1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/ceph_features.h> 19 #include <linux/ceph/libceph.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/export.h> 24 25 #define list_entry_next(pos, member) \ 26 list_entry(pos->member.next, typeof(*pos), member) 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void cancel_con(struct ceph_connection *con); 178 static void con_work(struct work_struct *); 179 static void con_fault(struct ceph_connection *con); 180 181 /* 182 * Nicely render a sockaddr as a string. An array of formatted 183 * strings is used, to approximate reentrancy. 184 */ 185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 189 190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 191 static atomic_t addr_str_seq = ATOMIC_INIT(0); 192 193 static struct page *zero_page; /* used in certain error cases */ 194 195 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 196 { 197 int i; 198 char *s; 199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 201 202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 203 s = addr_str[i]; 204 205 switch (ss->ss_family) { 206 case AF_INET: 207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 208 ntohs(in4->sin_port)); 209 break; 210 211 case AF_INET6: 212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 213 ntohs(in6->sin6_port)); 214 break; 215 216 default: 217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 218 ss->ss_family); 219 } 220 221 return s; 222 } 223 EXPORT_SYMBOL(ceph_pr_addr); 224 225 static void encode_my_addr(struct ceph_messenger *msgr) 226 { 227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 228 ceph_encode_addr(&msgr->my_enc_addr); 229 } 230 231 /* 232 * work queue for all reading and writing to/from the socket. 233 */ 234 static struct workqueue_struct *ceph_msgr_wq; 235 236 static int ceph_msgr_slab_init(void) 237 { 238 BUG_ON(ceph_msg_cache); 239 ceph_msg_cache = kmem_cache_create("ceph_msg", 240 sizeof (struct ceph_msg), 241 __alignof__(struct ceph_msg), 0, NULL); 242 243 if (!ceph_msg_cache) 244 return -ENOMEM; 245 246 BUG_ON(ceph_msg_data_cache); 247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 248 sizeof (struct ceph_msg_data), 249 __alignof__(struct ceph_msg_data), 250 0, NULL); 251 if (ceph_msg_data_cache) 252 return 0; 253 254 kmem_cache_destroy(ceph_msg_cache); 255 ceph_msg_cache = NULL; 256 257 return -ENOMEM; 258 } 259 260 static void ceph_msgr_slab_exit(void) 261 { 262 BUG_ON(!ceph_msg_data_cache); 263 kmem_cache_destroy(ceph_msg_data_cache); 264 ceph_msg_data_cache = NULL; 265 266 BUG_ON(!ceph_msg_cache); 267 kmem_cache_destroy(ceph_msg_cache); 268 ceph_msg_cache = NULL; 269 } 270 271 static void _ceph_msgr_exit(void) 272 { 273 if (ceph_msgr_wq) { 274 destroy_workqueue(ceph_msgr_wq); 275 ceph_msgr_wq = NULL; 276 } 277 278 ceph_msgr_slab_exit(); 279 280 BUG_ON(zero_page == NULL); 281 kunmap(zero_page); 282 page_cache_release(zero_page); 283 zero_page = NULL; 284 } 285 286 int ceph_msgr_init(void) 287 { 288 BUG_ON(zero_page != NULL); 289 zero_page = ZERO_PAGE(0); 290 page_cache_get(zero_page); 291 292 if (ceph_msgr_slab_init()) 293 return -ENOMEM; 294 295 /* 296 * The number of active work items is limited by the number of 297 * connections, so leave @max_active at default. 298 */ 299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 300 if (ceph_msgr_wq) 301 return 0; 302 303 pr_err("msgr_init failed to create workqueue\n"); 304 _ceph_msgr_exit(); 305 306 return -ENOMEM; 307 } 308 EXPORT_SYMBOL(ceph_msgr_init); 309 310 void ceph_msgr_exit(void) 311 { 312 BUG_ON(ceph_msgr_wq == NULL); 313 314 _ceph_msgr_exit(); 315 } 316 EXPORT_SYMBOL(ceph_msgr_exit); 317 318 void ceph_msgr_flush(void) 319 { 320 flush_workqueue(ceph_msgr_wq); 321 } 322 EXPORT_SYMBOL(ceph_msgr_flush); 323 324 /* Connection socket state transition functions */ 325 326 static void con_sock_state_init(struct ceph_connection *con) 327 { 328 int old_state; 329 330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 332 printk("%s: unexpected old state %d\n", __func__, old_state); 333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 334 CON_SOCK_STATE_CLOSED); 335 } 336 337 static void con_sock_state_connecting(struct ceph_connection *con) 338 { 339 int old_state; 340 341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 343 printk("%s: unexpected old state %d\n", __func__, old_state); 344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 345 CON_SOCK_STATE_CONNECTING); 346 } 347 348 static void con_sock_state_connected(struct ceph_connection *con) 349 { 350 int old_state; 351 352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 354 printk("%s: unexpected old state %d\n", __func__, old_state); 355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 356 CON_SOCK_STATE_CONNECTED); 357 } 358 359 static void con_sock_state_closing(struct ceph_connection *con) 360 { 361 int old_state; 362 363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 365 old_state != CON_SOCK_STATE_CONNECTED && 366 old_state != CON_SOCK_STATE_CLOSING)) 367 printk("%s: unexpected old state %d\n", __func__, old_state); 368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 369 CON_SOCK_STATE_CLOSING); 370 } 371 372 static void con_sock_state_closed(struct ceph_connection *con) 373 { 374 int old_state; 375 376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 378 old_state != CON_SOCK_STATE_CLOSING && 379 old_state != CON_SOCK_STATE_CONNECTING && 380 old_state != CON_SOCK_STATE_CLOSED)) 381 printk("%s: unexpected old state %d\n", __func__, old_state); 382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 383 CON_SOCK_STATE_CLOSED); 384 } 385 386 /* 387 * socket callback functions 388 */ 389 390 /* data available on socket, or listen socket received a connect */ 391 static void ceph_sock_data_ready(struct sock *sk) 392 { 393 struct ceph_connection *con = sk->sk_user_data; 394 if (atomic_read(&con->msgr->stopping)) { 395 return; 396 } 397 398 if (sk->sk_state != TCP_CLOSE_WAIT) { 399 dout("%s on %p state = %lu, queueing work\n", __func__, 400 con, con->state); 401 queue_con(con); 402 } 403 } 404 405 /* socket has buffer space for writing */ 406 static void ceph_sock_write_space(struct sock *sk) 407 { 408 struct ceph_connection *con = sk->sk_user_data; 409 410 /* only queue to workqueue if there is data we want to write, 411 * and there is sufficient space in the socket buffer to accept 412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 413 * doesn't get called again until try_write() fills the socket 414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 415 * and net/core/stream.c:sk_stream_write_space(). 416 */ 417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 418 if (sk_stream_is_writeable(sk)) { 419 dout("%s %p queueing write work\n", __func__, con); 420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 421 queue_con(con); 422 } 423 } else { 424 dout("%s %p nothing to write\n", __func__, con); 425 } 426 } 427 428 /* socket's state has changed */ 429 static void ceph_sock_state_change(struct sock *sk) 430 { 431 struct ceph_connection *con = sk->sk_user_data; 432 433 dout("%s %p state = %lu sk_state = %u\n", __func__, 434 con, con->state, sk->sk_state); 435 436 switch (sk->sk_state) { 437 case TCP_CLOSE: 438 dout("%s TCP_CLOSE\n", __func__); 439 case TCP_CLOSE_WAIT: 440 dout("%s TCP_CLOSE_WAIT\n", __func__); 441 con_sock_state_closing(con); 442 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 443 queue_con(con); 444 break; 445 case TCP_ESTABLISHED: 446 dout("%s TCP_ESTABLISHED\n", __func__); 447 con_sock_state_connected(con); 448 queue_con(con); 449 break; 450 default: /* Everything else is uninteresting */ 451 break; 452 } 453 } 454 455 /* 456 * set up socket callbacks 457 */ 458 static void set_sock_callbacks(struct socket *sock, 459 struct ceph_connection *con) 460 { 461 struct sock *sk = sock->sk; 462 sk->sk_user_data = con; 463 sk->sk_data_ready = ceph_sock_data_ready; 464 sk->sk_write_space = ceph_sock_write_space; 465 sk->sk_state_change = ceph_sock_state_change; 466 } 467 468 469 /* 470 * socket helpers 471 */ 472 473 /* 474 * initiate connection to a remote socket. 475 */ 476 static int ceph_tcp_connect(struct ceph_connection *con) 477 { 478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 479 struct socket *sock; 480 int ret; 481 482 BUG_ON(con->sock); 483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 484 IPPROTO_TCP, &sock); 485 if (ret) 486 return ret; 487 sock->sk->sk_allocation = GFP_NOFS; 488 489 #ifdef CONFIG_LOCKDEP 490 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 491 #endif 492 493 set_sock_callbacks(sock, con); 494 495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 496 497 con_sock_state_connecting(con); 498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 499 O_NONBLOCK); 500 if (ret == -EINPROGRESS) { 501 dout("connect %s EINPROGRESS sk_state = %u\n", 502 ceph_pr_addr(&con->peer_addr.in_addr), 503 sock->sk->sk_state); 504 } else if (ret < 0) { 505 pr_err("connect %s error %d\n", 506 ceph_pr_addr(&con->peer_addr.in_addr), ret); 507 sock_release(sock); 508 return ret; 509 } 510 511 if (con->msgr->tcp_nodelay) { 512 int optval = 1; 513 514 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 515 (char *)&optval, sizeof(optval)); 516 if (ret) 517 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 518 ret); 519 } 520 521 con->sock = sock; 522 return 0; 523 } 524 525 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 526 { 527 struct kvec iov = {buf, len}; 528 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 529 int r; 530 531 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 532 if (r == -EAGAIN) 533 r = 0; 534 return r; 535 } 536 537 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 538 int page_offset, size_t length) 539 { 540 void *kaddr; 541 int ret; 542 543 BUG_ON(page_offset + length > PAGE_SIZE); 544 545 kaddr = kmap(page); 546 BUG_ON(!kaddr); 547 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 548 kunmap(page); 549 550 return ret; 551 } 552 553 /* 554 * write something. @more is true if caller will be sending more data 555 * shortly. 556 */ 557 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 558 size_t kvlen, size_t len, int more) 559 { 560 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 561 int r; 562 563 if (more) 564 msg.msg_flags |= MSG_MORE; 565 else 566 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 567 568 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 569 if (r == -EAGAIN) 570 r = 0; 571 return r; 572 } 573 574 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 575 int offset, size_t size, bool more) 576 { 577 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 578 int ret; 579 580 ret = kernel_sendpage(sock, page, offset, size, flags); 581 if (ret == -EAGAIN) 582 ret = 0; 583 584 return ret; 585 } 586 587 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 588 int offset, size_t size, bool more) 589 { 590 int ret; 591 struct kvec iov; 592 593 /* sendpage cannot properly handle pages with page_count == 0, 594 * we need to fallback to sendmsg if that's the case */ 595 if (page_count(page) >= 1) 596 return __ceph_tcp_sendpage(sock, page, offset, size, more); 597 598 iov.iov_base = kmap(page) + offset; 599 iov.iov_len = size; 600 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 601 kunmap(page); 602 603 return ret; 604 } 605 606 /* 607 * Shutdown/close the socket for the given connection. 