1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/libceph.h> 19 #include <linux/ceph/messenger.h> 20 #include <linux/ceph/decode.h> 21 #include <linux/ceph/pagelist.h> 22 #include <linux/export.h> 23 24 #define list_entry_next(pos, member) \ 25 list_entry(pos->member.next, typeof(*pos), member) 26 27 /* 28 * Ceph uses the messenger to exchange ceph_msg messages with other 29 * hosts in the system. The messenger provides ordered and reliable 30 * delivery. We tolerate TCP disconnects by reconnecting (with 31 * exponential backoff) in the case of a fault (disconnection, bad 32 * crc, protocol error). Acks allow sent messages to be discarded by 33 * the sender. 34 */ 35 36 /* 37 * We track the state of the socket on a given connection using 38 * values defined below. The transition to a new socket state is 39 * handled by a function which verifies we aren't coming from an 40 * unexpected state. 41 * 42 * -------- 43 * | NEW* | transient initial state 44 * -------- 45 * | con_sock_state_init() 46 * v 47 * ---------- 48 * | CLOSED | initialized, but no socket (and no 49 * ---------- TCP connection) 50 * ^ \ 51 * | \ con_sock_state_connecting() 52 * | ---------------------- 53 * | \ 54 * + con_sock_state_closed() \ 55 * |+--------------------------- \ 56 * | \ \ \ 57 * | ----------- \ \ 58 * | | CLOSING | socket event; \ \ 59 * | ----------- await close \ \ 60 * | ^ \ | 61 * | | \ | 62 * | + con_sock_state_closing() \ | 63 * | / \ | | 64 * | / --------------- | | 65 * | / \ v v 66 * | / -------------- 67 * | / -----------------| CONNECTING | socket created, TCP 68 * | | / -------------- connect initiated 69 * | | | con_sock_state_connected() 70 * | | v 71 * ------------- 72 * | CONNECTED | TCP connection established 73 * ------------- 74 * 75 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 76 */ 77 78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 83 84 /* 85 * connection states 86 */ 87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 93 94 /* 95 * ceph_connection flag bits 96 */ 97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 98 * messages on errors */ 99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 103 104 static bool con_flag_valid(unsigned long con_flag) 105 { 106 switch (con_flag) { 107 case CON_FLAG_LOSSYTX: 108 case CON_FLAG_KEEPALIVE_PENDING: 109 case CON_FLAG_WRITE_PENDING: 110 case CON_FLAG_SOCK_CLOSED: 111 case CON_FLAG_BACKOFF: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 119 { 120 BUG_ON(!con_flag_valid(con_flag)); 121 122 clear_bit(con_flag, &con->flags); 123 } 124 125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 126 { 127 BUG_ON(!con_flag_valid(con_flag)); 128 129 set_bit(con_flag, &con->flags); 130 } 131 132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 133 { 134 BUG_ON(!con_flag_valid(con_flag)); 135 136 return test_bit(con_flag, &con->flags); 137 } 138 139 static bool con_flag_test_and_clear(struct ceph_connection *con, 140 unsigned long con_flag) 141 { 142 BUG_ON(!con_flag_valid(con_flag)); 143 144 return test_and_clear_bit(con_flag, &con->flags); 145 } 146 147 static bool con_flag_test_and_set(struct ceph_connection *con, 148 unsigned long con_flag) 149 { 150 BUG_ON(!con_flag_valid(con_flag)); 151 152 return test_and_set_bit(con_flag, &con->flags); 153 } 154 155 /* Slab caches for frequently-allocated structures */ 156 157 static struct kmem_cache *ceph_msg_cache; 158 static struct kmem_cache *ceph_msg_data_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 165 #ifdef CONFIG_LOCKDEP 166 static struct lock_class_key socket_class; 167 #endif 168 169 /* 170 * When skipping (ignoring) a block of input we read it into a "skip 171 * buffer," which is this many bytes in size. 172 */ 173 #define SKIP_BUF_SIZE 1024 174 175 static void queue_con(struct ceph_connection *con); 176 static void con_work(struct work_struct *); 177 static void con_fault(struct ceph_connection *con); 178 179 /* 180 * Nicely render a sockaddr as a string. An array of formatted 181 * strings is used, to approximate reentrancy. 182 */ 183 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 184 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 185 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 186 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 187 188 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 189 static atomic_t addr_str_seq = ATOMIC_INIT(0); 190 191 static struct page *zero_page; /* used in certain error cases */ 192 193 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 194 { 195 int i; 196 char *s; 197 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 198 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 199 200 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 201 s = addr_str[i]; 202 203 switch (ss->ss_family) { 204 case AF_INET: 205 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 206 ntohs(in4->sin_port)); 207 break; 208 209 case AF_INET6: 210 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 211 ntohs(in6->sin6_port)); 212 break; 213 214 default: 215 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 216 ss->ss_family); 217 } 218 219 return s; 220 } 221 EXPORT_SYMBOL(ceph_pr_addr); 222 223 static void encode_my_addr(struct ceph_messenger *msgr) 224 { 225 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 226 ceph_encode_addr(&msgr->my_enc_addr); 227 } 228 229 /* 230 * work queue for all reading and writing to/from the socket. 231 */ 232 static struct workqueue_struct *ceph_msgr_wq; 233 234 static int ceph_msgr_slab_init(void) 235 { 236 BUG_ON(ceph_msg_cache); 237 ceph_msg_cache = kmem_cache_create("ceph_msg", 238 sizeof (struct ceph_msg), 239 __alignof__(struct ceph_msg), 0, NULL); 240 241 if (!ceph_msg_cache) 242 return -ENOMEM; 243 244 BUG_ON(ceph_msg_data_cache); 245 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 246 sizeof (struct ceph_msg_data), 247 __alignof__(struct ceph_msg_data), 248 0, NULL); 249 if (ceph_msg_data_cache) 250 return 0; 251 252 kmem_cache_destroy(ceph_msg_cache); 253 ceph_msg_cache = NULL; 254 255 return -ENOMEM; 256 } 257 258 static void ceph_msgr_slab_exit(void) 259 { 260 BUG_ON(!ceph_msg_data_cache); 261 kmem_cache_destroy(ceph_msg_data_cache); 262 ceph_msg_data_cache = NULL; 263 264 BUG_ON(!ceph_msg_cache); 265 kmem_cache_destroy(ceph_msg_cache); 266 ceph_msg_cache = NULL; 267 } 268 269 static void _ceph_msgr_exit(void) 270 { 271 if (ceph_msgr_wq) { 272 destroy_workqueue(ceph_msgr_wq); 273 ceph_msgr_wq = NULL; 274 } 275 276 ceph_msgr_slab_exit(); 277 278 BUG_ON(zero_page == NULL); 279 kunmap(zero_page); 280 page_cache_release(zero_page); 281 zero_page = NULL; 282 } 283 284 int ceph_msgr_init(void) 285 { 286 BUG_ON(zero_page != NULL); 287 zero_page = ZERO_PAGE(0); 288 page_cache_get(zero_page); 289 290 if (ceph_msgr_slab_init()) 291 return -ENOMEM; 292 293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0); 294 if (ceph_msgr_wq) 295 return 0; 296 297 pr_err("msgr_init failed to create workqueue\n"); 298 _ceph_msgr_exit(); 299 300 return -ENOMEM; 301 } 302 EXPORT_SYMBOL(ceph_msgr_init); 303 304 void ceph_msgr_exit(void) 305 { 306 BUG_ON(ceph_msgr_wq == NULL); 307 308 _ceph_msgr_exit(); 309 } 310 EXPORT_SYMBOL(ceph_msgr_exit); 311 312 void ceph_msgr_flush(void) 313 { 314 flush_workqueue(ceph_msgr_wq); 315 } 316 EXPORT_SYMBOL(ceph_msgr_flush); 317 318 /* Connection socket state transition functions */ 319 320 static void con_sock_state_init(struct ceph_connection *con) 321 { 322 int old_state; 323 324 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 325 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 326 printk("%s: unexpected old state %d\n", __func__, old_state); 327 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 328 CON_SOCK_STATE_CLOSED); 329 } 330 331 static void con_sock_state_connecting(struct ceph_connection *con) 332 { 333 int old_state; 334 335 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 336 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 337 printk("%s: unexpected old state %d\n", __func__, old_state); 338 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 339 CON_SOCK_STATE_CONNECTING); 340 } 341 342 static void con_sock_state_connected(struct ceph_connection *con) 343 { 344 int old_state; 345 346 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 347 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 348 printk("%s: unexpected old state %d\n", __func__, old_state); 349 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 350 CON_SOCK_STATE_CONNECTED); 351 } 352 353 static void con_sock_state_closing(struct ceph_connection *con) 354 { 355 int old_state; 356 357 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 358 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 359 old_state != CON_SOCK_STATE_CONNECTED && 360 old_state != CON_SOCK_STATE_CLOSING)) 361 printk("%s: unexpected old state %d\n", __func__, old_state); 362 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 363 CON_SOCK_STATE_CLOSING); 364 } 365 366 static void con_sock_state_closed(struct ceph_connection *con) 367 { 368 int old_state; 369 370 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 371 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 372 old_state != CON_SOCK_STATE_CLOSING && 373 old_state != CON_SOCK_STATE_CONNECTING && 374 old_state != CON_SOCK_STATE_CLOSED)) 375 printk("%s: unexpected old state %d\n", __func__, old_state); 376 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 377 CON_SOCK_STATE_CLOSED); 378 } 379 380 /* 381 * socket callback functions 382 */ 383 384 /* data available on socket, or listen socket received a connect */ 385 static void ceph_sock_data_ready(struct sock *sk, int count_unused) 386 { 387 struct ceph_connection *con = sk->sk_user_data; 388 if (atomic_read(&con->msgr->stopping)) { 389 return; 390 } 391 392 if (sk->sk_state != TCP_CLOSE_WAIT) { 393 dout("%s on %p state = %lu, queueing work\n", __func__, 394 con, con->state); 395 queue_con(con); 396 } 397 } 398 399 /* socket has buffer space for writing */ 400 static void ceph_sock_write_space(struct sock *sk) 401 { 402 struct ceph_connection *con = sk->sk_user_data; 403 404 /* only queue to workqueue if there is data we want to write, 405 * and there is sufficient space in the socket buffer to accept 406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 407 * doesn't get called again until try_write() fills the socket 408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 409 * and net/core/stream.c:sk_stream_write_space(). 410 */ 411 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 412 if (sk_stream_is_writeable(sk)) { 413 dout("%s %p queueing write work\n", __func__, con); 414 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 415 queue_con(con); 416 } 417 } else { 418 dout("%s %p nothing to write\n", __func__, con); 419 } 420 } 421 422 /* socket's state has changed */ 423 static void ceph_sock_state_change(struct sock *sk) 424 { 425 struct ceph_connection *con = sk->sk_user_data; 426 427 dout("%s %p state = %lu sk_state = %u\n", __func__, 428 con, con->state, sk->sk_state); 429 430 switch (sk->sk_state) { 431 case TCP_CLOSE: 432 dout("%s TCP_CLOSE\n", __func__); 433 case TCP_CLOSE_WAIT: 434 dout("%s TCP_CLOSE_WAIT\n", __func__); 435 con_sock_state_closing(con); 436 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 437 queue_con(con); 438 break; 439 case TCP_ESTABLISHED: 440 dout("%s TCP_ESTABLISHED\n", __func__); 441 con_sock_state_connected(con); 442 queue_con(con); 443 break; 444 default: /* Everything else is uninteresting */ 445 break; 446 } 447 } 448 449 /* 450 * set up socket callbacks 451 */ 452 static void set_sock_callbacks(struct socket *sock, 453 struct ceph_connection *con) 454 { 455 struct sock *sk = sock->sk; 456 sk->sk_user_data = con; 457 sk->sk_data_ready = ceph_sock_data_ready; 458 sk->sk_write_space = ceph_sock_write_space; 459 sk->sk_state_change = ceph_sock_state_change; 460 } 461 462 463 /* 464 * socket helpers 465 */ 466 467 /* 468 * initiate connection to a remote socket. 