xref: /openbmc/linux/net/ceph/messenger.c (revision d3597236)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	page_cache_release(zero_page);
282 	zero_page = NULL;
283 }
284 
285 int ceph_msgr_init(void)
286 {
287 	BUG_ON(zero_page != NULL);
288 	zero_page = ZERO_PAGE(0);
289 	page_cache_get(zero_page);
290 
291 	if (ceph_msgr_slab_init())
292 		return -ENOMEM;
293 
294 	/*
295 	 * The number of active work items is limited by the number of
296 	 * connections, so leave @max_active at default.
297 	 */
298 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
299 	if (ceph_msgr_wq)
300 		return 0;
301 
302 	pr_err("msgr_init failed to create workqueue\n");
303 	_ceph_msgr_exit();
304 
305 	return -ENOMEM;
306 }
307 EXPORT_SYMBOL(ceph_msgr_init);
308 
309 void ceph_msgr_exit(void)
310 {
311 	BUG_ON(ceph_msgr_wq == NULL);
312 
313 	_ceph_msgr_exit();
314 }
315 EXPORT_SYMBOL(ceph_msgr_exit);
316 
317 void ceph_msgr_flush(void)
318 {
319 	flush_workqueue(ceph_msgr_wq);
320 }
321 EXPORT_SYMBOL(ceph_msgr_flush);
322 
323 /* Connection socket state transition functions */
324 
325 static void con_sock_state_init(struct ceph_connection *con)
326 {
327 	int old_state;
328 
329 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
331 		printk("%s: unexpected old state %d\n", __func__, old_state);
332 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
333 	     CON_SOCK_STATE_CLOSED);
334 }
335 
336 static void con_sock_state_connecting(struct ceph_connection *con)
337 {
338 	int old_state;
339 
340 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
341 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
342 		printk("%s: unexpected old state %d\n", __func__, old_state);
343 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
344 	     CON_SOCK_STATE_CONNECTING);
345 }
346 
347 static void con_sock_state_connected(struct ceph_connection *con)
348 {
349 	int old_state;
350 
351 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
352 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
353 		printk("%s: unexpected old state %d\n", __func__, old_state);
354 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
355 	     CON_SOCK_STATE_CONNECTED);
356 }
357 
358 static void con_sock_state_closing(struct ceph_connection *con)
359 {
360 	int old_state;
361 
362 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
363 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
364 			old_state != CON_SOCK_STATE_CONNECTED &&
365 			old_state != CON_SOCK_STATE_CLOSING))
366 		printk("%s: unexpected old state %d\n", __func__, old_state);
367 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
368 	     CON_SOCK_STATE_CLOSING);
369 }
370 
371 static void con_sock_state_closed(struct ceph_connection *con)
372 {
373 	int old_state;
374 
375 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
376 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
377 		    old_state != CON_SOCK_STATE_CLOSING &&
378 		    old_state != CON_SOCK_STATE_CONNECTING &&
379 		    old_state != CON_SOCK_STATE_CLOSED))
380 		printk("%s: unexpected old state %d\n", __func__, old_state);
381 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
382 	     CON_SOCK_STATE_CLOSED);
383 }
384 
385 /*
386  * socket callback functions
387  */
388 
389 /* data available on socket, or listen socket received a connect */
390 static void ceph_sock_data_ready(struct sock *sk)
391 {
392 	struct ceph_connection *con = sk->sk_user_data;
393 	if (atomic_read(&con->msgr->stopping)) {
394 		return;
395 	}
396 
397 	if (sk->sk_state != TCP_CLOSE_WAIT) {
398 		dout("%s on %p state = %lu, queueing work\n", __func__,
399 		     con, con->state);
400 		queue_con(con);
401 	}
402 }
403 
404 /* socket has buffer space for writing */
405 static void ceph_sock_write_space(struct sock *sk)
406 {
407 	struct ceph_connection *con = sk->sk_user_data;
408 
409 	/* only queue to workqueue if there is data we want to write,
410 	 * and there is sufficient space in the socket buffer to accept
411 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
412 	 * doesn't get called again until try_write() fills the socket
413 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
414 	 * and net/core/stream.c:sk_stream_write_space().
415 	 */
416 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
417 		if (sk_stream_is_writeable(sk)) {
418 			dout("%s %p queueing write work\n", __func__, con);
419 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
420 			queue_con(con);
421 		}
422 	} else {
423 		dout("%s %p nothing to write\n", __func__, con);
424 	}
425 }
426 
427 /* socket's state has changed */
428 static void ceph_sock_state_change(struct sock *sk)
429 {
430 	struct ceph_connection *con = sk->sk_user_data;
431 
432 	dout("%s %p state = %lu sk_state = %u\n", __func__,
433 	     con, con->state, sk->sk_state);
434 
435 	switch (sk->sk_state) {
436 	case TCP_CLOSE:
437 		dout("%s TCP_CLOSE\n", __func__);
438 	case TCP_CLOSE_WAIT:
439 		dout("%s TCP_CLOSE_WAIT\n", __func__);
440 		con_sock_state_closing(con);
441 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
442 		queue_con(con);
443 		break;
444 	case TCP_ESTABLISHED:
445 		dout("%s TCP_ESTABLISHED\n", __func__);
446 		con_sock_state_connected(con);
447 		queue_con(con);
448 		break;
449 	default:	/* Everything else is uninteresting */
450 		break;
451 	}
452 }
453 
454 /*
455  * set up socket callbacks
456  */
457 static void set_sock_callbacks(struct socket *sock,
458 			       struct ceph_connection *con)
459 {
460 	struct sock *sk = sock->sk;
461 	sk->sk_user_data = con;
462 	sk->sk_data_ready = ceph_sock_data_ready;
463 	sk->sk_write_space = ceph_sock_write_space;
464 	sk->sk_state_change = ceph_sock_state_change;
465 }
466 
467 
468 /*
469  * socket helpers
470  */
471 
472 /*
473  * initiate connection to a remote socket.
474  */
475 static int ceph_tcp_connect(struct ceph_connection *con)
476 {
477 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
478 	struct socket *sock;
479 	int ret;
480 
481 	BUG_ON(con->sock);
482 	ret = sock_create_kern(&init_net, con->peer_addr.in_addr.ss_family,
483 			       SOCK_STREAM, IPPROTO_TCP, &sock);
484 	if (ret)
485 		return ret;
486 	sock->sk->sk_allocation = GFP_NOFS;
487 
488 #ifdef CONFIG_LOCKDEP
489 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
490 #endif
491 
492 	set_sock_callbacks(sock, con);
493 
494 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
495 
496 	con_sock_state_connecting(con);
497 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
498 				 O_NONBLOCK);
499 	if (ret == -EINPROGRESS) {
500 		dout("connect %s EINPROGRESS sk_state = %u\n",
501 		     ceph_pr_addr(&con->peer_addr.in_addr),
502 		     sock->sk->sk_state);
503 	} else if (ret < 0) {
504 		pr_err("connect %s error %d\n",
505 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
506 		sock_release(sock);
507 		return ret;
508 	}
509 
510 	if (con->msgr->tcp_nodelay) {
511 		int optval = 1;
512 
513 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
514 					(char *)&optval, sizeof(optval));
515 		if (ret)
516 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
517 			       ret);
518 	}
519 
520 	con->sock = sock;
521 	return 0;
522 }
523 
524 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
525 {
526 	struct kvec iov = {buf, len};
527 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528 	int r;
529 
530 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
531 	if (r == -EAGAIN)
532 		r = 0;
533 	return r;
534 }
535 
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 		     int page_offset, size_t length)
538 {
539 	void *kaddr;
540 	int ret;
541 
542 	BUG_ON(page_offset + length > PAGE_SIZE);
543 
544 	kaddr = kmap(page);
545 	BUG_ON(!kaddr);
546 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
547 	kunmap(page);
548 
549 	return ret;
550 }
551 
552 /*
553  * write something.  @more is true if caller will be sending more data
554  * shortly.
555  */
556 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
557 		     size_t kvlen, size_t len, int more)
558 {
559 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
560 	int r;
561 
562 	if (more)
563 		msg.msg_flags |= MSG_MORE;
564 	else
565 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
566 
567 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
568 	if (r == -EAGAIN)
569 		r = 0;
570 	return r;
571 }
572 
573 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
574 		     int offset, size_t size, bool more)
575 {
576 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
577 	int ret;
578 
579 	ret = kernel_sendpage(sock, page, offset, size, flags);
580 	if (ret == -EAGAIN)
581 		ret = 0;
582 
583 	return ret;
584 }
585 
586 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
587 		     int offset, size_t size, bool more)
588 {
589 	int ret;
590 	struct kvec iov;
591 
592 	/* sendpage cannot properly handle pages with page_count == 0,
593 	 * we need to fallback to sendmsg if that's the case */
594 	if (page_count(page) >= 1)
595 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
596 
597 	iov.iov_base = kmap(page) + offset;
598 	iov.iov_len = size;
599 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
600 	kunmap(page);
601 
602 	return ret;
603 }
604 
605 /*
606  * Shutdown/close the socket for the given connection.
607  */
608 static int con_close_socket(struct ceph_connection *con)
609 {
610 	int rc = 0;
611 
612 	dout("con_close_socket on %p sock %p\n", con, con->sock);
613 	if (con->sock) {
614 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
615 		sock_release(con->sock);
616 		con->sock = NULL;
617 	}
618 
619 	/*
620 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
621 	 * independent of the connection mutex, and we could have
622 	 * received a socket close event before we had the chance to
623 	 * shut the socket down.
624 	 */
625 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
626 
627 	con_sock_state_closed(con);
628 	return rc;
629 }
630 
631 /*
632  * Reset a connection.  Discard all incoming and outgoing messages
633  * and clear *_seq state.
634  */
635 static void ceph_msg_remove(struct ceph_msg *msg)
636 {
637 	list_del_init(&msg->list_head);
638 	BUG_ON(msg->con == NULL);
639 	msg->con->ops->put(msg->con);
640 	msg->con = NULL;
641 
642 	ceph_msg_put(msg);
643 }
644 static void ceph_msg_remove_list(struct list_head *head)
645 {
646 	while (!list_empty(head)) {
647 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
648 							list_head);
649 		ceph_msg_remove(msg);
650 	}
651 }
652 
653 static void reset_connection(struct ceph_connection *con)
654 {
655 	/* reset connection, out_queue, msg_ and connect_seq */
656 	/* discard existing out_queue and msg_seq */
657 	dout("reset_connection %p\n", con);
658 	ceph_msg_remove_list(&con->out_queue);
659 	ceph_msg_remove_list(&con->out_sent);
660 
661 	if (con->in_msg) {
662 		BUG_ON(con->in_msg->con != con);
663 		con->in_msg->con = NULL;
664 		ceph_msg_put(con->in_msg);
665 		con->in_msg = NULL;
666 		con->ops->put(con);
667 	}
668 
669 	con->connect_seq = 0;
670 	con->out_seq = 0;
671 	if (con->out_msg) {
672 		ceph_msg_put(con->out_msg);
673 		con->out_msg = NULL;
674 	}
675 	con->in_seq = 0;
676 	con->in_seq_acked = 0;
677 }
678 
679 /*
680  * mark a peer down.  drop any open connections.
681  */
682 void ceph_con_close(struct ceph_connection *con)
683 {
684 	mutex_lock(&con->mutex);
685 	dout("con_close %p peer %s\n", con,
686 	     ceph_pr_addr(&con->peer_addr.in_addr));
687 	con->state = CON_STATE_CLOSED;
688 
689 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
690 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
691 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
692 	con_flag_clear(con, CON_FLAG_BACKOFF);
693 
694 	reset_connection(con);
695 	con->peer_global_seq = 0;
696 	cancel_con(con);
697 	con_close_socket(con);
698 	mutex_unlock(&con->mutex);
699 }
700 EXPORT_SYMBOL(ceph_con_close);
701 
702 /*
703  * Reopen a closed connection, with a new peer address.
