xref: /openbmc/linux/net/ceph/messenger.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166 
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170 
171 /*
172  * When skipping (ignoring) a block of input we read it into a "skip
173  * buffer," which is this many bytes in size.
174  */
175 #define SKIP_BUF_SIZE	1024
176 
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181 
182 /*
183  * Nicely render a sockaddr as a string.  An array of formatted
184  * strings is used, to approximate reentrancy.
185  */
186 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
187 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
190 
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 
194 static struct page *zero_page;		/* used in certain error cases */
195 
196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 	int i;
199 	char *s;
200 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 
203 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 	s = addr_str[i];
205 
206 	switch (ss->ss_family) {
207 	case AF_INET:
208 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 			 ntohs(in4->sin_port));
210 		break;
211 
212 	case AF_INET6:
213 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 			 ntohs(in6->sin6_port));
215 		break;
216 
217 	default:
218 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 			 ss->ss_family);
220 	}
221 
222 	return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225 
226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 	ceph_encode_addr(&msgr->my_enc_addr);
230 }
231 
232 /*
233  * work queue for all reading and writing to/from the socket.
234  */
235 static struct workqueue_struct *ceph_msgr_wq;
236 
237 static int ceph_msgr_slab_init(void)
238 {
239 	BUG_ON(ceph_msg_cache);
240 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 	if (!ceph_msg_cache)
242 		return -ENOMEM;
243 
244 	BUG_ON(ceph_msg_data_cache);
245 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 	if (ceph_msg_data_cache)
247 		return 0;
248 
249 	kmem_cache_destroy(ceph_msg_cache);
250 	ceph_msg_cache = NULL;
251 
252 	return -ENOMEM;
253 }
254 
255 static void ceph_msgr_slab_exit(void)
256 {
257 	BUG_ON(!ceph_msg_data_cache);
258 	kmem_cache_destroy(ceph_msg_data_cache);
259 	ceph_msg_data_cache = NULL;
260 
261 	BUG_ON(!ceph_msg_cache);
262 	kmem_cache_destroy(ceph_msg_cache);
263 	ceph_msg_cache = NULL;
264 }
265 
266 static void _ceph_msgr_exit(void)
267 {
268 	if (ceph_msgr_wq) {
269 		destroy_workqueue(ceph_msgr_wq);
270 		ceph_msgr_wq = NULL;
271 	}
272 
273 	BUG_ON(zero_page == NULL);
274 	put_page(zero_page);
275 	zero_page = NULL;
276 
277 	ceph_msgr_slab_exit();
278 }
279 
280 int __init ceph_msgr_init(void)
281 {
282 	if (ceph_msgr_slab_init())
283 		return -ENOMEM;
284 
285 	BUG_ON(zero_page != NULL);
286 	zero_page = ZERO_PAGE(0);
287 	get_page(zero_page);
288 
289 	/*
290 	 * The number of active work items is limited by the number of
291 	 * connections, so leave @max_active at default.
292 	 */
293 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 	if (ceph_msgr_wq)
295 		return 0;
296 
297 	pr_err("msgr_init failed to create workqueue\n");
298 	_ceph_msgr_exit();
299 
300 	return -ENOMEM;
301 }
302 
303 void ceph_msgr_exit(void)
304 {
305 	BUG_ON(ceph_msgr_wq == NULL);
306 
307 	_ceph_msgr_exit();
308 }
309 
310 void ceph_msgr_flush(void)
311 {
312 	flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315 
316 /* Connection socket state transition functions */
317 
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320 	int old_state;
321 
322 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324 		printk("%s: unexpected old state %d\n", __func__, old_state);
325 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326 	     CON_SOCK_STATE_CLOSED);
327 }
328 
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331 	int old_state;
332 
333 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335 		printk("%s: unexpected old state %d\n", __func__, old_state);
336 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 	     CON_SOCK_STATE_CONNECTING);
338 }
339 
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342 	int old_state;
343 
344 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346 		printk("%s: unexpected old state %d\n", __func__, old_state);
347 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348 	     CON_SOCK_STATE_CONNECTED);
349 }
350 
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353 	int old_state;
354 
355 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357 			old_state != CON_SOCK_STATE_CONNECTED &&
358 			old_state != CON_SOCK_STATE_CLOSING))
359 		printk("%s: unexpected old state %d\n", __func__, old_state);
360 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361 	     CON_SOCK_STATE_CLOSING);
362 }
363 
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366 	int old_state;
367 
368 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370 		    old_state != CON_SOCK_STATE_CLOSING &&
371 		    old_state != CON_SOCK_STATE_CONNECTING &&
372 		    old_state != CON_SOCK_STATE_CLOSED))
373 		printk("%s: unexpected old state %d\n", __func__, old_state);
374 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375 	     CON_SOCK_STATE_CLOSED);
376 }
377 
378 /*
379  * socket callback functions
380  */
381 
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385 	struct ceph_connection *con = sk->sk_user_data;
386 	if (atomic_read(&con->msgr->stopping)) {
387 		return;
388 	}
389 
390 	if (sk->sk_state != TCP_CLOSE_WAIT) {
391 		dout("%s on %p state = %lu, queueing work\n", __func__,
392 		     con, con->state);
393 		queue_con(con);
394 	}
395 }
396 
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400 	struct ceph_connection *con = sk->sk_user_data;
401 
402 	/* only queue to workqueue if there is data we want to write,
403 	 * and there is sufficient space in the socket buffer to accept
404 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
405 	 * doesn't get called again until try_write() fills the socket
406 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 	 * and net/core/stream.c:sk_stream_write_space().
408 	 */
409 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410 		if (sk_stream_is_writeable(sk)) {
411 			dout("%s %p queueing write work\n", __func__, con);
412 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413 			queue_con(con);
414 		}
415 	} else {
416 		dout("%s %p nothing to write\n", __func__, con);
417 	}
418 }
419 
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423 	struct ceph_connection *con = sk->sk_user_data;
424 
425 	dout("%s %p state = %lu sk_state = %u\n", __func__,
426 	     con, con->state, sk->sk_state);
427 
428 	switch (sk->sk_state) {
429 	case TCP_CLOSE:
430 		dout("%s TCP_CLOSE\n", __func__);
431 		/* fall through */
432 	case TCP_CLOSE_WAIT:
433 		dout("%s TCP_CLOSE_WAIT\n", __func__);
434 		con_sock_state_closing(con);
435 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
436 		queue_con(con);
437 		break;
438 	case TCP_ESTABLISHED:
439 		dout("%s TCP_ESTABLISHED\n", __func__);
440 		con_sock_state_connected(con);
441 		queue_con(con);
442 		break;
443 	default:	/* Everything else is uninteresting */
444 		break;
445 	}
446 }
447 
448 /*
449  * set up socket callbacks
450  */
451 static void set_sock_callbacks(struct socket *sock,
452 			       struct ceph_connection *con)
453 {
454 	struct sock *sk = sock->sk;
455 	sk->sk_user_data = con;
456 	sk->sk_data_ready = ceph_sock_data_ready;
457 	sk->sk_write_space = ceph_sock_write_space;
458 	sk->sk_state_change = ceph_sock_state_change;
459 }
460 
461 
462 /*
463  * socket helpers
464  */
465 
466 /*
467  * initiate connection to a remote socket.
468  */
469 static int ceph_tcp_connect(struct ceph_connection *con)
470 {
471 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
472 	struct socket *sock;
473 	unsigned int noio_flag;
474 	int ret;
475 
476 	BUG_ON(con->sock);
477 
478 	/* sock_create_kern() allocates with GFP_KERNEL */
479 	noio_flag = memalloc_noio_save();
480 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
481 			       SOCK_STREAM, IPPROTO_TCP, &sock);
482 	memalloc_noio_restore(noio_flag);
483 	if (ret)
484 		return ret;
485 	sock->sk->sk_allocation = GFP_NOFS;
486 
487 #ifdef CONFIG_LOCKDEP
488 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490 
491 	set_sock_callbacks(sock, con);
492 
493 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494 
495 	con_sock_state_connecting(con);
496 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 				 O_NONBLOCK);
498 	if (ret == -EINPROGRESS) {
499 		dout("connect %s EINPROGRESS sk_state = %u\n",
500 		     ceph_pr_addr(&con->peer_addr.in_addr),
501 		     sock->sk->sk_state);
502 	} else if (ret < 0) {
503 		pr_err("connect %s error %d\n",
504 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 		sock_release(sock);
506 		return ret;
507 	}
508 
509 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 		int optval = 1;
511 
512 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 					(char *)&optval, sizeof(optval));
514 		if (ret)
515 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 			       ret);
517 	}
518 
519 	con->sock = sock;
520 	return 0;
521 }
522 
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 	struct kvec iov = {buf, len};
526 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 	int r;
528 
529 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 	if (r == -EAGAIN)
532 		r = 0;
533 	return r;
534 }
535 
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 		     int page_offset, size_t length)
538 {
539 	struct bio_vec bvec = {
540 		.bv_page = page,
541 		.bv_offset = page_offset,
542 		.bv_len = length
543 	};
544 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 	int r;
546 
547 	BUG_ON(page_offset + length > PAGE_SIZE);
548 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 	if (r == -EAGAIN)
551 		r = 0;
552 	return r;
553 }
554 
555 /*
556  * write something.  @more is true if caller will be sending more data
557  * shortly.
558  */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 		     size_t kvlen, size_t len, int more)
561 {
562 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 	int r;
564 
565 	if (more)
566 		msg.msg_flags |= MSG_MORE;
567 	else
568 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
569 
570 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 	if (r == -EAGAIN)
572 		r = 0;
573 	return r;
574 }
575 
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 		     int offset, size_t size, bool more)
578 {
579 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 	int ret;
581 
582 	ret = kernel_sendpage(sock, page, offset, size, flags);
583 	if (ret == -EAGAIN)
584 		ret = 0;
585 
586 	return ret;
587 }
588 
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 		     int offset, size_t size, bool more)
591 {
592 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 	struct bio_vec bvec;
594 	int ret;
595 
596 	/* sendpage cannot properly handle pages with page_count == 0,
597 	 * we need to fallback to sendmsg if that's the case */
598 	if (page_count(page) >= 1)
599 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
600 
601 	bvec.bv_page = page;
602 	bvec.bv_offset = offset;
603 	bvec.bv_len = size;
604 
605 	if (more)
606 		msg.msg_flags |= MSG_MORE;
607 	else
608 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
609 
610 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 	ret = sock_sendmsg(sock, &msg);
612 	if (ret == -EAGAIN)
613 		ret = 0;
614 
615 	return ret;
616 }
617 
618 /*
619  * Shutdown/close the socket for the given connection.
620  */
621 static int con_close_socket(struct ceph_connection *con)
622 {
623 	int rc = 0;
624 
625 	dout("con_close_socket on %p sock %p\n", con, con->sock);
626 	if (con->sock) {
627 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 		sock_release(con->sock);
629 		con->sock = NULL;
630 	}
631 
632 	/*
633 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
634 	 * independent of the connection mutex, and we could have
635 	 * received a socket close event before we had the chance to
636 	 * shut the socket down.
637 	 */
638 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639 
640 	con_sock_state_closed(con);
641 	return rc;
642 }
643 
644 /*
645  * Reset a connection.  Discard all incoming and outgoing messages
646  * and clear *_seq state.
647  */
648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 	list_del_init(&msg->list_head);
651 
652 	ceph_msg_put(msg);
653 }
654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 	while (!list_empty(head)) {
657 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 							list_head);
659 		ceph_msg_remove(msg);
660 	}
661 }
662 
663 static void reset_connection(struct ceph_connection *con)
664 {
665 	/* reset connection, out_queue, msg_ and connect_seq */
666 	/* discard existing out_queue and msg_seq */
667 	dout("reset_connection %p\n", con);
668 	ceph_msg_remove_list(&con->out_queue);
669 	ceph_msg_remove_list(&con->out_sent);
670 
671 	if (con->in_msg) {
672 		BUG_ON(con->in_msg->con != con);
673 		ceph_msg_put(con->in_msg);
674 		con->in_msg = NULL;
675 	}
676 
677 	con->connect_seq = 0;
678 	con->out_seq = 0;
679 	if (con->out_msg) {
680 		BUG_ON(con->out_msg->con != con);
681 		ceph_msg_put(con->out_msg);
682 		con->out_msg = NULL;
683 	}
684 	con->in_seq = 0;
685 	con->in_seq_acked = 0;
686 
687 	con->out_skip = 0;
688 }
689 
690 /*
691  * mark a peer down.  drop any open connections.