469 */ 470 static int ceph_tcp_connect(struct ceph_connection *con) 471 { 472 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 473 struct socket *sock; 474 int ret; 475 476 BUG_ON(con->sock); 477 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 478 IPPROTO_TCP, &sock); 479 if (ret) 480 return ret; 481 sock->sk->sk_allocation = GFP_NOFS; 482 483 #ifdef CONFIG_LOCKDEP 484 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 485 #endif 486 487 set_sock_callbacks(sock, con); 488 489 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 490 491 con_sock_state_connecting(con); 492 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 493 O_NONBLOCK); 494 if (ret == -EINPROGRESS) { 495 dout("connect %s EINPROGRESS sk_state = %u\n", 496 ceph_pr_addr(&con->peer_addr.in_addr), 497 sock->sk->sk_state); 498 } else if (ret < 0) { 499 pr_err("connect %s error %d\n", 500 ceph_pr_addr(&con->peer_addr.in_addr), ret); 501 sock_release(sock); 502 con->error_msg = "connect error"; 503 504 return ret; 505 } 506 con->sock = sock; 507 return 0; 508 } 509 510 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 511 { 512 struct kvec iov = {buf, len}; 513 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 514 int r; 515 516 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 517 if (r == -EAGAIN) 518 r = 0; 519 return r; 520 } 521 522 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 523 int page_offset, size_t length) 524 { 525 void *kaddr; 526 int ret; 527 528 BUG_ON(page_offset + length > PAGE_SIZE); 529 530 kaddr = kmap(page); 531 BUG_ON(!kaddr); 532 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 533 kunmap(page); 534 535 return ret; 536 } 537 538 /* 539 * write something. @more is true if caller will be sending more data 540 * shortly. 541 */ 542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 543 size_t kvlen, size_t len, int more) 544 { 545 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 546 int r; 547 548 if (more) 549 msg.msg_flags |= MSG_MORE; 550 else 551 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 552 553 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 554 if (r == -EAGAIN) 555 r = 0; 556 return r; 557 } 558 559 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 560 int offset, size_t size, bool more) 561 { 562 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 563 int ret; 564 565 ret = kernel_sendpage(sock, page, offset, size, flags); 566 if (ret == -EAGAIN) 567 ret = 0; 568 569 return ret; 570 } 571 572 573 /* 574 * Shutdown/close the socket for the given connection. 575 */ 576 static int con_close_socket(struct ceph_connection *con) 577 { 578 int rc = 0; 579 580 dout("con_close_socket on %p sock %p\n", con, con->sock); 581 if (con->sock) { 582 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 583 sock_release(con->sock); 584 con->sock = NULL; 585 } 586 587 /* 588 * Forcibly clear the SOCK_CLOSED flag. It gets set 589 * independent of the connection mutex, and we could have 590 * received a socket close event before we had the chance to 591 * shut the socket down. 592 */ 593 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 594 595 con_sock_state_closed(con); 596 return rc; 597 } 598 599 /* 600 * Reset a connection. Discard all incoming and outgoing messages 601 * and clear *_seq state. 602 */ 603 static void ceph_msg_remove(struct ceph_msg *msg) 604 { 605 list_del_init(&msg->list_head); 606 BUG_ON(msg->con == NULL); 607 msg->con->ops->put(msg->con); 608 msg->con = NULL; 609 610 ceph_msg_put(msg); 611 } 612 static void ceph_msg_remove_list(struct list_head *head) 613 { 614 while (!list_empty(head)) { 615 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 616 list_head); 617 ceph_msg_remove(msg); 618 } 619 } 620 621 static void reset_connection(struct ceph_connection *con) 622 { 623 /* reset connection, out_queue, msg_ and connect_seq */ 624 /* discard existing out_queue and msg_seq */ 625 dout("reset_connection %p\n", con); 626 ceph_msg_remove_list(&con->out_queue); 627 ceph_msg_remove_list(&con->out_sent); 628 629 if (con->in_msg) { 630 BUG_ON(con->in_msg->con != con); 631 con->in_msg->con = NULL; 632 ceph_msg_put(con->in_msg); 633 con->in_msg = NULL; 634 con->ops->put(con); 635 } 636 637 con->connect_seq = 0; 638 con->out_seq = 0; 639 if (con->out_msg) { 640 ceph_msg_put(con->out_msg); 641 con->out_msg = NULL; 642 } 643 con->in_seq = 0; 644 con->in_seq_acked = 0; 645 } 646 647 /* 648 * mark a peer down. drop any open connections. 649 */ 650 void ceph_con_close(struct ceph_connection *con) 651 { 652 mutex_lock(&con->mutex); 653 dout("con_close %p peer %s\n", con, 654 ceph_pr_addr(&con->peer_addr.in_addr)); 655 con->state = CON_STATE_CLOSED; 656 657 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 658 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 659 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 660 con_flag_clear(con, CON_FLAG_BACKOFF); 661 662 reset_connection(con); 663 con->peer_global_seq = 0; 664 cancel_delayed_work(&con->work); 665 con_close_socket(con); 666 mutex_unlock(&con->mutex); 667 } 668 EXPORT_SYMBOL(ceph_con_close); 669 670 /* 671 * Reopen a closed connection, with a new peer address. 672 */ 673 void ceph_con_open(struct ceph_connection *con, 674 __u8 entity_type, __u64 entity_num, 675 struct ceph_entity_addr *addr) 676 { 677 mutex_lock(&con->mutex); 678 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 679 680 WARN_ON(con->state != CON_STATE_CLOSED); 681 con->state = CON_STATE_PREOPEN; 682 683 con->peer_name.type = (__u8) entity_type; 684 con->peer_name.num = cpu_to_le64(entity_num); 685 686 memcpy(&con->peer_addr, addr, sizeof(*addr)); 687 con->delay = 0; /* reset backoff memory */ 688 mutex_unlock(&con->mutex); 689 queue_con(con); 690 } 691 EXPORT_SYMBOL(ceph_con_open); 692 693 /* 694 * return true if this connection ever successfully opened 695 */ 696 bool ceph_con_opened(struct ceph_connection *con) 697 { 698 return con->connect_seq > 0; 699 } 700 701 /* 702 * initialize a new connection. 703 */ 704 void ceph_con_init(struct ceph_connection *con, void *private, 705 const struct ceph_connection_operations *ops, 706 struct ceph_messenger *msgr) 707 { 708 dout("con_init %p\n", con); 709 memset(con, 0, sizeof(*con)); 710 con->private = private; 711 con->ops = ops; 712 con->msgr = msgr; 713 714 con_sock_state_init(con); 715 716 mutex_init(&con->mutex); 717 INIT_LIST_HEAD(&con->out_queue); 718 INIT_LIST_HEAD(&con->out_sent); 719 INIT_DELAYED_WORK(&con->work, con_work); 720 721 con->state = CON_STATE_CLOSED; 722 } 723 EXPORT_SYMBOL(ceph_con_init); 724 725 726 /* 727 * We maintain a global counter to order connection attempts. Get 728 * a unique seq greater than @gt. 729 */ 730 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 731 { 732 u32 ret; 733 734 spin_lock(&msgr->global_seq_lock); 735 if (msgr->global_seq < gt) 736 msgr->global_seq = gt; 737 ret = ++msgr->global_seq; 738 spin_unlock(&msgr->global_seq_lock); 739 return ret; 740 } 741 742 static void con_out_kvec_reset(struct ceph_connection *con) 743 { 744 con->out_kvec_left = 0; 745 con->out_kvec_bytes = 0; 746 con->out_kvec_cur = &con->out_kvec[0]; 747 } 748 749 static void con_out_kvec_add(struct ceph_connection *con, 750 size_t size, void *data) 751 { 752 int index; 753 754 index = con->out_kvec_left; 755 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 756 757 con->out_kvec[index].iov_len = size; 758 con->out_kvec[index].iov_base = data; 759 con->out_kvec_left++; 760 con->out_kvec_bytes += size; 761 } 762 763 #ifdef CONFIG_BLOCK 764 765 /* 766 * For a bio data item, a piece is whatever remains of the next 767 * entry in the current bio iovec, or the first entry in the next 768 * bio in the list. 769 */ 770 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 771 size_t length) 772 { 773 struct ceph_msg_data *data = cursor->data; 774 struct bio *bio; 775 776 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 777 778 bio = data->bio; 779 BUG_ON(!bio); 780 BUG_ON(!bio->bi_vcnt); 781 782 cursor->resid = min(length, data->bio_length); 783 cursor->bio = bio; 784 cursor->vector_index = 0; 785 cursor->vector_offset = 0; 786 cursor->last_piece = length <= bio->bi_io_vec[0].bv_len; 787 } 788 789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 790 size_t *page_offset, 791 size_t *length) 792 { 793 struct ceph_msg_data *data = cursor->data; 794 struct bio *bio; 795 struct bio_vec *bio_vec; 796 unsigned int index; 797 798 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 799 800 bio = cursor->bio; 801 BUG_ON(!bio); 802 803 index = cursor->vector_index; 804 BUG_ON(index >= (unsigned int) bio->bi_vcnt); 805 806 bio_vec = &bio->bi_io_vec[index]; 807 BUG_ON(cursor->vector_offset >= bio_vec->bv_len); 808 *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset); 809 BUG_ON(*page_offset >= PAGE_SIZE); 810 if (cursor->last_piece) /* pagelist offset is always 0 */ 811 *length = cursor->resid; 812 else 813 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset); 814 BUG_ON(*length > cursor->resid); 815 BUG_ON(*page_offset + *length > PAGE_SIZE); 816 817 return bio_vec->bv_page; 818 } 819 820 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 821 size_t bytes) 822 { 823 struct bio *bio; 824 struct bio_vec *bio_vec; 825 unsigned int index; 826 827 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 828 829 bio = cursor->bio; 830 BUG_ON(!bio); 831 832 index = cursor->vector_index; 833 BUG_ON(index >= (unsigned int) bio->bi_vcnt); 834 bio_vec = &bio->bi_io_vec[index]; 835 836 /* Advance the cursor offset */ 837 838 BUG_ON(cursor->resid < bytes); 839 cursor->resid -= bytes; 840 cursor->vector_offset += bytes; 841 if (cursor->vector_offset < bio_vec->bv_len) 842 return false; /* more bytes to process in this segment */ 843 BUG_ON(cursor->vector_offset != bio_vec->bv_len); 844 845 /* Move on to the next segment, and possibly the next bio */ 846 847 if (++index == (unsigned int) bio->bi_vcnt) { 848 bio = bio->bi_next; 849 index = 0; 850 } 851 cursor->bio = bio; 852 cursor->vector_index = index; 853 cursor->vector_offset = 0; 854 855 if (!cursor->last_piece) { 856 BUG_ON(!cursor->resid); 857 BUG_ON(!bio); 858 /* A short read is OK, so use <= rather than == */ 859 if (cursor->resid <= bio->bi_io_vec[index].bv_len) 860 cursor->last_piece = true; 861 } 862 863 return true; 864 } 865 #endif /* CONFIG_BLOCK */ 866 867 /* 868 * For a page array, a piece comes from the first page in the array 869 * that has not already been fully consumed. 