xref: /openbmc/linux/net/ceph/messenger.c (revision d0bd7f2a)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	kunmap(zero_page);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 }
285 
286 int ceph_msgr_init(void)
287 {
288 	BUG_ON(zero_page != NULL);
289 	zero_page = ZERO_PAGE(0);
290 	page_cache_get(zero_page);
291 
292 	if (ceph_msgr_slab_init())
293 		return -ENOMEM;
294 
295 	/*
296 	 * The number of active work items is limited by the number of
297 	 * connections, so leave @max_active at default.
298 	 */
299 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 	if (ceph_msgr_wq)
301 		return 0;
302 
303 	pr_err("msgr_init failed to create workqueue\n");
304 	_ceph_msgr_exit();
305 
306 	return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309 
310 void ceph_msgr_exit(void)
311 {
312 	BUG_ON(ceph_msgr_wq == NULL);
313 
314 	_ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317 
318 void ceph_msgr_flush(void)
319 {
320 	flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323 
324 /* Connection socket state transition functions */
325 
326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 	int old_state;
329 
330 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 		printk("%s: unexpected old state %d\n", __func__, old_state);
333 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 	     CON_SOCK_STATE_CLOSED);
335 }
336 
337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 	int old_state;
340 
341 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 		printk("%s: unexpected old state %d\n", __func__, old_state);
344 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 	     CON_SOCK_STATE_CONNECTING);
346 }
347 
348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 	int old_state;
351 
352 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CONNECTED);
357 }
358 
359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 	int old_state;
362 
363 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 			old_state != CON_SOCK_STATE_CONNECTED &&
366 			old_state != CON_SOCK_STATE_CLOSING))
367 		printk("%s: unexpected old state %d\n", __func__, old_state);
368 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 	     CON_SOCK_STATE_CLOSING);
370 }
371 
372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 	int old_state;
375 
376 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 		    old_state != CON_SOCK_STATE_CLOSING &&
379 		    old_state != CON_SOCK_STATE_CONNECTING &&
380 		    old_state != CON_SOCK_STATE_CLOSED))
381 		printk("%s: unexpected old state %d\n", __func__, old_state);
382 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 	     CON_SOCK_STATE_CLOSED);
384 }
385 
386 /*
387  * socket callback functions
388  */
389 
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 	struct ceph_connection *con = sk->sk_user_data;
394 	if (atomic_read(&con->msgr->stopping)) {
395 		return;
396 	}
397 
398 	if (sk->sk_state != TCP_CLOSE_WAIT) {
399 		dout("%s on %p state = %lu, queueing work\n", __func__,
400 		     con, con->state);
401 		queue_con(con);
402 	}
403 }
404 
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 	struct ceph_connection *con = sk->sk_user_data;
409 
410 	/* only queue to workqueue if there is data we want to write,
411 	 * and there is sufficient space in the socket buffer to accept
412 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
413 	 * doesn't get called again until try_write() fills the socket
414 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 	 * and net/core/stream.c:sk_stream_write_space().
416 	 */
417 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 		if (sk_stream_is_writeable(sk)) {
419 			dout("%s %p queueing write work\n", __func__, con);
420 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 			queue_con(con);
422 		}
423 	} else {
424 		dout("%s %p nothing to write\n", __func__, con);
425 	}
426 }
427 
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 	struct ceph_connection *con = sk->sk_user_data;
432 
433 	dout("%s %p state = %lu sk_state = %u\n", __func__,
434 	     con, con->state, sk->sk_state);
435 
436 	switch (sk->sk_state) {
437 	case TCP_CLOSE:
438 		dout("%s TCP_CLOSE\n", __func__);
439 	case TCP_CLOSE_WAIT:
440 		dout("%s TCP_CLOSE_WAIT\n", __func__);
441 		con_sock_state_closing(con);
442 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 		queue_con(con);
444 		break;
445 	case TCP_ESTABLISHED:
446 		dout("%s TCP_ESTABLISHED\n", __func__);
447 		con_sock_state_connected(con);
448 		queue_con(con);
449 		break;
450 	default:	/* Everything else is uninteresting */
451 		break;
452 	}
453 }
454 
455 /*
456  * set up socket callbacks
457  */
458 static void set_sock_callbacks(struct socket *sock,
459 			       struct ceph_connection *con)
460 {
461 	struct sock *sk = sock->sk;
462 	sk->sk_user_data = con;
463 	sk->sk_data_ready = ceph_sock_data_ready;
464 	sk->sk_write_space = ceph_sock_write_space;
465 	sk->sk_state_change = ceph_sock_state_change;
466 }
467 
468 
469 /*
470  * socket helpers
471  */
472 
473 /*
474  * initiate connection to a remote socket.
475  */
476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 	struct socket *sock;
480 	int ret;
481 
482 	BUG_ON(con->sock);
483 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 			       IPPROTO_TCP, &sock);
485 	if (ret)
486 		return ret;
487 	sock->sk->sk_allocation = GFP_NOFS;
488 
489 #ifdef CONFIG_LOCKDEP
490 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492 
493 	set_sock_callbacks(sock, con);
494 
495 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496 
497 	con_sock_state_connecting(con);
498 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 				 O_NONBLOCK);
500 	if (ret == -EINPROGRESS) {
501 		dout("connect %s EINPROGRESS sk_state = %u\n",
502 		     ceph_pr_addr(&con->peer_addr.in_addr),
503 		     sock->sk->sk_state);
504 	} else if (ret < 0) {
505 		pr_err("connect %s error %d\n",
506 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 		sock_release(sock);
508 		return ret;
509 	}
510 
511 	if (con->msgr->tcp_nodelay) {
512 		int optval = 1;
513 
514 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
515 					(char *)&optval, sizeof(optval));
516 		if (ret)
517 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
518 			       ret);
519 	}
520 
521 	con->sock = sock;
522 	return 0;
523 }
524 
525 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
526 {
527 	struct kvec iov = {buf, len};
528 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
529 	int r;
530 
531 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
532 	if (r == -EAGAIN)
533 		r = 0;
534 	return r;
535 }
536 
537 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
538 		     int page_offset, size_t length)
539 {
540 	void *kaddr;
541 	int ret;
542 
543 	BUG_ON(page_offset + length > PAGE_SIZE);
544 
545 	kaddr = kmap(page);
546 	BUG_ON(!kaddr);
547 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
548 	kunmap(page);
549 
550 	return ret;
551 }
552 
553 /*
554  * write something.  @more is true if caller will be sending more data
555  * shortly.
556  */
557 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
558 		     size_t kvlen, size_t len, int more)
559 {
560 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
561 	int r;
562 
563 	if (more)
564 		msg.msg_flags |= MSG_MORE;
565 	else
566 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
567 
568 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
569 	if (r == -EAGAIN)
570 		r = 0;
571 	return r;
572 }
573 
574 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
575 		     int offset, size_t size, bool more)
576 {
577 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
578 	int ret;
579 
580 	ret = kernel_sendpage(sock, page, offset, size, flags);
581 	if (ret == -EAGAIN)
582 		ret = 0;
583 
584 	return ret;
585 }
586 
587 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
588 		     int offset, size_t size, bool more)
589 {
590 	int ret;
591 	struct kvec iov;
592 
593 	/* sendpage cannot properly handle pages with page_count == 0,
594 	 * we need to fallback to sendmsg if that's the case */
595 	if (page_count(page) >= 1)
596 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
597 
598 	iov.iov_base = kmap(page) + offset;
599 	iov.iov_len = size;
600 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
601 	kunmap(page);
602 
603 	return ret;
604 }
605 
606 /*
607  * Shutdown/close the socket for the given connection.
608  */
609 static int con_close_socket(struct ceph_connection *con)
610 {
611 	int rc = 0;
612 
613 	dout("con_close_socket on %p sock %p\n", con, con->sock);
614 	if (con->sock) {
615 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
616 		sock_release(con->sock);
617 		con->sock = NULL;
618 	}
619 
620 	/*
621 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
622 	 * independent of the connection mutex, and we could have
623 	 * received a socket close event before we had the chance to
624 	 * shut the socket down.
625 	 */
626 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
627 
628 	con_sock_state_closed(con);
629 	return rc;
630 }
631 
632 /*
633  * Reset a connection.  Discard all incoming and outgoing messages
634  * and clear *_seq state.
635  */
636 static void ceph_msg_remove(struct ceph_msg *msg)
637 {
638 	list_del_init(&msg->list_head);
639 	BUG_ON(msg->con == NULL);
640 	msg->con->ops->put(msg->con);
641 	msg->con = NULL;
642 
643 	ceph_msg_put(msg);
644 }
645 static void ceph_msg_remove_list(struct list_head *head)
646 {
647 	while (!list_empty(head)) {
648 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
649 							list_head);
650 		ceph_msg_remove(msg);
651 	}
652 }
653 
654 static void reset_connection(struct ceph_connection *con)
655 {
656 	/* reset connection, out_queue, msg_ and connect_seq */
657 	/* discard existing out_queue and msg_seq */
658 	dout("reset_connection %p\n", con);
659 	ceph_msg_remove_list(&con->out_queue);
660 	ceph_msg_remove_list(&con->out_sent);
661 
662 	if (con->in_msg) {
663 		BUG_ON(con->in_msg->con != con);
664 		con->in_msg->con = NULL;
665 		ceph_msg_put(con->in_msg);
666 		con->in_msg = NULL;
667 		con->ops->put(con);
668 	}
669 
670 	con->connect_seq = 0;
671 	con->out_seq = 0;
672 	if (con->out_msg) {
673 		ceph_msg_put(con->out_msg);
674 		con->out_msg = NULL;
675 	}
676 	con->in_seq = 0;
677 	con->in_seq_acked = 0;
678 }
679 
680 /*
681  * mark a peer down.  drop any open connections.
682  */
683 void ceph_con_close(struct ceph_connection *con)
684 {
685 	mutex_lock(&con->mutex);
686 	dout("con_close %p peer %s\n", con,
687 	     ceph_pr_addr(&con->peer_addr.in_addr));
688 	con->state = CON_STATE_CLOSED;
689 
690 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
691 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
692 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
693 	con_flag_clear(con, CON_FLAG_BACKOFF);
694 
695 	reset_connection(con);
696 	con->peer_global_seq = 0;
697 	cancel_con(con);
698 	con_close_socket(con);
699 	mutex_unlock(&con->mutex);
700 }
701 EXPORT_SYMBOL(ceph_con_close);
702 
703 /*
704  * Reopen a closed connection, with a new peer address.
705  */
706 void ceph_con_open(struct ceph_connection *con,
707 		   __u8 entity_type, __u64 entity_num,
708 		   struct ceph_entity_addr *addr)
709 {
710 	mutex_lock(&con->mutex);
711 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
712 
713 	WARN_ON(con->state != CON_STATE_CLOSED);
714 	con->state = CON_STATE_PREOPEN;
715 
716 	con->peer_name.type = (__u8) entity_type;
717 	con->peer_name.num = cpu_to_le64(entity_num);
718 
719 	memcpy(&con->peer_addr, addr, sizeof(*addr));
720 	con->delay = 0;      /* reset backoff memory */
721 	mutex_unlock(&con->mutex);
722 	queue_con(con);
723 }
724 EXPORT_SYMBOL(ceph_con_open);
725 
726 /*
727  * return true if this connection ever successfully opened
728  */
729 bool ceph_con_opened(struct ceph_connection *con)
730 {
731 	return con->connect_seq > 0;
732 }
733 
734 /*
735  * initialize a new connection.