692  */
693 void ceph_con_close(struct ceph_connection *con)
694 {
695 	mutex_lock(&con->mutex);
696 	dout("con_close %p peer %s\n", con,
697 	     ceph_pr_addr(&con->peer_addr.in_addr));
698 	con->state = CON_STATE_CLOSED;
699 
700 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
701 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 	con_flag_clear(con, CON_FLAG_BACKOFF);
704 
705 	reset_connection(con);
706 	con->peer_global_seq = 0;
707 	cancel_con(con);
708 	con_close_socket(con);
709 	mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712 
713 /*
714  * Reopen a closed connection, with a new peer address.
715  */
716 void ceph_con_open(struct ceph_connection *con,
717 		   __u8 entity_type, __u64 entity_num,
718 		   struct ceph_entity_addr *addr)
719 {
720 	mutex_lock(&con->mutex);
721 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722 
723 	WARN_ON(con->state != CON_STATE_CLOSED);
724 	con->state = CON_STATE_PREOPEN;
725 
726 	con->peer_name.type = (__u8) entity_type;
727 	con->peer_name.num = cpu_to_le64(entity_num);
728 
729 	memcpy(&con->peer_addr, addr, sizeof(*addr));
730 	con->delay = 0;      /* reset backoff memory */
731 	mutex_unlock(&con->mutex);
732 	queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735 
736 /*
737  * return true if this connection ever successfully opened
738  */
739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 	return con->connect_seq > 0;
742 }
743 
744 /*
745  * initialize a new connection.
746  */
747 void ceph_con_init(struct ceph_connection *con, void *private,
748 	const struct ceph_connection_operations *ops,
749 	struct ceph_messenger *msgr)
750 {
751 	dout("con_init %p\n", con);
752 	memset(con, 0, sizeof(*con));
753 	con->private = private;
754 	con->ops = ops;
755 	con->msgr = msgr;
756 
757 	con_sock_state_init(con);
758 
759 	mutex_init(&con->mutex);
760 	INIT_LIST_HEAD(&con->out_queue);
761 	INIT_LIST_HEAD(&con->out_sent);
762 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763 
764 	con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767 
768 
769 /*
770  * We maintain a global counter to order connection attempts.  Get
771  * a unique seq greater than @gt.
772  */
773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 	u32 ret;
776 
777 	spin_lock(&msgr->global_seq_lock);
778 	if (msgr->global_seq < gt)
779 		msgr->global_seq = gt;
780 	ret = ++msgr->global_seq;
781 	spin_unlock(&msgr->global_seq_lock);
782 	return ret;
783 }
784 
785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 	BUG_ON(con->out_skip);
788 
789 	con->out_kvec_left = 0;
790 	con->out_kvec_bytes = 0;
791 	con->out_kvec_cur = &con->out_kvec[0];
792 }
793 
794 static void con_out_kvec_add(struct ceph_connection *con,
795 				size_t size, void *data)
796 {
797 	int index = con->out_kvec_left;
798 
799 	BUG_ON(con->out_skip);
800 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801 
802 	con->out_kvec[index].iov_len = size;
803 	con->out_kvec[index].iov_base = data;
804 	con->out_kvec_left++;
805 	con->out_kvec_bytes += size;
806 }
807 
808 /*
809  * Chop off a kvec from the end.  Return residual number of bytes for
810  * that kvec, i.e. how many bytes would have been written if the kvec
811  * hadn't been nuked.
812  */
813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 	int off = con->out_kvec_cur - con->out_kvec;
816 	int skip = 0;
817 
818 	if (con->out_kvec_bytes > 0) {
819 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 		BUG_ON(con->out_kvec_bytes < skip);
821 		BUG_ON(!con->out_kvec_left);
822 		con->out_kvec_bytes -= skip;
823 		con->out_kvec_left--;
824 	}
825 
826 	return skip;
827 }
828 
829 #ifdef CONFIG_BLOCK
830 
831 /*
832  * For a bio data item, a piece is whatever remains of the next
833  * entry in the current bio iovec, or the first entry in the next
834  * bio in the list.
835  */
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 					size_t length)
838 {
839 	struct ceph_msg_data *data = cursor->data;
840 	struct ceph_bio_iter *it = &cursor->bio_iter;
841 
842 	cursor->resid = min_t(size_t, length, data->bio_length);
843 	*it = data->bio_pos;
844 	if (cursor->resid < it->iter.bi_size)
845 		it->iter.bi_size = cursor->resid;
846 
847 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
848 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
849 }
850 
851 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
852 						size_t *page_offset,
853 						size_t *length)
854 {
855 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
856 					   cursor->bio_iter.iter);
857 
858 	*page_offset = bv.bv_offset;
859 	*length = bv.bv_len;
860 	return bv.bv_page;
861 }
862 
863 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
864 					size_t bytes)
865 {
866 	struct ceph_bio_iter *it = &cursor->bio_iter;
867 
868 	BUG_ON(bytes > cursor->resid);
869 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
870 	cursor->resid -= bytes;
871 	bio_advance_iter(it->bio, &it->iter, bytes);
872 
873 	if (!cursor->resid) {
874 		BUG_ON(!cursor->last_piece);
875 		return false;   /* no more data */
876 	}
877 
878 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
879 		return false;	/* more bytes to process in this segment */
880 
881 	if (!it->iter.bi_size) {
882 		it->bio = it->bio->bi_next;
883 		it->iter = it->bio->bi_iter;
884 		if (cursor->resid < it->iter.bi_size)
885 			it->iter.bi_size = cursor->resid;
886 	}
887 
888 	BUG_ON(cursor->last_piece);
889 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
890 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
891 	return true;
892 }
893 #endif /* CONFIG_BLOCK */
894 
895 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
896 					size_t length)
897 {
898 	struct ceph_msg_data *data = cursor->data;
899 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
900 
901 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
902 	cursor->bvec_iter = data->bvec_pos.iter;
903 	cursor->bvec_iter.bi_size = cursor->resid;
904 
905 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
906 	cursor->last_piece =
907 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
908 }
909 
910 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
911 						size_t *page_offset,
912 						size_t *length)
913 {
914 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
915 					   cursor->bvec_iter);
916 
917 	*page_offset = bv.bv_offset;
918 	*length = bv.bv_len;
919 	return bv.bv_page;
920 }
921 
922 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
923 					size_t bytes)
924 {
925 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
926 
927 	BUG_ON(bytes > cursor->resid);
928 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
929 	cursor->resid -= bytes;
930 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
931 
932 	if (!cursor->resid) {
933 		BUG_ON(!cursor->last_piece);
934 		return false;   /* no more data */
935 	}
936 
937 	if (!bytes || cursor->bvec_iter.bi_bvec_done)
938 		return false;	/* more bytes to process in this segment */
939 
940 	BUG_ON(cursor->last_piece);
941 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
942 	cursor->last_piece =
943 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
944 	return true;
945 }
946 
947 /*
948  * For a page array, a piece comes from the first page in the array
949  * that has not already been fully consumed.
950  */
951 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
952 					size_t length)
953 {
954 	struct ceph_msg_data *data = cursor->data;
955 	int page_count;
956 
957 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
958 
959 	BUG_ON(!data->pages);
960 	BUG_ON(!data->length);
961 
962 	cursor->resid = min(length, data->length);
963 	page_count = calc_pages_for(data->alignment, (u64)data->length);
964 	cursor->page_offset = data->alignment & ~PAGE_MASK;
965 	cursor->page_index = 0;
966 	BUG_ON(page_count > (int)USHRT_MAX);
967 	cursor->page_count = (unsigned short)page_count;
968 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
969 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
970 }
971 
972 static struct page *
973 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
974 					size_t *page_offset, size_t *length)
975 {
976 	struct ceph_msg_data *data = cursor->data;
977 
978 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
979 
980 	BUG_ON(cursor->page_index >= cursor->page_count);
981 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
982 
983 	*page_offset = cursor->page_offset;
984 	if (cursor->last_piece)
985 		*length = cursor->resid;
986 	else
987 		*length = PAGE_SIZE - *page_offset;
988 
989 	return data->pages[cursor->page_index];
990 }
991 
992 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
993 						size_t bytes)
994 {
995 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
996 
997 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
998 
999 	/* Advance the cursor page offset */
1000 
1001 	cursor->resid -= bytes;
1002 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1003 	if (!bytes || cursor->page_offset)
1004 		return false;	/* more bytes to process in the current page */
1005 
1006 	if (!cursor->resid)
1007 		return false;   /* no more data */
1008 
1009 	/* Move on to the next page; offset is already at 0 */
1010 
1011 	BUG_ON(cursor->page_index >= cursor->page_count);
1012 	cursor->page_index++;
1013 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1014 
1015 	return true;
1016 }
1017 
1018 /*
1019  * For a pagelist, a piece is whatever remains to be consumed in the
1020  * first page in the list, or the front of the next page.
1021  */
1022 static void
1023 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1024 					size_t length)
1025 {
1026 	struct ceph_msg_data *data = cursor->data;
1027 	struct ceph_pagelist *pagelist;
1028 	struct page *page;
1029 
1030 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031 
1032 	pagelist = data->pagelist;
1033 	BUG_ON(!pagelist);
1034 
1035 	if (!length)
1036 		return;		/* pagelist can be assigned but empty */
1037 
1038 	BUG_ON(list_empty(&pagelist->head));
1039 	page = list_first_entry(&pagelist->head, struct page, lru);
1040 
1041 	cursor->resid = min(length, pagelist->length);
1042 	cursor->page = page;
1043 	cursor->offset = 0;
1044 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1045 }
1046 
1047 static struct page *
1048 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1049 				size_t *page_offset, size_t *length)
1050 {
1051 	struct ceph_msg_data *data = cursor->data;
1052 	struct ceph_pagelist *pagelist;
1053 
1054 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055 
1056 	pagelist = data->pagelist;
1057 	BUG_ON(!pagelist);
1058 
1059 	BUG_ON(!cursor->page);
1060 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1061 
1062 	/* offset of first page in pagelist is always 0 */
1063 	*page_offset = cursor->offset & ~PAGE_MASK;
1064 	if (cursor->last_piece)
1065 		*length = cursor->resid;
1066 	else
1067 		*length = PAGE_SIZE - *page_offset;
1068 
1069 	return cursor->page;
1070 }
1071 
1072 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1073 						size_t bytes)
1074 {
1075 	struct ceph_msg_data *data = cursor->data;
1076 	struct ceph_pagelist *pagelist;
1077 
1078 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1079 
1080 	pagelist = data->pagelist;
1081 	BUG_ON(!pagelist);
1082 
1083 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1084 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1085 
1086 	/* Advance the cursor offset */
1087 
1088 	cursor->resid -= bytes;
1089 	cursor->offset += bytes;
1090 	/* offset of first page in pagelist is always 0 */
1091 	if (!bytes || cursor->offset & ~PAGE_MASK)
1092 		return false;	/* more bytes to process in the current page */
1093 
1094 	if (!cursor->resid)
1095 		return false;   /* no more data */
1096 
1097 	/* Move on to the next page */
1098 
1099 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1100 	cursor->page = list_next_entry(cursor->page, lru);
1101 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1102 
1103 	return true;
1104 }
1105 
1106 /*
1107  * Message data is handled (sent or received) in pieces, where each
1108  * piece resides on a single page.  The network layer might not
1109  * consume an entire piece at once.  A data item's cursor keeps
1110  * track of which piece is next to process and how much remains to
1111  * be processed in that piece.  It also tracks whether the current
1112  * piece is the last one in the data item.