704  */
705 void ceph_con_open(struct ceph_connection *con,
706 		   __u8 entity_type, __u64 entity_num,
707 		   struct ceph_entity_addr *addr)
708 {
709 	mutex_lock(&con->mutex);
710 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
711 
712 	WARN_ON(con->state != CON_STATE_CLOSED);
713 	con->state = CON_STATE_PREOPEN;
714 
715 	con->peer_name.type = (__u8) entity_type;
716 	con->peer_name.num = cpu_to_le64(entity_num);
717 
718 	memcpy(&con->peer_addr, addr, sizeof(*addr));
719 	con->delay = 0;      /* reset backoff memory */
720 	mutex_unlock(&con->mutex);
721 	queue_con(con);
722 }
723 EXPORT_SYMBOL(ceph_con_open);
724 
725 /*
726  * return true if this connection ever successfully opened
727  */
728 bool ceph_con_opened(struct ceph_connection *con)
729 {
730 	return con->connect_seq > 0;
731 }
732 
733 /*
734  * initialize a new connection.
735  */
736 void ceph_con_init(struct ceph_connection *con, void *private,
737 	const struct ceph_connection_operations *ops,
738 	struct ceph_messenger *msgr)
739 {
740 	dout("con_init %p\n", con);
741 	memset(con, 0, sizeof(*con));
742 	con->private = private;
743 	con->ops = ops;
744 	con->msgr = msgr;
745 
746 	con_sock_state_init(con);
747 
748 	mutex_init(&con->mutex);
749 	INIT_LIST_HEAD(&con->out_queue);
750 	INIT_LIST_HEAD(&con->out_sent);
751 	INIT_DELAYED_WORK(&con->work, con_work);
752 
753 	con->state = CON_STATE_CLOSED;
754 }
755 EXPORT_SYMBOL(ceph_con_init);
756 
757 
758 /*
759  * We maintain a global counter to order connection attempts.  Get
760  * a unique seq greater than @gt.
761  */
762 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
763 {
764 	u32 ret;
765 
766 	spin_lock(&msgr->global_seq_lock);
767 	if (msgr->global_seq < gt)
768 		msgr->global_seq = gt;
769 	ret = ++msgr->global_seq;
770 	spin_unlock(&msgr->global_seq_lock);
771 	return ret;
772 }
773 
774 static void con_out_kvec_reset(struct ceph_connection *con)
775 {
776 	con->out_kvec_left = 0;
777 	con->out_kvec_bytes = 0;
778 	con->out_kvec_cur = &con->out_kvec[0];
779 }
780 
781 static void con_out_kvec_add(struct ceph_connection *con,
782 				size_t size, void *data)
783 {
784 	int index;
785 
786 	index = con->out_kvec_left;
787 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
788 
789 	con->out_kvec[index].iov_len = size;
790 	con->out_kvec[index].iov_base = data;
791 	con->out_kvec_left++;
792 	con->out_kvec_bytes += size;
793 }
794 
795 #ifdef CONFIG_BLOCK
796 
797 /*
798  * For a bio data item, a piece is whatever remains of the next
799  * entry in the current bio iovec, or the first entry in the next
800  * bio in the list.
801  */
802 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
803 					size_t length)
804 {
805 	struct ceph_msg_data *data = cursor->data;
806 	struct bio *bio;
807 
808 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
809 
810 	bio = data->bio;
811 	BUG_ON(!bio);
812 
813 	cursor->resid = min(length, data->bio_length);
814 	cursor->bio = bio;
815 	cursor->bvec_iter = bio->bi_iter;
816 	cursor->last_piece =
817 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
818 }
819 
820 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
821 						size_t *page_offset,
822 						size_t *length)
823 {
824 	struct ceph_msg_data *data = cursor->data;
825 	struct bio *bio;
826 	struct bio_vec bio_vec;
827 
828 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
829 
830 	bio = cursor->bio;
831 	BUG_ON(!bio);
832 
833 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
834 
835 	*page_offset = (size_t) bio_vec.bv_offset;
836 	BUG_ON(*page_offset >= PAGE_SIZE);
837 	if (cursor->last_piece) /* pagelist offset is always 0 */
838 		*length = cursor->resid;
839 	else
840 		*length = (size_t) bio_vec.bv_len;
841 	BUG_ON(*length > cursor->resid);
842 	BUG_ON(*page_offset + *length > PAGE_SIZE);
843 
844 	return bio_vec.bv_page;
845 }
846 
847 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
848 					size_t bytes)
849 {
850 	struct bio *bio;
851 	struct bio_vec bio_vec;
852 
853 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
854 
855 	bio = cursor->bio;
856 	BUG_ON(!bio);
857 
858 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
859 
860 	/* Advance the cursor offset */
861 
862 	BUG_ON(cursor->resid < bytes);
863 	cursor->resid -= bytes;
864 
865 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
866 
867 	if (bytes < bio_vec.bv_len)
868 		return false;	/* more bytes to process in this segment */
869 
870 	/* Move on to the next segment, and possibly the next bio */
871 
872 	if (!cursor->bvec_iter.bi_size) {
873 		bio = bio->bi_next;
874 		cursor->bio = bio;
875 		if (bio)
876 			cursor->bvec_iter = bio->bi_iter;
877 		else
878 			memset(&cursor->bvec_iter, 0,
879 			       sizeof(cursor->bvec_iter));
880 	}
881 
882 	if (!cursor->last_piece) {
883 		BUG_ON(!cursor->resid);
884 		BUG_ON(!bio);
885 		/* A short read is OK, so use <= rather than == */
886 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
887 			cursor->last_piece = true;
888 	}
889 
890 	return true;
891 }
892 #endif /* CONFIG_BLOCK */
893 
894 /*
895  * For a page array, a piece comes from the first page in the array
896  * that has not already been fully consumed.
897  */
898 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
899 					size_t length)
900 {
901 	struct ceph_msg_data *data = cursor->data;
902 	int page_count;
903 
904 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
905 
906 	BUG_ON(!data->pages);
907 	BUG_ON(!data->length);
908 
909 	cursor->resid = min(length, data->length);
910 	page_count = calc_pages_for(data->alignment, (u64)data->length);
911 	cursor->page_offset = data->alignment & ~PAGE_MASK;
912 	cursor->page_index = 0;
913 	BUG_ON(page_count > (int)USHRT_MAX);
914 	cursor->page_count = (unsigned short)page_count;
915 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
916 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
917 }
918 
919 static struct page *
920 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
921 					size_t *page_offset, size_t *length)
922 {
923 	struct ceph_msg_data *data = cursor->data;
924 
925 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
926 
927 	BUG_ON(cursor->page_index >= cursor->page_count);
928 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
929 
930 	*page_offset = cursor->page_offset;
931 	if (cursor->last_piece)
932 		*length = cursor->resid;
933 	else
934 		*length = PAGE_SIZE - *page_offset;
935 
936 	return data->pages[cursor->page_index];
937 }
938 
939 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
940 						size_t bytes)
941 {
942 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
943 
944 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
945 
946 	/* Advance the cursor page offset */
947 
948 	cursor->resid -= bytes;
949 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
950 	if (!bytes || cursor->page_offset)
951 		return false;	/* more bytes to process in the current page */
952 
953 	if (!cursor->resid)
954 		return false;   /* no more data */
955 
956 	/* Move on to the next page; offset is already at 0 */
957 
958 	BUG_ON(cursor->page_index >= cursor->page_count);
959 	cursor->page_index++;
960 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
961 
962 	return true;
963 }
964 
965 /*
966  * For a pagelist, a piece is whatever remains to be consumed in the
967  * first page in the list, or the front of the next page.
968  */
969 static void
970 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
971 					size_t length)
972 {
973 	struct ceph_msg_data *data = cursor->data;
974 	struct ceph_pagelist *pagelist;
975 	struct page *page;
976 
977 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
978 
979 	pagelist = data->pagelist;
980 	BUG_ON(!pagelist);
981 
982 	if (!length)
983 		return;		/* pagelist can be assigned but empty */
984 
985 	BUG_ON(list_empty(&pagelist->head));
986 	page = list_first_entry(&pagelist->head, struct page, lru);
987 
988 	cursor->resid = min(length, pagelist->length);
989 	cursor->page = page;
990 	cursor->offset = 0;
991 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
992 }
993 
994 static struct page *
995 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
996 				size_t *page_offset, size_t *length)
997 {
998 	struct ceph_msg_data *data = cursor->data;
999 	struct ceph_pagelist *pagelist;
1000 
1001 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1002 
1003 	pagelist = data->pagelist;
1004 	BUG_ON(!pagelist);
1005 
1006 	BUG_ON(!cursor->page);
1007 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1008 
1009 	/* offset of first page in pagelist is always 0 */
1010 	*page_offset = cursor->offset & ~PAGE_MASK;
1011 	if (cursor->last_piece)
1012 		*length = cursor->resid;
1013 	else
1014 		*length = PAGE_SIZE - *page_offset;
1015 
1016 	return cursor->page;
1017 }
1018 
1019 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1020 						size_t bytes)
1021 {
1022 	struct ceph_msg_data *data = cursor->data;
1023 	struct ceph_pagelist *pagelist;
1024 
1025 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1026 
1027 	pagelist = data->pagelist;
1028 	BUG_ON(!pagelist);
1029 
1030 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1031 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1032 
1033 	/* Advance the cursor offset */
1034 
1035 	cursor->resid -= bytes;
1036 	cursor->offset += bytes;
1037 	/* offset of first page in pagelist is always 0 */
1038 	if (!bytes || cursor->offset & ~PAGE_MASK)
1039 		return false;	/* more bytes to process in the current page */
1040 
1041 	if (!cursor->resid)
1042 		return false;   /* no more data */
1043 
1044 	/* Move on to the next page */
1045 
1046 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1047 	cursor->page = list_entry_next(cursor->page, lru);
1048 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1049 
1050 	return true;
1051 }
1052 
1053 /*
1054  * Message data is handled (sent or received) in pieces, where each
1055  * piece resides on a single page.  The network layer might not
1056  * consume an entire piece at once.  A data item's cursor keeps
1057  * track of which piece is next to process and how much remains to
1058  * be processed in that piece.  It also tracks whether the current
1059  * piece is the last one in the data item.
1060  */
1061 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1062 {
1063 	size_t length = cursor->total_resid;
1064 
1065 	switch (cursor->data->type) {
1066 	case CEPH_MSG_DATA_PAGELIST:
1067 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1068 		break;
1069 	case CEPH_MSG_DATA_PAGES:
1070 		ceph_msg_data_pages_cursor_init(cursor, length);
1071 		break;
1072 #ifdef CONFIG_BLOCK
1073 	case CEPH_MSG_DATA_BIO:
1074 		ceph_msg_data_bio_cursor_init(cursor, length);
1075 		break;
1076 #endif /* CONFIG_BLOCK */
1077 	case CEPH_MSG_DATA_NONE:
1078 	default:
1079 		/* BUG(); */
1080 		break;
1081 	}
1082 	cursor->need_crc = true;
1083 }
1084 
1085 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1086 {
1087 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1088 	struct ceph_msg_data *data;
1089 
1090 	BUG_ON(!length);
1091 	BUG_ON(length > msg->data_length);
1092 	BUG_ON(list_empty(&msg->data));
1093 
1094 	cursor->data_head = &msg->data;
1095 	cursor->total_resid = length;
1096 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1097 	cursor->data = data;
1098 
1099 	__ceph_msg_data_cursor_init(cursor);
1100 }
1101 
1102 /*
1103  * Return the page containing the next piece to process for a given
1104  * data item, and supply the page offset and length of that piece.