736  */
737 void ceph_con_init(struct ceph_connection *con, void *private,
738 	const struct ceph_connection_operations *ops,
739 	struct ceph_messenger *msgr)
740 {
741 	dout("con_init %p\n", con);
742 	memset(con, 0, sizeof(*con));
743 	con->private = private;
744 	con->ops = ops;
745 	con->msgr = msgr;
746 
747 	con_sock_state_init(con);
748 
749 	mutex_init(&con->mutex);
750 	INIT_LIST_HEAD(&con->out_queue);
751 	INIT_LIST_HEAD(&con->out_sent);
752 	INIT_DELAYED_WORK(&con->work, con_work);
753 
754 	con->state = CON_STATE_CLOSED;
755 }
756 EXPORT_SYMBOL(ceph_con_init);
757 
758 
759 /*
760  * We maintain a global counter to order connection attempts.  Get
761  * a unique seq greater than @gt.
762  */
763 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
764 {
765 	u32 ret;
766 
767 	spin_lock(&msgr->global_seq_lock);
768 	if (msgr->global_seq < gt)
769 		msgr->global_seq = gt;
770 	ret = ++msgr->global_seq;
771 	spin_unlock(&msgr->global_seq_lock);
772 	return ret;
773 }
774 
775 static void con_out_kvec_reset(struct ceph_connection *con)
776 {
777 	con->out_kvec_left = 0;
778 	con->out_kvec_bytes = 0;
779 	con->out_kvec_cur = &con->out_kvec[0];
780 }
781 
782 static void con_out_kvec_add(struct ceph_connection *con,
783 				size_t size, void *data)
784 {
785 	int index;
786 
787 	index = con->out_kvec_left;
788 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
789 
790 	con->out_kvec[index].iov_len = size;
791 	con->out_kvec[index].iov_base = data;
792 	con->out_kvec_left++;
793 	con->out_kvec_bytes += size;
794 }
795 
796 #ifdef CONFIG_BLOCK
797 
798 /*
799  * For a bio data item, a piece is whatever remains of the next
800  * entry in the current bio iovec, or the first entry in the next
801  * bio in the list.
802  */
803 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
804 					size_t length)
805 {
806 	struct ceph_msg_data *data = cursor->data;
807 	struct bio *bio;
808 
809 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
810 
811 	bio = data->bio;
812 	BUG_ON(!bio);
813 
814 	cursor->resid = min(length, data->bio_length);
815 	cursor->bio = bio;
816 	cursor->bvec_iter = bio->bi_iter;
817 	cursor->last_piece =
818 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
819 }
820 
821 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
822 						size_t *page_offset,
823 						size_t *length)
824 {
825 	struct ceph_msg_data *data = cursor->data;
826 	struct bio *bio;
827 	struct bio_vec bio_vec;
828 
829 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
830 
831 	bio = cursor->bio;
832 	BUG_ON(!bio);
833 
834 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
835 
836 	*page_offset = (size_t) bio_vec.bv_offset;
837 	BUG_ON(*page_offset >= PAGE_SIZE);
838 	if (cursor->last_piece) /* pagelist offset is always 0 */
839 		*length = cursor->resid;
840 	else
841 		*length = (size_t) bio_vec.bv_len;
842 	BUG_ON(*length > cursor->resid);
843 	BUG_ON(*page_offset + *length > PAGE_SIZE);
844 
845 	return bio_vec.bv_page;
846 }
847 
848 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
849 					size_t bytes)
850 {
851 	struct bio *bio;
852 	struct bio_vec bio_vec;
853 
854 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
855 
856 	bio = cursor->bio;
857 	BUG_ON(!bio);
858 
859 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
860 
861 	/* Advance the cursor offset */
862 
863 	BUG_ON(cursor->resid < bytes);
864 	cursor->resid -= bytes;
865 
866 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
867 
868 	if (bytes < bio_vec.bv_len)
869 		return false;	/* more bytes to process in this segment */
870 
871 	/* Move on to the next segment, and possibly the next bio */
872 
873 	if (!cursor->bvec_iter.bi_size) {
874 		bio = bio->bi_next;
875 		cursor->bio = bio;
876 		if (bio)
877 			cursor->bvec_iter = bio->bi_iter;
878 		else
879 			memset(&cursor->bvec_iter, 0,
880 			       sizeof(cursor->bvec_iter));
881 	}
882 
883 	if (!cursor->last_piece) {
884 		BUG_ON(!cursor->resid);
885 		BUG_ON(!bio);
886 		/* A short read is OK, so use <= rather than == */
887 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
888 			cursor->last_piece = true;
889 	}
890 
891 	return true;
892 }
893 #endif /* CONFIG_BLOCK */
894 
895 /*
896  * For a page array, a piece comes from the first page in the array
897  * that has not already been fully consumed.
898  */
899 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
900 					size_t length)
901 {
902 	struct ceph_msg_data *data = cursor->data;
903 	int page_count;
904 
905 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
906 
907 	BUG_ON(!data->pages);
908 	BUG_ON(!data->length);
909 
910 	cursor->resid = min(length, data->length);
911 	page_count = calc_pages_for(data->alignment, (u64)data->length);
912 	cursor->page_offset = data->alignment & ~PAGE_MASK;
913 	cursor->page_index = 0;
914 	BUG_ON(page_count > (int)USHRT_MAX);
915 	cursor->page_count = (unsigned short)page_count;
916 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
917 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
918 }
919 
920 static struct page *
921 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
922 					size_t *page_offset, size_t *length)
923 {
924 	struct ceph_msg_data *data = cursor->data;
925 
926 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
927 
928 	BUG_ON(cursor->page_index >= cursor->page_count);
929 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
930 
931 	*page_offset = cursor->page_offset;
932 	if (cursor->last_piece)
933 		*length = cursor->resid;
934 	else
935 		*length = PAGE_SIZE - *page_offset;
936 
937 	return data->pages[cursor->page_index];
938 }
939 
940 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
941 						size_t bytes)
942 {
943 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
944 
945 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
946 
947 	/* Advance the cursor page offset */
948 
949 	cursor->resid -= bytes;
950 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
951 	if (!bytes || cursor->page_offset)
952 		return false;	/* more bytes to process in the current page */
953 
954 	if (!cursor->resid)
955 		return false;   /* no more data */
956 
957 	/* Move on to the next page; offset is already at 0 */
958 
959 	BUG_ON(cursor->page_index >= cursor->page_count);
960 	cursor->page_index++;
961 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
962 
963 	return true;
964 }
965 
966 /*
967  * For a pagelist, a piece is whatever remains to be consumed in the
968  * first page in the list, or the front of the next page.
969  */
970 static void
971 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
972 					size_t length)
973 {
974 	struct ceph_msg_data *data = cursor->data;
975 	struct ceph_pagelist *pagelist;
976 	struct page *page;
977 
978 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
979 
980 	pagelist = data->pagelist;
981 	BUG_ON(!pagelist);
982 
983 	if (!length)
984 		return;		/* pagelist can be assigned but empty */
985 
986 	BUG_ON(list_empty(&pagelist->head));
987 	page = list_first_entry(&pagelist->head, struct page, lru);
988 
989 	cursor->resid = min(length, pagelist->length);
990 	cursor->page = page;
991 	cursor->offset = 0;
992 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
993 }
994 
995 static struct page *
996 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
997 				size_t *page_offset, size_t *length)
998 {
999 	struct ceph_msg_data *data = cursor->data;
1000 	struct ceph_pagelist *pagelist;
1001 
1002 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1003 
1004 	pagelist = data->pagelist;
1005 	BUG_ON(!pagelist);
1006 
1007 	BUG_ON(!cursor->page);
1008 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1009 
1010 	/* offset of first page in pagelist is always 0 */
1011 	*page_offset = cursor->offset & ~PAGE_MASK;
1012 	if (cursor->last_piece)
1013 		*length = cursor->resid;
1014 	else
1015 		*length = PAGE_SIZE - *page_offset;
1016 
1017 	return cursor->page;
1018 }
1019 
1020 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1021 						size_t bytes)
1022 {
1023 	struct ceph_msg_data *data = cursor->data;
1024 	struct ceph_pagelist *pagelist;
1025 
1026 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1027 
1028 	pagelist = data->pagelist;
1029 	BUG_ON(!pagelist);
1030 
1031 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1032 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1033 
1034 	/* Advance the cursor offset */
1035 
1036 	cursor->resid -= bytes;
1037 	cursor->offset += bytes;
1038 	/* offset of first page in pagelist is always 0 */
1039 	if (!bytes || cursor->offset & ~PAGE_MASK)
1040 		return false;	/* more bytes to process in the current page */
1041 
1042 	if (!cursor->resid)
1043 		return false;   /* no more data */
1044 
1045 	/* Move on to the next page */
1046 
1047 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1048 	cursor->page = list_entry_next(cursor->page, lru);
1049 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1050 
1051 	return true;
1052 }
1053 
1054 /*
1055  * Message data is handled (sent or received) in pieces, where each
1056  * piece resides on a single page.  The network layer might not
1057  * consume an entire piece at once.  A data item's cursor keeps
1058  * track of which piece is next to process and how much remains to
1059  * be processed in that piece.  It also tracks whether the current
1060  * piece is the last one in the data item.
1061  */
1062 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1063 {
1064 	size_t length = cursor->total_resid;
1065 
1066 	switch (cursor->data->type) {
1067 	case CEPH_MSG_DATA_PAGELIST:
1068 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1069 		break;
1070 	case CEPH_MSG_DATA_PAGES:
1071 		ceph_msg_data_pages_cursor_init(cursor, length);
1072 		break;
1073 #ifdef CONFIG_BLOCK
1074 	case CEPH_MSG_DATA_BIO:
1075 		ceph_msg_data_bio_cursor_init(cursor, length);
1076 		break;
1077 #endif /* CONFIG_BLOCK */
1078 	case CEPH_MSG_DATA_NONE:
1079 	default:
1080 		/* BUG(); */
1081 		break;
1082 	}
1083 	cursor->need_crc = true;
1084 }
1085 
1086 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1087 {
1088 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1089 	struct ceph_msg_data *data;
1090 
1091 	BUG_ON(!length);
1092 	BUG_ON(length > msg->data_length);
1093 	BUG_ON(list_empty(&msg->data));
1094 
1095 	cursor->data_head = &msg->data;
1096 	cursor->total_resid = length;
1097 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1098 	cursor->data = data;
1099 
1100 	__ceph_msg_data_cursor_init(cursor);
1101 }
1102 
1103 /*
1104  * Return the page containing the next piece to process for a given
1105  * data item, and supply the page offset and length of that piece.
1106  * Indicate whether this is the last piece in this data item.
1107  */
1108 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1109 					size_t *page_offset, size_t *length,
1110 					bool *last_piece)
1111 {
1112 	struct page *page;
1113 
1114 	switch (cursor->data->type) {
1115 	case CEPH_MSG_DATA_PAGELIST:
1116 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1117 		break;
1118 	case CEPH_MSG_DATA_PAGES:
1119 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1120 		break;
1121 #ifdef CONFIG_BLOCK
1122 	case CEPH_MSG_DATA_BIO:
1123 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1124 		break;
1125 #endif /* CONFIG_BLOCK */
1126 	case CEPH_MSG_DATA_NONE:
1127 	default:
1128 		page = NULL;
1129 		break;
1130 	}
1131 	BUG_ON(!page);
1132 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1133 	BUG_ON(!*length);
1134 	if (last_piece)
1135 		*last_piece = cursor->last_piece;
1136 
1137 	return page;
1138 }
1139 
1140 /*
1141  * Returns true if the result moves the cursor on to the next piece
1142  * of the data item.
