1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 static void queue_con(struct ceph_connection *con); 171 static void cancel_con(struct ceph_connection *con); 172 static void ceph_con_workfn(struct work_struct *); 173 static void con_fault(struct ceph_connection *con); 174 175 /* 176 * Nicely render a sockaddr as a string. An array of formatted 177 * strings is used, to approximate reentrancy. 178 */ 179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 183 184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 185 static atomic_t addr_str_seq = ATOMIC_INIT(0); 186 187 static struct page *zero_page; /* used in certain error cases */ 188 189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr) 190 { 191 int i; 192 char *s; 193 struct sockaddr_storage ss = addr->in_addr; /* align */ 194 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; 195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; 196 197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 198 s = addr_str[i]; 199 200 switch (ss.ss_family) { 201 case AF_INET: 202 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu", 203 le32_to_cpu(addr->type), &in4->sin_addr, 204 ntohs(in4->sin_port)); 205 break; 206 207 case AF_INET6: 208 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu", 209 le32_to_cpu(addr->type), &in6->sin6_addr, 210 ntohs(in6->sin6_port)); 211 break; 212 213 default: 214 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 215 ss.ss_family); 216 } 217 218 return s; 219 } 220 EXPORT_SYMBOL(ceph_pr_addr); 221 222 static void encode_my_addr(struct ceph_messenger *msgr) 223 { 224 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 225 ceph_encode_banner_addr(&msgr->my_enc_addr); 226 } 227 228 /* 229 * work queue for all reading and writing to/from the socket. 230 */ 231 static struct workqueue_struct *ceph_msgr_wq; 232 233 static int ceph_msgr_slab_init(void) 234 { 235 BUG_ON(ceph_msg_cache); 236 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 237 if (!ceph_msg_cache) 238 return -ENOMEM; 239 240 return 0; 241 } 242 243 static void ceph_msgr_slab_exit(void) 244 { 245 BUG_ON(!ceph_msg_cache); 246 kmem_cache_destroy(ceph_msg_cache); 247 ceph_msg_cache = NULL; 248 } 249 250 static void _ceph_msgr_exit(void) 251 { 252 if (ceph_msgr_wq) { 253 destroy_workqueue(ceph_msgr_wq); 254 ceph_msgr_wq = NULL; 255 } 256 257 BUG_ON(zero_page == NULL); 258 put_page(zero_page); 259 zero_page = NULL; 260 261 ceph_msgr_slab_exit(); 262 } 263 264 int __init ceph_msgr_init(void) 265 { 266 if (ceph_msgr_slab_init()) 267 return -ENOMEM; 268 269 BUG_ON(zero_page != NULL); 270 zero_page = ZERO_PAGE(0); 271 get_page(zero_page); 272 273 /* 274 * The number of active work items is limited by the number of 275 * connections, so leave @max_active at default. 276 */ 277 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 278 if (ceph_msgr_wq) 279 return 0; 280 281 pr_err("msgr_init failed to create workqueue\n"); 282 _ceph_msgr_exit(); 283 284 return -ENOMEM; 285 } 286 287 void ceph_msgr_exit(void) 288 { 289 BUG_ON(ceph_msgr_wq == NULL); 290 291 _ceph_msgr_exit(); 292 } 293 294 void ceph_msgr_flush(void) 295 { 296 flush_workqueue(ceph_msgr_wq); 297 } 298 EXPORT_SYMBOL(ceph_msgr_flush); 299 300 /* Connection socket state transition functions */ 301 302 static void con_sock_state_init(struct ceph_connection *con) 303 { 304 int old_state; 305 306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 307 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 308 printk("%s: unexpected old state %d\n", __func__, old_state); 309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 310 CON_SOCK_STATE_CLOSED); 311 } 312 313 static void con_sock_state_connecting(struct ceph_connection *con) 314 { 315 int old_state; 316 317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 318 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 319 printk("%s: unexpected old state %d\n", __func__, old_state); 320 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 321 CON_SOCK_STATE_CONNECTING); 322 } 323 324 static void con_sock_state_connected(struct ceph_connection *con) 325 { 326 int old_state; 327 328 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 329 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 330 printk("%s: unexpected old state %d\n", __func__, old_state); 331 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 332 CON_SOCK_STATE_CONNECTED); 333 } 334 335 static void con_sock_state_closing(struct ceph_connection *con) 336 { 337 int old_state; 338 339 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 340 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 341 old_state != CON_SOCK_STATE_CONNECTED && 342 old_state != CON_SOCK_STATE_CLOSING)) 343 printk("%s: unexpected old state %d\n", __func__, old_state); 344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 345 CON_SOCK_STATE_CLOSING); 346 } 347 348 static void con_sock_state_closed(struct ceph_connection *con) 349 { 350 int old_state; 351 352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 354 old_state != CON_SOCK_STATE_CLOSING && 355 old_state != CON_SOCK_STATE_CONNECTING && 356 old_state != CON_SOCK_STATE_CLOSED)) 357 printk("%s: unexpected old state %d\n", __func__, old_state); 358 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 359 CON_SOCK_STATE_CLOSED); 360 } 361 362 /* 363 * socket callback functions 364 */ 365 366 /* data available on socket, or listen socket received a connect */ 367 static void ceph_sock_data_ready(struct sock *sk) 368 { 369 struct ceph_connection *con = sk->sk_user_data; 370 if (atomic_read(&con->msgr->stopping)) { 371 return; 372 } 373 374 if (sk->sk_state != TCP_CLOSE_WAIT) { 375 dout("%s on %p state = %lu, queueing work\n", __func__, 376 con, con->state); 377 queue_con(con); 378 } 379 } 380 381 /* socket has buffer space for writing */ 382 static void ceph_sock_write_space(struct sock *sk) 383 { 384 struct ceph_connection *con = sk->sk_user_data; 385 386 /* only queue to workqueue if there is data we want to write, 387 * and there is sufficient space in the socket buffer to accept 388 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 389 * doesn't get called again until try_write() fills the socket 390 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 391 * and net/core/stream.c:sk_stream_write_space(). 392 */ 393 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 394 if (sk_stream_is_writeable(sk)) { 395 dout("%s %p queueing write work\n", __func__, con); 396 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 397 queue_con(con); 398 } 399 } else { 400 dout("%s %p nothing to write\n", __func__, con); 401 } 402 } 403 404 /* socket's state has changed */ 405 static void ceph_sock_state_change(struct sock *sk) 406 { 407 struct ceph_connection *con = sk->sk_user_data; 408 409 dout("%s %p state = %lu sk_state = %u\n", __func__, 410 con, con->state, sk->sk_state); 411 412 switch (sk->sk_state) { 413 case TCP_CLOSE: 414 dout("%s TCP_CLOSE\n", __func__); 415 /* fall through */ 416 case TCP_CLOSE_WAIT: 417 dout("%s TCP_CLOSE_WAIT\n", __func__); 418 con_sock_state_closing(con); 419 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 420 queue_con(con); 421 break; 422 case TCP_ESTABLISHED: 423 dout("%s TCP_ESTABLISHED\n", __func__); 424 con_sock_state_connected(con); 425 queue_con(con); 426 break; 427 default: /* Everything else is uninteresting */ 428 break; 429 } 430 } 431 432 /* 433 * set up socket callbacks 434 */ 435 static void set_sock_callbacks(struct socket *sock, 436 struct ceph_connection *con) 437 { 438 struct sock *sk = sock->sk; 439 sk->sk_user_data = con; 440 sk->sk_data_ready = ceph_sock_data_ready; 441 sk->sk_write_space = ceph_sock_write_space; 442 sk->sk_state_change = ceph_sock_state_change; 443 } 444 445 446 /* 447 * socket helpers 448 */ 449 450 /* 451 * initiate connection to a remote socket. 452 */ 453 static int ceph_tcp_connect(struct ceph_connection *con) 454 { 455 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ 456 struct socket *sock; 457 unsigned int noio_flag; 458 int ret; 459 460 BUG_ON(con->sock); 461 462 /* sock_create_kern() allocates with GFP_KERNEL */ 463 noio_flag = memalloc_noio_save(); 464 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, 465 SOCK_STREAM, IPPROTO_TCP, &sock); 466 memalloc_noio_restore(noio_flag); 467 if (ret) 468 return ret; 469 sock->sk->sk_allocation = GFP_NOFS; 470 471 #ifdef CONFIG_LOCKDEP 472 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 473 #endif 474 475 set_sock_callbacks(sock, con); 476 477 dout("connect %s\n", ceph_pr_addr(&con->peer_addr)); 478 479 con_sock_state_connecting(con); 480 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss), 481 O_NONBLOCK); 482 if (ret == -EINPROGRESS) { 483 dout("connect %s EINPROGRESS sk_state = %u\n", 484 ceph_pr_addr(&con->peer_addr), 485 sock->sk->sk_state); 486 } else if (ret < 0) { 487 pr_err("connect %s error %d\n", 488 ceph_pr_addr(&con->peer_addr), ret); 489 sock_release(sock); 490 return ret; 491 } 492 493 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 494 int optval = 1; 495 496 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 497 (char *)&optval, sizeof(optval)); 498 if (ret) 499 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 500 ret); 501 } 502 503 con->sock = sock; 504 return 0; 505 } 506 507 /* 508 * If @buf is NULL, discard up to @len bytes. 509 */ 510 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 511 { 512 struct kvec iov = {buf, len}; 513 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 514 int r; 515 516 if (!buf) 517 msg.msg_flags |= MSG_TRUNC; 518 519 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len); 520 r = sock_recvmsg(sock, &msg, msg.msg_flags); 521 if (r == -EAGAIN) 522 r = 0; 523 return r; 524 } 525 526 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 527 int page_offset, size_t length) 528 { 529 struct bio_vec bvec = { 530 .bv_page = page, 531 .bv_offset = page_offset, 532 .bv_len = length 533 }; 534 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 535 int r; 536 537 BUG_ON(page_offset + length > PAGE_SIZE); 538 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length); 539 r = sock_recvmsg(sock, &msg, msg.msg_flags); 540 if (r == -EAGAIN) 541 r = 0; 542 return r; 543 } 544 545 /* 546 * write something. @more is true if caller will be sending more data 547 * shortly. 548 */ 549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 550 size_t kvlen, size_t len, bool more) 551 { 552 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 553 int r; 554 555 if (more) 556 msg.msg_flags |= MSG_MORE; 557 else 558 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 559 560 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 561 if (r == -EAGAIN) 562 r = 0; 563 return r; 564 } 565 566 /* 567 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST 568 */ 569 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 570 int offset, size_t size, int more) 571 { 572 ssize_t (*sendpage)(struct socket *sock, struct page *page, 573 int offset, size_t size, int flags); 574 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more; 575 int ret; 576 577 /* 578 * sendpage cannot properly handle pages with page_count == 0, 579 * we need to fall back to sendmsg if that's the case. 580 * 581 * Same goes for slab pages: skb_can_coalesce() allows 582 * coalescing neighboring slab objects into a single frag which 583 * triggers one of hardened usercopy checks. 584 */ 585 if (page_count(page) >= 1 && !PageSlab(page)) 586 sendpage = sock->ops->sendpage; 587 else 588 sendpage = sock_no_sendpage; 589 590 ret = sendpage(sock, page, offset, size, flags); 591 if (ret == -EAGAIN) 592 ret = 0; 593 594 return ret; 595 } 596 597 /* 598 * Shutdown/close the socket for the given connection. 