870 */ 871 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 872 size_t length) 873 { 874 struct ceph_msg_data *data = cursor->data; 875 int page_count; 876 877 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 878 879 BUG_ON(!data->pages); 880 BUG_ON(!data->length); 881 882 cursor->resid = min(length, data->length); 883 page_count = calc_pages_for(data->alignment, (u64)data->length); 884 cursor->page_offset = data->alignment & ~PAGE_MASK; 885 cursor->page_index = 0; 886 BUG_ON(page_count > (int)USHRT_MAX); 887 cursor->page_count = (unsigned short)page_count; 888 BUG_ON(length > SIZE_MAX - cursor->page_offset); 889 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE; 890 } 891 892 static struct page * 893 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 894 size_t *page_offset, size_t *length) 895 { 896 struct ceph_msg_data *data = cursor->data; 897 898 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 899 900 BUG_ON(cursor->page_index >= cursor->page_count); 901 BUG_ON(cursor->page_offset >= PAGE_SIZE); 902 903 *page_offset = cursor->page_offset; 904 if (cursor->last_piece) 905 *length = cursor->resid; 906 else 907 *length = PAGE_SIZE - *page_offset; 908 909 return data->pages[cursor->page_index]; 910 } 911 912 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 913 size_t bytes) 914 { 915 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 916 917 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 918 919 /* Advance the cursor page offset */ 920 921 cursor->resid -= bytes; 922 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 923 if (!bytes || cursor->page_offset) 924 return false; /* more bytes to process in the current page */ 925 926 /* Move on to the next page; offset is already at 0 */ 927 928 BUG_ON(cursor->page_index >= cursor->page_count); 929 cursor->page_index++; 930 cursor->last_piece = cursor->resid <= PAGE_SIZE; 931 932 return true; 933 } 934 935 /* 936 * For a pagelist, a piece is whatever remains to be consumed in the 937 * first page in the list, or the front of the next page. 938 */ 939 static void 940 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 941 size_t length) 942 { 943 struct ceph_msg_data *data = cursor->data; 944 struct ceph_pagelist *pagelist; 945 struct page *page; 946 947 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 948 949 pagelist = data->pagelist; 950 BUG_ON(!pagelist); 951 952 if (!length) 953 return; /* pagelist can be assigned but empty */ 954 955 BUG_ON(list_empty(&pagelist->head)); 956 page = list_first_entry(&pagelist->head, struct page, lru); 957 958 cursor->resid = min(length, pagelist->length); 959 cursor->page = page; 960 cursor->offset = 0; 961 cursor->last_piece = cursor->resid <= PAGE_SIZE; 962 } 963 964 static struct page * 965 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 966 size_t *page_offset, size_t *length) 967 { 968 struct ceph_msg_data *data = cursor->data; 969 struct ceph_pagelist *pagelist; 970 971 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 972 973 pagelist = data->pagelist; 974 BUG_ON(!pagelist); 975 976 BUG_ON(!cursor->page); 977 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 978 979 /* offset of first page in pagelist is always 0 */ 980 *page_offset = cursor->offset & ~PAGE_MASK; 981 if (cursor->last_piece) 982 *length = cursor->resid; 983 else 984 *length = PAGE_SIZE - *page_offset; 985 986 return cursor->page; 987 } 988 989 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 990 size_t bytes) 991 { 992 struct ceph_msg_data *data = cursor->data; 993 struct ceph_pagelist *pagelist; 994 995 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 996 997 pagelist = data->pagelist; 998 BUG_ON(!pagelist); 999 1000 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1001 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1002 1003 /* Advance the cursor offset */ 1004 1005 cursor->resid -= bytes; 1006 cursor->offset += bytes; 1007 /* offset of first page in pagelist is always 0 */ 1008 if (!bytes || cursor->offset & ~PAGE_MASK) 1009 return false; /* more bytes to process in the current page */ 1010 1011 /* Move on to the next page */ 1012 1013 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1014 cursor->page = list_entry_next(cursor->page, lru); 1015 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1016 1017 return true; 1018 } 1019 1020 /* 1021 * Message data is handled (sent or received) in pieces, where each 1022 * piece resides on a single page. The network layer might not 1023 * consume an entire piece at once. A data item's cursor keeps 1024 * track of which piece is next to process and how much remains to 1025 * be processed in that piece. It also tracks whether the current 1026 * piece is the last one in the data item. 1027 */ 1028 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1029 { 1030 size_t length = cursor->total_resid; 1031 1032 switch (cursor->data->type) { 1033 case CEPH_MSG_DATA_PAGELIST: 1034 ceph_msg_data_pagelist_cursor_init(cursor, length); 1035 break; 1036 case CEPH_MSG_DATA_PAGES: 1037 ceph_msg_data_pages_cursor_init(cursor, length); 1038 break; 1039 #ifdef CONFIG_BLOCK 1040 case CEPH_MSG_DATA_BIO: 1041 ceph_msg_data_bio_cursor_init(cursor, length); 1042 break; 1043 #endif /* CONFIG_BLOCK */ 1044 case CEPH_MSG_DATA_NONE: 1045 default: 1046 /* BUG(); */ 1047 break; 1048 } 1049 cursor->need_crc = true; 1050 } 1051 1052 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1053 { 1054 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1055 struct ceph_msg_data *data; 1056 1057 BUG_ON(!length); 1058 BUG_ON(length > msg->data_length); 1059 BUG_ON(list_empty(&msg->data)); 1060 1061 cursor->data_head = &msg->data; 1062 cursor->total_resid = length; 1063 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1064 cursor->data = data; 1065 1066 __ceph_msg_data_cursor_init(cursor); 1067 } 1068 1069 /* 1070 * Return the page containing the next piece to process for a given 1071 * data item, and supply the page offset and length of that piece. 1072 * Indicate whether this is the last piece in this data item. 1073 */ 1074 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1075 size_t *page_offset, size_t *length, 1076 bool *last_piece) 1077 { 1078 struct page *page; 1079 1080 switch (cursor->data->type) { 1081 case CEPH_MSG_DATA_PAGELIST: 1082 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1083 break; 1084 case CEPH_MSG_DATA_PAGES: 1085 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1086 break; 1087 #ifdef CONFIG_BLOCK 1088 case CEPH_MSG_DATA_BIO: 1089 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1090 break; 1091 #endif /* CONFIG_BLOCK */ 1092 case CEPH_MSG_DATA_NONE: 1093 default: 1094 page = NULL; 1095 break; 1096 } 1097 BUG_ON(!page); 1098 BUG_ON(*page_offset + *length > PAGE_SIZE); 1099 BUG_ON(!*length); 1100 if (last_piece) 1101 *last_piece = cursor->last_piece; 1102 1103 return page; 1104 } 1105 1106 /* 1107 * Returns true if the result moves the cursor on to the next piece 1108 * of the data item. 1109 */ 1110 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1111 size_t bytes) 1112 { 1113 bool new_piece; 1114 1115 BUG_ON(bytes > cursor->resid); 1116 switch (cursor->data->type) { 1117 case CEPH_MSG_DATA_PAGELIST: 1118 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1119 break; 1120 case CEPH_MSG_DATA_PAGES: 1121 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1122 break; 1123 #ifdef CONFIG_BLOCK 1124 case CEPH_MSG_DATA_BIO: 1125 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1126 break; 1127 #endif /* CONFIG_BLOCK */ 1128 case CEPH_MSG_DATA_NONE: 1129 default: 1130 BUG(); 1131 break; 1132 } 1133 cursor->total_resid -= bytes; 1134 1135 if (!cursor->resid && cursor->total_resid) { 1136 WARN_ON(!cursor->last_piece); 1137 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1138 cursor->data = list_entry_next(cursor->data, links); 1139 __ceph_msg_data_cursor_init(cursor); 1140 new_piece = true; 1141 } 1142 cursor->need_crc = new_piece; 1143 1144 return new_piece; 1145 } 1146 1147 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1148 { 1149 BUG_ON(!msg); 1150 BUG_ON(!data_len); 1151 1152 /* Initialize data cursor */ 1153 1154 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1155 } 1156 1157 /* 1158 * Prepare footer for currently outgoing message, and finish things 1159 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1160 */ 1161 static void prepare_write_message_footer(struct ceph_connection *con) 1162 { 1163 struct ceph_msg *m = con->out_msg; 1164 int v = con->out_kvec_left; 1165 1166 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1167 1168 dout("prepare_write_message_footer %p\n", con); 1169 con->out_kvec_is_msg = true; 1170 con->out_kvec[v].iov_base = &m->footer; 1171 con->out_kvec[v].iov_len = sizeof(m->footer); 1172 con->out_kvec_bytes += sizeof(m->footer); 1173 con->out_kvec_left++; 1174 con->out_more = m->more_to_follow; 1175 con->out_msg_done = true; 1176 } 1177 1178 /* 1179 * Prepare headers for the next outgoing message. 1180 */ 1181 static void prepare_write_message(struct ceph_connection *con) 1182 { 1183 struct ceph_msg *m; 1184 u32 crc; 1185 1186 con_out_kvec_reset(con); 1187 con->out_kvec_is_msg = true; 1188 con->out_msg_done = false; 1189 1190 /* Sneak an ack in there first? If we can get it into the same 1191 * TCP packet that's a good thing. */ 1192 if (con->in_seq > con->in_seq_acked) { 1193 con->in_seq_acked = con->in_seq; 1194 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1195 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1196 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1197 &con->out_temp_ack); 1198 } 1199 1200 BUG_ON(list_empty(&con->out_queue)); 1201 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1202 con->out_msg = m; 1203 BUG_ON(m->con != con); 1204 1205 /* put message on sent list */ 1206 ceph_msg_get(m); 1207 list_move_tail(&m->list_head, &con->out_sent); 1208 1209 /* 1210 * only assign outgoing seq # if we haven't sent this message 1211 * yet. if it is requeued, resend with it's original seq. 1212 */ 1213 if (m->needs_out_seq) { 1214 m->hdr.seq = cpu_to_le64(++con->out_seq); 1215 m->needs_out_seq = false; 1216 } 1217 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1218 1219 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1220 m, con->out_seq, le16_to_cpu(m->hdr.type), 1221 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1222 m->data_length); 1223 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1224 1225 /* tag + hdr + front + middle */ 1226 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1227 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1228 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1229 1230 if (m->middle) 1231 con_out_kvec_add(con, m->middle->vec.iov_len, 1232 m->middle->vec.iov_base); 1233 1234 /* fill in crc (except data pages), footer */ 1235 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1236 con->out_msg->hdr.crc = cpu_to_le32(crc); 1237 con->out_msg->footer.flags = 0; 1238 1239 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1240 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1241 if (m->middle) { 1242 crc = crc32c(0, m->middle->vec.iov_base, 1243 m->middle->vec.iov_len); 1244 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1245 } else 1246 con->out_msg->footer.middle_crc = 0; 1247 dout("%s front_crc %u middle_crc %u\n", __func__, 1248 le32_to_cpu(con->out_msg->footer.front_crc), 1249 le32_to_cpu(con->out_msg->footer.middle_crc)); 1250 1251 /* is there a data payload? */ 1252 con->out_msg->footer.data_crc = 0; 1253 