1143  */
1144 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1145 				size_t bytes)
1146 {
1147 	bool new_piece;
1148 
1149 	BUG_ON(bytes > cursor->resid);
1150 	switch (cursor->data->type) {
1151 	case CEPH_MSG_DATA_PAGELIST:
1152 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1153 		break;
1154 	case CEPH_MSG_DATA_PAGES:
1155 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1156 		break;
1157 #ifdef CONFIG_BLOCK
1158 	case CEPH_MSG_DATA_BIO:
1159 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1160 		break;
1161 #endif /* CONFIG_BLOCK */
1162 	case CEPH_MSG_DATA_NONE:
1163 	default:
1164 		BUG();
1165 		break;
1166 	}
1167 	cursor->total_resid -= bytes;
1168 
1169 	if (!cursor->resid && cursor->total_resid) {
1170 		WARN_ON(!cursor->last_piece);
1171 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1172 		cursor->data = list_entry_next(cursor->data, links);
1173 		__ceph_msg_data_cursor_init(cursor);
1174 		new_piece = true;
1175 	}
1176 	cursor->need_crc = new_piece;
1177 
1178 	return new_piece;
1179 }
1180 
1181 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1182 {
1183 	BUG_ON(!msg);
1184 	BUG_ON(!data_len);
1185 
1186 	/* Initialize data cursor */
1187 
1188 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1189 }
1190 
1191 /*
1192  * Prepare footer for currently outgoing message, and finish things
1193  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1194  */
1195 static void prepare_write_message_footer(struct ceph_connection *con)
1196 {
1197 	struct ceph_msg *m = con->out_msg;
1198 	int v = con->out_kvec_left;
1199 
1200 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1201 
1202 	dout("prepare_write_message_footer %p\n", con);
1203 	con->out_kvec_is_msg = true;
1204 	con->out_kvec[v].iov_base = &m->footer;
1205 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1206 		if (con->ops->sign_message)
1207 			con->ops->sign_message(con, m);
1208 		else
1209 			m->footer.sig = 0;
1210 		con->out_kvec[v].iov_len = sizeof(m->footer);
1211 		con->out_kvec_bytes += sizeof(m->footer);
1212 	} else {
1213 		m->old_footer.flags = m->footer.flags;
1214 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1215 		con->out_kvec_bytes += sizeof(m->old_footer);
1216 	}
1217 	con->out_kvec_left++;
1218 	con->out_more = m->more_to_follow;
1219 	con->out_msg_done = true;
1220 }
1221 
1222 /*
1223  * Prepare headers for the next outgoing message.
1224  */
1225 static void prepare_write_message(struct ceph_connection *con)
1226 {
1227 	struct ceph_msg *m;
1228 	u32 crc;
1229 
1230 	con_out_kvec_reset(con);
1231 	con->out_kvec_is_msg = true;
1232 	con->out_msg_done = false;
1233 
1234 	/* Sneak an ack in there first?  If we can get it into the same
1235 	 * TCP packet that's a good thing. */
1236 	if (con->in_seq > con->in_seq_acked) {
1237 		con->in_seq_acked = con->in_seq;
1238 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1239 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1240 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1241 			&con->out_temp_ack);
1242 	}
1243 
1244 	BUG_ON(list_empty(&con->out_queue));
1245 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1246 	con->out_msg = m;
1247 	BUG_ON(m->con != con);
1248 
1249 	/* put message on sent list */
1250 	ceph_msg_get(m);
1251 	list_move_tail(&m->list_head, &con->out_sent);
1252 
1253 	/*
1254 	 * only assign outgoing seq # if we haven't sent this message
1255 	 * yet.  if it is requeued, resend with it's original seq.
1256 	 */
1257 	if (m->needs_out_seq) {
1258 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1259 		m->needs_out_seq = false;
1260 	}
1261 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1262 
1263 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1264 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1265 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1266 	     m->data_length);
1267 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1268 
1269 	/* tag + hdr + front + middle */
1270 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1271 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1272 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1273 
1274 	if (m->middle)
1275 		con_out_kvec_add(con, m->middle->vec.iov_len,
1276 			m->middle->vec.iov_base);
1277 
1278 	/* fill in crc (except data pages), footer */
1279 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1280 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1281 	con->out_msg->footer.flags = 0;
1282 
1283 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1284 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1285 	if (m->middle) {
1286 		crc = crc32c(0, m->middle->vec.iov_base,
1287 				m->middle->vec.iov_len);
1288 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1289 	} else
1290 		con->out_msg->footer.middle_crc = 0;
1291 	dout("%s front_crc %u middle_crc %u\n", __func__,
1292 	     le32_to_cpu(con->out_msg->footer.front_crc),
1293 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1294 
1295 	/* is there a data payload? */
1296 	con->out_msg->footer.data_crc = 0;
1297 	if (m->data_length) {
1298 		prepare_message_data(con->out_msg, m->data_length);
1299 		con->out_more = 1;  /* data + footer will follow */
1300 	} else {
1301 		/* no, queue up footer too and be done */
1302 		prepare_write_message_footer(con);
1303 	}
1304 
1305 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1306 }
1307 
1308 /*
1309  * Prepare an ack.
1310  */
1311 static void prepare_write_ack(struct ceph_connection *con)
1312 {
1313 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1314 	     con->in_seq_acked, con->in_seq);
1315 	con->in_seq_acked = con->in_seq;
1316 
1317 	con_out_kvec_reset(con);
1318 
1319 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1320 
1321 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1322 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1323 				&con->out_temp_ack);
1324 
1325 	con->out_more = 1;  /* more will follow.. eventually.. */
1326 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1327 }
1328 
1329 /*
1330  * Prepare to share the seq during handshake
1331  */
1332 static void prepare_write_seq(struct ceph_connection *con)
1333 {
1334 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1335 	     con->in_seq_acked, con->in_seq);
1336 	con->in_seq_acked = con->in_seq;
1337 
1338 	con_out_kvec_reset(con);
1339 
1340 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1341 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1342 			 &con->out_temp_ack);
1343 
1344 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1345 }
1346 
1347 /*
1348  * Prepare to write keepalive byte.
1349  */
1350 static void prepare_write_keepalive(struct ceph_connection *con)
1351 {
1352 	dout("prepare_write_keepalive %p\n", con);
1353 	con_out_kvec_reset(con);
1354 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1355 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1356 }
1357 
1358 /*
1359  * Connection negotiation.
1360  */
1361 
1362 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1363 						int *auth_proto)
1364 {
1365 	struct ceph_auth_handshake *auth;
1366 
1367 	if (!con->ops->get_authorizer) {
1368 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1369 		con->out_connect.authorizer_len = 0;
1370 		return NULL;
1371 	}
1372 
1373 	/* Can't hold the mutex while getting authorizer */
1374 	mutex_unlock(&con->mutex);
1375 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1376 	mutex_lock(&con->mutex);
1377 
1378 	if (IS_ERR(auth))
1379 		return auth;
1380 	if (con->state != CON_STATE_NEGOTIATING)
1381 		return ERR_PTR(-EAGAIN);
1382 
1383 	con->auth_reply_buf = auth->authorizer_reply_buf;
1384 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1385 	return auth;
1386 }
1387 
1388 /*
1389  * We connected to a peer and are saying hello.
1390  */
1391 static void prepare_write_banner(struct ceph_connection *con)
1392 {
1393 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1394 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1395 					&con->msgr->my_enc_addr);
1396 
1397 	con->out_more = 0;
1398 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399 }
1400 
1401 static int prepare_write_connect(struct ceph_connection *con)
1402 {
1403 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1404 	int proto;
1405 	int auth_proto;
1406 	struct ceph_auth_handshake *auth;
1407 
1408 	switch (con->peer_name.type) {
1409 	case CEPH_ENTITY_TYPE_MON:
1410 		proto = CEPH_MONC_PROTOCOL;
1411 		break;
1412 	case CEPH_ENTITY_TYPE_OSD:
1413 		proto = CEPH_OSDC_PROTOCOL;
1414 		break;
1415 	case CEPH_ENTITY_TYPE_MDS:
1416 		proto = CEPH_MDSC_PROTOCOL;
1417 		break;
1418 	default:
1419 		BUG();
1420 	}
1421 
1422 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1423 	     con->connect_seq, global_seq, proto);
1424 
1425 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1426 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1427 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1428 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1429 	con->out_connect.protocol_version = cpu_to_le32(proto);
1430 	con->out_connect.flags = 0;
1431 
1432 	auth_proto = CEPH_AUTH_UNKNOWN;
1433 	auth = get_connect_authorizer(con, &auth_proto);
1434 	if (IS_ERR(auth))
1435 		return PTR_ERR(auth);
1436 
1437 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1438 	con->out_connect.authorizer_len = auth ?
1439 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1440 
1441 	con_out_kvec_add(con, sizeof (con->out_connect),
1442 					&con->out_connect);
1443 	if (auth && auth->authorizer_buf_len)
1444 		con_out_kvec_add(con, auth->authorizer_buf_len,
1445 					auth->authorizer_buf);
1446 
1447 	con->out_more = 0;
1448 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * write as much of pending kvecs to the socket as we can.
1455  *  1 -> done
1456  *  0 -> socket full, but more to do
1457  * <0 -> error
1458  */
1459 static int write_partial_kvec(struct ceph_connection *con)
1460 {
1461 	int ret;
1462 
1463 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1464 	while (con->out_kvec_bytes > 0) {
1465 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1466 				       con->out_kvec_left, con->out_kvec_bytes,
1467 				       con->out_more);
1468 		if (ret <= 0)
1469 			goto out;
1470 		con->out_kvec_bytes -= ret;
1471 		if (con->out_kvec_bytes == 0)
1472 			break;            /* done */
1473 
1474 		/* account for full iov entries consumed */
1475 		while (ret >= con->out_kvec_cur->iov_len) {
1476 			BUG_ON(!con->out_kvec_left);
1477 			ret -= con->out_kvec_cur->iov_len;
1478 			con->out_kvec_cur++;
1479 			con->out_kvec_left--;
1480 		}
1481 		/* and for a partially-consumed entry */
1482 		if (ret) {
1483 			con->out_kvec_cur->iov_len -= ret;
1484 			con->out_kvec_cur->iov_base += ret;
1485 		}
1486 	}
1487 	con->out_kvec_left = 0;
1488 	con->out_kvec_is_msg = false;
1489 	ret = 1;
1490 out:
1491 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1492 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1493 	return ret;  /* done! */
1494 }
1495 
1496 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1497 				unsigned int page_offset,
1498 				unsigned int length)
1499 {
1500 	char *kaddr;
1501 
1502 	kaddr = kmap(page);
1503 	BUG_ON(kaddr == NULL);
1504 	crc = crc32c(crc, kaddr + page_offset, length);
1505 	kunmap(page);
1506 
1507 	return crc;
1508 }
1509 /*
1510  * Write as much message data payload as we can.  If we finish, queue
1511  * up the footer.
1512  *  1 -> done, footer is now queued in out_kvec[].
1513  *  0 -> socket full, but more to do
1514  * <0 -> error
1515  */
1516 static int write_partial_message_data(struct ceph_connection *con)
1517 {
1518 	struct ceph_msg *msg = con->out_msg;
1519 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1520 	bool do_datacrc = !con->msgr->nocrc;
1521 	u32 crc;
1522 
1523 	dout("%s %p msg %p\n", __func__, con, msg);
1524 
1525 	if (list_empty(&msg->data))
1526 		return -EINVAL;
1527 
1528 	/*
1529 	 * Iterate through each page that contains data to be
1530 	 * written, and send as much as possible for each.