599 */ 600 static int con_close_socket(struct ceph_connection *con) 601 { 602 int rc = 0; 603 604 dout("con_close_socket on %p sock %p\n", con, con->sock); 605 if (con->sock) { 606 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 607 sock_release(con->sock); 608 con->sock = NULL; 609 } 610 611 /* 612 * Forcibly clear the SOCK_CLOSED flag. It gets set 613 * independent of the connection mutex, and we could have 614 * received a socket close event before we had the chance to 615 * shut the socket down. 616 */ 617 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 618 619 con_sock_state_closed(con); 620 return rc; 621 } 622 623 /* 624 * Reset a connection. Discard all incoming and outgoing messages 625 * and clear *_seq state. 626 */ 627 static void ceph_msg_remove(struct ceph_msg *msg) 628 { 629 list_del_init(&msg->list_head); 630 631 ceph_msg_put(msg); 632 } 633 static void ceph_msg_remove_list(struct list_head *head) 634 { 635 while (!list_empty(head)) { 636 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 637 list_head); 638 ceph_msg_remove(msg); 639 } 640 } 641 642 static void reset_connection(struct ceph_connection *con) 643 { 644 /* reset connection, out_queue, msg_ and connect_seq */ 645 /* discard existing out_queue and msg_seq */ 646 dout("reset_connection %p\n", con); 647 ceph_msg_remove_list(&con->out_queue); 648 ceph_msg_remove_list(&con->out_sent); 649 650 if (con->in_msg) { 651 BUG_ON(con->in_msg->con != con); 652 ceph_msg_put(con->in_msg); 653 con->in_msg = NULL; 654 } 655 656 con->connect_seq = 0; 657 con->out_seq = 0; 658 if (con->out_msg) { 659 BUG_ON(con->out_msg->con != con); 660 ceph_msg_put(con->out_msg); 661 con->out_msg = NULL; 662 } 663 con->in_seq = 0; 664 con->in_seq_acked = 0; 665 666 con->out_skip = 0; 667 } 668 669 /* 670 * mark a peer down. drop any open connections. 671 */ 672 void ceph_con_close(struct ceph_connection *con) 673 { 674 mutex_lock(&con->mutex); 675 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); 676 con->state = CON_STATE_CLOSED; 677 678 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 679 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 680 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 681 con_flag_clear(con, CON_FLAG_BACKOFF); 682 683 reset_connection(con); 684 con->peer_global_seq = 0; 685 cancel_con(con); 686 con_close_socket(con); 687 mutex_unlock(&con->mutex); 688 } 689 EXPORT_SYMBOL(ceph_con_close); 690 691 /* 692 * Reopen a closed connection, with a new peer address. 693 */ 694 void ceph_con_open(struct ceph_connection *con, 695 __u8 entity_type, __u64 entity_num, 696 struct ceph_entity_addr *addr) 697 { 698 mutex_lock(&con->mutex); 699 dout("con_open %p %s\n", con, ceph_pr_addr(addr)); 700 701 WARN_ON(con->state != CON_STATE_CLOSED); 702 con->state = CON_STATE_PREOPEN; 703 704 con->peer_name.type = (__u8) entity_type; 705 con->peer_name.num = cpu_to_le64(entity_num); 706 707 memcpy(&con->peer_addr, addr, sizeof(*addr)); 708 con->delay = 0; /* reset backoff memory */ 709 mutex_unlock(&con->mutex); 710 queue_con(con); 711 } 712 EXPORT_SYMBOL(ceph_con_open); 713 714 /* 715 * return true if this connection ever successfully opened 716 */ 717 bool ceph_con_opened(struct ceph_connection *con) 718 { 719 return con->connect_seq > 0; 720 } 721 722 /* 723 * initialize a new connection. 724 */ 725 void ceph_con_init(struct ceph_connection *con, void *private, 726 const struct ceph_connection_operations *ops, 727 struct ceph_messenger *msgr) 728 { 729 dout("con_init %p\n", con); 730 memset(con, 0, sizeof(*con)); 731 con->private = private; 732 con->ops = ops; 733 con->msgr = msgr; 734 735 con_sock_state_init(con); 736 737 mutex_init(&con->mutex); 738 INIT_LIST_HEAD(&con->out_queue); 739 INIT_LIST_HEAD(&con->out_sent); 740 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 741 742 con->state = CON_STATE_CLOSED; 743 } 744 EXPORT_SYMBOL(ceph_con_init); 745 746 747 /* 748 * We maintain a global counter to order connection attempts. Get 749 * a unique seq greater than @gt. 750 */ 751 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 752 { 753 u32 ret; 754 755 spin_lock(&msgr->global_seq_lock); 756 if (msgr->global_seq < gt) 757 msgr->global_seq = gt; 758 ret = ++msgr->global_seq; 759 spin_unlock(&msgr->global_seq_lock); 760 return ret; 761 } 762 763 static void con_out_kvec_reset(struct ceph_connection *con) 764 { 765 BUG_ON(con->out_skip); 766 767 con->out_kvec_left = 0; 768 con->out_kvec_bytes = 0; 769 con->out_kvec_cur = &con->out_kvec[0]; 770 } 771 772 static void con_out_kvec_add(struct ceph_connection *con, 773 size_t size, void *data) 774 { 775 int index = con->out_kvec_left; 776 777 BUG_ON(con->out_skip); 778 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 779 780 con->out_kvec[index].iov_len = size; 781 con->out_kvec[index].iov_base = data; 782 con->out_kvec_left++; 783 con->out_kvec_bytes += size; 784 } 785 786 /* 787 * Chop off a kvec from the end. Return residual number of bytes for 788 * that kvec, i.e. how many bytes would have been written if the kvec 789 * hadn't been nuked. 790 */ 791 static int con_out_kvec_skip(struct ceph_connection *con) 792 { 793 int off = con->out_kvec_cur - con->out_kvec; 794 int skip = 0; 795 796 if (con->out_kvec_bytes > 0) { 797 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 798 BUG_ON(con->out_kvec_bytes < skip); 799 BUG_ON(!con->out_kvec_left); 800 con->out_kvec_bytes -= skip; 801 con->out_kvec_left--; 802 } 803 804 return skip; 805 } 806 807 #ifdef CONFIG_BLOCK 808 809 /* 810 * For a bio data item, a piece is whatever remains of the next 811 * entry in the current bio iovec, or the first entry in the next 812 * bio in the list. 813 */ 814 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 815 size_t length) 816 { 817 struct ceph_msg_data *data = cursor->data; 818 struct ceph_bio_iter *it = &cursor->bio_iter; 819 820 cursor->resid = min_t(size_t, length, data->bio_length); 821 *it = data->bio_pos; 822 if (cursor->resid < it->iter.bi_size) 823 it->iter.bi_size = cursor->resid; 824 825 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 826 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 827 } 828 829 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 830 size_t *page_offset, 831 size_t *length) 832 { 833 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 834 cursor->bio_iter.iter); 835 836 *page_offset = bv.bv_offset; 837 *length = bv.bv_len; 838 return bv.bv_page; 839 } 840 841 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 842 size_t bytes) 843 { 844 struct ceph_bio_iter *it = &cursor->bio_iter; 845 struct page *page = bio_iter_page(it->bio, it->iter); 846 847 BUG_ON(bytes > cursor->resid); 848 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 849 cursor->resid -= bytes; 850 bio_advance_iter(it->bio, &it->iter, bytes); 851 852 if (!cursor->resid) { 853 BUG_ON(!cursor->last_piece); 854 return false; /* no more data */ 855 } 856 857 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && 858 page == bio_iter_page(it->bio, it->iter))) 859 return false; /* more bytes to process in this segment */ 860 861 if (!it->iter.bi_size) { 862 it->bio = it->bio->bi_next; 863 it->iter = it->bio->bi_iter; 864 if (cursor->resid < it->iter.bi_size) 865 it->iter.bi_size = cursor->resid; 866 } 867 868 BUG_ON(cursor->last_piece); 869 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 870 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 871 return true; 872 } 873 #endif /* CONFIG_BLOCK */ 874 875 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 876 size_t length) 877 { 878 struct ceph_msg_data *data = cursor->data; 879 struct bio_vec *bvecs = data->bvec_pos.bvecs; 880 881 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 882 cursor->bvec_iter = data->bvec_pos.iter; 883 cursor->bvec_iter.bi_size = cursor->resid; 884 885 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 886 cursor->last_piece = 887 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 888 } 889 890 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 891 size_t *page_offset, 892 size_t *length) 893 { 894 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 895 cursor->bvec_iter); 896 897 *page_offset = bv.bv_offset; 898 *length = bv.bv_len; 899 return bv.bv_page; 900 } 901 902 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 903 size_t bytes) 904 { 905 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 906 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); 907 908 BUG_ON(bytes > cursor->resid); 909 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 910 cursor->resid -= bytes; 911 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 912 913 if (!cursor->resid) { 914 BUG_ON(!cursor->last_piece); 915 return false; /* no more data */ 916 } 917 918 if (!bytes || (cursor->bvec_iter.bi_bvec_done && 919 page == bvec_iter_page(bvecs, cursor->bvec_iter))) 920 return false; /* more bytes to process in this segment */ 921 922 BUG_ON(cursor->last_piece); 923 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 924 cursor->last_piece = 925 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 926 return true; 927 } 928 929 /* 930 * For a page array, a piece comes from the first page in the array 931 * that has not already been fully consumed. 932 */ 933 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 934 size_t length) 935 { 936 struct ceph_msg_data *data = cursor->data; 937 int page_count; 938 939 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 940 941 BUG_ON(!data->pages); 942 BUG_ON(!data->length); 943 944 cursor->resid = min(length, data->length); 945 page_count = calc_pages_for(data->alignment, (u64)data->length); 946 cursor->page_offset = data->alignment & ~PAGE_MASK; 947 cursor->page_index = 0; 948 BUG_ON(page_count > (int)USHRT_MAX); 949 cursor->page_count = (unsigned short)page_count; 950 BUG_ON(length > SIZE_MAX - cursor->page_offset); 951 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 952 } 953 954 static struct page * 955 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 956 size_t *page_offset, size_t *length) 957 { 958 struct ceph_msg_data *data = cursor->data; 959 960 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 961 962 BUG_ON(cursor->page_index >= cursor->page_count); 963 BUG_ON(cursor->page_offset >= PAGE_SIZE); 964 965 *page_offset = cursor->page_offset; 966 if (cursor->last_piece) 967 *length = cursor->resid; 968 else 969 *length = PAGE_SIZE - *page_offset; 970 971 return data->pages[cursor->page_index]; 972 } 973 974 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 975 size_t bytes) 976 { 977 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 978 979 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 980 981 /* Advance the cursor page offset */ 982 983 cursor->resid -= bytes; 984 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 985 if (!bytes || cursor->page_offset) 986 return false; /* more bytes to process in the current page */ 987 988 if (!cursor->resid) 989 return false; /* no more data */ 990 991 /* Move on to the next page; offset is already at 0 */ 992 993 BUG_ON(cursor->page_index >= cursor->page_count); 994 cursor->page_index++; 995 cursor->last_piece = cursor->resid <= PAGE_SIZE; 996 997 return true; 998 } 999 1000 /* 1001 * For a pagelist, a piece is whatever remains to be consumed in the 1002 * first page in the list, or the front of the next page. 1003 */ 1004 static void 1005 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1006 size_t length) 1007 { 1008 struct ceph_msg_data *data = cursor->data; 1009 struct ceph_pagelist *pagelist; 1010 struct page *page; 1011 1012 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1013 1014 pagelist = data->pagelist; 1015 BUG_ON(!pagelist); 1016 1017 if (!length) 1018 return; /* pagelist can be assigned but empty */ 