xref: /openbmc/linux/net/ceph/messenger.c (revision cd5d5810)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23 
24 #define list_entry_next(pos, member)					\
25 	list_entry(pos->member.next, typeof(*pos), member)
26 
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35 
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77 
78 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
83 
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93 
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98 				       * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103 
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 	switch (con_flag) {
107 	case CON_FLAG_LOSSYTX:
108 	case CON_FLAG_KEEPALIVE_PENDING:
109 	case CON_FLAG_WRITE_PENDING:
110 	case CON_FLAG_SOCK_CLOSED:
111 	case CON_FLAG_BACKOFF:
112 		return true;
113 	default:
114 		return false;
115 	}
116 }
117 
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 	BUG_ON(!con_flag_valid(con_flag));
121 
122 	clear_bit(con_flag, &con->flags);
123 }
124 
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 	BUG_ON(!con_flag_valid(con_flag));
128 
129 	set_bit(con_flag, &con->flags);
130 }
131 
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 	BUG_ON(!con_flag_valid(con_flag));
135 
136 	return test_bit(con_flag, &con->flags);
137 }
138 
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 					unsigned long con_flag)
141 {
142 	BUG_ON(!con_flag_valid(con_flag));
143 
144 	return test_and_clear_bit(con_flag, &con->flags);
145 }
146 
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 					unsigned long con_flag)
149 {
150 	BUG_ON(!con_flag_valid(con_flag));
151 
152 	return test_and_set_bit(con_flag, &con->flags);
153 }
154 
155 /* Slab caches for frequently-allocated structures */
156 
157 static struct kmem_cache	*ceph_msg_cache;
158 static struct kmem_cache	*ceph_msg_data_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168 
169 /*
170  * When skipping (ignoring) a block of input we read it into a "skip
171  * buffer," which is this many bytes in size.
172  */
173 #define SKIP_BUF_SIZE	1024
174 
175 static void queue_con(struct ceph_connection *con);
176 static void con_work(struct work_struct *);
177 static void con_fault(struct ceph_connection *con);
178 
179 /*
180  * Nicely render a sockaddr as a string.  An array of formatted
181  * strings is used, to approximate reentrancy.
182  */
183 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
184 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
185 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
186 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
187 
188 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
189 static atomic_t addr_str_seq = ATOMIC_INIT(0);
190 
191 static struct page *zero_page;		/* used in certain error cases */
192 
193 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
194 {
195 	int i;
196 	char *s;
197 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
198 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
199 
200 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
201 	s = addr_str[i];
202 
203 	switch (ss->ss_family) {
204 	case AF_INET:
205 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
206 			 ntohs(in4->sin_port));
207 		break;
208 
209 	case AF_INET6:
210 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
211 			 ntohs(in6->sin6_port));
212 		break;
213 
214 	default:
215 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
216 			 ss->ss_family);
217 	}
218 
219 	return s;
220 }
221 EXPORT_SYMBOL(ceph_pr_addr);
222 
223 static void encode_my_addr(struct ceph_messenger *msgr)
224 {
225 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
226 	ceph_encode_addr(&msgr->my_enc_addr);
227 }
228 
229 /*
230  * work queue for all reading and writing to/from the socket.
231  */
232 static struct workqueue_struct *ceph_msgr_wq;
233 
234 static int ceph_msgr_slab_init(void)
235 {
236 	BUG_ON(ceph_msg_cache);
237 	ceph_msg_cache = kmem_cache_create("ceph_msg",
238 					sizeof (struct ceph_msg),
239 					__alignof__(struct ceph_msg), 0, NULL);
240 
241 	if (!ceph_msg_cache)
242 		return -ENOMEM;
243 
244 	BUG_ON(ceph_msg_data_cache);
245 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
246 					sizeof (struct ceph_msg_data),
247 					__alignof__(struct ceph_msg_data),
248 					0, NULL);
249 	if (ceph_msg_data_cache)
250 		return 0;
251 
252 	kmem_cache_destroy(ceph_msg_cache);
253 	ceph_msg_cache = NULL;
254 
255 	return -ENOMEM;
256 }
257 
258 static void ceph_msgr_slab_exit(void)
259 {
260 	BUG_ON(!ceph_msg_data_cache);
261 	kmem_cache_destroy(ceph_msg_data_cache);
262 	ceph_msg_data_cache = NULL;
263 
264 	BUG_ON(!ceph_msg_cache);
265 	kmem_cache_destroy(ceph_msg_cache);
266 	ceph_msg_cache = NULL;
267 }
268 
269 static void _ceph_msgr_exit(void)
270 {
271 	if (ceph_msgr_wq) {
272 		destroy_workqueue(ceph_msgr_wq);
273 		ceph_msgr_wq = NULL;
274 	}
275 
276 	ceph_msgr_slab_exit();
277 
278 	BUG_ON(zero_page == NULL);
279 	kunmap(zero_page);
280 	page_cache_release(zero_page);
281 	zero_page = NULL;
282 }
283 
284 int ceph_msgr_init(void)
285 {
286 	BUG_ON(zero_page != NULL);
287 	zero_page = ZERO_PAGE(0);
288 	page_cache_get(zero_page);
289 
290 	if (ceph_msgr_slab_init())
291 		return -ENOMEM;
292 
293 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
294 	if (ceph_msgr_wq)
295 		return 0;
296 
297 	pr_err("msgr_init failed to create workqueue\n");
298 	_ceph_msgr_exit();
299 
300 	return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303 
304 void ceph_msgr_exit(void)
305 {
306 	BUG_ON(ceph_msgr_wq == NULL);
307 
308 	_ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311 
312 void ceph_msgr_flush(void)
313 {
314 	flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317 
318 /* Connection socket state transition functions */
319 
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 	int old_state;
323 
324 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 		printk("%s: unexpected old state %d\n", __func__, old_state);
327 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 	     CON_SOCK_STATE_CLOSED);
329 }
330 
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 	int old_state;
334 
335 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 		printk("%s: unexpected old state %d\n", __func__, old_state);
338 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 	     CON_SOCK_STATE_CONNECTING);
340 }
341 
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 	int old_state;
345 
346 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 		printk("%s: unexpected old state %d\n", __func__, old_state);
349 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 	     CON_SOCK_STATE_CONNECTED);
351 }
352 
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 	int old_state;
356 
357 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 			old_state != CON_SOCK_STATE_CONNECTED &&
360 			old_state != CON_SOCK_STATE_CLOSING))
361 		printk("%s: unexpected old state %d\n", __func__, old_state);
362 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 	     CON_SOCK_STATE_CLOSING);
364 }
365 
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 	int old_state;
369 
370 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 		    old_state != CON_SOCK_STATE_CLOSING &&
373 		    old_state != CON_SOCK_STATE_CONNECTING &&
374 		    old_state != CON_SOCK_STATE_CLOSED))
375 		printk("%s: unexpected old state %d\n", __func__, old_state);
376 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 	     CON_SOCK_STATE_CLOSED);
378 }
379 
380 /*
381  * socket callback functions
382  */
383 
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
386 {
387 	struct ceph_connection *con = sk->sk_user_data;
388 	if (atomic_read(&con->msgr->stopping)) {
389 		return;
390 	}
391 
392 	if (sk->sk_state != TCP_CLOSE_WAIT) {
393 		dout("%s on %p state = %lu, queueing work\n", __func__,
394 		     con, con->state);
395 		queue_con(con);
396 	}
397 }
398 
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 	struct ceph_connection *con = sk->sk_user_data;
403 
404 	/* only queue to workqueue if there is data we want to write,
405 	 * and there is sufficient space in the socket buffer to accept
406 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
407 	 * doesn't get called again until try_write() fills the socket
408 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 	 * and net/core/stream.c:sk_stream_write_space().
410 	 */
411 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 		if (sk_stream_is_writeable(sk)) {
413 			dout("%s %p queueing write work\n", __func__, con);
414 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 			queue_con(con);
416 		}
417 	} else {
418 		dout("%s %p nothing to write\n", __func__, con);
419 	}
420 }
421 
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 	struct ceph_connection *con = sk->sk_user_data;
426 
427 	dout("%s %p state = %lu sk_state = %u\n", __func__,
428 	     con, con->state, sk->sk_state);
429 
430 	switch (sk->sk_state) {
431 	case TCP_CLOSE:
432 		dout("%s TCP_CLOSE\n", __func__);
433 	case TCP_CLOSE_WAIT:
434 		dout("%s TCP_CLOSE_WAIT\n", __func__);
435 		con_sock_state_closing(con);
436 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
437 		queue_con(con);
438 		break;
439 	case TCP_ESTABLISHED:
440 		dout("%s TCP_ESTABLISHED\n", __func__);
441 		con_sock_state_connected(con);
442 		queue_con(con);
443 		break;
444 	default:	/* Everything else is uninteresting */
445 		break;
446 	}
447 }
448 
449 /*
450  * set up socket callbacks
451  */
452 static void set_sock_callbacks(struct socket *sock,
453 			       struct ceph_connection *con)
454 {
455 	struct sock *sk = sock->sk;
456 	sk->sk_user_data = con;
457 	sk->sk_data_ready = ceph_sock_data_ready;
458 	sk->sk_write_space = ceph_sock_write_space;
459 	sk->sk_state_change = ceph_sock_state_change;
460 }
461 
462 
463 /*
464  * socket helpers
465  */
466 
467 /*
468  * initiate connection to a remote socket.
469  */
470 static int ceph_tcp_connect(struct ceph_connection *con)
471 {
472 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
473 	struct socket *sock;
474 	int ret;
475 
476 	BUG_ON(con->sock);
477 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
478 			       IPPROTO_TCP, &sock);
479 	if (ret)
480 		return ret;
481 	sock->sk->sk_allocation = GFP_NOFS;
482 
483 #ifdef CONFIG_LOCKDEP
484 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
485 #endif
486 
487 	set_sock_callbacks(sock, con);
488 
489 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
490 
491 	con_sock_state_connecting(con);
492 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
493 				 O_NONBLOCK);
494 	if (ret == -EINPROGRESS) {
495 		dout("connect %s EINPROGRESS sk_state = %u\n",
496 		     ceph_pr_addr(&con->peer_addr.in_addr),
497 		     sock->sk->sk_state);
498 	} else if (ret < 0) {
499 		pr_err("connect %s error %d\n",
500 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
501 		sock_release(sock);
502 		con->error_msg = "connect error";
503 
504 		return ret;
505 	}
506 	con->sock = sock;
507 	return 0;
508 }
509 
510 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
511 {
512 	struct kvec iov = {buf, len};
513 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
514 	int r;
515 
516 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
517 	if (r == -EAGAIN)
518 		r = 0;
519 	return r;
520 }
521 
522 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
523 		     int page_offset, size_t length)
524 {
525 	void *kaddr;
526 	int ret;
527 
528 	BUG_ON(page_offset + length > PAGE_SIZE);
529 
530 	kaddr = kmap(page);
531 	BUG_ON(!kaddr);
532 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
533 	kunmap(page);
534 
535 	return ret;
536 }
537 
538 /*
539  * write something.  @more is true if caller will be sending more data
540  * shortly.
541  */
542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543 		     size_t kvlen, size_t len, int more)
544 {
545 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 	int r;
547 
548 	if (more)
549 		msg.msg_flags |= MSG_MORE;
550 	else
551 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
552 
553 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554 	if (r == -EAGAIN)
555 		r = 0;
556 	return r;
557 }
558 
559 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
560 		     int offset, size_t size, bool more)
561 {
562 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
563 	int ret;
564 
565 	ret = kernel_sendpage(sock, page, offset, size, flags);
566 	if (ret == -EAGAIN)
567 		ret = 0;
568 
569 	return ret;
570 }
571 
572 
573 /*
574  * Shutdown/close the socket for the given connection.