1531 	 *
1532 	 * If we are calculating the data crc (the default), we will
1533 	 * need to map the page.  If we have no pages, they have
1534 	 * been revoked, so use the zero page.
1535 	 */
1536 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1537 	while (cursor->resid) {
1538 		struct page *page;
1539 		size_t page_offset;
1540 		size_t length;
1541 		bool last_piece;
1542 		bool need_crc;
1543 		int ret;
1544 
1545 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1546 							&last_piece);
1547 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1548 				      length, last_piece);
1549 		if (ret <= 0) {
1550 			if (do_datacrc)
1551 				msg->footer.data_crc = cpu_to_le32(crc);
1552 
1553 			return ret;
1554 		}
1555 		if (do_datacrc && cursor->need_crc)
1556 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1557 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1558 	}
1559 
1560 	dout("%s %p msg %p done\n", __func__, con, msg);
1561 
1562 	/* prepare and queue up footer, too */
1563 	if (do_datacrc)
1564 		msg->footer.data_crc = cpu_to_le32(crc);
1565 	else
1566 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1567 	con_out_kvec_reset(con);
1568 	prepare_write_message_footer(con);
1569 
1570 	return 1;	/* must return > 0 to indicate success */
1571 }
1572 
1573 /*
1574  * write some zeros
1575  */
1576 static int write_partial_skip(struct ceph_connection *con)
1577 {
1578 	int ret;
1579 
1580 	while (con->out_skip > 0) {
1581 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1582 
1583 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1584 		if (ret <= 0)
1585 			goto out;
1586 		con->out_skip -= ret;
1587 	}
1588 	ret = 1;
1589 out:
1590 	return ret;
1591 }
1592 
1593 /*
1594  * Prepare to read connection handshake, or an ack.
1595  */
1596 static void prepare_read_banner(struct ceph_connection *con)
1597 {
1598 	dout("prepare_read_banner %p\n", con);
1599 	con->in_base_pos = 0;
1600 }
1601 
1602 static void prepare_read_connect(struct ceph_connection *con)
1603 {
1604 	dout("prepare_read_connect %p\n", con);
1605 	con->in_base_pos = 0;
1606 }
1607 
1608 static void prepare_read_ack(struct ceph_connection *con)
1609 {
1610 	dout("prepare_read_ack %p\n", con);
1611 	con->in_base_pos = 0;
1612 }
1613 
1614 static void prepare_read_seq(struct ceph_connection *con)
1615 {
1616 	dout("prepare_read_seq %p\n", con);
1617 	con->in_base_pos = 0;
1618 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1619 }
1620 
1621 static void prepare_read_tag(struct ceph_connection *con)
1622 {
1623 	dout("prepare_read_tag %p\n", con);
1624 	con->in_base_pos = 0;
1625 	con->in_tag = CEPH_MSGR_TAG_READY;
1626 }
1627 
1628 /*
1629  * Prepare to read a message.
1630  */
1631 static int prepare_read_message(struct ceph_connection *con)
1632 {
1633 	dout("prepare_read_message %p\n", con);
1634 	BUG_ON(con->in_msg != NULL);
1635 	con->in_base_pos = 0;
1636 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1637 	return 0;
1638 }
1639 
1640 
1641 static int read_partial(struct ceph_connection *con,
1642 			int end, int size, void *object)
1643 {
1644 	while (con->in_base_pos < end) {
1645 		int left = end - con->in_base_pos;
1646 		int have = size - left;
1647 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1648 		if (ret <= 0)
1649 			return ret;
1650 		con->in_base_pos += ret;
1651 	}
1652 	return 1;
1653 }
1654 
1655 
1656 /*
1657  * Read all or part of the connect-side handshake on a new connection
1658  */
1659 static int read_partial_banner(struct ceph_connection *con)
1660 {
1661 	int size;
1662 	int end;
1663 	int ret;
1664 
1665 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1666 
1667 	/* peer's banner */
1668 	size = strlen(CEPH_BANNER);
1669 	end = size;
1670 	ret = read_partial(con, end, size, con->in_banner);
1671 	if (ret <= 0)
1672 		goto out;
1673 
1674 	size = sizeof (con->actual_peer_addr);
1675 	end += size;
1676 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1677 	if (ret <= 0)
1678 		goto out;
1679 
1680 	size = sizeof (con->peer_addr_for_me);
1681 	end += size;
1682 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1683 	if (ret <= 0)
1684 		goto out;
1685 
1686 out:
1687 	return ret;
1688 }
1689 
1690 static int read_partial_connect(struct ceph_connection *con)
1691 {
1692 	int size;
1693 	int end;
1694 	int ret;
1695 
1696 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1697 
1698 	size = sizeof (con->in_reply);
1699 	end = size;
1700 	ret = read_partial(con, end, size, &con->in_reply);
1701 	if (ret <= 0)
1702 		goto out;
1703 
1704 	size = le32_to_cpu(con->in_reply.authorizer_len);
1705 	end += size;
1706 	ret = read_partial(con, end, size, con->auth_reply_buf);
1707 	if (ret <= 0)
1708 		goto out;
1709 
1710 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1711 	     con, (int)con->in_reply.tag,
1712 	     le32_to_cpu(con->in_reply.connect_seq),
1713 	     le32_to_cpu(con->in_reply.global_seq));
1714 out:
1715 	return ret;
1716 
1717 }
1718 
1719 /*
1720  * Verify the hello banner looks okay.
1721  */
1722 static int verify_hello(struct ceph_connection *con)
1723 {
1724 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1725 		pr_err("connect to %s got bad banner\n",
1726 		       ceph_pr_addr(&con->peer_addr.in_addr));
1727 		con->error_msg = "protocol error, bad banner";
1728 		return -1;
1729 	}
1730 	return 0;
1731 }
1732 
1733 static bool addr_is_blank(struct sockaddr_storage *ss)
1734 {
1735 	switch (ss->ss_family) {
1736 	case AF_INET:
1737 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1738 	case AF_INET6:
1739 		return
1740 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1741 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1742 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1743 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1744 	}
1745 	return false;
1746 }
1747 
1748 static int addr_port(struct sockaddr_storage *ss)
1749 {
1750 	switch (ss->ss_family) {
1751 	case AF_INET:
1752 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1753 	case AF_INET6:
1754 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1755 	}
1756 	return 0;
1757 }
1758 
1759 static void addr_set_port(struct sockaddr_storage *ss, int p)
1760 {
1761 	switch (ss->ss_family) {
1762 	case AF_INET:
1763 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1764 		break;
1765 	case AF_INET6:
1766 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1767 		break;
1768 	}
1769 }
1770 
1771 /*
1772  * Unlike other *_pton function semantics, zero indicates success.
1773  */
1774 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1775 		char delim, const char **ipend)
1776 {
1777 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1778 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1779 
1780 	memset(ss, 0, sizeof(*ss));
1781 
1782 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1783 		ss->ss_family = AF_INET;
1784 		return 0;
1785 	}
1786 
1787 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1788 		ss->ss_family = AF_INET6;
1789 		return 0;
1790 	}
1791 
1792 	return -EINVAL;
1793 }
1794 
1795 /*
1796  * Extract hostname string and resolve using kernel DNS facility.
1797  */
1798 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1799 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1800 		struct sockaddr_storage *ss, char delim, const char **ipend)
1801 {
1802 	const char *end, *delim_p;
1803 	char *colon_p, *ip_addr = NULL;
1804 	int ip_len, ret;
1805 
1806 	/*
1807 	 * The end of the hostname occurs immediately preceding the delimiter or
1808 	 * the port marker (':') where the delimiter takes precedence.
1809 	 */
1810 	delim_p = memchr(name, delim, namelen);
1811 	colon_p = memchr(name, ':', namelen);
1812 
1813 	if (delim_p && colon_p)
1814 		end = delim_p < colon_p ? delim_p : colon_p;
1815 	else if (!delim_p && colon_p)
1816 		end = colon_p;
1817 	else {
1818 		end = delim_p;
1819 		if (!end) /* case: hostname:/ */
1820 			end = name + namelen;
1821 	}
1822 
1823 	if (end <= name)
1824 		return -EINVAL;
1825 
1826 	/* do dns_resolve upcall */
1827 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1828 	if (ip_len > 0)
1829 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1830 	else
1831 		ret = -ESRCH;
1832 
1833 	kfree(ip_addr);
1834 
1835 	*ipend = end;
1836 
1837 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1838 			ret, ret ? "failed" : ceph_pr_addr(ss));
1839 
1840 	return ret;
1841 }
1842 #else
1843 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1844 		struct sockaddr_storage *ss, char delim, const char **ipend)
1845 {
1846 	return -EINVAL;
1847 }
1848 #endif
1849 
1850 /*
1851  * Parse a server name (IP or hostname). If a valid IP address is not found
1852  * then try to extract a hostname to resolve using userspace DNS upcall.
1853  */
1854 static int ceph_parse_server_name(const char *name, size_t namelen,
1855 			struct sockaddr_storage *ss, char delim, const char **ipend)
1856 {
1857 	int ret;
1858 
1859 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1860 	if (ret)
1861 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1862 
1863 	return ret;
1864 }
1865 
1866 /*
1867  * Parse an ip[:port] list into an addr array.  Use the default
1868  * monitor port if a port isn't specified.
1869  */
1870 int ceph_parse_ips(const char *c, const char *end,
1871 		   struct ceph_entity_addr *addr,
1872 		   int max_count, int *count)
1873 {
1874 	int i, ret = -EINVAL;
1875 	const char *p = c;
1876 
1877 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1878 	for (i = 0; i < max_count; i++) {
1879 		const char *ipend;
1880 		struct sockaddr_storage *ss = &addr[i].in_addr;
1881 		int port;
1882 		char delim = ',';
1883 
1884 		if (*p == '[') {
1885 			delim = ']';
1886 			p++;
1887 		}
1888 
1889 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1890 		if (ret)
1891 			goto bad;
1892 		ret = -EINVAL;
1893 
1894 		p = ipend;
1895 
1896 		if (delim == ']') {
1897 			if (*p != ']') {
1898 				dout("missing matching ']'\n");
1899 				goto bad;
1900 			}
1901 			p++;
1902 		}
1903 
1904 		/* port? */
1905 		if (p < end && *p == ':') {
1906 			port = 0;
1907 			p++;
1908 			while (p < end && *p >= '0' && *p <= '9') {
1909 				port = (port * 10) + (*p - '0');
1910 				p++;
1911 			}
1912 			if (port == 0)
1913 				port = CEPH_MON_PORT;
1914 			else if (port > 65535)
1915 				goto bad;
1916 		} else {
1917 			port = CEPH_MON_PORT;
1918 		}
1919 
1920 		addr_set_port(ss, port);
1921 
1922 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1923 
1924 		if (p == end)
1925 			break;
1926 		if (*p != ',')
1927 			goto bad;
1928 		p++;
1929 	}
1930 
1931 	if (p != end)
1932 		goto bad;
1933 
1934 	if (count)
1935 		*count = i + 1;
1936 	return 0;
1937 
1938 bad:
1939 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1940 	return ret;
1941 }
1942 EXPORT_SYMBOL(ceph_parse_ips);
1943 
1944 static int process_banner(struct ceph_connection *con)
1945 {
1946 	dout("process_banner on %p\n", con);
1947 
1948 	if (verify_hello(con) < 0)
1949 		return -1;
1950 
1951 	ceph_decode_addr(&con->actual_peer_addr);
1952 	ceph_decode_addr(&con->peer_addr_for_me);
1953 
1954 	/*
1955 	 * Make sure the other end is who we wanted.  note that the other
1956 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1957 	 * them the benefit of the doubt.
