_msg_new %p front %d\n", m, front_len); 2266 return m; 2267 2268 out2: 2269 ceph_msg_put(m); 2270 out: 2271 pr_err("msg_new can't create type %d front %d\n", type, front_len); 2272 return NULL; 2273 } 2274 EXPORT_SYMBOL(ceph_msg_new); 2275 2276 /* 2277 * Allocate "middle" portion of a message, if it is needed and wasn't 2278 * allocated by alloc_msg. This allows us to read a small fixed-size 2279 * per-type header in the front and then gracefully fail (i.e., 2280 * propagate the error to the caller based on info in the front) when 2281 * the middle is too large. 2282 */ 2283 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 2284 { 2285 int type = le16_to_cpu(msg->hdr.type); 2286 int middle_len = le32_to_cpu(msg->hdr.middle_len); 2287 2288 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 2289 ceph_msg_type_name(type), middle_len); 2290 BUG_ON(!middle_len); 2291 BUG_ON(msg->middle); 2292 2293 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 2294 if (!msg->middle) 2295 return -ENOMEM; 2296 return 0; 2297 } 2298 2299 /* 2300 * Generic message allocator, for incoming messages. 2301 */ 2302 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, 2303 struct ceph_msg_header *hdr, 2304 int *skip) 2305 { 2306 int type = le16_to_cpu(hdr->type); 2307 int front_len = le32_to_cpu(hdr->front_len); 2308 int middle_len = le32_to_cpu(hdr->middle_len); 2309 struct ceph_msg *msg = NULL; 2310 int ret; 2311 2312 if (con->ops->alloc_msg) { 2313 mutex_unlock(&con->mutex); 2314 msg = con->ops->alloc_msg(con, hdr, skip); 2315 mutex_lock(&con->mutex); 2316 if (!msg || *skip) 2317 return NULL; 2318 } 2319 if (!msg) { 2320 *skip = 0; 2321 msg = ceph_msg_new(type, front_len, GFP_NOFS); 2322 if (!msg) { 2323 pr_err("unable to allocate msg type %d len %d\n", 2324 type, front_len); 2325 return NULL; 2326 } 2327 msg->page_alignment = le16_to_cpu(hdr->data_off); 2328 } 2329 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 2330 2331 if (middle_len && !msg->middle) { 2332 ret = ceph_alloc_middle(con, msg); 2333 if (ret < 0) { 2334 ceph_msg_put(msg); 2335 return NULL; 2336 } 2337 } 2338 2339 return msg; 2340 } 2341 2342 2343 /* 2344 * Free a generically kmalloc'd message. 2345 */ 2346 void ceph_msg_kfree(struct ceph_msg *m) 2347 { 2348 dout("msg_kfree %p\n", m); 2349 if (m->front_is_vmalloc) 2350 vfree(m->front.iov_base); 2351 else 2352 kfree(m->front.iov_base); 2353 kfree(m); 2354 } 2355 2356 /* 2357 * Drop a msg ref. Destroy as needed. 2358 */ 2359 void ceph_msg_last_put(struct kref *kref) 2360 { 2361 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2362 2363 dout("ceph_msg_put last one on %p\n", m); 2364 WARN_ON(!list_empty(&m->list_head)); 2365 2366 /* drop middle, data, if any */ 2367 if (m->middle) { 2368 ceph_buffer_put(m->middle); 2369 m->middle = NULL; 2370 } 2371 m->nr_pages = 0; 2372 m->pages = NULL; 2373 2374 if (m->pagelist) { 2375 ceph_pagelist_release(m->pagelist); 2376 kfree(m->pagelist); 2377 m->pagelist = NULL; 2378 } 2379 2380 m->trail = NULL; 2381 2382 if (m->pool) 2383 ceph_msgpool_put(m->pool, m); 2384 else 2385 ceph_msg_kfree(m); 2386 } 2387 EXPORT_SYMBOL(ceph_msg_last_put); 2388 2389 void ceph_msg_dump(struct ceph_msg *msg) 2390 { 2391 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg, 2392 msg->front_max, msg->nr_pages); 2393 print_hex_dump(KERN_DEBUG, "header: ", 2394 DUMP_PREFIX_OFFSET, 16, 1, 2395 &msg->hdr, sizeof(msg->hdr), true); 2396 print_hex_dump(KERN_DEBUG, " front: ", 2397 DUMP_PREFIX_OFFSET, 16, 1, 2398 msg->front.iov_base, msg->front.iov_len, true); 2399 if (msg->middle) 2400 print_hex_dump(KERN_DEBUG, "middle: ", 2401 DUMP_PREFIX_OFFSET, 16, 1, 2402 msg->middle->vec.iov_base, 2403 msg->middle->vec.iov_len, true); 2404 print_hex_dump(KERN_DEBUG, "footer: ", 2405 DUMP_PREFIX_OFFSET, 16, 1, 2406 &msg->footer, sizeof(msg->footer), true); 2407 } 2408 EXPORT_SYMBOL(ceph_msg_dump); 2409