575  */
576 static int con_close_socket(struct ceph_connection *con)
577 {
578 	int rc = 0;
579 
580 	dout("con_close_socket on %p sock %p\n", con, con->sock);
581 	if (con->sock) {
582 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
583 		sock_release(con->sock);
584 		con->sock = NULL;
585 	}
586 
587 	/*
588 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
589 	 * independent of the connection mutex, and we could have
590 	 * received a socket close event before we had the chance to
591 	 * shut the socket down.
592 	 */
593 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
594 
595 	con_sock_state_closed(con);
596 	return rc;
597 }
598 
599 /*
600  * Reset a connection.  Discard all incoming and outgoing messages
601  * and clear *_seq state.
602  */
603 static void ceph_msg_remove(struct ceph_msg *msg)
604 {
605 	list_del_init(&msg->list_head);
606 	BUG_ON(msg->con == NULL);
607 	msg->con->ops->put(msg->con);
608 	msg->con = NULL;
609 
610 	ceph_msg_put(msg);
611 }
612 static void ceph_msg_remove_list(struct list_head *head)
613 {
614 	while (!list_empty(head)) {
615 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
616 							list_head);
617 		ceph_msg_remove(msg);
618 	}
619 }
620 
621 static void reset_connection(struct ceph_connection *con)
622 {
623 	/* reset connection, out_queue, msg_ and connect_seq */
624 	/* discard existing out_queue and msg_seq */
625 	dout("reset_connection %p\n", con);
626 	ceph_msg_remove_list(&con->out_queue);
627 	ceph_msg_remove_list(&con->out_sent);
628 
629 	if (con->in_msg) {
630 		BUG_ON(con->in_msg->con != con);
631 		con->in_msg->con = NULL;
632 		ceph_msg_put(con->in_msg);
633 		con->in_msg = NULL;
634 		con->ops->put(con);
635 	}
636 
637 	con->connect_seq = 0;
638 	con->out_seq = 0;
639 	if (con->out_msg) {
640 		ceph_msg_put(con->out_msg);
641 		con->out_msg = NULL;
642 	}
643 	con->in_seq = 0;
644 	con->in_seq_acked = 0;
645 }
646 
647 /*
648  * mark a peer down.  drop any open connections.
649  */
650 void ceph_con_close(struct ceph_connection *con)
651 {
652 	mutex_lock(&con->mutex);
653 	dout("con_close %p peer %s\n", con,
654 	     ceph_pr_addr(&con->peer_addr.in_addr));
655 	con->state = CON_STATE_CLOSED;
656 
657 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
658 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
659 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
660 	con_flag_clear(con, CON_FLAG_BACKOFF);
661 
662 	reset_connection(con);
663 	con->peer_global_seq = 0;
664 	cancel_delayed_work(&con->work);
665 	con_close_socket(con);
666 	mutex_unlock(&con->mutex);
667 }
668 EXPORT_SYMBOL(ceph_con_close);
669 
670 /*
671  * Reopen a closed connection, with a new peer address.
672  */
673 void ceph_con_open(struct ceph_connection *con,
674 		   __u8 entity_type, __u64 entity_num,
675 		   struct ceph_entity_addr *addr)
676 {
677 	mutex_lock(&con->mutex);
678 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
679 
680 	WARN_ON(con->state != CON_STATE_CLOSED);
681 	con->state = CON_STATE_PREOPEN;
682 
683 	con->peer_name.type = (__u8) entity_type;
684 	con->peer_name.num = cpu_to_le64(entity_num);
685 
686 	memcpy(&con->peer_addr, addr, sizeof(*addr));
687 	con->delay = 0;      /* reset backoff memory */
688 	mutex_unlock(&con->mutex);
689 	queue_con(con);
690 }
691 EXPORT_SYMBOL(ceph_con_open);
692 
693 /*
694  * return true if this connection ever successfully opened
695  */
696 bool ceph_con_opened(struct ceph_connection *con)
697 {
698 	return con->connect_seq > 0;
699 }
700 
701 /*
702  * initialize a new connection.
703  */
704 void ceph_con_init(struct ceph_connection *con, void *private,
705 	const struct ceph_connection_operations *ops,
706 	struct ceph_messenger *msgr)
707 {
708 	dout("con_init %p\n", con);
709 	memset(con, 0, sizeof(*con));
710 	con->private = private;
711 	con->ops = ops;
712 	con->msgr = msgr;
713 
714 	con_sock_state_init(con);
715 
716 	mutex_init(&con->mutex);
717 	INIT_LIST_HEAD(&con->out_queue);
718 	INIT_LIST_HEAD(&con->out_sent);
719 	INIT_DELAYED_WORK(&con->work, con_work);
720 
721 	con->state = CON_STATE_CLOSED;
722 }
723 EXPORT_SYMBOL(ceph_con_init);
724 
725 
726 /*
727  * We maintain a global counter to order connection attempts.  Get
728  * a unique seq greater than @gt.
729  */
730 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
731 {
732 	u32 ret;
733 
734 	spin_lock(&msgr->global_seq_lock);
735 	if (msgr->global_seq < gt)
736 		msgr->global_seq = gt;
737 	ret = ++msgr->global_seq;
738 	spin_unlock(&msgr->global_seq_lock);
739 	return ret;
740 }
741 
742 static void con_out_kvec_reset(struct ceph_connection *con)
743 {
744 	con->out_kvec_left = 0;
745 	con->out_kvec_bytes = 0;
746 	con->out_kvec_cur = &con->out_kvec[0];
747 }
748 
749 static void con_out_kvec_add(struct ceph_connection *con,
750 				size_t size, void *data)
751 {
752 	int index;
753 
754 	index = con->out_kvec_left;
755 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
756 
757 	con->out_kvec[index].iov_len = size;
758 	con->out_kvec[index].iov_base = data;
759 	con->out_kvec_left++;
760 	con->out_kvec_bytes += size;
761 }
762 
763 #ifdef CONFIG_BLOCK
764 
765 /*
766  * For a bio data item, a piece is whatever remains of the next
767  * entry in the current bio iovec, or the first entry in the next
768  * bio in the list.
769  */
770 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
771 					size_t length)
772 {
773 	struct ceph_msg_data *data = cursor->data;
774 	struct bio *bio;
775 
776 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
777 
778 	bio = data->bio;
779 	BUG_ON(!bio);
780 	BUG_ON(!bio->bi_vcnt);
781 
782 	cursor->resid = min(length, data->bio_length);
783 	cursor->bio = bio;
784 	cursor->vector_index = 0;
785 	cursor->vector_offset = 0;
786 	cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
787 }
788 
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 						size_t *page_offset,
791 						size_t *length)
792 {
793 	struct ceph_msg_data *data = cursor->data;
794 	struct bio *bio;
795 	struct bio_vec *bio_vec;
796 	unsigned int index;
797 
798 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
799 
800 	bio = cursor->bio;
801 	BUG_ON(!bio);
802 
803 	index = cursor->vector_index;
804 	BUG_ON(index >= (unsigned int) bio->bi_vcnt);
805 
806 	bio_vec = &bio->bi_io_vec[index];
807 	BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
808 	*page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
809 	BUG_ON(*page_offset >= PAGE_SIZE);
810 	if (cursor->last_piece) /* pagelist offset is always 0 */
811 		*length = cursor->resid;
812 	else
813 		*length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
814 	BUG_ON(*length > cursor->resid);
815 	BUG_ON(*page_offset + *length > PAGE_SIZE);
816 
817 	return bio_vec->bv_page;
818 }
819 
820 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
821 					size_t bytes)
822 {
823 	struct bio *bio;
824 	struct bio_vec *bio_vec;
825 	unsigned int index;
826 
827 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
828 
829 	bio = cursor->bio;
830 	BUG_ON(!bio);
831 
832 	index = cursor->vector_index;
833 	BUG_ON(index >= (unsigned int) bio->bi_vcnt);
834 	bio_vec = &bio->bi_io_vec[index];
835 
836 	/* Advance the cursor offset */
837 
838 	BUG_ON(cursor->resid < bytes);
839 	cursor->resid -= bytes;
840 	cursor->vector_offset += bytes;
841 	if (cursor->vector_offset < bio_vec->bv_len)
842 		return false;	/* more bytes to process in this segment */
843 	BUG_ON(cursor->vector_offset != bio_vec->bv_len);
844 
845 	/* Move on to the next segment, and possibly the next bio */
846 
847 	if (++index == (unsigned int) bio->bi_vcnt) {
848 		bio = bio->bi_next;
849 		index = 0;
850 	}
851 	cursor->bio = bio;
852 	cursor->vector_index = index;
853 	cursor->vector_offset = 0;
854 
855 	if (!cursor->last_piece) {
856 		BUG_ON(!cursor->resid);
857 		BUG_ON(!bio);
858 		/* A short read is OK, so use <= rather than == */
859 		if (cursor->resid <= bio->bi_io_vec[index].bv_len)
860 			cursor->last_piece = true;
861 	}
862 
863 	return true;
864 }
865 #endif /* CONFIG_BLOCK */
866 
867 /*
868  * For a page array, a piece comes from the first page in the array
869  * that has not already been fully consumed.
870  */
871 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
872 					size_t length)
873 {
874 	struct ceph_msg_data *data = cursor->data;
875 	int page_count;
876 
877 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
878 
879 	BUG_ON(!data->pages);
880 	BUG_ON(!data->length);
881 
882 	cursor->resid = min(length, data->length);
883 	page_count = calc_pages_for(data->alignment, (u64)data->length);
884 	cursor->page_offset = data->alignment & ~PAGE_MASK;
885 	cursor->page_index = 0;
886 	BUG_ON(page_count > (int)USHRT_MAX);
887 	cursor->page_count = (unsigned short)page_count;
888 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
889 	cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
890 }
891 
892 static struct page *
893 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
894 					size_t *page_offset, size_t *length)
895 {
896 	struct ceph_msg_data *data = cursor->data;
897 
898 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
899 
900 	BUG_ON(cursor->page_index >= cursor->page_count);
901 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
902 
903 	*page_offset = cursor->page_offset;
904 	if (cursor->last_piece)
905 		*length = cursor->resid;
906 	else
907 		*length = PAGE_SIZE - *page_offset;
908 
909 	return data->pages[cursor->page_index];
910 }
911 
912 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
913 						size_t bytes)
914 {
915 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
916 
917 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
918 
919 	/* Advance the cursor page offset */
920 
921 	cursor->resid -= bytes;
922 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
923 	if (!bytes || cursor->page_offset)
924 		return false;	/* more bytes to process in the current page */
925 
926 	/* Move on to the next page; offset is already at 0 */
927 
928 	BUG_ON(cursor->page_index >= cursor->page_count);
929 	cursor->page_index++;
930 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
931 
932 	return true;
933 }
934 
935 /*
936  * For a pagelist, a piece is whatever remains to be consumed in the
937  * first page in the list, or the front of the next page.
938  */
939 static void
940 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
941 					size_t length)
942 {
943 	struct ceph_msg_data *data = cursor->data;
944 	struct ceph_pagelist *pagelist;
945 	struct page *page;
946 
947 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
948 
949 	pagelist = data->pagelist;
950 	BUG_ON(!pagelist);
951 
952 	if (!length)
953 		return;		/* pagelist can be assigned but empty */
954 
955 	BUG_ON(list_empty(&pagelist->head));
956 	page = list_first_entry(&pagelist->head, struct page, lru);
957 
958 	cursor->resid = min(length, pagelist->length);
959 	cursor->page = page;
960 	cursor->offset = 0;
961 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
962 }
963 
964 static struct page *
965 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
966 				size_t *page_offset, size_t *length)
967 {
968 	struct ceph_msg_data *data = cursor->data;
969 	struct ceph_pagelist *pagelist;
970 
971 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
972 
973 	pagelist = data->pagelist;
974 	BUG_ON(!pagelist);
975 
976 	BUG_ON(!cursor->page);
977 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
978 
979 	/* offset of first page in pagelist is always 0 */
980 	*page_offset = cursor->offset & ~PAGE_MASK;
981 	if (cursor->last_piece)
982 		*length = cursor->resid;
983 	else
984 		*length = PAGE_SIZE - *page_offset;
985 
986 	return cursor->page;
987 }
988 
989 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
990 						size_t bytes)
991 {
992 	struct ceph_msg_data *data = cursor->data;
993 	struct ceph_pagelist *pagelist;
994 
995 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
996 
997 	pagelist = data->pagelist;
998 	BUG_ON(!pagelist);
999 
1000 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1001 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1002 
1003 	/* Advance the cursor offset */
1004 
1005 	cursor->resid -= bytes;
1006 	cursor->offset += bytes;
1007 	/* offset of first page in pagelist is always 0 */
1008 	if (!bytes || cursor->offset & ~PAGE_MASK)
1009 		return false;	/* more bytes to process in the current page */
1010 
1011 	/* Move on to the next page */
1012 
1013 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1014 	cursor->page = list_entry_next(cursor->page, lru);
1015 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1016 
1017 	return true;
1018 }
1019 
1020 /*
1021  * Message data is handled (sent or received) in pieces, where each
1022  * piece resides on a single page.  The network layer might not
1023  * consume an entire piece at once.  A data item's cursor keeps
1024  * track of which piece is next to process and how much remains to
1025  * be processed in that piece.  It also tracks whether the current
1026  * piece is the last one in the data item.