1105  * Indicate whether this is the last piece in this data item.
1106  */
1107 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1108 					size_t *page_offset, size_t *length,
1109 					bool *last_piece)
1110 {
1111 	struct page *page;
1112 
1113 	switch (cursor->data->type) {
1114 	case CEPH_MSG_DATA_PAGELIST:
1115 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1116 		break;
1117 	case CEPH_MSG_DATA_PAGES:
1118 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1119 		break;
1120 #ifdef CONFIG_BLOCK
1121 	case CEPH_MSG_DATA_BIO:
1122 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1123 		break;
1124 #endif /* CONFIG_BLOCK */
1125 	case CEPH_MSG_DATA_NONE:
1126 	default:
1127 		page = NULL;
1128 		break;
1129 	}
1130 	BUG_ON(!page);
1131 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1132 	BUG_ON(!*length);
1133 	if (last_piece)
1134 		*last_piece = cursor->last_piece;
1135 
1136 	return page;
1137 }
1138 
1139 /*
1140  * Returns true if the result moves the cursor on to the next piece
1141  * of the data item.
1142  */
1143 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1144 				size_t bytes)
1145 {
1146 	bool new_piece;
1147 
1148 	BUG_ON(bytes > cursor->resid);
1149 	switch (cursor->data->type) {
1150 	case CEPH_MSG_DATA_PAGELIST:
1151 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1152 		break;
1153 	case CEPH_MSG_DATA_PAGES:
1154 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1155 		break;
1156 #ifdef CONFIG_BLOCK
1157 	case CEPH_MSG_DATA_BIO:
1158 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1159 		break;
1160 #endif /* CONFIG_BLOCK */
1161 	case CEPH_MSG_DATA_NONE:
1162 	default:
1163 		BUG();
1164 		break;
1165 	}
1166 	cursor->total_resid -= bytes;
1167 
1168 	if (!cursor->resid && cursor->total_resid) {
1169 		WARN_ON(!cursor->last_piece);
1170 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1171 		cursor->data = list_entry_next(cursor->data, links);
1172 		__ceph_msg_data_cursor_init(cursor);
1173 		new_piece = true;
1174 	}
1175 	cursor->need_crc = new_piece;
1176 
1177 	return new_piece;
1178 }
1179 
1180 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1181 {
1182 	BUG_ON(!msg);
1183 	BUG_ON(!data_len);
1184 
1185 	/* Initialize data cursor */
1186 
1187 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1188 }
1189 
1190 /*
1191  * Prepare footer for currently outgoing message, and finish things
1192  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1193  */
1194 static void prepare_write_message_footer(struct ceph_connection *con)
1195 {
1196 	struct ceph_msg *m = con->out_msg;
1197 	int v = con->out_kvec_left;
1198 
1199 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1200 
1201 	dout("prepare_write_message_footer %p\n", con);
1202 	con->out_kvec_is_msg = true;
1203 	con->out_kvec[v].iov_base = &m->footer;
1204 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1205 		if (con->ops->sign_message)
1206 			con->ops->sign_message(con, m);
1207 		else
1208 			m->footer.sig = 0;
1209 		con->out_kvec[v].iov_len = sizeof(m->footer);
1210 		con->out_kvec_bytes += sizeof(m->footer);
1211 	} else {
1212 		m->old_footer.flags = m->footer.flags;
1213 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1214 		con->out_kvec_bytes += sizeof(m->old_footer);
1215 	}
1216 	con->out_kvec_left++;
1217 	con->out_more = m->more_to_follow;
1218 	con->out_msg_done = true;
1219 }
1220 
1221 /*
1222  * Prepare headers for the next outgoing message.
1223  */
1224 static void prepare_write_message(struct ceph_connection *con)
1225 {
1226 	struct ceph_msg *m;
1227 	u32 crc;
1228 
1229 	con_out_kvec_reset(con);
1230 	con->out_kvec_is_msg = true;
1231 	con->out_msg_done = false;
1232 
1233 	/* Sneak an ack in there first?  If we can get it into the same
1234 	 * TCP packet that's a good thing. */
1235 	if (con->in_seq > con->in_seq_acked) {
1236 		con->in_seq_acked = con->in_seq;
1237 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1238 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1239 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1240 			&con->out_temp_ack);
1241 	}
1242 
1243 	BUG_ON(list_empty(&con->out_queue));
1244 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1245 	con->out_msg = m;
1246 	BUG_ON(m->con != con);
1247 
1248 	/* put message on sent list */
1249 	ceph_msg_get(m);
1250 	list_move_tail(&m->list_head, &con->out_sent);
1251 
1252 	/*
1253 	 * only assign outgoing seq # if we haven't sent this message
1254 	 * yet.  if it is requeued, resend with it's original seq.
1255 	 */
1256 	if (m->needs_out_seq) {
1257 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1258 		m->needs_out_seq = false;
1259 	}
1260 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1261 
1262 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1263 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1264 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1265 	     m->data_length);
1266 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1267 
1268 	/* tag + hdr + front + middle */
1269 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1270 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1271 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1272 
1273 	if (m->middle)
1274 		con_out_kvec_add(con, m->middle->vec.iov_len,
1275 			m->middle->vec.iov_base);
1276 
1277 	/* fill in crc (except data pages), footer */
1278 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1279 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1280 	con->out_msg->footer.flags = 0;
1281 
1282 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1283 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1284 	if (m->middle) {
1285 		crc = crc32c(0, m->middle->vec.iov_base,
1286 				m->middle->vec.iov_len);
1287 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1288 	} else
1289 		con->out_msg->footer.middle_crc = 0;
1290 	dout("%s front_crc %u middle_crc %u\n", __func__,
1291 	     le32_to_cpu(con->out_msg->footer.front_crc),
1292 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1293 
1294 	/* is there a data payload? */
1295 	con->out_msg->footer.data_crc = 0;
1296 	if (m->data_length) {
1297 		prepare_message_data(con->out_msg, m->data_length);
1298 		con->out_more = 1;  /* data + footer will follow */
1299 	} else {
1300 		/* no, queue up footer too and be done */
1301 		prepare_write_message_footer(con);
1302 	}
1303 
1304 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1305 }
1306 
1307 /*
1308  * Prepare an ack.
1309  */
1310 static void prepare_write_ack(struct ceph_connection *con)
1311 {
1312 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1313 	     con->in_seq_acked, con->in_seq);
1314 	con->in_seq_acked = con->in_seq;
1315 
1316 	con_out_kvec_reset(con);
1317 
1318 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1319 
1320 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1321 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1322 				&con->out_temp_ack);
1323 
1324 	con->out_more = 1;  /* more will follow.. eventually.. */
1325 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1326 }
1327 
1328 /*
1329  * Prepare to share the seq during handshake
1330  */
1331 static void prepare_write_seq(struct ceph_connection *con)
1332 {
1333 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1334 	     con->in_seq_acked, con->in_seq);
1335 	con->in_seq_acked = con->in_seq;
1336 
1337 	con_out_kvec_reset(con);
1338 
1339 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1340 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1341 			 &con->out_temp_ack);
1342 
1343 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1344 }
1345 
1346 /*
1347  * Prepare to write keepalive byte.
1348  */
1349 static void prepare_write_keepalive(struct ceph_connection *con)
1350 {
1351 	dout("prepare_write_keepalive %p\n", con);
1352 	con_out_kvec_reset(con);
1353 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1354 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355 }
1356 
1357 /*
1358  * Connection negotiation.
1359  */
1360 
1361 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1362 						int *auth_proto)
1363 {
1364 	struct ceph_auth_handshake *auth;
1365 
1366 	if (!con->ops->get_authorizer) {
1367 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1368 		con->out_connect.authorizer_len = 0;
1369 		return NULL;
1370 	}
1371 
1372 	/* Can't hold the mutex while getting authorizer */
1373 	mutex_unlock(&con->mutex);
1374 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1375 	mutex_lock(&con->mutex);
1376 
1377 	if (IS_ERR(auth))
1378 		return auth;
1379 	if (con->state != CON_STATE_NEGOTIATING)
1380 		return ERR_PTR(-EAGAIN);
1381 
1382 	con->auth_reply_buf = auth->authorizer_reply_buf;
1383 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1384 	return auth;
1385 }
1386 
1387 /*
1388  * We connected to a peer and are saying hello.
1389  */
1390 static void prepare_write_banner(struct ceph_connection *con)
1391 {
1392 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1393 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1394 					&con->msgr->my_enc_addr);
1395 
1396 	con->out_more = 0;
1397 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1398 }
1399 
1400 static int prepare_write_connect(struct ceph_connection *con)
1401 {
1402 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1403 	int proto;
1404 	int auth_proto;
1405 	struct ceph_auth_handshake *auth;
1406 
1407 	switch (con->peer_name.type) {
1408 	case CEPH_ENTITY_TYPE_MON:
1409 		proto = CEPH_MONC_PROTOCOL;
1410 		break;
1411 	case CEPH_ENTITY_TYPE_OSD:
1412 		proto = CEPH_OSDC_PROTOCOL;
1413 		break;
1414 	case CEPH_ENTITY_TYPE_MDS:
1415 		proto = CEPH_MDSC_PROTOCOL;
1416 		break;
1417 	default:
1418 		BUG();
1419 	}
1420 
1421 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1422 	     con->connect_seq, global_seq, proto);
1423 
1424 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1425 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1426 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1427 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1428 	con->out_connect.protocol_version = cpu_to_le32(proto);
1429 	con->out_connect.flags = 0;
1430 
1431 	auth_proto = CEPH_AUTH_UNKNOWN;
1432 	auth = get_connect_authorizer(con, &auth_proto);
1433 	if (IS_ERR(auth))
1434 		return PTR_ERR(auth);
1435 
1436 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1437 	con->out_connect.authorizer_len = auth ?
1438 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1439 
1440 	con_out_kvec_add(con, sizeof (con->out_connect),
1441 					&con->out_connect);
1442 	if (auth && auth->authorizer_buf_len)
1443 		con_out_kvec_add(con, auth->authorizer_buf_len,
1444 					auth->authorizer_buf);
1445 
1446 	con->out_more = 0;
1447 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1448 
1449 	return 0;
1450 }
1451 
1452 /*
1453  * write as much of pending kvecs to the socket as we can.
1454  *  1 -> done
1455  *  0 -> socket full, but more to do
1456  * <0 -> error
1457  */
1458 static int write_partial_kvec(struct ceph_connection *con)
1459 {
1460 	int ret;
1461 
1462 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1463 	while (con->out_kvec_bytes > 0) {
1464 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1465 				       con->out_kvec_left, con->out_kvec_bytes,
1466 				       con->out_more);
1467 		if (ret <= 0)
1468 			goto out;
1469 		con->out_kvec_bytes -= ret;
1470 		if (con->out_kvec_bytes == 0)
1471 			break;            /* done */
1472 
1473 		/* account for full iov entries consumed */
1474 		while (ret >= con->out_kvec_cur->iov_len) {
1475 			BUG_ON(!con->out_kvec_left);
1476 			ret -= con->out_kvec_cur->iov_len;
1477 			con->out_kvec_cur++;
1478 			con->out_kvec_left--;
1479 		}
1480 		/* and for a partially-consumed entry */
1481 		if (ret) {
1482 			con->out_kvec_cur->iov_len -= ret;
1483 			con->out_kvec_cur->iov_base += ret;
1484 		}
1485 	}
1486 	con->out_kvec_left = 0;
1487 	con->out_kvec_is_msg = false;
1488 	ret = 1;
1489 out:
1490 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1491 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1492 	return ret;  /* done! */
1493 }
1494 
1495 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1496 				unsigned int page_offset,
1497 				unsigned int length)
1498 {
1499 	char *kaddr;
1500 
1501 	kaddr = kmap(page);
1502 	BUG_ON(kaddr == NULL);
1503 	crc = crc32c(crc, kaddr + page_offset, length);
1504 	kunmap(page);
1505 
1506 	return crc;
1507 }
1508 /*
1509  * Write as much message data payload as we can.  If we finish, queue
1510  * up the footer.