1019 1020 BUG_ON(list_empty(&pagelist->head)); 1021 page = list_first_entry(&pagelist->head, struct page, lru); 1022 1023 cursor->resid = min(length, pagelist->length); 1024 cursor->page = page; 1025 cursor->offset = 0; 1026 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1027 } 1028 1029 static struct page * 1030 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1031 size_t *page_offset, size_t *length) 1032 { 1033 struct ceph_msg_data *data = cursor->data; 1034 struct ceph_pagelist *pagelist; 1035 1036 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1037 1038 pagelist = data->pagelist; 1039 BUG_ON(!pagelist); 1040 1041 BUG_ON(!cursor->page); 1042 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1043 1044 /* offset of first page in pagelist is always 0 */ 1045 *page_offset = cursor->offset & ~PAGE_MASK; 1046 if (cursor->last_piece) 1047 *length = cursor->resid; 1048 else 1049 *length = PAGE_SIZE - *page_offset; 1050 1051 return cursor->page; 1052 } 1053 1054 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1055 size_t bytes) 1056 { 1057 struct ceph_msg_data *data = cursor->data; 1058 struct ceph_pagelist *pagelist; 1059 1060 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1061 1062 pagelist = data->pagelist; 1063 BUG_ON(!pagelist); 1064 1065 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1066 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1067 1068 /* Advance the cursor offset */ 1069 1070 cursor->resid -= bytes; 1071 cursor->offset += bytes; 1072 /* offset of first page in pagelist is always 0 */ 1073 if (!bytes || cursor->offset & ~PAGE_MASK) 1074 return false; /* more bytes to process in the current page */ 1075 1076 if (!cursor->resid) 1077 return false; /* no more data */ 1078 1079 /* Move on to the next page */ 1080 1081 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1082 cursor->page = list_next_entry(cursor->page, lru); 1083 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1084 1085 return true; 1086 } 1087 1088 /* 1089 * Message data is handled (sent or received) in pieces, where each 1090 * piece resides on a single page. The network layer might not 1091 * consume an entire piece at once. A data item's cursor keeps 1092 * track of which piece is next to process and how much remains to 1093 * be processed in that piece. It also tracks whether the current 1094 * piece is the last one in the data item. 1095 */ 1096 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1097 { 1098 size_t length = cursor->total_resid; 1099 1100 switch (cursor->data->type) { 1101 case CEPH_MSG_DATA_PAGELIST: 1102 ceph_msg_data_pagelist_cursor_init(cursor, length); 1103 break; 1104 case CEPH_MSG_DATA_PAGES: 1105 ceph_msg_data_pages_cursor_init(cursor, length); 1106 break; 1107 #ifdef CONFIG_BLOCK 1108 case CEPH_MSG_DATA_BIO: 1109 ceph_msg_data_bio_cursor_init(cursor, length); 1110 break; 1111 #endif /* CONFIG_BLOCK */ 1112 case CEPH_MSG_DATA_BVECS: 1113 ceph_msg_data_bvecs_cursor_init(cursor, length); 1114 break; 1115 case CEPH_MSG_DATA_NONE: 1116 default: 1117 /* BUG(); */ 1118 break; 1119 } 1120 cursor->need_crc = true; 1121 } 1122 1123 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1124 { 1125 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1126 1127 BUG_ON(!length); 1128 BUG_ON(length > msg->data_length); 1129 BUG_ON(!msg->num_data_items); 1130 1131 cursor->total_resid = length; 1132 cursor->data = msg->data; 1133 1134 __ceph_msg_data_cursor_init(cursor); 1135 } 1136 1137 /* 1138 * Return the page containing the next piece to process for a given 1139 * data item, and supply the page offset and length of that piece. 1140 * Indicate whether this is the last piece in this data item. 1141 */ 1142 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1143 size_t *page_offset, size_t *length, 1144 bool *last_piece) 1145 { 1146 struct page *page; 1147 1148 switch (cursor->data->type) { 1149 case CEPH_MSG_DATA_PAGELIST: 1150 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1151 break; 1152 case CEPH_MSG_DATA_PAGES: 1153 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1154 break; 1155 #ifdef CONFIG_BLOCK 1156 case CEPH_MSG_DATA_BIO: 1157 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1158 break; 1159 #endif /* CONFIG_BLOCK */ 1160 case CEPH_MSG_DATA_BVECS: 1161 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1162 break; 1163 case CEPH_MSG_DATA_NONE: 1164 default: 1165 page = NULL; 1166 break; 1167 } 1168 1169 BUG_ON(!page); 1170 BUG_ON(*page_offset + *length > PAGE_SIZE); 1171 BUG_ON(!*length); 1172 BUG_ON(*length > cursor->resid); 1173 if (last_piece) 1174 *last_piece = cursor->last_piece; 1175 1176 return page; 1177 } 1178 1179 /* 1180 * Returns true if the result moves the cursor on to the next piece 1181 * of the data item. 1182 */ 1183 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1184 size_t bytes) 1185 { 1186 bool new_piece; 1187 1188 BUG_ON(bytes > cursor->resid); 1189 switch (cursor->data->type) { 1190 case CEPH_MSG_DATA_PAGELIST: 1191 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1192 break; 1193 case CEPH_MSG_DATA_PAGES: 1194 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1195 break; 1196 #ifdef CONFIG_BLOCK 1197 case CEPH_MSG_DATA_BIO: 1198 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1199 break; 1200 #endif /* CONFIG_BLOCK */ 1201 case CEPH_MSG_DATA_BVECS: 1202 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1203 break; 1204 case CEPH_MSG_DATA_NONE: 1205 default: 1206 BUG(); 1207 break; 1208 } 1209 cursor->total_resid -= bytes; 1210 1211 if (!cursor->resid && cursor->total_resid) { 1212 WARN_ON(!cursor->last_piece); 1213 cursor->data++; 1214 __ceph_msg_data_cursor_init(cursor); 1215 new_piece = true; 1216 } 1217 cursor->need_crc = new_piece; 1218 } 1219 1220 static size_t sizeof_footer(struct ceph_connection *con) 1221 { 1222 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1223 sizeof(struct ceph_msg_footer) : 1224 sizeof(struct ceph_msg_footer_old); 1225 } 1226 1227 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1228 { 1229 /* Initialize data cursor */ 1230 1231 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1232 } 1233 1234 /* 1235 * Prepare footer for currently outgoing message, and finish things 1236 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1237 */ 1238 static void prepare_write_message_footer(struct ceph_connection *con) 1239 { 1240 struct ceph_msg *m = con->out_msg; 1241 1242 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1243 1244 dout("prepare_write_message_footer %p\n", con); 1245 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1246 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1247 if (con->ops->sign_message) 1248 con->ops->sign_message(m); 1249 else 1250 m->footer.sig = 0; 1251 } else { 1252 m->old_footer.flags = m->footer.flags; 1253 } 1254 con->out_more = m->more_to_follow; 1255 con->out_msg_done = true; 1256 } 1257 1258 /* 1259 * Prepare headers for the next outgoing message. 1260 */ 1261 static void prepare_write_message(struct ceph_connection *con) 1262 { 1263 struct ceph_msg *m; 1264 u32 crc; 1265 1266 con_out_kvec_reset(con); 1267 con->out_msg_done = false; 1268 1269 /* Sneak an ack in there first? If we can get it into the same 1270 * TCP packet that's a good thing. */ 1271 if (con->in_seq > con->in_seq_acked) { 1272 con->in_seq_acked = con->in_seq; 1273 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1274 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1275 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1276 &con->out_temp_ack); 1277 } 1278 1279 BUG_ON(list_empty(&con->out_queue)); 1280 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1281 con->out_msg = m; 1282 BUG_ON(m->con != con); 1283 1284 /* put message on sent list */ 1285 ceph_msg_get(m); 1286 list_move_tail(&m->list_head, &con->out_sent); 1287 1288 /* 1289 * only assign outgoing seq # if we haven't sent this message 1290 * yet. if it is requeued, resend with it's original seq. 1291 */ 1292 if (m->needs_out_seq) { 1293 m->hdr.seq = cpu_to_le64(++con->out_seq); 1294 m->needs_out_seq = false; 1295 1296 if (con->ops->reencode_message) 1297 con->ops->reencode_message(m); 1298 } 1299 1300 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1301 m, con->out_seq, le16_to_cpu(m->hdr.type), 1302 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1303 m->data_length); 1304 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1305 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1306 1307 /* tag + hdr + front + middle */ 1308 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1309 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1310 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1311 1312 if (m->middle) 1313 con_out_kvec_add(con, m->middle->vec.iov_len, 1314 m->middle->vec.iov_base); 1315 1316 /* fill in hdr crc and finalize hdr */ 1317 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1318 con->out_msg->hdr.crc = cpu_to_le32(crc); 1319 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1320 1321 /* fill in front and middle crc, footer */ 1322 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1323 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1324 if (m->middle) { 1325 crc = crc32c(0, m->middle->vec.iov_base, 1326 m->middle->vec.iov_len); 1327 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1328 } else 1329 con->out_msg->footer.middle_crc = 0; 1330 dout("%s front_crc %u middle_crc %u\n", __func__, 1331 le32_to_cpu(con->out_msg->footer.front_crc), 1332 le32_to_cpu(con->out_msg->footer.middle_crc)); 1333 con->out_msg->footer.flags = 0; 1334 1335 /* is there a data payload? */ 1336 con->out_msg->footer.data_crc = 0; 1337 if (m->data_length) { 1338 prepare_message_data(con->out_msg, m->data_length); 1339 con->out_more = 1; /* data + footer will follow */ 1340 } else { 1341 /* no, queue up footer too and be done */ 1342 prepare_write_message_footer(con); 1343 } 1344 1345 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1346 } 1347 1348 /* 1349 * Prepare an ack. 1350 */ 1351 static void prepare_write_ack(struct ceph_connection *con) 1352 { 1353 dout("prepare_write_ack %p %llu -> %llu\n", con, 1354 con->in_seq_acked, con->in_seq); 1355 con->in_seq_acked = con->in_seq; 1356 1357 con_out_kvec_reset(con); 1358 1359 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1360 1361 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1362 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1363 &con->out_temp_ack); 1364 1365 con->out_more = 1; /* more will follow.. eventually.. */ 1366 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1367 } 1368 1369 /* 1370 * Prepare to share the seq during handshake 1371 */ 1372 static void prepare_write_seq(struct ceph_connection *con) 1373 { 1374 dout("prepare_write_seq %p %llu -> %llu\n", con, 1375 con->in_seq_acked, con->in_seq); 1376 con->in_seq_acked = con->in_seq; 1377 1378 con_out_kvec_reset(con); 1379 1380 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1381 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1382 &con->out_temp_ack); 1383 1384 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1385 } 1386 1387 /* 1388 * Prepare to write keepalive byte. 1389 */ 1390 static void prepare_write_keepalive(struct ceph_connection *con) 1391 { 1392 dout("prepare_write_keepalive %p\n", con); 1393 con_out_kvec_reset(con); 1394 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1395 struct timespec64 now; 1396 1397 ktime_get_real_ts64(&now); 1398 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1399 ceph_encode_timespec64(&con->out_temp_keepalive2, &now); 1400 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1401 &con->out_temp_keepalive2); 1402 } else { 1403 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1404 } 1405 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1406 } 1407 1408 /* 1409 * Connection negotiation. 