1027  */
1028 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1029 {
1030 	size_t length = cursor->total_resid;
1031 
1032 	switch (cursor->data->type) {
1033 	case CEPH_MSG_DATA_PAGELIST:
1034 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1035 		break;
1036 	case CEPH_MSG_DATA_PAGES:
1037 		ceph_msg_data_pages_cursor_init(cursor, length);
1038 		break;
1039 #ifdef CONFIG_BLOCK
1040 	case CEPH_MSG_DATA_BIO:
1041 		ceph_msg_data_bio_cursor_init(cursor, length);
1042 		break;
1043 #endif /* CONFIG_BLOCK */
1044 	case CEPH_MSG_DATA_NONE:
1045 	default:
1046 		/* BUG(); */
1047 		break;
1048 	}
1049 	cursor->need_crc = true;
1050 }
1051 
1052 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1053 {
1054 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1055 	struct ceph_msg_data *data;
1056 
1057 	BUG_ON(!length);
1058 	BUG_ON(length > msg->data_length);
1059 	BUG_ON(list_empty(&msg->data));
1060 
1061 	cursor->data_head = &msg->data;
1062 	cursor->total_resid = length;
1063 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1064 	cursor->data = data;
1065 
1066 	__ceph_msg_data_cursor_init(cursor);
1067 }
1068 
1069 /*
1070  * Return the page containing the next piece to process for a given
1071  * data item, and supply the page offset and length of that piece.
1072  * Indicate whether this is the last piece in this data item.
1073  */
1074 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1075 					size_t *page_offset, size_t *length,
1076 					bool *last_piece)
1077 {
1078 	struct page *page;
1079 
1080 	switch (cursor->data->type) {
1081 	case CEPH_MSG_DATA_PAGELIST:
1082 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1083 		break;
1084 	case CEPH_MSG_DATA_PAGES:
1085 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1086 		break;
1087 #ifdef CONFIG_BLOCK
1088 	case CEPH_MSG_DATA_BIO:
1089 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1090 		break;
1091 #endif /* CONFIG_BLOCK */
1092 	case CEPH_MSG_DATA_NONE:
1093 	default:
1094 		page = NULL;
1095 		break;
1096 	}
1097 	BUG_ON(!page);
1098 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1099 	BUG_ON(!*length);
1100 	if (last_piece)
1101 		*last_piece = cursor->last_piece;
1102 
1103 	return page;
1104 }
1105 
1106 /*
1107  * Returns true if the result moves the cursor on to the next piece
1108  * of the data item.
1109  */
1110 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1111 				size_t bytes)
1112 {
1113 	bool new_piece;
1114 
1115 	BUG_ON(bytes > cursor->resid);
1116 	switch (cursor->data->type) {
1117 	case CEPH_MSG_DATA_PAGELIST:
1118 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1119 		break;
1120 	case CEPH_MSG_DATA_PAGES:
1121 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1122 		break;
1123 #ifdef CONFIG_BLOCK
1124 	case CEPH_MSG_DATA_BIO:
1125 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1126 		break;
1127 #endif /* CONFIG_BLOCK */
1128 	case CEPH_MSG_DATA_NONE:
1129 	default:
1130 		BUG();
1131 		break;
1132 	}
1133 	cursor->total_resid -= bytes;
1134 
1135 	if (!cursor->resid && cursor->total_resid) {
1136 		WARN_ON(!cursor->last_piece);
1137 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1138 		cursor->data = list_entry_next(cursor->data, links);
1139 		__ceph_msg_data_cursor_init(cursor);
1140 		new_piece = true;
1141 	}
1142 	cursor->need_crc = new_piece;
1143 
1144 	return new_piece;
1145 }
1146 
1147 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1148 {
1149 	BUG_ON(!msg);
1150 	BUG_ON(!data_len);
1151 
1152 	/* Initialize data cursor */
1153 
1154 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1155 }
1156 
1157 /*
1158  * Prepare footer for currently outgoing message, and finish things
1159  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1160  */
1161 static void prepare_write_message_footer(struct ceph_connection *con)
1162 {
1163 	struct ceph_msg *m = con->out_msg;
1164 	int v = con->out_kvec_left;
1165 
1166 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1167 
1168 	dout("prepare_write_message_footer %p\n", con);
1169 	con->out_kvec_is_msg = true;
1170 	con->out_kvec[v].iov_base = &m->footer;
1171 	con->out_kvec[v].iov_len = sizeof(m->footer);
1172 	con->out_kvec_bytes += sizeof(m->footer);
1173 	con->out_kvec_left++;
1174 	con->out_more = m->more_to_follow;
1175 	con->out_msg_done = true;
1176 }
1177 
1178 /*
1179  * Prepare headers for the next outgoing message.
1180  */
1181 static void prepare_write_message(struct ceph_connection *con)
1182 {
1183 	struct ceph_msg *m;
1184 	u32 crc;
1185 
1186 	con_out_kvec_reset(con);
1187 	con->out_kvec_is_msg = true;
1188 	con->out_msg_done = false;
1189 
1190 	/* Sneak an ack in there first?  If we can get it into the same
1191 	 * TCP packet that's a good thing. */
1192 	if (con->in_seq > con->in_seq_acked) {
1193 		con->in_seq_acked = con->in_seq;
1194 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1195 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1196 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1197 			&con->out_temp_ack);
1198 	}
1199 
1200 	BUG_ON(list_empty(&con->out_queue));
1201 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1202 	con->out_msg = m;
1203 	BUG_ON(m->con != con);
1204 
1205 	/* put message on sent list */
1206 	ceph_msg_get(m);
1207 	list_move_tail(&m->list_head, &con->out_sent);
1208 
1209 	/*
1210 	 * only assign outgoing seq # if we haven't sent this message
1211 	 * yet.  if it is requeued, resend with it's original seq.
1212 	 */
1213 	if (m->needs_out_seq) {
1214 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1215 		m->needs_out_seq = false;
1216 	}
1217 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1218 
1219 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1220 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1221 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1222 	     m->data_length);
1223 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1224 
1225 	/* tag + hdr + front + middle */
1226 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1227 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1228 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1229 
1230 	if (m->middle)
1231 		con_out_kvec_add(con, m->middle->vec.iov_len,
1232 			m->middle->vec.iov_base);
1233 
1234 	/* fill in crc (except data pages), footer */
1235 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1236 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1237 	con->out_msg->footer.flags = 0;
1238 
1239 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1240 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1241 	if (m->middle) {
1242 		crc = crc32c(0, m->middle->vec.iov_base,
1243 				m->middle->vec.iov_len);
1244 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1245 	} else
1246 		con->out_msg->footer.middle_crc = 0;
1247 	dout("%s front_crc %u middle_crc %u\n", __func__,
1248 	     le32_to_cpu(con->out_msg->footer.front_crc),
1249 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1250 
1251 	/* is there a data payload? */
1252 	con->out_msg->footer.data_crc = 0;
1253 	if (m->data_length) {
1254 		prepare_message_data(con->out_msg, m->data_length);
1255 		con->out_more = 1;  /* data + footer will follow */
1256 	} else {
1257 		/* no, queue up footer too and be done */
1258 		prepare_write_message_footer(con);
1259 	}
1260 
1261 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1262 }
1263 
1264 /*
1265  * Prepare an ack.
1266  */
1267 static void prepare_write_ack(struct ceph_connection *con)
1268 {
1269 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1270 	     con->in_seq_acked, con->in_seq);
1271 	con->in_seq_acked = con->in_seq;
1272 
1273 	con_out_kvec_reset(con);
1274 
1275 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1276 
1277 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1278 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1279 				&con->out_temp_ack);
1280 
1281 	con->out_more = 1;  /* more will follow.. eventually.. */
1282 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1283 }
1284 
1285 /*
1286  * Prepare to share the seq during handshake
1287  */
1288 static void prepare_write_seq(struct ceph_connection *con)
1289 {
1290 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1291 	     con->in_seq_acked, con->in_seq);
1292 	con->in_seq_acked = con->in_seq;
1293 
1294 	con_out_kvec_reset(con);
1295 
1296 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1297 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1298 			 &con->out_temp_ack);
1299 
1300 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1301 }
1302 
1303 /*
1304  * Prepare to write keepalive byte.
1305  */
1306 static void prepare_write_keepalive(struct ceph_connection *con)
1307 {
1308 	dout("prepare_write_keepalive %p\n", con);
1309 	con_out_kvec_reset(con);
1310 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1311 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1312 }
1313 
1314 /*
1315  * Connection negotiation.
1316  */
1317 
1318 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1319 						int *auth_proto)
1320 {
1321 	struct ceph_auth_handshake *auth;
1322 
1323 	if (!con->ops->get_authorizer) {
1324 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1325 		con->out_connect.authorizer_len = 0;
1326 		return NULL;
1327 	}
1328 
1329 	/* Can't hold the mutex while getting authorizer */
1330 	mutex_unlock(&con->mutex);
1331 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1332 	mutex_lock(&con->mutex);
1333 
1334 	if (IS_ERR(auth))
1335 		return auth;
1336 	if (con->state != CON_STATE_NEGOTIATING)
1337 		return ERR_PTR(-EAGAIN);
1338 
1339 	con->auth_reply_buf = auth->authorizer_reply_buf;
1340 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1341 	return auth;
1342 }
1343 
1344 /*
1345  * We connected to a peer and are saying hello.
1346  */
1347 static void prepare_write_banner(struct ceph_connection *con)
1348 {
1349 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1350 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1351 					&con->msgr->my_enc_addr);
1352 
1353 	con->out_more = 0;
1354 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355 }
1356 
1357 static int prepare_write_connect(struct ceph_connection *con)
1358 {
1359 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1360 	int proto;
1361 	int auth_proto;
1362 	struct ceph_auth_handshake *auth;
1363 
1364 	switch (con->peer_name.type) {
1365 	case CEPH_ENTITY_TYPE_MON:
1366 		proto = CEPH_MONC_PROTOCOL;
1367 		break;
1368 	case CEPH_ENTITY_TYPE_OSD:
1369 		proto = CEPH_OSDC_PROTOCOL;
1370 		break;
1371 	case CEPH_ENTITY_TYPE_MDS:
1372 		proto = CEPH_MDSC_PROTOCOL;
1373 		break;
1374 	default:
1375 		BUG();
1376 	}
1377 
1378 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1379 	     con->connect_seq, global_seq, proto);
1380 
1381 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1382 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1383 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1384 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1385 	con->out_connect.protocol_version = cpu_to_le32(proto);
1386 	con->out_connect.flags = 0;
1387 
1388 	auth_proto = CEPH_AUTH_UNKNOWN;
1389 	auth = get_connect_authorizer(con, &auth_proto);
1390 	if (IS_ERR(auth))
1391 		return PTR_ERR(auth);
1392 
1393 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1394 	con->out_connect.authorizer_len = auth ?