1113  */
1114 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1115 {
1116 	size_t length = cursor->total_resid;
1117 
1118 	switch (cursor->data->type) {
1119 	case CEPH_MSG_DATA_PAGELIST:
1120 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1121 		break;
1122 	case CEPH_MSG_DATA_PAGES:
1123 		ceph_msg_data_pages_cursor_init(cursor, length);
1124 		break;
1125 #ifdef CONFIG_BLOCK
1126 	case CEPH_MSG_DATA_BIO:
1127 		ceph_msg_data_bio_cursor_init(cursor, length);
1128 		break;
1129 #endif /* CONFIG_BLOCK */
1130 	case CEPH_MSG_DATA_BVECS:
1131 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1132 		break;
1133 	case CEPH_MSG_DATA_NONE:
1134 	default:
1135 		/* BUG(); */
1136 		break;
1137 	}
1138 	cursor->need_crc = true;
1139 }
1140 
1141 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1142 {
1143 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1144 	struct ceph_msg_data *data;
1145 
1146 	BUG_ON(!length);
1147 	BUG_ON(length > msg->data_length);
1148 	BUG_ON(list_empty(&msg->data));
1149 
1150 	cursor->data_head = &msg->data;
1151 	cursor->total_resid = length;
1152 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1153 	cursor->data = data;
1154 
1155 	__ceph_msg_data_cursor_init(cursor);
1156 }
1157 
1158 /*
1159  * Return the page containing the next piece to process for a given
1160  * data item, and supply the page offset and length of that piece.
1161  * Indicate whether this is the last piece in this data item.
1162  */
1163 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1164 					size_t *page_offset, size_t *length,
1165 					bool *last_piece)
1166 {
1167 	struct page *page;
1168 
1169 	switch (cursor->data->type) {
1170 	case CEPH_MSG_DATA_PAGELIST:
1171 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1172 		break;
1173 	case CEPH_MSG_DATA_PAGES:
1174 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1175 		break;
1176 #ifdef CONFIG_BLOCK
1177 	case CEPH_MSG_DATA_BIO:
1178 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1179 		break;
1180 #endif /* CONFIG_BLOCK */
1181 	case CEPH_MSG_DATA_BVECS:
1182 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1183 		break;
1184 	case CEPH_MSG_DATA_NONE:
1185 	default:
1186 		page = NULL;
1187 		break;
1188 	}
1189 
1190 	BUG_ON(!page);
1191 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1192 	BUG_ON(!*length);
1193 	BUG_ON(*length > cursor->resid);
1194 	if (last_piece)
1195 		*last_piece = cursor->last_piece;
1196 
1197 	return page;
1198 }
1199 
1200 /*
1201  * Returns true if the result moves the cursor on to the next piece
1202  * of the data item.
1203  */
1204 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1205 				  size_t bytes)
1206 {
1207 	bool new_piece;
1208 
1209 	BUG_ON(bytes > cursor->resid);
1210 	switch (cursor->data->type) {
1211 	case CEPH_MSG_DATA_PAGELIST:
1212 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1213 		break;
1214 	case CEPH_MSG_DATA_PAGES:
1215 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1216 		break;
1217 #ifdef CONFIG_BLOCK
1218 	case CEPH_MSG_DATA_BIO:
1219 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1220 		break;
1221 #endif /* CONFIG_BLOCK */
1222 	case CEPH_MSG_DATA_BVECS:
1223 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1224 		break;
1225 	case CEPH_MSG_DATA_NONE:
1226 	default:
1227 		BUG();
1228 		break;
1229 	}
1230 	cursor->total_resid -= bytes;
1231 
1232 	if (!cursor->resid && cursor->total_resid) {
1233 		WARN_ON(!cursor->last_piece);
1234 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1235 		cursor->data = list_next_entry(cursor->data, links);
1236 		__ceph_msg_data_cursor_init(cursor);
1237 		new_piece = true;
1238 	}
1239 	cursor->need_crc = new_piece;
1240 }
1241 
1242 static size_t sizeof_footer(struct ceph_connection *con)
1243 {
1244 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1245 	    sizeof(struct ceph_msg_footer) :
1246 	    sizeof(struct ceph_msg_footer_old);
1247 }
1248 
1249 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1250 {
1251 	BUG_ON(!msg);
1252 	BUG_ON(!data_len);
1253 
1254 	/* Initialize data cursor */
1255 
1256 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1257 }
1258 
1259 /*
1260  * Prepare footer for currently outgoing message, and finish things
1261  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1262  */
1263 static void prepare_write_message_footer(struct ceph_connection *con)
1264 {
1265 	struct ceph_msg *m = con->out_msg;
1266 
1267 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1268 
1269 	dout("prepare_write_message_footer %p\n", con);
1270 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1271 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1272 		if (con->ops->sign_message)
1273 			con->ops->sign_message(m);
1274 		else
1275 			m->footer.sig = 0;
1276 	} else {
1277 		m->old_footer.flags = m->footer.flags;
1278 	}
1279 	con->out_more = m->more_to_follow;
1280 	con->out_msg_done = true;
1281 }
1282 
1283 /*
1284  * Prepare headers for the next outgoing message.
1285  */
1286 static void prepare_write_message(struct ceph_connection *con)
1287 {
1288 	struct ceph_msg *m;
1289 	u32 crc;
1290 
1291 	con_out_kvec_reset(con);
1292 	con->out_msg_done = false;
1293 
1294 	/* Sneak an ack in there first?  If we can get it into the same
1295 	 * TCP packet that's a good thing. */
1296 	if (con->in_seq > con->in_seq_acked) {
1297 		con->in_seq_acked = con->in_seq;
1298 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1299 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1300 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1301 			&con->out_temp_ack);
1302 	}
1303 
1304 	BUG_ON(list_empty(&con->out_queue));
1305 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1306 	con->out_msg = m;
1307 	BUG_ON(m->con != con);
1308 
1309 	/* put message on sent list */
1310 	ceph_msg_get(m);
1311 	list_move_tail(&m->list_head, &con->out_sent);
1312 
1313 	/*
1314 	 * only assign outgoing seq # if we haven't sent this message
1315 	 * yet.  if it is requeued, resend with it's original seq.
1316 	 */
1317 	if (m->needs_out_seq) {
1318 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1319 		m->needs_out_seq = false;
1320 
1321 		if (con->ops->reencode_message)
1322 			con->ops->reencode_message(m);
1323 	}
1324 
1325 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1327 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1328 	     m->data_length);
1329 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1330 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1331 
1332 	/* tag + hdr + front + middle */
1333 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1334 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1335 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1336 
1337 	if (m->middle)
1338 		con_out_kvec_add(con, m->middle->vec.iov_len,
1339 			m->middle->vec.iov_base);
1340 
1341 	/* fill in hdr crc and finalize hdr */
1342 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1343 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1344 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1345 
1346 	/* fill in front and middle crc, footer */
1347 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1348 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1349 	if (m->middle) {
1350 		crc = crc32c(0, m->middle->vec.iov_base,
1351 				m->middle->vec.iov_len);
1352 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1353 	} else
1354 		con->out_msg->footer.middle_crc = 0;
1355 	dout("%s front_crc %u middle_crc %u\n", __func__,
1356 	     le32_to_cpu(con->out_msg->footer.front_crc),
1357 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1358 	con->out_msg->footer.flags = 0;
1359 
1360 	/* is there a data payload? */
1361 	con->out_msg->footer.data_crc = 0;
1362 	if (m->data_length) {
1363 		prepare_message_data(con->out_msg, m->data_length);
1364 		con->out_more = 1;  /* data + footer will follow */
1365 	} else {
1366 		/* no, queue up footer too and be done */
1367 		prepare_write_message_footer(con);
1368 	}
1369 
1370 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371 }
1372 
1373 /*
1374  * Prepare an ack.
1375  */
1376 static void prepare_write_ack(struct ceph_connection *con)
1377 {
1378 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1379 	     con->in_seq_acked, con->in_seq);
1380 	con->in_seq_acked = con->in_seq;
1381 
1382 	con_out_kvec_reset(con);
1383 
1384 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1385 
1386 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1387 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1388 				&con->out_temp_ack);
1389 
1390 	con->out_more = 1;  /* more will follow.. eventually.. */
1391 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1392 }
1393 
1394 /*
1395  * Prepare to share the seq during handshake
1396  */
1397 static void prepare_write_seq(struct ceph_connection *con)
1398 {
1399 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1400 	     con->in_seq_acked, con->in_seq);
1401 	con->in_seq_acked = con->in_seq;
1402 
1403 	con_out_kvec_reset(con);
1404 
1405 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1406 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1407 			 &con->out_temp_ack);
1408 
1409 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1410 }
1411 
1412 /*
1413  * Prepare to write keepalive byte.
1414  */
1415 static void prepare_write_keepalive(struct ceph_connection *con)
1416 {
1417 	dout("prepare_write_keepalive %p\n", con);
1418 	con_out_kvec_reset(con);
1419 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1420 		struct timespec now;
1421 
1422 		ktime_get_real_ts(&now);
1423 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1424 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1425 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1426 				 &con->out_temp_keepalive2);
1427 	} else {
1428 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1429 	}
1430 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431 }
1432 
1433 /*
1434  * Connection negotiation.
1435  */
1436 
1437 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1438 						int *auth_proto)
1439 {
1440 	struct ceph_auth_handshake *auth;
1441 
1442 	if (!con->ops->get_authorizer) {
1443 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1444 		con->out_connect.authorizer_len = 0;
1445 		return NULL;
1446 	}
1447 
1448 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1449 	if (IS_ERR(auth))
1450 		return auth;
1451 
1452 	con->auth_reply_buf = auth->authorizer_reply_buf;
1453 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1454 	return auth;
1455 }
1456 
1457 /*
1458  * We connected to a peer and are saying hello.
1459  */
1460 static void prepare_write_banner(struct ceph_connection *con)
1461 {
1462 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1463 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1464 					&con->msgr->my_enc_addr);
1465 
1466 	con->out_more = 0;
1467 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1468 }
1469 
1470 static int prepare_write_connect(struct ceph_connection *con)
1471 {
1472 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1473 	int proto;
1474 	int auth_proto;
1475 	struct ceph_auth_handshake *auth;
1476 
1477 	switch (con->peer_name.type) {
1478 	case CEPH_ENTITY_TYPE_MON:
1479 		proto = CEPH_MONC_PROTOCOL;
1480 		break;
1481 	case CEPH_ENTITY_TYPE_OSD:
1482 		proto = CEPH_OSDC_PROTOCOL;
1483 		break;
1484 	case CEPH_ENTITY_TYPE_MDS:
1485 		proto = CEPH_MDSC_PROTOCOL;
1486 		break;
1487 	default:
1488 		BUG();
1489 	}
1490 
1491 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1492 	     con->connect_seq, global_seq, proto);
1493 
1494 	con->out_connect.features =
1495 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1496 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1497 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1498 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1499 	con->out_connect.protocol_version = cpu_to_le32(proto);
1500 	con->out_connect.flags = 0;
1501 
1502 	auth_proto = CEPH_AUTH_UNKNOWN;
1503 	auth = get_connect_authorizer(con, &auth_proto);
1504 	if (IS_ERR(auth))
1505 		return PTR_ERR(auth);
1506 
1507 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1508 	con->out_connect.authorizer_len = auth ?
1509 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1510 
1511 	con_out_kvec_add(con, sizeof (con->out_connect),
1512 					&con->out_connect);
1513 	if (auth && auth->authorizer_buf_len)
1514 		con_out_kvec_add(con, auth->authorizer_buf_len,
1515 					auth->authorizer_buf);
1516 
1517 	con->out_more = 0;
1518 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * write as much of pending kvecs to the socket as we can.
1525  *  1 -> done
1526  *  0 -> socket full, but more to do
1527  * <0 -> error
1528  */
1529 static int write_partial_kvec(struct ceph_connection *con)
1530 {
1531 	int ret;
1532 
1533 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1534 	while (con->out_kvec_bytes > 0) {
1535 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1536 				       con->out_kvec_left, con->out_kvec_bytes,
1537 				       con->out_more);
1538 		if (ret <= 0)
1539 			goto out;
1540 		con->out_kvec_bytes -= ret;
1541 		if (con->out_kvec_bytes == 0)
1542 			break;            /* done */
1543 
1544 		/* account for full iov entries consumed */
1545 		while (ret >= con->out_kvec_cur->iov_len) {
1546 			BUG_ON(!con->out_kvec_left);
1547 			ret -= con->out_kvec_cur->iov_len;
1548 			con->out_kvec_cur++;
1549 			con->out_kvec_left--;
1550 		}
1551 		/* and for a partially-consumed entry */
1552 		if (ret) {
1553 			con->out_kvec_cur->iov_len -= ret;
1554 			con->out_kvec_cur->iov_base += ret;
1555 		}
1556 	}
1557 	con->out_kvec_left = 0;
1558 	ret = 1;
1559 out:
1560 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1561 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1562 	return ret;  /* done! */
1563 }
1564 
1565 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1566 				unsigned int page_offset,
1567 				unsigned int length)
1568 {
1569 	char *kaddr;
1570 
1571 	kaddr = kmap(page);
1572 	BUG_ON(kaddr == NULL);
1573 	crc = crc32c(crc, kaddr + page_offset, length);
1574 	kunmap(page);
1575 
1576 	return crc;
1577 }
1578 /*
1579  * Write as much message data payload as we can.  If we finish, queue
1580  * up the footer.