if (m->data_length) { 1254 prepare_message_data(con->out_msg, m->data_length); 1255 con->out_more = 1; /* data + footer will follow */ 1256 } else { 1257 /* no, queue up footer too and be done */ 1258 prepare_write_message_footer(con); 1259 } 1260 1261 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1262 } 1263 1264 /* 1265 * Prepare an ack. 1266 */ 1267 static void prepare_write_ack(struct ceph_connection *con) 1268 { 1269 dout("prepare_write_ack %p %llu -> %llu\n", con, 1270 con->in_seq_acked, con->in_seq); 1271 con->in_seq_acked = con->in_seq; 1272 1273 con_out_kvec_reset(con); 1274 1275 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1276 1277 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1278 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1279 &con->out_temp_ack); 1280 1281 con->out_more = 1; /* more will follow.. eventually.. */ 1282 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1283 } 1284 1285 /* 1286 * Prepare to share the seq during handshake 1287 */ 1288 static void prepare_write_seq(struct ceph_connection *con) 1289 { 1290 dout("prepare_write_seq %p %llu -> %llu\n", con, 1291 con->in_seq_acked, con->in_seq); 1292 con->in_seq_acked = con->in_seq; 1293 1294 con_out_kvec_reset(con); 1295 1296 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1297 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1298 &con->out_temp_ack); 1299 1300 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1301 } 1302 1303 /* 1304 * Prepare to write keepalive byte. 1305 */ 1306 static void prepare_write_keepalive(struct ceph_connection *con) 1307 { 1308 dout("prepare_write_keepalive %p\n", con); 1309 con_out_kvec_reset(con); 1310 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1311 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1312 } 1313 1314 /* 1315 * Connection negotiation. 1316 */ 1317 1318 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1319 int *auth_proto) 1320 { 1321 struct ceph_auth_handshake *auth; 1322 1323 if (!con->ops->get_authorizer) { 1324 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1325 con->out_connect.authorizer_len = 0; 1326 return NULL; 1327 } 1328 1329 /* Can't hold the mutex while getting authorizer */ 1330 mutex_unlock(&con->mutex); 1331 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1332 mutex_lock(&con->mutex); 1333 1334 if (IS_ERR(auth)) 1335 return auth; 1336 if (con->state != CON_STATE_NEGOTIATING) 1337 return ERR_PTR(-EAGAIN); 1338 1339 con->auth_reply_buf = auth->authorizer_reply_buf; 1340 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1341 return auth; 1342 } 1343 1344 /* 1345 * We connected to a peer and are saying hello. 1346 */ 1347 static void prepare_write_banner(struct ceph_connection *con) 1348 { 1349 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1350 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1351 &con->msgr->my_enc_addr); 1352 1353 con->out_more = 0; 1354 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1355 } 1356 1357 static int prepare_write_connect(struct ceph_connection *con) 1358 { 1359 unsigned int global_seq = get_global_seq(con->msgr, 0); 1360 int proto; 1361 int auth_proto; 1362 struct ceph_auth_handshake *auth; 1363 1364 switch (con->peer_name.type) { 1365 case CEPH_ENTITY_TYPE_MON: 1366 proto = CEPH_MONC_PROTOCOL; 1367 break; 1368 case CEPH_ENTITY_TYPE_OSD: 1369 proto = CEPH_OSDC_PROTOCOL; 1370 break; 1371 case CEPH_ENTITY_TYPE_MDS: 1372 proto = CEPH_MDSC_PROTOCOL; 1373 break; 1374 default: 1375 BUG(); 1376 } 1377 1378 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1379 con->connect_seq, global_seq, proto); 1380 1381 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1382 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1383 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1384 con->out_connect.global_seq = cpu_to_le32(global_seq); 1385 con->out_connect.protocol_version = cpu_to_le32(proto); 1386 con->out_connect.flags = 0; 1387 1388 auth_proto = CEPH_AUTH_UNKNOWN; 1389 auth = get_connect_authorizer(con, &auth_proto); 1390 if (IS_ERR(auth)) 1391 return PTR_ERR(auth); 1392 1393 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1394 con->out_connect.authorizer_len = auth ? 1395 cpu_to_le32(auth->authorizer_buf_len) : 0; 1396 1397 con_out_kvec_add(con, sizeof (con->out_connect), 1398 &con->out_connect); 1399 if (auth && auth->authorizer_buf_len) 1400 con_out_kvec_add(con, auth->authorizer_buf_len, 1401 auth->authorizer_buf); 1402 1403 con->out_more = 0; 1404 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1405 1406 return 0; 1407 } 1408 1409 /* 1410 * write as much of pending kvecs to the socket as we can. 1411 * 1 -> done 1412 * 0 -> socket full, but more to do 1413 * <0 -> error 1414 */ 1415 static int write_partial_kvec(struct ceph_connection *con) 1416 { 1417 int ret; 1418 1419 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1420 while (con->out_kvec_bytes > 0) { 1421 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1422 con->out_kvec_left, con->out_kvec_bytes, 1423 con->out_more); 1424 if (ret <= 0) 1425 goto out; 1426 con->out_kvec_bytes -= ret; 1427 if (con->out_kvec_bytes == 0) 1428 break; /* done */ 1429 1430 /* account for full iov entries consumed */ 1431 while (ret >= con->out_kvec_cur->iov_len) { 1432 BUG_ON(!con->out_kvec_left); 1433 ret -= con->out_kvec_cur->iov_len; 1434 con->out_kvec_cur++; 1435 con->out_kvec_left--; 1436 } 1437 /* and for a partially-consumed entry */ 1438 if (ret) { 1439 con->out_kvec_cur->iov_len -= ret; 1440 con->out_kvec_cur->iov_base += ret; 1441 } 1442 } 1443 con->out_kvec_left = 0; 1444 con->out_kvec_is_msg = false; 1445 ret = 1; 1446 out: 1447 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1448 con->out_kvec_bytes, con->out_kvec_left, ret); 1449 return ret; /* done! */ 1450 } 1451 1452 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1453 unsigned int page_offset, 1454 unsigned int length) 1455 { 1456 char *kaddr; 1457 1458 kaddr = kmap(page); 1459 BUG_ON(kaddr == NULL); 1460 crc = crc32c(crc, kaddr + page_offset, length); 1461 kunmap(page); 1462 1463 return crc; 1464 } 1465 /* 1466 * Write as much message data payload as we can. If we finish, queue 1467 * up the footer. 1468 * 1 -> done, footer is now queued in out_kvec[]. 1469 * 0 -> socket full, but more to do 1470 * <0 -> error 1471 */ 1472 static int write_partial_message_data(struct ceph_connection *con) 1473 { 1474 struct ceph_msg *msg = con->out_msg; 1475 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1476 bool do_datacrc = !con->msgr->nocrc; 1477 u32 crc; 1478 1479 dout("%s %p msg %p\n", __func__, con, msg); 1480 1481 if (list_empty(&msg->data)) 1482 return -EINVAL; 1483 1484 /* 1485 * Iterate through each page that contains data to be 1486 * written, and send as much as possible for each. 1487 * 1488 * If we are calculating the data crc (the default), we will 1489 * need to map the page. If we have no pages, they have 1490 * been revoked, so use the zero page. 1491 */ 1492 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1493 while (cursor->resid) { 1494 struct page *page; 1495 size_t page_offset; 1496 size_t length; 1497 bool last_piece; 1498 bool need_crc; 1499 int ret; 1500 1501 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1502 &last_piece); 1503 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1504 length, last_piece); 1505 if (ret <= 0) { 1506 if (do_datacrc) 1507 msg->footer.data_crc = cpu_to_le32(crc); 1508 1509 return ret; 1510 } 1511 if (do_datacrc && cursor->need_crc) 1512 crc = ceph_crc32c_page(crc, page, page_offset, length); 1513 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1514 } 1515 1516 dout("%s %p msg %p done\n", __func__, con, msg); 1517 1518 /* prepare and queue up footer, too */ 1519 if (do_datacrc) 1520 msg->footer.data_crc = cpu_to_le32(crc); 1521 else 1522 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1523 con_out_kvec_reset(con); 1524 prepare_write_message_footer(con); 1525 1526 return 1; /* must return > 0 to indicate success */ 1527 } 1528 1529 /* 1530 * write some zeros 1531 */ 1532 static int write_partial_skip(struct ceph_connection *con) 1533 { 1534 int ret; 1535 1536 while (con->out_skip > 0) { 1537 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1538 1539 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1540 if (ret <= 0) 1541 goto out; 1542 con->out_skip -= ret; 1543 } 1544 ret = 1; 1545 out: 1546 return ret; 1547 } 1548 1549 /* 1550 * Prepare to read connection handshake, or an ack. 1551 */ 1552 static void prepare_read_banner(struct ceph_connection *con) 1553 { 1554 dout("prepare_read_banner %p\n", con); 1555 con->in_base_pos = 0; 1556 } 1557 1558 static void prepare_read_connect(struct ceph_connection *con) 1559 { 1560 dout("prepare_read_connect %p\n", con); 1561 con->in_base_pos = 0; 1562 } 1563 1564 static void prepare_read_ack(struct ceph_connection *con) 1565 { 1566 dout("prepare_read_ack %p\n", con); 1567 con->in_base_pos = 0; 1568 } 1569 1570 static void prepare_read_seq(struct ceph_connection *con) 1571 { 1572 dout("prepare_read_seq %p\n", con); 1573 con->in_base_pos = 0; 1574 con->in_tag = CEPH_MSGR_TAG_SEQ; 1575 } 1576 1577 static void prepare_read_tag(struct ceph_connection *con) 1578 { 1579 dout("prepare_read_tag %p\n", con); 1580 con->in_base_pos = 0; 1581 con->in_tag = CEPH_MSGR_TAG_READY; 1582 } 1583 1584 /* 1585 * Prepare to read a message. 1586 */ 1587 static int prepare_read_message(struct ceph_connection *con) 1588 { 1589 dout("prepare_read_message %p\n", con); 1590 BUG_ON(con->in_msg != NULL); 1591 con->in_base_pos = 0; 1592 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1593 return 0; 1594 } 1595 1596 1597 static int read_partial(struct ceph_connection *con, 1598 int end, int size, void *object) 1599 { 1600 while (con->in_base_pos < end) { 1601 int left = end - con->in_base_pos; 1602 int have = size - left; 1603 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1604 if (ret <= 0) 1605 return ret; 1606 con->in_base_pos += ret; 1607 } 1608 return 1; 1609 } 1610 1611 1612 /* 1613 * Read all or part of the connect-side handshake on a new connection 1614 */ 1615 static int read_partial_banner(struct ceph_connection *con) 1616 { 1617 int size; 1618 int end; 1619 int ret; 1620 1621 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1622 1623 /* peer's banner */ 1624 size = strlen(CEPH_BANNER); 1625 end = size; 1626 ret = read_partial(con, end, size, con->in_banner); 1627 if (ret <= 0) 1628 goto out; 1629 1630 size = sizeof (con->actual_peer_addr); 1631 end += size; 1632 ret = read_partial(con, end, size, &con->actual_peer_addr); 1633 if (ret <= 0) 1634 goto out; 1635 1636 size = sizeof (con->peer_addr_for_me); 1637 end += size; 1638 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1639 if (ret <= 0) 1640 goto out; 1641 1642 out: 1643 return ret; 1644 } 1645 1646 static int read_partial_connect(struct ceph_connection *con) 1647 { 1648 int size; 1649 int end; 1650 int ret; 1651 1652 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1653 1654 size = sizeof (con->in_reply); 1655 end = size; 1656 ret = read_partial(con, end, size, &con->in_reply); 1657 if (ret <= 0) 1658 goto out; 1659 1660 size = le32_to_cpu(con->in_reply.authorizer_len); 1661 end += size; 1662 ret = read_partial(con, end, size, con->auth_reply_buf); 1663 if (ret <= 0) 1664 goto out; 1665 1666 