1958 	 */
1959 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1960 		   sizeof(con->peer_addr)) != 0 &&
1961 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1962 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1963 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1964 			ceph_pr_addr(&con->peer_addr.in_addr),
1965 			(int)le32_to_cpu(con->peer_addr.nonce),
1966 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1967 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1968 		con->error_msg = "wrong peer at address";
1969 		return -1;
1970 	}
1971 
1972 	/*
1973 	 * did we learn our address?
1974 	 */
1975 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1976 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1977 
1978 		memcpy(&con->msgr->inst.addr.in_addr,
1979 		       &con->peer_addr_for_me.in_addr,
1980 		       sizeof(con->peer_addr_for_me.in_addr));
1981 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1982 		encode_my_addr(con->msgr);
1983 		dout("process_banner learned my addr is %s\n",
1984 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static int process_connect(struct ceph_connection *con)
1991 {
1992 	u64 sup_feat = con->msgr->supported_features;
1993 	u64 req_feat = con->msgr->required_features;
1994 	u64 server_feat = ceph_sanitize_features(
1995 				le64_to_cpu(con->in_reply.features));
1996 	int ret;
1997 
1998 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1999 
2000 	switch (con->in_reply.tag) {
2001 	case CEPH_MSGR_TAG_FEATURES:
2002 		pr_err("%s%lld %s feature set mismatch,"
2003 		       " my %llx < server's %llx, missing %llx\n",
2004 		       ENTITY_NAME(con->peer_name),
2005 		       ceph_pr_addr(&con->peer_addr.in_addr),
2006 		       sup_feat, server_feat, server_feat & ~sup_feat);
2007 		con->error_msg = "missing required protocol features";
2008 		reset_connection(con);
2009 		return -1;
2010 
2011 	case CEPH_MSGR_TAG_BADPROTOVER:
2012 		pr_err("%s%lld %s protocol version mismatch,"
2013 		       " my %d != server's %d\n",
2014 		       ENTITY_NAME(con->peer_name),
2015 		       ceph_pr_addr(&con->peer_addr.in_addr),
2016 		       le32_to_cpu(con->out_connect.protocol_version),
2017 		       le32_to_cpu(con->in_reply.protocol_version));
2018 		con->error_msg = "protocol version mismatch";
2019 		reset_connection(con);
2020 		return -1;
2021 
2022 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2023 		con->auth_retry++;
2024 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2025 		     con->auth_retry);
2026 		if (con->auth_retry == 2) {
2027 			con->error_msg = "connect authorization failure";
2028 			return -1;
2029 		}
2030 		con_out_kvec_reset(con);
2031 		ret = prepare_write_connect(con);
2032 		if (ret < 0)
2033 			return ret;
2034 		prepare_read_connect(con);
2035 		break;
2036 
2037 	case CEPH_MSGR_TAG_RESETSESSION:
2038 		/*
2039 		 * If we connected with a large connect_seq but the peer
2040 		 * has no record of a session with us (no connection, or
2041 		 * connect_seq == 0), they will send RESETSESION to indicate
2042 		 * that they must have reset their session, and may have
2043 		 * dropped messages.
2044 		 */
2045 		dout("process_connect got RESET peer seq %u\n",
2046 		     le32_to_cpu(con->in_reply.connect_seq));
2047 		pr_err("%s%lld %s connection reset\n",
2048 		       ENTITY_NAME(con->peer_name),
2049 		       ceph_pr_addr(&con->peer_addr.in_addr));
2050 		reset_connection(con);
2051 		con_out_kvec_reset(con);
2052 		ret = prepare_write_connect(con);
2053 		if (ret < 0)
2054 			return ret;
2055 		prepare_read_connect(con);
2056 
2057 		/* Tell ceph about it. */
2058 		mutex_unlock(&con->mutex);
2059 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2060 		if (con->ops->peer_reset)
2061 			con->ops->peer_reset(con);
2062 		mutex_lock(&con->mutex);
2063 		if (con->state != CON_STATE_NEGOTIATING)
2064 			return -EAGAIN;
2065 		break;
2066 
2067 	case CEPH_MSGR_TAG_RETRY_SESSION:
2068 		/*
2069 		 * If we sent a smaller connect_seq than the peer has, try
2070 		 * again with a larger value.
2071 		 */
2072 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2073 		     le32_to_cpu(con->out_connect.connect_seq),
2074 		     le32_to_cpu(con->in_reply.connect_seq));
2075 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2076 		con_out_kvec_reset(con);
2077 		ret = prepare_write_connect(con);
2078 		if (ret < 0)
2079 			return ret;
2080 		prepare_read_connect(con);
2081 		break;
2082 
2083 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2084 		/*
2085 		 * If we sent a smaller global_seq than the peer has, try
2086 		 * again with a larger value.
2087 		 */
2088 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2089 		     con->peer_global_seq,
2090 		     le32_to_cpu(con->in_reply.global_seq));
2091 		get_global_seq(con->msgr,
2092 			       le32_to_cpu(con->in_reply.global_seq));
2093 		con_out_kvec_reset(con);
2094 		ret = prepare_write_connect(con);
2095 		if (ret < 0)
2096 			return ret;
2097 		prepare_read_connect(con);
2098 		break;
2099 
2100 	case CEPH_MSGR_TAG_SEQ:
2101 	case CEPH_MSGR_TAG_READY:
2102 		if (req_feat & ~server_feat) {
2103 			pr_err("%s%lld %s protocol feature mismatch,"
2104 			       " my required %llx > server's %llx, need %llx\n",
2105 			       ENTITY_NAME(con->peer_name),
2106 			       ceph_pr_addr(&con->peer_addr.in_addr),
2107 			       req_feat, server_feat, req_feat & ~server_feat);
2108 			con->error_msg = "missing required protocol features";
2109 			reset_connection(con);
2110 			return -1;
2111 		}
2112 
2113 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2114 		con->state = CON_STATE_OPEN;
2115 		con->auth_retry = 0;    /* we authenticated; clear flag */
2116 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2117 		con->connect_seq++;
2118 		con->peer_features = server_feat;
2119 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2120 		     con->peer_global_seq,
2121 		     le32_to_cpu(con->in_reply.connect_seq),
2122 		     con->connect_seq);
2123 		WARN_ON(con->connect_seq !=
2124 			le32_to_cpu(con->in_reply.connect_seq));
2125 
2126 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2127 			con_flag_set(con, CON_FLAG_LOSSYTX);
2128 
2129 		con->delay = 0;      /* reset backoff memory */
2130 
2131 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2132 			prepare_write_seq(con);
2133 			prepare_read_seq(con);
2134 		} else {
2135 			prepare_read_tag(con);
2136 		}
2137 		break;
2138 
2139 	case CEPH_MSGR_TAG_WAIT:
2140 		/*
2141 		 * If there is a connection race (we are opening
2142 		 * connections to each other), one of us may just have
2143 		 * to WAIT.  This shouldn't happen if we are the
2144 		 * client.
2145 		 */
2146 		con->error_msg = "protocol error, got WAIT as client";
2147 		return -1;
2148 
2149 	default:
2150 		con->error_msg = "protocol error, garbage tag during connect";
2151 		return -1;
2152 	}
2153 	return 0;
2154 }
2155 
2156 
2157 /*
2158  * read (part of) an ack
2159  */
2160 static int read_partial_ack(struct ceph_connection *con)
2161 {
2162 	int size = sizeof (con->in_temp_ack);
2163 	int end = size;
2164 
2165 	return read_partial(con, end, size, &con->in_temp_ack);
2166 }
2167 
2168 /*
2169  * We can finally discard anything that's been acked.
2170  */
2171 static void process_ack(struct ceph_connection *con)
2172 {
2173 	struct ceph_msg *m;
2174 	u64 ack = le64_to_cpu(con->in_temp_ack);
2175 	u64 seq;
2176 
2177 	while (!list_empty(&con->out_sent)) {
2178 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2179 				     list_head);
2180 		seq = le64_to_cpu(m->hdr.seq);
2181 		if (seq > ack)
2182 			break;
2183 		dout("got ack for seq %llu type %d at %p\n", seq,
2184 		     le16_to_cpu(m->hdr.type), m);
2185 		m->ack_stamp = jiffies;
2186 		ceph_msg_remove(m);
2187 	}
2188 	prepare_read_tag(con);
2189 }
2190 
2191 
2192 static int read_partial_message_section(struct ceph_connection *con,
2193 					struct kvec *section,
2194 					unsigned int sec_len, u32 *crc)
2195 {
2196 	int ret, left;
2197 
2198 	BUG_ON(!section);
2199 
2200 	while (section->iov_len < sec_len) {
2201 		BUG_ON(section->iov_base == NULL);
2202 		left = sec_len - section->iov_len;
2203 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2204 				       section->iov_len, left);
2205 		if (ret <= 0)
2206 			return ret;
2207 		section->iov_len += ret;
2208 	}
2209 	if (section->iov_len == sec_len)
2210 		*crc = crc32c(0, section->iov_base, section->iov_len);
2211 
2212 	return 1;
2213 }
2214 
2215 static int read_partial_msg_data(struct ceph_connection *con)
2216 {
2217 	struct ceph_msg *msg = con->in_msg;
2218 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2219 	const bool do_datacrc = !con->msgr->nocrc;
2220 	struct page *page;
2221 	size_t page_offset;
2222 	size_t length;
2223 	u32 crc = 0;
2224 	int ret;
2225 
2226 	BUG_ON(!msg);
2227 	if (list_empty(&msg->data))
2228 		return -EIO;
2229 
2230 	if (do_datacrc)
2231 		crc = con->in_data_crc;
2232 	while (cursor->resid) {
2233 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2234 							NULL);
2235 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2236 		if (ret <= 0) {
2237 			if (do_datacrc)
2238 				con->in_data_crc = crc;
2239 
2240 			return ret;
2241 		}
2242 
2243 		if (do_datacrc)
2244 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2245 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2246 	}
2247 	if (do_datacrc)
2248 		con->in_data_crc = crc;
2249 
2250 	return 1;	/* must return > 0 to indicate success */
2251 }
2252 
2253 /*
2254  * read (part of) a message.