608 */ 609 static int con_close_socket(struct ceph_connection *con) 610 { 611 int rc = 0; 612 613 dout("con_close_socket on %p sock %p\n", con, con->sock); 614 if (con->sock) { 615 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 616 sock_release(con->sock); 617 con->sock = NULL; 618 } 619 620 /* 621 * Forcibly clear the SOCK_CLOSED flag. It gets set 622 * independent of the connection mutex, and we could have 623 * received a socket close event before we had the chance to 624 * shut the socket down. 625 */ 626 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 627 628 con_sock_state_closed(con); 629 return rc; 630 } 631 632 /* 633 * Reset a connection. Discard all incoming and outgoing messages 634 * and clear *_seq state. 635 */ 636 static void ceph_msg_remove(struct ceph_msg *msg) 637 { 638 list_del_init(&msg->list_head); 639 BUG_ON(msg->con == NULL); 640 msg->con->ops->put(msg->con); 641 msg->con = NULL; 642 643 ceph_msg_put(msg); 644 } 645 static void ceph_msg_remove_list(struct list_head *head) 646 { 647 while (!list_empty(head)) { 648 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 649 list_head); 650 ceph_msg_remove(msg); 651 } 652 } 653 654 static void reset_connection(struct ceph_connection *con) 655 { 656 /* reset connection, out_queue, msg_ and connect_seq */ 657 /* discard existing out_queue and msg_seq */ 658 dout("reset_connection %p\n", con); 659 ceph_msg_remove_list(&con->out_queue); 660 ceph_msg_remove_list(&con->out_sent); 661 662 if (con->in_msg) { 663 BUG_ON(con->in_msg->con != con); 664 con->in_msg->con = NULL; 665 ceph_msg_put(con->in_msg); 666 con->in_msg = NULL; 667 con->ops->put(con); 668 } 669 670 con->connect_seq = 0; 671 con->out_seq = 0; 672 if (con->out_msg) { 673 ceph_msg_put(con->out_msg); 674 con->out_msg = NULL; 675 } 676 con->in_seq = 0; 677 con->in_seq_acked = 0; 678 } 679 680 /* 681 * mark a peer down. drop any open connections. 682 */ 683 void ceph_con_close(struct ceph_connection *con) 684 { 685 mutex_lock(&con->mutex); 686 dout("con_close %p peer %s\n", con, 687 ceph_pr_addr(&con->peer_addr.in_addr)); 688 con->state = CON_STATE_CLOSED; 689 690 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 691 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 692 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 693 con_flag_clear(con, CON_FLAG_BACKOFF); 694 695 reset_connection(con); 696 con->peer_global_seq = 0; 697 cancel_con(con); 698 con_close_socket(con); 699 mutex_unlock(&con->mutex); 700 } 701 EXPORT_SYMBOL(ceph_con_close); 702 703 /* 704 * Reopen a closed connection, with a new peer address. 705 */ 706 void ceph_con_open(struct ceph_connection *con, 707 __u8 entity_type, __u64 entity_num, 708 struct ceph_entity_addr *addr) 709 { 710 mutex_lock(&con->mutex); 711 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 712 713 WARN_ON(con->state != CON_STATE_CLOSED); 714 con->state = CON_STATE_PREOPEN; 715 716 con->peer_name.type = (__u8) entity_type; 717 con->peer_name.num = cpu_to_le64(entity_num); 718 719 memcpy(&con->peer_addr, addr, sizeof(*addr)); 720 con->delay = 0; /* reset backoff memory */ 721 mutex_unlock(&con->mutex); 722 queue_con(con); 723 } 724 EXPORT_SYMBOL(ceph_con_open); 725 726 /* 727 * return true if this connection ever successfully opened 728 */ 729 bool ceph_con_opened(struct ceph_connection *con) 730 { 731 return con->connect_seq > 0; 732 } 733 734 /* 735 * initialize a new connection. 736 */ 737 void ceph_con_init(struct ceph_connection *con, void *private, 738 const struct ceph_connection_operations *ops, 739 struct ceph_messenger *msgr) 740 { 741 dout("con_init %p\n", con); 742 memset(con, 0, sizeof(*con)); 743 con->private = private; 744 con->ops = ops; 745 con->msgr = msgr; 746 747 con_sock_state_init(con); 748 749 mutex_init(&con->mutex); 750 INIT_LIST_HEAD(&con->out_queue); 751 INIT_LIST_HEAD(&con->out_sent); 752 INIT_DELAYED_WORK(&con->work, con_work); 753 754 con->state = CON_STATE_CLOSED; 755 } 756 EXPORT_SYMBOL(ceph_con_init); 757 758 759 /* 760 * We maintain a global counter to order connection attempts. Get 761 * a unique seq greater than @gt. 762 */ 763 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 764 { 765 u32 ret; 766 767 spin_lock(&msgr->global_seq_lock); 768 if (msgr->global_seq < gt) 769 msgr->global_seq = gt; 770 ret = ++msgr->global_seq; 771 spin_unlock(&msgr->global_seq_lock); 772 return ret; 773 } 774 775 static void con_out_kvec_reset(struct ceph_connection *con) 776 { 777 con->out_kvec_left = 0; 778 con->out_kvec_bytes = 0; 779 con->out_kvec_cur = &con->out_kvec[0]; 780 } 781 782 static void con_out_kvec_add(struct ceph_connection *con, 783 size_t size, void *data) 784 { 785 int index; 786 787 index = con->out_kvec_left; 788 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 789 790 con->out_kvec[index].iov_len = size; 791 con->out_kvec[index].iov_base = data; 792 con->out_kvec_left++; 793 con->out_kvec_bytes += size; 794 } 795 796 #ifdef CONFIG_BLOCK 797 798 /* 799 * For a bio data item, a piece is whatever remains of the next 800 * entry in the current bio iovec, or the first entry in the next 801 * bio in the list. 802 */ 803 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 804 size_t length) 805 { 806 struct ceph_msg_data *data = cursor->data; 807 struct bio *bio; 808 809 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 810 811 bio = data->bio; 812 BUG_ON(!bio); 813 814 cursor->resid = min(length, data->bio_length); 815 cursor->bio = bio; 816 cursor->bvec_iter = bio->bi_iter; 817 cursor->last_piece = 818 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 819 } 820 821 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 822 size_t *page_offset, 823 size_t *length) 824 { 825 struct ceph_msg_data *data = cursor->data; 826 struct bio *bio; 827 struct bio_vec bio_vec; 828 829 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 830 831 bio = cursor->bio; 832 BUG_ON(!bio); 833 834 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 835 836 *page_offset = (size_t) bio_vec.bv_offset; 837 BUG_ON(*page_offset >= PAGE_SIZE); 838 if (cursor->last_piece) /* pagelist offset is always 0 */ 839 *length = cursor->resid; 840 else 841 *length = (size_t) bio_vec.bv_len; 842 BUG_ON(*length > cursor->resid); 843 BUG_ON(*page_offset + *length > PAGE_SIZE); 844 845 return bio_vec.bv_page; 846 } 847 848 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 849 size_t bytes) 850 { 851 struct bio *bio; 852 struct bio_vec bio_vec; 853 854 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 855 856 bio = cursor->bio; 857 BUG_ON(!bio); 858 859 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 860 861 /* Advance the cursor offset */ 862 863 BUG_ON(cursor->resid < bytes); 864 cursor->resid -= bytes; 865 866 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 867 868 if (bytes < bio_vec.bv_len) 869 return false; /* more bytes to process in this segment */ 870 871 /* Move on to the next segment, and possibly the next bio */ 872 873 if (!cursor->bvec_iter.bi_size) { 874 bio = bio->bi_next; 875 cursor->bio = bio; 876 if (bio) 877 cursor->bvec_iter = bio->bi_iter; 878 else 879 memset(&cursor->bvec_iter, 0, 880 sizeof(cursor->bvec_iter)); 881 } 882 883 if (!cursor->last_piece) { 884 BUG_ON(!cursor->resid); 885 BUG_ON(!bio); 886 /* A short read is OK, so use <= rather than == */ 887 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 888 cursor->last_piece = true; 889 } 890 891 return true; 892 } 893 #endif /* CONFIG_BLOCK */ 894 895 /* 896 * For a page array, a piece comes from the first page in the array 897 * that has not already been fully consumed. 898 */ 899 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 900 size_t length) 901 { 902 struct ceph_msg_data *data = cursor->data; 903 int page_count; 904 905 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 906 907 BUG_ON(!data->pages); 908 BUG_ON(!data->length); 909 910 cursor->resid = min(length, data->length); 911 page_count = calc_pages_for(data->alignment, (u64)data->length); 912 cursor->page_offset = data->alignment & ~PAGE_MASK; 913 cursor->page_index = 0; 914 BUG_ON(page_count > (int)USHRT_MAX); 915 cursor->page_count = (unsigned short)page_count; 916 BUG_ON(length > SIZE_MAX - cursor->page_offset); 917 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 918 } 919 920 static struct page * 921 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 922 size_t *page_offset, size_t *length) 923 { 924 struct ceph_msg_data *data = cursor->data; 925 926 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 927 928 BUG_ON(cursor->page_index >= cursor->page_count); 929 BUG_ON(cursor->page_offset >= PAGE_SIZE); 930 931 *page_offset = cursor->page_offset; 932 if (cursor->last_piece) 933 *length = cursor->resid; 934 else 935 *length = PAGE_SIZE - *page_offset; 936 937 return data->pages[cursor->page_index]; 938 } 939 940 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 941 size_t bytes) 942 { 943 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 944 945 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 946 947 /* Advance the cursor page offset */ 948 949 cursor->resid -= bytes; 950 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 951 if (!bytes || cursor->page_offset) 952 return false; /* more bytes to process in the current page */ 953 954 if (!cursor->resid) 955 return false; /* no more data */ 956 957 /* Move on to the next page; offset is already at 0 */ 958 959 BUG_ON(cursor->page_index >= cursor->page_count); 960 cursor->page_index++; 961 cursor->last_piece = cursor->resid <= PAGE_SIZE; 962 963 return true; 964 } 965 966 /* 967 * For a pagelist, a piece is whatever remains to be consumed in the 968 * first page in the list, or the front of the next page. 969 */ 970 static void 971 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 972 size_t length) 973 { 974 struct ceph_msg_data *data = cursor->data; 975 struct ceph_pagelist *pagelist; 976 struct page *page; 977 978 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 979 980 pagelist = data->pagelist; 981 BUG_ON(!pagelist); 982 983 if (!length) 984 return; /* pagelist can be assigned but empty */ 985 986 BUG_ON(list_empty(&pagelist->head)); 987 page = list_first_entry(&pagelist->head, struct page, lru); 988 989 cursor->resid = min(length, pagelist->length); 990 cursor->page = page; 991 cursor->offset = 0; 992 cursor->last_piece = cursor->resid <= PAGE_SIZE; 993 } 994 995 static struct page * 996 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 997 size_t *page_offset, size_t *length) 998 { 999 struct ceph_msg_data *data = cursor->data; 1000 struct ceph_pagelist *pagelist; 1001 1002 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1003 1004 pagelist = data->pagelist; 1005 BUG_ON(!pagelist); 1006 