1511  *  1 -> done, footer is now queued in out_kvec[].
1512  *  0 -> socket full, but more to do
1513  * <0 -> error
1514  */
1515 static int write_partial_message_data(struct ceph_connection *con)
1516 {
1517 	struct ceph_msg *msg = con->out_msg;
1518 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1519 	bool do_datacrc = !con->msgr->nocrc;
1520 	u32 crc;
1521 
1522 	dout("%s %p msg %p\n", __func__, con, msg);
1523 
1524 	if (list_empty(&msg->data))
1525 		return -EINVAL;
1526 
1527 	/*
1528 	 * Iterate through each page that contains data to be
1529 	 * written, and send as much as possible for each.
1530 	 *
1531 	 * If we are calculating the data crc (the default), we will
1532 	 * need to map the page.  If we have no pages, they have
1533 	 * been revoked, so use the zero page.
1534 	 */
1535 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1536 	while (cursor->resid) {
1537 		struct page *page;
1538 		size_t page_offset;
1539 		size_t length;
1540 		bool last_piece;
1541 		bool need_crc;
1542 		int ret;
1543 
1544 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1545 							&last_piece);
1546 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1547 					length, !last_piece);
1548 		if (ret <= 0) {
1549 			if (do_datacrc)
1550 				msg->footer.data_crc = cpu_to_le32(crc);
1551 
1552 			return ret;
1553 		}
1554 		if (do_datacrc && cursor->need_crc)
1555 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1556 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1557 	}
1558 
1559 	dout("%s %p msg %p done\n", __func__, con, msg);
1560 
1561 	/* prepare and queue up footer, too */
1562 	if (do_datacrc)
1563 		msg->footer.data_crc = cpu_to_le32(crc);
1564 	else
1565 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1566 	con_out_kvec_reset(con);
1567 	prepare_write_message_footer(con);
1568 
1569 	return 1;	/* must return > 0 to indicate success */
1570 }
1571 
1572 /*
1573  * write some zeros
1574  */
1575 static int write_partial_skip(struct ceph_connection *con)
1576 {
1577 	int ret;
1578 
1579 	while (con->out_skip > 0) {
1580 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1581 
1582 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1583 		if (ret <= 0)
1584 			goto out;
1585 		con->out_skip -= ret;
1586 	}
1587 	ret = 1;
1588 out:
1589 	return ret;
1590 }
1591 
1592 /*
1593  * Prepare to read connection handshake, or an ack.
1594  */
1595 static void prepare_read_banner(struct ceph_connection *con)
1596 {
1597 	dout("prepare_read_banner %p\n", con);
1598 	con->in_base_pos = 0;
1599 }
1600 
1601 static void prepare_read_connect(struct ceph_connection *con)
1602 {
1603 	dout("prepare_read_connect %p\n", con);
1604 	con->in_base_pos = 0;
1605 }
1606 
1607 static void prepare_read_ack(struct ceph_connection *con)
1608 {
1609 	dout("prepare_read_ack %p\n", con);
1610 	con->in_base_pos = 0;
1611 }
1612 
1613 static void prepare_read_seq(struct ceph_connection *con)
1614 {
1615 	dout("prepare_read_seq %p\n", con);
1616 	con->in_base_pos = 0;
1617 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1618 }
1619 
1620 static void prepare_read_tag(struct ceph_connection *con)
1621 {
1622 	dout("prepare_read_tag %p\n", con);
1623 	con->in_base_pos = 0;
1624 	con->in_tag = CEPH_MSGR_TAG_READY;
1625 }
1626 
1627 /*
1628  * Prepare to read a message.
1629  */
1630 static int prepare_read_message(struct ceph_connection *con)
1631 {
1632 	dout("prepare_read_message %p\n", con);
1633 	BUG_ON(con->in_msg != NULL);
1634 	con->in_base_pos = 0;
1635 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1636 	return 0;
1637 }
1638 
1639 
1640 static int read_partial(struct ceph_connection *con,
1641 			int end, int size, void *object)
1642 {
1643 	while (con->in_base_pos < end) {
1644 		int left = end - con->in_base_pos;
1645 		int have = size - left;
1646 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1647 		if (ret <= 0)
1648 			return ret;
1649 		con->in_base_pos += ret;
1650 	}
1651 	return 1;
1652 }
1653 
1654 
1655 /*
1656  * Read all or part of the connect-side handshake on a new connection
1657  */
1658 static int read_partial_banner(struct ceph_connection *con)
1659 {
1660 	int size;
1661 	int end;
1662 	int ret;
1663 
1664 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1665 
1666 	/* peer's banner */
1667 	size = strlen(CEPH_BANNER);
1668 	end = size;
1669 	ret = read_partial(con, end, size, con->in_banner);
1670 	if (ret <= 0)
1671 		goto out;
1672 
1673 	size = sizeof (con->actual_peer_addr);
1674 	end += size;
1675 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1676 	if (ret <= 0)
1677 		goto out;
1678 
1679 	size = sizeof (con->peer_addr_for_me);
1680 	end += size;
1681 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1682 	if (ret <= 0)
1683 		goto out;
1684 
1685 out:
1686 	return ret;
1687 }
1688 
1689 static int read_partial_connect(struct ceph_connection *con)
1690 {
1691 	int size;
1692 	int end;
1693 	int ret;
1694 
1695 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1696 
1697 	size = sizeof (con->in_reply);
1698 	end = size;
1699 	ret = read_partial(con, end, size, &con->in_reply);
1700 	if (ret <= 0)
1701 		goto out;
1702 
1703 	size = le32_to_cpu(con->in_reply.authorizer_len);
1704 	end += size;
1705 	ret = read_partial(con, end, size, con->auth_reply_buf);
1706 	if (ret <= 0)
1707 		goto out;
1708 
1709 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1710 	     con, (int)con->in_reply.tag,
1711 	     le32_to_cpu(con->in_reply.connect_seq),
1712 	     le32_to_cpu(con->in_reply.global_seq));
1713 out:
1714 	return ret;
1715 
1716 }
1717 
1718 /*
1719  * Verify the hello banner looks okay.
1720  */
1721 static int verify_hello(struct ceph_connection *con)
1722 {
1723 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1724 		pr_err("connect to %s got bad banner\n",
1725 		       ceph_pr_addr(&con->peer_addr.in_addr));
1726 		con->error_msg = "protocol error, bad banner";
1727 		return -1;
1728 	}
1729 	return 0;
1730 }
1731 
1732 static bool addr_is_blank(struct sockaddr_storage *ss)
1733 {
1734 	switch (ss->ss_family) {
1735 	case AF_INET:
1736 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1737 	case AF_INET6:
1738 		return
1739 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1740 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1741 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1742 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1743 	}
1744 	return false;
1745 }
1746 
1747 static int addr_port(struct sockaddr_storage *ss)
1748 {
1749 	switch (ss->ss_family) {
1750 	case AF_INET:
1751 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1752 	case AF_INET6:
1753 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1754 	}
1755 	return 0;
1756 }
1757 
1758 static void addr_set_port(struct sockaddr_storage *ss, int p)
1759 {
1760 	switch (ss->ss_family) {
1761 	case AF_INET:
1762 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1763 		break;
1764 	case AF_INET6:
1765 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1766 		break;
1767 	}
1768 }
1769 
1770 /*
1771  * Unlike other *_pton function semantics, zero indicates success.
1772  */
1773 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1774 		char delim, const char **ipend)
1775 {
1776 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1777 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1778 
1779 	memset(ss, 0, sizeof(*ss));
1780 
1781 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1782 		ss->ss_family = AF_INET;
1783 		return 0;
1784 	}
1785 
1786 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1787 		ss->ss_family = AF_INET6;
1788 		return 0;
1789 	}
1790 
1791 	return -EINVAL;
1792 }
1793 
1794 /*
1795  * Extract hostname string and resolve using kernel DNS facility.
1796  */
1797 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1798 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1799 		struct sockaddr_storage *ss, char delim, const char **ipend)
1800 {
1801 	const char *end, *delim_p;
1802 	char *colon_p, *ip_addr = NULL;
1803 	int ip_len, ret;
1804 
1805 	/*
1806 	 * The end of the hostname occurs immediately preceding the delimiter or
1807 	 * the port marker (':') where the delimiter takes precedence.
1808 	 */
1809 	delim_p = memchr(name, delim, namelen);
1810 	colon_p = memchr(name, ':', namelen);
1811 
1812 	if (delim_p && colon_p)
1813 		end = delim_p < colon_p ? delim_p : colon_p;
1814 	else if (!delim_p && colon_p)
1815 		end = colon_p;
1816 	else {
1817 		end = delim_p;
1818 		if (!end) /* case: hostname:/ */
1819 			end = name + namelen;
1820 	}
1821 
1822 	if (end <= name)
1823 		return -EINVAL;
1824 
1825 	/* do dns_resolve upcall */
1826 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1827 	if (ip_len > 0)
1828 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1829 	else
1830 		ret = -ESRCH;
1831 
1832 	kfree(ip_addr);
1833 
1834 	*ipend = end;
1835 
1836 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1837 			ret, ret ? "failed" : ceph_pr_addr(ss));
1838 
1839 	return ret;
1840 }
1841 #else
1842 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1843 		struct sockaddr_storage *ss, char delim, const char **ipend)
1844 {
1845 	return -EINVAL;
1846 }
1847 #endif
1848 
1849 /*
1850  * Parse a server name (IP or hostname). If a valid IP address is not found
1851  * then try to extract a hostname to resolve using userspace DNS upcall.
1852  */
1853 static int ceph_parse_server_name(const char *name, size_t namelen,
1854 			struct sockaddr_storage *ss, char delim, const char **ipend)
1855 {
1856 	int ret;
1857 
1858 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1859 	if (ret)
1860 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1861 
1862 	return ret;
1863 }
1864 
1865 /*
1866  * Parse an ip[:port] list into an addr array.  Use the default
1867  * monitor port if a port isn't specified.
1868  */
1869 int ceph_parse_ips(const char *c, const char *end,
1870 		   struct ceph_entity_addr *addr,
1871 		   int max_count, int *count)
1872 {
1873 	int i, ret = -EINVAL;
1874 	const char *p = c;
1875 
1876 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1877 	for (i = 0; i < max_count; i++) {
1878 		const char *ipend;
1879 		struct sockaddr_storage *ss = &addr[i].in_addr;
1880 		int port;
1881 		char delim = ',';
1882 
1883 		if (*p == '[') {
1884 			delim = ']';
1885 			p++;
1886 		}
1887 
1888 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1889 		if (ret)
1890 			goto bad;
1891 		ret = -EINVAL;
1892 
1893 		p = ipend;
1894 
1895 		if (delim == ']') {
1896 			if (*p != ']') {
1897 				dout("missing matching ']'\n");
1898 				goto bad;
1899 			}
1900 			p++;
1901 		}
1902 
1903 		/* port? */
1904 		if (p < end && *p == ':') {
1905 			port = 0;
1906 			p++;
1907 			while (p < end && *p >= '0' && *p <= '9') {
1908 				port = (port * 10) + (*p - '0');
1909 				p++;
1910 			}
1911 			if (port == 0)
1912 				port = CEPH_MON_PORT;
1913 			else if (port > 65535)
1914 				goto bad;
1915 		} else {
1916 			port = CEPH_MON_PORT;
1917 		}
1918 
1919 		addr_set_port(ss, port);
1920 
1921 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1922 
1923 		if (p == end)
1924 			break;
1925 		if (*p != ',')
1926 			goto bad;
1927 		p++;
1928 	}
1929 
1930 	if (p != end)
1931 		goto bad;
1932 
1933 	if (count)
1934 		*count = i + 1;
1935 	return 0;
1936 
1937 bad:
1938 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1939 	return ret;
1940 }
1941 EXPORT_SYMBOL(ceph_parse_ips);
1942 
1943 static int process_banner(struct ceph_connection *con)
1944 {
1945 	dout("process_banner on %p\n", con);
1946 
1947 	if (verify_hello(con) < 0)
1948 		return -1;
1949 
1950 	ceph_decode_addr(&con->actual_peer_addr);
1951 	ceph_decode_addr(&con->peer_addr_for_me);
1952 
1953 	/*
1954 	 * Make sure the other end is who we wanted.  note that the other
1955 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1956 	 * them the benefit of the doubt.