2255  */
2256 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2257 
2258 static int read_partial_message(struct ceph_connection *con)
2259 {
2260 	struct ceph_msg *m = con->in_msg;
2261 	int size;
2262 	int end;
2263 	int ret;
2264 	unsigned int front_len, middle_len, data_len;
2265 	bool do_datacrc = !con->msgr->nocrc;
2266 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2267 	u64 seq;
2268 	u32 crc;
2269 
2270 	dout("read_partial_message con %p msg %p\n", con, m);
2271 
2272 	/* header */
2273 	size = sizeof (con->in_hdr);
2274 	end = size;
2275 	ret = read_partial(con, end, size, &con->in_hdr);
2276 	if (ret <= 0)
2277 		return ret;
2278 
2279 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2280 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2281 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2282 		       crc, con->in_hdr.crc);
2283 		return -EBADMSG;
2284 	}
2285 
2286 	front_len = le32_to_cpu(con->in_hdr.front_len);
2287 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2288 		return -EIO;
2289 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2290 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2291 		return -EIO;
2292 	data_len = le32_to_cpu(con->in_hdr.data_len);
2293 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2294 		return -EIO;
2295 
2296 	/* verify seq# */
2297 	seq = le64_to_cpu(con->in_hdr.seq);
2298 	if ((s64)seq - (s64)con->in_seq < 1) {
2299 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2300 			ENTITY_NAME(con->peer_name),
2301 			ceph_pr_addr(&con->peer_addr.in_addr),
2302 			seq, con->in_seq + 1);
2303 		con->in_base_pos = -front_len - middle_len - data_len -
2304 			sizeof(m->footer);
2305 		con->in_tag = CEPH_MSGR_TAG_READY;
2306 		return 0;
2307 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2308 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2309 		       seq, con->in_seq + 1);
2310 		con->error_msg = "bad message sequence # for incoming message";
2311 		return -EBADE;
2312 	}
2313 
2314 	/* allocate message? */
2315 	if (!con->in_msg) {
2316 		int skip = 0;
2317 
2318 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2319 		     front_len, data_len);
2320 		ret = ceph_con_in_msg_alloc(con, &skip);
2321 		if (ret < 0)
2322 			return ret;
2323 
2324 		BUG_ON(!con->in_msg ^ skip);
2325 		if (con->in_msg && data_len > con->in_msg->data_length) {
2326 			pr_warn("%s skipping long message (%u > %zd)\n",
2327 				__func__, data_len, con->in_msg->data_length);
2328 			ceph_msg_put(con->in_msg);
2329 			con->in_msg = NULL;
2330 			skip = 1;
2331 		}
2332 		if (skip) {
2333 			/* skip this message */
2334 			dout("alloc_msg said skip message\n");
2335 			con->in_base_pos = -front_len - middle_len - data_len -
2336 				sizeof(m->footer);
2337 			con->in_tag = CEPH_MSGR_TAG_READY;
2338 			con->in_seq++;
2339 			return 0;
2340 		}
2341 
2342 		BUG_ON(!con->in_msg);
2343 		BUG_ON(con->in_msg->con != con);
2344 		m = con->in_msg;
2345 		m->front.iov_len = 0;    /* haven't read it yet */
2346 		if (m->middle)
2347 			m->middle->vec.iov_len = 0;
2348 
2349 		/* prepare for data payload, if any */
2350 
2351 		if (data_len)
2352 			prepare_message_data(con->in_msg, data_len);
2353 	}
2354 
2355 	/* front */
2356 	ret = read_partial_message_section(con, &m->front, front_len,
2357 					   &con->in_front_crc);
2358 	if (ret <= 0)
2359 		return ret;
2360 
2361 	/* middle */
2362 	if (m->middle) {
2363 		ret = read_partial_message_section(con, &m->middle->vec,
2364 						   middle_len,
2365 						   &con->in_middle_crc);
2366 		if (ret <= 0)
2367 			return ret;
2368 	}
2369 
2370 	/* (page) data */
2371 	if (data_len) {
2372 		ret = read_partial_msg_data(con);
2373 		if (ret <= 0)
2374 			return ret;
2375 	}
2376 
2377 	/* footer */
2378 	if (need_sign)
2379 		size = sizeof(m->footer);
2380 	else
2381 		size = sizeof(m->old_footer);
2382 
2383 	end += size;
2384 	ret = read_partial(con, end, size, &m->footer);
2385 	if (ret <= 0)
2386 		return ret;
2387 
2388 	if (!need_sign) {
2389 		m->footer.flags = m->old_footer.flags;
2390 		m->footer.sig = 0;
2391 	}
2392 
2393 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2394 	     m, front_len, m->footer.front_crc, middle_len,
2395 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2396 
2397 	/* crc ok? */
2398 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2399 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2400 		       m, con->in_front_crc, m->footer.front_crc);
2401 		return -EBADMSG;
2402 	}
2403 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2404 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2405 		       m, con->in_middle_crc, m->footer.middle_crc);
2406 		return -EBADMSG;
2407 	}
2408 	if (do_datacrc &&
2409 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2410 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2411 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2412 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2413 		return -EBADMSG;
2414 	}
2415 
2416 	if (need_sign && con->ops->check_message_signature &&
2417 	    con->ops->check_message_signature(con, m)) {
2418 		pr_err("read_partial_message %p signature check failed\n", m);
2419 		return -EBADMSG;
2420 	}
2421 
2422 	return 1; /* done! */
2423 }
2424 
2425 /*
2426  * Process message.  This happens in the worker thread.  The callback should
2427  * be careful not to do anything that waits on other incoming messages or it
2428  * may deadlock.
2429  */
2430 static void process_message(struct ceph_connection *con)
2431 {
2432 	struct ceph_msg *msg;
2433 
2434 	BUG_ON(con->in_msg->con != con);
2435 	con->in_msg->con = NULL;
2436 	msg = con->in_msg;
2437 	con->in_msg = NULL;
2438 	con->ops->put(con);
2439 
2440 	/* if first message, set peer_name */
2441 	if (con->peer_name.type == 0)
2442 		con->peer_name = msg->hdr.src;
2443 
2444 	con->in_seq++;
2445 	mutex_unlock(&con->mutex);
2446 
2447 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2448 	     msg, le64_to_cpu(msg->hdr.seq),
2449 	     ENTITY_NAME(msg->hdr.src),
2450 	     le16_to_cpu(msg->hdr.type),
2451 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2452 	     le32_to_cpu(msg->hdr.front_len),
2453 	     le32_to_cpu(msg->hdr.data_len),
2454 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2455 	con->ops->dispatch(con, msg);
2456 
2457 	mutex_lock(&con->mutex);
2458 }
2459 
2460 
2461 /*
2462  * Write something to the socket.  Called in a worker thread when the
2463  * socket appears to be writeable and we have something ready to send.
2464  */
2465 static int try_write(struct ceph_connection *con)
2466 {
2467 	int ret = 1;
2468 
2469 	dout("try_write start %p state %lu\n", con, con->state);
2470 
2471 more:
2472 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2473 
2474 	/* open the socket first? */
2475 	if (con->state == CON_STATE_PREOPEN) {
2476 		BUG_ON(con->sock);
2477 		con->state = CON_STATE_CONNECTING;
2478 
2479 		con_out_kvec_reset(con);
2480 		prepare_write_banner(con);
2481 		prepare_read_banner(con);
2482 
2483 		BUG_ON(con->in_msg);
2484 		con->in_tag = CEPH_MSGR_TAG_READY;
2485 		dout("try_write initiating connect on %p new state %lu\n",
2486 		     con, con->state);
2487 		ret = ceph_tcp_connect(con);
2488 		if (ret < 0) {
2489 			con->error_msg = "connect error";
2490 			goto out;
2491 		}
2492 	}
2493 
2494 more_kvec:
2495 	/* kvec data queued? */
2496 	if (con->out_skip) {
2497 		ret = write_partial_skip(con);
2498 		if (ret <= 0)
2499 			goto out;
2500 	}
2501 	if (con->out_kvec_left) {
2502 		ret = write_partial_kvec(con);
2503 		if (ret <= 0)
2504 			goto out;
2505 	}
2506 
2507 	/* msg pages? */
2508 	if (con->out_msg) {
2509 		if (con->out_msg_done) {
2510 			ceph_msg_put(con->out_msg);
2511 			con->out_msg = NULL;   /* we're done with this one */
2512 			goto do_next;
2513 		}
2514 
2515 		ret = write_partial_message_data(con);
2516 		if (ret == 1)
2517 			goto more_kvec;  /* we need to send the footer, too! */
2518 		if (ret == 0)
2519 			goto out;
2520 		if (ret < 0) {
2521 			dout("try_write write_partial_message_data err %d\n",
2522 			     ret);
2523 			goto out;
2524 		}
2525 	}
2526 
2527 do_next:
2528 	if (con->state == CON_STATE_OPEN) {
2529 		/* is anything else pending? */
2530 		if (!list_empty(&con->out_queue)) {
2531 			prepare_write_message(con);
2532 			goto more;
2533 		}
2534 		if (con->in_seq > con->in_seq_acked) {
2535 			prepare_write_ack(con);
2536 			goto more;
2537 		}
2538 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2539 			prepare_write_keepalive(con);
2540 			goto more;
2541 		}
2542 	}
2543 
2544 	/* Nothing to do! */
2545 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2546 	dout("try_write nothing else to write.\n");
2547 	ret = 0;
2548 out:
2549 	dout("try_write done on %p ret %d\n", con, ret);
2550 	return ret;
2551 }
2552 
2553 
2554 
2555 /*
2556  * Read what we can from the socket.
2557  */
2558 static int try_read(struct ceph_connection *con)
2559 {
2560 	int ret = -1;
2561 
2562 more:
2563 	dout("try_read start on %p state %lu\n", con, con->state);
2564 	if (con->state != CON_STATE_CONNECTING &&
2565 	    con->state != CON_STATE_NEGOTIATING &&
2566 	    con->state != CON_STATE_OPEN)
2567 		return 0;
2568 
2569 	BUG_ON(!con->sock);
2570 
2571 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2572 	     con->in_base_pos);
2573 
2574 	if (con->state == CON_STATE_CONNECTING) {
2575 		dout("try_read connecting\n");
2576 		ret = read_partial_banner(con);
2577 		if (ret <= 0)
2578 			goto out;
2579 		ret = process_banner(con);
2580 		if (ret < 0)
2581 			goto out;
2582 
2583 		con->state = CON_STATE_NEGOTIATING;
2584 
2585 		/*
2586 		 * Received banner is good, exchange connection info.
2587 		 * Do not reset out_kvec, as sending our banner raced
2588 		 * with receiving peer banner after connect completed.
2589 		 */
2590 		ret = prepare_write_connect(con);
2591 		if (ret < 0)
2592 			goto out;
2593 		prepare_read_connect(con);
2594 
2595 		/* Send connection info before awaiting response */
2596 		goto out;
2597 	}
2598 
2599 	if (con->state == CON_STATE_NEGOTIATING) {
2600 		dout("try_read negotiating\n");
2601 		ret = read_partial_connect(con);
2602 		if (ret <= 0)
2603 			goto out;
2604 		ret = process_connect(con);
2605 		if (ret < 0)
2606 			goto out;
2607 		goto more;
2608 	}
2609 
2610 	WARN_ON(con->state != CON_STATE_OPEN);
2611 
2612 	if (con->in_base_pos < 0) {
2613 		/*
2614 		 * skipping + discarding content.
2615 		 *
2616 		 * FIXME: there must be a better way to do this!
2617 		 */
2618 		static char buf[SKIP_BUF_SIZE];
2619 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2620 
2621 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2622 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2623 		if (ret <= 0)
2624 			goto out;
2625 		con->in_base_pos += ret;
2626 		if (con->in_base_pos)
2627 			goto more;
2628 	}
2629 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2630 		/*
2631 		 * what's next?