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1667 con, (int)con->in_reply.tag, 1668 le32_to_cpu(con->in_reply.connect_seq), 1669 le32_to_cpu(con->in_reply.global_seq)); 1670 out: 1671 return ret; 1672 1673 } 1674 1675 /* 1676 * Verify the hello banner looks okay. 1677 */ 1678 static int verify_hello(struct ceph_connection *con) 1679 { 1680 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1681 pr_err("connect to %s got bad banner\n", 1682 ceph_pr_addr(&con->peer_addr.in_addr)); 1683 con->error_msg = "protocol error, bad banner"; 1684 return -1; 1685 } 1686 return 0; 1687 } 1688 1689 static bool addr_is_blank(struct sockaddr_storage *ss) 1690 { 1691 switch (ss->ss_family) { 1692 case AF_INET: 1693 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1694 case AF_INET6: 1695 return 1696 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1697 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1698 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1699 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1700 } 1701 return false; 1702 } 1703 1704 static int addr_port(struct sockaddr_storage *ss) 1705 { 1706 switch (ss->ss_family) { 1707 case AF_INET: 1708 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1709 case AF_INET6: 1710 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1711 } 1712 return 0; 1713 } 1714 1715 static void addr_set_port(struct sockaddr_storage *ss, int p) 1716 { 1717 switch (ss->ss_family) { 1718 case AF_INET: 1719 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1720 break; 1721 case AF_INET6: 1722 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1723 break; 1724 } 1725 } 1726 1727 /* 1728 * Unlike other *_pton function semantics, zero indicates success. 1729 */ 1730 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1731 char delim, const char **ipend) 1732 { 1733 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1734 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1735 1736 memset(ss, 0, sizeof(*ss)); 1737 1738 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1739 ss->ss_family = AF_INET; 1740 return 0; 1741 } 1742 1743 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1744 ss->ss_family = AF_INET6; 1745 return 0; 1746 } 1747 1748 return -EINVAL; 1749 } 1750 1751 /* 1752 * Extract hostname string and resolve using kernel DNS facility. 1753 */ 1754 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1755 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1756 struct sockaddr_storage *ss, char delim, const char **ipend) 1757 { 1758 const char *end, *delim_p; 1759 char *colon_p, *ip_addr = NULL; 1760 int ip_len, ret; 1761 1762 /* 1763 * The end of the hostname occurs immediately preceding the delimiter or 1764 * the port marker (':') where the delimiter takes precedence. 1765 */ 1766 delim_p = memchr(name, delim, namelen); 1767 colon_p = memchr(name, ':', namelen); 1768 1769 if (delim_p && colon_p) 1770 end = delim_p < colon_p ? delim_p : colon_p; 1771 else if (!delim_p && colon_p) 1772 end = colon_p; 1773 else { 1774 end = delim_p; 1775 if (!end) /* case: hostname:/ */ 1776 end = name + namelen; 1777 } 1778 1779 if (end <= name) 1780 return -EINVAL; 1781 1782 /* do dns_resolve upcall */ 1783 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1784 if (ip_len > 0) 1785 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1786 else 1787 ret = -ESRCH; 1788 1789 kfree(ip_addr); 1790 1791 *ipend = end; 1792 1793 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1794 ret, ret ? "failed" : ceph_pr_addr(ss)); 1795 1796 return ret; 1797 } 1798 #else 1799 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1800 struct sockaddr_storage *ss, char delim, const char **ipend) 1801 { 1802 return -EINVAL; 1803 } 1804 #endif 1805 1806 /* 1807 * Parse a server name (IP or hostname). If a valid IP address is not found 1808 * then try to extract a hostname to resolve using userspace DNS upcall. 1809 */ 1810 static int ceph_parse_server_name(const char *name, size_t namelen, 1811 struct sockaddr_storage *ss, char delim, const char **ipend) 1812 { 1813 int ret; 1814 1815 ret = ceph_pton(name, namelen, ss, delim, ipend); 1816 if (ret) 1817 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1818 1819 return ret; 1820 } 1821 1822 /* 1823 * Parse an ip[:port] list into an addr array. Use the default 1824 * monitor port if a port isn't specified. 1825 */ 1826 int ceph_parse_ips(const char *c, const char *end, 1827 struct ceph_entity_addr *addr, 1828 int max_count, int *count) 1829 { 1830 int i, ret = -EINVAL; 1831 const char *p = c; 1832 1833 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1834 for (i = 0; i < max_count; i++) { 1835 const char *ipend; 1836 struct sockaddr_storage *ss = &addr[i].in_addr; 1837 int port; 1838 char delim = ','; 1839 1840 if (*p == '[') { 1841 delim = ']'; 1842 p++; 1843 } 1844 1845 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1846 if (ret) 1847 goto bad; 1848 ret = -EINVAL; 1849 1850 p = ipend; 1851 1852 if (delim == ']') { 1853 if (*p != ']') { 1854 dout("missing matching ']'\n"); 1855 goto bad; 1856 } 1857 p++; 1858 } 1859 1860 /* port? */ 1861 if (p < end && *p == ':') { 1862 port = 0; 1863 p++; 1864 while (p < end && *p >= '0' && *p <= '9') { 1865 port = (port * 10) + (*p - '0'); 1866 p++; 1867 } 1868 if (port > 65535 || port == 0) 1869 goto bad; 1870 } else { 1871 port = CEPH_MON_PORT; 1872 } 1873 1874 addr_set_port(ss, port); 1875 1876 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1877 1878 if (p == end) 1879 break; 1880 if (*p != ',') 1881 goto bad; 1882 p++; 1883 } 1884 1885 if (p != end) 1886 goto bad; 1887 1888 if (count) 1889 *count = i + 1; 1890 return 0; 1891 1892 bad: 1893 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1894 return ret; 1895 } 1896 EXPORT_SYMBOL(ceph_parse_ips); 1897 1898 static int process_banner(struct ceph_connection *con) 1899 { 1900 dout("process_banner on %p\n", con); 1901 1902 if (verify_hello(con) < 0) 1903 return -1; 1904 1905 ceph_decode_addr(&con->actual_peer_addr); 1906 ceph_decode_addr(&con->peer_addr_for_me); 1907 1908 /* 1909 * Make sure the other end is who we wanted. note that the other 1910 * end may not yet know their ip address, so if it's 0.0.0.0, give 1911 * them the benefit of the doubt. 1912 */ 1913 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1914 sizeof(con->peer_addr)) != 0 && 1915 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1916 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1917 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1918 ceph_pr_addr(&con->peer_addr.in_addr), 1919 (int)le32_to_cpu(con->peer_addr.nonce), 1920 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1921 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1922 con->error_msg = "wrong peer at address"; 1923 return -1; 1924 } 1925 1926 /* 1927 * did we learn our address? 1928 */ 1929 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1930 int port = addr_port(&con->msgr->inst.addr.in_addr); 1931 1932 memcpy(&con->msgr->inst.addr.in_addr, 1933 &con->peer_addr_for_me.in_addr, 1934 sizeof(con->peer_addr_for_me.in_addr)); 1935 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1936 encode_my_addr(con->msgr); 1937 dout("process_banner learned my addr is %s\n", 1938 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1939 } 1940 1941 return 0; 1942 } 1943 1944 static int process_connect(struct ceph_connection *con) 1945 { 1946 u64 sup_feat = con->msgr->supported_features; 1947 u64 req_feat = con->msgr->required_features; 1948 u64 server_feat = le64_to_cpu(con->in_reply.features); 1949 int ret; 1950 1951 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1952 1953 switch (con->in_reply.tag) { 1954 case CEPH_MSGR_TAG_FEATURES: 1955 pr_err("%s%lld %s feature set mismatch," 1956 " my %llx < server's %llx, missing %llx\n", 1957 ENTITY_NAME(con->peer_name), 1958 ceph_pr_addr(&con->peer_addr.in_addr), 1959 sup_feat, server_feat, server_feat & ~sup_feat); 1960 con->error_msg = "missing required protocol features"; 1961 reset_connection(con); 1962 return -1; 1963 1964 case CEPH_MSGR_TAG_BADPROTOVER: 1965 pr_err("%s%lld %s protocol version mismatch," 1966 " my %d != server's %d\n", 1967 ENTITY_NAME(con->peer_name), 1968 ceph_pr_addr(&con->peer_addr.in_addr), 1969 le32_to_cpu(con->out_connect.protocol_version), 1970 le32_to_cpu(con->in_reply.protocol_version)); 1971 con->error_msg = "protocol version mismatch"; 1972 reset_connection(con); 1973 return -1; 1974 1975 case CEPH_MSGR_TAG_BADAUTHORIZER: 1976 con->auth_retry++; 1977 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1978 con->auth_retry); 1979 if (con->auth_retry == 2) { 1980 con->error_msg = "connect authorization failure"; 1981 return -1; 1982 } 1983 con_out_kvec_reset(con); 1984 ret = prepare_write_connect(con); 1985 if (ret < 0) 1986 return ret; 1987 prepare_read_connect(con); 1988 break; 1989 1990 case CEPH_MSGR_TAG_RESETSESSION: 1991 /* 1992 * If we connected with a large connect_seq but the peer 1993 * has no record of a session with us (no connection, or 1994 * connect_seq == 0), they will send RESETSESION to indicate 1995 * that they must have reset their session, and may have 1996 * dropped messages. 1997 */ 1998 dout("process_connect got RESET peer seq %u\n", 1999 le32_to_cpu(con->in_reply.connect_seq)); 2000 pr_err("%s%lld %s connection reset\n", 2001 ENTITY_NAME(con->peer_name), 2002 ceph_pr_addr(&con->peer_addr.in_addr)); 2003 reset_connection(con); 2004 con_out_kvec_reset(con); 2005 ret = prepare_write_connect(con); 2006 if (ret < 0) 2007 return ret; 2008 prepare_read_connect(con); 2009 2010 /* Tell ceph about it. */ 2011 mutex_unlock(&con->mutex); 2012 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2013 if (con->ops->peer_reset) 2014 con->ops->peer_reset(con); 2015 mutex_lock(&con->mutex); 2016 if (con->state != CON_STATE_NEGOTIATING) 2017 return -EAGAIN; 2018 break; 2019 2020 case CEPH_MSGR_TAG_RETRY_SESSION: 2021 /* 2022 * If we sent a smaller connect_seq than the peer has, try 2023 * again with a larger value. 2024 */ 2025 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2026 le32_to_cpu(con->out_connect.connect_seq), 2027 le32_to_cpu(con->in_reply.connect_seq)); 2028 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2029 con_out_kvec_reset(con); 2030 ret = prepare_write_connect(con); 2031 if (ret < 0) 2032 return ret; 2033 prepare_read_connect(con); 2034 break; 2035 2036 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2037 /* 2038 * If we sent a smaller global_seq than the peer has, try 2039 * again with a larger value. 