1007 BUG_ON(!cursor->page); 1008 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1009 1010 /* offset of first page in pagelist is always 0 */ 1011 *page_offset = cursor->offset & ~PAGE_MASK; 1012 if (cursor->last_piece) 1013 *length = cursor->resid; 1014 else 1015 *length = PAGE_SIZE - *page_offset; 1016 1017 return cursor->page; 1018 } 1019 1020 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1021 size_t bytes) 1022 { 1023 struct ceph_msg_data *data = cursor->data; 1024 struct ceph_pagelist *pagelist; 1025 1026 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1027 1028 pagelist = data->pagelist; 1029 BUG_ON(!pagelist); 1030 1031 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1032 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1033 1034 /* Advance the cursor offset */ 1035 1036 cursor->resid -= bytes; 1037 cursor->offset += bytes; 1038 /* offset of first page in pagelist is always 0 */ 1039 if (!bytes || cursor->offset & ~PAGE_MASK) 1040 return false; /* more bytes to process in the current page */ 1041 1042 if (!cursor->resid) 1043 return false; /* no more data */ 1044 1045 /* Move on to the next page */ 1046 1047 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1048 cursor->page = list_entry_next(cursor->page, lru); 1049 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1050 1051 return true; 1052 } 1053 1054 /* 1055 * Message data is handled (sent or received) in pieces, where each 1056 * piece resides on a single page. The network layer might not 1057 * consume an entire piece at once. A data item's cursor keeps 1058 * track of which piece is next to process and how much remains to 1059 * be processed in that piece. It also tracks whether the current 1060 * piece is the last one in the data item. 1061 */ 1062 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1063 { 1064 size_t length = cursor->total_resid; 1065 1066 switch (cursor->data->type) { 1067 case CEPH_MSG_DATA_PAGELIST: 1068 ceph_msg_data_pagelist_cursor_init(cursor, length); 1069 break; 1070 case CEPH_MSG_DATA_PAGES: 1071 ceph_msg_data_pages_cursor_init(cursor, length); 1072 break; 1073 #ifdef CONFIG_BLOCK 1074 case CEPH_MSG_DATA_BIO: 1075 ceph_msg_data_bio_cursor_init(cursor, length); 1076 break; 1077 #endif /* CONFIG_BLOCK */ 1078 case CEPH_MSG_DATA_NONE: 1079 default: 1080 /* BUG(); */ 1081 break; 1082 } 1083 cursor->need_crc = true; 1084 } 1085 1086 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1087 { 1088 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1089 struct ceph_msg_data *data; 1090 1091 BUG_ON(!length); 1092 BUG_ON(length > msg->data_length); 1093 BUG_ON(list_empty(&msg->data)); 1094 1095 cursor->data_head = &msg->data; 1096 cursor->total_resid = length; 1097 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1098 cursor->data = data; 1099 1100 __ceph_msg_data_cursor_init(cursor); 1101 } 1102 1103 /* 1104 * Return the page containing the next piece to process for a given 1105 * data item, and supply the page offset and length of that piece. 1106 * Indicate whether this is the last piece in this data item. 1107 */ 1108 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1109 size_t *page_offset, size_t *length, 1110 bool *last_piece) 1111 { 1112 struct page *page; 1113 1114 switch (cursor->data->type) { 1115 case CEPH_MSG_DATA_PAGELIST: 1116 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1117 break; 1118 case CEPH_MSG_DATA_PAGES: 1119 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1120 break; 1121 #ifdef CONFIG_BLOCK 1122 case CEPH_MSG_DATA_BIO: 1123 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1124 break; 1125 #endif /* CONFIG_BLOCK */ 1126 case CEPH_MSG_DATA_NONE: 1127 default: 1128 page = NULL; 1129 break; 1130 } 1131 BUG_ON(!page); 1132 BUG_ON(*page_offset + *length > PAGE_SIZE); 1133 BUG_ON(!*length); 1134 if (last_piece) 1135 *last_piece = cursor->last_piece; 1136 1137 return page; 1138 } 1139 1140 /* 1141 * Returns true if the result moves the cursor on to the next piece 1142 * of the data item. 1143 */ 1144 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1145 size_t bytes) 1146 { 1147 bool new_piece; 1148 1149 BUG_ON(bytes > cursor->resid); 1150 switch (cursor->data->type) { 1151 case CEPH_MSG_DATA_PAGELIST: 1152 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1153 break; 1154 case CEPH_MSG_DATA_PAGES: 1155 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1156 break; 1157 #ifdef CONFIG_BLOCK 1158 case CEPH_MSG_DATA_BIO: 1159 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1160 break; 1161 #endif /* CONFIG_BLOCK */ 1162 case CEPH_MSG_DATA_NONE: 1163 default: 1164 BUG(); 1165 break; 1166 } 1167 cursor->total_resid -= bytes; 1168 1169 if (!cursor->resid && cursor->total_resid) { 1170 WARN_ON(!cursor->last_piece); 1171 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1172 cursor->data = list_entry_next(cursor->data, links); 1173 __ceph_msg_data_cursor_init(cursor); 1174 new_piece = true; 1175 } 1176 cursor->need_crc = new_piece; 1177 1178 return new_piece; 1179 } 1180 1181 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1182 { 1183 BUG_ON(!msg); 1184 BUG_ON(!data_len); 1185 1186 /* Initialize data cursor */ 1187 1188 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1189 } 1190 1191 /* 1192 * Prepare footer for currently outgoing message, and finish things 1193 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1194 */ 1195 static void prepare_write_message_footer(struct ceph_connection *con) 1196 { 1197 struct ceph_msg *m = con->out_msg; 1198 int v = con->out_kvec_left; 1199 1200 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1201 1202 dout("prepare_write_message_footer %p\n", con); 1203 con->out_kvec_is_msg = true; 1204 con->out_kvec[v].iov_base = &m->footer; 1205 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1206 if (con->ops->sign_message) 1207 con->ops->sign_message(con, m); 1208 else 1209 m->footer.sig = 0; 1210 con->out_kvec[v].iov_len = sizeof(m->footer); 1211 con->out_kvec_bytes += sizeof(m->footer); 1212 } else { 1213 m->old_footer.flags = m->footer.flags; 1214 con->out_kvec[v].iov_len = sizeof(m->old_footer); 1215 con->out_kvec_bytes += sizeof(m->old_footer); 1216 } 1217 con->out_kvec_left++; 1218 con->out_more = m->more_to_follow; 1219 con->out_msg_done = true; 1220 } 1221 1222 /* 1223 * Prepare headers for the next outgoing message. 1224 */ 1225 static void prepare_write_message(struct ceph_connection *con) 1226 { 1227 struct ceph_msg *m; 1228 u32 crc; 1229 1230 con_out_kvec_reset(con); 1231 con->out_kvec_is_msg = true; 1232 con->out_msg_done = false; 1233 1234 /* Sneak an ack in there first? If we can get it into the same 1235 * TCP packet that's a good thing. */ 1236 if (con->in_seq > con->in_seq_acked) { 1237 con->in_seq_acked = con->in_seq; 1238 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1239 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1240 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1241 &con->out_temp_ack); 1242 } 1243 1244 BUG_ON(list_empty(&con->out_queue)); 1245 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1246 con->out_msg = m; 1247 BUG_ON(m->con != con); 1248 1249 /* put message on sent list */ 1250 ceph_msg_get(m); 1251 list_move_tail(&m->list_head, &con->out_sent); 1252 1253 /* 1254 * only assign outgoing seq # if we haven't sent this message 1255 * yet. if it is requeued, resend with it's original seq. 1256 */ 1257 if (m->needs_out_seq) { 1258 m->hdr.seq = cpu_to_le64(++con->out_seq); 1259 m->needs_out_seq = false; 1260 } 1261 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1262 1263 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1264 m, con->out_seq, le16_to_cpu(m->hdr.type), 1265 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1266 m->data_length); 1267 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1268 1269 /* tag + hdr + front + middle */ 1270 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1271 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1272 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1273 1274 if (m->middle) 1275 con_out_kvec_add(con, m->middle->vec.iov_len, 1276 m->middle->vec.iov_base); 1277 1278 /* fill in crc (except data pages), footer */ 1279 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1280 con->out_msg->hdr.crc = cpu_to_le32(crc); 1281 con->out_msg->footer.flags = 0; 1282 1283 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1284 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1285 if (m->middle) { 1286 crc = crc32c(0, m->middle->vec.iov_base, 1287 m->middle->vec.iov_len); 1288 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1289 } else 1290 con->out_msg->footer.middle_crc = 0; 1291 dout("%s front_crc %u middle_crc %u\n", __func__, 1292 le32_to_cpu(con->out_msg->footer.front_crc), 1293 le32_to_cpu(con->out_msg->footer.middle_crc)); 1294 1295 /* is there a data payload? */ 1296 con->out_msg->footer.data_crc = 0; 1297 if (m->data_length) { 1298 prepare_message_data(con->out_msg, m->data_length); 1299 con->out_more = 1; /* data + footer will follow */ 1300 } else { 1301 /* no, queue up footer too and be done */ 1302 prepare_write_message_footer(con); 1303 } 1304 1305 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1306 } 1307 1308 /* 1309 * Prepare an ack. 1310 */ 1311 static void prepare_write_ack(struct ceph_connection *con) 1312 { 1313 dout("prepare_write_ack %p %llu -> %llu\n", con, 1314 con->in_seq_acked, con->in_seq); 1315 con->in_seq_acked = con->in_seq; 1316 1317 con_out_kvec_reset(con); 1318 1319 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1320 1321 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1322 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1323 &con->out_temp_ack); 1324 1325 con->out_more = 1; /* more will follow.. eventually.. */ 1326 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1327 } 1328 1329 /* 1330 * Prepare to share the seq during handshake 1331 */ 1332 static void prepare_write_seq(struct ceph_connection *con) 1333 { 1334 dout("prepare_write_seq %p %llu -> %llu\n", con, 1335 con->in_seq_acked, con->in_seq); 1336 con->in_seq_acked = con->in_seq; 1337 1338 con_out_kvec_reset(con); 1339 1340 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1341 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1342 &con->out_temp_ack); 1343 1344 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1345 } 1346 1347 /* 1348 * Prepare to write keepalive byte. 1349 */ 1350 static void prepare_write_keepalive(struct ceph_connection *con) 1351 { 1352 dout("prepare_write_keepalive %p\n", con); 1353 con_out_kvec_reset(con); 1354 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1355 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1356 } 1357 1358 /* 1359 * Connection negotiation. 