1410 */ 1411 1412 static int get_connect_authorizer(struct ceph_connection *con) 1413 { 1414 struct ceph_auth_handshake *auth; 1415 int auth_proto; 1416 1417 if (!con->ops->get_authorizer) { 1418 con->auth = NULL; 1419 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1420 con->out_connect.authorizer_len = 0; 1421 return 0; 1422 } 1423 1424 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry); 1425 if (IS_ERR(auth)) 1426 return PTR_ERR(auth); 1427 1428 con->auth = auth; 1429 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1430 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len); 1431 return 0; 1432 } 1433 1434 /* 1435 * We connected to a peer and are saying hello. 1436 */ 1437 static void prepare_write_banner(struct ceph_connection *con) 1438 { 1439 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1440 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1441 &con->msgr->my_enc_addr); 1442 1443 con->out_more = 0; 1444 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1445 } 1446 1447 static void __prepare_write_connect(struct ceph_connection *con) 1448 { 1449 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect); 1450 if (con->auth) 1451 con_out_kvec_add(con, con->auth->authorizer_buf_len, 1452 con->auth->authorizer_buf); 1453 1454 con->out_more = 0; 1455 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1456 } 1457 1458 static int prepare_write_connect(struct ceph_connection *con) 1459 { 1460 unsigned int global_seq = get_global_seq(con->msgr, 0); 1461 int proto; 1462 int ret; 1463 1464 switch (con->peer_name.type) { 1465 case CEPH_ENTITY_TYPE_MON: 1466 proto = CEPH_MONC_PROTOCOL; 1467 break; 1468 case CEPH_ENTITY_TYPE_OSD: 1469 proto = CEPH_OSDC_PROTOCOL; 1470 break; 1471 case CEPH_ENTITY_TYPE_MDS: 1472 proto = CEPH_MDSC_PROTOCOL; 1473 break; 1474 default: 1475 BUG(); 1476 } 1477 1478 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1479 con->connect_seq, global_seq, proto); 1480 1481 con->out_connect.features = 1482 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1483 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1484 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1485 con->out_connect.global_seq = cpu_to_le32(global_seq); 1486 con->out_connect.protocol_version = cpu_to_le32(proto); 1487 con->out_connect.flags = 0; 1488 1489 ret = get_connect_authorizer(con); 1490 if (ret) 1491 return ret; 1492 1493 __prepare_write_connect(con); 1494 return 0; 1495 } 1496 1497 /* 1498 * write as much of pending kvecs to the socket as we can. 1499 * 1 -> done 1500 * 0 -> socket full, but more to do 1501 * <0 -> error 1502 */ 1503 static int write_partial_kvec(struct ceph_connection *con) 1504 { 1505 int ret; 1506 1507 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1508 while (con->out_kvec_bytes > 0) { 1509 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1510 con->out_kvec_left, con->out_kvec_bytes, 1511 con->out_more); 1512 if (ret <= 0) 1513 goto out; 1514 con->out_kvec_bytes -= ret; 1515 if (con->out_kvec_bytes == 0) 1516 break; /* done */ 1517 1518 /* account for full iov entries consumed */ 1519 while (ret >= con->out_kvec_cur->iov_len) { 1520 BUG_ON(!con->out_kvec_left); 1521 ret -= con->out_kvec_cur->iov_len; 1522 con->out_kvec_cur++; 1523 con->out_kvec_left--; 1524 } 1525 /* and for a partially-consumed entry */ 1526 if (ret) { 1527 con->out_kvec_cur->iov_len -= ret; 1528 con->out_kvec_cur->iov_base += ret; 1529 } 1530 } 1531 con->out_kvec_left = 0; 1532 ret = 1; 1533 out: 1534 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1535 con->out_kvec_bytes, con->out_kvec_left, ret); 1536 return ret; /* done! */ 1537 } 1538 1539 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1540 unsigned int page_offset, 1541 unsigned int length) 1542 { 1543 char *kaddr; 1544 1545 kaddr = kmap(page); 1546 BUG_ON(kaddr == NULL); 1547 crc = crc32c(crc, kaddr + page_offset, length); 1548 kunmap(page); 1549 1550 return crc; 1551 } 1552 /* 1553 * Write as much message data payload as we can. If we finish, queue 1554 * up the footer. 1555 * 1 -> done, footer is now queued in out_kvec[]. 1556 * 0 -> socket full, but more to do 1557 * <0 -> error 1558 */ 1559 static int write_partial_message_data(struct ceph_connection *con) 1560 { 1561 struct ceph_msg *msg = con->out_msg; 1562 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1563 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1564 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1565 u32 crc; 1566 1567 dout("%s %p msg %p\n", __func__, con, msg); 1568 1569 if (!msg->num_data_items) 1570 return -EINVAL; 1571 1572 /* 1573 * Iterate through each page that contains data to be 1574 * written, and send as much as possible for each. 1575 * 1576 * If we are calculating the data crc (the default), we will 1577 * need to map the page. If we have no pages, they have 1578 * been revoked, so use the zero page. 1579 */ 1580 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1581 while (cursor->total_resid) { 1582 struct page *page; 1583 size_t page_offset; 1584 size_t length; 1585 int ret; 1586 1587 if (!cursor->resid) { 1588 ceph_msg_data_advance(cursor, 0); 1589 continue; 1590 } 1591 1592 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 1593 if (length == cursor->total_resid) 1594 more = MSG_MORE; 1595 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length, 1596 more); 1597 if (ret <= 0) { 1598 if (do_datacrc) 1599 msg->footer.data_crc = cpu_to_le32(crc); 1600 1601 return ret; 1602 } 1603 if (do_datacrc && cursor->need_crc) 1604 crc = ceph_crc32c_page(crc, page, page_offset, length); 1605 ceph_msg_data_advance(cursor, (size_t)ret); 1606 } 1607 1608 dout("%s %p msg %p done\n", __func__, con, msg); 1609 1610 /* prepare and queue up footer, too */ 1611 if (do_datacrc) 1612 msg->footer.data_crc = cpu_to_le32(crc); 1613 else 1614 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1615 con_out_kvec_reset(con); 1616 prepare_write_message_footer(con); 1617 1618 return 1; /* must return > 0 to indicate success */ 1619 } 1620 1621 /* 1622 * write some zeros 1623 */ 1624 static int write_partial_skip(struct ceph_connection *con) 1625 { 1626 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1627 int ret; 1628 1629 dout("%s %p %d left\n", __func__, con, con->out_skip); 1630 while (con->out_skip > 0) { 1631 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1632 1633 if (size == con->out_skip) 1634 more = MSG_MORE; 1635 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more); 1636 if (ret <= 0) 1637 goto out; 1638 con->out_skip -= ret; 1639 } 1640 ret = 1; 1641 out: 1642 return ret; 1643 } 1644 1645 /* 1646 * Prepare to read connection handshake, or an ack. 1647 */ 1648 static void prepare_read_banner(struct ceph_connection *con) 1649 { 1650 dout("prepare_read_banner %p\n", con); 1651 con->in_base_pos = 0; 1652 } 1653 1654 static void prepare_read_connect(struct ceph_connection *con) 1655 { 1656 dout("prepare_read_connect %p\n", con); 1657 con->in_base_pos = 0; 1658 } 1659 1660 static void prepare_read_ack(struct ceph_connection *con) 1661 { 1662 dout("prepare_read_ack %p\n", con); 1663 con->in_base_pos = 0; 1664 } 1665 1666 static void prepare_read_seq(struct ceph_connection *con) 1667 { 1668 dout("prepare_read_seq %p\n", con); 1669 con->in_base_pos = 0; 1670 con->in_tag = CEPH_MSGR_TAG_SEQ; 1671 } 1672 1673 static void prepare_read_tag(struct ceph_connection *con) 1674 { 1675 dout("prepare_read_tag %p\n", con); 1676 con->in_base_pos = 0; 1677 con->in_tag = CEPH_MSGR_TAG_READY; 1678 } 1679 1680 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1681 { 1682 dout("prepare_read_keepalive_ack %p\n", con); 1683 con->in_base_pos = 0; 1684 } 1685 1686 /* 1687 * Prepare to read a message. 1688 */ 1689 static int prepare_read_message(struct ceph_connection *con) 1690 { 1691 dout("prepare_read_message %p\n", con); 1692 BUG_ON(con->in_msg != NULL); 1693 con->in_base_pos = 0; 1694 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1695 return 0; 1696 } 1697 1698 1699 static int read_partial(struct ceph_connection *con, 1700 int end, int size, void *object) 1701 { 1702 while (con->in_base_pos < end) { 1703 int left = end - con->in_base_pos; 1704 int have = size - left; 1705 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1706 if (ret <= 0) 1707 return ret; 1708 con->in_base_pos += ret; 1709 } 1710 return 1; 1711 } 1712 1713 1714 /* 1715 * Read all or part of the connect-side handshake on a new connection 1716 */ 1717 static int read_partial_banner(struct ceph_connection *con) 1718 { 1719 int size; 1720 int end; 1721 int ret; 1722 1723 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1724 1725 /* peer's banner */ 1726 size = strlen(CEPH_BANNER); 1727 end = size; 1728 ret = read_partial(con, end, size, con->in_banner); 1729 if (ret <= 0) 1730 goto out; 1731 1732 size = sizeof (con->actual_peer_addr); 1733 end += size; 1734 ret = read_partial(con, end, size, &con->actual_peer_addr); 1735 if (ret <= 0) 1736 goto out; 1737 ceph_decode_banner_addr(&con->actual_peer_addr); 1738 1739 size = sizeof (con->peer_addr_for_me); 1740 end += size; 1741 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1742 if (ret <= 0) 1743 goto out; 1744 ceph_decode_banner_addr(&con->peer_addr_for_me); 1745 1746 out: 1747 return ret; 1748 } 1749 1750 static int read_partial_connect(struct ceph_connection *con) 1751 { 1752 int size; 1753 int end; 1754 int ret; 1755 1756 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1757 1758 size = sizeof (con->in_reply); 1759 end = size; 1760 ret = read_partial(con, end, size, &con->in_reply); 1761 if (ret <= 0) 1762 goto out; 1763 1764 if (con->auth) { 1765 size = le32_to_cpu(con->in_reply.authorizer_len); 1766 if (size > con->auth->authorizer_reply_buf_len) { 1767 pr_err("authorizer reply too big: %d > %zu\n", size, 1768 con->auth->authorizer_reply_buf_len); 1769 ret = -EINVAL; 1770 goto out; 1771 } 1772 1773 end += size; 1774 ret = read_partial(con, end, size, 1775 con->auth->authorizer_reply_buf); 1776 if (ret <= 0) 1777 goto out; 1778 } 1779 1780 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1781 con, (int)con->in_reply.tag, 1782 le32_to_cpu(con->in_reply.connect_seq), 1783 le32_to_cpu(con->in_reply.global_seq)); 1784 out: 1785 return ret; 1786 } 1787 1788 /* 1789 * Verify the hello banner looks okay. 1790 */ 1791 static int verify_hello(struct ceph_connection *con) 1792 { 1793 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1794 pr_err("connect to %s got bad banner\n", 1795 ceph_pr_addr(&con->peer_addr)); 1796 con->error_msg = "protocol error, bad banner"; 1797 return -1; 1798 } 1799 return 0; 1800 } 1801 1802 static bool addr_is_blank(struct ceph_entity_addr *addr) 1803 { 1804 struct sockaddr_storage ss = addr->in_addr; /* align */ 1805 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; 1806 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; 1807 1808 switch (ss.ss_family) { 1809 case AF_INET: 1810 return addr4->s_addr == htonl(INADDR_ANY); 1811 case AF_INET6: 1812 return ipv6_addr_any(addr6); 1813 default: 1814 return true; 1815 } 1816 } 1817 1818 static int addr_port(struct ceph_entity_addr *addr) 1819 { 1820 switch (get_unaligned(&addr->in_addr.ss_family)) { 1821 case AF_INET: 1822 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); 1823 case AF_INET6: 1824 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); 1825 } 1826 return 0; 1827 } 1828 1829 static void addr_set_port(struct ceph_entity_addr *addr, int p) 1830 { 1831 switch (get_unaligned(&addr->in_addr.ss_family)) { 1832 case AF_INET: 1833 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); 1834 break; 1835 case AF_INET6: 1836 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); 1837 break; 1838 } 1839 } 1840 1841 /* 1842 * Unlike other *_pton function semantics, zero indicates success. 