xref: /openbmc/linux/net/ceph/messenger.c (revision bf070bb0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166 
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170 
171 /*
172  * When skipping (ignoring) a block of input we read it into a "skip
173  * buffer," which is this many bytes in size.
174  */
175 #define SKIP_BUF_SIZE	1024
176 
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181 
182 /*
183  * Nicely render a sockaddr as a string.  An array of formatted
184  * strings is used, to approximate reentrancy.
185  */
186 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
187 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
190 
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 
194 static struct page *zero_page;		/* used in certain error cases */
195 
196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 	int i;
199 	char *s;
200 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 
203 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 	s = addr_str[i];
205 
206 	switch (ss->ss_family) {
207 	case AF_INET:
208 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 			 ntohs(in4->sin_port));
210 		break;
211 
212 	case AF_INET6:
213 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 			 ntohs(in6->sin6_port));
215 		break;
216 
217 	default:
218 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 			 ss->ss_family);
220 	}
221 
222 	return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225 
226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 	ceph_encode_addr(&msgr->my_enc_addr);
230 }
231 
232 /*
233  * work queue for all reading and writing to/from the socket.
234  */
235 static struct workqueue_struct *ceph_msgr_wq;
236 
237 static int ceph_msgr_slab_init(void)
238 {
239 	BUG_ON(ceph_msg_cache);
240 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 	if (!ceph_msg_cache)
242 		return -ENOMEM;
243 
244 	BUG_ON(ceph_msg_data_cache);
245 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 	if (ceph_msg_data_cache)
247 		return 0;
248 
249 	kmem_cache_destroy(ceph_msg_cache);
250 	ceph_msg_cache = NULL;
251 
252 	return -ENOMEM;
253 }
254 
255 static void ceph_msgr_slab_exit(void)
256 {
257 	BUG_ON(!ceph_msg_data_cache);
258 	kmem_cache_destroy(ceph_msg_data_cache);
259 	ceph_msg_data_cache = NULL;
260 
261 	BUG_ON(!ceph_msg_cache);
262 	kmem_cache_destroy(ceph_msg_cache);
263 	ceph_msg_cache = NULL;
264 }
265 
266 static void _ceph_msgr_exit(void)
267 {
268 	if (ceph_msgr_wq) {
269 		destroy_workqueue(ceph_msgr_wq);
270 		ceph_msgr_wq = NULL;
271 	}
272 
273 	BUG_ON(zero_page == NULL);
274 	put_page(zero_page);
275 	zero_page = NULL;
276 
277 	ceph_msgr_slab_exit();
278 }
279 
280 int ceph_msgr_init(void)
281 {
282 	if (ceph_msgr_slab_init())
283 		return -ENOMEM;
284 
285 	BUG_ON(zero_page != NULL);
286 	zero_page = ZERO_PAGE(0);
287 	get_page(zero_page);
288 
289 	/*
290 	 * The number of active work items is limited by the number of
291 	 * connections, so leave @max_active at default.
292 	 */
293 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 	if (ceph_msgr_wq)
295 		return 0;
296 
297 	pr_err("msgr_init failed to create workqueue\n");
298 	_ceph_msgr_exit();
299 
300 	return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303 
304 void ceph_msgr_exit(void)
305 {
306 	BUG_ON(ceph_msgr_wq == NULL);
307 
308 	_ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311 
312 void ceph_msgr_flush(void)
313 {
314 	flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317 
318 /* Connection socket state transition functions */
319 
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 	int old_state;
323 
324 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 		printk("%s: unexpected old state %d\n", __func__, old_state);
327 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 	     CON_SOCK_STATE_CLOSED);
329 }
330 
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 	int old_state;
334 
335 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 		printk("%s: unexpected old state %d\n", __func__, old_state);
338 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 	     CON_SOCK_STATE_CONNECTING);
340 }
341 
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 	int old_state;
345 
346 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 		printk("%s: unexpected old state %d\n", __func__, old_state);
349 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 	     CON_SOCK_STATE_CONNECTED);
351 }
352 
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 	int old_state;
356 
357 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 			old_state != CON_SOCK_STATE_CONNECTED &&
360 			old_state != CON_SOCK_STATE_CLOSING))
361 		printk("%s: unexpected old state %d\n", __func__, old_state);
362 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 	     CON_SOCK_STATE_CLOSING);
364 }
365 
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 	int old_state;
369 
370 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 		    old_state != CON_SOCK_STATE_CLOSING &&
373 		    old_state != CON_SOCK_STATE_CONNECTING &&
374 		    old_state != CON_SOCK_STATE_CLOSED))
375 		printk("%s: unexpected old state %d\n", __func__, old_state);
376 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 	     CON_SOCK_STATE_CLOSED);
378 }
379 
380 /*
381  * socket callback functions
382  */
383 
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk)
386 {
387 	struct ceph_connection *con = sk->sk_user_data;
388 	if (atomic_read(&con->msgr->stopping)) {
389 		return;
390 	}
391 
392 	if (sk->sk_state != TCP_CLOSE_WAIT) {
393 		dout("%s on %p state = %lu, queueing work\n", __func__,
394 		     con, con->state);
395 		queue_con(con);
396 	}
397 }
398 
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 	struct ceph_connection *con = sk->sk_user_data;
403 
404 	/* only queue to workqueue if there is data we want to write,
405 	 * and there is sufficient space in the socket buffer to accept
406 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
407 	 * doesn't get called again until try_write() fills the socket
408 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 	 * and net/core/stream.c:sk_stream_write_space().