1360 */ 1361 1362 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1363 int *auth_proto) 1364 { 1365 struct ceph_auth_handshake *auth; 1366 1367 if (!con->ops->get_authorizer) { 1368 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1369 con->out_connect.authorizer_len = 0; 1370 return NULL; 1371 } 1372 1373 /* Can't hold the mutex while getting authorizer */ 1374 mutex_unlock(&con->mutex); 1375 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1376 mutex_lock(&con->mutex); 1377 1378 if (IS_ERR(auth)) 1379 return auth; 1380 if (con->state != CON_STATE_NEGOTIATING) 1381 return ERR_PTR(-EAGAIN); 1382 1383 con->auth_reply_buf = auth->authorizer_reply_buf; 1384 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1385 return auth; 1386 } 1387 1388 /* 1389 * We connected to a peer and are saying hello. 1390 */ 1391 static void prepare_write_banner(struct ceph_connection *con) 1392 { 1393 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1394 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1395 &con->msgr->my_enc_addr); 1396 1397 con->out_more = 0; 1398 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1399 } 1400 1401 static int prepare_write_connect(struct ceph_connection *con) 1402 { 1403 unsigned int global_seq = get_global_seq(con->msgr, 0); 1404 int proto; 1405 int auth_proto; 1406 struct ceph_auth_handshake *auth; 1407 1408 switch (con->peer_name.type) { 1409 case CEPH_ENTITY_TYPE_MON: 1410 proto = CEPH_MONC_PROTOCOL; 1411 break; 1412 case CEPH_ENTITY_TYPE_OSD: 1413 proto = CEPH_OSDC_PROTOCOL; 1414 break; 1415 case CEPH_ENTITY_TYPE_MDS: 1416 proto = CEPH_MDSC_PROTOCOL; 1417 break; 1418 default: 1419 BUG(); 1420 } 1421 1422 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1423 con->connect_seq, global_seq, proto); 1424 1425 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1426 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1427 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1428 con->out_connect.global_seq = cpu_to_le32(global_seq); 1429 con->out_connect.protocol_version = cpu_to_le32(proto); 1430 con->out_connect.flags = 0; 1431 1432 auth_proto = CEPH_AUTH_UNKNOWN; 1433 auth = get_connect_authorizer(con, &auth_proto); 1434 if (IS_ERR(auth)) 1435 return PTR_ERR(auth); 1436 1437 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1438 con->out_connect.authorizer_len = auth ? 1439 cpu_to_le32(auth->authorizer_buf_len) : 0; 1440 1441 con_out_kvec_add(con, sizeof (con->out_connect), 1442 &con->out_connect); 1443 if (auth && auth->authorizer_buf_len) 1444 con_out_kvec_add(con, auth->authorizer_buf_len, 1445 auth->authorizer_buf); 1446 1447 con->out_more = 0; 1448 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1449 1450 return 0; 1451 } 1452 1453 /* 1454 * write as much of pending kvecs to the socket as we can. 1455 * 1 -> done 1456 * 0 -> socket full, but more to do 1457 * <0 -> error 1458 */ 1459 static int write_partial_kvec(struct ceph_connection *con) 1460 { 1461 int ret; 1462 1463 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1464 while (con->out_kvec_bytes > 0) { 1465 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1466 con->out_kvec_left, con->out_kvec_bytes, 1467 con->out_more); 1468 if (ret <= 0) 1469 goto out; 1470 con->out_kvec_bytes -= ret; 1471 if (con->out_kvec_bytes == 0) 1472 break; /* done */ 1473 1474 /* account for full iov entries consumed */ 1475 while (ret >= con->out_kvec_cur->iov_len) { 1476 BUG_ON(!con->out_kvec_left); 1477 ret -= con->out_kvec_cur->iov_len; 1478 con->out_kvec_cur++; 1479 con->out_kvec_left--; 1480 } 1481 /* and for a partially-consumed entry */ 1482 if (ret) { 1483 con->out_kvec_cur->iov_len -= ret; 1484 con->out_kvec_cur->iov_base += ret; 1485 } 1486 } 1487 con->out_kvec_left = 0; 1488 con->out_kvec_is_msg = false; 1489 ret = 1; 1490 out: 1491 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1492 con->out_kvec_bytes, con->out_kvec_left, ret); 1493 return ret; /* done! */ 1494 } 1495 1496 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1497 unsigned int page_offset, 1498 unsigned int length) 1499 { 1500 char *kaddr; 1501 1502 kaddr = kmap(page); 1503 BUG_ON(kaddr == NULL); 1504 crc = crc32c(crc, kaddr + page_offset, length); 1505 kunmap(page); 1506 1507 return crc; 1508 } 1509 /* 1510 * Write as much message data payload as we can. If we finish, queue 1511 * up the footer. 1512 * 1 -> done, footer is now queued in out_kvec[]. 1513 * 0 -> socket full, but more to do 1514 * <0 -> error 1515 */ 1516 static int write_partial_message_data(struct ceph_connection *con) 1517 { 1518 struct ceph_msg *msg = con->out_msg; 1519 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1520 bool do_datacrc = !con->msgr->nocrc; 1521 u32 crc; 1522 1523 dout("%s %p msg %p\n", __func__, con, msg); 1524 1525 if (list_empty(&msg->data)) 1526 return -EINVAL; 1527 1528 /* 1529 * Iterate through each page that contains data to be 1530 * written, and send as much as possible for each. 1531 * 1532 * If we are calculating the data crc (the default), we will 1533 * need to map the page. If we have no pages, they have 1534 * been revoked, so use the zero page. 1535 */ 1536 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1537 while (cursor->resid) { 1538 struct page *page; 1539 size_t page_offset; 1540 size_t length; 1541 bool last_piece; 1542 bool need_crc; 1543 int ret; 1544 1545 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1546 &last_piece); 1547 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1548 length, last_piece); 1549 if (ret <= 0) { 1550 if (do_datacrc) 1551 msg->footer.data_crc = cpu_to_le32(crc); 1552 1553 return ret; 1554 } 1555 if (do_datacrc && cursor->need_crc) 1556 crc = ceph_crc32c_page(crc, page, page_offset, length); 1557 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1558 } 1559 1560 dout("%s %p msg %p done\n", __func__, con, msg); 1561 1562 /* prepare and queue up footer, too */ 1563 if (do_datacrc) 1564 msg->footer.data_crc = cpu_to_le32(crc); 1565 else 1566 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1567 con_out_kvec_reset(con); 1568 prepare_write_message_footer(con); 1569 1570 return 1; /* must return > 0 to indicate success */ 1571 } 1572 1573 /* 1574 * write some zeros 1575 */ 1576 static int write_partial_skip(struct ceph_connection *con) 1577 { 1578 int ret; 1579 1580 while (con->out_skip > 0) { 1581 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1582 1583 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1584 if (ret <= 0) 1585 goto out; 1586 con->out_skip -= ret; 1587 } 1588 ret = 1; 1589 out: 1590 return ret; 1591 } 1592 1593 /* 1594 * Prepare to read connection handshake, or an ack. 1595 */ 1596 static void prepare_read_banner(struct ceph_connection *con) 1597 { 1598 dout("prepare_read_banner %p\n", con); 1599 con->in_base_pos = 0; 1600 } 1601 1602 static void prepare_read_connect(struct ceph_connection *con) 1603 { 1604 dout("prepare_read_connect %p\n", con); 1605 con->in_base_pos = 0; 1606 } 1607 1608 static void prepare_read_ack(struct ceph_connection *con) 1609 { 1610 dout("prepare_read_ack %p\n", con); 1611 con->in_base_pos = 0; 1612 } 1613 1614 static void prepare_read_seq(struct ceph_connection *con) 1615 { 1616 dout("prepare_read_seq %p\n", con); 1617 con->in_base_pos = 0; 1618 con->in_tag = CEPH_MSGR_TAG_SEQ; 1619 } 1620 1621 static void prepare_read_tag(struct ceph_connection *con) 1622 { 1623 dout("prepare_read_tag %p\n", con); 1624 con->in_base_pos = 0; 1625 con->in_tag = CEPH_MSGR_TAG_READY; 1626 } 1627 1628 /* 1629 * Prepare to read a message. 1630 */ 1631 static int prepare_read_message(struct ceph_connection *con) 1632 { 1633 dout("prepare_read_message %p\n", con); 1634 BUG_ON(con->in_msg != NULL); 1635 con->in_base_pos = 0; 1636 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1637 return 0; 1638 } 1639 1640 1641 static int read_partial(struct ceph_connection *con, 1642 int end, int size, void *object) 1643 { 1644 while (con->in_base_pos < end) { 1645 int left = end - con->in_base_pos; 1646 int have = size - left; 1647 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1648 if (ret <= 0) 1649 return ret; 1650 con->in_base_pos += ret; 1651 } 1652 return 1; 1653 } 1654 1655 1656 /* 1657 * Read all or part of the connect-side handshake on a new connection 1658 */ 1659 static int read_partial_banner(struct ceph_connection *con) 1660 { 1661 int size; 1662 int end; 1663 int ret; 1664 1665 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1666 1667 /* peer's banner */ 1668 size = strlen(CEPH_BANNER); 1669 end = size; 1670 ret = read_partial(con, end, size, con->in_banner); 1671 if (ret <= 0) 1672 goto out; 1673 1674 size = sizeof (con->actual_peer_addr); 1675 end += size; 1676 ret = read_partial(con, end, size, &con->actual_peer_addr); 1677 if (ret <= 0) 1678 goto out; 1679 1680 size = sizeof (con->peer_addr_for_me); 1681 end += size; 1682 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1683 if (ret <= 0) 1684 goto out; 1685 1686 out: 1687 return ret; 1688 } 1689 1690 static int read_partial_connect(struct ceph_connection *con) 1691 { 1692 int size; 1693 int end; 1694 int ret; 1695 1696 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1697 1698 size = sizeof (con->in_reply); 1699 end = size; 1700 ret = read_partial(con, end, size, &con->in_reply); 1701 if (ret <= 0) 1702 goto out; 1703 1704 size = le32_to_cpu(con->in_reply.authorizer_len); 1705 end += size; 1706 ret = read_partial(con, end, size, con->auth_reply_buf); 1707 if (ret <= 0) 1708 goto out; 1709 1710 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1711 con, (int)con->in_reply.tag, 1712 le32_to_cpu(con->in_reply.connect_seq), 1713 le32_to_cpu(con->in_reply.global_seq)); 1714 out: 1715 return ret; 1716 1717 } 1718 1719 /* 1720 * Verify the hello banner looks okay. 1721 */ 1722 static int verify_hello(struct ceph_connection *con) 1723 { 1724 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1725 pr_err("connect to %s got bad banner\n", 1726 ceph_pr_addr(&con->peer_addr.in_addr)); 1727 con->error_msg = "protocol error, bad banner"; 1728 return -1; 1729 } 1730 return 0; 1731 } 1732 1733 static bool addr_is_blank(struct sockaddr_storage *ss) 1734 { 1735 switch (ss->ss_family) { 1736 case AF_INET: 1737 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1738 case AF_INET6: 1739 return 1740 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1741 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1742 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1743 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1744 } 1745 return false; 1746 } 1747 1748 static int addr_port(struct sockaddr_storage *ss) 1749 { 1750 switch (ss->ss_family) { 1751 case AF_INET: 1752 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1753 case AF_INET6: 1754 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1755 } 1756 return 0; 1757 } 1758 1759 static void addr_set_port(struct sockaddr_storage *ss, int p) 1760 { 1761 switch (ss->ss_family) { 1762 case AF_INET: 1763 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1764 break; 1765 case AF_INET6: 1766 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1767 break; 1768 } 1769 } 1770 1771 /* 1772 * Unlike other *_pton function semantics, zero indicates success. 