1843 */ 1844 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, 1845 char delim, const char **ipend) 1846 { 1847 memset(&addr->in_addr, 0, sizeof(addr->in_addr)); 1848 1849 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { 1850 put_unaligned(AF_INET, &addr->in_addr.ss_family); 1851 return 0; 1852 } 1853 1854 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { 1855 put_unaligned(AF_INET6, &addr->in_addr.ss_family); 1856 return 0; 1857 } 1858 1859 return -EINVAL; 1860 } 1861 1862 /* 1863 * Extract hostname string and resolve using kernel DNS facility. 1864 */ 1865 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1866 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1867 struct ceph_entity_addr *addr, char delim, const char **ipend) 1868 { 1869 const char *end, *delim_p; 1870 char *colon_p, *ip_addr = NULL; 1871 int ip_len, ret; 1872 1873 /* 1874 * The end of the hostname occurs immediately preceding the delimiter or 1875 * the port marker (':') where the delimiter takes precedence. 1876 */ 1877 delim_p = memchr(name, delim, namelen); 1878 colon_p = memchr(name, ':', namelen); 1879 1880 if (delim_p && colon_p) 1881 end = delim_p < colon_p ? delim_p : colon_p; 1882 else if (!delim_p && colon_p) 1883 end = colon_p; 1884 else { 1885 end = delim_p; 1886 if (!end) /* case: hostname:/ */ 1887 end = name + namelen; 1888 } 1889 1890 if (end <= name) 1891 return -EINVAL; 1892 1893 /* do dns_resolve upcall */ 1894 ip_len = dns_query(current->nsproxy->net_ns, 1895 NULL, name, end - name, NULL, &ip_addr, NULL, false); 1896 if (ip_len > 0) 1897 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); 1898 else 1899 ret = -ESRCH; 1900 1901 kfree(ip_addr); 1902 1903 *ipend = end; 1904 1905 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1906 ret, ret ? "failed" : ceph_pr_addr(addr)); 1907 1908 return ret; 1909 } 1910 #else 1911 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1912 struct ceph_entity_addr *addr, char delim, const char **ipend) 1913 { 1914 return -EINVAL; 1915 } 1916 #endif 1917 1918 /* 1919 * Parse a server name (IP or hostname). If a valid IP address is not found 1920 * then try to extract a hostname to resolve using userspace DNS upcall. 1921 */ 1922 static int ceph_parse_server_name(const char *name, size_t namelen, 1923 struct ceph_entity_addr *addr, char delim, const char **ipend) 1924 { 1925 int ret; 1926 1927 ret = ceph_pton(name, namelen, addr, delim, ipend); 1928 if (ret) 1929 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); 1930 1931 return ret; 1932 } 1933 1934 /* 1935 * Parse an ip[:port] list into an addr array. Use the default 1936 * monitor port if a port isn't specified. 1937 */ 1938 int ceph_parse_ips(const char *c, const char *end, 1939 struct ceph_entity_addr *addr, 1940 int max_count, int *count) 1941 { 1942 int i, ret = -EINVAL; 1943 const char *p = c; 1944 1945 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1946 for (i = 0; i < max_count; i++) { 1947 const char *ipend; 1948 int port; 1949 char delim = ','; 1950 1951 if (*p == '[') { 1952 delim = ']'; 1953 p++; 1954 } 1955 1956 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend); 1957 if (ret) 1958 goto bad; 1959 ret = -EINVAL; 1960 1961 p = ipend; 1962 1963 if (delim == ']') { 1964 if (*p != ']') { 1965 dout("missing matching ']'\n"); 1966 goto bad; 1967 } 1968 p++; 1969 } 1970 1971 /* port? */ 1972 if (p < end && *p == ':') { 1973 port = 0; 1974 p++; 1975 while (p < end && *p >= '0' && *p <= '9') { 1976 port = (port * 10) + (*p - '0'); 1977 p++; 1978 } 1979 if (port == 0) 1980 port = CEPH_MON_PORT; 1981 else if (port > 65535) 1982 goto bad; 1983 } else { 1984 port = CEPH_MON_PORT; 1985 } 1986 1987 addr_set_port(&addr[i], port); 1988 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY; 1989 1990 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i])); 1991 1992 if (p == end) 1993 break; 1994 if (*p != ',') 1995 goto bad; 1996 p++; 1997 } 1998 1999 if (p != end) 2000 goto bad; 2001 2002 if (count) 2003 *count = i + 1; 2004 return 0; 2005 2006 bad: 2007 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 2008 return ret; 2009 } 2010 EXPORT_SYMBOL(ceph_parse_ips); 2011 2012 static int process_banner(struct ceph_connection *con) 2013 { 2014 dout("process_banner on %p\n", con); 2015 2016 if (verify_hello(con) < 0) 2017 return -1; 2018 2019 /* 2020 * Make sure the other end is who we wanted. note that the other 2021 * end may not yet know their ip address, so if it's 0.0.0.0, give 2022 * them the benefit of the doubt. 2023 */ 2024 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2025 sizeof(con->peer_addr)) != 0 && 2026 !(addr_is_blank(&con->actual_peer_addr) && 2027 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2028 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2029 ceph_pr_addr(&con->peer_addr), 2030 (int)le32_to_cpu(con->peer_addr.nonce), 2031 ceph_pr_addr(&con->actual_peer_addr), 2032 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2033 con->error_msg = "wrong peer at address"; 2034 return -1; 2035 } 2036 2037 /* 2038 * did we learn our address? 2039 */ 2040 if (addr_is_blank(&con->msgr->inst.addr)) { 2041 int port = addr_port(&con->msgr->inst.addr); 2042 2043 memcpy(&con->msgr->inst.addr.in_addr, 2044 &con->peer_addr_for_me.in_addr, 2045 sizeof(con->peer_addr_for_me.in_addr)); 2046 addr_set_port(&con->msgr->inst.addr, port); 2047 encode_my_addr(con->msgr); 2048 dout("process_banner learned my addr is %s\n", 2049 ceph_pr_addr(&con->msgr->inst.addr)); 2050 } 2051 2052 return 0; 2053 } 2054 2055 static int process_connect(struct ceph_connection *con) 2056 { 2057 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2058 u64 req_feat = from_msgr(con->msgr)->required_features; 2059 u64 server_feat = le64_to_cpu(con->in_reply.features); 2060 int ret; 2061 2062 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2063 2064 if (con->auth) { 2065 int len = le32_to_cpu(con->in_reply.authorizer_len); 2066 2067 /* 2068 * Any connection that defines ->get_authorizer() 2069 * should also define ->add_authorizer_challenge() and 2070 * ->verify_authorizer_reply(). 2071 * 2072 * See get_connect_authorizer(). 2073 */ 2074 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) { 2075 ret = con->ops->add_authorizer_challenge( 2076 con, con->auth->authorizer_reply_buf, len); 2077 if (ret < 0) 2078 return ret; 2079 2080 con_out_kvec_reset(con); 2081 __prepare_write_connect(con); 2082 prepare_read_connect(con); 2083 return 0; 2084 } 2085 2086 if (len) { 2087 ret = con->ops->verify_authorizer_reply(con); 2088 if (ret < 0) { 2089 con->error_msg = "bad authorize reply"; 2090 return ret; 2091 } 2092 } 2093 } 2094 2095 switch (con->in_reply.tag) { 2096 case CEPH_MSGR_TAG_FEATURES: 2097 pr_err("%s%lld %s feature set mismatch," 2098 " my %llx < server's %llx, missing %llx\n", 2099 ENTITY_NAME(con->peer_name), 2100 ceph_pr_addr(&con->peer_addr), 2101 sup_feat, server_feat, server_feat & ~sup_feat); 2102 con->error_msg = "missing required protocol features"; 2103 reset_connection(con); 2104 return -1; 2105 2106 case CEPH_MSGR_TAG_BADPROTOVER: 2107 pr_err("%s%lld %s protocol version mismatch," 2108 " my %d != server's %d\n", 2109 ENTITY_NAME(con->peer_name), 2110 ceph_pr_addr(&con->peer_addr), 2111 le32_to_cpu(con->out_connect.protocol_version), 2112 le32_to_cpu(con->in_reply.protocol_version)); 2113 con->error_msg = "protocol version mismatch"; 2114 reset_connection(con); 2115 return -1; 2116 2117 case CEPH_MSGR_TAG_BADAUTHORIZER: 2118 con->auth_retry++; 2119 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2120 con->auth_retry); 2121 if (con->auth_retry == 2) { 2122 con->error_msg = "connect authorization failure"; 2123 return -1; 2124 } 2125 con_out_kvec_reset(con); 2126 ret = prepare_write_connect(con); 2127 if (ret < 0) 2128 return ret; 2129 prepare_read_connect(con); 2130 break; 2131 2132 case CEPH_MSGR_TAG_RESETSESSION: 2133 /* 2134 * If we connected with a large connect_seq but the peer 2135 * has no record of a session with us (no connection, or 2136 * connect_seq == 0), they will send RESETSESION to indicate 2137 * that they must have reset their session, and may have 2138 * dropped messages. 2139 */ 2140 dout("process_connect got RESET peer seq %u\n", 2141 le32_to_cpu(con->in_reply.connect_seq)); 2142 pr_err("%s%lld %s connection reset\n", 2143 ENTITY_NAME(con->peer_name), 2144 ceph_pr_addr(&con->peer_addr)); 2145 reset_connection(con); 2146 con_out_kvec_reset(con); 2147 ret = prepare_write_connect(con); 2148 if (ret < 0) 2149 return ret; 2150 prepare_read_connect(con); 2151 2152 /* Tell ceph about it. */ 2153 mutex_unlock(&con->mutex); 2154 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2155 if (con->ops->peer_reset) 2156 con->ops->peer_reset(con); 2157 mutex_lock(&con->mutex); 2158 if (con->state != CON_STATE_NEGOTIATING) 2159 return -EAGAIN; 2160 break; 2161 2162 case CEPH_MSGR_TAG_RETRY_SESSION: 2163 /* 2164 * If we sent a smaller connect_seq than the peer has, try 2165 * again with a larger value. 2166 */ 2167 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2168 le32_to_cpu(con->out_connect.connect_seq), 2169 le32_to_cpu(con->in_reply.connect_seq)); 2170 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2171 con_out_kvec_reset(con); 2172 ret = prepare_write_connect(con); 2173 if (ret < 0) 2174 return ret; 2175 prepare_read_connect(con); 2176 break; 2177 2178 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2179 /* 2180 * If we sent a smaller global_seq than the peer has, try 2181 * again with a larger value. 2182 */ 2183 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2184 con->peer_global_seq, 2185 le32_to_cpu(con->in_reply.global_seq)); 2186 get_global_seq(con->msgr, 2187 le32_to_cpu(con->in_reply.global_seq)); 2188 con_out_kvec_reset(con); 2189 ret = prepare_write_connect(con); 2190 if (ret < 0) 2191 return ret; 2192 prepare_read_connect(con); 2193 break; 2194 2195 case CEPH_MSGR_TAG_SEQ: 2196 case CEPH_MSGR_TAG_READY: 2197 if (req_feat & ~server_feat) { 2198 pr_err("%s%lld %s protocol feature mismatch," 2199 " my required %llx > server's %llx, need %llx\n", 2200 ENTITY_NAME(con->peer_name), 2201 ceph_pr_addr(&con->peer_addr), 2202 req_feat, server_feat, req_feat & ~server_feat); 2203 con->error_msg = "missing required protocol features"; 2204 reset_connection(con); 2205 return -1; 2206 } 2207 2208 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2209 con->state = CON_STATE_OPEN; 2210 con->auth_retry = 0; /* we authenticated; clear flag */ 2211 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2212 con->connect_seq++; 2213 con->peer_features = server_feat; 2214 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2215 con->peer_global_seq, 2216 le32_to_cpu(con->in_reply.connect_seq), 2217 con->connect_seq); 2218 WARN_ON(con->connect_seq != 2219 le32_to_cpu(con->in_reply.connect_seq)); 2220 2221 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2222 con_flag_set(con, CON_FLAG_LOSSYTX); 2223 2224 con->delay = 0; /* reset backoff memory */ 2225 2226 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2227 prepare_write_seq(con); 2228 prepare_read_seq(con); 2229 } else { 2230 prepare_read_tag(con); 2231 } 2232 break; 2233 2234 case CEPH_MSGR_TAG_WAIT: 2235 /* 2236 * If there is a connection race (we are opening 2237 * connections to each other), one of us may just have 2238 * to WAIT. This shouldn't happen if we are the 2239 * client. 