2040 */ 2041 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2042 con->peer_global_seq, 2043 le32_to_cpu(con->in_reply.global_seq)); 2044 get_global_seq(con->msgr, 2045 le32_to_cpu(con->in_reply.global_seq)); 2046 con_out_kvec_reset(con); 2047 ret = prepare_write_connect(con); 2048 if (ret < 0) 2049 return ret; 2050 prepare_read_connect(con); 2051 break; 2052 2053 case CEPH_MSGR_TAG_SEQ: 2054 case CEPH_MSGR_TAG_READY: 2055 if (req_feat & ~server_feat) { 2056 pr_err("%s%lld %s protocol feature mismatch," 2057 " my required %llx > server's %llx, need %llx\n", 2058 ENTITY_NAME(con->peer_name), 2059 ceph_pr_addr(&con->peer_addr.in_addr), 2060 req_feat, server_feat, req_feat & ~server_feat); 2061 con->error_msg = "missing required protocol features"; 2062 reset_connection(con); 2063 return -1; 2064 } 2065 2066 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2067 con->state = CON_STATE_OPEN; 2068 con->auth_retry = 0; /* we authenticated; clear flag */ 2069 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2070 con->connect_seq++; 2071 con->peer_features = server_feat; 2072 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2073 con->peer_global_seq, 2074 le32_to_cpu(con->in_reply.connect_seq), 2075 con->connect_seq); 2076 WARN_ON(con->connect_seq != 2077 le32_to_cpu(con->in_reply.connect_seq)); 2078 2079 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2080 con_flag_set(con, CON_FLAG_LOSSYTX); 2081 2082 con->delay = 0; /* reset backoff memory */ 2083 2084 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2085 prepare_write_seq(con); 2086 prepare_read_seq(con); 2087 } else { 2088 prepare_read_tag(con); 2089 } 2090 break; 2091 2092 case CEPH_MSGR_TAG_WAIT: 2093 /* 2094 * If there is a connection race (we are opening 2095 * connections to each other), one of us may just have 2096 * to WAIT. This shouldn't happen if we are the 2097 * client. 2098 */ 2099 pr_err("process_connect got WAIT as client\n"); 2100 con->error_msg = "protocol error, got WAIT as client"; 2101 return -1; 2102 2103 default: 2104 pr_err("connect protocol error, will retry\n"); 2105 con->error_msg = "protocol error, garbage tag during connect"; 2106 return -1; 2107 } 2108 return 0; 2109 } 2110 2111 2112 /* 2113 * read (part of) an ack 2114 */ 2115 static int read_partial_ack(struct ceph_connection *con) 2116 { 2117 int size = sizeof (con->in_temp_ack); 2118 int end = size; 2119 2120 return read_partial(con, end, size, &con->in_temp_ack); 2121 } 2122 2123 /* 2124 * We can finally discard anything that's been acked. 2125 */ 2126 static void process_ack(struct ceph_connection *con) 2127 { 2128 struct ceph_msg *m; 2129 u64 ack = le64_to_cpu(con->in_temp_ack); 2130 u64 seq; 2131 2132 while (!list_empty(&con->out_sent)) { 2133 m = list_first_entry(&con->out_sent, struct ceph_msg, 2134 list_head); 2135 seq = le64_to_cpu(m->hdr.seq); 2136 if (seq > ack) 2137 break; 2138 dout("got ack for seq %llu type %d at %p\n", seq, 2139 le16_to_cpu(m->hdr.type), m); 2140 m->ack_stamp = jiffies; 2141 ceph_msg_remove(m); 2142 } 2143 prepare_read_tag(con); 2144 } 2145 2146 2147 static int read_partial_message_section(struct ceph_connection *con, 2148 struct kvec *section, 2149 unsigned int sec_len, u32 *crc) 2150 { 2151 int ret, left; 2152 2153 BUG_ON(!section); 2154 2155 while (section->iov_len < sec_len) { 2156 BUG_ON(section->iov_base == NULL); 2157 left = sec_len - section->iov_len; 2158 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2159 section->iov_len, left); 2160 if (ret <= 0) 2161 return ret; 2162 section->iov_len += ret; 2163 } 2164 if (section->iov_len == sec_len) 2165 *crc = crc32c(0, section->iov_base, section->iov_len); 2166 2167 return 1; 2168 } 2169 2170 static int read_partial_msg_data(struct ceph_connection *con) 2171 { 2172 struct ceph_msg *msg = con->in_msg; 2173 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2174 const bool do_datacrc = !con->msgr->nocrc; 2175 struct page *page; 2176 size_t page_offset; 2177 size_t length; 2178 u32 crc = 0; 2179 int ret; 2180 2181 BUG_ON(!msg); 2182 if (list_empty(&msg->data)) 2183 return -EIO; 2184 2185 if (do_datacrc) 2186 crc = con->in_data_crc; 2187 while (cursor->resid) { 2188 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2189 NULL); 2190 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2191 if (ret <= 0) { 2192 if (do_datacrc) 2193 con->in_data_crc = crc; 2194 2195 return ret; 2196 } 2197 2198 if (do_datacrc) 2199 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2200 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2201 } 2202 if (do_datacrc) 2203 con->in_data_crc = crc; 2204 2205 return 1; /* must return > 0 to indicate success */ 2206 } 2207 2208 /* 2209 * read (part of) a message. 2210 */ 2211 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2212 2213 static int read_partial_message(struct ceph_connection *con) 2214 { 2215 struct ceph_msg *m = con->in_msg; 2216 int size; 2217 int end; 2218 int ret; 2219 unsigned int front_len, middle_len, data_len; 2220 bool do_datacrc = !con->msgr->nocrc; 2221 u64 seq; 2222 u32 crc; 2223 2224 dout("read_partial_message con %p msg %p\n", con, m); 2225 2226 /* header */ 2227 size = sizeof (con->in_hdr); 2228 end = size; 2229 ret = read_partial(con, end, size, &con->in_hdr); 2230 if (ret <= 0) 2231 return ret; 2232 2233 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2234 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2235 pr_err("read_partial_message bad hdr " 2236 " crc %u != expected %u\n", 2237 crc, con->in_hdr.crc); 2238 return -EBADMSG; 2239 } 2240 2241 front_len = le32_to_cpu(con->in_hdr.front_len); 2242 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2243 return -EIO; 2244 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2245 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2246 return -EIO; 2247 data_len = le32_to_cpu(con->in_hdr.data_len); 2248 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2249 return -EIO; 2250 2251 /* verify seq# */ 2252 seq = le64_to_cpu(con->in_hdr.seq); 2253 if ((s64)seq - (s64)con->in_seq < 1) { 2254 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2255 ENTITY_NAME(con->peer_name), 2256 ceph_pr_addr(&con->peer_addr.in_addr), 2257 seq, con->in_seq + 1); 2258 con->in_base_pos = -front_len - middle_len - data_len - 2259 sizeof(m->footer); 2260 con->in_tag = CEPH_MSGR_TAG_READY; 2261 return 0; 2262 } else if ((s64)seq - (s64)con->in_seq > 1) { 2263 pr_err("read_partial_message bad seq %lld expected %lld\n", 2264 seq, con->in_seq + 1); 2265 con->error_msg = "bad message sequence # for incoming message"; 2266 return -EBADMSG; 2267 } 2268 2269 /* allocate message? */ 2270 if (!con->in_msg) { 2271 int skip = 0; 2272 2273 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2274 front_len, data_len); 2275 ret = ceph_con_in_msg_alloc(con, &skip); 2276 if (ret < 0) 2277 return ret; 2278 2279 BUG_ON(!con->in_msg ^ skip); 2280 if (con->in_msg && data_len > con->in_msg->data_length) { 2281 pr_warning("%s skipping long message (%u > %zd)\n", 2282 __func__, data_len, con->in_msg->data_length); 2283 ceph_msg_put(con->in_msg); 2284 con->in_msg = NULL; 2285 skip = 1; 2286 } 2287 if (skip) { 2288 /* skip this message */ 2289 dout("alloc_msg said skip message\n"); 2290 con->in_base_pos = -front_len - middle_len - data_len - 2291 sizeof(m->footer); 2292 con->in_tag = CEPH_MSGR_TAG_READY; 2293 con->in_seq++; 2294 return 0; 2295 } 2296 2297 BUG_ON(!con->in_msg); 2298 BUG_ON(con->in_msg->con != con); 2299 m = con->in_msg; 2300 m->front.iov_len = 0; /* haven't read it yet */ 2301 if (m->middle) 2302 m->middle->vec.iov_len = 0; 2303 2304 /* prepare for data payload, if any */ 2305 2306 if (data_len) 2307 prepare_message_data(con->in_msg, data_len); 2308 } 2309 2310 /* front */ 2311 ret = read_partial_message_section(con, &m->front, front_len, 2312 &con->in_front_crc); 2313 if (ret <= 0) 2314 return ret; 2315 2316 /* middle */ 2317 if (m->middle) { 2318 ret = read_partial_message_section(con, &m->middle->vec, 2319 middle_len, 2320 &con->in_middle_crc); 2321 if (ret <= 0) 2322 return ret; 2323 } 2324 2325 /* (page) data */ 2326 if (data_len) { 2327 ret = read_partial_msg_data(con); 2328 if (ret <= 0) 2329 return ret; 2330 } 2331 2332 /* footer */ 2333 size = sizeof (m->footer); 2334 end += size; 2335 ret = read_partial(con, end, size, &m->footer); 2336 if (ret <= 0) 2337 return ret; 2338 2339 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2340 m, front_len, m->footer.front_crc, middle_len, 2341 m->footer.middle_crc, data_len, m->footer.data_crc); 2342 2343 /* crc ok? */ 2344 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2345 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2346 m, con->in_front_crc, m->footer.front_crc); 2347 return -EBADMSG; 2348 } 2349 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2350 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2351 m, con->in_middle_crc, m->footer.middle_crc); 2352 return -EBADMSG; 2353 } 2354 if (do_datacrc && 2355 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2356 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2357 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2358 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2359 return -EBADMSG; 2360 } 2361 2362 return 1; /* done! */ 2363 } 2364 2365 /* 2366 * Process message. This happens in the worker thread. The callback should 2367 * be careful not to do anything that waits on other incoming messages or it 2368 * may deadlock. 2369 */ 2370 static void process_message(struct ceph_connection *con) 2371 { 2372 struct ceph_msg *msg; 2373 2374 BUG_ON(con->in_msg->con != con); 2375 con->in_msg->con = NULL; 2376 msg = con->in_msg; 2377 con->in_msg = NULL; 2378 con->ops->put(con); 2379 2380 /* if first message, set peer_name */ 2381 if (con->peer_name.type == 0) 2382 con->peer_name = msg->hdr.src; 2383 2384 con->in_seq++; 2385 mutex_unlock(&con->mutex); 2386 2387 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2388 msg, le64_to_cpu(msg->hdr.seq), 2389 ENTITY_NAME(msg->hdr.src), 2390 le16_to_cpu(msg->hdr.type), 2391 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2392 le32_to_cpu(msg->hdr.front_len), 2393 le32_to_cpu(msg->hdr.data_len), 2394 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2395 con->ops->dispatch(con, msg); 2396 2397 mutex_lock(&con->mutex); 2398 } 2399 2400 2401 /* 2402 * Write something to the socket. Called in a worker thread when the 2403 * socket appears to be writeable and we have something ready to send. 2404 */ 2405 static int try_write(struct ceph_connection *con) 2406 { 2407 int ret = 1; 2408 2409 dout("try_write start %p state %lu\n", con, con->state); 2410 2411 more: 2412 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2413 2414 /* open the socket first? */ 2415 if (con->state == CON_STATE_PREOPEN) { 2416 BUG_ON(con->sock); 2417 con->state = CON_STATE_CONNECTING; 2418 2419 con_out_kvec_reset(con); 2420 prepare_write_banner(con); 2421 prepare_read_banner(con); 2422 2423 BUG_ON(con->in_msg); 2424 con->in_tag = CEPH_MSGR_TAG_READY; 2425 dout("try_write initiating connect on %p new state %lu\n", 2426 con, con->state); 2427 ret = ceph_tcp_connect(con); 2428 if (ret < 0) { 2429 con->error_msg = "connect error"; 2430 goto out; 2431 } 2432 } 2433 2434 more_kvec: 2435 /* kvec data queued? */ 2436 if (con->out_skip) { 2437 ret = write_partial_skip(con); 2438 if (ret <= 0) 2439 goto out; 2440 } 2441 if (con->out_kvec_left) { 2442 ret = write_partial_kvec(con); 2443 if (ret <= 0) 2444 goto out; 2445 } 2446 2447 /* msg pages? */ 2448 if (con->out_msg) { 2449 if (con->out_msg_done) { 2450 ceph_msg_put(con->out_msg); 2451 con->out_msg = NULL; /* we're done with this one */ 2452 goto do_next; 2453 } 2454 2455 ret = write_partial_message_data(con); 2456 if (ret == 1) 2457 goto more_kvec; /* we need to send the footer, too! */ 2458 if (ret == 0) 2459 goto out; 2460 if (ret < 0) { 2461 dout("try_write write_partial_message_data err %d\n", 2462 ret); 2463 goto out; 2464 } 2465 } 2466 2467 do_next: 2468 if (con->state == CON_STATE_OPEN) { 2469 /* is anything else pending? */ 2470 if (!list_empty(&con->out_queue)) { 2471 prepare_write_message(con); 2472 goto more; 2473 } 2474 if (con->in_seq > con->in_seq_acked) { 2475 prepare_write_ack(con); 2476 goto more; 2477 } 2478 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2479 prepare_write_keepalive(con); 2480 goto more; 2481 } 2482 } 2483 2484 /* Nothing to do! */ 2485 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2486 dout("try_write nothing else to write.