1581  *  1 -> done, footer is now queued in out_kvec[].
1582  *  0 -> socket full, but more to do
1583  * <0 -> error
1584  */
1585 static int write_partial_message_data(struct ceph_connection *con)
1586 {
1587 	struct ceph_msg *msg = con->out_msg;
1588 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1589 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1590 	u32 crc;
1591 
1592 	dout("%s %p msg %p\n", __func__, con, msg);
1593 
1594 	if (list_empty(&msg->data))
1595 		return -EINVAL;
1596 
1597 	/*
1598 	 * Iterate through each page that contains data to be
1599 	 * written, and send as much as possible for each.
1600 	 *
1601 	 * If we are calculating the data crc (the default), we will
1602 	 * need to map the page.  If we have no pages, they have
1603 	 * been revoked, so use the zero page.
1604 	 */
1605 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1606 	while (cursor->total_resid) {
1607 		struct page *page;
1608 		size_t page_offset;
1609 		size_t length;
1610 		bool last_piece;
1611 		int ret;
1612 
1613 		if (!cursor->resid) {
1614 			ceph_msg_data_advance(cursor, 0);
1615 			continue;
1616 		}
1617 
1618 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1619 					  &last_piece);
1620 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1621 					length, !last_piece);
1622 		if (ret <= 0) {
1623 			if (do_datacrc)
1624 				msg->footer.data_crc = cpu_to_le32(crc);
1625 
1626 			return ret;
1627 		}
1628 		if (do_datacrc && cursor->need_crc)
1629 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1630 		ceph_msg_data_advance(cursor, (size_t)ret);
1631 	}
1632 
1633 	dout("%s %p msg %p done\n", __func__, con, msg);
1634 
1635 	/* prepare and queue up footer, too */
1636 	if (do_datacrc)
1637 		msg->footer.data_crc = cpu_to_le32(crc);
1638 	else
1639 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1640 	con_out_kvec_reset(con);
1641 	prepare_write_message_footer(con);
1642 
1643 	return 1;	/* must return > 0 to indicate success */
1644 }
1645 
1646 /*
1647  * write some zeros
1648  */
1649 static int write_partial_skip(struct ceph_connection *con)
1650 {
1651 	int ret;
1652 
1653 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1654 	while (con->out_skip > 0) {
1655 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1656 
1657 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1658 		if (ret <= 0)
1659 			goto out;
1660 		con->out_skip -= ret;
1661 	}
1662 	ret = 1;
1663 out:
1664 	return ret;
1665 }
1666 
1667 /*
1668  * Prepare to read connection handshake, or an ack.
1669  */
1670 static void prepare_read_banner(struct ceph_connection *con)
1671 {
1672 	dout("prepare_read_banner %p\n", con);
1673 	con->in_base_pos = 0;
1674 }
1675 
1676 static void prepare_read_connect(struct ceph_connection *con)
1677 {
1678 	dout("prepare_read_connect %p\n", con);
1679 	con->in_base_pos = 0;
1680 }
1681 
1682 static void prepare_read_ack(struct ceph_connection *con)
1683 {
1684 	dout("prepare_read_ack %p\n", con);
1685 	con->in_base_pos = 0;
1686 }
1687 
1688 static void prepare_read_seq(struct ceph_connection *con)
1689 {
1690 	dout("prepare_read_seq %p\n", con);
1691 	con->in_base_pos = 0;
1692 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1693 }
1694 
1695 static void prepare_read_tag(struct ceph_connection *con)
1696 {
1697 	dout("prepare_read_tag %p\n", con);
1698 	con->in_base_pos = 0;
1699 	con->in_tag = CEPH_MSGR_TAG_READY;
1700 }
1701 
1702 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1703 {
1704 	dout("prepare_read_keepalive_ack %p\n", con);
1705 	con->in_base_pos = 0;
1706 }
1707 
1708 /*
1709  * Prepare to read a message.
1710  */
1711 static int prepare_read_message(struct ceph_connection *con)
1712 {
1713 	dout("prepare_read_message %p\n", con);
1714 	BUG_ON(con->in_msg != NULL);
1715 	con->in_base_pos = 0;
1716 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1717 	return 0;
1718 }
1719 
1720 
1721 static int read_partial(struct ceph_connection *con,
1722 			int end, int size, void *object)
1723 {
1724 	while (con->in_base_pos < end) {
1725 		int left = end - con->in_base_pos;
1726 		int have = size - left;
1727 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1728 		if (ret <= 0)
1729 			return ret;
1730 		con->in_base_pos += ret;
1731 	}
1732 	return 1;
1733 }
1734 
1735 
1736 /*
1737  * Read all or part of the connect-side handshake on a new connection
1738  */
1739 static int read_partial_banner(struct ceph_connection *con)
1740 {
1741 	int size;
1742 	int end;
1743 	int ret;
1744 
1745 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1746 
1747 	/* peer's banner */
1748 	size = strlen(CEPH_BANNER);
1749 	end = size;
1750 	ret = read_partial(con, end, size, con->in_banner);
1751 	if (ret <= 0)
1752 		goto out;
1753 
1754 	size = sizeof (con->actual_peer_addr);
1755 	end += size;
1756 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1757 	if (ret <= 0)
1758 		goto out;
1759 
1760 	size = sizeof (con->peer_addr_for_me);
1761 	end += size;
1762 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1763 	if (ret <= 0)
1764 		goto out;
1765 
1766 out:
1767 	return ret;
1768 }
1769 
1770 static int read_partial_connect(struct ceph_connection *con)
1771 {
1772 	int size;
1773 	int end;
1774 	int ret;
1775 
1776 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1777 
1778 	size = sizeof (con->in_reply);
1779 	end = size;
1780 	ret = read_partial(con, end, size, &con->in_reply);
1781 	if (ret <= 0)
1782 		goto out;
1783 
1784 	size = le32_to_cpu(con->in_reply.authorizer_len);
1785 	end += size;
1786 	ret = read_partial(con, end, size, con->auth_reply_buf);
1787 	if (ret <= 0)
1788 		goto out;
1789 
1790 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1791 	     con, (int)con->in_reply.tag,
1792 	     le32_to_cpu(con->in_reply.connect_seq),
1793 	     le32_to_cpu(con->in_reply.global_seq));
1794 out:
1795 	return ret;
1796 
1797 }
1798 
1799 /*
1800  * Verify the hello banner looks okay.
1801  */
1802 static int verify_hello(struct ceph_connection *con)
1803 {
1804 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1805 		pr_err("connect to %s got bad banner\n",
1806 		       ceph_pr_addr(&con->peer_addr.in_addr));
1807 		con->error_msg = "protocol error, bad banner";
1808 		return -1;
1809 	}
1810 	return 0;
1811 }
1812 
1813 static bool addr_is_blank(struct sockaddr_storage *ss)
1814 {
1815 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1816 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1817 
1818 	switch (ss->ss_family) {
1819 	case AF_INET:
1820 		return addr->s_addr == htonl(INADDR_ANY);
1821 	case AF_INET6:
1822 		return ipv6_addr_any(addr6);
1823 	default:
1824 		return true;
1825 	}
1826 }
1827 
1828 static int addr_port(struct sockaddr_storage *ss)
1829 {
1830 	switch (ss->ss_family) {
1831 	case AF_INET:
1832 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1833 	case AF_INET6:
1834 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1835 	}
1836 	return 0;
1837 }
1838 
1839 static void addr_set_port(struct sockaddr_storage *ss, int p)
1840 {
1841 	switch (ss->ss_family) {
1842 	case AF_INET:
1843 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1844 		break;
1845 	case AF_INET6:
1846 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1847 		break;
1848 	}
1849 }
1850 
1851 /*
1852  * Unlike other *_pton function semantics, zero indicates success.
1853  */
1854 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1855 		char delim, const char **ipend)
1856 {
1857 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1858 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1859 
1860 	memset(ss, 0, sizeof(*ss));
1861 
1862 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1863 		ss->ss_family = AF_INET;
1864 		return 0;
1865 	}
1866 
1867 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1868 		ss->ss_family = AF_INET6;
1869 		return 0;
1870 	}
1871 
1872 	return -EINVAL;
1873 }
1874 
1875 /*
1876  * Extract hostname string and resolve using kernel DNS facility.
1877  */
1878 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1879 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1880 		struct sockaddr_storage *ss, char delim, const char **ipend)
1881 {
1882 	const char *end, *delim_p;
1883 	char *colon_p, *ip_addr = NULL;
1884 	int ip_len, ret;
1885 
1886 	/*
1887 	 * The end of the hostname occurs immediately preceding the delimiter or
1888 	 * the port marker (':') where the delimiter takes precedence.
1889 	 */
1890 	delim_p = memchr(name, delim, namelen);
1891 	colon_p = memchr(name, ':', namelen);
1892 
1893 	if (delim_p && colon_p)
1894 		end = delim_p < colon_p ? delim_p : colon_p;
1895 	else if (!delim_p && colon_p)
1896 		end = colon_p;
1897 	else {
1898 		end = delim_p;
1899 		if (!end) /* case: hostname:/ */
1900 			end = name + namelen;
1901 	}
1902 
1903 	if (end <= name)
1904 		return -EINVAL;
1905 
1906 	/* do dns_resolve upcall */
1907 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1908 	if (ip_len > 0)
1909 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1910 	else
1911 		ret = -ESRCH;
1912 
1913 	kfree(ip_addr);
1914 
1915 	*ipend = end;
1916 
1917 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1918 			ret, ret ? "failed" : ceph_pr_addr(ss));
1919 
1920 	return ret;
1921 }
1922 #else
1923 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1924 		struct sockaddr_storage *ss, char delim, const char **ipend)
1925 {
1926 	return -EINVAL;
1927 }
1928 #endif
1929 
1930 /*
1931  * Parse a server name (IP or hostname). If a valid IP address is not found
1932  * then try to extract a hostname to resolve using userspace DNS upcall.
1933  */
1934 static int ceph_parse_server_name(const char *name, size_t namelen,
1935 			struct sockaddr_storage *ss, char delim, const char **ipend)
1936 {
1937 	int ret;
1938 
1939 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1940 	if (ret)
1941 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1942 
1943 	return ret;
1944 }
1945 
1946 /*
1947  * Parse an ip[:port] list into an addr array.  Use the default
1948  * monitor port if a port isn't specified.
1949  */
1950 int ceph_parse_ips(const char *c, const char *end,
1951 		   struct ceph_entity_addr *addr,
1952 		   int max_count, int *count)
1953 {
1954 	int i, ret = -EINVAL;
1955 	const char *p = c;
1956 
1957 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1958 	for (i = 0; i < max_count; i++) {
1959 		const char *ipend;
1960 		struct sockaddr_storage *ss = &addr[i].in_addr;
1961 		int port;
1962 		char delim = ',';
1963 
1964 		if (*p == '[') {
1965 			delim = ']';
1966 			p++;
1967 		}
1968 
1969 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1970 		if (ret)
1971 			goto bad;
1972 		ret = -EINVAL;
1973 
1974 		p = ipend;
1975 
1976 		if (delim == ']') {
1977 			if (*p != ']') {
1978 				dout("missing matching ']'\n");
1979 				goto bad;
1980 			}
1981 			p++;
1982 		}
1983 
1984 		/* port? */
1985 		if (p < end && *p == ':') {
1986 			port = 0;
1987 			p++;
1988 			while (p < end && *p >= '0' && *p <= '9') {
1989 				port = (port * 10) + (*p - '0');
1990 				p++;
1991 			}
1992 			if (port == 0)
1993 				port = CEPH_MON_PORT;
1994 			else if (port > 65535)
1995 				goto bad;
1996 		} else {
1997 			port = CEPH_MON_PORT;
1998 		}
1999 
2000 		addr_set_port(ss, port);
2001 
2002 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
2003 
2004 		if (p == end)
2005 			break;
2006 		if (*p != ',')
2007 			goto bad;
2008 		p++;
2009 	}
2010 
2011 	if (p != end)
2012 		goto bad;
2013 
2014 	if (count)
2015 		*count = i + 1;
2016 	return 0;
2017 
2018 bad:
2019 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2020 	return ret;
2021 }
2022 EXPORT_SYMBOL(ceph_parse_ips);
2023 
2024 static int process_banner(struct ceph_connection *con)
2025 {
2026 	dout("process_banner on %p\n", con);
2027 
2028 	if (verify_hello(con) < 0)
2029 		return -1;
2030 
2031 	ceph_decode_addr(&con->actual_peer_addr);
2032 	ceph_decode_addr(&con->peer_addr_for_me);
2033 
2034 	/*
2035 	 * Make sure the other end is who we wanted.  note that the other
2036 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2037 	 * them the benefit of the doubt.