1395 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1396 
1397 	con_out_kvec_add(con, sizeof (con->out_connect),
1398 					&con->out_connect);
1399 	if (auth && auth->authorizer_buf_len)
1400 		con_out_kvec_add(con, auth->authorizer_buf_len,
1401 					auth->authorizer_buf);
1402 
1403 	con->out_more = 0;
1404 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1405 
1406 	return 0;
1407 }
1408 
1409 /*
1410  * write as much of pending kvecs to the socket as we can.
1411  *  1 -> done
1412  *  0 -> socket full, but more to do
1413  * <0 -> error
1414  */
1415 static int write_partial_kvec(struct ceph_connection *con)
1416 {
1417 	int ret;
1418 
1419 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1420 	while (con->out_kvec_bytes > 0) {
1421 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1422 				       con->out_kvec_left, con->out_kvec_bytes,
1423 				       con->out_more);
1424 		if (ret <= 0)
1425 			goto out;
1426 		con->out_kvec_bytes -= ret;
1427 		if (con->out_kvec_bytes == 0)
1428 			break;            /* done */
1429 
1430 		/* account for full iov entries consumed */
1431 		while (ret >= con->out_kvec_cur->iov_len) {
1432 			BUG_ON(!con->out_kvec_left);
1433 			ret -= con->out_kvec_cur->iov_len;
1434 			con->out_kvec_cur++;
1435 			con->out_kvec_left--;
1436 		}
1437 		/* and for a partially-consumed entry */
1438 		if (ret) {
1439 			con->out_kvec_cur->iov_len -= ret;
1440 			con->out_kvec_cur->iov_base += ret;
1441 		}
1442 	}
1443 	con->out_kvec_left = 0;
1444 	con->out_kvec_is_msg = false;
1445 	ret = 1;
1446 out:
1447 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1448 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1449 	return ret;  /* done! */
1450 }
1451 
1452 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1453 				unsigned int page_offset,
1454 				unsigned int length)
1455 {
1456 	char *kaddr;
1457 
1458 	kaddr = kmap(page);
1459 	BUG_ON(kaddr == NULL);
1460 	crc = crc32c(crc, kaddr + page_offset, length);
1461 	kunmap(page);
1462 
1463 	return crc;
1464 }
1465 /*
1466  * Write as much message data payload as we can.  If we finish, queue
1467  * up the footer.
1468  *  1 -> done, footer is now queued in out_kvec[].
1469  *  0 -> socket full, but more to do
1470  * <0 -> error
1471  */
1472 static int write_partial_message_data(struct ceph_connection *con)
1473 {
1474 	struct ceph_msg *msg = con->out_msg;
1475 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1476 	bool do_datacrc = !con->msgr->nocrc;
1477 	u32 crc;
1478 
1479 	dout("%s %p msg %p\n", __func__, con, msg);
1480 
1481 	if (list_empty(&msg->data))
1482 		return -EINVAL;
1483 
1484 	/*
1485 	 * Iterate through each page that contains data to be
1486 	 * written, and send as much as possible for each.
1487 	 *
1488 	 * If we are calculating the data crc (the default), we will
1489 	 * need to map the page.  If we have no pages, they have
1490 	 * been revoked, so use the zero page.
1491 	 */
1492 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1493 	while (cursor->resid) {
1494 		struct page *page;
1495 		size_t page_offset;
1496 		size_t length;
1497 		bool last_piece;
1498 		bool need_crc;
1499 		int ret;
1500 
1501 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1502 							&last_piece);
1503 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1504 				      length, last_piece);
1505 		if (ret <= 0) {
1506 			if (do_datacrc)
1507 				msg->footer.data_crc = cpu_to_le32(crc);
1508 
1509 			return ret;
1510 		}
1511 		if (do_datacrc && cursor->need_crc)
1512 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1513 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1514 	}
1515 
1516 	dout("%s %p msg %p done\n", __func__, con, msg);
1517 
1518 	/* prepare and queue up footer, too */
1519 	if (do_datacrc)
1520 		msg->footer.data_crc = cpu_to_le32(crc);
1521 	else
1522 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1523 	con_out_kvec_reset(con);
1524 	prepare_write_message_footer(con);
1525 
1526 	return 1;	/* must return > 0 to indicate success */
1527 }
1528 
1529 /*
1530  * write some zeros
1531  */
1532 static int write_partial_skip(struct ceph_connection *con)
1533 {
1534 	int ret;
1535 
1536 	while (con->out_skip > 0) {
1537 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1538 
1539 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1540 		if (ret <= 0)
1541 			goto out;
1542 		con->out_skip -= ret;
1543 	}
1544 	ret = 1;
1545 out:
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Prepare to read connection handshake, or an ack.
1551  */
1552 static void prepare_read_banner(struct ceph_connection *con)
1553 {
1554 	dout("prepare_read_banner %p\n", con);
1555 	con->in_base_pos = 0;
1556 }
1557 
1558 static void prepare_read_connect(struct ceph_connection *con)
1559 {
1560 	dout("prepare_read_connect %p\n", con);
1561 	con->in_base_pos = 0;
1562 }
1563 
1564 static void prepare_read_ack(struct ceph_connection *con)
1565 {
1566 	dout("prepare_read_ack %p\n", con);
1567 	con->in_base_pos = 0;
1568 }
1569 
1570 static void prepare_read_seq(struct ceph_connection *con)
1571 {
1572 	dout("prepare_read_seq %p\n", con);
1573 	con->in_base_pos = 0;
1574 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1575 }
1576 
1577 static void prepare_read_tag(struct ceph_connection *con)
1578 {
1579 	dout("prepare_read_tag %p\n", con);
1580 	con->in_base_pos = 0;
1581 	con->in_tag = CEPH_MSGR_TAG_READY;
1582 }
1583 
1584 /*
1585  * Prepare to read a message.
1586  */
1587 static int prepare_read_message(struct ceph_connection *con)
1588 {
1589 	dout("prepare_read_message %p\n", con);
1590 	BUG_ON(con->in_msg != NULL);
1591 	con->in_base_pos = 0;
1592 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1593 	return 0;
1594 }
1595 
1596 
1597 static int read_partial(struct ceph_connection *con,
1598 			int end, int size, void *object)
1599 {
1600 	while (con->in_base_pos < end) {
1601 		int left = end - con->in_base_pos;
1602 		int have = size - left;
1603 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1604 		if (ret <= 0)
1605 			return ret;
1606 		con->in_base_pos += ret;
1607 	}
1608 	return 1;
1609 }
1610 
1611 
1612 /*
1613  * Read all or part of the connect-side handshake on a new connection
1614  */
1615 static int read_partial_banner(struct ceph_connection *con)
1616 {
1617 	int size;
1618 	int end;
1619 	int ret;
1620 
1621 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1622 
1623 	/* peer's banner */
1624 	size = strlen(CEPH_BANNER);
1625 	end = size;
1626 	ret = read_partial(con, end, size, con->in_banner);
1627 	if (ret <= 0)
1628 		goto out;
1629 
1630 	size = sizeof (con->actual_peer_addr);
1631 	end += size;
1632 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1633 	if (ret <= 0)
1634 		goto out;
1635 
1636 	size = sizeof (con->peer_addr_for_me);
1637 	end += size;
1638 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1639 	if (ret <= 0)
1640 		goto out;
1641 
1642 out:
1643 	return ret;
1644 }
1645 
1646 static int read_partial_connect(struct ceph_connection *con)
1647 {
1648 	int size;
1649 	int end;
1650 	int ret;
1651 
1652 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1653 
1654 	size = sizeof (con->in_reply);
1655 	end = size;
1656 	ret = read_partial(con, end, size, &con->in_reply);
1657 	if (ret <= 0)
1658 		goto out;
1659 
1660 	size = le32_to_cpu(con->in_reply.authorizer_len);
1661 	end += size;
1662 	ret = read_partial(con, end, size, con->auth_reply_buf);
1663 	if (ret <= 0)
1664 		goto out;
1665 
1666 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1667 	     con, (int)con->in_reply.tag,
1668 	     le32_to_cpu(con->in_reply.connect_seq),
1669 	     le32_to_cpu(con->in_reply.global_seq));
1670 out:
1671 	return ret;
1672 
1673 }
1674 
1675 /*
1676  * Verify the hello banner looks okay.
1677  */
1678 static int verify_hello(struct ceph_connection *con)
1679 {
1680 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1681 		pr_err("connect to %s got bad banner\n",
1682 		       ceph_pr_addr(&con->peer_addr.in_addr));
1683 		con->error_msg = "protocol error, bad banner";
1684 		return -1;
1685 	}
1686 	return 0;
1687 }
1688 
1689 static bool addr_is_blank(struct sockaddr_storage *ss)
1690 {
1691 	switch (ss->ss_family) {
1692 	case AF_INET:
1693 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1694 	case AF_INET6:
1695 		return
1696 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1697 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1698 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1699 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1700 	}
1701 	return false;
1702 }
1703 
1704 static int addr_port(struct sockaddr_storage *ss)
1705 {
1706 	switch (ss->ss_family) {
1707 	case AF_INET:
1708 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1709 	case AF_INET6:
1710 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1711 	}
1712 	return 0;
1713 }
1714 
1715 static void addr_set_port(struct sockaddr_storage *ss, int p)
1716 {
1717 	switch (ss->ss_family) {
1718 	case AF_INET:
1719 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1720 		break;
1721 	case AF_INET6:
1722 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1723 		break;
1724 	}
1725 }
1726 
1727 /*
1728  * Unlike other *_pton function semantics, zero indicates success.
1729  */
1730 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1731 		char delim, const char **ipend)
1732 {
1733 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1734 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1735 
1736 	memset(ss, 0, sizeof(*ss));
1737 
1738 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1739 		ss->ss_family = AF_INET;
1740 		return 0;
1741 	}
1742 
1743 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1744 		ss->ss_family = AF_INET6;
1745 		return 0;
1746 	}
1747 
1748 	return -EINVAL;
1749 }
1750 
1751 /*
1752  * Extract hostname string and resolve using kernel DNS facility.
1753  */
1754 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1755 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1756 		struct sockaddr_storage *ss, char delim, const char **ipend)
1757 {
1758 	const char *end, *delim_p;
1759 	char *colon_p, *ip_addr = NULL;
1760 	int ip_len, ret;
1761 
1762 	/*
1763 	 * The end of the hostname occurs immediately preceding the delimiter or
1764 	 * the port marker (':') where the delimiter takes precedence.
1765 	 */
1766 	delim_p = memchr(name, delim, namelen);
1767 	colon_p = memchr(name, ':', namelen);
1768 
1769 	if (delim_p && colon_p)
1770 		end = delim_p < colon_p ? delim_p : colon_p;
1771 	else if (!delim_p && colon_p)
1772 		end = colon_p;
1773 	else {
1774 		end = delim_p;
1775 		if (!end) /* case: hostname:/ */
1776 			end = name + namelen;
1777 	}
1778 
1779 	if (end <= name)
1780 		return -EINVAL;
1781 
1782 	/* do dns_resolve upcall */
1783 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1784 	if (ip_len > 0)
1785 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1786 	else
1787 		ret = -ESRCH;
1788 
1789 	kfree(ip_addr);
1790 
1791 	*ipend = end;
1792 
1793 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1794 			ret, ret ? "failed" : ceph_pr_addr(ss));
1795 
1796 	return ret;
1797 }
1798 #else
1799 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1800 		struct sockaddr_storage *ss, char delim, const char **ipend)
1801 {
1802 	return -EINVAL;
1803 }
1804 #endif
1805 
1806 /*
1807  * Parse a server name (IP or hostname). If a valid IP address is not found
1808  * then try to extract a hostname to resolve using userspace DNS upcall.