2240 */ 2241 con->error_msg = "protocol error, got WAIT as client"; 2242 return -1; 2243 2244 default: 2245 con->error_msg = "protocol error, garbage tag during connect"; 2246 return -1; 2247 } 2248 return 0; 2249 } 2250 2251 2252 /* 2253 * read (part of) an ack 2254 */ 2255 static int read_partial_ack(struct ceph_connection *con) 2256 { 2257 int size = sizeof (con->in_temp_ack); 2258 int end = size; 2259 2260 return read_partial(con, end, size, &con->in_temp_ack); 2261 } 2262 2263 /* 2264 * We can finally discard anything that's been acked. 2265 */ 2266 static void process_ack(struct ceph_connection *con) 2267 { 2268 struct ceph_msg *m; 2269 u64 ack = le64_to_cpu(con->in_temp_ack); 2270 u64 seq; 2271 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2272 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2273 2274 /* 2275 * In the reconnect case, con_fault() has requeued messages 2276 * in out_sent. We should cleanup old messages according to 2277 * the reconnect seq. 2278 */ 2279 while (!list_empty(list)) { 2280 m = list_first_entry(list, struct ceph_msg, list_head); 2281 if (reconnect && m->needs_out_seq) 2282 break; 2283 seq = le64_to_cpu(m->hdr.seq); 2284 if (seq > ack) 2285 break; 2286 dout("got ack for seq %llu type %d at %p\n", seq, 2287 le16_to_cpu(m->hdr.type), m); 2288 m->ack_stamp = jiffies; 2289 ceph_msg_remove(m); 2290 } 2291 2292 prepare_read_tag(con); 2293 } 2294 2295 2296 static int read_partial_message_section(struct ceph_connection *con, 2297 struct kvec *section, 2298 unsigned int sec_len, u32 *crc) 2299 { 2300 int ret, left; 2301 2302 BUG_ON(!section); 2303 2304 while (section->iov_len < sec_len) { 2305 BUG_ON(section->iov_base == NULL); 2306 left = sec_len - section->iov_len; 2307 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2308 section->iov_len, left); 2309 if (ret <= 0) 2310 return ret; 2311 section->iov_len += ret; 2312 } 2313 if (section->iov_len == sec_len) 2314 *crc = crc32c(0, section->iov_base, section->iov_len); 2315 2316 return 1; 2317 } 2318 2319 static int read_partial_msg_data(struct ceph_connection *con) 2320 { 2321 struct ceph_msg *msg = con->in_msg; 2322 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2323 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2324 struct page *page; 2325 size_t page_offset; 2326 size_t length; 2327 u32 crc = 0; 2328 int ret; 2329 2330 if (!msg->num_data_items) 2331 return -EIO; 2332 2333 if (do_datacrc) 2334 crc = con->in_data_crc; 2335 while (cursor->total_resid) { 2336 if (!cursor->resid) { 2337 ceph_msg_data_advance(cursor, 0); 2338 continue; 2339 } 2340 2341 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2342 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2343 if (ret <= 0) { 2344 if (do_datacrc) 2345 con->in_data_crc = crc; 2346 2347 return ret; 2348 } 2349 2350 if (do_datacrc) 2351 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2352 ceph_msg_data_advance(cursor, (size_t)ret); 2353 } 2354 if (do_datacrc) 2355 con->in_data_crc = crc; 2356 2357 return 1; /* must return > 0 to indicate success */ 2358 } 2359 2360 /* 2361 * read (part of) a message. 2362 */ 2363 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2364 2365 static int read_partial_message(struct ceph_connection *con) 2366 { 2367 struct ceph_msg *m = con->in_msg; 2368 int size; 2369 int end; 2370 int ret; 2371 unsigned int front_len, middle_len, data_len; 2372 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2373 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2374 u64 seq; 2375 u32 crc; 2376 2377 dout("read_partial_message con %p msg %p\n", con, m); 2378 2379 /* header */ 2380 size = sizeof (con->in_hdr); 2381 end = size; 2382 ret = read_partial(con, end, size, &con->in_hdr); 2383 if (ret <= 0) 2384 return ret; 2385 2386 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2387 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2388 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2389 crc, con->in_hdr.crc); 2390 return -EBADMSG; 2391 } 2392 2393 front_len = le32_to_cpu(con->in_hdr.front_len); 2394 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2395 return -EIO; 2396 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2397 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2398 return -EIO; 2399 data_len = le32_to_cpu(con->in_hdr.data_len); 2400 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2401 return -EIO; 2402 2403 /* verify seq# */ 2404 seq = le64_to_cpu(con->in_hdr.seq); 2405 if ((s64)seq - (s64)con->in_seq < 1) { 2406 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2407 ENTITY_NAME(con->peer_name), 2408 ceph_pr_addr(&con->peer_addr), 2409 seq, con->in_seq + 1); 2410 con->in_base_pos = -front_len - middle_len - data_len - 2411 sizeof_footer(con); 2412 con->in_tag = CEPH_MSGR_TAG_READY; 2413 return 1; 2414 } else if ((s64)seq - (s64)con->in_seq > 1) { 2415 pr_err("read_partial_message bad seq %lld expected %lld\n", 2416 seq, con->in_seq + 1); 2417 con->error_msg = "bad message sequence # for incoming message"; 2418 return -EBADE; 2419 } 2420 2421 /* allocate message? */ 2422 if (!con->in_msg) { 2423 int skip = 0; 2424 2425 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2426 front_len, data_len); 2427 ret = ceph_con_in_msg_alloc(con, &skip); 2428 if (ret < 0) 2429 return ret; 2430 2431 BUG_ON(!con->in_msg ^ skip); 2432 if (skip) { 2433 /* skip this message */ 2434 dout("alloc_msg said skip message\n"); 2435 con->in_base_pos = -front_len - middle_len - data_len - 2436 sizeof_footer(con); 2437 con->in_tag = CEPH_MSGR_TAG_READY; 2438 con->in_seq++; 2439 return 1; 2440 } 2441 2442 BUG_ON(!con->in_msg); 2443 BUG_ON(con->in_msg->con != con); 2444 m = con->in_msg; 2445 m->front.iov_len = 0; /* haven't read it yet */ 2446 if (m->middle) 2447 m->middle->vec.iov_len = 0; 2448 2449 /* prepare for data payload, if any */ 2450 2451 if (data_len) 2452 prepare_message_data(con->in_msg, data_len); 2453 } 2454 2455 /* front */ 2456 ret = read_partial_message_section(con, &m->front, front_len, 2457 &con->in_front_crc); 2458 if (ret <= 0) 2459 return ret; 2460 2461 /* middle */ 2462 if (m->middle) { 2463 ret = read_partial_message_section(con, &m->middle->vec, 2464 middle_len, 2465 &con->in_middle_crc); 2466 if (ret <= 0) 2467 return ret; 2468 } 2469 2470 /* (page) data */ 2471 if (data_len) { 2472 ret = read_partial_msg_data(con); 2473 if (ret <= 0) 2474 return ret; 2475 } 2476 2477 /* footer */ 2478 size = sizeof_footer(con); 2479 end += size; 2480 ret = read_partial(con, end, size, &m->footer); 2481 if (ret <= 0) 2482 return ret; 2483 2484 if (!need_sign) { 2485 m->footer.flags = m->old_footer.flags; 2486 m->footer.sig = 0; 2487 } 2488 2489 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2490 m, front_len, m->footer.front_crc, middle_len, 2491 m->footer.middle_crc, data_len, m->footer.data_crc); 2492 2493 /* crc ok? */ 2494 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2495 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2496 m, con->in_front_crc, m->footer.front_crc); 2497 return -EBADMSG; 2498 } 2499 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2500 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2501 m, con->in_middle_crc, m->footer.middle_crc); 2502 return -EBADMSG; 2503 } 2504 if (do_datacrc && 2505 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2506 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2507 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2508 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2509 return -EBADMSG; 2510 } 2511 2512 if (need_sign && con->ops->check_message_signature && 2513 con->ops->check_message_signature(m)) { 2514 pr_err("read_partial_message %p signature check failed\n", m); 2515 return -EBADMSG; 2516 } 2517 2518 return 1; /* done! */ 2519 } 2520 2521 /* 2522 * Process message. This happens in the worker thread. The callback should 2523 * be careful not to do anything that waits on other incoming messages or it 2524 * may deadlock. 2525 */ 2526 static void process_message(struct ceph_connection *con) 2527 { 2528 struct ceph_msg *msg = con->in_msg; 2529 2530 BUG_ON(con->in_msg->con != con); 2531 con->in_msg = NULL; 2532 2533 /* if first message, set peer_name */ 2534 if (con->peer_name.type == 0) 2535 con->peer_name = msg->hdr.src; 2536 2537 con->in_seq++; 2538 mutex_unlock(&con->mutex); 2539 2540 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2541 msg, le64_to_cpu(msg->hdr.seq), 2542 ENTITY_NAME(msg->hdr.src), 2543 le16_to_cpu(msg->hdr.type), 2544 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2545 le32_to_cpu(msg->hdr.front_len), 2546 le32_to_cpu(msg->hdr.data_len), 2547 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2548 con->ops->dispatch(con, msg); 2549 2550 mutex_lock(&con->mutex); 2551 } 2552 2553 static int read_keepalive_ack(struct ceph_connection *con) 2554 { 2555 struct ceph_timespec ceph_ts; 2556 size_t size = sizeof(ceph_ts); 2557 int ret = read_partial(con, size, size, &ceph_ts); 2558 if (ret <= 0) 2559 return ret; 2560 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts); 2561 prepare_read_tag(con); 2562 return 1; 2563 } 2564 2565 /* 2566 * Write something to the socket. Called in a worker thread when the 2567 * socket appears to be writeable and we have something ready to send. 2568 */ 2569 static int try_write(struct ceph_connection *con) 2570 { 2571 int ret = 1; 2572 2573 dout("try_write start %p state %lu\n", con, con->state); 2574 if (con->state != CON_STATE_PREOPEN && 2575 con->state != CON_STATE_CONNECTING && 2576 con->state != CON_STATE_NEGOTIATING && 2577 con->state != CON_STATE_OPEN) 2578 return 0; 2579 2580 /* open the socket first? */ 2581 if (con->state == CON_STATE_PREOPEN) { 2582 BUG_ON(con->sock); 2583 con->state = CON_STATE_CONNECTING; 2584 2585 con_out_kvec_reset(con); 2586 prepare_write_banner(con); 2587 prepare_read_banner(con); 2588 2589 BUG_ON(con->in_msg); 2590 con->in_tag = CEPH_MSGR_TAG_READY; 2591 dout("try_write initiating connect on %p new state %lu\n", 2592 con, con->state); 2593 ret = ceph_tcp_connect(con); 2594 if (ret < 0) { 2595 con->error_msg = "connect error"; 2596 goto out; 2597 } 2598 } 2599 2600 more: 2601 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2602 BUG_ON(!con->sock); 2603 2604 /* kvec data queued? */ 2605 if (con->out_kvec_left) { 2606 ret = write_partial_kvec(con); 2607 if (ret <= 0) 2608 goto out; 2609 } 2610 if (con->out_skip) { 2611 ret = write_partial_skip(con); 2612 if (ret <= 0) 2613 goto out; 2614 } 2615 2616 /* msg pages? */ 2617 if (con->out_msg) { 2618 if (con->out_msg_done) { 2619 ceph_msg_put(con->out_msg); 2620 con->out_msg = NULL; /* we're done with this one */ 2621 goto do_next; 2622 } 2623 2624 ret = write_partial_message_data(con); 2625 if (ret == 1) 2626 goto more; /* we need to send the footer, too! */ 2627 if (ret == 0) 2628 goto out; 2629 if (ret < 0) { 2630 dout("try_write write_partial_message_data err %d\n", 2631 ret); 2632 goto out; 2633 } 2634 } 2635 2636 do_next: 2637 if (con->state == CON_STATE_OPEN) { 2638 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2639 prepare_write_keepalive(con); 2640 goto more; 2641 } 2642 /* is anything else pending? */ 2643 if (!list_empty(&con->out_queue)) { 2644 prepare_write_message(con); 2645 goto more; 2646 } 2647 if (con->in_seq > con->in_seq_acked) { 2648 prepare_write_ack(con); 2649 goto more; 2650 } 2651 } 2652 2653 /* Nothing to do! */ 2654 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2655 dout("try_write nothing else to write.\n"); 2656 ret = 0; 2657 out: 2658 dout("try_write done on %p ret %d\n", con, ret); 2659 return ret; 2660 } 2661 2662 /* 2663 * Read what we can from the socket. 