1773 */ 1774 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1775 char delim, const char **ipend) 1776 { 1777 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1778 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1779 1780 memset(ss, 0, sizeof(*ss)); 1781 1782 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1783 ss->ss_family = AF_INET; 1784 return 0; 1785 } 1786 1787 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1788 ss->ss_family = AF_INET6; 1789 return 0; 1790 } 1791 1792 return -EINVAL; 1793 } 1794 1795 /* 1796 * Extract hostname string and resolve using kernel DNS facility. 1797 */ 1798 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1799 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1800 struct sockaddr_storage *ss, char delim, const char **ipend) 1801 { 1802 const char *end, *delim_p; 1803 char *colon_p, *ip_addr = NULL; 1804 int ip_len, ret; 1805 1806 /* 1807 * The end of the hostname occurs immediately preceding the delimiter or 1808 * the port marker (':') where the delimiter takes precedence. 1809 */ 1810 delim_p = memchr(name, delim, namelen); 1811 colon_p = memchr(name, ':', namelen); 1812 1813 if (delim_p && colon_p) 1814 end = delim_p < colon_p ? delim_p : colon_p; 1815 else if (!delim_p && colon_p) 1816 end = colon_p; 1817 else { 1818 end = delim_p; 1819 if (!end) /* case: hostname:/ */ 1820 end = name + namelen; 1821 } 1822 1823 if (end <= name) 1824 return -EINVAL; 1825 1826 /* do dns_resolve upcall */ 1827 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1828 if (ip_len > 0) 1829 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1830 else 1831 ret = -ESRCH; 1832 1833 kfree(ip_addr); 1834 1835 *ipend = end; 1836 1837 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1838 ret, ret ? "failed" : ceph_pr_addr(ss)); 1839 1840 return ret; 1841 } 1842 #else 1843 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1844 struct sockaddr_storage *ss, char delim, const char **ipend) 1845 { 1846 return -EINVAL; 1847 } 1848 #endif 1849 1850 /* 1851 * Parse a server name (IP or hostname). If a valid IP address is not found 1852 * then try to extract a hostname to resolve using userspace DNS upcall. 1853 */ 1854 static int ceph_parse_server_name(const char *name, size_t namelen, 1855 struct sockaddr_storage *ss, char delim, const char **ipend) 1856 { 1857 int ret; 1858 1859 ret = ceph_pton(name, namelen, ss, delim, ipend); 1860 if (ret) 1861 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1862 1863 return ret; 1864 } 1865 1866 /* 1867 * Parse an ip[:port] list into an addr array. Use the default 1868 * monitor port if a port isn't specified. 1869 */ 1870 int ceph_parse_ips(const char *c, const char *end, 1871 struct ceph_entity_addr *addr, 1872 int max_count, int *count) 1873 { 1874 int i, ret = -EINVAL; 1875 const char *p = c; 1876 1877 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1878 for (i = 0; i < max_count; i++) { 1879 const char *ipend; 1880 struct sockaddr_storage *ss = &addr[i].in_addr; 1881 int port; 1882 char delim = ','; 1883 1884 if (*p == '[') { 1885 delim = ']'; 1886 p++; 1887 } 1888 1889 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1890 if (ret) 1891 goto bad; 1892 ret = -EINVAL; 1893 1894 p = ipend; 1895 1896 if (delim == ']') { 1897 if (*p != ']') { 1898 dout("missing matching ']'\n"); 1899 goto bad; 1900 } 1901 p++; 1902 } 1903 1904 /* port? */ 1905 if (p < end && *p == ':') { 1906 port = 0; 1907 p++; 1908 while (p < end && *p >= '0' && *p <= '9') { 1909 port = (port * 10) + (*p - '0'); 1910 p++; 1911 } 1912 if (port == 0) 1913 port = CEPH_MON_PORT; 1914 else if (port > 65535) 1915 goto bad; 1916 } else { 1917 port = CEPH_MON_PORT; 1918 } 1919 1920 addr_set_port(ss, port); 1921 1922 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1923 1924 if (p == end) 1925 break; 1926 if (*p != ',') 1927 goto bad; 1928 p++; 1929 } 1930 1931 if (p != end) 1932 goto bad; 1933 1934 if (count) 1935 *count = i + 1; 1936 return 0; 1937 1938 bad: 1939 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1940 return ret; 1941 } 1942 EXPORT_SYMBOL(ceph_parse_ips); 1943 1944 static int process_banner(struct ceph_connection *con) 1945 { 1946 dout("process_banner on %p\n", con); 1947 1948 if (verify_hello(con) < 0) 1949 return -1; 1950 1951 ceph_decode_addr(&con->actual_peer_addr); 1952 ceph_decode_addr(&con->peer_addr_for_me); 1953 1954 /* 1955 * Make sure the other end is who we wanted. note that the other 1956 * end may not yet know their ip address, so if it's 0.0.0.0, give 1957 * them the benefit of the doubt. 1958 */ 1959 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1960 sizeof(con->peer_addr)) != 0 && 1961 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1962 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1963 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 1964 ceph_pr_addr(&con->peer_addr.in_addr), 1965 (int)le32_to_cpu(con->peer_addr.nonce), 1966 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1967 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1968 con->error_msg = "wrong peer at address"; 1969 return -1; 1970 } 1971 1972 /* 1973 * did we learn our address? 1974 */ 1975 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1976 int port = addr_port(&con->msgr->inst.addr.in_addr); 1977 1978 memcpy(&con->msgr->inst.addr.in_addr, 1979 &con->peer_addr_for_me.in_addr, 1980 sizeof(con->peer_addr_for_me.in_addr)); 1981 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1982 encode_my_addr(con->msgr); 1983 dout("process_banner learned my addr is %s\n", 1984 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1985 } 1986 1987 return 0; 1988 } 1989 1990 static int process_connect(struct ceph_connection *con) 1991 { 1992 u64 sup_feat = con->msgr->supported_features; 1993 u64 req_feat = con->msgr->required_features; 1994 u64 server_feat = ceph_sanitize_features( 1995 le64_to_cpu(con->in_reply.features)); 1996 int ret; 1997 1998 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1999 2000 switch (con->in_reply.tag) { 2001 case CEPH_MSGR_TAG_FEATURES: 2002 pr_err("%s%lld %s feature set mismatch," 2003 " my %llx < server's %llx, missing %llx\n", 2004 ENTITY_NAME(con->peer_name), 2005 ceph_pr_addr(&con->peer_addr.in_addr), 2006 sup_feat, server_feat, server_feat & ~sup_feat); 2007 con->error_msg = "missing required protocol features"; 2008 reset_connection(con); 2009 return -1; 2010 2011 case CEPH_MSGR_TAG_BADPROTOVER: 2012 pr_err("%s%lld %s protocol version mismatch," 2013 " my %d != server's %d\n", 2014 ENTITY_NAME(con->peer_name), 2015 ceph_pr_addr(&con->peer_addr.in_addr), 2016 le32_to_cpu(con->out_connect.protocol_version), 2017 le32_to_cpu(con->in_reply.protocol_version)); 2018 con->error_msg = "protocol version mismatch"; 2019 reset_connection(con); 2020 return -1; 2021 2022 case CEPH_MSGR_TAG_BADAUTHORIZER: 2023 con->auth_retry++; 2024 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2025 con->auth_retry); 2026 if (con->auth_retry == 2) { 2027 con->error_msg = "connect authorization failure"; 2028 return -1; 2029 } 2030 con_out_kvec_reset(con); 2031 ret = prepare_write_connect(con); 2032 if (ret < 0) 2033 return ret; 2034 prepare_read_connect(con); 2035 break; 2036 2037 case CEPH_MSGR_TAG_RESETSESSION: 2038 /* 2039 * If we connected with a large connect_seq but the peer 2040 * has no record of a session with us (no connection, or 2041 * connect_seq == 0), they will send RESETSESION to indicate 2042 * that they must have reset their session, and may have 2043 * dropped messages. 2044 */ 2045 dout("process_connect got RESET peer seq %u\n", 2046 le32_to_cpu(con->in_reply.connect_seq)); 2047 pr_err("%s%lld %s connection reset\n", 2048 ENTITY_NAME(con->peer_name), 2049 ceph_pr_addr(&con->peer_addr.in_addr)); 2050 reset_connection(con); 2051 con_out_kvec_reset(con); 2052 ret = prepare_write_connect(con); 2053 if (ret < 0) 2054 return ret; 2055 prepare_read_connect(con); 2056 2057 /* Tell ceph about it. */ 2058 mutex_unlock(&con->mutex); 2059 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2060 if (con->ops->peer_reset) 2061 con->ops->peer_reset(con); 2062 mutex_lock(&con->mutex); 2063 if (con->state != CON_STATE_NEGOTIATING) 2064 return -EAGAIN; 2065 break; 2066 2067 case CEPH_MSGR_TAG_RETRY_SESSION: 2068 /* 2069 * If we sent a smaller connect_seq than the peer has, try 2070 * again with a larger value. 2071 */ 2072 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2073 le32_to_cpu(con->out_connect.connect_seq), 2074 le32_to_cpu(con->in_reply.connect_seq)); 2075 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2076 con_out_kvec_reset(con); 2077 ret = prepare_write_connect(con); 2078 if (ret < 0) 2079 return ret; 2080 prepare_read_connect(con); 2081 break; 2082 2083 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2084 /* 2085 * If we sent a smaller global_seq than the peer has, try 2086 * again with a larger value. 2087 */ 2088 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2089 con->peer_global_seq, 2090 le32_to_cpu(con->in_reply.global_seq)); 2091 get_global_seq(con->msgr, 2092 le32_to_cpu(con->in_reply.global_seq)); 2093 con_out_kvec_reset(con); 2094 ret = prepare_write_connect(con); 2095 if (ret < 0) 2096 return ret; 2097 prepare_read_connect(con); 2098 break; 2099 2100 case CEPH_MSGR_TAG_SEQ: 2101 case CEPH_MSGR_TAG_READY: 2102 if (req_feat & ~server_feat) { 2103 pr_err("%s%lld %s protocol feature mismatch," 2104 " my required %llx > server's %llx, need %llx\n", 2105 ENTITY_NAME(con->peer_name), 2106 ceph_pr_addr(&con->peer_addr.in_addr), 2107 req_feat, server_feat, req_feat & ~server_feat); 2108 con->error_msg = "missing required protocol features"; 2109 reset_connection(con); 2110 return -1; 2111 } 2112 2113 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2114 con->state = CON_STATE_OPEN; 2115 con->auth_retry = 0; /* we authenticated; clear flag */ 2116 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2117 con->connect_seq++; 2118 con->peer_features = server_feat; 2119 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2120 con->peer_global_seq, 2121 le32_to_cpu(con->in_reply.connect_seq), 2122 con->connect_seq); 2123 WARN_ON(con->connect_seq != 2124 le32_to_cpu(con->in_reply.connect_seq)); 2125 2126 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2127 con_flag_set(con, CON_FLAG_LOSSYTX); 2128 2129 con->delay = 0; /* reset backoff memory */ 2130 2131 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2132 prepare_write_seq(con); 2133 prepare_read_seq(con); 2134 } else { 2135 prepare_read_tag(con); 2136 } 2137 break; 2138 2139 case CEPH_MSGR_TAG_WAIT: 2140 /* 2141 * If there is a connection race (we are opening 2142 * connections to each other), one of us may just have 2143 * to WAIT. This shouldn't happen if we are the 2144 * client. 2145 */ 2146 con->error_msg = "protocol error, got WAIT as client"; 2147 return -1; 2148 2149 default: 2150 con->error_msg = "protocol error, garbage tag during connect"; 2151 return -1; 2152 } 2153 return 0; 2154 } 2155 2156 2157 /* 2158 * read (part of) an ack 2159 */ 2160 static int read_partial_ack(struct ceph_connection *con) 2161 { 2162 int size = sizeof (con->in_temp_ack); 2163 int end = size; 2164 2165 return read_partial(con, end, size, &con->in_temp_ack); 2166 } 2167 2168 /* 2169 * We can finally discard anything that's been acked. 