1809  */
1810 static int ceph_parse_server_name(const char *name, size_t namelen,
1811 			struct sockaddr_storage *ss, char delim, const char **ipend)
1812 {
1813 	int ret;
1814 
1815 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1816 	if (ret)
1817 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1818 
1819 	return ret;
1820 }
1821 
1822 /*
1823  * Parse an ip[:port] list into an addr array.  Use the default
1824  * monitor port if a port isn't specified.
1825  */
1826 int ceph_parse_ips(const char *c, const char *end,
1827 		   struct ceph_entity_addr *addr,
1828 		   int max_count, int *count)
1829 {
1830 	int i, ret = -EINVAL;
1831 	const char *p = c;
1832 
1833 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1834 	for (i = 0; i < max_count; i++) {
1835 		const char *ipend;
1836 		struct sockaddr_storage *ss = &addr[i].in_addr;
1837 		int port;
1838 		char delim = ',';
1839 
1840 		if (*p == '[') {
1841 			delim = ']';
1842 			p++;
1843 		}
1844 
1845 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1846 		if (ret)
1847 			goto bad;
1848 		ret = -EINVAL;
1849 
1850 		p = ipend;
1851 
1852 		if (delim == ']') {
1853 			if (*p != ']') {
1854 				dout("missing matching ']'\n");
1855 				goto bad;
1856 			}
1857 			p++;
1858 		}
1859 
1860 		/* port? */
1861 		if (p < end && *p == ':') {
1862 			port = 0;
1863 			p++;
1864 			while (p < end && *p >= '0' && *p <= '9') {
1865 				port = (port * 10) + (*p - '0');
1866 				p++;
1867 			}
1868 			if (port > 65535 || port == 0)
1869 				goto bad;
1870 		} else {
1871 			port = CEPH_MON_PORT;
1872 		}
1873 
1874 		addr_set_port(ss, port);
1875 
1876 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1877 
1878 		if (p == end)
1879 			break;
1880 		if (*p != ',')
1881 			goto bad;
1882 		p++;
1883 	}
1884 
1885 	if (p != end)
1886 		goto bad;
1887 
1888 	if (count)
1889 		*count = i + 1;
1890 	return 0;
1891 
1892 bad:
1893 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL(ceph_parse_ips);
1897 
1898 static int process_banner(struct ceph_connection *con)
1899 {
1900 	dout("process_banner on %p\n", con);
1901 
1902 	if (verify_hello(con) < 0)
1903 		return -1;
1904 
1905 	ceph_decode_addr(&con->actual_peer_addr);
1906 	ceph_decode_addr(&con->peer_addr_for_me);
1907 
1908 	/*
1909 	 * Make sure the other end is who we wanted.  note that the other
1910 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1911 	 * them the benefit of the doubt.
1912 	 */
1913 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1914 		   sizeof(con->peer_addr)) != 0 &&
1915 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1916 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1917 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1918 			   ceph_pr_addr(&con->peer_addr.in_addr),
1919 			   (int)le32_to_cpu(con->peer_addr.nonce),
1920 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1921 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1922 		con->error_msg = "wrong peer at address";
1923 		return -1;
1924 	}
1925 
1926 	/*
1927 	 * did we learn our address?
1928 	 */
1929 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1930 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1931 
1932 		memcpy(&con->msgr->inst.addr.in_addr,
1933 		       &con->peer_addr_for_me.in_addr,
1934 		       sizeof(con->peer_addr_for_me.in_addr));
1935 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1936 		encode_my_addr(con->msgr);
1937 		dout("process_banner learned my addr is %s\n",
1938 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1939 	}
1940 
1941 	return 0;
1942 }
1943 
1944 static int process_connect(struct ceph_connection *con)
1945 {
1946 	u64 sup_feat = con->msgr->supported_features;
1947 	u64 req_feat = con->msgr->required_features;
1948 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1949 	int ret;
1950 
1951 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1952 
1953 	switch (con->in_reply.tag) {
1954 	case CEPH_MSGR_TAG_FEATURES:
1955 		pr_err("%s%lld %s feature set mismatch,"
1956 		       " my %llx < server's %llx, missing %llx\n",
1957 		       ENTITY_NAME(con->peer_name),
1958 		       ceph_pr_addr(&con->peer_addr.in_addr),
1959 		       sup_feat, server_feat, server_feat & ~sup_feat);
1960 		con->error_msg = "missing required protocol features";
1961 		reset_connection(con);
1962 		return -1;
1963 
1964 	case CEPH_MSGR_TAG_BADPROTOVER:
1965 		pr_err("%s%lld %s protocol version mismatch,"
1966 		       " my %d != server's %d\n",
1967 		       ENTITY_NAME(con->peer_name),
1968 		       ceph_pr_addr(&con->peer_addr.in_addr),
1969 		       le32_to_cpu(con->out_connect.protocol_version),
1970 		       le32_to_cpu(con->in_reply.protocol_version));
1971 		con->error_msg = "protocol version mismatch";
1972 		reset_connection(con);
1973 		return -1;
1974 
1975 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1976 		con->auth_retry++;
1977 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1978 		     con->auth_retry);
1979 		if (con->auth_retry == 2) {
1980 			con->error_msg = "connect authorization failure";
1981 			return -1;
1982 		}
1983 		con_out_kvec_reset(con);
1984 		ret = prepare_write_connect(con);
1985 		if (ret < 0)
1986 			return ret;
1987 		prepare_read_connect(con);
1988 		break;
1989 
1990 	case CEPH_MSGR_TAG_RESETSESSION:
1991 		/*
1992 		 * If we connected with a large connect_seq but the peer
1993 		 * has no record of a session with us (no connection, or
1994 		 * connect_seq == 0), they will send RESETSESION to indicate
1995 		 * that they must have reset their session, and may have
1996 		 * dropped messages.
1997 		 */
1998 		dout("process_connect got RESET peer seq %u\n",
1999 		     le32_to_cpu(con->in_reply.connect_seq));
2000 		pr_err("%s%lld %s connection reset\n",
2001 		       ENTITY_NAME(con->peer_name),
2002 		       ceph_pr_addr(&con->peer_addr.in_addr));
2003 		reset_connection(con);
2004 		con_out_kvec_reset(con);
2005 		ret = prepare_write_connect(con);
2006 		if (ret < 0)
2007 			return ret;
2008 		prepare_read_connect(con);
2009 
2010 		/* Tell ceph about it. */
2011 		mutex_unlock(&con->mutex);
2012 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2013 		if (con->ops->peer_reset)
2014 			con->ops->peer_reset(con);
2015 		mutex_lock(&con->mutex);
2016 		if (con->state != CON_STATE_NEGOTIATING)
2017 			return -EAGAIN;
2018 		break;
2019 
2020 	case CEPH_MSGR_TAG_RETRY_SESSION:
2021 		/*
2022 		 * If we sent a smaller connect_seq than the peer has, try
2023 		 * again with a larger value.
2024 		 */
2025 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2026 		     le32_to_cpu(con->out_connect.connect_seq),
2027 		     le32_to_cpu(con->in_reply.connect_seq));
2028 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2029 		con_out_kvec_reset(con);
2030 		ret = prepare_write_connect(con);
2031 		if (ret < 0)
2032 			return ret;
2033 		prepare_read_connect(con);
2034 		break;
2035 
2036 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2037 		/*
2038 		 * If we sent a smaller global_seq than the peer has, try
2039 		 * again with a larger value.
2040 		 */
2041 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2042 		     con->peer_global_seq,
2043 		     le32_to_cpu(con->in_reply.global_seq));
2044 		get_global_seq(con->msgr,
2045 			       le32_to_cpu(con->in_reply.global_seq));
2046 		con_out_kvec_reset(con);
2047 		ret = prepare_write_connect(con);
2048 		if (ret < 0)
2049 			return ret;
2050 		prepare_read_connect(con);
2051 		break;
2052 
2053 	case CEPH_MSGR_TAG_SEQ:
2054 	case CEPH_MSGR_TAG_READY:
2055 		if (req_feat & ~server_feat) {
2056 			pr_err("%s%lld %s protocol feature mismatch,"
2057 			       " my required %llx > server's %llx, need %llx\n",
2058 			       ENTITY_NAME(con->peer_name),
2059 			       ceph_pr_addr(&con->peer_addr.in_addr),
2060 			       req_feat, server_feat, req_feat & ~server_feat);
2061 			con->error_msg = "missing required protocol features";
2062 			reset_connection(con);
2063 			return -1;
2064 		}
2065 
2066 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2067 		con->state = CON_STATE_OPEN;
2068 		con->auth_retry = 0;    /* we authenticated; clear flag */
2069 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2070 		con->connect_seq++;
2071 		con->peer_features = server_feat;
2072 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2073 		     con->peer_global_seq,
2074 		     le32_to_cpu(con->in_reply.connect_seq),
2075 		     con->connect_seq);
2076 		WARN_ON(con->connect_seq !=
2077 			le32_to_cpu(con->in_reply.connect_seq));
2078 
2079 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2080 			con_flag_set(con, CON_FLAG_LOSSYTX);
2081 
2082 		con->delay = 0;      /* reset backoff memory */
2083 
2084 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2085 			prepare_write_seq(con);
2086 			prepare_read_seq(con);
2087 		} else {
2088 			prepare_read_tag(con);
2089 		}
2090 		break;
2091 
2092 	case CEPH_MSGR_TAG_WAIT:
2093 		/*
2094 		 * If there is a connection race (we are opening
2095 		 * connections to each other), one of us may just have
2096 		 * to WAIT.  This shouldn't happen if we are the
2097 		 * client.
2098 		 */
2099 		pr_err("process_connect got WAIT as client\n");
2100 		con->error_msg = "protocol error, got WAIT as client";
2101 		return -1;
2102 
2103 	default:
2104 		pr_err("connect protocol error, will retry\n");
2105 		con->error_msg = "protocol error, garbage tag during connect";
2106 		return -1;
2107 	}
2108 	return 0;
2109 }
2110 
2111 
2112 /*
2113  * read (part of) an ack
2114  */
2115 static int read_partial_ack(struct ceph_connection *con)
2116 {
2117 	int size = sizeof (con->in_temp_ack);
2118 	int end = size;
2119 
2120 	return read_partial(con, end, size, &con->in_temp_ack);
2121 }
2122 
2123 /*
2124  * We can finally discard anything that's been acked.
2125  */
2126 static void process_ack(struct ceph_connection *con)
2127 {
2128 	struct ceph_msg *m;
2129 	u64 ack = le64_to_cpu(con->in_temp_ack);
2130 	u64 seq;
2131 
2132 	while (!list_empty(&con->out_sent)) {
2133 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2134 				     list_head);
2135 		seq = le64_to_cpu(m->hdr.seq);
2136 		if (seq > ack)
2137 			break;
2138 		dout("got ack for seq %llu type %d at %p\n", seq,
2139 		     le16_to_cpu(m->hdr.type), m);
2140 		m->ack_stamp = jiffies;
2141 		ceph_msg_remove(m);
2142 	}
2143 	prepare_read_tag(con);
2144 }
2145 
2146 
2147 static int read_partial_message_section(struct ceph_connection *con,
2148 					struct kvec *section,
2149 					unsigned int sec_len, u32 *crc)
2150 {
2151 	int ret, left;
2152 
2153 	BUG_ON(!section);
2154 
2155 	while (section->iov_len < sec_len) {
2156 		BUG_ON(section->iov_base == NULL);
2157 		left = sec_len - section->iov_len;
2158 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2159 				       section->iov_len, left);
2160 		if (ret <= 0)
2161 			return ret;
2162 		section->iov_len += ret;
2163 	}
2164 	if (section->iov_len == sec_len)
2165 		*crc = crc32c(0, section->iov_base, section->iov_len);
2166 
2167 	return 1;
2168 }
2169 
2170 static int read_partial_msg_data(struct ceph_connection *con)
2171 {
2172 	struct ceph_msg *msg = con->in_msg;
2173 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2174 	const bool do_datacrc = !con->msgr->nocrc;
2175 	struct page *page;
2176 	size_t page_offset;
2177 	size_t length;
2178 	u32 crc = 0;
2179 	int ret;
2180 
2181 	BUG_ON(!msg);
2182 	if (list_empty(&msg->data))
2183 		return -EIO;
2184 
2185 	if (do_datacrc)
2186 		crc = con->in_data_crc;
2187 	while (cursor->resid) {
2188 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2189 							NULL);
2190 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2191 		if (ret <= 0) {
2192 			if (do_datacrc)
2193 				con->in_data_crc = crc;
2194 
2195 			return ret;
2196 		}
2197 
2198 		if (do_datacrc)
2199 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2200 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2201 	}
2202 	if (do_datacrc)
2203 		con->in_data_crc = crc;
2204 
2205 	return 1;	/* must return > 0 to indicate success */
2206 }
2207 
2208 /*
2209  * read (part of) a message.