2038 	 */
2039 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2040 		   sizeof(con->peer_addr)) != 0 &&
2041 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2042 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2043 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2044 			ceph_pr_addr(&con->peer_addr.in_addr),
2045 			(int)le32_to_cpu(con->peer_addr.nonce),
2046 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2047 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2048 		con->error_msg = "wrong peer at address";
2049 		return -1;
2050 	}
2051 
2052 	/*
2053 	 * did we learn our address?
2054 	 */
2055 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2056 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2057 
2058 		memcpy(&con->msgr->inst.addr.in_addr,
2059 		       &con->peer_addr_for_me.in_addr,
2060 		       sizeof(con->peer_addr_for_me.in_addr));
2061 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2062 		encode_my_addr(con->msgr);
2063 		dout("process_banner learned my addr is %s\n",
2064 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static int process_connect(struct ceph_connection *con)
2071 {
2072 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2073 	u64 req_feat = from_msgr(con->msgr)->required_features;
2074 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2075 	int ret;
2076 
2077 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2078 
2079 	if (con->auth_reply_buf) {
2080 		/*
2081 		 * Any connection that defines ->get_authorizer()
2082 		 * should also define ->verify_authorizer_reply().
2083 		 * See get_connect_authorizer().
2084 		 */
2085 		ret = con->ops->verify_authorizer_reply(con);
2086 		if (ret < 0) {
2087 			con->error_msg = "bad authorize reply";
2088 			return ret;
2089 		}
2090 	}
2091 
2092 	switch (con->in_reply.tag) {
2093 	case CEPH_MSGR_TAG_FEATURES:
2094 		pr_err("%s%lld %s feature set mismatch,"
2095 		       " my %llx < server's %llx, missing %llx\n",
2096 		       ENTITY_NAME(con->peer_name),
2097 		       ceph_pr_addr(&con->peer_addr.in_addr),
2098 		       sup_feat, server_feat, server_feat & ~sup_feat);
2099 		con->error_msg = "missing required protocol features";
2100 		reset_connection(con);
2101 		return -1;
2102 
2103 	case CEPH_MSGR_TAG_BADPROTOVER:
2104 		pr_err("%s%lld %s protocol version mismatch,"
2105 		       " my %d != server's %d\n",
2106 		       ENTITY_NAME(con->peer_name),
2107 		       ceph_pr_addr(&con->peer_addr.in_addr),
2108 		       le32_to_cpu(con->out_connect.protocol_version),
2109 		       le32_to_cpu(con->in_reply.protocol_version));
2110 		con->error_msg = "protocol version mismatch";
2111 		reset_connection(con);
2112 		return -1;
2113 
2114 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2115 		con->auth_retry++;
2116 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2117 		     con->auth_retry);
2118 		if (con->auth_retry == 2) {
2119 			con->error_msg = "connect authorization failure";
2120 			return -1;
2121 		}
2122 		con_out_kvec_reset(con);
2123 		ret = prepare_write_connect(con);
2124 		if (ret < 0)
2125 			return ret;
2126 		prepare_read_connect(con);
2127 		break;
2128 
2129 	case CEPH_MSGR_TAG_RESETSESSION:
2130 		/*
2131 		 * If we connected with a large connect_seq but the peer
2132 		 * has no record of a session with us (no connection, or
2133 		 * connect_seq == 0), they will send RESETSESION to indicate
2134 		 * that they must have reset their session, and may have
2135 		 * dropped messages.
2136 		 */
2137 		dout("process_connect got RESET peer seq %u\n",
2138 		     le32_to_cpu(con->in_reply.connect_seq));
2139 		pr_err("%s%lld %s connection reset\n",
2140 		       ENTITY_NAME(con->peer_name),
2141 		       ceph_pr_addr(&con->peer_addr.in_addr));
2142 		reset_connection(con);
2143 		con_out_kvec_reset(con);
2144 		ret = prepare_write_connect(con);
2145 		if (ret < 0)
2146 			return ret;
2147 		prepare_read_connect(con);
2148 
2149 		/* Tell ceph about it. */
2150 		mutex_unlock(&con->mutex);
2151 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2152 		if (con->ops->peer_reset)
2153 			con->ops->peer_reset(con);
2154 		mutex_lock(&con->mutex);
2155 		if (con->state != CON_STATE_NEGOTIATING)
2156 			return -EAGAIN;
2157 		break;
2158 
2159 	case CEPH_MSGR_TAG_RETRY_SESSION:
2160 		/*
2161 		 * If we sent a smaller connect_seq than the peer has, try
2162 		 * again with a larger value.
2163 		 */
2164 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2165 		     le32_to_cpu(con->out_connect.connect_seq),
2166 		     le32_to_cpu(con->in_reply.connect_seq));
2167 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2168 		con_out_kvec_reset(con);
2169 		ret = prepare_write_connect(con);
2170 		if (ret < 0)
2171 			return ret;
2172 		prepare_read_connect(con);
2173 		break;
2174 
2175 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2176 		/*
2177 		 * If we sent a smaller global_seq than the peer has, try
2178 		 * again with a larger value.
2179 		 */
2180 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2181 		     con->peer_global_seq,
2182 		     le32_to_cpu(con->in_reply.global_seq));
2183 		get_global_seq(con->msgr,
2184 			       le32_to_cpu(con->in_reply.global_seq));
2185 		con_out_kvec_reset(con);
2186 		ret = prepare_write_connect(con);
2187 		if (ret < 0)
2188 			return ret;
2189 		prepare_read_connect(con);
2190 		break;
2191 
2192 	case CEPH_MSGR_TAG_SEQ:
2193 	case CEPH_MSGR_TAG_READY:
2194 		if (req_feat & ~server_feat) {
2195 			pr_err("%s%lld %s protocol feature mismatch,"
2196 			       " my required %llx > server's %llx, need %llx\n",
2197 			       ENTITY_NAME(con->peer_name),
2198 			       ceph_pr_addr(&con->peer_addr.in_addr),
2199 			       req_feat, server_feat, req_feat & ~server_feat);
2200 			con->error_msg = "missing required protocol features";
2201 			reset_connection(con);
2202 			return -1;
2203 		}
2204 
2205 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2206 		con->state = CON_STATE_OPEN;
2207 		con->auth_retry = 0;    /* we authenticated; clear flag */
2208 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2209 		con->connect_seq++;
2210 		con->peer_features = server_feat;
2211 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2212 		     con->peer_global_seq,
2213 		     le32_to_cpu(con->in_reply.connect_seq),
2214 		     con->connect_seq);
2215 		WARN_ON(con->connect_seq !=
2216 			le32_to_cpu(con->in_reply.connect_seq));
2217 
2218 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2219 			con_flag_set(con, CON_FLAG_LOSSYTX);
2220 
2221 		con->delay = 0;      /* reset backoff memory */
2222 
2223 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2224 			prepare_write_seq(con);
2225 			prepare_read_seq(con);
2226 		} else {
2227 			prepare_read_tag(con);
2228 		}
2229 		break;
2230 
2231 	case CEPH_MSGR_TAG_WAIT:
2232 		/*
2233 		 * If there is a connection race (we are opening
2234 		 * connections to each other), one of us may just have
2235 		 * to WAIT.  This shouldn't happen if we are the
2236 		 * client.
2237 		 */
2238 		con->error_msg = "protocol error, got WAIT as client";
2239 		return -1;
2240 
2241 	default:
2242 		con->error_msg = "protocol error, garbage tag during connect";
2243 		return -1;
2244 	}
2245 	return 0;
2246 }
2247 
2248 
2249 /*
2250  * read (part of) an ack
2251  */
2252 static int read_partial_ack(struct ceph_connection *con)
2253 {
2254 	int size = sizeof (con->in_temp_ack);
2255 	int end = size;
2256 
2257 	return read_partial(con, end, size, &con->in_temp_ack);
2258 }
2259 
2260 /*
2261  * We can finally discard anything that's been acked.
2262  */
2263 static void process_ack(struct ceph_connection *con)
2264 {
2265 	struct ceph_msg *m;
2266 	u64 ack = le64_to_cpu(con->in_temp_ack);
2267 	u64 seq;
2268 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2269 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2270 
2271 	/*
2272 	 * In the reconnect case, con_fault() has requeued messages
2273 	 * in out_sent. We should cleanup old messages according to
2274 	 * the reconnect seq.
2275 	 */
2276 	while (!list_empty(list)) {
2277 		m = list_first_entry(list, struct ceph_msg, list_head);
2278 		if (reconnect && m->needs_out_seq)
2279 			break;
2280 		seq = le64_to_cpu(m->hdr.seq);
2281 		if (seq > ack)
2282 			break;
2283 		dout("got ack for seq %llu type %d at %p\n", seq,
2284 		     le16_to_cpu(m->hdr.type), m);
2285 		m->ack_stamp = jiffies;
2286 		ceph_msg_remove(m);
2287 	}
2288 
2289 	prepare_read_tag(con);
2290 }
2291 
2292 
2293 static int read_partial_message_section(struct ceph_connection *con,
2294 					struct kvec *section,
2295 					unsigned int sec_len, u32 *crc)
2296 {
2297 	int ret, left;
2298 
2299 	BUG_ON(!section);
2300 
2301 	while (section->iov_len < sec_len) {
2302 		BUG_ON(section->iov_base == NULL);
2303 		left = sec_len - section->iov_len;
2304 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2305 				       section->iov_len, left);
2306 		if (ret <= 0)
2307 			return ret;
2308 		section->iov_len += ret;
2309 	}
2310 	if (section->iov_len == sec_len)
2311 		*crc = crc32c(0, section->iov_base, section->iov_len);
2312 
2313 	return 1;
2314 }
2315 
2316 static int read_partial_msg_data(struct ceph_connection *con)
2317 {
2318 	struct ceph_msg *msg = con->in_msg;
2319 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2320 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2321 	struct page *page;
2322 	size_t page_offset;
2323 	size_t length;
2324 	u32 crc = 0;
2325 	int ret;
2326 
2327 	BUG_ON(!msg);
2328 	if (list_empty(&msg->data))
2329 		return -EIO;
2330 
2331 	if (do_datacrc)
2332 		crc = con->in_data_crc;
2333 	while (cursor->total_resid) {
2334 		if (!cursor->resid) {
2335 			ceph_msg_data_advance(cursor, 0);
2336 			continue;
2337 		}
2338 
2339 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2340 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2341 		if (ret <= 0) {
2342 			if (do_datacrc)
2343 				con->in_data_crc = crc;
2344 
2345 			return ret;
2346 		}
2347 
2348 		if (do_datacrc)
2349 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2350 		ceph_msg_data_advance(cursor, (size_t)ret);
2351 	}
2352 	if (do_datacrc)
2353 		con->in_data_crc = crc;
2354 
2355 	return 1;	/* must return > 0 to indicate success */
2356 }
2357 
2358 /*
2359  * read (part of) a message.