1957 	 */
1958 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1959 		   sizeof(con->peer_addr)) != 0 &&
1960 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1961 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1962 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1963 			ceph_pr_addr(&con->peer_addr.in_addr),
1964 			(int)le32_to_cpu(con->peer_addr.nonce),
1965 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1966 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1967 		con->error_msg = "wrong peer at address";
1968 		return -1;
1969 	}
1970 
1971 	/*
1972 	 * did we learn our address?
1973 	 */
1974 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1975 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1976 
1977 		memcpy(&con->msgr->inst.addr.in_addr,
1978 		       &con->peer_addr_for_me.in_addr,
1979 		       sizeof(con->peer_addr_for_me.in_addr));
1980 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1981 		encode_my_addr(con->msgr);
1982 		dout("process_banner learned my addr is %s\n",
1983 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int process_connect(struct ceph_connection *con)
1990 {
1991 	u64 sup_feat = con->msgr->supported_features;
1992 	u64 req_feat = con->msgr->required_features;
1993 	u64 server_feat = ceph_sanitize_features(
1994 				le64_to_cpu(con->in_reply.features));
1995 	int ret;
1996 
1997 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1998 
1999 	switch (con->in_reply.tag) {
2000 	case CEPH_MSGR_TAG_FEATURES:
2001 		pr_err("%s%lld %s feature set mismatch,"
2002 		       " my %llx < server's %llx, missing %llx\n",
2003 		       ENTITY_NAME(con->peer_name),
2004 		       ceph_pr_addr(&con->peer_addr.in_addr),
2005 		       sup_feat, server_feat, server_feat & ~sup_feat);
2006 		con->error_msg = "missing required protocol features";
2007 		reset_connection(con);
2008 		return -1;
2009 
2010 	case CEPH_MSGR_TAG_BADPROTOVER:
2011 		pr_err("%s%lld %s protocol version mismatch,"
2012 		       " my %d != server's %d\n",
2013 		       ENTITY_NAME(con->peer_name),
2014 		       ceph_pr_addr(&con->peer_addr.in_addr),
2015 		       le32_to_cpu(con->out_connect.protocol_version),
2016 		       le32_to_cpu(con->in_reply.protocol_version));
2017 		con->error_msg = "protocol version mismatch";
2018 		reset_connection(con);
2019 		return -1;
2020 
2021 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2022 		con->auth_retry++;
2023 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2024 		     con->auth_retry);
2025 		if (con->auth_retry == 2) {
2026 			con->error_msg = "connect authorization failure";
2027 			return -1;
2028 		}
2029 		con_out_kvec_reset(con);
2030 		ret = prepare_write_connect(con);
2031 		if (ret < 0)
2032 			return ret;
2033 		prepare_read_connect(con);
2034 		break;
2035 
2036 	case CEPH_MSGR_TAG_RESETSESSION:
2037 		/*
2038 		 * If we connected with a large connect_seq but the peer
2039 		 * has no record of a session with us (no connection, or
2040 		 * connect_seq == 0), they will send RESETSESION to indicate
2041 		 * that they must have reset their session, and may have
2042 		 * dropped messages.
2043 		 */
2044 		dout("process_connect got RESET peer seq %u\n",
2045 		     le32_to_cpu(con->in_reply.connect_seq));
2046 		pr_err("%s%lld %s connection reset\n",
2047 		       ENTITY_NAME(con->peer_name),
2048 		       ceph_pr_addr(&con->peer_addr.in_addr));
2049 		reset_connection(con);
2050 		con_out_kvec_reset(con);
2051 		ret = prepare_write_connect(con);
2052 		if (ret < 0)
2053 			return ret;
2054 		prepare_read_connect(con);
2055 
2056 		/* Tell ceph about it. */
2057 		mutex_unlock(&con->mutex);
2058 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2059 		if (con->ops->peer_reset)
2060 			con->ops->peer_reset(con);
2061 		mutex_lock(&con->mutex);
2062 		if (con->state != CON_STATE_NEGOTIATING)
2063 			return -EAGAIN;
2064 		break;
2065 
2066 	case CEPH_MSGR_TAG_RETRY_SESSION:
2067 		/*
2068 		 * If we sent a smaller connect_seq than the peer has, try
2069 		 * again with a larger value.
2070 		 */
2071 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2072 		     le32_to_cpu(con->out_connect.connect_seq),
2073 		     le32_to_cpu(con->in_reply.connect_seq));
2074 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2075 		con_out_kvec_reset(con);
2076 		ret = prepare_write_connect(con);
2077 		if (ret < 0)
2078 			return ret;
2079 		prepare_read_connect(con);
2080 		break;
2081 
2082 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2083 		/*
2084 		 * If we sent a smaller global_seq than the peer has, try
2085 		 * again with a larger value.
2086 		 */
2087 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2088 		     con->peer_global_seq,
2089 		     le32_to_cpu(con->in_reply.global_seq));
2090 		get_global_seq(con->msgr,
2091 			       le32_to_cpu(con->in_reply.global_seq));
2092 		con_out_kvec_reset(con);
2093 		ret = prepare_write_connect(con);
2094 		if (ret < 0)
2095 			return ret;
2096 		prepare_read_connect(con);
2097 		break;
2098 
2099 	case CEPH_MSGR_TAG_SEQ:
2100 	case CEPH_MSGR_TAG_READY:
2101 		if (req_feat & ~server_feat) {
2102 			pr_err("%s%lld %s protocol feature mismatch,"
2103 			       " my required %llx > server's %llx, need %llx\n",
2104 			       ENTITY_NAME(con->peer_name),
2105 			       ceph_pr_addr(&con->peer_addr.in_addr),
2106 			       req_feat, server_feat, req_feat & ~server_feat);
2107 			con->error_msg = "missing required protocol features";
2108 			reset_connection(con);
2109 			return -1;
2110 		}
2111 
2112 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2113 		con->state = CON_STATE_OPEN;
2114 		con->auth_retry = 0;    /* we authenticated; clear flag */
2115 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2116 		con->connect_seq++;
2117 		con->peer_features = server_feat;
2118 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2119 		     con->peer_global_seq,
2120 		     le32_to_cpu(con->in_reply.connect_seq),
2121 		     con->connect_seq);
2122 		WARN_ON(con->connect_seq !=
2123 			le32_to_cpu(con->in_reply.connect_seq));
2124 
2125 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2126 			con_flag_set(con, CON_FLAG_LOSSYTX);
2127 
2128 		con->delay = 0;      /* reset backoff memory */
2129 
2130 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2131 			prepare_write_seq(con);
2132 			prepare_read_seq(con);
2133 		} else {
2134 			prepare_read_tag(con);
2135 		}
2136 		break;
2137 
2138 	case CEPH_MSGR_TAG_WAIT:
2139 		/*
2140 		 * If there is a connection race (we are opening
2141 		 * connections to each other), one of us may just have
2142 		 * to WAIT.  This shouldn't happen if we are the
2143 		 * client.
2144 		 */
2145 		con->error_msg = "protocol error, got WAIT as client";
2146 		return -1;
2147 
2148 	default:
2149 		con->error_msg = "protocol error, garbage tag during connect";
2150 		return -1;
2151 	}
2152 	return 0;
2153 }
2154 
2155 
2156 /*
2157  * read (part of) an ack
2158  */
2159 static int read_partial_ack(struct ceph_connection *con)
2160 {
2161 	int size = sizeof (con->in_temp_ack);
2162 	int end = size;
2163 
2164 	return read_partial(con, end, size, &con->in_temp_ack);
2165 }
2166 
2167 /*
2168  * We can finally discard anything that's been acked.
2169  */
2170 static void process_ack(struct ceph_connection *con)
2171 {
2172 	struct ceph_msg *m;
2173 	u64 ack = le64_to_cpu(con->in_temp_ack);
2174 	u64 seq;
2175 
2176 	while (!list_empty(&con->out_sent)) {
2177 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2178 				     list_head);
2179 		seq = le64_to_cpu(m->hdr.seq);
2180 		if (seq > ack)
2181 			break;
2182 		dout("got ack for seq %llu type %d at %p\n", seq,
2183 		     le16_to_cpu(m->hdr.type), m);
2184 		m->ack_stamp = jiffies;
2185 		ceph_msg_remove(m);
2186 	}
2187 	prepare_read_tag(con);
2188 }
2189 
2190 
2191 static int read_partial_message_section(struct ceph_connection *con,
2192 					struct kvec *section,
2193 					unsigned int sec_len, u32 *crc)
2194 {
2195 	int ret, left;
2196 
2197 	BUG_ON(!section);
2198 
2199 	while (section->iov_len < sec_len) {
2200 		BUG_ON(section->iov_base == NULL);
2201 		left = sec_len - section->iov_len;
2202 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2203 				       section->iov_len, left);
2204 		if (ret <= 0)
2205 			return ret;
2206 		section->iov_len += ret;
2207 	}
2208 	if (section->iov_len == sec_len)
2209 		*crc = crc32c(0, section->iov_base, section->iov_len);
2210 
2211 	return 1;
2212 }
2213 
2214 static int read_partial_msg_data(struct ceph_connection *con)
2215 {
2216 	struct ceph_msg *msg = con->in_msg;
2217 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2218 	const bool do_datacrc = !con->msgr->nocrc;
2219 	struct page *page;
2220 	size_t page_offset;
2221 	size_t length;
2222 	u32 crc = 0;
2223 	int ret;
2224 
2225 	BUG_ON(!msg);
2226 	if (list_empty(&msg->data))
2227 		return -EIO;
2228 
2229 	if (do_datacrc)
2230 		crc = con->in_data_crc;
2231 	while (cursor->resid) {
2232 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2233 							NULL);
2234 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2235 		if (ret <= 0) {
2236 			if (do_datacrc)
2237 				con->in_data_crc = crc;
2238 
2239 			return ret;
2240 		}
2241 
2242 		if (do_datacrc)
2243 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2244 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2245 	}
2246 	if (do_datacrc)
2247 		con->in_data_crc = crc;
2248 
2249 	return 1;	/* must return > 0 to indicate success */
2250 }
2251 
2252 /*
2253  * read (part of) a message.