2210  */
2211 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2212 
2213 static int read_partial_message(struct ceph_connection *con)
2214 {
2215 	struct ceph_msg *m = con->in_msg;
2216 	int size;
2217 	int end;
2218 	int ret;
2219 	unsigned int front_len, middle_len, data_len;
2220 	bool do_datacrc = !con->msgr->nocrc;
2221 	u64 seq;
2222 	u32 crc;
2223 
2224 	dout("read_partial_message con %p msg %p\n", con, m);
2225 
2226 	/* header */
2227 	size = sizeof (con->in_hdr);
2228 	end = size;
2229 	ret = read_partial(con, end, size, &con->in_hdr);
2230 	if (ret <= 0)
2231 		return ret;
2232 
2233 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2234 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2235 		pr_err("read_partial_message bad hdr "
2236 		       " crc %u != expected %u\n",
2237 		       crc, con->in_hdr.crc);
2238 		return -EBADMSG;
2239 	}
2240 
2241 	front_len = le32_to_cpu(con->in_hdr.front_len);
2242 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2243 		return -EIO;
2244 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2245 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2246 		return -EIO;
2247 	data_len = le32_to_cpu(con->in_hdr.data_len);
2248 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2249 		return -EIO;
2250 
2251 	/* verify seq# */
2252 	seq = le64_to_cpu(con->in_hdr.seq);
2253 	if ((s64)seq - (s64)con->in_seq < 1) {
2254 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2255 			ENTITY_NAME(con->peer_name),
2256 			ceph_pr_addr(&con->peer_addr.in_addr),
2257 			seq, con->in_seq + 1);
2258 		con->in_base_pos = -front_len - middle_len - data_len -
2259 			sizeof(m->footer);
2260 		con->in_tag = CEPH_MSGR_TAG_READY;
2261 		return 0;
2262 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2263 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2264 		       seq, con->in_seq + 1);
2265 		con->error_msg = "bad message sequence # for incoming message";
2266 		return -EBADMSG;
2267 	}
2268 
2269 	/* allocate message? */
2270 	if (!con->in_msg) {
2271 		int skip = 0;
2272 
2273 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2274 		     front_len, data_len);
2275 		ret = ceph_con_in_msg_alloc(con, &skip);
2276 		if (ret < 0)
2277 			return ret;
2278 
2279 		BUG_ON(!con->in_msg ^ skip);
2280 		if (con->in_msg && data_len > con->in_msg->data_length) {
2281 			pr_warning("%s skipping long message (%u > %zd)\n",
2282 				__func__, data_len, con->in_msg->data_length);
2283 			ceph_msg_put(con->in_msg);
2284 			con->in_msg = NULL;
2285 			skip = 1;
2286 		}
2287 		if (skip) {
2288 			/* skip this message */
2289 			dout("alloc_msg said skip message\n");
2290 			con->in_base_pos = -front_len - middle_len - data_len -
2291 				sizeof(m->footer);
2292 			con->in_tag = CEPH_MSGR_TAG_READY;
2293 			con->in_seq++;
2294 			return 0;
2295 		}
2296 
2297 		BUG_ON(!con->in_msg);
2298 		BUG_ON(con->in_msg->con != con);
2299 		m = con->in_msg;
2300 		m->front.iov_len = 0;    /* haven't read it yet */
2301 		if (m->middle)
2302 			m->middle->vec.iov_len = 0;
2303 
2304 		/* prepare for data payload, if any */
2305 
2306 		if (data_len)
2307 			prepare_message_data(con->in_msg, data_len);
2308 	}
2309 
2310 	/* front */
2311 	ret = read_partial_message_section(con, &m->front, front_len,
2312 					   &con->in_front_crc);
2313 	if (ret <= 0)
2314 		return ret;
2315 
2316 	/* middle */
2317 	if (m->middle) {
2318 		ret = read_partial_message_section(con, &m->middle->vec,
2319 						   middle_len,
2320 						   &con->in_middle_crc);
2321 		if (ret <= 0)
2322 			return ret;
2323 	}
2324 
2325 	/* (page) data */
2326 	if (data_len) {
2327 		ret = read_partial_msg_data(con);
2328 		if (ret <= 0)
2329 			return ret;
2330 	}
2331 
2332 	/* footer */
2333 	size = sizeof (m->footer);
2334 	end += size;
2335 	ret = read_partial(con, end, size, &m->footer);
2336 	if (ret <= 0)
2337 		return ret;
2338 
2339 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2340 	     m, front_len, m->footer.front_crc, middle_len,
2341 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2342 
2343 	/* crc ok? */
2344 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2345 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2346 		       m, con->in_front_crc, m->footer.front_crc);
2347 		return -EBADMSG;
2348 	}
2349 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2350 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2351 		       m, con->in_middle_crc, m->footer.middle_crc);
2352 		return -EBADMSG;
2353 	}
2354 	if (do_datacrc &&
2355 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2356 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2357 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2358 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2359 		return -EBADMSG;
2360 	}
2361 
2362 	return 1; /* done! */
2363 }
2364 
2365 /*
2366  * Process message.  This happens in the worker thread.  The callback should
2367  * be careful not to do anything that waits on other incoming messages or it
2368  * may deadlock.
2369  */
2370 static void process_message(struct ceph_connection *con)
2371 {
2372 	struct ceph_msg *msg;
2373 
2374 	BUG_ON(con->in_msg->con != con);
2375 	con->in_msg->con = NULL;
2376 	msg = con->in_msg;
2377 	con->in_msg = NULL;
2378 	con->ops->put(con);
2379 
2380 	/* if first message, set peer_name */
2381 	if (con->peer_name.type == 0)
2382 		con->peer_name = msg->hdr.src;
2383 
2384 	con->in_seq++;
2385 	mutex_unlock(&con->mutex);
2386 
2387 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2388 	     msg, le64_to_cpu(msg->hdr.seq),
2389 	     ENTITY_NAME(msg->hdr.src),
2390 	     le16_to_cpu(msg->hdr.type),
2391 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2392 	     le32_to_cpu(msg->hdr.front_len),
2393 	     le32_to_cpu(msg->hdr.data_len),
2394 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2395 	con->ops->dispatch(con, msg);
2396 
2397 	mutex_lock(&con->mutex);
2398 }
2399 
2400 
2401 /*
2402  * Write something to the socket.  Called in a worker thread when the
2403  * socket appears to be writeable and we have something ready to send.
2404  */
2405 static int try_write(struct ceph_connection *con)
2406 {
2407 	int ret = 1;
2408 
2409 	dout("try_write start %p state %lu\n", con, con->state);
2410 
2411 more:
2412 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2413 
2414 	/* open the socket first? */
2415 	if (con->state == CON_STATE_PREOPEN) {
2416 		BUG_ON(con->sock);
2417 		con->state = CON_STATE_CONNECTING;
2418 
2419 		con_out_kvec_reset(con);
2420 		prepare_write_banner(con);
2421 		prepare_read_banner(con);
2422 
2423 		BUG_ON(con->in_msg);
2424 		con->in_tag = CEPH_MSGR_TAG_READY;
2425 		dout("try_write initiating connect on %p new state %lu\n",
2426 		     con, con->state);
2427 		ret = ceph_tcp_connect(con);
2428 		if (ret < 0) {
2429 			con->error_msg = "connect error";
2430 			goto out;
2431 		}
2432 	}
2433 
2434 more_kvec:
2435 	/* kvec data queued? */
2436 	if (con->out_skip) {
2437 		ret = write_partial_skip(con);
2438 		if (ret <= 0)
2439 			goto out;
2440 	}
2441 	if (con->out_kvec_left) {
2442 		ret = write_partial_kvec(con);
2443 		if (ret <= 0)
2444 			goto out;
2445 	}
2446 
2447 	/* msg pages? */
2448 	if (con->out_msg) {
2449 		if (con->out_msg_done) {
2450 			ceph_msg_put(con->out_msg);
2451 			con->out_msg = NULL;   /* we're done with this one */
2452 			goto do_next;
2453 		}
2454 
2455 		ret = write_partial_message_data(con);
2456 		if (ret == 1)
2457 			goto more_kvec;  /* we need to send the footer, too! */
2458 		if (ret == 0)
2459 			goto out;
2460 		if (ret < 0) {
2461 			dout("try_write write_partial_message_data err %d\n",
2462 			     ret);
2463 			goto out;
2464 		}
2465 	}
2466 
2467 do_next:
2468 	if (con->state == CON_STATE_OPEN) {
2469 		/* is anything else pending? */
2470 		if (!list_empty(&con->out_queue)) {
2471 			prepare_write_message(con);
2472 			goto more;
2473 		}
2474 		if (con->in_seq > con->in_seq_acked) {
2475 			prepare_write_ack(con);
2476 			goto more;
2477 		}
2478 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2479 			prepare_write_keepalive(con);
2480 			goto more;
2481 		}
2482 	}
2483 
2484 	/* Nothing to do! */
2485 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2486 	dout("try_write nothing else to write.\n");
2487 	ret = 0;
2488 out:
2489 	dout("try_write done on %p ret %d\n", con, ret);
2490 	return ret;
2491 }
2492 
2493 
2494 
2495 /*
2496  * Read what we can from the socket.
2497  */
2498 static int try_read(struct ceph_connection *con)
2499 {
2500 	int ret = -1;
2501 
2502 more:
2503 	dout("try_read start on %p state %lu\n", con, con->state);
2504 	if (con->state != CON_STATE_CONNECTING &&
2505 	    con->state != CON_STATE_NEGOTIATING &&
2506 	    con->state != CON_STATE_OPEN)
2507 		return 0;
2508 
2509 	BUG_ON(!con->sock);
2510 
2511 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2512 	     con->in_base_pos);
2513 
2514 	if (con->state == CON_STATE_CONNECTING) {
2515 		dout("try_read connecting\n");
2516 		ret = read_partial_banner(con);
2517 		if (ret <= 0)
2518 			goto out;
2519 		ret = process_banner(con);
2520 		if (ret < 0)
2521 			goto out;
2522 
2523 		con->state = CON_STATE_NEGOTIATING;
2524 
2525 		/*
2526 		 * Received banner is good, exchange connection info.
2527 		 * Do not reset out_kvec, as sending our banner raced
2528 		 * with receiving peer banner after connect completed.
2529 		 */
2530 		ret = prepare_write_connect(con);
2531 		if (ret < 0)
2532 			goto out;
2533 		prepare_read_connect(con);
2534 
2535 		/* Send connection info before awaiting response */
2536 		goto out;
2537 	}
2538 
2539 	if (con->state == CON_STATE_NEGOTIATING) {
2540 		dout("try_read negotiating\n");
2541 		ret = read_partial_connect(con);
2542 		if (ret <= 0)
2543 			goto out;
2544 		ret = process_connect(con);
2545 		if (ret < 0)
2546 			goto out;
2547 		goto more;
2548 	}
2549 
2550 	WARN_ON(con->state != CON_STATE_OPEN);
2551 
2552 	if (con->in_base_pos < 0) {
2553 		/*
2554 		 * skipping + discarding content.
2555 		 *
2556 		 * FIXME: there must be a better way to do this!