2664 */ 2665 static int try_read(struct ceph_connection *con) 2666 { 2667 int ret = -1; 2668 2669 more: 2670 dout("try_read start on %p state %lu\n", con, con->state); 2671 if (con->state != CON_STATE_CONNECTING && 2672 con->state != CON_STATE_NEGOTIATING && 2673 con->state != CON_STATE_OPEN) 2674 return 0; 2675 2676 BUG_ON(!con->sock); 2677 2678 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2679 con->in_base_pos); 2680 2681 if (con->state == CON_STATE_CONNECTING) { 2682 dout("try_read connecting\n"); 2683 ret = read_partial_banner(con); 2684 if (ret <= 0) 2685 goto out; 2686 ret = process_banner(con); 2687 if (ret < 0) 2688 goto out; 2689 2690 con->state = CON_STATE_NEGOTIATING; 2691 2692 /* 2693 * Received banner is good, exchange connection info. 2694 * Do not reset out_kvec, as sending our banner raced 2695 * with receiving peer banner after connect completed. 2696 */ 2697 ret = prepare_write_connect(con); 2698 if (ret < 0) 2699 goto out; 2700 prepare_read_connect(con); 2701 2702 /* Send connection info before awaiting response */ 2703 goto out; 2704 } 2705 2706 if (con->state == CON_STATE_NEGOTIATING) { 2707 dout("try_read negotiating\n"); 2708 ret = read_partial_connect(con); 2709 if (ret <= 0) 2710 goto out; 2711 ret = process_connect(con); 2712 if (ret < 0) 2713 goto out; 2714 goto more; 2715 } 2716 2717 WARN_ON(con->state != CON_STATE_OPEN); 2718 2719 if (con->in_base_pos < 0) { 2720 /* 2721 * skipping + discarding content. 2722 */ 2723 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos); 2724 if (ret <= 0) 2725 goto out; 2726 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos); 2727 con->in_base_pos += ret; 2728 if (con->in_base_pos) 2729 goto more; 2730 } 2731 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2732 /* 2733 * what's next? 2734 */ 2735 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2736 if (ret <= 0) 2737 goto out; 2738 dout("try_read got tag %d\n", (int)con->in_tag); 2739 switch (con->in_tag) { 2740 case CEPH_MSGR_TAG_MSG: 2741 prepare_read_message(con); 2742 break; 2743 case CEPH_MSGR_TAG_ACK: 2744 prepare_read_ack(con); 2745 break; 2746 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2747 prepare_read_keepalive_ack(con); 2748 break; 2749 case CEPH_MSGR_TAG_CLOSE: 2750 con_close_socket(con); 2751 con->state = CON_STATE_CLOSED; 2752 goto out; 2753 default: 2754 goto bad_tag; 2755 } 2756 } 2757 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2758 ret = read_partial_message(con); 2759 if (ret <= 0) { 2760 switch (ret) { 2761 case -EBADMSG: 2762 con->error_msg = "bad crc/signature"; 2763 /* fall through */ 2764 case -EBADE: 2765 ret = -EIO; 2766 break; 2767 case -EIO: 2768 con->error_msg = "io error"; 2769 break; 2770 } 2771 goto out; 2772 } 2773 if (con->in_tag == CEPH_MSGR_TAG_READY) 2774 goto more; 2775 process_message(con); 2776 if (con->state == CON_STATE_OPEN) 2777 prepare_read_tag(con); 2778 goto more; 2779 } 2780 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2781 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2782 /* 2783 * the final handshake seq exchange is semantically 2784 * equivalent to an ACK 2785 */ 2786 ret = read_partial_ack(con); 2787 if (ret <= 0) 2788 goto out; 2789 process_ack(con); 2790 goto more; 2791 } 2792 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2793 ret = read_keepalive_ack(con); 2794 if (ret <= 0) 2795 goto out; 2796 goto more; 2797 } 2798 2799 out: 2800 dout("try_read done on %p ret %d\n", con, ret); 2801 return ret; 2802 2803 bad_tag: 2804 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2805 con->error_msg = "protocol error, garbage tag"; 2806 ret = -1; 2807 goto out; 2808 } 2809 2810 2811 /* 2812 * Atomically queue work on a connection after the specified delay. 2813 * Bump @con reference to avoid races with connection teardown. 2814 * Returns 0 if work was queued, or an error code otherwise. 2815 */ 2816 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2817 { 2818 if (!con->ops->get(con)) { 2819 dout("%s %p ref count 0\n", __func__, con); 2820 return -ENOENT; 2821 } 2822 2823 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2824 dout("%s %p - already queued\n", __func__, con); 2825 con->ops->put(con); 2826 return -EBUSY; 2827 } 2828 2829 dout("%s %p %lu\n", __func__, con, delay); 2830 return 0; 2831 } 2832 2833 static void queue_con(struct ceph_connection *con) 2834 { 2835 (void) queue_con_delay(con, 0); 2836 } 2837 2838 static void cancel_con(struct ceph_connection *con) 2839 { 2840 if (cancel_delayed_work(&con->work)) { 2841 dout("%s %p\n", __func__, con); 2842 con->ops->put(con); 2843 } 2844 } 2845 2846 static bool con_sock_closed(struct ceph_connection *con) 2847 { 2848 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2849 return false; 2850 2851 #define CASE(x) \ 2852 case CON_STATE_ ## x: \ 2853 con->error_msg = "socket closed (con state " #x ")"; \ 2854 break; 2855 2856 switch (con->state) { 2857 CASE(CLOSED); 2858 CASE(PREOPEN); 2859 CASE(CONNECTING); 2860 CASE(NEGOTIATING); 2861 CASE(OPEN); 2862 CASE(STANDBY); 2863 default: 2864 pr_warn("%s con %p unrecognized state %lu\n", 2865 __func__, con, con->state); 2866 con->error_msg = "unrecognized con state"; 2867 BUG(); 2868 break; 2869 } 2870 #undef CASE 2871 2872 return true; 2873 } 2874 2875 static bool con_backoff(struct ceph_connection *con) 2876 { 2877 int ret; 2878 2879 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2880 return false; 2881 2882 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2883 if (ret) { 2884 dout("%s: con %p FAILED to back off %lu\n", __func__, 2885 con, con->delay); 2886 BUG_ON(ret == -ENOENT); 2887 con_flag_set(con, CON_FLAG_BACKOFF); 2888 } 2889 2890 return true; 2891 } 2892 2893 /* Finish fault handling; con->mutex must *not* be held here */ 2894 2895 static void con_fault_finish(struct ceph_connection *con) 2896 { 2897 dout("%s %p\n", __func__, con); 2898 2899 /* 2900 * in case we faulted due to authentication, invalidate our 2901 * current tickets so that we can get new ones. 2902 */ 2903 if (con->auth_retry) { 2904 dout("auth_retry %d, invalidating\n", con->auth_retry); 2905 if (con->ops->invalidate_authorizer) 2906 con->ops->invalidate_authorizer(con); 2907 con->auth_retry = 0; 2908 } 2909 2910 if (con->ops->fault) 2911 con->ops->fault(con); 2912 } 2913 2914 /* 2915 * Do some work on a connection. Drop a connection ref when we're done. 2916 */ 2917 static void ceph_con_workfn(struct work_struct *work) 2918 { 2919 struct ceph_connection *con = container_of(work, struct ceph_connection, 2920 work.work); 2921 bool fault; 2922 2923 mutex_lock(&con->mutex); 2924 while (true) { 2925 int ret; 2926 2927 if ((fault = con_sock_closed(con))) { 2928 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2929 break; 2930 } 2931 if (con_backoff(con)) { 2932 dout("%s: con %p BACKOFF\n", __func__, con); 2933 break; 2934 } 2935 if (con->state == CON_STATE_STANDBY) { 2936 dout("%s: con %p STANDBY\n", __func__, con); 2937 break; 2938 } 2939 if (con->state == CON_STATE_CLOSED) { 2940 dout("%s: con %p CLOSED\n", __func__, con); 2941 BUG_ON(con->sock); 2942 break; 2943 } 2944 if (con->state == CON_STATE_PREOPEN) { 2945 dout("%s: con %p PREOPEN\n", __func__, con); 2946 BUG_ON(con->sock); 2947 } 2948 2949 ret = try_read(con); 2950 if (ret < 0) { 2951 if (ret == -EAGAIN) 2952 continue; 2953 if (!con->error_msg) 2954 con->error_msg = "socket error on read"; 2955 fault = true; 2956 break; 2957 } 2958 2959 ret = try_write(con); 2960 if (ret < 0) { 2961 if (ret == -EAGAIN) 2962 continue; 2963 if (!con->error_msg) 2964 con->error_msg = "socket error on write"; 2965 fault = true; 2966 } 2967 2968 break; /* If we make it to here, we're done */ 2969 } 2970 if (fault) 2971 con_fault(con); 2972 mutex_unlock(&con->mutex); 2973 2974 if (fault) 2975 con_fault_finish(con); 2976 2977 con->ops->put(con); 2978 } 2979 2980 /* 2981 * Generic error/fault handler. A retry mechanism is used with 2982 * exponential backoff 2983 */ 2984 static void con_fault(struct ceph_connection *con) 2985 { 2986 dout("fault %p state %lu to peer %s\n", 2987 con, con->state, ceph_pr_addr(&con->peer_addr)); 2988 2989 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2990 ceph_pr_addr(&con->peer_addr), con->error_msg); 2991 con->error_msg = NULL; 2992 2993 WARN_ON(con->state != CON_STATE_CONNECTING && 2994 con->state != CON_STATE_NEGOTIATING && 2995 con->state != CON_STATE_OPEN); 2996 2997 con_close_socket(con); 2998 2999 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 3000 dout("fault on LOSSYTX channel, marking CLOSED\n"); 3001 con->state = CON_STATE_CLOSED; 3002 return; 3003 } 3004 3005 if (con->in_msg) { 3006 BUG_ON(con->in_msg->con != con); 3007 ceph_msg_put(con->in_msg); 3008 con->in_msg = NULL; 3009 } 3010 3011 /* Requeue anything that hasn't been acked */ 3012 list_splice_init(&con->out_sent, &con->out_queue); 3013 3014 /* If there are no messages queued or keepalive pending, place 3015 * the connection in a STANDBY state */ 3016 if (list_empty(&con->out_queue) && 3017 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 3018 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 3019 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 3020 con->state = CON_STATE_STANDBY; 3021 } else { 3022 /* retry after a delay. */ 3023 con->state = CON_STATE_PREOPEN; 3024 if (con->delay == 0) 3025 con->delay = BASE_DELAY_INTERVAL; 3026 else if (con->delay < MAX_DELAY_INTERVAL) 3027 con->delay *= 2; 3028 con_flag_set(con, CON_FLAG_BACKOFF); 3029 queue_con(con); 3030 } 3031 } 3032 3033 3034 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr) 3035 { 3036 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000; 3037 msgr->inst.addr.nonce = cpu_to_le32(nonce); 3038 encode_my_addr(msgr); 3039 } 3040 3041 /* 3042 * initialize a new messenger instance 3043 */ 3044 void ceph_messenger_init(struct ceph_messenger *msgr, 3045 struct ceph_entity_addr *myaddr) 3046 { 3047 spin_lock_init(&msgr->global_seq_lock); 3048 3049 if (myaddr) 3050 msgr->inst.addr = *myaddr; 3051 3052 /* select a random nonce */ 3053 msgr->inst.addr.type = 0; 3054 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3055 encode_my_addr(msgr); 3056 3057 atomic_set(&msgr->stopping, 0); 3058 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3059 3060 dout("%s %p\n", __func__, msgr); 3061 } 3062 EXPORT_SYMBOL(ceph_messenger_init); 3063 3064 void ceph_messenger_fini(struct ceph_messenger *msgr) 3065 { 3066 put_net(read_pnet(&msgr->net)); 3067 } 3068 EXPORT_SYMBOL(ceph_messenger_fini); 3069 3070 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3071 { 3072 if (msg->con) 3073 msg->con->ops->put(msg->con); 3074 3075 msg->con = con ? con->ops->get(con) : NULL; 3076 BUG_ON(msg->con != con); 3077 } 3078 3079 static void clear_standby(struct ceph_connection *con) 3080 { 3081 /* come back from STANDBY? */ 3082 if (con->state == CON_STATE_STANDBY) { 3083 dout("clear_standby %p and ++connect_seq\n", con); 3084 con->state = CON_STATE_PREOPEN; 3085 con->connect_seq++; 3086 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3087 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3088 } 3089 } 3090 3091 /* 3092 * Queue up an outgoing message on the given connection. 