2360  */
2361 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2362 
2363 static int read_partial_message(struct ceph_connection *con)
2364 {
2365 	struct ceph_msg *m = con->in_msg;
2366 	int size;
2367 	int end;
2368 	int ret;
2369 	unsigned int front_len, middle_len, data_len;
2370 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2371 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2372 	u64 seq;
2373 	u32 crc;
2374 
2375 	dout("read_partial_message con %p msg %p\n", con, m);
2376 
2377 	/* header */
2378 	size = sizeof (con->in_hdr);
2379 	end = size;
2380 	ret = read_partial(con, end, size, &con->in_hdr);
2381 	if (ret <= 0)
2382 		return ret;
2383 
2384 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2385 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2386 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2387 		       crc, con->in_hdr.crc);
2388 		return -EBADMSG;
2389 	}
2390 
2391 	front_len = le32_to_cpu(con->in_hdr.front_len);
2392 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2393 		return -EIO;
2394 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2395 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2396 		return -EIO;
2397 	data_len = le32_to_cpu(con->in_hdr.data_len);
2398 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2399 		return -EIO;
2400 
2401 	/* verify seq# */
2402 	seq = le64_to_cpu(con->in_hdr.seq);
2403 	if ((s64)seq - (s64)con->in_seq < 1) {
2404 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2405 			ENTITY_NAME(con->peer_name),
2406 			ceph_pr_addr(&con->peer_addr.in_addr),
2407 			seq, con->in_seq + 1);
2408 		con->in_base_pos = -front_len - middle_len - data_len -
2409 			sizeof_footer(con);
2410 		con->in_tag = CEPH_MSGR_TAG_READY;
2411 		return 1;
2412 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2413 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2414 		       seq, con->in_seq + 1);
2415 		con->error_msg = "bad message sequence # for incoming message";
2416 		return -EBADE;
2417 	}
2418 
2419 	/* allocate message? */
2420 	if (!con->in_msg) {
2421 		int skip = 0;
2422 
2423 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2424 		     front_len, data_len);
2425 		ret = ceph_con_in_msg_alloc(con, &skip);
2426 		if (ret < 0)
2427 			return ret;
2428 
2429 		BUG_ON(!con->in_msg ^ skip);
2430 		if (skip) {
2431 			/* skip this message */
2432 			dout("alloc_msg said skip message\n");
2433 			con->in_base_pos = -front_len - middle_len - data_len -
2434 				sizeof_footer(con);
2435 			con->in_tag = CEPH_MSGR_TAG_READY;
2436 			con->in_seq++;
2437 			return 1;
2438 		}
2439 
2440 		BUG_ON(!con->in_msg);
2441 		BUG_ON(con->in_msg->con != con);
2442 		m = con->in_msg;
2443 		m->front.iov_len = 0;    /* haven't read it yet */
2444 		if (m->middle)
2445 			m->middle->vec.iov_len = 0;
2446 
2447 		/* prepare for data payload, if any */
2448 
2449 		if (data_len)
2450 			prepare_message_data(con->in_msg, data_len);
2451 	}
2452 
2453 	/* front */
2454 	ret = read_partial_message_section(con, &m->front, front_len,
2455 					   &con->in_front_crc);
2456 	if (ret <= 0)
2457 		return ret;
2458 
2459 	/* middle */
2460 	if (m->middle) {
2461 		ret = read_partial_message_section(con, &m->middle->vec,
2462 						   middle_len,
2463 						   &con->in_middle_crc);
2464 		if (ret <= 0)
2465 			return ret;
2466 	}
2467 
2468 	/* (page) data */
2469 	if (data_len) {
2470 		ret = read_partial_msg_data(con);
2471 		if (ret <= 0)
2472 			return ret;
2473 	}
2474 
2475 	/* footer */
2476 	size = sizeof_footer(con);
2477 	end += size;
2478 	ret = read_partial(con, end, size, &m->footer);
2479 	if (ret <= 0)
2480 		return ret;
2481 
2482 	if (!need_sign) {
2483 		m->footer.flags = m->old_footer.flags;
2484 		m->footer.sig = 0;
2485 	}
2486 
2487 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2488 	     m, front_len, m->footer.front_crc, middle_len,
2489 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2490 
2491 	/* crc ok? */
2492 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2493 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2494 		       m, con->in_front_crc, m->footer.front_crc);
2495 		return -EBADMSG;
2496 	}
2497 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2498 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2499 		       m, con->in_middle_crc, m->footer.middle_crc);
2500 		return -EBADMSG;
2501 	}
2502 	if (do_datacrc &&
2503 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2504 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2505 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2506 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2507 		return -EBADMSG;
2508 	}
2509 
2510 	if (need_sign && con->ops->check_message_signature &&
2511 	    con->ops->check_message_signature(m)) {
2512 		pr_err("read_partial_message %p signature check failed\n", m);
2513 		return -EBADMSG;
2514 	}
2515 
2516 	return 1; /* done! */
2517 }
2518 
2519 /*
2520  * Process message.  This happens in the worker thread.  The callback should
2521  * be careful not to do anything that waits on other incoming messages or it
2522  * may deadlock.
2523  */
2524 static void process_message(struct ceph_connection *con)
2525 {
2526 	struct ceph_msg *msg = con->in_msg;
2527 
2528 	BUG_ON(con->in_msg->con != con);
2529 	con->in_msg = NULL;
2530 
2531 	/* if first message, set peer_name */
2532 	if (con->peer_name.type == 0)
2533 		con->peer_name = msg->hdr.src;
2534 
2535 	con->in_seq++;
2536 	mutex_unlock(&con->mutex);
2537 
2538 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2539 	     msg, le64_to_cpu(msg->hdr.seq),
2540 	     ENTITY_NAME(msg->hdr.src),
2541 	     le16_to_cpu(msg->hdr.type),
2542 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2543 	     le32_to_cpu(msg->hdr.front_len),
2544 	     le32_to_cpu(msg->hdr.data_len),
2545 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2546 	con->ops->dispatch(con, msg);
2547 
2548 	mutex_lock(&con->mutex);
2549 }
2550 
2551 static int read_keepalive_ack(struct ceph_connection *con)
2552 {
2553 	struct ceph_timespec ceph_ts;
2554 	size_t size = sizeof(ceph_ts);
2555 	int ret = read_partial(con, size, size, &ceph_ts);
2556 	if (ret <= 0)
2557 		return ret;
2558 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2559 	prepare_read_tag(con);
2560 	return 1;
2561 }
2562 
2563 /*
2564  * Write something to the socket.  Called in a worker thread when the
2565  * socket appears to be writeable and we have something ready to send.
2566  */
2567 static int try_write(struct ceph_connection *con)
2568 {
2569 	int ret = 1;
2570 
2571 	dout("try_write start %p state %lu\n", con, con->state);
2572 	if (con->state != CON_STATE_PREOPEN &&
2573 	    con->state != CON_STATE_CONNECTING &&
2574 	    con->state != CON_STATE_NEGOTIATING &&
2575 	    con->state != CON_STATE_OPEN)
2576 		return 0;
2577 
2578 more:
2579 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2580 
2581 	/* open the socket first? */
2582 	if (con->state == CON_STATE_PREOPEN) {
2583 		BUG_ON(con->sock);
2584 		con->state = CON_STATE_CONNECTING;
2585 
2586 		con_out_kvec_reset(con);
2587 		prepare_write_banner(con);
2588 		prepare_read_banner(con);
2589 
2590 		BUG_ON(con->in_msg);
2591 		con->in_tag = CEPH_MSGR_TAG_READY;
2592 		dout("try_write initiating connect on %p new state %lu\n",
2593 		     con, con->state);
2594 		ret = ceph_tcp_connect(con);
2595 		if (ret < 0) {
2596 			con->error_msg = "connect error";
2597 			goto out;
2598 		}
2599 	}
2600 
2601 more_kvec:
2602 	BUG_ON(!con->sock);
2603 
2604 	/* kvec data queued? */
2605 	if (con->out_kvec_left) {
2606 		ret = write_partial_kvec(con);
2607 		if (ret <= 0)
2608 			goto out;
2609 	}
2610 	if (con->out_skip) {
2611 		ret = write_partial_skip(con);
2612 		if (ret <= 0)
2613 			goto out;
2614 	}
2615 
2616 	/* msg pages? */
2617 	if (con->out_msg) {
2618 		if (con->out_msg_done) {
2619 			ceph_msg_put(con->out_msg);
2620 			con->out_msg = NULL;   /* we're done with this one */
2621 			goto do_next;
2622 		}
2623 
2624 		ret = write_partial_message_data(con);
2625 		if (ret == 1)
2626 			goto more_kvec;  /* we need to send the footer, too! */
2627 		if (ret == 0)
2628 			goto out;
2629 		if (ret < 0) {
2630 			dout("try_write write_partial_message_data err %d\n",
2631 			     ret);
2632 			goto out;
2633 		}
2634 	}
2635 
2636 do_next:
2637 	if (con->state == CON_STATE_OPEN) {
2638 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2639 			prepare_write_keepalive(con);
2640 			goto more;
2641 		}
2642 		/* is anything else pending? */
2643 		if (!list_empty(&con->out_queue)) {
2644 			prepare_write_message(con);
2645 			goto more;
2646 		}
2647 		if (con->in_seq > con->in_seq_acked) {
2648 			prepare_write_ack(con);
2649 			goto more;
2650 		}
2651 	}
2652 
2653 	/* Nothing to do! */
2654 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2655 	dout("try_write nothing else to write.\n");
2656 	ret = 0;
2657 out:
2658 	dout("try_write done on %p ret %d\n", con, ret);
2659 	return ret;
2660 }
2661 
2662 
2663 
2664 /*
2665  * Read what we can from the socket.
2666  */
2667 static int try_read(struct ceph_connection *con)
2668 {
2669 	int ret = -1;
2670 
2671 more:
2672 	dout("try_read start on %p state %lu\n", con, con->state);
2673 	if (con->state != CON_STATE_CONNECTING &&
2674 	    con->state != CON_STATE_NEGOTIATING &&
2675 	    con->state != CON_STATE_OPEN)
2676 		return 0;
2677 
2678 	BUG_ON(!con->sock);
2679 
2680 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2681 	     con->in_base_pos);
2682 
2683 	if (con->state == CON_STATE_CONNECTING) {
2684 		dout("try_read connecting\n");
2685 		ret = read_partial_banner(con);
2686 		if (ret <= 0)
2687 			goto out;
2688 		ret = process_banner(con);
2689 		if (ret < 0)
2690 			goto out;
2691 
2692 		con->state = CON_STATE_NEGOTIATING;
2693 
2694 		/*
2695 		 * Received banner is good, exchange connection info.
2696 		 * Do not reset out_kvec, as sending our banner raced
2697 		 * with receiving peer banner after connect completed.
2698 		 */
2699 		ret = prepare_write_connect(con);
2700 		if (ret < 0)
2701 			goto out;
2702 		prepare_read_connect(con);
2703 
2704 		/* Send connection info before awaiting response */
2705 		goto out;
2706 	}
2707 
2708 	if (con->state == CON_STATE_NEGOTIATING) {
2709 		dout("try_read negotiating\n");
2710 		ret = read_partial_connect(con);
2711 		if (ret <= 0)
2712 			goto out;
2713 		ret = process_connect(con);
2714 		if (ret < 0)
2715 			goto out;
2716 		goto more;
2717 	}
2718 
2719 	WARN_ON(con->state != CON_STATE_OPEN);
2720 
2721 	if (con->in_base_pos < 0) {
2722 		/*
2723 		 * skipping + discarding content.
2724 		 *
2725 		 * FIXME: there must be a better way to do this!
2726 		 */
2727 		static char buf[SKIP_BUF_SIZE];
2728 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2729 
2730 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2731 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2732 		if (ret <= 0)
2733 			goto out;
2734 		con->in_base_pos += ret;
2735 		if (con->in_base_pos)
2736 			goto more;
2737 	}
2738 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2739 		/*
2740 		 * what's next?