2254  */
2255 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2256 
2257 static int read_partial_message(struct ceph_connection *con)
2258 {
2259 	struct ceph_msg *m = con->in_msg;
2260 	int size;
2261 	int end;
2262 	int ret;
2263 	unsigned int front_len, middle_len, data_len;
2264 	bool do_datacrc = !con->msgr->nocrc;
2265 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2266 	u64 seq;
2267 	u32 crc;
2268 
2269 	dout("read_partial_message con %p msg %p\n", con, m);
2270 
2271 	/* header */
2272 	size = sizeof (con->in_hdr);
2273 	end = size;
2274 	ret = read_partial(con, end, size, &con->in_hdr);
2275 	if (ret <= 0)
2276 		return ret;
2277 
2278 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2279 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2280 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2281 		       crc, con->in_hdr.crc);
2282 		return -EBADMSG;
2283 	}
2284 
2285 	front_len = le32_to_cpu(con->in_hdr.front_len);
2286 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2287 		return -EIO;
2288 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2289 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2290 		return -EIO;
2291 	data_len = le32_to_cpu(con->in_hdr.data_len);
2292 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2293 		return -EIO;
2294 
2295 	/* verify seq# */
2296 	seq = le64_to_cpu(con->in_hdr.seq);
2297 	if ((s64)seq - (s64)con->in_seq < 1) {
2298 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2299 			ENTITY_NAME(con->peer_name),
2300 			ceph_pr_addr(&con->peer_addr.in_addr),
2301 			seq, con->in_seq + 1);
2302 		con->in_base_pos = -front_len - middle_len - data_len -
2303 			sizeof(m->footer);
2304 		con->in_tag = CEPH_MSGR_TAG_READY;
2305 		return 0;
2306 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2307 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2308 		       seq, con->in_seq + 1);
2309 		con->error_msg = "bad message sequence # for incoming message";
2310 		return -EBADE;
2311 	}
2312 
2313 	/* allocate message? */
2314 	if (!con->in_msg) {
2315 		int skip = 0;
2316 
2317 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2318 		     front_len, data_len);
2319 		ret = ceph_con_in_msg_alloc(con, &skip);
2320 		if (ret < 0)
2321 			return ret;
2322 
2323 		BUG_ON(!con->in_msg ^ skip);
2324 		if (con->in_msg && data_len > con->in_msg->data_length) {
2325 			pr_warn("%s skipping long message (%u > %zd)\n",
2326 				__func__, data_len, con->in_msg->data_length);
2327 			ceph_msg_put(con->in_msg);
2328 			con->in_msg = NULL;
2329 			skip = 1;
2330 		}
2331 		if (skip) {
2332 			/* skip this message */
2333 			dout("alloc_msg said skip message\n");
2334 			con->in_base_pos = -front_len - middle_len - data_len -
2335 				sizeof(m->footer);
2336 			con->in_tag = CEPH_MSGR_TAG_READY;
2337 			con->in_seq++;
2338 			return 0;
2339 		}
2340 
2341 		BUG_ON(!con->in_msg);
2342 		BUG_ON(con->in_msg->con != con);
2343 		m = con->in_msg;
2344 		m->front.iov_len = 0;    /* haven't read it yet */
2345 		if (m->middle)
2346 			m->middle->vec.iov_len = 0;
2347 
2348 		/* prepare for data payload, if any */
2349 
2350 		if (data_len)
2351 			prepare_message_data(con->in_msg, data_len);
2352 	}
2353 
2354 	/* front */
2355 	ret = read_partial_message_section(con, &m->front, front_len,
2356 					   &con->in_front_crc);
2357 	if (ret <= 0)
2358 		return ret;
2359 
2360 	/* middle */
2361 	if (m->middle) {
2362 		ret = read_partial_message_section(con, &m->middle->vec,
2363 						   middle_len,
2364 						   &con->in_middle_crc);
2365 		if (ret <= 0)
2366 			return ret;
2367 	}
2368 
2369 	/* (page) data */
2370 	if (data_len) {
2371 		ret = read_partial_msg_data(con);
2372 		if (ret <= 0)
2373 			return ret;
2374 	}
2375 
2376 	/* footer */
2377 	if (need_sign)
2378 		size = sizeof(m->footer);
2379 	else
2380 		size = sizeof(m->old_footer);
2381 
2382 	end += size;
2383 	ret = read_partial(con, end, size, &m->footer);
2384 	if (ret <= 0)
2385 		return ret;
2386 
2387 	if (!need_sign) {
2388 		m->footer.flags = m->old_footer.flags;
2389 		m->footer.sig = 0;
2390 	}
2391 
2392 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2393 	     m, front_len, m->footer.front_crc, middle_len,
2394 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2395 
2396 	/* crc ok? */
2397 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2398 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2399 		       m, con->in_front_crc, m->footer.front_crc);
2400 		return -EBADMSG;
2401 	}
2402 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2403 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2404 		       m, con->in_middle_crc, m->footer.middle_crc);
2405 		return -EBADMSG;
2406 	}
2407 	if (do_datacrc &&
2408 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2409 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2410 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2411 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2412 		return -EBADMSG;
2413 	}
2414 
2415 	if (need_sign && con->ops->check_message_signature &&
2416 	    con->ops->check_message_signature(con, m)) {
2417 		pr_err("read_partial_message %p signature check failed\n", m);
2418 		return -EBADMSG;
2419 	}
2420 
2421 	return 1; /* done! */
2422 }
2423 
2424 /*
2425  * Process message.  This happens in the worker thread.  The callback should
2426  * be careful not to do anything that waits on other incoming messages or it
2427  * may deadlock.
2428  */
2429 static void process_message(struct ceph_connection *con)
2430 {
2431 	struct ceph_msg *msg;
2432 
2433 	BUG_ON(con->in_msg->con != con);
2434 	con->in_msg->con = NULL;
2435 	msg = con->in_msg;
2436 	con->in_msg = NULL;
2437 	con->ops->put(con);
2438 
2439 	/* if first message, set peer_name */
2440 	if (con->peer_name.type == 0)
2441 		con->peer_name = msg->hdr.src;
2442 
2443 	con->in_seq++;
2444 	mutex_unlock(&con->mutex);
2445 
2446 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2447 	     msg, le64_to_cpu(msg->hdr.seq),
2448 	     ENTITY_NAME(msg->hdr.src),
2449 	     le16_to_cpu(msg->hdr.type),
2450 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2451 	     le32_to_cpu(msg->hdr.front_len),
2452 	     le32_to_cpu(msg->hdr.data_len),
2453 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2454 	con->ops->dispatch(con, msg);
2455 
2456 	mutex_lock(&con->mutex);
2457 }
2458 
2459 
2460 /*
2461  * Write something to the socket.  Called in a worker thread when the
2462  * socket appears to be writeable and we have something ready to send.
2463  */
2464 static int try_write(struct ceph_connection *con)
2465 {
2466 	int ret = 1;
2467 
2468 	dout("try_write start %p state %lu\n", con, con->state);
2469 
2470 more:
2471 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2472 
2473 	/* open the socket first? */
2474 	if (con->state == CON_STATE_PREOPEN) {
2475 		BUG_ON(con->sock);
2476 		con->state = CON_STATE_CONNECTING;
2477 
2478 		con_out_kvec_reset(con);
2479 		prepare_write_banner(con);
2480 		prepare_read_banner(con);
2481 
2482 		BUG_ON(con->in_msg);
2483 		con->in_tag = CEPH_MSGR_TAG_READY;
2484 		dout("try_write initiating connect on %p new state %lu\n",
2485 		     con, con->state);
2486 		ret = ceph_tcp_connect(con);
2487 		if (ret < 0) {
2488 			con->error_msg = "connect error";
2489 			goto out;
2490 		}
2491 	}
2492 
2493 more_kvec:
2494 	/* kvec data queued? */
2495 	if (con->out_skip) {
2496 		ret = write_partial_skip(con);
2497 		if (ret <= 0)
2498 			goto out;
2499 	}
2500 	if (con->out_kvec_left) {
2501 		ret = write_partial_kvec(con);
2502 		if (ret <= 0)
2503 			goto out;
2504 	}
2505 
2506 	/* msg pages? */
2507 	if (con->out_msg) {
2508 		if (con->out_msg_done) {
2509 			ceph_msg_put(con->out_msg);
2510 			con->out_msg = NULL;   /* we're done with this one */
2511 			goto do_next;
2512 		}
2513 
2514 		ret = write_partial_message_data(con);
2515 		if (ret == 1)
2516 			goto more_kvec;  /* we need to send the footer, too! */
2517 		if (ret == 0)
2518 			goto out;
2519 		if (ret < 0) {
2520 			dout("try_write write_partial_message_data err %d\n",
2521 			     ret);
2522 			goto out;
2523 		}
2524 	}
2525 
2526 do_next:
2527 	if (con->state == CON_STATE_OPEN) {
2528 		/* is anything else pending? */
2529 		if (!list_empty(&con->out_queue)) {
2530 			prepare_write_message(con);
2531 			goto more;
2532 		}
2533 		if (con->in_seq > con->in_seq_acked) {
2534 			prepare_write_ack(con);
2535 			goto more;
2536 		}
2537 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2538 			prepare_write_keepalive(con);
2539 			goto more;
2540 		}
2541 	}
2542 
2543 	/* Nothing to do! */
2544 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2545 	dout("try_write nothing else to write.\n");
2546 	ret = 0;
2547 out:
2548 	dout("try_write done on %p ret %d\n", con, ret);
2549 	return ret;
2550 }
2551 
2552 
2553 
2554 /*
2555  * Read what we can from the socket.
2556  */
2557 static int try_read(struct ceph_connection *con)
2558 {
2559 	int ret = -1;
2560 
2561 more:
2562 	dout("try_read start on %p state %lu\n", con, con->state);
2563 	if (con->state != CON_STATE_CONNECTING &&
2564 	    con->state != CON_STATE_NEGOTIATING &&
2565 	    con->state != CON_STATE_OPEN)
2566 		return 0;
2567 
2568 	BUG_ON(!con->sock);
2569 
2570 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2571 	     con->in_base_pos);
2572 
2573 	if (con->state == CON_STATE_CONNECTING) {
2574 		dout("try_read connecting\n");
2575 		ret = read_partial_banner(con);
2576 		if (ret <= 0)
2577 			goto out;
2578 		ret = process_banner(con);
2579 		if (ret < 0)
2580 			goto out;
2581 
2582 		con->state = CON_STATE_NEGOTIATING;
2583 
2584 		/*
2585 		 * Received banner is good, exchange connection info.
2586 		 * Do not reset out_kvec, as sending our banner raced
2587 		 * with receiving peer banner after connect completed.
2588 		 */
2589 		ret = prepare_write_connect(con);
2590 		if (ret < 0)
2591 			goto out;
2592 		prepare_read_connect(con);
2593 
2594 		/* Send connection info before awaiting response */
2595 		goto out;
2596 	}
2597 
2598 	if (con->state == CON_STATE_NEGOTIATING) {
2599 		dout("try_read negotiating\n");
2600 		ret = read_partial_connect(con);
2601 		if (ret <= 0)
2602 			goto out;
2603 		ret = process_connect(con);
2604 		if (ret < 0)
2605 			goto out;
2606 		goto more;
2607 	}
2608 
2609 	WARN_ON(con->state != CON_STATE_OPEN);
2610 
2611 	if (con->in_base_pos < 0) {
2612 		/*
2613 		 * skipping + discarding content.
2614 		 *
2615 		 * FIXME: there must be a better way to do this!
2616 		 */
2617 		static char buf[SKIP_BUF_SIZE];
2618 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2619 
2620 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2621 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2622 		if (ret <= 0)
2623 			goto out;
2624 		con->in_base_pos += ret;
2625 		if (con->in_base_pos)
2626 			goto more;
2627 	}
2628 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2629 		/*
2630 		 * what's next?