\n"); 2487 ret = 0; 2488 out: 2489 dout("try_write done on %p ret %d\n", con, ret); 2490 return ret; 2491 } 2492 2493 2494 2495 /* 2496 * Read what we can from the socket. 2497 */ 2498 static int try_read(struct ceph_connection *con) 2499 { 2500 int ret = -1; 2501 2502 more: 2503 dout("try_read start on %p state %lu\n", con, con->state); 2504 if (con->state != CON_STATE_CONNECTING && 2505 con->state != CON_STATE_NEGOTIATING && 2506 con->state != CON_STATE_OPEN) 2507 return 0; 2508 2509 BUG_ON(!con->sock); 2510 2511 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2512 con->in_base_pos); 2513 2514 if (con->state == CON_STATE_CONNECTING) { 2515 dout("try_read connecting\n"); 2516 ret = read_partial_banner(con); 2517 if (ret <= 0) 2518 goto out; 2519 ret = process_banner(con); 2520 if (ret < 0) 2521 goto out; 2522 2523 con->state = CON_STATE_NEGOTIATING; 2524 2525 /* 2526 * Received banner is good, exchange connection info. 2527 * Do not reset out_kvec, as sending our banner raced 2528 * with receiving peer banner after connect completed. 2529 */ 2530 ret = prepare_write_connect(con); 2531 if (ret < 0) 2532 goto out; 2533 prepare_read_connect(con); 2534 2535 /* Send connection info before awaiting response */ 2536 goto out; 2537 } 2538 2539 if (con->state == CON_STATE_NEGOTIATING) { 2540 dout("try_read negotiating\n"); 2541 ret = read_partial_connect(con); 2542 if (ret <= 0) 2543 goto out; 2544 ret = process_connect(con); 2545 if (ret < 0) 2546 goto out; 2547 goto more; 2548 } 2549 2550 WARN_ON(con->state != CON_STATE_OPEN); 2551 2552 if (con->in_base_pos < 0) { 2553 /* 2554 * skipping + discarding content. 2555 * 2556 * FIXME: there must be a better way to do this! 2557 */ 2558 static char buf[SKIP_BUF_SIZE]; 2559 int skip = min((int) sizeof (buf), -con->in_base_pos); 2560 2561 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2562 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2563 if (ret <= 0) 2564 goto out; 2565 con->in_base_pos += ret; 2566 if (con->in_base_pos) 2567 goto more; 2568 } 2569 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2570 /* 2571 * what's next? 2572 */ 2573 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2574 if (ret <= 0) 2575 goto out; 2576 dout("try_read got tag %d\n", (int)con->in_tag); 2577 switch (con->in_tag) { 2578 case CEPH_MSGR_TAG_MSG: 2579 prepare_read_message(con); 2580 break; 2581 case CEPH_MSGR_TAG_ACK: 2582 prepare_read_ack(con); 2583 break; 2584 case CEPH_MSGR_TAG_CLOSE: 2585 con_close_socket(con); 2586 con->state = CON_STATE_CLOSED; 2587 goto out; 2588 default: 2589 goto bad_tag; 2590 } 2591 } 2592 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2593 ret = read_partial_message(con); 2594 if (ret <= 0) { 2595 switch (ret) { 2596 case -EBADMSG: 2597 con->error_msg = "bad crc"; 2598 ret = -EIO; 2599 break; 2600 case -EIO: 2601 con->error_msg = "io error"; 2602 break; 2603 } 2604 goto out; 2605 } 2606 if (con->in_tag == CEPH_MSGR_TAG_READY) 2607 goto more; 2608 process_message(con); 2609 if (con->state == CON_STATE_OPEN) 2610 prepare_read_tag(con); 2611 goto more; 2612 } 2613 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2614 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2615 /* 2616 * the final handshake seq exchange is semantically 2617 * equivalent to an ACK 2618 */ 2619 ret = read_partial_ack(con); 2620 if (ret <= 0) 2621 goto out; 2622 process_ack(con); 2623 goto more; 2624 } 2625 2626 out: 2627 dout("try_read done on %p ret %d\n", con, ret); 2628 return ret; 2629 2630 bad_tag: 2631 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2632 con->error_msg = "protocol error, garbage tag"; 2633 ret = -1; 2634 goto out; 2635 } 2636 2637 2638 /* 2639 * Atomically queue work on a connection after the specified delay. 2640 * Bump @con reference to avoid races with connection teardown. 2641 * Returns 0 if work was queued, or an error code otherwise. 2642 */ 2643 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2644 { 2645 if (!con->ops->get(con)) { 2646 dout("%s %p ref count 0\n", __func__, con); 2647 2648 return -ENOENT; 2649 } 2650 2651 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2652 dout("%s %p - already queued\n", __func__, con); 2653 con->ops->put(con); 2654 2655 return -EBUSY; 2656 } 2657 2658 dout("%s %p %lu\n", __func__, con, delay); 2659 2660 return 0; 2661 } 2662 2663 static void queue_con(struct ceph_connection *con) 2664 { 2665 (void) queue_con_delay(con, 0); 2666 } 2667 2668 static bool con_sock_closed(struct ceph_connection *con) 2669 { 2670 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2671 return false; 2672 2673 #define CASE(x) \ 2674 case CON_STATE_ ## x: \ 2675 con->error_msg = "socket closed (con state " #x ")"; \ 2676 break; 2677 2678 switch (con->state) { 2679 CASE(CLOSED); 2680 CASE(PREOPEN); 2681 CASE(CONNECTING); 2682 CASE(NEGOTIATING); 2683 CASE(OPEN); 2684 CASE(STANDBY); 2685 default: 2686 pr_warning("%s con %p unrecognized state %lu\n", 2687 __func__, con, con->state); 2688 con->error_msg = "unrecognized con state"; 2689 BUG(); 2690 break; 2691 } 2692 #undef CASE 2693 2694 return true; 2695 } 2696 2697 static bool con_backoff(struct ceph_connection *con) 2698 { 2699 int ret; 2700 2701 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2702 return false; 2703 2704 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2705 if (ret) { 2706 dout("%s: con %p FAILED to back off %lu\n", __func__, 2707 con, con->delay); 2708 BUG_ON(ret == -ENOENT); 2709 con_flag_set(con, CON_FLAG_BACKOFF); 2710 } 2711 2712 return true; 2713 } 2714 2715 /* Finish fault handling; con->mutex must *not* be held here */ 2716 2717 static void con_fault_finish(struct ceph_connection *con) 2718 { 2719 /* 2720 * in case we faulted due to authentication, invalidate our 2721 * current tickets so that we can get new ones. 2722 */ 2723 if (con->auth_retry && con->ops->invalidate_authorizer) { 2724 dout("calling invalidate_authorizer()\n"); 2725 con->ops->invalidate_authorizer(con); 2726 } 2727 2728 if (con->ops->fault) 2729 con->ops->fault(con); 2730 } 2731 2732 /* 2733 * Do some work on a connection. Drop a connection ref when we're done. 2734 */ 2735 static void con_work(struct work_struct *work) 2736 { 2737 struct ceph_connection *con = container_of(work, struct ceph_connection, 2738 work.work); 2739 bool fault; 2740 2741 mutex_lock(&con->mutex); 2742 while (true) { 2743 int ret; 2744 2745 if ((fault = con_sock_closed(con))) { 2746 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2747 break; 2748 } 2749 if (con_backoff(con)) { 2750 dout("%s: con %p BACKOFF\n", __func__, con); 2751 break; 2752 } 2753 if (con->state == CON_STATE_STANDBY) { 2754 dout("%s: con %p STANDBY\n", __func__, con); 2755 break; 2756 } 2757 if (con->state == CON_STATE_CLOSED) { 2758 dout("%s: con %p CLOSED\n", __func__, con); 2759 BUG_ON(con->sock); 2760 break; 2761 } 2762 if (con->state == CON_STATE_PREOPEN) { 2763 dout("%s: con %p PREOPEN\n", __func__, con); 2764 BUG_ON(con->sock); 2765 } 2766 2767 ret = try_read(con); 2768 if (ret < 0) { 2769 if (ret == -EAGAIN) 2770 continue; 2771 con->error_msg = "socket error on read"; 2772 fault = true; 2773 break; 2774 } 2775 2776 ret = try_write(con); 2777 if (ret < 0) { 2778 if (ret == -EAGAIN) 2779 continue; 2780 con->error_msg = "socket error on write"; 2781 fault = true; 2782 } 2783 2784 break; /* If we make it to here, we're done */ 2785 } 2786 if (fault) 2787 con_fault(con); 2788 mutex_unlock(&con->mutex); 2789 2790 if (fault) 2791 con_fault_finish(con); 2792 2793 con->ops->put(con); 2794 } 2795 2796 /* 2797 * Generic error/fault handler. A retry mechanism is used with 2798 * exponential backoff 2799 */ 2800 static void con_fault(struct ceph_connection *con) 2801 { 2802 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2803 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2804 dout("fault %p state %lu to peer %s\n", 2805 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2806 2807 WARN_ON(con->state != CON_STATE_CONNECTING && 2808 con->state != CON_STATE_NEGOTIATING && 2809 con->state != CON_STATE_OPEN); 2810 2811 con_close_socket(con); 2812 2813 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2814 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2815 con->state = CON_STATE_CLOSED; 2816 return; 2817 } 2818 2819 if (con->in_msg) { 2820 BUG_ON(con->in_msg->con != con); 2821 con->in_msg->con = NULL; 2822 ceph_msg_put(con->in_msg); 2823 con->in_msg = NULL; 2824 con->ops->put(con); 2825 } 2826 2827 /* Requeue anything that hasn't been acked */ 2828 list_splice_init(&con->out_sent, &con->out_queue); 2829 2830 /* If there are no messages queued or keepalive pending, place 2831 * the connection in a STANDBY state */ 2832 if (list_empty(&con->out_queue) && 2833 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2834 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2835 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2836 con->state = CON_STATE_STANDBY; 2837 } else { 2838 /* retry after a delay. */ 2839 con->state = CON_STATE_PREOPEN; 2840 if (con->delay == 0) 2841 con->delay = BASE_DELAY_INTERVAL; 2842 else if (con->delay < MAX_DELAY_INTERVAL) 2843 con->delay *= 2; 2844 con_flag_set(con, CON_FLAG_BACKOFF); 2845 queue_con(con); 2846 } 2847 } 2848 2849 2850 2851 /* 2852 * initialize a new messenger instance 2853 */ 2854 void ceph_messenger_init(struct ceph_messenger *msgr, 2855 struct ceph_entity_addr *myaddr, 2856 u32 supported_features, 2857 u32 required_features, 2858 bool nocrc) 2859 { 2860 msgr->supported_features = supported_features; 2861 msgr->required_features = required_features; 2862 2863 spin_lock_init(&msgr->global_seq_lock); 2864 2865 if (myaddr) 2866 msgr->inst.addr = *myaddr; 2867 2868 /* select a random nonce */ 2869 msgr->inst.addr.type = 0; 2870 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2871 encode_my_addr(msgr); 2872 msgr->nocrc = nocrc; 2873 2874 atomic_set(&msgr->stopping, 0); 2875 2876 dout("%s %p\n", __func__, msgr); 2877 } 2878 EXPORT_SYMBOL(ceph_messenger_init); 2879 2880 static void clear_standby(struct ceph_connection *con) 2881 { 2882 /* come back from STANDBY? */ 2883 if (con->state == CON_STATE_STANDBY) { 2884 dout("clear_standby %p and ++connect_seq\n", con); 2885 con->state = CON_STATE_PREOPEN; 2886 con->connect_seq++; 2887 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2888 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2889 } 2890 } 2891 2892 /* 2893 * Queue up an outgoing message on the given connection. 