2741 		 */
2742 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2743 		if (ret <= 0)
2744 			goto out;
2745 		dout("try_read got tag %d\n", (int)con->in_tag);
2746 		switch (con->in_tag) {
2747 		case CEPH_MSGR_TAG_MSG:
2748 			prepare_read_message(con);
2749 			break;
2750 		case CEPH_MSGR_TAG_ACK:
2751 			prepare_read_ack(con);
2752 			break;
2753 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2754 			prepare_read_keepalive_ack(con);
2755 			break;
2756 		case CEPH_MSGR_TAG_CLOSE:
2757 			con_close_socket(con);
2758 			con->state = CON_STATE_CLOSED;
2759 			goto out;
2760 		default:
2761 			goto bad_tag;
2762 		}
2763 	}
2764 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2765 		ret = read_partial_message(con);
2766 		if (ret <= 0) {
2767 			switch (ret) {
2768 			case -EBADMSG:
2769 				con->error_msg = "bad crc/signature";
2770 				/* fall through */
2771 			case -EBADE:
2772 				ret = -EIO;
2773 				break;
2774 			case -EIO:
2775 				con->error_msg = "io error";
2776 				break;
2777 			}
2778 			goto out;
2779 		}
2780 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2781 			goto more;
2782 		process_message(con);
2783 		if (con->state == CON_STATE_OPEN)
2784 			prepare_read_tag(con);
2785 		goto more;
2786 	}
2787 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2788 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2789 		/*
2790 		 * the final handshake seq exchange is semantically
2791 		 * equivalent to an ACK
2792 		 */
2793 		ret = read_partial_ack(con);
2794 		if (ret <= 0)
2795 			goto out;
2796 		process_ack(con);
2797 		goto more;
2798 	}
2799 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2800 		ret = read_keepalive_ack(con);
2801 		if (ret <= 0)
2802 			goto out;
2803 		goto more;
2804 	}
2805 
2806 out:
2807 	dout("try_read done on %p ret %d\n", con, ret);
2808 	return ret;
2809 
2810 bad_tag:
2811 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2812 	con->error_msg = "protocol error, garbage tag";
2813 	ret = -1;
2814 	goto out;
2815 }
2816 
2817 
2818 /*
2819  * Atomically queue work on a connection after the specified delay.
2820  * Bump @con reference to avoid races with connection teardown.
2821  * Returns 0 if work was queued, or an error code otherwise.
2822  */
2823 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2824 {
2825 	if (!con->ops->get(con)) {
2826 		dout("%s %p ref count 0\n", __func__, con);
2827 		return -ENOENT;
2828 	}
2829 
2830 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2831 		dout("%s %p - already queued\n", __func__, con);
2832 		con->ops->put(con);
2833 		return -EBUSY;
2834 	}
2835 
2836 	dout("%s %p %lu\n", __func__, con, delay);
2837 	return 0;
2838 }
2839 
2840 static void queue_con(struct ceph_connection *con)
2841 {
2842 	(void) queue_con_delay(con, 0);
2843 }
2844 
2845 static void cancel_con(struct ceph_connection *con)
2846 {
2847 	if (cancel_delayed_work(&con->work)) {
2848 		dout("%s %p\n", __func__, con);
2849 		con->ops->put(con);
2850 	}
2851 }
2852 
2853 static bool con_sock_closed(struct ceph_connection *con)
2854 {
2855 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2856 		return false;
2857 
2858 #define CASE(x)								\
2859 	case CON_STATE_ ## x:						\
2860 		con->error_msg = "socket closed (con state " #x ")";	\
2861 		break;
2862 
2863 	switch (con->state) {
2864 	CASE(CLOSED);
2865 	CASE(PREOPEN);
2866 	CASE(CONNECTING);
2867 	CASE(NEGOTIATING);
2868 	CASE(OPEN);
2869 	CASE(STANDBY);
2870 	default:
2871 		pr_warn("%s con %p unrecognized state %lu\n",
2872 			__func__, con, con->state);
2873 		con->error_msg = "unrecognized con state";
2874 		BUG();
2875 		break;
2876 	}
2877 #undef CASE
2878 
2879 	return true;
2880 }
2881 
2882 static bool con_backoff(struct ceph_connection *con)
2883 {
2884 	int ret;
2885 
2886 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2887 		return false;
2888 
2889 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2890 	if (ret) {
2891 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2892 			con, con->delay);
2893 		BUG_ON(ret == -ENOENT);
2894 		con_flag_set(con, CON_FLAG_BACKOFF);
2895 	}
2896 
2897 	return true;
2898 }
2899 
2900 /* Finish fault handling; con->mutex must *not* be held here */
2901 
2902 static void con_fault_finish(struct ceph_connection *con)
2903 {
2904 	dout("%s %p\n", __func__, con);
2905 
2906 	/*
2907 	 * in case we faulted due to authentication, invalidate our
2908 	 * current tickets so that we can get new ones.
2909 	 */
2910 	if (con->auth_retry) {
2911 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2912 		if (con->ops->invalidate_authorizer)
2913 			con->ops->invalidate_authorizer(con);
2914 		con->auth_retry = 0;
2915 	}
2916 
2917 	if (con->ops->fault)
2918 		con->ops->fault(con);
2919 }
2920 
2921 /*
2922  * Do some work on a connection.  Drop a connection ref when we're done.
2923  */
2924 static void ceph_con_workfn(struct work_struct *work)
2925 {
2926 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2927 						   work.work);
2928 	bool fault;
2929 
2930 	mutex_lock(&con->mutex);
2931 	while (true) {
2932 		int ret;
2933 
2934 		if ((fault = con_sock_closed(con))) {
2935 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2936 			break;
2937 		}
2938 		if (con_backoff(con)) {
2939 			dout("%s: con %p BACKOFF\n", __func__, con);
2940 			break;
2941 		}
2942 		if (con->state == CON_STATE_STANDBY) {
2943 			dout("%s: con %p STANDBY\n", __func__, con);
2944 			break;
2945 		}
2946 		if (con->state == CON_STATE_CLOSED) {
2947 			dout("%s: con %p CLOSED\n", __func__, con);
2948 			BUG_ON(con->sock);
2949 			break;
2950 		}
2951 		if (con->state == CON_STATE_PREOPEN) {
2952 			dout("%s: con %p PREOPEN\n", __func__, con);
2953 			BUG_ON(con->sock);
2954 		}
2955 
2956 		ret = try_read(con);
2957 		if (ret < 0) {
2958 			if (ret == -EAGAIN)
2959 				continue;
2960 			if (!con->error_msg)
2961 				con->error_msg = "socket error on read";
2962 			fault = true;
2963 			break;
2964 		}
2965 
2966 		ret = try_write(con);
2967 		if (ret < 0) {
2968 			if (ret == -EAGAIN)
2969 				continue;
2970 			if (!con->error_msg)
2971 				con->error_msg = "socket error on write";
2972 			fault = true;
2973 		}
2974 
2975 		break;	/* If we make it to here, we're done */
2976 	}
2977 	if (fault)
2978 		con_fault(con);
2979 	mutex_unlock(&con->mutex);
2980 
2981 	if (fault)
2982 		con_fault_finish(con);
2983 
2984 	con->ops->put(con);
2985 }
2986 
2987 /*
2988  * Generic error/fault handler.  A retry mechanism is used with
2989  * exponential backoff
2990  */
2991 static void con_fault(struct ceph_connection *con)
2992 {
2993 	dout("fault %p state %lu to peer %s\n",
2994 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2995 
2996 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2997 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2998 	con->error_msg = NULL;
2999 
3000 	WARN_ON(con->state != CON_STATE_CONNECTING &&
3001 	       con->state != CON_STATE_NEGOTIATING &&
3002 	       con->state != CON_STATE_OPEN);
3003 
3004 	con_close_socket(con);
3005 
3006 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3007 		dout("fault on LOSSYTX channel, marking CLOSED\n");
3008 		con->state = CON_STATE_CLOSED;
3009 		return;
3010 	}
3011 
3012 	if (con->in_msg) {
3013 		BUG_ON(con->in_msg->con != con);
3014 		ceph_msg_put(con->in_msg);
3015 		con->in_msg = NULL;
3016 	}
3017 
3018 	/* Requeue anything that hasn't been acked */
3019 	list_splice_init(&con->out_sent, &con->out_queue);
3020 
3021 	/* If there are no messages queued or keepalive pending, place
3022 	 * the connection in a STANDBY state */
3023 	if (list_empty(&con->out_queue) &&
3024 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3025 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3026 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3027 		con->state = CON_STATE_STANDBY;
3028 	} else {
3029 		/* retry after a delay. */
3030 		con->state = CON_STATE_PREOPEN;
3031 		if (con->delay == 0)
3032 			con->delay = BASE_DELAY_INTERVAL;
3033 		else if (con->delay < MAX_DELAY_INTERVAL)
3034 			con->delay *= 2;
3035 		con_flag_set(con, CON_FLAG_BACKOFF);
3036 		queue_con(con);
3037 	}
3038 }
3039 
3040 
3041 
3042 /*
3043  * initialize a new messenger instance
3044  */
3045 void ceph_messenger_init(struct ceph_messenger *msgr,
3046 			 struct ceph_entity_addr *myaddr)
3047 {
3048 	spin_lock_init(&msgr->global_seq_lock);
3049 
3050 	if (myaddr)
3051 		msgr->inst.addr = *myaddr;
3052 
3053 	/* select a random nonce */
3054 	msgr->inst.addr.type = 0;
3055 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3056 	encode_my_addr(msgr);
3057 
3058 	atomic_set(&msgr->stopping, 0);
3059 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3060 
3061 	dout("%s %p\n", __func__, msgr);
3062 }
3063 EXPORT_SYMBOL(ceph_messenger_init);
3064 
3065 void ceph_messenger_fini(struct ceph_messenger *msgr)
3066 {
3067 	put_net(read_pnet(&msgr->net));
3068 }
3069 EXPORT_SYMBOL(ceph_messenger_fini);
3070 
3071 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3072 {
3073 	if (msg->con)
3074 		msg->con->ops->put(msg->con);
3075 
3076 	msg->con = con ? con->ops->get(con) : NULL;
3077 	BUG_ON(msg->con != con);
3078 }
3079 
3080 static void clear_standby(struct ceph_connection *con)
3081 {
3082 	/* come back from STANDBY? */
3083 	if (con->state == CON_STATE_STANDBY) {
3084 		dout("clear_standby %p and ++connect_seq\n", con);
3085 		con->state = CON_STATE_PREOPEN;
3086 		con->connect_seq++;
3087 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3088 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3089 	}
3090 }
3091 
3092 /*
3093  * Queue up an outgoing message on the given connection.
3094  */
3095 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3096 {
3097 	/* set src+dst */
3098 	msg->hdr.src = con->msgr->inst.name;
3099 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3100 	msg->needs_out_seq = true;
3101 
3102 	mutex_lock(&con->mutex);
3103 
3104 	if (con->state == CON_STATE_CLOSED) {
3105 		dout("con_send %p closed, dropping %p\n", con, msg);
3106 		ceph_msg_put(msg);
3107 		mutex_unlock(&con->mutex);
3108 		return;
3109 	}
3110 
3111 	msg_con_set(msg, con);
3112 
3113 	BUG_ON(!list_empty(&msg->list_head));
3114 	list_add_tail(&msg->list_head, &con->out_queue);
3115 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3116 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3117 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3118 	     le32_to_cpu(msg->hdr.front_len),
3119 	     le32_to_cpu(msg->hdr.middle_len),
3120 	     le32_to_cpu(msg->hdr.data_len));
3121 
3122 	clear_standby(con);
3123 	mutex_unlock(&con->mutex);
3124 
3125 	/* if there wasn't anything waiting to send before, queue
3126 	 * new work */
3127 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3128 		queue_con(con);
3129 }
3130 EXPORT_SYMBOL(ceph_con_send);
3131 
3132 /*
3133  * Revoke a message that was previously queued for send
3134  */
3135 void ceph_msg_revoke(struct ceph_msg *msg)
3136 {
3137 	struct ceph_connection *con = msg->con;
3138 
3139 	if (!con) {
3140 		dout("%s msg %p null con\n", __func__, msg);
3141 		return;		/* Message not in our possession */
3142 	}
3143 
3144 	mutex_lock(&con->mutex);
3145 	if (!list_empty(&msg->list_head)) {
3146 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3147 		list_del_init(&msg->list_head);
3148 		msg->hdr.seq = 0;
3149 
3150 		ceph_msg_put(msg);
3151 	}
3152 	if (con->out_msg == msg) {
3153 		BUG_ON(con->out_skip);
3154 		/* footer */
3155 		if (con->out_msg_done) {
3156 			con->out_skip += con_out_kvec_skip(con);
3157 		} else {
3158 			BUG_ON(!msg->data_length);
3159 			con->out_skip += sizeof_footer(con);
3160 		}
3161 		/* data, middle, front */
3162 		if (msg->data_length)
3163 			con->out_skip += msg->cursor.total_resid;
3164 		if (msg->middle)
3165 			con->out_skip += con_out_kvec_skip(con);
3166 		con->out_skip += con_out_kvec_skip(con);
3167 
3168 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3169 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3170 		msg->hdr.seq = 0;
3171 		con->out_msg = NULL;
3172 		ceph_msg_put(msg);
3173 	}
3174 
3175 	mutex_unlock(&con->mutex);
3176 }
3177 
3178 /*
3179  * Revoke a message that we may be reading data into
3180  */
3181 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3182 {
3183 	struct ceph_connection *con = msg->con;
3184 
3185 	if (!con) {
3186 		dout("%s msg %p null con\n", __func__, msg);
3187 		return;		/* Message not in our possession */
3188 	}
3189 
3190 	mutex_lock(&con->mutex);
3191 	if (con->in_msg == msg) {
3192 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3193 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3194 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3195 
3196 		/* skip rest of message */
3197 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3198 		con->in_base_pos = con->in_base_pos -
3199 				sizeof(struct ceph_msg_header) -
3200 				front_len -
3201 				middle_len -
3202 				data_len -
3203 				sizeof(struct ceph_msg_footer);
3204 		ceph_msg_put(con->in_msg);
3205 		con->in_msg = NULL;
3206 		con->in_tag = CEPH_MSGR_TAG_READY;
3207 		con->in_seq++;
3208 	} else {
3209 		dout("%s %p in_msg %p msg %p no-op\n",
3210 		     __func__, con, con->in_msg, msg);
3211 	}
3212 	mutex_unlock(&con->mutex);
3213 }
3214 
3215 /*
3216  * Queue a keepalive byte to ensure the tcp connection is alive.