2631 		 */
2632 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2633 		if (ret <= 0)
2634 			goto out;
2635 		dout("try_read got tag %d\n", (int)con->in_tag);
2636 		switch (con->in_tag) {
2637 		case CEPH_MSGR_TAG_MSG:
2638 			prepare_read_message(con);
2639 			break;
2640 		case CEPH_MSGR_TAG_ACK:
2641 			prepare_read_ack(con);
2642 			break;
2643 		case CEPH_MSGR_TAG_CLOSE:
2644 			con_close_socket(con);
2645 			con->state = CON_STATE_CLOSED;
2646 			goto out;
2647 		default:
2648 			goto bad_tag;
2649 		}
2650 	}
2651 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2652 		ret = read_partial_message(con);
2653 		if (ret <= 0) {
2654 			switch (ret) {
2655 			case -EBADMSG:
2656 				con->error_msg = "bad crc";
2657 				/* fall through */
2658 			case -EBADE:
2659 				ret = -EIO;
2660 				break;
2661 			case -EIO:
2662 				con->error_msg = "io error";
2663 				break;
2664 			}
2665 			goto out;
2666 		}
2667 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2668 			goto more;
2669 		process_message(con);
2670 		if (con->state == CON_STATE_OPEN)
2671 			prepare_read_tag(con);
2672 		goto more;
2673 	}
2674 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2675 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2676 		/*
2677 		 * the final handshake seq exchange is semantically
2678 		 * equivalent to an ACK
2679 		 */
2680 		ret = read_partial_ack(con);
2681 		if (ret <= 0)
2682 			goto out;
2683 		process_ack(con);
2684 		goto more;
2685 	}
2686 
2687 out:
2688 	dout("try_read done on %p ret %d\n", con, ret);
2689 	return ret;
2690 
2691 bad_tag:
2692 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2693 	con->error_msg = "protocol error, garbage tag";
2694 	ret = -1;
2695 	goto out;
2696 }
2697 
2698 
2699 /*
2700  * Atomically queue work on a connection after the specified delay.
2701  * Bump @con reference to avoid races with connection teardown.
2702  * Returns 0 if work was queued, or an error code otherwise.
2703  */
2704 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2705 {
2706 	if (!con->ops->get(con)) {
2707 		dout("%s %p ref count 0\n", __func__, con);
2708 		return -ENOENT;
2709 	}
2710 
2711 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2712 		dout("%s %p - already queued\n", __func__, con);
2713 		con->ops->put(con);
2714 		return -EBUSY;
2715 	}
2716 
2717 	dout("%s %p %lu\n", __func__, con, delay);
2718 	return 0;
2719 }
2720 
2721 static void queue_con(struct ceph_connection *con)
2722 {
2723 	(void) queue_con_delay(con, 0);
2724 }
2725 
2726 static void cancel_con(struct ceph_connection *con)
2727 {
2728 	if (cancel_delayed_work(&con->work)) {
2729 		dout("%s %p\n", __func__, con);
2730 		con->ops->put(con);
2731 	}
2732 }
2733 
2734 static bool con_sock_closed(struct ceph_connection *con)
2735 {
2736 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2737 		return false;
2738 
2739 #define CASE(x)								\
2740 	case CON_STATE_ ## x:						\
2741 		con->error_msg = "socket closed (con state " #x ")";	\
2742 		break;
2743 
2744 	switch (con->state) {
2745 	CASE(CLOSED);
2746 	CASE(PREOPEN);
2747 	CASE(CONNECTING);
2748 	CASE(NEGOTIATING);
2749 	CASE(OPEN);
2750 	CASE(STANDBY);
2751 	default:
2752 		pr_warn("%s con %p unrecognized state %lu\n",
2753 			__func__, con, con->state);
2754 		con->error_msg = "unrecognized con state";
2755 		BUG();
2756 		break;
2757 	}
2758 #undef CASE
2759 
2760 	return true;
2761 }
2762 
2763 static bool con_backoff(struct ceph_connection *con)
2764 {
2765 	int ret;
2766 
2767 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2768 		return false;
2769 
2770 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2771 	if (ret) {
2772 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2773 			con, con->delay);
2774 		BUG_ON(ret == -ENOENT);
2775 		con_flag_set(con, CON_FLAG_BACKOFF);
2776 	}
2777 
2778 	return true;
2779 }
2780 
2781 /* Finish fault handling; con->mutex must *not* be held here */
2782 
2783 static void con_fault_finish(struct ceph_connection *con)
2784 {
2785 	/*
2786 	 * in case we faulted due to authentication, invalidate our
2787 	 * current tickets so that we can get new ones.
2788 	 */
2789 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2790 		dout("calling invalidate_authorizer()\n");
2791 		con->ops->invalidate_authorizer(con);
2792 	}
2793 
2794 	if (con->ops->fault)
2795 		con->ops->fault(con);
2796 }
2797 
2798 /*
2799  * Do some work on a connection.  Drop a connection ref when we're done.
2800  */
2801 static void con_work(struct work_struct *work)
2802 {
2803 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2804 						   work.work);
2805 	bool fault;
2806 
2807 	mutex_lock(&con->mutex);
2808 	while (true) {
2809 		int ret;
2810 
2811 		if ((fault = con_sock_closed(con))) {
2812 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2813 			break;
2814 		}
2815 		if (con_backoff(con)) {
2816 			dout("%s: con %p BACKOFF\n", __func__, con);
2817 			break;
2818 		}
2819 		if (con->state == CON_STATE_STANDBY) {
2820 			dout("%s: con %p STANDBY\n", __func__, con);
2821 			break;
2822 		}
2823 		if (con->state == CON_STATE_CLOSED) {
2824 			dout("%s: con %p CLOSED\n", __func__, con);
2825 			BUG_ON(con->sock);
2826 			break;
2827 		}
2828 		if (con->state == CON_STATE_PREOPEN) {
2829 			dout("%s: con %p PREOPEN\n", __func__, con);
2830 			BUG_ON(con->sock);
2831 		}
2832 
2833 		ret = try_read(con);
2834 		if (ret < 0) {
2835 			if (ret == -EAGAIN)
2836 				continue;
2837 			if (!con->error_msg)
2838 				con->error_msg = "socket error on read";
2839 			fault = true;
2840 			break;
2841 		}
2842 
2843 		ret = try_write(con);
2844 		if (ret < 0) {
2845 			if (ret == -EAGAIN)
2846 				continue;
2847 			if (!con->error_msg)
2848 				con->error_msg = "socket error on write";
2849 			fault = true;
2850 		}
2851 
2852 		break;	/* If we make it to here, we're done */
2853 	}
2854 	if (fault)
2855 		con_fault(con);
2856 	mutex_unlock(&con->mutex);
2857 
2858 	if (fault)
2859 		con_fault_finish(con);
2860 
2861 	con->ops->put(con);
2862 }
2863 
2864 /*
2865  * Generic error/fault handler.  A retry mechanism is used with
2866  * exponential backoff
2867  */
2868 static void con_fault(struct ceph_connection *con)
2869 {
2870 	dout("fault %p state %lu to peer %s\n",
2871 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2872 
2873 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2874 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2875 	con->error_msg = NULL;
2876 
2877 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2878 	       con->state != CON_STATE_NEGOTIATING &&
2879 	       con->state != CON_STATE_OPEN);
2880 
2881 	con_close_socket(con);
2882 
2883 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2884 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2885 		con->state = CON_STATE_CLOSED;
2886 		return;
2887 	}
2888 
2889 	if (con->in_msg) {
2890 		BUG_ON(con->in_msg->con != con);
2891 		con->in_msg->con = NULL;
2892 		ceph_msg_put(con->in_msg);
2893 		con->in_msg = NULL;
2894 		con->ops->put(con);
2895 	}
2896 
2897 	/* Requeue anything that hasn't been acked */
2898 	list_splice_init(&con->out_sent, &con->out_queue);
2899 
2900 	/* If there are no messages queued or keepalive pending, place
2901 	 * the connection in a STANDBY state */
2902 	if (list_empty(&con->out_queue) &&
2903 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2904 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2905 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2906 		con->state = CON_STATE_STANDBY;
2907 	} else {
2908 		/* retry after a delay. */
2909 		con->state = CON_STATE_PREOPEN;
2910 		if (con->delay == 0)
2911 			con->delay = BASE_DELAY_INTERVAL;
2912 		else if (con->delay < MAX_DELAY_INTERVAL)
2913 			con->delay *= 2;
2914 		con_flag_set(con, CON_FLAG_BACKOFF);
2915 		queue_con(con);
2916 	}
2917 }
2918 
2919 
2920 
2921 /*
2922  * initialize a new messenger instance
2923  */
2924 void ceph_messenger_init(struct ceph_messenger *msgr,
2925 			struct ceph_entity_addr *myaddr,
2926 			u64 supported_features,
2927 			u64 required_features,
2928 			bool nocrc,
2929 			bool tcp_nodelay)
2930 {
2931 	msgr->supported_features = supported_features;
2932 	msgr->required_features = required_features;
2933 
2934 	spin_lock_init(&msgr->global_seq_lock);
2935 
2936 	if (myaddr)
2937 		msgr->inst.addr = *myaddr;
2938 
2939 	/* select a random nonce */
2940 	msgr->inst.addr.type = 0;
2941 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2942 	encode_my_addr(msgr);
2943 	msgr->nocrc = nocrc;
2944 	msgr->tcp_nodelay = tcp_nodelay;
2945 
2946 	atomic_set(&msgr->stopping, 0);
2947 
2948 	dout("%s %p\n", __func__, msgr);
2949 }
2950 EXPORT_SYMBOL(ceph_messenger_init);
2951 
2952 static void clear_standby(struct ceph_connection *con)
2953 {
2954 	/* come back from STANDBY? */
2955 	if (con->state == CON_STATE_STANDBY) {
2956 		dout("clear_standby %p and ++connect_seq\n", con);
2957 		con->state = CON_STATE_PREOPEN;
2958 		con->connect_seq++;
2959 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2960 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2961 	}
2962 }
2963 
2964 /*
2965  * Queue up an outgoing message on the given connection.
2966  */
2967 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2968 {
2969 	/* set src+dst */
2970 	msg->hdr.src = con->msgr->inst.name;
2971 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2972 	msg->needs_out_seq = true;
2973 
2974 	mutex_lock(&con->mutex);
2975 
2976 	if (con->state == CON_STATE_CLOSED) {
2977 		dout("con_send %p closed, dropping %p\n", con, msg);
2978 		ceph_msg_put(msg);
2979 		mutex_unlock(&con->mutex);
2980 		return;
2981 	}
2982 
2983 	BUG_ON(msg->con != NULL);
2984 	msg->con = con->ops->get(con);
2985 	BUG_ON(msg->con == NULL);
2986 
2987 	BUG_ON(!list_empty(&msg->list_head));
2988 	list_add_tail(&msg->list_head, &con->out_queue);
2989 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2990 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2991 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2992 	     le32_to_cpu(msg->hdr.front_len),
2993 	     le32_to_cpu(msg->hdr.middle_len),
2994 	     le32_to_cpu(msg->hdr.data_len));
2995 
2996 	clear_standby(con);
2997 	mutex_unlock(&con->mutex);
2998 
2999 	/* if there wasn't anything waiting to send before, queue
3000 	 * new work */
3001 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3002 		queue_con(con);
3003 }
3004 EXPORT_SYMBOL(ceph_con_send);
3005 
3006 /*
3007  * Revoke a message that was previously queued for send
3008  */
3009 void ceph_msg_revoke(struct ceph_msg *msg)
3010 {
3011 	struct ceph_connection *con = msg->con;
3012 
3013 	if (!con)
3014 		return;		/* Message not in our possession */
3015 
3016 	mutex_lock(&con->mutex);
3017 	if (!list_empty(&msg->list_head)) {
3018 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3019 		list_del_init(&msg->list_head);
3020 		BUG_ON(msg->con == NULL);
3021 		msg->con->ops->put(msg->con);
3022 		msg->con = NULL;
3023 		msg->hdr.seq = 0;
3024 
3025 		ceph_msg_put(msg);
3026 	}
3027 	if (con->out_msg == msg) {
3028 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3029 		con->out_msg = NULL;
3030 		if (con->out_kvec_is_msg) {
3031 			con->out_skip = con->out_kvec_bytes;
3032 			con->out_kvec_is_msg = false;
3033 		}
3034 		msg->hdr.seq = 0;
3035 
3036 		ceph_msg_put(msg);
3037 	}
3038 	mutex_unlock(&con->mutex);
3039 }
3040 
3041 /*
3042  * Revoke a message that we may be reading data into
3043  */
3044 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3045 {
3046 	struct ceph_connection *con;
3047 
3048 	BUG_ON(msg == NULL);
3049 	if (!msg->con) {
3050 		dout("%s msg %p null con\n", __func__, msg);
3051 
3052 		return;		/* Message not in our possession */
3053 	}
3054 
3055 	con = msg->con;
3056 	mutex_lock(&con->mutex);
3057 	if (con->in_msg == msg) {
3058 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3059 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3060 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3061 
3062 		/* skip rest of message */
3063 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3064 		con->in_base_pos = con->in_base_pos -
3065 				sizeof(struct ceph_msg_header) -
3066 				front_len -
3067 				middle_len -
3068 				data_len -
3069 				sizeof(struct ceph_msg_footer);
3070 		ceph_msg_put(con->in_msg);
3071 		con->in_msg = NULL;
3072 		con->in_tag = CEPH_MSGR_TAG_READY;
3073 		con->in_seq++;
3074 	} else {
3075 		dout("%s %p in_msg %p msg %p no-op\n",
3076 		     __func__, con, con->in_msg, msg);
3077 	}
3078 	mutex_unlock(&con->mutex);
3079 }
3080 
3081 /*
3082  * Queue a keepalive byte to ensure the tcp connection is alive.