2632 		 */
2633 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2634 		if (ret <= 0)
2635 			goto out;
2636 		dout("try_read got tag %d\n", (int)con->in_tag);
2637 		switch (con->in_tag) {
2638 		case CEPH_MSGR_TAG_MSG:
2639 			prepare_read_message(con);
2640 			break;
2641 		case CEPH_MSGR_TAG_ACK:
2642 			prepare_read_ack(con);
2643 			break;
2644 		case CEPH_MSGR_TAG_CLOSE:
2645 			con_close_socket(con);
2646 			con->state = CON_STATE_CLOSED;
2647 			goto out;
2648 		default:
2649 			goto bad_tag;
2650 		}
2651 	}
2652 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2653 		ret = read_partial_message(con);
2654 		if (ret <= 0) {
2655 			switch (ret) {
2656 			case -EBADMSG:
2657 				con->error_msg = "bad crc";
2658 				/* fall through */
2659 			case -EBADE:
2660 				ret = -EIO;
2661 				break;
2662 			case -EIO:
2663 				con->error_msg = "io error";
2664 				break;
2665 			}
2666 			goto out;
2667 		}
2668 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2669 			goto more;
2670 		process_message(con);
2671 		if (con->state == CON_STATE_OPEN)
2672 			prepare_read_tag(con);
2673 		goto more;
2674 	}
2675 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2676 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2677 		/*
2678 		 * the final handshake seq exchange is semantically
2679 		 * equivalent to an ACK
2680 		 */
2681 		ret = read_partial_ack(con);
2682 		if (ret <= 0)
2683 			goto out;
2684 		process_ack(con);
2685 		goto more;
2686 	}
2687 
2688 out:
2689 	dout("try_read done on %p ret %d\n", con, ret);
2690 	return ret;
2691 
2692 bad_tag:
2693 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2694 	con->error_msg = "protocol error, garbage tag";
2695 	ret = -1;
2696 	goto out;
2697 }
2698 
2699 
2700 /*
2701  * Atomically queue work on a connection after the specified delay.
2702  * Bump @con reference to avoid races with connection teardown.
2703  * Returns 0 if work was queued, or an error code otherwise.
2704  */
2705 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2706 {
2707 	if (!con->ops->get(con)) {
2708 		dout("%s %p ref count 0\n", __func__, con);
2709 		return -ENOENT;
2710 	}
2711 
2712 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2713 		dout("%s %p - already queued\n", __func__, con);
2714 		con->ops->put(con);
2715 		return -EBUSY;
2716 	}
2717 
2718 	dout("%s %p %lu\n", __func__, con, delay);
2719 	return 0;
2720 }
2721 
2722 static void queue_con(struct ceph_connection *con)
2723 {
2724 	(void) queue_con_delay(con, 0);
2725 }
2726 
2727 static void cancel_con(struct ceph_connection *con)
2728 {
2729 	if (cancel_delayed_work(&con->work)) {
2730 		dout("%s %p\n", __func__, con);
2731 		con->ops->put(con);
2732 	}
2733 }
2734 
2735 static bool con_sock_closed(struct ceph_connection *con)
2736 {
2737 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2738 		return false;
2739 
2740 #define CASE(x)								\
2741 	case CON_STATE_ ## x:						\
2742 		con->error_msg = "socket closed (con state " #x ")";	\
2743 		break;
2744 
2745 	switch (con->state) {
2746 	CASE(CLOSED);
2747 	CASE(PREOPEN);
2748 	CASE(CONNECTING);
2749 	CASE(NEGOTIATING);
2750 	CASE(OPEN);
2751 	CASE(STANDBY);
2752 	default:
2753 		pr_warn("%s con %p unrecognized state %lu\n",
2754 			__func__, con, con->state);
2755 		con->error_msg = "unrecognized con state";
2756 		BUG();
2757 		break;
2758 	}
2759 #undef CASE
2760 
2761 	return true;
2762 }
2763 
2764 static bool con_backoff(struct ceph_connection *con)
2765 {
2766 	int ret;
2767 
2768 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2769 		return false;
2770 
2771 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2772 	if (ret) {
2773 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2774 			con, con->delay);
2775 		BUG_ON(ret == -ENOENT);
2776 		con_flag_set(con, CON_FLAG_BACKOFF);
2777 	}
2778 
2779 	return true;
2780 }
2781 
2782 /* Finish fault handling; con->mutex must *not* be held here */
2783 
2784 static void con_fault_finish(struct ceph_connection *con)
2785 {
2786 	/*
2787 	 * in case we faulted due to authentication, invalidate our
2788 	 * current tickets so that we can get new ones.
2789 	 */
2790 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2791 		dout("calling invalidate_authorizer()\n");
2792 		con->ops->invalidate_authorizer(con);
2793 	}
2794 
2795 	if (con->ops->fault)
2796 		con->ops->fault(con);
2797 }
2798 
2799 /*
2800  * Do some work on a connection.  Drop a connection ref when we're done.
2801  */
2802 static void con_work(struct work_struct *work)
2803 {
2804 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2805 						   work.work);
2806 	bool fault;
2807 
2808 	mutex_lock(&con->mutex);
2809 	while (true) {
2810 		int ret;
2811 
2812 		if ((fault = con_sock_closed(con))) {
2813 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2814 			break;
2815 		}
2816 		if (con_backoff(con)) {
2817 			dout("%s: con %p BACKOFF\n", __func__, con);
2818 			break;
2819 		}
2820 		if (con->state == CON_STATE_STANDBY) {
2821 			dout("%s: con %p STANDBY\n", __func__, con);
2822 			break;
2823 		}
2824 		if (con->state == CON_STATE_CLOSED) {
2825 			dout("%s: con %p CLOSED\n", __func__, con);
2826 			BUG_ON(con->sock);
2827 			break;
2828 		}
2829 		if (con->state == CON_STATE_PREOPEN) {
2830 			dout("%s: con %p PREOPEN\n", __func__, con);
2831 			BUG_ON(con->sock);
2832 		}
2833 
2834 		ret = try_read(con);
2835 		if (ret < 0) {
2836 			if (ret == -EAGAIN)
2837 				continue;
2838 			if (!con->error_msg)
2839 				con->error_msg = "socket error on read";
2840 			fault = true;
2841 			break;
2842 		}
2843 
2844 		ret = try_write(con);
2845 		if (ret < 0) {
2846 			if (ret == -EAGAIN)
2847 				continue;
2848 			if (!con->error_msg)
2849 				con->error_msg = "socket error on write";
2850 			fault = true;
2851 		}
2852 
2853 		break;	/* If we make it to here, we're done */
2854 	}
2855 	if (fault)
2856 		con_fault(con);
2857 	mutex_unlock(&con->mutex);
2858 
2859 	if (fault)
2860 		con_fault_finish(con);
2861 
2862 	con->ops->put(con);
2863 }
2864 
2865 /*
2866  * Generic error/fault handler.  A retry mechanism is used with
2867  * exponential backoff
2868  */
2869 static void con_fault(struct ceph_connection *con)
2870 {
2871 	dout("fault %p state %lu to peer %s\n",
2872 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2873 
2874 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2875 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2876 	con->error_msg = NULL;
2877 
2878 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2879 	       con->state != CON_STATE_NEGOTIATING &&
2880 	       con->state != CON_STATE_OPEN);
2881 
2882 	con_close_socket(con);
2883 
2884 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2885 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2886 		con->state = CON_STATE_CLOSED;
2887 		return;
2888 	}
2889 
2890 	if (con->in_msg) {
2891 		BUG_ON(con->in_msg->con != con);
2892 		con->in_msg->con = NULL;
2893 		ceph_msg_put(con->in_msg);
2894 		con->in_msg = NULL;
2895 		con->ops->put(con);
2896 	}
2897 
2898 	/* Requeue anything that hasn't been acked */
2899 	list_splice_init(&con->out_sent, &con->out_queue);
2900 
2901 	/* If there are no messages queued or keepalive pending, place
2902 	 * the connection in a STANDBY state */
2903 	if (list_empty(&con->out_queue) &&
2904 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2905 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2906 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2907 		con->state = CON_STATE_STANDBY;
2908 	} else {
2909 		/* retry after a delay. */
2910 		con->state = CON_STATE_PREOPEN;
2911 		if (con->delay == 0)
2912 			con->delay = BASE_DELAY_INTERVAL;
2913 		else if (con->delay < MAX_DELAY_INTERVAL)
2914 			con->delay *= 2;
2915 		con_flag_set(con, CON_FLAG_BACKOFF);
2916 		queue_con(con);
2917 	}
2918 }
2919 
2920 
2921 
2922 /*
2923  * initialize a new messenger instance
2924  */
2925 void ceph_messenger_init(struct ceph_messenger *msgr,
2926 			struct ceph_entity_addr *myaddr,
2927 			u64 supported_features,
2928 			u64 required_features,
2929 			bool nocrc,
2930 			bool tcp_nodelay)
2931 {
2932 	msgr->supported_features = supported_features;
2933 	msgr->required_features = required_features;
2934 
2935 	spin_lock_init(&msgr->global_seq_lock);
2936 
2937 	if (myaddr)
2938 		msgr->inst.addr = *myaddr;
2939 
2940 	/* select a random nonce */
2941 	msgr->inst.addr.type = 0;
2942 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2943 	encode_my_addr(msgr);
2944 	msgr->nocrc = nocrc;
2945 	msgr->tcp_nodelay = tcp_nodelay;
2946 
2947 	atomic_set(&msgr->stopping, 0);
2948 
2949 	dout("%s %p\n", __func__, msgr);
2950 }
2951 EXPORT_SYMBOL(ceph_messenger_init);
2952 
2953 static void clear_standby(struct ceph_connection *con)
2954 {
2955 	/* come back from STANDBY? */
2956 	if (con->state == CON_STATE_STANDBY) {
2957 		dout("clear_standby %p and ++connect_seq\n", con);
2958 		con->state = CON_STATE_PREOPEN;
2959 		con->connect_seq++;
2960 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2961 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2962 	}
2963 }
2964 
2965 /*
2966  * Queue up an outgoing message on the given connection.
2967  */
2968 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2969 {
2970 	/* set src+dst */
2971 	msg->hdr.src = con->msgr->inst.name;
2972 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2973 	msg->needs_out_seq = true;
2974 
2975 	mutex_lock(&con->mutex);
2976 
2977 	if (con->state == CON_STATE_CLOSED) {
2978 		dout("con_send %p closed, dropping %p\n", con, msg);
2979 		ceph_msg_put(msg);
2980 		mutex_unlock(&con->mutex);
2981 		return;
2982 	}
2983 
2984 	BUG_ON(msg->con != NULL);
2985 	msg->con = con->ops->get(con);
2986 	BUG_ON(msg->con == NULL);
2987 
2988 	BUG_ON(!list_empty(&msg->list_head));
2989 	list_add_tail(&msg->list_head, &con->out_queue);
2990 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2991 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2992 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2993 	     le32_to_cpu(msg->hdr.front_len),
2994 	     le32_to_cpu(msg->hdr.middle_len),
2995 	     le32_to_cpu(msg->hdr.data_len));
2996 
2997 	clear_standby(con);
2998 	mutex_unlock(&con->mutex);
2999 
3000 	/* if there wasn't anything waiting to send before, queue
3001 	 * new work */
3002 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3003 		queue_con(con);
3004 }
3005 EXPORT_SYMBOL(ceph_con_send);
3006 
3007 /*
3008  * Revoke a message that was previously queued for send
3009  */
3010 void ceph_msg_revoke(struct ceph_msg *msg)
3011 {
3012 	struct ceph_connection *con = msg->con;
3013 
3014 	if (!con)
3015 		return;		/* Message not in our possession */
3016 
3017 	mutex_lock(&con->mutex);
3018 	if (!list_empty(&msg->list_head)) {
3019 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3020 		list_del_init(&msg->list_head);
3021 		BUG_ON(msg->con == NULL);
3022 		msg->con->ops->put(msg->con);
3023 		msg->con = NULL;
3024 		msg->hdr.seq = 0;
3025 
3026 		ceph_msg_put(msg);
3027 	}
3028 	if (con->out_msg == msg) {
3029 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3030 		con->out_msg = NULL;
3031 		if (con->out_kvec_is_msg) {
3032 			con->out_skip = con->out_kvec_bytes;
3033 			con->out_kvec_is_msg = false;
3034 		}
3035 		msg->hdr.seq = 0;
3036 
3037 		ceph_msg_put(msg);
3038 	}
3039 	mutex_unlock(&con->mutex);
3040 }
3041 
3042 /*
3043  * Revoke a message that we may be reading data into
3044  */
3045 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3046 {
3047 	struct ceph_connection *con;
3048 
3049 	BUG_ON(msg == NULL);
3050 	if (!msg->con) {
3051 		dout("%s msg %p null con\n", __func__, msg);
3052 
3053 		return;		/* Message not in our possession */
3054 	}
3055 
3056 	con = msg->con;
3057 	mutex_lock(&con->mutex);
3058 	if (con->in_msg == msg) {
3059 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3060 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3061 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3062 
3063 		/* skip rest of message */
3064 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3065 		con->in_base_pos = con->in_base_pos -
3066 				sizeof(struct ceph_msg_header) -
3067 				front_len -
3068 				middle_len -
3069 				data_len -
3070 				sizeof(struct ceph_msg_footer);
3071 		ceph_msg_put(con->in_msg);
3072 		con->in_msg = NULL;
3073 		con->in_tag = CEPH_MSGR_TAG_READY;
3074 		con->in_seq++;
3075 	} else {
3076 		dout("%s %p in_msg %p msg %p no-op\n",
3077 		     __func__, con, con->in_msg, msg);
3078 	}
3079 	mutex_unlock(&con->mutex);
3080 }
3081 
3082 /*
3083  * Queue a keepalive byte to ensure the tcp connection is alive.