2170 */ 2171 static void process_ack(struct ceph_connection *con) 2172 { 2173 struct ceph_msg *m; 2174 u64 ack = le64_to_cpu(con->in_temp_ack); 2175 u64 seq; 2176 2177 while (!list_empty(&con->out_sent)) { 2178 m = list_first_entry(&con->out_sent, struct ceph_msg, 2179 list_head); 2180 seq = le64_to_cpu(m->hdr.seq); 2181 if (seq > ack) 2182 break; 2183 dout("got ack for seq %llu type %d at %p\n", seq, 2184 le16_to_cpu(m->hdr.type), m); 2185 m->ack_stamp = jiffies; 2186 ceph_msg_remove(m); 2187 } 2188 prepare_read_tag(con); 2189 } 2190 2191 2192 static int read_partial_message_section(struct ceph_connection *con, 2193 struct kvec *section, 2194 unsigned int sec_len, u32 *crc) 2195 { 2196 int ret, left; 2197 2198 BUG_ON(!section); 2199 2200 while (section->iov_len < sec_len) { 2201 BUG_ON(section->iov_base == NULL); 2202 left = sec_len - section->iov_len; 2203 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2204 section->iov_len, left); 2205 if (ret <= 0) 2206 return ret; 2207 section->iov_len += ret; 2208 } 2209 if (section->iov_len == sec_len) 2210 *crc = crc32c(0, section->iov_base, section->iov_len); 2211 2212 return 1; 2213 } 2214 2215 static int read_partial_msg_data(struct ceph_connection *con) 2216 { 2217 struct ceph_msg *msg = con->in_msg; 2218 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2219 const bool do_datacrc = !con->msgr->nocrc; 2220 struct page *page; 2221 size_t page_offset; 2222 size_t length; 2223 u32 crc = 0; 2224 int ret; 2225 2226 BUG_ON(!msg); 2227 if (list_empty(&msg->data)) 2228 return -EIO; 2229 2230 if (do_datacrc) 2231 crc = con->in_data_crc; 2232 while (cursor->resid) { 2233 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2234 NULL); 2235 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2236 if (ret <= 0) { 2237 if (do_datacrc) 2238 con->in_data_crc = crc; 2239 2240 return ret; 2241 } 2242 2243 if (do_datacrc) 2244 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2245 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2246 } 2247 if (do_datacrc) 2248 con->in_data_crc = crc; 2249 2250 return 1; /* must return > 0 to indicate success */ 2251 } 2252 2253 /* 2254 * read (part of) a message. 2255 */ 2256 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2257 2258 static int read_partial_message(struct ceph_connection *con) 2259 { 2260 struct ceph_msg *m = con->in_msg; 2261 int size; 2262 int end; 2263 int ret; 2264 unsigned int front_len, middle_len, data_len; 2265 bool do_datacrc = !con->msgr->nocrc; 2266 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2267 u64 seq; 2268 u32 crc; 2269 2270 dout("read_partial_message con %p msg %p\n", con, m); 2271 2272 /* header */ 2273 size = sizeof (con->in_hdr); 2274 end = size; 2275 ret = read_partial(con, end, size, &con->in_hdr); 2276 if (ret <= 0) 2277 return ret; 2278 2279 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2280 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2281 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2282 crc, con->in_hdr.crc); 2283 return -EBADMSG; 2284 } 2285 2286 front_len = le32_to_cpu(con->in_hdr.front_len); 2287 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2288 return -EIO; 2289 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2290 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2291 return -EIO; 2292 data_len = le32_to_cpu(con->in_hdr.data_len); 2293 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2294 return -EIO; 2295 2296 /* verify seq# */ 2297 seq = le64_to_cpu(con->in_hdr.seq); 2298 if ((s64)seq - (s64)con->in_seq < 1) { 2299 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2300 ENTITY_NAME(con->peer_name), 2301 ceph_pr_addr(&con->peer_addr.in_addr), 2302 seq, con->in_seq + 1); 2303 con->in_base_pos = -front_len - middle_len - data_len - 2304 sizeof(m->footer); 2305 con->in_tag = CEPH_MSGR_TAG_READY; 2306 return 0; 2307 } else if ((s64)seq - (s64)con->in_seq > 1) { 2308 pr_err("read_partial_message bad seq %lld expected %lld\n", 2309 seq, con->in_seq + 1); 2310 con->error_msg = "bad message sequence # for incoming message"; 2311 return -EBADE; 2312 } 2313 2314 /* allocate message? */ 2315 if (!con->in_msg) { 2316 int skip = 0; 2317 2318 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2319 front_len, data_len); 2320 ret = ceph_con_in_msg_alloc(con, &skip); 2321 if (ret < 0) 2322 return ret; 2323 2324 BUG_ON(!con->in_msg ^ skip); 2325 if (con->in_msg && data_len > con->in_msg->data_length) { 2326 pr_warn("%s skipping long message (%u > %zd)\n", 2327 __func__, data_len, con->in_msg->data_length); 2328 ceph_msg_put(con->in_msg); 2329 con->in_msg = NULL; 2330 skip = 1; 2331 } 2332 if (skip) { 2333 /* skip this message */ 2334 dout("alloc_msg said skip message\n"); 2335 con->in_base_pos = -front_len - middle_len - data_len - 2336 sizeof(m->footer); 2337 con->in_tag = CEPH_MSGR_TAG_READY; 2338 con->in_seq++; 2339 return 0; 2340 } 2341 2342 BUG_ON(!con->in_msg); 2343 BUG_ON(con->in_msg->con != con); 2344 m = con->in_msg; 2345 m->front.iov_len = 0; /* haven't read it yet */ 2346 if (m->middle) 2347 m->middle->vec.iov_len = 0; 2348 2349 /* prepare for data payload, if any */ 2350 2351 if (data_len) 2352 prepare_message_data(con->in_msg, data_len); 2353 } 2354 2355 /* front */ 2356 ret = read_partial_message_section(con, &m->front, front_len, 2357 &con->in_front_crc); 2358 if (ret <= 0) 2359 return ret; 2360 2361 /* middle */ 2362 if (m->middle) { 2363 ret = read_partial_message_section(con, &m->middle->vec, 2364 middle_len, 2365 &con->in_middle_crc); 2366 if (ret <= 0) 2367 return ret; 2368 } 2369 2370 /* (page) data */ 2371 if (data_len) { 2372 ret = read_partial_msg_data(con); 2373 if (ret <= 0) 2374 return ret; 2375 } 2376 2377 /* footer */ 2378 if (need_sign) 2379 size = sizeof(m->footer); 2380 else 2381 size = sizeof(m->old_footer); 2382 2383 end += size; 2384 ret = read_partial(con, end, size, &m->footer); 2385 if (ret <= 0) 2386 return ret; 2387 2388 if (!need_sign) { 2389 m->footer.flags = m->old_footer.flags; 2390 m->footer.sig = 0; 2391 } 2392 2393 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2394 m, front_len, m->footer.front_crc, middle_len, 2395 m->footer.middle_crc, data_len, m->footer.data_crc); 2396 2397 /* crc ok? */ 2398 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2399 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2400 m, con->in_front_crc, m->footer.front_crc); 2401 return -EBADMSG; 2402 } 2403 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2404 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2405 m, con->in_middle_crc, m->footer.middle_crc); 2406 return -EBADMSG; 2407 } 2408 if (do_datacrc && 2409 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2410 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2411 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2412 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2413 return -EBADMSG; 2414 } 2415 2416 if (need_sign && con->ops->check_message_signature && 2417 con->ops->check_message_signature(con, m)) { 2418 pr_err("read_partial_message %p signature check failed\n", m); 2419 return -EBADMSG; 2420 } 2421 2422 return 1; /* done! */ 2423 } 2424 2425 /* 2426 * Process message. This happens in the worker thread. The callback should 2427 * be careful not to do anything that waits on other incoming messages or it 2428 * may deadlock. 2429 */ 2430 static void process_message(struct ceph_connection *con) 2431 { 2432 struct ceph_msg *msg; 2433 2434 BUG_ON(con->in_msg->con != con); 2435 con->in_msg->con = NULL; 2436 msg = con->in_msg; 2437 con->in_msg = NULL; 2438 con->ops->put(con); 2439 2440 /* if first message, set peer_name */ 2441 if (con->peer_name.type == 0) 2442 con->peer_name = msg->hdr.src; 2443 2444 con->in_seq++; 2445 mutex_unlock(&con->mutex); 2446 2447 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2448 msg, le64_to_cpu(msg->hdr.seq), 2449 ENTITY_NAME(msg->hdr.src), 2450 le16_to_cpu(msg->hdr.type), 2451 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2452 le32_to_cpu(msg->hdr.front_len), 2453 le32_to_cpu(msg->hdr.data_len), 2454 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2455 con->ops->dispatch(con, msg); 2456 2457 mutex_lock(&con->mutex); 2458 } 2459 2460 2461 /* 2462 * Write something to the socket. Called in a worker thread when the 2463 * socket appears to be writeable and we have something ready to send. 2464 */ 2465 static int try_write(struct ceph_connection *con) 2466 { 2467 int ret = 1; 2468 2469 dout("try_write start %p state %lu\n", con, con->state); 2470 2471 more: 2472 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2473 2474 /* open the socket first? */ 2475 if (con->state == CON_STATE_PREOPEN) { 2476 BUG_ON(con->sock); 2477 con->state = CON_STATE_CONNECTING; 2478 2479 con_out_kvec_reset(con); 2480 prepare_write_banner(con); 2481 prepare_read_banner(con); 2482 2483 BUG_ON(con->in_msg); 2484 con->in_tag = CEPH_MSGR_TAG_READY; 2485 dout("try_write initiating connect on %p new state %lu\n", 2486 con, con->state); 2487 ret = ceph_tcp_connect(con); 2488 if (ret < 0) { 2489 con->error_msg = "connect error"; 2490 goto out; 2491 } 2492 } 2493 2494 more_kvec: 2495 /* kvec data queued? */ 2496 if (con->out_skip) { 2497 ret = write_partial_skip(con); 2498 if (ret <= 0) 2499 goto out; 2500 } 2501 if (con->out_kvec_left) { 2502 ret = write_partial_kvec(con); 2503 if (ret <= 0) 2504 goto out; 2505 } 2506 2507 /* msg pages? */ 2508 if (con->out_msg) { 2509 if (con->out_msg_done) { 2510 ceph_msg_put(con->out_msg); 2511 con->out_msg = NULL; /* we're done with this one */ 2512 goto do_next; 2513 } 2514 2515 ret = write_partial_message_data(con); 2516 if (ret == 1) 2517 goto more_kvec; /* we need to send the footer, too! */ 2518 if (ret == 0) 2519 goto out; 2520 if (ret < 0) { 2521 dout("try_write write_partial_message_data err %d\n", 2522 ret); 2523 goto out; 2524 } 2525 } 2526 2527 do_next: 2528 if (con->state == CON_STATE_OPEN) { 2529 /* is anything else pending? */ 2530 if (!list_empty(&con->out_queue)) { 2531 prepare_write_message(con); 2532 goto more; 2533 } 2534 if (con->in_seq > con->in_seq_acked) { 2535 prepare_write_ack(con); 2536 goto more; 2537 } 2538 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2539 prepare_write_keepalive(con); 2540 goto more; 2541 } 2542 } 2543 2544 /* Nothing to do! */ 2545 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2546 dout("try_write nothing else to write.\n"); 2547 ret = 0; 2548 out: 2549 dout("try_write done on %p ret %d\n", con, ret); 2550 return ret; 2551 } 2552 2553 2554 2555 /* 2556 * Read what we can from the socket. 