3217  */
3218 void ceph_con_keepalive(struct ceph_connection *con)
3219 {
3220 	dout("con_keepalive %p\n", con);
3221 	mutex_lock(&con->mutex);
3222 	clear_standby(con);
3223 	mutex_unlock(&con->mutex);
3224 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3225 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3226 		queue_con(con);
3227 }
3228 EXPORT_SYMBOL(ceph_con_keepalive);
3229 
3230 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3231 			       unsigned long interval)
3232 {
3233 	if (interval > 0 &&
3234 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3235 		struct timespec now;
3236 		struct timespec ts;
3237 		ktime_get_real_ts(&now);
3238 		jiffies_to_timespec(interval, &ts);
3239 		ts = timespec_add(con->last_keepalive_ack, ts);
3240 		return timespec_compare(&now, &ts) >= 0;
3241 	}
3242 	return false;
3243 }
3244 
3245 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3246 {
3247 	struct ceph_msg_data *data;
3248 
3249 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3250 		return NULL;
3251 
3252 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3253 	if (!data)
3254 		return NULL;
3255 
3256 	data->type = type;
3257 	INIT_LIST_HEAD(&data->links);
3258 
3259 	return data;
3260 }
3261 
3262 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3263 {
3264 	if (!data)
3265 		return;
3266 
3267 	WARN_ON(!list_empty(&data->links));
3268 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3269 		ceph_pagelist_release(data->pagelist);
3270 	kmem_cache_free(ceph_msg_data_cache, data);
3271 }
3272 
3273 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3274 		size_t length, size_t alignment)
3275 {
3276 	struct ceph_msg_data *data;
3277 
3278 	BUG_ON(!pages);
3279 	BUG_ON(!length);
3280 
3281 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3282 	BUG_ON(!data);
3283 	data->pages = pages;
3284 	data->length = length;
3285 	data->alignment = alignment & ~PAGE_MASK;
3286 
3287 	list_add_tail(&data->links, &msg->data);
3288 	msg->data_length += length;
3289 }
3290 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3291 
3292 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3293 				struct ceph_pagelist *pagelist)
3294 {
3295 	struct ceph_msg_data *data;
3296 
3297 	BUG_ON(!pagelist);
3298 	BUG_ON(!pagelist->length);
3299 
3300 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3301 	BUG_ON(!data);
3302 	data->pagelist = pagelist;
3303 
3304 	list_add_tail(&data->links, &msg->data);
3305 	msg->data_length += pagelist->length;
3306 }
3307 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3308 
3309 #ifdef	CONFIG_BLOCK
3310 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3311 			   u32 length)
3312 {
3313 	struct ceph_msg_data *data;
3314 
3315 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3316 	BUG_ON(!data);
3317 	data->bio_pos = *bio_pos;
3318 	data->bio_length = length;
3319 
3320 	list_add_tail(&data->links, &msg->data);
3321 	msg->data_length += length;
3322 }
3323 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3324 #endif	/* CONFIG_BLOCK */
3325 
3326 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3327 			     struct ceph_bvec_iter *bvec_pos)
3328 {
3329 	struct ceph_msg_data *data;
3330 
3331 	data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3332 	BUG_ON(!data);
3333 	data->bvec_pos = *bvec_pos;
3334 
3335 	list_add_tail(&data->links, &msg->data);
3336 	msg->data_length += bvec_pos->iter.bi_size;
3337 }
3338 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3339 
3340 /*
3341  * construct a new message with given type, size
3342  * the new msg has a ref count of 1.
3343  */
3344 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3345 			      bool can_fail)
3346 {
3347 	struct ceph_msg *m;
3348 
3349 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3350 	if (m == NULL)
3351 		goto out;
3352 
3353 	m->hdr.type = cpu_to_le16(type);
3354 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3355 	m->hdr.front_len = cpu_to_le32(front_len);
3356 
3357 	INIT_LIST_HEAD(&m->list_head);
3358 	kref_init(&m->kref);
3359 	INIT_LIST_HEAD(&m->data);
3360 
3361 	/* front */
3362 	if (front_len) {
3363 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3364 		if (m->front.iov_base == NULL) {
3365 			dout("ceph_msg_new can't allocate %d bytes\n",
3366 			     front_len);
3367 			goto out2;
3368 		}
3369 	} else {
3370 		m->front.iov_base = NULL;
3371 	}
3372 	m->front_alloc_len = m->front.iov_len = front_len;
3373 
3374 	dout("ceph_msg_new %p front %d\n", m, front_len);
3375 	return m;
3376 
3377 out2:
3378 	ceph_msg_put(m);
3379 out:
3380 	if (!can_fail) {
3381 		pr_err("msg_new can't create type %d front %d\n", type,
3382 		       front_len);
3383 		WARN_ON(1);
3384 	} else {
3385 		dout("msg_new can't create type %d front %d\n", type,
3386 		     front_len);
3387 	}
3388 	return NULL;
3389 }
3390 EXPORT_SYMBOL(ceph_msg_new);
3391 
3392 /*
3393  * Allocate "middle" portion of a message, if it is needed and wasn't
3394  * allocated by alloc_msg.  This allows us to read a small fixed-size
3395  * per-type header in the front and then gracefully fail (i.e.,
3396  * propagate the error to the caller based on info in the front) when
3397  * the middle is too large.
3398  */
3399 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3400 {
3401 	int type = le16_to_cpu(msg->hdr.type);
3402 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3403 
3404 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3405 	     ceph_msg_type_name(type), middle_len);
3406 	BUG_ON(!middle_len);
3407 	BUG_ON(msg->middle);
3408 
3409 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3410 	if (!msg->middle)
3411 		return -ENOMEM;
3412 	return 0;
3413 }
3414 
3415 /*
3416  * Allocate a message for receiving an incoming message on a
3417  * connection, and save the result in con->in_msg.  Uses the
3418  * connection's private alloc_msg op if available.
3419  *
3420  * Returns 0 on success, or a negative error code.
3421  *
3422  * On success, if we set *skip = 1:
3423  *  - the next message should be skipped and ignored.
3424  *  - con->in_msg == NULL
3425  * or if we set *skip = 0:
3426  *  - con->in_msg is non-null.
3427  * On error (ENOMEM, EAGAIN, ...),
3428  *  - con->in_msg == NULL
3429  */
3430 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3431 {
3432 	struct ceph_msg_header *hdr = &con->in_hdr;
3433 	int middle_len = le32_to_cpu(hdr->middle_len);
3434 	struct ceph_msg *msg;
3435 	int ret = 0;
3436 
3437 	BUG_ON(con->in_msg != NULL);
3438 	BUG_ON(!con->ops->alloc_msg);
3439 
3440 	mutex_unlock(&con->mutex);
3441 	msg = con->ops->alloc_msg(con, hdr, skip);
3442 	mutex_lock(&con->mutex);
3443 	if (con->state != CON_STATE_OPEN) {
3444 		if (msg)
3445 			ceph_msg_put(msg);
3446 		return -EAGAIN;
3447 	}
3448 	if (msg) {
3449 		BUG_ON(*skip);
3450 		msg_con_set(msg, con);
3451 		con->in_msg = msg;
3452 	} else {
3453 		/*
3454 		 * Null message pointer means either we should skip
3455 		 * this message or we couldn't allocate memory.  The
3456 		 * former is not an error.
3457 		 */
3458 		if (*skip)
3459 			return 0;
3460 
3461 		con->error_msg = "error allocating memory for incoming message";
3462 		return -ENOMEM;
3463 	}
3464 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3465 
3466 	if (middle_len && !con->in_msg->middle) {
3467 		ret = ceph_alloc_middle(con, con->in_msg);
3468 		if (ret < 0) {
3469 			ceph_msg_put(con->in_msg);
3470 			con->in_msg = NULL;
3471 		}
3472 	}
3473 
3474 	return ret;
3475 }
3476 
3477 
3478 /*
3479  * Free a generically kmalloc'd message.
3480  */
3481 static void ceph_msg_free(struct ceph_msg *m)
3482 {
3483 	dout("%s %p\n", __func__, m);
3484 	kvfree(m->front.iov_base);
3485 	kmem_cache_free(ceph_msg_cache, m);
3486 }
3487 
3488 static void ceph_msg_release(struct kref *kref)
3489 {
3490 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3491 	struct ceph_msg_data *data, *next;
3492 
3493 	dout("%s %p\n", __func__, m);
3494 	WARN_ON(!list_empty(&m->list_head));
3495 
3496 	msg_con_set(m, NULL);
3497 
3498 	/* drop middle, data, if any */
3499 	if (m->middle) {
3500 		ceph_buffer_put(m->middle);
3501 		m->middle = NULL;
3502 	}
3503 
3504 	list_for_each_entry_safe(data, next, &m->data, links) {
3505 		list_del_init(&data->links);
3506 		ceph_msg_data_destroy(data);
3507 	}
3508 	m->data_length = 0;
3509 
3510 	if (m->pool)
3511 		ceph_msgpool_put(m->pool, m);
3512 	else
3513 		ceph_msg_free(m);
3514 }
3515 
3516 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3517 {
3518 	dout("%s %p (was %d)\n", __func__, msg,
3519 	     kref_read(&msg->kref));
3520 	kref_get(&msg->kref);
3521 	return msg;
3522 }
3523 EXPORT_SYMBOL(ceph_msg_get);
3524 
3525 void ceph_msg_put(struct ceph_msg *msg)
3526 {
3527 	dout("%s %p (was %d)\n", __func__, msg,
3528 	     kref_read(&msg->kref));
3529 	kref_put(&msg->kref, ceph_msg_release);
3530 }
3531 EXPORT_SYMBOL(ceph_msg_put);
3532 
3533 void ceph_msg_dump(struct ceph_msg *msg)
3534 {
3535 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3536 		 msg->front_alloc_len, msg->data_length);
3537 	print_hex_dump(KERN_DEBUG, "header: ",
3538 		       DUMP_PREFIX_OFFSET, 16, 1,
3539 		       &msg->hdr, sizeof(msg->hdr), true);
3540 	print_hex_dump(KERN_DEBUG, " front: ",
3541 		       DUMP_PREFIX_OFFSET, 16, 1,
3542 		       msg->front.iov_base, msg->front.iov_len, true);
3543 	if (msg->middle)
3544 		print_hex_dump(KERN_DEBUG, "middle: ",
3545 			       DUMP_PREFIX_OFFSET, 16, 1,
3546 			       msg->middle->vec.iov_base,
3547 			       msg->middle->vec.iov_len, true);
3548 	print_hex_dump(KERN_DEBUG, "footer: ",
3549 		       DUMP_PREFIX_OFFSET, 16, 1,
3550 		       &msg->footer, sizeof(msg->footer), true);
3551 }
3552 EXPORT_SYMBOL(ceph_msg_dump);
3553