3084  */
3085 void ceph_con_keepalive(struct ceph_connection *con)
3086 {
3087 	dout("con_keepalive %p\n", con);
3088 	mutex_lock(&con->mutex);
3089 	clear_standby(con);
3090 	mutex_unlock(&con->mutex);
3091 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3092 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3093 		queue_con(con);
3094 }
3095 EXPORT_SYMBOL(ceph_con_keepalive);
3096 
3097 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3098 {
3099 	struct ceph_msg_data *data;
3100 
3101 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3102 		return NULL;
3103 
3104 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3105 	if (data)
3106 		data->type = type;
3107 	INIT_LIST_HEAD(&data->links);
3108 
3109 	return data;
3110 }
3111 
3112 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3113 {
3114 	if (!data)
3115 		return;
3116 
3117 	WARN_ON(!list_empty(&data->links));
3118 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3119 		ceph_pagelist_release(data->pagelist);
3120 	kmem_cache_free(ceph_msg_data_cache, data);
3121 }
3122 
3123 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3124 		size_t length, size_t alignment)
3125 {
3126 	struct ceph_msg_data *data;
3127 
3128 	BUG_ON(!pages);
3129 	BUG_ON(!length);
3130 
3131 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3132 	BUG_ON(!data);
3133 	data->pages = pages;
3134 	data->length = length;
3135 	data->alignment = alignment & ~PAGE_MASK;
3136 
3137 	list_add_tail(&data->links, &msg->data);
3138 	msg->data_length += length;
3139 }
3140 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3141 
3142 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3143 				struct ceph_pagelist *pagelist)
3144 {
3145 	struct ceph_msg_data *data;
3146 
3147 	BUG_ON(!pagelist);
3148 	BUG_ON(!pagelist->length);
3149 
3150 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3151 	BUG_ON(!data);
3152 	data->pagelist = pagelist;
3153 
3154 	list_add_tail(&data->links, &msg->data);
3155 	msg->data_length += pagelist->length;
3156 }
3157 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3158 
3159 #ifdef	CONFIG_BLOCK
3160 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3161 		size_t length)
3162 {
3163 	struct ceph_msg_data *data;
3164 
3165 	BUG_ON(!bio);
3166 
3167 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3168 	BUG_ON(!data);
3169 	data->bio = bio;
3170 	data->bio_length = length;
3171 
3172 	list_add_tail(&data->links, &msg->data);
3173 	msg->data_length += length;
3174 }
3175 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3176 #endif	/* CONFIG_BLOCK */
3177 
3178 /*
3179  * construct a new message with given type, size
3180  * the new msg has a ref count of 1.
3181  */
3182 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3183 			      bool can_fail)
3184 {
3185 	struct ceph_msg *m;
3186 
3187 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3188 	if (m == NULL)
3189 		goto out;
3190 
3191 	m->hdr.type = cpu_to_le16(type);
3192 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3193 	m->hdr.front_len = cpu_to_le32(front_len);
3194 
3195 	INIT_LIST_HEAD(&m->list_head);
3196 	kref_init(&m->kref);
3197 	INIT_LIST_HEAD(&m->data);
3198 
3199 	/* front */
3200 	if (front_len) {
3201 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3202 		if (m->front.iov_base == NULL) {
3203 			dout("ceph_msg_new can't allocate %d bytes\n",
3204 			     front_len);
3205 			goto out2;
3206 		}
3207 	} else {
3208 		m->front.iov_base = NULL;
3209 	}
3210 	m->front_alloc_len = m->front.iov_len = front_len;
3211 
3212 	dout("ceph_msg_new %p front %d\n", m, front_len);
3213 	return m;
3214 
3215 out2:
3216 	ceph_msg_put(m);
3217 out:
3218 	if (!can_fail) {
3219 		pr_err("msg_new can't create type %d front %d\n", type,
3220 		       front_len);
3221 		WARN_ON(1);
3222 	} else {
3223 		dout("msg_new can't create type %d front %d\n", type,
3224 		     front_len);
3225 	}
3226 	return NULL;
3227 }
3228 EXPORT_SYMBOL(ceph_msg_new);
3229 
3230 /*
3231  * Allocate "middle" portion of a message, if it is needed and wasn't
3232  * allocated by alloc_msg.  This allows us to read a small fixed-size
3233  * per-type header in the front and then gracefully fail (i.e.,
3234  * propagate the error to the caller based on info in the front) when
3235  * the middle is too large.
3236  */
3237 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3238 {
3239 	int type = le16_to_cpu(msg->hdr.type);
3240 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3241 
3242 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3243 	     ceph_msg_type_name(type), middle_len);
3244 	BUG_ON(!middle_len);
3245 	BUG_ON(msg->middle);
3246 
3247 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3248 	if (!msg->middle)
3249 		return -ENOMEM;
3250 	return 0;
3251 }
3252 
3253 /*
3254  * Allocate a message for receiving an incoming message on a
3255  * connection, and save the result in con->in_msg.  Uses the
3256  * connection's private alloc_msg op if available.
3257  *
3258  * Returns 0 on success, or a negative error code.
3259  *
3260  * On success, if we set *skip = 1:
3261  *  - the next message should be skipped and ignored.
3262  *  - con->in_msg == NULL
3263  * or if we set *skip = 0:
3264  *  - con->in_msg is non-null.
3265  * On error (ENOMEM, EAGAIN, ...),
3266  *  - con->in_msg == NULL
3267  */
3268 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3269 {
3270 	struct ceph_msg_header *hdr = &con->in_hdr;
3271 	int middle_len = le32_to_cpu(hdr->middle_len);
3272 	struct ceph_msg *msg;
3273 	int ret = 0;
3274 
3275 	BUG_ON(con->in_msg != NULL);
3276 	BUG_ON(!con->ops->alloc_msg);
3277 
3278 	mutex_unlock(&con->mutex);
3279 	msg = con->ops->alloc_msg(con, hdr, skip);
3280 	mutex_lock(&con->mutex);
3281 	if (con->state != CON_STATE_OPEN) {
3282 		if (msg)
3283 			ceph_msg_put(msg);
3284 		return -EAGAIN;
3285 	}
3286 	if (msg) {
3287 		BUG_ON(*skip);
3288 		con->in_msg = msg;
3289 		con->in_msg->con = con->ops->get(con);
3290 		BUG_ON(con->in_msg->con == NULL);
3291 	} else {
3292 		/*
3293 		 * Null message pointer means either we should skip
3294 		 * this message or we couldn't allocate memory.  The
3295 		 * former is not an error.
3296 		 */
3297 		if (*skip)
3298 			return 0;
3299 
3300 		con->error_msg = "error allocating memory for incoming message";
3301 		return -ENOMEM;
3302 	}
3303 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3304 
3305 	if (middle_len && !con->in_msg->middle) {
3306 		ret = ceph_alloc_middle(con, con->in_msg);
3307 		if (ret < 0) {
3308 			ceph_msg_put(con->in_msg);
3309 			con->in_msg = NULL;
3310 		}
3311 	}
3312 
3313 	return ret;
3314 }
3315 
3316 
3317 /*
3318  * Free a generically kmalloc'd message.
3319  */
3320 static void ceph_msg_free(struct ceph_msg *m)
3321 {
3322 	dout("%s %p\n", __func__, m);
3323 	kvfree(m->front.iov_base);
3324 	kmem_cache_free(ceph_msg_cache, m);
3325 }
3326 
3327 static void ceph_msg_release(struct kref *kref)
3328 {
3329 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3330 	LIST_HEAD(data);
3331 	struct list_head *links;
3332 	struct list_head *next;
3333 
3334 	dout("%s %p\n", __func__, m);
3335 	WARN_ON(!list_empty(&m->list_head));
3336 
3337 	/* drop middle, data, if any */
3338 	if (m->middle) {
3339 		ceph_buffer_put(m->middle);
3340 		m->middle = NULL;
3341 	}
3342 
3343 	list_splice_init(&m->data, &data);
3344 	list_for_each_safe(links, next, &data) {
3345 		struct ceph_msg_data *data;
3346 
3347 		data = list_entry(links, struct ceph_msg_data, links);
3348 		list_del_init(links);
3349 		ceph_msg_data_destroy(data);
3350 	}
3351 	m->data_length = 0;
3352 
3353 	if (m->pool)
3354 		ceph_msgpool_put(m->pool, m);
3355 	else
3356 		ceph_msg_free(m);
3357 }
3358 
3359 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3360 {
3361 	dout("%s %p (was %d)\n", __func__, msg,
3362 	     atomic_read(&msg->kref.refcount));
3363 	kref_get(&msg->kref);
3364 	return msg;
3365 }
3366 EXPORT_SYMBOL(ceph_msg_get);
3367 
3368 void ceph_msg_put(struct ceph_msg *msg)
3369 {
3370 	dout("%s %p (was %d)\n", __func__, msg,
3371 	     atomic_read(&msg->kref.refcount));
3372 	kref_put(&msg->kref, ceph_msg_release);
3373 }
3374 EXPORT_SYMBOL(ceph_msg_put);
3375 
3376 void ceph_msg_dump(struct ceph_msg *msg)
3377 {
3378 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3379 		 msg->front_alloc_len, msg->data_length);
3380 	print_hex_dump(KERN_DEBUG, "header: ",
3381 		       DUMP_PREFIX_OFFSET, 16, 1,
3382 		       &msg->hdr, sizeof(msg->hdr), true);
3383 	print_hex_dump(KERN_DEBUG, " front: ",
3384 		       DUMP_PREFIX_OFFSET, 16, 1,
3385 		       msg->front.iov_base, msg->front.iov_len, true);
3386 	if (msg->middle)
3387 		print_hex_dump(KERN_DEBUG, "middle: ",
3388 			       DUMP_PREFIX_OFFSET, 16, 1,
3389 			       msg->middle->vec.iov_base,
3390 			       msg->middle->vec.iov_len, true);
3391 	print_hex_dump(KERN_DEBUG, "footer: ",
3392 		       DUMP_PREFIX_OFFSET, 16, 1,
3393 		       &msg->footer, sizeof(msg->footer), true);
3394 }
3395 EXPORT_SYMBOL(ceph_msg_dump);
3396