3093 */ 3094 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3095 { 3096 /* set src+dst */ 3097 msg->hdr.src = con->msgr->inst.name; 3098 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3099 msg->needs_out_seq = true; 3100 3101 mutex_lock(&con->mutex); 3102 3103 if (con->state == CON_STATE_CLOSED) { 3104 dout("con_send %p closed, dropping %p\n", con, msg); 3105 ceph_msg_put(msg); 3106 mutex_unlock(&con->mutex); 3107 return; 3108 } 3109 3110 msg_con_set(msg, con); 3111 3112 BUG_ON(!list_empty(&msg->list_head)); 3113 list_add_tail(&msg->list_head, &con->out_queue); 3114 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3115 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3116 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3117 le32_to_cpu(msg->hdr.front_len), 3118 le32_to_cpu(msg->hdr.middle_len), 3119 le32_to_cpu(msg->hdr.data_len)); 3120 3121 clear_standby(con); 3122 mutex_unlock(&con->mutex); 3123 3124 /* if there wasn't anything waiting to send before, queue 3125 * new work */ 3126 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3127 queue_con(con); 3128 } 3129 EXPORT_SYMBOL(ceph_con_send); 3130 3131 /* 3132 * Revoke a message that was previously queued for send 3133 */ 3134 void ceph_msg_revoke(struct ceph_msg *msg) 3135 { 3136 struct ceph_connection *con = msg->con; 3137 3138 if (!con) { 3139 dout("%s msg %p null con\n", __func__, msg); 3140 return; /* Message not in our possession */ 3141 } 3142 3143 mutex_lock(&con->mutex); 3144 if (!list_empty(&msg->list_head)) { 3145 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3146 list_del_init(&msg->list_head); 3147 msg->hdr.seq = 0; 3148 3149 ceph_msg_put(msg); 3150 } 3151 if (con->out_msg == msg) { 3152 BUG_ON(con->out_skip); 3153 /* footer */ 3154 if (con->out_msg_done) { 3155 con->out_skip += con_out_kvec_skip(con); 3156 } else { 3157 BUG_ON(!msg->data_length); 3158 con->out_skip += sizeof_footer(con); 3159 } 3160 /* data, middle, front */ 3161 if (msg->data_length) 3162 con->out_skip += msg->cursor.total_resid; 3163 if (msg->middle) 3164 con->out_skip += con_out_kvec_skip(con); 3165 con->out_skip += con_out_kvec_skip(con); 3166 3167 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3168 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3169 msg->hdr.seq = 0; 3170 con->out_msg = NULL; 3171 ceph_msg_put(msg); 3172 } 3173 3174 mutex_unlock(&con->mutex); 3175 } 3176 3177 /* 3178 * Revoke a message that we may be reading data into 3179 */ 3180 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3181 { 3182 struct ceph_connection *con = msg->con; 3183 3184 if (!con) { 3185 dout("%s msg %p null con\n", __func__, msg); 3186 return; /* Message not in our possession */ 3187 } 3188 3189 mutex_lock(&con->mutex); 3190 if (con->in_msg == msg) { 3191 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3192 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3193 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3194 3195 /* skip rest of message */ 3196 dout("%s %p msg %p revoked\n", __func__, con, msg); 3197 con->in_base_pos = con->in_base_pos - 3198 sizeof(struct ceph_msg_header) - 3199 front_len - 3200 middle_len - 3201 data_len - 3202 sizeof(struct ceph_msg_footer); 3203 ceph_msg_put(con->in_msg); 3204 con->in_msg = NULL; 3205 con->in_tag = CEPH_MSGR_TAG_READY; 3206 con->in_seq++; 3207 } else { 3208 dout("%s %p in_msg %p msg %p no-op\n", 3209 __func__, con, con->in_msg, msg); 3210 } 3211 mutex_unlock(&con->mutex); 3212 } 3213 3214 /* 3215 * Queue a keepalive byte to ensure the tcp connection is alive. 3216 */ 3217 void ceph_con_keepalive(struct ceph_connection *con) 3218 { 3219 dout("con_keepalive %p\n", con); 3220 mutex_lock(&con->mutex); 3221 clear_standby(con); 3222 con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING); 3223 mutex_unlock(&con->mutex); 3224 3225 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3226 queue_con(con); 3227 } 3228 EXPORT_SYMBOL(ceph_con_keepalive); 3229 3230 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3231 unsigned long interval) 3232 { 3233 if (interval > 0 && 3234 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3235 struct timespec64 now; 3236 struct timespec64 ts; 3237 ktime_get_real_ts64(&now); 3238 jiffies_to_timespec64(interval, &ts); 3239 ts = timespec64_add(con->last_keepalive_ack, ts); 3240 return timespec64_compare(&now, &ts) >= 0; 3241 } 3242 return false; 3243 } 3244 3245 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 3246 { 3247 BUG_ON(msg->num_data_items >= msg->max_data_items); 3248 return &msg->data[msg->num_data_items++]; 3249 } 3250 3251 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3252 { 3253 if (data->type == CEPH_MSG_DATA_PAGELIST) 3254 ceph_pagelist_release(data->pagelist); 3255 } 3256 3257 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3258 size_t length, size_t alignment) 3259 { 3260 struct ceph_msg_data *data; 3261 3262 BUG_ON(!pages); 3263 BUG_ON(!length); 3264 3265 data = ceph_msg_data_add(msg); 3266 data->type = CEPH_MSG_DATA_PAGES; 3267 data->pages = pages; 3268 data->length = length; 3269 data->alignment = alignment & ~PAGE_MASK; 3270 3271 msg->data_length += length; 3272 } 3273 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3274 3275 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3276 struct ceph_pagelist *pagelist) 3277 { 3278 struct ceph_msg_data *data; 3279 3280 BUG_ON(!pagelist); 3281 BUG_ON(!pagelist->length); 3282 3283 data = ceph_msg_data_add(msg); 3284 data->type = CEPH_MSG_DATA_PAGELIST; 3285 refcount_inc(&pagelist->refcnt); 3286 data->pagelist = pagelist; 3287 3288 msg->data_length += pagelist->length; 3289 } 3290 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3291 3292 #ifdef CONFIG_BLOCK 3293 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 3294 u32 length) 3295 { 3296 struct ceph_msg_data *data; 3297 3298 data = ceph_msg_data_add(msg); 3299 data->type = CEPH_MSG_DATA_BIO; 3300 data->bio_pos = *bio_pos; 3301 data->bio_length = length; 3302 3303 msg->data_length += length; 3304 } 3305 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3306 #endif /* CONFIG_BLOCK */ 3307 3308 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 3309 struct ceph_bvec_iter *bvec_pos) 3310 { 3311 struct ceph_msg_data *data; 3312 3313 data = ceph_msg_data_add(msg); 3314 data->type = CEPH_MSG_DATA_BVECS; 3315 data->bvec_pos = *bvec_pos; 3316 3317 msg->data_length += bvec_pos->iter.bi_size; 3318 } 3319 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 3320 3321 /* 3322 * construct a new message with given type, size 3323 * the new msg has a ref count of 1. 3324 */ 3325 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 3326 gfp_t flags, bool can_fail) 3327 { 3328 struct ceph_msg *m; 3329 3330 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3331 if (m == NULL) 3332 goto out; 3333 3334 m->hdr.type = cpu_to_le16(type); 3335 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3336 m->hdr.front_len = cpu_to_le32(front_len); 3337 3338 INIT_LIST_HEAD(&m->list_head); 3339 kref_init(&m->kref); 3340 3341 /* front */ 3342 if (front_len) { 3343 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3344 if (m->front.iov_base == NULL) { 3345 dout("ceph_msg_new can't allocate %d bytes\n", 3346 front_len); 3347 goto out2; 3348 } 3349 } else { 3350 m->front.iov_base = NULL; 3351 } 3352 m->front_alloc_len = m->front.iov_len = front_len; 3353 3354 if (max_data_items) { 3355 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 3356 flags); 3357 if (!m->data) 3358 goto out2; 3359 3360 m->max_data_items = max_data_items; 3361 } 3362 3363 dout("ceph_msg_new %p front %d\n", m, front_len); 3364 return m; 3365 3366 out2: 3367 ceph_msg_put(m); 3368 out: 3369 if (!can_fail) { 3370 pr_err("msg_new can't create type %d front %d\n", type, 3371 front_len); 3372 WARN_ON(1); 3373 } else { 3374 dout("msg_new can't create type %d front %d\n", type, 3375 front_len); 3376 } 3377 return NULL; 3378 } 3379 EXPORT_SYMBOL(ceph_msg_new2); 3380 3381 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3382 bool can_fail) 3383 { 3384 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 3385 } 3386 EXPORT_SYMBOL(ceph_msg_new); 3387 3388 /* 3389 * Allocate "middle" portion of a message, if it is needed and wasn't 3390 * allocated by alloc_msg. This allows us to read a small fixed-size 3391 * per-type header in the front and then gracefully fail (i.e., 3392 * propagate the error to the caller based on info in the front) when 3393 * the middle is too large. 3394 */ 3395 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3396 { 3397 int type = le16_to_cpu(msg->hdr.type); 3398 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3399 3400 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3401 ceph_msg_type_name(type), middle_len); 3402 BUG_ON(!middle_len); 3403 BUG_ON(msg->middle); 3404 3405 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3406 if (!msg->middle) 3407 return -ENOMEM; 3408 return 0; 3409 } 3410 3411 /* 3412 * Allocate a message for receiving an incoming message on a 3413 * connection, and save the result in con->in_msg. Uses the 3414 * connection's private alloc_msg op if available. 3415 * 3416 * Returns 0 on success, or a negative error code. 3417 * 3418 * On success, if we set *skip = 1: 3419 * - the next message should be skipped and ignored. 3420 * - con->in_msg == NULL 3421 * or if we set *skip = 0: 3422 * - con->in_msg is non-null. 3423 * On error (ENOMEM, EAGAIN, ...), 3424 * - con->in_msg == NULL 3425 */ 3426 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3427 { 3428 struct ceph_msg_header *hdr = &con->in_hdr; 3429 int middle_len = le32_to_cpu(hdr->middle_len); 3430 struct ceph_msg *msg; 3431 int ret = 0; 3432 3433 BUG_ON(con->in_msg != NULL); 3434 BUG_ON(!con->ops->alloc_msg); 3435 3436 mutex_unlock(&con->mutex); 3437 msg = con->ops->alloc_msg(con, hdr, skip); 3438 mutex_lock(&con->mutex); 3439 if (con->state != CON_STATE_OPEN) { 3440 if (msg) 3441 ceph_msg_put(msg); 3442 return -EAGAIN; 3443 } 3444 if (msg) { 3445 BUG_ON(*skip); 3446 msg_con_set(msg, con); 3447 con->in_msg = msg; 3448 } else { 3449 /* 3450 * Null message pointer means either we should skip 3451 * this message or we couldn't allocate memory. The 3452 * former is not an error. 3453 */ 3454 if (*skip) 3455 return 0; 3456 3457 con->error_msg = "error allocating memory for incoming message"; 3458 return -ENOMEM; 3459 } 3460 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3461 3462 if (middle_len && !con->in_msg->middle) { 3463 ret = ceph_alloc_middle(con, con->in_msg); 3464 if (ret < 0) { 3465 ceph_msg_put(con->in_msg); 3466 con->in_msg = NULL; 3467 } 3468 } 3469 3470 return ret; 3471 } 3472 3473 3474 /* 3475 * Free a generically kmalloc'd message. 3476 */ 3477 static void ceph_msg_free(struct ceph_msg *m) 3478 { 3479 dout("%s %p\n", __func__, m); 3480 kvfree(m->front.iov_base); 3481 kfree(m->data); 3482 kmem_cache_free(ceph_msg_cache, m); 3483 } 3484 3485 static void ceph_msg_release(struct kref *kref) 3486 { 3487 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3488 int i; 3489 3490 dout("%s %p\n", __func__, m); 3491 WARN_ON(!list_empty(&m->list_head)); 3492 3493 msg_con_set(m, NULL); 3494 3495 /* drop middle, data, if any */ 3496 if (m->middle) { 3497 ceph_buffer_put(m->middle); 3498 m->middle = NULL; 3499 } 3500 3501 for (i = 0; i < m->num_data_items; i++) 3502 ceph_msg_data_destroy(&m->data[i]); 3503 3504 if (m->pool) 3505 ceph_msgpool_put(m->pool, m); 3506 else 3507 ceph_msg_free(m); 3508 } 3509 3510 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3511 { 3512 dout("%s %p (was %d)\n", __func__, msg, 3513 kref_read(&msg->kref)); 3514 kref_get(&msg->kref); 3515 return msg; 3516 } 3517 EXPORT_SYMBOL(ceph_msg_get); 3518 3519 void ceph_msg_put(struct ceph_msg *msg) 3520 { 3521 dout("%s %p (was %d)\n", __func__, msg, 3522 kref_read(&msg->kref)); 3523 kref_put(&msg->kref, ceph_msg_release); 3524 } 3525 EXPORT_SYMBOL(ceph_msg_put); 3526 3527 void ceph_msg_dump(struct ceph_msg *msg) 3528 { 3529 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3530 msg->front_alloc_len, msg->data_length); 3531 print_hex_dump(KERN_DEBUG, "header: ", 3532 DUMP_PREFIX_OFFSET, 16, 1, 3533 &msg->hdr, sizeof(msg->hdr), true); 3534 print_hex_dump(KERN_DEBUG, " front: ", 3535 DUMP_PREFIX_OFFSET, 16, 1, 3536 msg->front.iov_base, msg->front.iov_len, true); 3537 if (msg->middle) 3538 print_hex_dump(KERN_DEBUG, "middle: ", 3539 DUMP_PREFIX_OFFSET, 16, 1, 3540 msg->middle->vec.iov_base, 3541 msg->middle->vec.iov_len, true); 3542 print_hex_dump(KERN_DEBUG, "footer: ", 3543 DUMP_PREFIX_OFFSET, 16, 1, 3544 &msg->footer, sizeof(msg->footer), true); 3545 } 3546 EXPORT_SYMBOL(ceph_msg_dump); 3547