2557 */ 2558 static int try_read(struct ceph_connection *con) 2559 { 2560 int ret = -1; 2561 2562 more: 2563 dout("try_read start on %p state %lu\n", con, con->state); 2564 if (con->state != CON_STATE_CONNECTING && 2565 con->state != CON_STATE_NEGOTIATING && 2566 con->state != CON_STATE_OPEN) 2567 return 0; 2568 2569 BUG_ON(!con->sock); 2570 2571 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2572 con->in_base_pos); 2573 2574 if (con->state == CON_STATE_CONNECTING) { 2575 dout("try_read connecting\n"); 2576 ret = read_partial_banner(con); 2577 if (ret <= 0) 2578 goto out; 2579 ret = process_banner(con); 2580 if (ret < 0) 2581 goto out; 2582 2583 con->state = CON_STATE_NEGOTIATING; 2584 2585 /* 2586 * Received banner is good, exchange connection info. 2587 * Do not reset out_kvec, as sending our banner raced 2588 * with receiving peer banner after connect completed. 2589 */ 2590 ret = prepare_write_connect(con); 2591 if (ret < 0) 2592 goto out; 2593 prepare_read_connect(con); 2594 2595 /* Send connection info before awaiting response */ 2596 goto out; 2597 } 2598 2599 if (con->state == CON_STATE_NEGOTIATING) { 2600 dout("try_read negotiating\n"); 2601 ret = read_partial_connect(con); 2602 if (ret <= 0) 2603 goto out; 2604 ret = process_connect(con); 2605 if (ret < 0) 2606 goto out; 2607 goto more; 2608 } 2609 2610 WARN_ON(con->state != CON_STATE_OPEN); 2611 2612 if (con->in_base_pos < 0) { 2613 /* 2614 * skipping + discarding content. 2615 * 2616 * FIXME: there must be a better way to do this! 2617 */ 2618 static char buf[SKIP_BUF_SIZE]; 2619 int skip = min((int) sizeof (buf), -con->in_base_pos); 2620 2621 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2622 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2623 if (ret <= 0) 2624 goto out; 2625 con->in_base_pos += ret; 2626 if (con->in_base_pos) 2627 goto more; 2628 } 2629 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2630 /* 2631 * what's next? 2632 */ 2633 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2634 if (ret <= 0) 2635 goto out; 2636 dout("try_read got tag %d\n", (int)con->in_tag); 2637 switch (con->in_tag) { 2638 case CEPH_MSGR_TAG_MSG: 2639 prepare_read_message(con); 2640 break; 2641 case CEPH_MSGR_TAG_ACK: 2642 prepare_read_ack(con); 2643 break; 2644 case CEPH_MSGR_TAG_CLOSE: 2645 con_close_socket(con); 2646 con->state = CON_STATE_CLOSED; 2647 goto out; 2648 default: 2649 goto bad_tag; 2650 } 2651 } 2652 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2653 ret = read_partial_message(con); 2654 if (ret <= 0) { 2655 switch (ret) { 2656 case -EBADMSG: 2657 con->error_msg = "bad crc"; 2658 /* fall through */ 2659 case -EBADE: 2660 ret = -EIO; 2661 break; 2662 case -EIO: 2663 con->error_msg = "io error"; 2664 break; 2665 } 2666 goto out; 2667 } 2668 if (con->in_tag == CEPH_MSGR_TAG_READY) 2669 goto more; 2670 process_message(con); 2671 if (con->state == CON_STATE_OPEN) 2672 prepare_read_tag(con); 2673 goto more; 2674 } 2675 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2676 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2677 /* 2678 * the final handshake seq exchange is semantically 2679 * equivalent to an ACK 2680 */ 2681 ret = read_partial_ack(con); 2682 if (ret <= 0) 2683 goto out; 2684 process_ack(con); 2685 goto more; 2686 } 2687 2688 out: 2689 dout("try_read done on %p ret %d\n", con, ret); 2690 return ret; 2691 2692 bad_tag: 2693 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2694 con->error_msg = "protocol error, garbage tag"; 2695 ret = -1; 2696 goto out; 2697 } 2698 2699 2700 /* 2701 * Atomically queue work on a connection after the specified delay. 2702 * Bump @con reference to avoid races with connection teardown. 2703 * Returns 0 if work was queued, or an error code otherwise. 2704 */ 2705 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2706 { 2707 if (!con->ops->get(con)) { 2708 dout("%s %p ref count 0\n", __func__, con); 2709 return -ENOENT; 2710 } 2711 2712 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2713 dout("%s %p - already queued\n", __func__, con); 2714 con->ops->put(con); 2715 return -EBUSY; 2716 } 2717 2718 dout("%s %p %lu\n", __func__, con, delay); 2719 return 0; 2720 } 2721 2722 static void queue_con(struct ceph_connection *con) 2723 { 2724 (void) queue_con_delay(con, 0); 2725 } 2726 2727 static void cancel_con(struct ceph_connection *con) 2728 { 2729 if (cancel_delayed_work(&con->work)) { 2730 dout("%s %p\n", __func__, con); 2731 con->ops->put(con); 2732 } 2733 } 2734 2735 static bool con_sock_closed(struct ceph_connection *con) 2736 { 2737 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2738 return false; 2739 2740 #define CASE(x) \ 2741 case CON_STATE_ ## x: \ 2742 con->error_msg = "socket closed (con state " #x ")"; \ 2743 break; 2744 2745 switch (con->state) { 2746 CASE(CLOSED); 2747 CASE(PREOPEN); 2748 CASE(CONNECTING); 2749 CASE(NEGOTIATING); 2750 CASE(OPEN); 2751 CASE(STANDBY); 2752 default: 2753 pr_warn("%s con %p unrecognized state %lu\n", 2754 __func__, con, con->state); 2755 con->error_msg = "unrecognized con state"; 2756 BUG(); 2757 break; 2758 } 2759 #undef CASE 2760 2761 return true; 2762 } 2763 2764 static bool con_backoff(struct ceph_connection *con) 2765 { 2766 int ret; 2767 2768 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2769 return false; 2770 2771 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2772 if (ret) { 2773 dout("%s: con %p FAILED to back off %lu\n", __func__, 2774 con, con->delay); 2775 BUG_ON(ret == -ENOENT); 2776 con_flag_set(con, CON_FLAG_BACKOFF); 2777 } 2778 2779 return true; 2780 } 2781 2782 /* Finish fault handling; con->mutex must *not* be held here */ 2783 2784 static void con_fault_finish(struct ceph_connection *con) 2785 { 2786 /* 2787 * in case we faulted due to authentication, invalidate our 2788 * current tickets so that we can get new ones. 2789 */ 2790 if (con->auth_retry && con->ops->invalidate_authorizer) { 2791 dout("calling invalidate_authorizer()\n"); 2792 con->ops->invalidate_authorizer(con); 2793 } 2794 2795 if (con->ops->fault) 2796 con->ops->fault(con); 2797 } 2798 2799 /* 2800 * Do some work on a connection. Drop a connection ref when we're done. 2801 */ 2802 static void con_work(struct work_struct *work) 2803 { 2804 struct ceph_connection *con = container_of(work, struct ceph_connection, 2805 work.work); 2806 bool fault; 2807 2808 mutex_lock(&con->mutex); 2809 while (true) { 2810 int ret; 2811 2812 if ((fault = con_sock_closed(con))) { 2813 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2814 break; 2815 } 2816 if (con_backoff(con)) { 2817 dout("%s: con %p BACKOFF\n", __func__, con); 2818 break; 2819 } 2820 if (con->state == CON_STATE_STANDBY) { 2821 dout("%s: con %p STANDBY\n", __func__, con); 2822 break; 2823 } 2824 if (con->state == CON_STATE_CLOSED) { 2825 dout("%s: con %p CLOSED\n", __func__, con); 2826 BUG_ON(con->sock); 2827 break; 2828 } 2829 if (con->state == CON_STATE_PREOPEN) { 2830 dout("%s: con %p PREOPEN\n", __func__, con); 2831 BUG_ON(con->sock); 2832 } 2833 2834 ret = try_read(con); 2835 if (ret < 0) { 2836 if (ret == -EAGAIN) 2837 continue; 2838 if (!con->error_msg) 2839 con->error_msg = "socket error on read"; 2840 fault = true; 2841 break; 2842 } 2843 2844 ret = try_write(con); 2845 if (ret < 0) { 2846 if (ret == -EAGAIN) 2847 continue; 2848 if (!con->error_msg) 2849 con->error_msg = "socket error on write"; 2850 fault = true; 2851 } 2852 2853 break; /* If we make it to here, we're done */ 2854 } 2855 if (fault) 2856 con_fault(con); 2857 mutex_unlock(&con->mutex); 2858 2859 if (fault) 2860 con_fault_finish(con); 2861 2862 con->ops->put(con); 2863 } 2864 2865 /* 2866 * Generic error/fault handler. A retry mechanism is used with 2867 * exponential backoff 2868 */ 2869 static void con_fault(struct ceph_connection *con) 2870 { 2871 dout("fault %p state %lu to peer %s\n", 2872 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2873 2874 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2875 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2876 con->error_msg = NULL; 2877 2878 WARN_ON(con->state != CON_STATE_CONNECTING && 2879 con->state != CON_STATE_NEGOTIATING && 2880 con->state != CON_STATE_OPEN); 2881 2882 con_close_socket(con); 2883 2884 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2885 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2886 con->state = CON_STATE_CLOSED; 2887 return; 2888 } 2889 2890 if (con->in_msg) { 2891 BUG_ON(con->in_msg->con != con); 2892 con->in_msg->con = NULL; 2893 ceph_msg_put(con->in_msg); 2894 con->in_msg = NULL; 2895 con->ops->put(con); 2896 } 2897 2898 /* Requeue anything that hasn't been acked */ 2899 list_splice_init(&con->out_sent, &con->out_queue); 2900 2901 /* If there are no messages queued or keepalive pending, place 2902 * the connection in a STANDBY state */ 2903 if (list_empty(&con->out_queue) && 2904 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2905 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2906 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2907 con->state = CON_STATE_STANDBY; 2908 } else { 2909 /* retry after a delay. */ 2910 con->state = CON_STATE_PREOPEN; 2911 if (con->delay == 0) 2912 con->delay = BASE_DELAY_INTERVAL; 2913 else if (con->delay < MAX_DELAY_INTERVAL) 2914 con->delay *= 2; 2915 con_flag_set(con, CON_FLAG_BACKOFF); 2916 queue_con(con); 2917 } 2918 } 2919 2920 2921 2922 /* 2923 * initialize a new messenger instance 2924 */ 2925 void ceph_messenger_init(struct ceph_messenger *msgr, 2926 struct ceph_entity_addr *myaddr, 2927 u64 supported_features, 2928 u64 required_features, 2929 bool nocrc, 2930 bool tcp_nodelay) 2931 { 2932 msgr->supported_features = supported_features; 2933 msgr->required_features = required_features; 2934 2935 spin_lock_init(&msgr->global_seq_lock); 2936 2937 if (myaddr) 2938 msgr->inst.addr = *myaddr; 2939 2940 /* select a random nonce */ 2941 msgr->inst.addr.type = 0; 2942 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2943 encode_my_addr(msgr); 2944 msgr->nocrc = nocrc; 2945 msgr->tcp_nodelay = tcp_nodelay; 2946 2947 atomic_set(&msgr->stopping, 0); 2948 2949 dout("%s %p\n", __func__, msgr); 2950 } 2951 EXPORT_SYMBOL(ceph_messenger_init); 2952 2953 static void clear_standby(struct ceph_connection *con) 2954 { 2955 /* come back from STANDBY? */ 2956 if (con->state == CON_STATE_STANDBY) { 2957 dout("clear_standby %p and ++connect_seq\n", con); 2958 con->state = CON_STATE_PREOPEN; 2959 con->connect_seq++; 2960 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2961 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2962 } 2963 } 2964 2965 /* 2966 * Queue up an outgoing message on the given connection. 