2557 		 */
2558 		static char buf[SKIP_BUF_SIZE];
2559 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2560 
2561 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2562 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2563 		if (ret <= 0)
2564 			goto out;
2565 		con->in_base_pos += ret;
2566 		if (con->in_base_pos)
2567 			goto more;
2568 	}
2569 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2570 		/*
2571 		 * what's next?
2572 		 */
2573 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2574 		if (ret <= 0)
2575 			goto out;
2576 		dout("try_read got tag %d\n", (int)con->in_tag);
2577 		switch (con->in_tag) {
2578 		case CEPH_MSGR_TAG_MSG:
2579 			prepare_read_message(con);
2580 			break;
2581 		case CEPH_MSGR_TAG_ACK:
2582 			prepare_read_ack(con);
2583 			break;
2584 		case CEPH_MSGR_TAG_CLOSE:
2585 			con_close_socket(con);
2586 			con->state = CON_STATE_CLOSED;
2587 			goto out;
2588 		default:
2589 			goto bad_tag;
2590 		}
2591 	}
2592 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2593 		ret = read_partial_message(con);
2594 		if (ret <= 0) {
2595 			switch (ret) {
2596 			case -EBADMSG:
2597 				con->error_msg = "bad crc";
2598 				ret = -EIO;
2599 				break;
2600 			case -EIO:
2601 				con->error_msg = "io error";
2602 				break;
2603 			}
2604 			goto out;
2605 		}
2606 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2607 			goto more;
2608 		process_message(con);
2609 		if (con->state == CON_STATE_OPEN)
2610 			prepare_read_tag(con);
2611 		goto more;
2612 	}
2613 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2614 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2615 		/*
2616 		 * the final handshake seq exchange is semantically
2617 		 * equivalent to an ACK
2618 		 */
2619 		ret = read_partial_ack(con);
2620 		if (ret <= 0)
2621 			goto out;
2622 		process_ack(con);
2623 		goto more;
2624 	}
2625 
2626 out:
2627 	dout("try_read done on %p ret %d\n", con, ret);
2628 	return ret;
2629 
2630 bad_tag:
2631 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2632 	con->error_msg = "protocol error, garbage tag";
2633 	ret = -1;
2634 	goto out;
2635 }
2636 
2637 
2638 /*
2639  * Atomically queue work on a connection after the specified delay.
2640  * Bump @con reference to avoid races with connection teardown.
2641  * Returns 0 if work was queued, or an error code otherwise.
2642  */
2643 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2644 {
2645 	if (!con->ops->get(con)) {
2646 		dout("%s %p ref count 0\n", __func__, con);
2647 
2648 		return -ENOENT;
2649 	}
2650 
2651 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2652 		dout("%s %p - already queued\n", __func__, con);
2653 		con->ops->put(con);
2654 
2655 		return -EBUSY;
2656 	}
2657 
2658 	dout("%s %p %lu\n", __func__, con, delay);
2659 
2660 	return 0;
2661 }
2662 
2663 static void queue_con(struct ceph_connection *con)
2664 {
2665 	(void) queue_con_delay(con, 0);
2666 }
2667 
2668 static bool con_sock_closed(struct ceph_connection *con)
2669 {
2670 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2671 		return false;
2672 
2673 #define CASE(x)								\
2674 	case CON_STATE_ ## x:						\
2675 		con->error_msg = "socket closed (con state " #x ")";	\
2676 		break;
2677 
2678 	switch (con->state) {
2679 	CASE(CLOSED);
2680 	CASE(PREOPEN);
2681 	CASE(CONNECTING);
2682 	CASE(NEGOTIATING);
2683 	CASE(OPEN);
2684 	CASE(STANDBY);
2685 	default:
2686 		pr_warning("%s con %p unrecognized state %lu\n",
2687 			__func__, con, con->state);
2688 		con->error_msg = "unrecognized con state";
2689 		BUG();
2690 		break;
2691 	}
2692 #undef CASE
2693 
2694 	return true;
2695 }
2696 
2697 static bool con_backoff(struct ceph_connection *con)
2698 {
2699 	int ret;
2700 
2701 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2702 		return false;
2703 
2704 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2705 	if (ret) {
2706 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2707 			con, con->delay);
2708 		BUG_ON(ret == -ENOENT);
2709 		con_flag_set(con, CON_FLAG_BACKOFF);
2710 	}
2711 
2712 	return true;
2713 }
2714 
2715 /* Finish fault handling; con->mutex must *not* be held here */
2716 
2717 static void con_fault_finish(struct ceph_connection *con)
2718 {
2719 	/*
2720 	 * in case we faulted due to authentication, invalidate our
2721 	 * current tickets so that we can get new ones.
2722 	 */
2723 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2724 		dout("calling invalidate_authorizer()\n");
2725 		con->ops->invalidate_authorizer(con);
2726 	}
2727 
2728 	if (con->ops->fault)
2729 		con->ops->fault(con);
2730 }
2731 
2732 /*
2733  * Do some work on a connection.  Drop a connection ref when we're done.
2734  */
2735 static void con_work(struct work_struct *work)
2736 {
2737 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2738 						   work.work);
2739 	bool fault;
2740 
2741 	mutex_lock(&con->mutex);
2742 	while (true) {
2743 		int ret;
2744 
2745 		if ((fault = con_sock_closed(con))) {
2746 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2747 			break;
2748 		}
2749 		if (con_backoff(con)) {
2750 			dout("%s: con %p BACKOFF\n", __func__, con);
2751 			break;
2752 		}
2753 		if (con->state == CON_STATE_STANDBY) {
2754 			dout("%s: con %p STANDBY\n", __func__, con);
2755 			break;
2756 		}
2757 		if (con->state == CON_STATE_CLOSED) {
2758 			dout("%s: con %p CLOSED\n", __func__, con);
2759 			BUG_ON(con->sock);
2760 			break;
2761 		}
2762 		if (con->state == CON_STATE_PREOPEN) {
2763 			dout("%s: con %p PREOPEN\n", __func__, con);
2764 			BUG_ON(con->sock);
2765 		}
2766 
2767 		ret = try_read(con);
2768 		if (ret < 0) {
2769 			if (ret == -EAGAIN)
2770 				continue;
2771 			con->error_msg = "socket error on read";
2772 			fault = true;
2773 			break;
2774 		}
2775 
2776 		ret = try_write(con);
2777 		if (ret < 0) {
2778 			if (ret == -EAGAIN)
2779 				continue;
2780 			con->error_msg = "socket error on write";
2781 			fault = true;
2782 		}
2783 
2784 		break;	/* If we make it to here, we're done */
2785 	}
2786 	if (fault)
2787 		con_fault(con);
2788 	mutex_unlock(&con->mutex);
2789 
2790 	if (fault)
2791 		con_fault_finish(con);
2792 
2793 	con->ops->put(con);
2794 }
2795 
2796 /*
2797  * Generic error/fault handler.  A retry mechanism is used with
2798  * exponential backoff
2799  */
2800 static void con_fault(struct ceph_connection *con)
2801 {
2802 	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2803 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2804 	dout("fault %p state %lu to peer %s\n",
2805 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2806 
2807 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2808 	       con->state != CON_STATE_NEGOTIATING &&
2809 	       con->state != CON_STATE_OPEN);
2810 
2811 	con_close_socket(con);
2812 
2813 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2814 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2815 		con->state = CON_STATE_CLOSED;
2816 		return;
2817 	}
2818 
2819 	if (con->in_msg) {
2820 		BUG_ON(con->in_msg->con != con);
2821 		con->in_msg->con = NULL;
2822 		ceph_msg_put(con->in_msg);
2823 		con->in_msg = NULL;
2824 		con->ops->put(con);
2825 	}
2826 
2827 	/* Requeue anything that hasn't been acked */
2828 	list_splice_init(&con->out_sent, &con->out_queue);
2829 
2830 	/* If there are no messages queued or keepalive pending, place
2831 	 * the connection in a STANDBY state */
2832 	if (list_empty(&con->out_queue) &&
2833 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2834 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2835 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2836 		con->state = CON_STATE_STANDBY;
2837 	} else {
2838 		/* retry after a delay. */
2839 		con->state = CON_STATE_PREOPEN;
2840 		if (con->delay == 0)
2841 			con->delay = BASE_DELAY_INTERVAL;
2842 		else if (con->delay < MAX_DELAY_INTERVAL)
2843 			con->delay *= 2;
2844 		con_flag_set(con, CON_FLAG_BACKOFF);
2845 		queue_con(con);
2846 	}
2847 }
2848 
2849 
2850 
2851 /*
2852  * initialize a new messenger instance
2853  */
2854 void ceph_messenger_init(struct ceph_messenger *msgr,
2855 			struct ceph_entity_addr *myaddr,
2856 			u32 supported_features,
2857 			u32 required_features,
2858 			bool nocrc)
2859 {
2860 	msgr->supported_features = supported_features;
2861 	msgr->required_features = required_features;
2862 
2863 	spin_lock_init(&msgr->global_seq_lock);
2864 
2865 	if (myaddr)
2866 		msgr->inst.addr = *myaddr;
2867 
2868 	/* select a random nonce */
2869 	msgr->inst.addr.type = 0;
2870 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2871 	encode_my_addr(msgr);
2872 	msgr->nocrc = nocrc;
2873 
2874 	atomic_set(&msgr->stopping, 0);
2875 
2876 	dout("%s %p\n", __func__, msgr);
2877 }
2878 EXPORT_SYMBOL(ceph_messenger_init);
2879 
2880 static void clear_standby(struct ceph_connection *con)
2881 {
2882 	/* come back from STANDBY? */
2883 	if (con->state == CON_STATE_STANDBY) {
2884 		dout("clear_standby %p and ++connect_seq\n", con);
2885 		con->state = CON_STATE_PREOPEN;
2886 		con->connect_seq++;
2887 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2888 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2889 	}
2890 }
2891 
2892 /*
2893  * Queue up an outgoing message on the given connection.
2894  */
2895 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2896 {
2897 	/* set src+dst */
2898 	msg->hdr.src = con->msgr->inst.name;
2899 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2900 	msg->needs_out_seq = true;
2901 
2902 	mutex_lock(&con->mutex);
2903 
2904 	if (con->state == CON_STATE_CLOSED) {
2905 		dout("con_send %p closed, dropping %p\n", con, msg);
2906 		ceph_msg_put(msg);
2907 		mutex_unlock(&con->mutex);
2908 		return;
2909 	}
2910 
2911 	BUG_ON(msg->con != NULL);
2912 	msg->con = con->ops->get(con);
2913 	BUG_ON(msg->con == NULL);
2914 
2915 	BUG_ON(!list_empty(&msg->list_head));
2916 	list_add_tail(&msg->list_head, &con->out_queue);
2917 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2918 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2919 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2920 	     le32_to_cpu(msg->hdr.front_len),
2921 	     le32_to_cpu(msg->hdr.middle_len),
2922 	     le32_to_cpu(msg->hdr.data_len));
2923 
2924 	clear_standby(con);
2925 	mutex_unlock(&con->mutex);
2926 
2927 	/* if there wasn't anything waiting to send before, queue
2928 	 * new work */
2929 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2930 		queue_con(con);
2931 }
2932 EXPORT_SYMBOL(ceph_con_send);
2933 
2934 /*
2935  * Revoke a message that was previously queued for send
2936  */
2937 void ceph_msg_revoke(struct ceph_msg *msg)
2938 {
2939 	struct ceph_connection *con = msg->con;
2940 
2941 	if (!con)
2942 		return;		/* Message not in our possession */
2943 
2944 	mutex_lock(&con->mutex);
2945 	if (!list_empty(&msg->list_head)) {
2946 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2947 		list_del_init(&msg->list_head);
2948 		BUG_ON(msg->con == NULL);
2949 		msg->con->ops->put(msg->con);
2950 		msg->con = NULL;
2951 		msg->hdr.seq = 0;
2952 
2953 		ceph_msg_put(msg);
2954 	}
2955 	if (con->out_msg == msg) {
2956 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2957 		con->out_msg = NULL;
2958 		if (con->out_kvec_is_msg) {
2959 			con->out_skip = con->out_kvec_bytes;
2960 			con->out_kvec_is_msg = false;
2961 		}
2962 		msg->hdr.seq = 0;
2963 
2964 		ceph_msg_put(msg);
2965 	}
2966 	mutex_unlock(&con->mutex);
2967 }
2968 
2969 /*
2970  * Revoke a message that we may be reading data into
2971  */
2972 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2973 {
2974 	struct ceph_connection *con;
2975 
2976 	BUG_ON(msg == NULL);
2977 	if (!msg->con) {
2978 		dout("%s msg %p null con\n", __func__, msg);
2979 
2980 		return;		/* Message not in our possession */
2981 	}
2982 
2983 	con = msg->con;
2984 	mutex_lock(&con->mutex);
2985 	if (con->in_msg == msg) {
2986 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2987 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2988 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2989 
2990 		/* skip rest of message */
2991 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2992 		con->in_base_pos = con->in_base_pos -
2993 				sizeof(struct ceph_msg_header) -
2994 				front_len -
2995 				middle_len -
2996 				data_len -
2997 				sizeof(struct ceph_msg_footer);
2998 		ceph_msg_put(con->in_msg);
2999 		con->in_msg = NULL;
3000 		con->in_tag = CEPH_MSGR_TAG_READY;
3001 		con->in_seq++;
3002 	} else {
3003 		dout("%s %p in_msg %p msg %p no-op\n",
3004 		     __func__, con, con->in_msg, msg);
3005 	}
3006 	mutex_unlock(&con->mutex);
3007 }
3008 
3009 /*
3010  * Queue a keepalive byte to ensure the tcp connection is alive.