2894 */ 2895 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2896 { 2897 /* set src+dst */ 2898 msg->hdr.src = con->msgr->inst.name; 2899 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2900 msg->needs_out_seq = true; 2901 2902 mutex_lock(&con->mutex); 2903 2904 if (con->state == CON_STATE_CLOSED) { 2905 dout("con_send %p closed, dropping %p\n", con, msg); 2906 ceph_msg_put(msg); 2907 mutex_unlock(&con->mutex); 2908 return; 2909 } 2910 2911 BUG_ON(msg->con != NULL); 2912 msg->con = con->ops->get(con); 2913 BUG_ON(msg->con == NULL); 2914 2915 BUG_ON(!list_empty(&msg->list_head)); 2916 list_add_tail(&msg->list_head, &con->out_queue); 2917 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2918 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2919 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2920 le32_to_cpu(msg->hdr.front_len), 2921 le32_to_cpu(msg->hdr.middle_len), 2922 le32_to_cpu(msg->hdr.data_len)); 2923 2924 clear_standby(con); 2925 mutex_unlock(&con->mutex); 2926 2927 /* if there wasn't anything waiting to send before, queue 2928 * new work */ 2929 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2930 queue_con(con); 2931 } 2932 EXPORT_SYMBOL(ceph_con_send); 2933 2934 /* 2935 * Revoke a message that was previously queued for send 2936 */ 2937 void ceph_msg_revoke(struct ceph_msg *msg) 2938 { 2939 struct ceph_connection *con = msg->con; 2940 2941 if (!con) 2942 return; /* Message not in our possession */ 2943 2944 mutex_lock(&con->mutex); 2945 if (!list_empty(&msg->list_head)) { 2946 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2947 list_del_init(&msg->list_head); 2948 BUG_ON(msg->con == NULL); 2949 msg->con->ops->put(msg->con); 2950 msg->con = NULL; 2951 msg->hdr.seq = 0; 2952 2953 ceph_msg_put(msg); 2954 } 2955 if (con->out_msg == msg) { 2956 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2957 con->out_msg = NULL; 2958 if (con->out_kvec_is_msg) { 2959 con->out_skip = con->out_kvec_bytes; 2960 con->out_kvec_is_msg = false; 2961 } 2962 msg->hdr.seq = 0; 2963 2964 ceph_msg_put(msg); 2965 } 2966 mutex_unlock(&con->mutex); 2967 } 2968 2969 /* 2970 * Revoke a message that we may be reading data into 2971 */ 2972 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 2973 { 2974 struct ceph_connection *con; 2975 2976 BUG_ON(msg == NULL); 2977 if (!msg->con) { 2978 dout("%s msg %p null con\n", __func__, msg); 2979 2980 return; /* Message not in our possession */ 2981 } 2982 2983 con = msg->con; 2984 mutex_lock(&con->mutex); 2985 if (con->in_msg == msg) { 2986 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 2987 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 2988 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 2989 2990 /* skip rest of message */ 2991 dout("%s %p msg %p revoked\n", __func__, con, msg); 2992 con->in_base_pos = con->in_base_pos - 2993 sizeof(struct ceph_msg_header) - 2994 front_len - 2995 middle_len - 2996 data_len - 2997 sizeof(struct ceph_msg_footer); 2998 ceph_msg_put(con->in_msg); 2999 con->in_msg = NULL; 3000 con->in_tag = CEPH_MSGR_TAG_READY; 3001 con->in_seq++; 3002 } else { 3003 dout("%s %p in_msg %p msg %p no-op\n", 3004 __func__, con, con->in_msg, msg); 3005 } 3006 mutex_unlock(&con->mutex); 3007 } 3008 3009 /* 3010 * Queue a keepalive byte to ensure the tcp connection is alive. 3011 */ 3012 void ceph_con_keepalive(struct ceph_connection *con) 3013 { 3014 dout("con_keepalive %p\n", con); 3015 mutex_lock(&con->mutex); 3016 clear_standby(con); 3017 mutex_unlock(&con->mutex); 3018 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3019 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3020 queue_con(con); 3021 } 3022 EXPORT_SYMBOL(ceph_con_keepalive); 3023 3024 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3025 { 3026 struct ceph_msg_data *data; 3027 3028 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3029 return NULL; 3030 3031 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3032 if (data) 3033 data->type = type; 3034 INIT_LIST_HEAD(&data->links); 3035 3036 return data; 3037 } 3038 3039 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3040 { 3041 if (!data) 3042 return; 3043 3044 WARN_ON(!list_empty(&data->links)); 3045 if (data->type == CEPH_MSG_DATA_PAGELIST) { 3046 ceph_pagelist_release(data->pagelist); 3047 kfree(data->pagelist); 3048 } 3049 kmem_cache_free(ceph_msg_data_cache, data); 3050 } 3051 3052 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3053 size_t length, size_t alignment) 3054 { 3055 struct ceph_msg_data *data; 3056 3057 BUG_ON(!pages); 3058 BUG_ON(!length); 3059 3060 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3061 BUG_ON(!data); 3062 data->pages = pages; 3063 data->length = length; 3064 data->alignment = alignment & ~PAGE_MASK; 3065 3066 list_add_tail(&data->links, &msg->data); 3067 msg->data_length += length; 3068 } 3069 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3070 3071 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3072 struct ceph_pagelist *pagelist) 3073 { 3074 struct ceph_msg_data *data; 3075 3076 BUG_ON(!pagelist); 3077 BUG_ON(!pagelist->length); 3078 3079 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3080 BUG_ON(!data); 3081 data->pagelist = pagelist; 3082 3083 list_add_tail(&data->links, &msg->data); 3084 msg->data_length += pagelist->length; 3085 } 3086 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3087 3088 #ifdef CONFIG_BLOCK 3089 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3090 size_t length) 3091 { 3092 struct ceph_msg_data *data; 3093 3094 BUG_ON(!bio); 3095 3096 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3097 BUG_ON(!data); 3098 data->bio = bio; 3099 data->bio_length = length; 3100 3101 list_add_tail(&data->links, &msg->data); 3102 msg->data_length += length; 3103 } 3104 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3105 #endif /* CONFIG_BLOCK */ 3106 3107 /* 3108 * construct a new message with given type, size 3109 * the new msg has a ref count of 1. 3110 */ 3111 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3112 bool can_fail) 3113 { 3114 struct ceph_msg *m; 3115 3116 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3117 if (m == NULL) 3118 goto out; 3119 3120 m->hdr.type = cpu_to_le16(type); 3121 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3122 m->hdr.front_len = cpu_to_le32(front_len); 3123 3124 INIT_LIST_HEAD(&m->list_head); 3125 kref_init(&m->kref); 3126 INIT_LIST_HEAD(&m->data); 3127 3128 /* front */ 3129 m->front_max = front_len; 3130 if (front_len) { 3131 if (front_len > PAGE_CACHE_SIZE) { 3132 m->front.iov_base = __vmalloc(front_len, flags, 3133 PAGE_KERNEL); 3134 m->front_is_vmalloc = true; 3135 } else { 3136 m->front.iov_base = kmalloc(front_len, flags); 3137 } 3138 if (m->front.iov_base == NULL) { 3139 dout("ceph_msg_new can't allocate %d bytes\n", 3140 front_len); 3141 goto out2; 3142 } 3143 } else { 3144 m->front.iov_base = NULL; 3145 } 3146 m->front.iov_len = front_len; 3147 3148 dout("ceph_msg_new %p front %d\n", m, front_len); 3149 return m; 3150 3151 out2: 3152 ceph_msg_put(m); 3153 out: 3154 if (!can_fail) { 3155 pr_err("msg_new can't create type %d front %d\n", type, 3156 front_len); 3157 WARN_ON(1); 3158 } else { 3159 dout("msg_new can't create type %d front %d\n", type, 3160 front_len); 3161 } 3162 return NULL; 3163 } 3164 EXPORT_SYMBOL(ceph_msg_new); 3165 3166 /* 3167 * Allocate "middle" portion of a message, if it is needed and wasn't 3168 * allocated by alloc_msg. This allows us to read a small fixed-size 3169 * per-type header in the front and then gracefully fail (i.e., 3170 * propagate the error to the caller based on info in the front) when 3171 * the middle is too large. 3172 */ 3173 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3174 { 3175 int type = le16_to_cpu(msg->hdr.type); 3176 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3177 3178 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3179 ceph_msg_type_name(type), middle_len); 3180 BUG_ON(!middle_len); 3181 BUG_ON(msg->middle); 3182 3183 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3184 if (!msg->middle) 3185 return -ENOMEM; 3186 return 0; 3187 } 3188 3189 /* 3190 * Allocate a message for receiving an incoming message on a 3191 * connection, and save the result in con->in_msg. Uses the 3192 * connection's private alloc_msg op if available. 3193 * 3194 * Returns 0 on success, or a negative error code. 3195 * 3196 * On success, if we set *skip = 1: 3197 * - the next message should be skipped and ignored. 3198 * - con->in_msg == NULL 3199 * or if we set *skip = 0: 3200 * - con->in_msg is non-null. 3201 * On error (ENOMEM, EAGAIN, ...), 3202 * - con->in_msg == NULL 3203 */ 3204 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3205 { 3206 struct ceph_msg_header *hdr = &con->in_hdr; 3207 int middle_len = le32_to_cpu(hdr->middle_len); 3208 struct ceph_msg *msg; 3209 int ret = 0; 3210 3211 BUG_ON(con->in_msg != NULL); 3212 BUG_ON(!con->ops->alloc_msg); 3213 3214 mutex_unlock(&con->mutex); 3215 msg = con->ops->alloc_msg(con, hdr, skip); 3216 mutex_lock(&con->mutex); 3217 if (con->state != CON_STATE_OPEN) { 3218 if (msg) 3219 ceph_msg_put(msg); 3220 return -EAGAIN; 3221 } 3222 if (msg) { 3223 BUG_ON(*skip); 3224 con->in_msg = msg; 3225 con->in_msg->con = con->ops->get(con); 3226 BUG_ON(con->in_msg->con == NULL); 3227 } else { 3228 /* 3229 * Null message pointer means either we should skip 3230 * this message or we couldn't allocate memory. The 3231 * former is not an error. 3232 */ 3233 if (*skip) 3234 return 0; 3235 con->error_msg = "error allocating memory for incoming message"; 3236 3237 return -ENOMEM; 3238 } 3239 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3240 3241 if (middle_len && !con->in_msg->middle) { 3242 ret = ceph_alloc_middle(con, con->in_msg); 3243 if (ret < 0) { 3244 ceph_msg_put(con->in_msg); 3245 con->in_msg = NULL; 3246 } 3247 } 3248 3249 return ret; 3250 } 3251 3252 3253 /* 3254 * Free a generically kmalloc'd message. 3255 */ 3256 void ceph_msg_kfree(struct ceph_msg *m) 3257 { 3258 dout("msg_kfree %p\n", m); 3259 if (m->front_is_vmalloc) 3260 vfree(m->front.iov_base); 3261 else 3262 kfree(m->front.iov_base); 3263 kmem_cache_free(ceph_msg_cache, m); 3264 } 3265 3266 /* 3267 * Drop a msg ref. Destroy as needed. 3268 */ 3269 void ceph_msg_last_put(struct kref *kref) 3270 { 3271 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3272 LIST_HEAD(data); 3273 struct list_head *links; 3274 struct list_head *next; 3275 3276 dout("ceph_msg_put last one on %p\n", m); 3277 WARN_ON(!list_empty(&m->list_head)); 3278 3279 /* drop middle, data, if any */ 3280 if (m->middle) { 3281 ceph_buffer_put(m->middle); 3282 m->middle = NULL; 3283 } 3284 3285 list_splice_init(&m->data, &data); 3286 list_for_each_safe(links, next, &data) { 3287 struct ceph_msg_data *data; 3288 3289 data = list_entry(links, struct ceph_msg_data, links); 3290 list_del_init(links); 3291 ceph_msg_data_destroy(data); 3292 } 3293 m->data_length = 0; 3294 3295 if (m->pool) 3296 ceph_msgpool_put(m->pool, m); 3297 else 3298 ceph_msg_kfree(m); 3299 } 3300 EXPORT_SYMBOL(ceph_msg_last_put); 3301 3302 void ceph_msg_dump(struct ceph_msg *msg) 3303 { 3304 pr_debug("msg_dump %p (front_max %d length %zd)\n", msg, 3305 msg->front_max, msg->data_length); 3306 print_hex_dump(KERN_DEBUG, "header: ", 3307 DUMP_PREFIX_OFFSET, 16, 1, 3308 &msg->hdr, sizeof(msg->hdr), true); 3309 print_hex_dump(KERN_DEBUG, " front: ", 3310 DUMP_PREFIX_OFFSET, 16, 1, 3311 msg->front.iov_base, msg->front.iov_len, true); 3312 if (msg->middle) 3313 print_hex_dump(KERN_DEBUG, "middle: ", 3314 DUMP_PREFIX_OFFSET, 16, 1, 3315 msg->middle->vec.iov_base, 3316 msg->middle->vec.iov_len, true); 3317 print_hex_dump(KERN_DEBUG, "footer: ", 3318 DUMP_PREFIX_OFFSET, 16, 1, 3319 &msg->footer, sizeof(msg->footer), true); 3320 } 3321 EXPORT_SYMBOL(ceph_msg_dump); 3322