3083  */
3084 void ceph_con_keepalive(struct ceph_connection *con)
3085 {
3086 	dout("con_keepalive %p\n", con);
3087 	mutex_lock(&con->mutex);
3088 	clear_standby(con);
3089 	mutex_unlock(&con->mutex);
3090 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3091 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3092 		queue_con(con);
3093 }
3094 EXPORT_SYMBOL(ceph_con_keepalive);
3095 
3096 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3097 {
3098 	struct ceph_msg_data *data;
3099 
3100 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3101 		return NULL;
3102 
3103 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3104 	if (data)
3105 		data->type = type;
3106 	INIT_LIST_HEAD(&data->links);
3107 
3108 	return data;
3109 }
3110 
3111 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3112 {
3113 	if (!data)
3114 		return;
3115 
3116 	WARN_ON(!list_empty(&data->links));
3117 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3118 		ceph_pagelist_release(data->pagelist);
3119 	kmem_cache_free(ceph_msg_data_cache, data);
3120 }
3121 
3122 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3123 		size_t length, size_t alignment)
3124 {
3125 	struct ceph_msg_data *data;
3126 
3127 	BUG_ON(!pages);
3128 	BUG_ON(!length);
3129 
3130 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3131 	BUG_ON(!data);
3132 	data->pages = pages;
3133 	data->length = length;
3134 	data->alignment = alignment & ~PAGE_MASK;
3135 
3136 	list_add_tail(&data->links, &msg->data);
3137 	msg->data_length += length;
3138 }
3139 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3140 
3141 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3142 				struct ceph_pagelist *pagelist)
3143 {
3144 	struct ceph_msg_data *data;
3145 
3146 	BUG_ON(!pagelist);
3147 	BUG_ON(!pagelist->length);
3148 
3149 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3150 	BUG_ON(!data);
3151 	data->pagelist = pagelist;
3152 
3153 	list_add_tail(&data->links, &msg->data);
3154 	msg->data_length += pagelist->length;
3155 }
3156 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3157 
3158 #ifdef	CONFIG_BLOCK
3159 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3160 		size_t length)
3161 {
3162 	struct ceph_msg_data *data;
3163 
3164 	BUG_ON(!bio);
3165 
3166 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3167 	BUG_ON(!data);
3168 	data->bio = bio;
3169 	data->bio_length = length;
3170 
3171 	list_add_tail(&data->links, &msg->data);
3172 	msg->data_length += length;
3173 }
3174 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3175 #endif	/* CONFIG_BLOCK */
3176 
3177 /*
3178  * construct a new message with given type, size
3179  * the new msg has a ref count of 1.
3180  */
3181 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3182 			      bool can_fail)
3183 {
3184 	struct ceph_msg *m;
3185 
3186 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3187 	if (m == NULL)
3188 		goto out;
3189 
3190 	m->hdr.type = cpu_to_le16(type);
3191 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3192 	m->hdr.front_len = cpu_to_le32(front_len);
3193 
3194 	INIT_LIST_HEAD(&m->list_head);
3195 	kref_init(&m->kref);
3196 	INIT_LIST_HEAD(&m->data);
3197 
3198 	/* front */
3199 	if (front_len) {
3200 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3201 		if (m->front.iov_base == NULL) {
3202 			dout("ceph_msg_new can't allocate %d bytes\n",
3203 			     front_len);
3204 			goto out2;
3205 		}
3206 	} else {
3207 		m->front.iov_base = NULL;
3208 	}
3209 	m->front_alloc_len = m->front.iov_len = front_len;
3210 
3211 	dout("ceph_msg_new %p front %d\n", m, front_len);
3212 	return m;
3213 
3214 out2:
3215 	ceph_msg_put(m);
3216 out:
3217 	if (!can_fail) {
3218 		pr_err("msg_new can't create type %d front %d\n", type,
3219 		       front_len);
3220 		WARN_ON(1);
3221 	} else {
3222 		dout("msg_new can't create type %d front %d\n", type,
3223 		     front_len);
3224 	}
3225 	return NULL;
3226 }
3227 EXPORT_SYMBOL(ceph_msg_new);
3228 
3229 /*
3230  * Allocate "middle" portion of a message, if it is needed and wasn't
3231  * allocated by alloc_msg.  This allows us to read a small fixed-size
3232  * per-type header in the front and then gracefully fail (i.e.,
3233  * propagate the error to the caller based on info in the front) when
3234  * the middle is too large.
3235  */
3236 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3237 {
3238 	int type = le16_to_cpu(msg->hdr.type);
3239 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3240 
3241 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3242 	     ceph_msg_type_name(type), middle_len);
3243 	BUG_ON(!middle_len);
3244 	BUG_ON(msg->middle);
3245 
3246 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3247 	if (!msg->middle)
3248 		return -ENOMEM;
3249 	return 0;
3250 }
3251 
3252 /*
3253  * Allocate a message for receiving an incoming message on a
3254  * connection, and save the result in con->in_msg.  Uses the
3255  * connection's private alloc_msg op if available.
3256  *
3257  * Returns 0 on success, or a negative error code.
3258  *
3259  * On success, if we set *skip = 1:
3260  *  - the next message should be skipped and ignored.
3261  *  - con->in_msg == NULL
3262  * or if we set *skip = 0:
3263  *  - con->in_msg is non-null.
3264  * On error (ENOMEM, EAGAIN, ...),
3265  *  - con->in_msg == NULL
3266  */
3267 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3268 {
3269 	struct ceph_msg_header *hdr = &con->in_hdr;
3270 	int middle_len = le32_to_cpu(hdr->middle_len);
3271 	struct ceph_msg *msg;
3272 	int ret = 0;
3273 
3274 	BUG_ON(con->in_msg != NULL);
3275 	BUG_ON(!con->ops->alloc_msg);
3276 
3277 	mutex_unlock(&con->mutex);
3278 	msg = con->ops->alloc_msg(con, hdr, skip);
3279 	mutex_lock(&con->mutex);
3280 	if (con->state != CON_STATE_OPEN) {
3281 		if (msg)
3282 			ceph_msg_put(msg);
3283 		return -EAGAIN;
3284 	}
3285 	if (msg) {
3286 		BUG_ON(*skip);
3287 		con->in_msg = msg;
3288 		con->in_msg->con = con->ops->get(con);
3289 		BUG_ON(con->in_msg->con == NULL);
3290 	} else {
3291 		/*
3292 		 * Null message pointer means either we should skip
3293 		 * this message or we couldn't allocate memory.  The
3294 		 * former is not an error.
3295 		 */
3296 		if (*skip)
3297 			return 0;
3298 
3299 		con->error_msg = "error allocating memory for incoming message";
3300 		return -ENOMEM;
3301 	}
3302 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3303 
3304 	if (middle_len && !con->in_msg->middle) {
3305 		ret = ceph_alloc_middle(con, con->in_msg);
3306 		if (ret < 0) {
3307 			ceph_msg_put(con->in_msg);
3308 			con->in_msg = NULL;
3309 		}
3310 	}
3311 
3312 	return ret;
3313 }
3314 
3315 
3316 /*
3317  * Free a generically kmalloc'd message.
3318  */
3319 static void ceph_msg_free(struct ceph_msg *m)
3320 {
3321 	dout("%s %p\n", __func__, m);
3322 	kvfree(m->front.iov_base);
3323 	kmem_cache_free(ceph_msg_cache, m);
3324 }
3325 
3326 static void ceph_msg_release(struct kref *kref)
3327 {
3328 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3329 	LIST_HEAD(data);
3330 	struct list_head *links;
3331 	struct list_head *next;
3332 
3333 	dout("%s %p\n", __func__, m);
3334 	WARN_ON(!list_empty(&m->list_head));
3335 
3336 	/* drop middle, data, if any */
3337 	if (m->middle) {
3338 		ceph_buffer_put(m->middle);
3339 		m->middle = NULL;
3340 	}
3341 
3342 	list_splice_init(&m->data, &data);
3343 	list_for_each_safe(links, next, &data) {
3344 		struct ceph_msg_data *data;
3345 
3346 		data = list_entry(links, struct ceph_msg_data, links);
3347 		list_del_init(links);
3348 		ceph_msg_data_destroy(data);
3349 	}
3350 	m->data_length = 0;
3351 
3352 	if (m->pool)
3353 		ceph_msgpool_put(m->pool, m);
3354 	else
3355 		ceph_msg_free(m);
3356 }
3357 
3358 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3359 {
3360 	dout("%s %p (was %d)\n", __func__, msg,
3361 	     atomic_read(&msg->kref.refcount));
3362 	kref_get(&msg->kref);
3363 	return msg;
3364 }
3365 EXPORT_SYMBOL(ceph_msg_get);
3366 
3367 void ceph_msg_put(struct ceph_msg *msg)
3368 {
3369 	dout("%s %p (was %d)\n", __func__, msg,
3370 	     atomic_read(&msg->kref.refcount));
3371 	kref_put(&msg->kref, ceph_msg_release);
3372 }
3373 EXPORT_SYMBOL(ceph_msg_put);
3374 
3375 void ceph_msg_dump(struct ceph_msg *msg)
3376 {
3377 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3378 		 msg->front_alloc_len, msg->data_length);
3379 	print_hex_dump(KERN_DEBUG, "header: ",
3380 		       DUMP_PREFIX_OFFSET, 16, 1,
3381 		       &msg->hdr, sizeof(msg->hdr), true);
3382 	print_hex_dump(KERN_DEBUG, " front: ",
3383 		       DUMP_PREFIX_OFFSET, 16, 1,
3384 		       msg->front.iov_base, msg->front.iov_len, true);
3385 	if (msg->middle)
3386 		print_hex_dump(KERN_DEBUG, "middle: ",
3387 			       DUMP_PREFIX_OFFSET, 16, 1,
3388 			       msg->middle->vec.iov_base,
3389 			       msg->middle->vec.iov_len, true);
3390 	print_hex_dump(KERN_DEBUG, "footer: ",
3391 		       DUMP_PREFIX_OFFSET, 16, 1,
3392 		       &msg->footer, sizeof(msg->footer), true);
3393 }
3394 EXPORT_SYMBOL(ceph_msg_dump);
3395