3011  */
3012 void ceph_con_keepalive(struct ceph_connection *con)
3013 {
3014 	dout("con_keepalive %p\n", con);
3015 	mutex_lock(&con->mutex);
3016 	clear_standby(con);
3017 	mutex_unlock(&con->mutex);
3018 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3019 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3020 		queue_con(con);
3021 }
3022 EXPORT_SYMBOL(ceph_con_keepalive);
3023 
3024 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3025 {
3026 	struct ceph_msg_data *data;
3027 
3028 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3029 		return NULL;
3030 
3031 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3032 	if (data)
3033 		data->type = type;
3034 	INIT_LIST_HEAD(&data->links);
3035 
3036 	return data;
3037 }
3038 
3039 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3040 {
3041 	if (!data)
3042 		return;
3043 
3044 	WARN_ON(!list_empty(&data->links));
3045 	if (data->type == CEPH_MSG_DATA_PAGELIST) {
3046 		ceph_pagelist_release(data->pagelist);
3047 		kfree(data->pagelist);
3048 	}
3049 	kmem_cache_free(ceph_msg_data_cache, data);
3050 }
3051 
3052 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3053 		size_t length, size_t alignment)
3054 {
3055 	struct ceph_msg_data *data;
3056 
3057 	BUG_ON(!pages);
3058 	BUG_ON(!length);
3059 
3060 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3061 	BUG_ON(!data);
3062 	data->pages = pages;
3063 	data->length = length;
3064 	data->alignment = alignment & ~PAGE_MASK;
3065 
3066 	list_add_tail(&data->links, &msg->data);
3067 	msg->data_length += length;
3068 }
3069 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3070 
3071 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3072 				struct ceph_pagelist *pagelist)
3073 {
3074 	struct ceph_msg_data *data;
3075 
3076 	BUG_ON(!pagelist);
3077 	BUG_ON(!pagelist->length);
3078 
3079 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3080 	BUG_ON(!data);
3081 	data->pagelist = pagelist;
3082 
3083 	list_add_tail(&data->links, &msg->data);
3084 	msg->data_length += pagelist->length;
3085 }
3086 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3087 
3088 #ifdef	CONFIG_BLOCK
3089 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3090 		size_t length)
3091 {
3092 	struct ceph_msg_data *data;
3093 
3094 	BUG_ON(!bio);
3095 
3096 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3097 	BUG_ON(!data);
3098 	data->bio = bio;
3099 	data->bio_length = length;
3100 
3101 	list_add_tail(&data->links, &msg->data);
3102 	msg->data_length += length;
3103 }
3104 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3105 #endif	/* CONFIG_BLOCK */
3106 
3107 /*
3108  * construct a new message with given type, size
3109  * the new msg has a ref count of 1.
3110  */
3111 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3112 			      bool can_fail)
3113 {
3114 	struct ceph_msg *m;
3115 
3116 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3117 	if (m == NULL)
3118 		goto out;
3119 
3120 	m->hdr.type = cpu_to_le16(type);
3121 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3122 	m->hdr.front_len = cpu_to_le32(front_len);
3123 
3124 	INIT_LIST_HEAD(&m->list_head);
3125 	kref_init(&m->kref);
3126 	INIT_LIST_HEAD(&m->data);
3127 
3128 	/* front */
3129 	m->front_max = front_len;
3130 	if (front_len) {
3131 		if (front_len > PAGE_CACHE_SIZE) {
3132 			m->front.iov_base = __vmalloc(front_len, flags,
3133 						      PAGE_KERNEL);
3134 			m->front_is_vmalloc = true;
3135 		} else {
3136 			m->front.iov_base = kmalloc(front_len, flags);
3137 		}
3138 		if (m->front.iov_base == NULL) {
3139 			dout("ceph_msg_new can't allocate %d bytes\n",
3140 			     front_len);
3141 			goto out2;
3142 		}
3143 	} else {
3144 		m->front.iov_base = NULL;
3145 	}
3146 	m->front.iov_len = front_len;
3147 
3148 	dout("ceph_msg_new %p front %d\n", m, front_len);
3149 	return m;
3150 
3151 out2:
3152 	ceph_msg_put(m);
3153 out:
3154 	if (!can_fail) {
3155 		pr_err("msg_new can't create type %d front %d\n", type,
3156 		       front_len);
3157 		WARN_ON(1);
3158 	} else {
3159 		dout("msg_new can't create type %d front %d\n", type,
3160 		     front_len);
3161 	}
3162 	return NULL;
3163 }
3164 EXPORT_SYMBOL(ceph_msg_new);
3165 
3166 /*
3167  * Allocate "middle" portion of a message, if it is needed and wasn't
3168  * allocated by alloc_msg.  This allows us to read a small fixed-size
3169  * per-type header in the front and then gracefully fail (i.e.,
3170  * propagate the error to the caller based on info in the front) when
3171  * the middle is too large.
3172  */
3173 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3174 {
3175 	int type = le16_to_cpu(msg->hdr.type);
3176 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3177 
3178 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3179 	     ceph_msg_type_name(type), middle_len);
3180 	BUG_ON(!middle_len);
3181 	BUG_ON(msg->middle);
3182 
3183 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3184 	if (!msg->middle)
3185 		return -ENOMEM;
3186 	return 0;
3187 }
3188 
3189 /*
3190  * Allocate a message for receiving an incoming message on a
3191  * connection, and save the result in con->in_msg.  Uses the
3192  * connection's private alloc_msg op if available.
3193  *
3194  * Returns 0 on success, or a negative error code.
3195  *
3196  * On success, if we set *skip = 1:
3197  *  - the next message should be skipped and ignored.
3198  *  - con->in_msg == NULL
3199  * or if we set *skip = 0:
3200  *  - con->in_msg is non-null.
3201  * On error (ENOMEM, EAGAIN, ...),
3202  *  - con->in_msg == NULL
3203  */
3204 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3205 {
3206 	struct ceph_msg_header *hdr = &con->in_hdr;
3207 	int middle_len = le32_to_cpu(hdr->middle_len);
3208 	struct ceph_msg *msg;
3209 	int ret = 0;
3210 
3211 	BUG_ON(con->in_msg != NULL);
3212 	BUG_ON(!con->ops->alloc_msg);
3213 
3214 	mutex_unlock(&con->mutex);
3215 	msg = con->ops->alloc_msg(con, hdr, skip);
3216 	mutex_lock(&con->mutex);
3217 	if (con->state != CON_STATE_OPEN) {
3218 		if (msg)
3219 			ceph_msg_put(msg);
3220 		return -EAGAIN;
3221 	}
3222 	if (msg) {
3223 		BUG_ON(*skip);
3224 		con->in_msg = msg;
3225 		con->in_msg->con = con->ops->get(con);
3226 		BUG_ON(con->in_msg->con == NULL);
3227 	} else {
3228 		/*
3229 		 * Null message pointer means either we should skip
3230 		 * this message or we couldn't allocate memory.  The
3231 		 * former is not an error.
3232 		 */
3233 		if (*skip)
3234 			return 0;
3235 		con->error_msg = "error allocating memory for incoming message";
3236 
3237 		return -ENOMEM;
3238 	}
3239 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3240 
3241 	if (middle_len && !con->in_msg->middle) {
3242 		ret = ceph_alloc_middle(con, con->in_msg);
3243 		if (ret < 0) {
3244 			ceph_msg_put(con->in_msg);
3245 			con->in_msg = NULL;
3246 		}
3247 	}
3248 
3249 	return ret;
3250 }
3251 
3252 
3253 /*
3254  * Free a generically kmalloc'd message.
3255  */
3256 void ceph_msg_kfree(struct ceph_msg *m)
3257 {
3258 	dout("msg_kfree %p\n", m);
3259 	if (m->front_is_vmalloc)
3260 		vfree(m->front.iov_base);
3261 	else
3262 		kfree(m->front.iov_base);
3263 	kmem_cache_free(ceph_msg_cache, m);
3264 }
3265 
3266 /*
3267  * Drop a msg ref.  Destroy as needed.
3268  */
3269 void ceph_msg_last_put(struct kref *kref)
3270 {
3271 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3272 	LIST_HEAD(data);
3273 	struct list_head *links;
3274 	struct list_head *next;
3275 
3276 	dout("ceph_msg_put last one on %p\n", m);
3277 	WARN_ON(!list_empty(&m->list_head));
3278 
3279 	/* drop middle, data, if any */
3280 	if (m->middle) {
3281 		ceph_buffer_put(m->middle);
3282 		m->middle = NULL;
3283 	}
3284 
3285 	list_splice_init(&m->data, &data);
3286 	list_for_each_safe(links, next, &data) {
3287 		struct ceph_msg_data *data;
3288 
3289 		data = list_entry(links, struct ceph_msg_data, links);
3290 		list_del_init(links);
3291 		ceph_msg_data_destroy(data);
3292 	}
3293 	m->data_length = 0;
3294 
3295 	if (m->pool)
3296 		ceph_msgpool_put(m->pool, m);
3297 	else
3298 		ceph_msg_kfree(m);
3299 }
3300 EXPORT_SYMBOL(ceph_msg_last_put);
3301 
3302 void ceph_msg_dump(struct ceph_msg *msg)
3303 {
3304 	pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3305 		 msg->front_max, msg->data_length);
3306 	print_hex_dump(KERN_DEBUG, "header: ",
3307 		       DUMP_PREFIX_OFFSET, 16, 1,
3308 		       &msg->hdr, sizeof(msg->hdr), true);
3309 	print_hex_dump(KERN_DEBUG, " front: ",
3310 		       DUMP_PREFIX_OFFSET, 16, 1,
3311 		       msg->front.iov_base, msg->front.iov_len, true);
3312 	if (msg->middle)
3313 		print_hex_dump(KERN_DEBUG, "middle: ",
3314 			       DUMP_PREFIX_OFFSET, 16, 1,
3315 			       msg->middle->vec.iov_base,
3316 			       msg->middle->vec.iov_len, true);
3317 	print_hex_dump(KERN_DEBUG, "footer: ",
3318 		       DUMP_PREFIX_OFFSET, 16, 1,
3319 		       &msg->footer, sizeof(msg->footer), true);
3320 }
3321 EXPORT_SYMBOL(ceph_msg_dump);
3322