2967 */ 2968 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2969 { 2970 /* set src+dst */ 2971 msg->hdr.src = con->msgr->inst.name; 2972 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2973 msg->needs_out_seq = true; 2974 2975 mutex_lock(&con->mutex); 2976 2977 if (con->state == CON_STATE_CLOSED) { 2978 dout("con_send %p closed, dropping %p\n", con, msg); 2979 ceph_msg_put(msg); 2980 mutex_unlock(&con->mutex); 2981 return; 2982 } 2983 2984 BUG_ON(msg->con != NULL); 2985 msg->con = con->ops->get(con); 2986 BUG_ON(msg->con == NULL); 2987 2988 BUG_ON(!list_empty(&msg->list_head)); 2989 list_add_tail(&msg->list_head, &con->out_queue); 2990 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2991 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2992 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2993 le32_to_cpu(msg->hdr.front_len), 2994 le32_to_cpu(msg->hdr.middle_len), 2995 le32_to_cpu(msg->hdr.data_len)); 2996 2997 clear_standby(con); 2998 mutex_unlock(&con->mutex); 2999 3000 /* if there wasn't anything waiting to send before, queue 3001 * new work */ 3002 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3003 queue_con(con); 3004 } 3005 EXPORT_SYMBOL(ceph_con_send); 3006 3007 /* 3008 * Revoke a message that was previously queued for send 3009 */ 3010 void ceph_msg_revoke(struct ceph_msg *msg) 3011 { 3012 struct ceph_connection *con = msg->con; 3013 3014 if (!con) 3015 return; /* Message not in our possession */ 3016 3017 mutex_lock(&con->mutex); 3018 if (!list_empty(&msg->list_head)) { 3019 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3020 list_del_init(&msg->list_head); 3021 BUG_ON(msg->con == NULL); 3022 msg->con->ops->put(msg->con); 3023 msg->con = NULL; 3024 msg->hdr.seq = 0; 3025 3026 ceph_msg_put(msg); 3027 } 3028 if (con->out_msg == msg) { 3029 dout("%s %p msg %p - was sending\n", __func__, con, msg); 3030 con->out_msg = NULL; 3031 if (con->out_kvec_is_msg) { 3032 con->out_skip = con->out_kvec_bytes; 3033 con->out_kvec_is_msg = false; 3034 } 3035 msg->hdr.seq = 0; 3036 3037 ceph_msg_put(msg); 3038 } 3039 mutex_unlock(&con->mutex); 3040 } 3041 3042 /* 3043 * Revoke a message that we may be reading data into 3044 */ 3045 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3046 { 3047 struct ceph_connection *con; 3048 3049 BUG_ON(msg == NULL); 3050 if (!msg->con) { 3051 dout("%s msg %p null con\n", __func__, msg); 3052 3053 return; /* Message not in our possession */ 3054 } 3055 3056 con = msg->con; 3057 mutex_lock(&con->mutex); 3058 if (con->in_msg == msg) { 3059 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3060 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3061 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3062 3063 /* skip rest of message */ 3064 dout("%s %p msg %p revoked\n", __func__, con, msg); 3065 con->in_base_pos = con->in_base_pos - 3066 sizeof(struct ceph_msg_header) - 3067 front_len - 3068 middle_len - 3069 data_len - 3070 sizeof(struct ceph_msg_footer); 3071 ceph_msg_put(con->in_msg); 3072 con->in_msg = NULL; 3073 con->in_tag = CEPH_MSGR_TAG_READY; 3074 con->in_seq++; 3075 } else { 3076 dout("%s %p in_msg %p msg %p no-op\n", 3077 __func__, con, con->in_msg, msg); 3078 } 3079 mutex_unlock(&con->mutex); 3080 } 3081 3082 /* 3083 * Queue a keepalive byte to ensure the tcp connection is alive. 3084 */ 3085 void ceph_con_keepalive(struct ceph_connection *con) 3086 { 3087 dout("con_keepalive %p\n", con); 3088 mutex_lock(&con->mutex); 3089 clear_standby(con); 3090 mutex_unlock(&con->mutex); 3091 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3092 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3093 queue_con(con); 3094 } 3095 EXPORT_SYMBOL(ceph_con_keepalive); 3096 3097 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3098 { 3099 struct ceph_msg_data *data; 3100 3101 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3102 return NULL; 3103 3104 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3105 if (data) 3106 data->type = type; 3107 INIT_LIST_HEAD(&data->links); 3108 3109 return data; 3110 } 3111 3112 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3113 { 3114 if (!data) 3115 return; 3116 3117 WARN_ON(!list_empty(&data->links)); 3118 if (data->type == CEPH_MSG_DATA_PAGELIST) 3119 ceph_pagelist_release(data->pagelist); 3120 kmem_cache_free(ceph_msg_data_cache, data); 3121 } 3122 3123 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3124 size_t length, size_t alignment) 3125 { 3126 struct ceph_msg_data *data; 3127 3128 BUG_ON(!pages); 3129 BUG_ON(!length); 3130 3131 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3132 BUG_ON(!data); 3133 data->pages = pages; 3134 data->length = length; 3135 data->alignment = alignment & ~PAGE_MASK; 3136 3137 list_add_tail(&data->links, &msg->data); 3138 msg->data_length += length; 3139 } 3140 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3141 3142 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3143 struct ceph_pagelist *pagelist) 3144 { 3145 struct ceph_msg_data *data; 3146 3147 BUG_ON(!pagelist); 3148 BUG_ON(!pagelist->length); 3149 3150 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3151 BUG_ON(!data); 3152 data->pagelist = pagelist; 3153 3154 list_add_tail(&data->links, &msg->data); 3155 msg->data_length += pagelist->length; 3156 } 3157 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3158 3159 #ifdef CONFIG_BLOCK 3160 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3161 size_t length) 3162 { 3163 struct ceph_msg_data *data; 3164 3165 BUG_ON(!bio); 3166 3167 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3168 BUG_ON(!data); 3169 data->bio = bio; 3170 data->bio_length = length; 3171 3172 list_add_tail(&data->links, &msg->data); 3173 msg->data_length += length; 3174 } 3175 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3176 #endif /* CONFIG_BLOCK */ 3177 3178 /* 3179 * construct a new message with given type, size 3180 * the new msg has a ref count of 1. 3181 */ 3182 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3183 bool can_fail) 3184 { 3185 struct ceph_msg *m; 3186 3187 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3188 if (m == NULL) 3189 goto out; 3190 3191 m->hdr.type = cpu_to_le16(type); 3192 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3193 m->hdr.front_len = cpu_to_le32(front_len); 3194 3195 INIT_LIST_HEAD(&m->list_head); 3196 kref_init(&m->kref); 3197 INIT_LIST_HEAD(&m->data); 3198 3199 /* front */ 3200 if (front_len) { 3201 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3202 if (m->front.iov_base == NULL) { 3203 dout("ceph_msg_new can't allocate %d bytes\n", 3204 front_len); 3205 goto out2; 3206 } 3207 } else { 3208 m->front.iov_base = NULL; 3209 } 3210 m->front_alloc_len = m->front.iov_len = front_len; 3211 3212 dout("ceph_msg_new %p front %d\n", m, front_len); 3213 return m; 3214 3215 out2: 3216 ceph_msg_put(m); 3217 out: 3218 if (!can_fail) { 3219 pr_err("msg_new can't create type %d front %d\n", type, 3220 front_len); 3221 WARN_ON(1); 3222 } else { 3223 dout("msg_new can't create type %d front %d\n", type, 3224 front_len); 3225 } 3226 return NULL; 3227 } 3228 EXPORT_SYMBOL(ceph_msg_new); 3229 3230 /* 3231 * Allocate "middle" portion of a message, if it is needed and wasn't 3232 * allocated by alloc_msg. This allows us to read a small fixed-size 3233 * per-type header in the front and then gracefully fail (i.e., 3234 * propagate the error to the caller based on info in the front) when 3235 * the middle is too large. 3236 */ 3237 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3238 { 3239 int type = le16_to_cpu(msg->hdr.type); 3240 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3241 3242 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3243 ceph_msg_type_name(type), middle_len); 3244 BUG_ON(!middle_len); 3245 BUG_ON(msg->middle); 3246 3247 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3248 if (!msg->middle) 3249 return -ENOMEM; 3250 return 0; 3251 } 3252 3253 /* 3254 * Allocate a message for receiving an incoming message on a 3255 * connection, and save the result in con->in_msg. Uses the 3256 * connection's private alloc_msg op if available. 3257 * 3258 * Returns 0 on success, or a negative error code. 3259 * 3260 * On success, if we set *skip = 1: 3261 * - the next message should be skipped and ignored. 3262 * - con->in_msg == NULL 3263 * or if we set *skip = 0: 3264 * - con->in_msg is non-null. 3265 * On error (ENOMEM, EAGAIN, ...), 3266 * - con->in_msg == NULL 3267 */ 3268 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3269 { 3270 struct ceph_msg_header *hdr = &con->in_hdr; 3271 int middle_len = le32_to_cpu(hdr->middle_len); 3272 struct ceph_msg *msg; 3273 int ret = 0; 3274 3275 BUG_ON(con->in_msg != NULL); 3276 BUG_ON(!con->ops->alloc_msg); 3277 3278 mutex_unlock(&con->mutex); 3279 msg = con->ops->alloc_msg(con, hdr, skip); 3280 mutex_lock(&con->mutex); 3281 if (con->state != CON_STATE_OPEN) { 3282 if (msg) 3283 ceph_msg_put(msg); 3284 return -EAGAIN; 3285 } 3286 if (msg) { 3287 BUG_ON(*skip); 3288 con->in_msg = msg; 3289 con->in_msg->con = con->ops->get(con); 3290 BUG_ON(con->in_msg->con == NULL); 3291 } else { 3292 /* 3293 * Null message pointer means either we should skip 3294 * this message or we couldn't allocate memory. The 3295 * former is not an error. 3296 */ 3297 if (*skip) 3298 return 0; 3299 3300 con->error_msg = "error allocating memory for incoming message"; 3301 return -ENOMEM; 3302 } 3303 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3304 3305 if (middle_len && !con->in_msg->middle) { 3306 ret = ceph_alloc_middle(con, con->in_msg); 3307 if (ret < 0) { 3308 ceph_msg_put(con->in_msg); 3309 con->in_msg = NULL; 3310 } 3311 } 3312 3313 return ret; 3314 } 3315 3316 3317 /* 3318 * Free a generically kmalloc'd message. 3319 */ 3320 static void ceph_msg_free(struct ceph_msg *m) 3321 { 3322 dout("%s %p\n", __func__, m); 3323 kvfree(m->front.iov_base); 3324 kmem_cache_free(ceph_msg_cache, m); 3325 } 3326 3327 static void ceph_msg_release(struct kref *kref) 3328 { 3329 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3330 LIST_HEAD(data); 3331 struct list_head *links; 3332 struct list_head *next; 3333 3334 dout("%s %p\n", __func__, m); 3335 WARN_ON(!list_empty(&m->list_head)); 3336 3337 /* drop middle, data, if any */ 3338 if (m->middle) { 3339 ceph_buffer_put(m->middle); 3340 m->middle = NULL; 3341 } 3342 3343 list_splice_init(&m->data, &data); 3344 list_for_each_safe(links, next, &data) { 3345 struct ceph_msg_data *data; 3346 3347 data = list_entry(links, struct ceph_msg_data, links); 3348 list_del_init(links); 3349 ceph_msg_data_destroy(data); 3350 } 3351 m->data_length = 0; 3352 3353 if (m->pool) 3354 ceph_msgpool_put(m->pool, m); 3355 else 3356 ceph_msg_free(m); 3357 } 3358 3359 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3360 { 3361 dout("%s %p (was %d)\n", __func__, msg, 3362 atomic_read(&msg->kref.refcount)); 3363 kref_get(&msg->kref); 3364 return msg; 3365 } 3366 EXPORT_SYMBOL(ceph_msg_get); 3367 3368 void ceph_msg_put(struct ceph_msg *msg) 3369 { 3370 dout("%s %p (was %d)\n", __func__, msg, 3371 atomic_read(&msg->kref.refcount)); 3372 kref_put(&msg->kref, ceph_msg_release); 3373 } 3374 EXPORT_SYMBOL(ceph_msg_put); 3375 3376 void ceph_msg_dump(struct ceph_msg *msg) 3377 { 3378 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3379 msg->front_alloc_len, msg->data_length); 3380 print_hex_dump(KERN_DEBUG, "header: ", 3381 DUMP_PREFIX_OFFSET, 16, 1, 3382 &msg->hdr, sizeof(msg->hdr), true); 3383 print_hex_dump(KERN_DEBUG, " front: ", 3384 DUMP_PREFIX_OFFSET, 16, 1, 3385 msg->front.iov_base, msg->front.iov_len, true); 3386 if (msg->middle) 3387 print_hex_dump(KERN_DEBUG, "middle: ", 3388 DUMP_PREFIX_OFFSET, 16, 1, 3389 msg->middle->vec.iov_base, 3390 msg->middle->vec.iov_len, true); 3391 print_hex_dump(KERN_DEBUG, "footer: ", 3392 DUMP_PREFIX_OFFSET, 16, 1, 3393 &msg->footer, sizeof(msg->footer), true); 3394 } 3395 EXPORT_SYMBOL(ceph_msg_dump); 3396