410 	 */
411 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 		if (sk_stream_is_writeable(sk)) {
413 			dout("%s %p queueing write work\n", __func__, con);
414 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 			queue_con(con);
416 		}
417 	} else {
418 		dout("%s %p nothing to write\n", __func__, con);
419 	}
420 }
421 
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 	struct ceph_connection *con = sk->sk_user_data;
426 
427 	dout("%s %p state = %lu sk_state = %u\n", __func__,
428 	     con, con->state, sk->sk_state);
429 
430 	switch (sk->sk_state) {
431 	case TCP_CLOSE:
432 		dout("%s TCP_CLOSE\n", __func__);
433 	case TCP_CLOSE_WAIT:
434 		dout("%s TCP_CLOSE_WAIT\n", __func__);
435 		con_sock_state_closing(con);
436 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
437 		queue_con(con);
438 		break;
439 	case TCP_ESTABLISHED:
440 		dout("%s TCP_ESTABLISHED\n", __func__);
441 		con_sock_state_connected(con);
442 		queue_con(con);
443 		break;
444 	default:	/* Everything else is uninteresting */
445 		break;
446 	}
447 }
448 
449 /*
450  * set up socket callbacks
451  */
452 static void set_sock_callbacks(struct socket *sock,
453 			       struct ceph_connection *con)
454 {
455 	struct sock *sk = sock->sk;
456 	sk->sk_user_data = con;
457 	sk->sk_data_ready = ceph_sock_data_ready;
458 	sk->sk_write_space = ceph_sock_write_space;
459 	sk->sk_state_change = ceph_sock_state_change;
460 }
461 
462 
463 /*
464  * socket helpers
465  */
466 
467 /*
468  * initiate connection to a remote socket.
469  */
470 static int ceph_tcp_connect(struct ceph_connection *con)
471 {
472 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
473 	struct socket *sock;
474 	unsigned int noio_flag;
475 	int ret;
476 
477 	BUG_ON(con->sock);
478 
479 	/* sock_create_kern() allocates with GFP_KERNEL */
480 	noio_flag = memalloc_noio_save();
481 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
482 			       SOCK_STREAM, IPPROTO_TCP, &sock);
483 	memalloc_noio_restore(noio_flag);
484 	if (ret)
485 		return ret;
486 	sock->sk->sk_allocation = GFP_NOFS;
487 
488 #ifdef CONFIG_LOCKDEP
489 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
490 #endif
491 
492 	set_sock_callbacks(sock, con);
493 
494 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
495 
496 	con_sock_state_connecting(con);
497 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
498 				 O_NONBLOCK);
499 	if (ret == -EINPROGRESS) {
500 		dout("connect %s EINPROGRESS sk_state = %u\n",
501 		     ceph_pr_addr(&con->peer_addr.in_addr),
502 		     sock->sk->sk_state);
503 	} else if (ret < 0) {
504 		pr_err("connect %s error %d\n",
505 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
506 		sock_release(sock);
507 		return ret;
508 	}
509 
510 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
511 		int optval = 1;
512 
513 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
514 					(char *)&optval, sizeof(optval));
515 		if (ret)
516 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
517 			       ret);
518 	}
519 
520 	con->sock = sock;
521 	return 0;
522 }
523 
524 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
525 {
526 	struct kvec iov = {buf, len};
527 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528 	int r;
529 
530 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
531 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
532 	if (r == -EAGAIN)
533 		r = 0;
534 	return r;
535 }
536 
537 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
538 		     int page_offset, size_t length)
539 {
540 	struct bio_vec bvec = {
541 		.bv_page = page,
542 		.bv_offset = page_offset,
543 		.bv_len = length
544 	};
545 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 	int r;
547 
548 	BUG_ON(page_offset + length > PAGE_SIZE);
549 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
550 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
551 	if (r == -EAGAIN)
552 		r = 0;
553 	return r;
554 }
555 
556 /*
557  * write something.  @more is true if caller will be sending more data
558  * shortly.
559  */
560 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
561 		     size_t kvlen, size_t len, int more)
562 {
563 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
564 	int r;
565 
566 	if (more)
567 		msg.msg_flags |= MSG_MORE;
568 	else
569 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
570 
571 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
572 	if (r == -EAGAIN)
573 		r = 0;
574 	return r;
575 }
576 
577 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
578 		     int offset, size_t size, bool more)
579 {
580 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
581 	int ret;
582 
583 	ret = kernel_sendpage(sock, page, offset, size, flags);
584 	if (ret == -EAGAIN)
585 		ret = 0;
586 
587 	return ret;
588 }
589 
590 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
591 		     int offset, size_t size, bool more)
592 {
593 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
594 	struct bio_vec bvec;
595 	int ret;
596 
597 	/* sendpage cannot properly handle pages with page_count == 0,
598 	 * we need to fallback to sendmsg if that's the case */
599 	if (page_count(page) >= 1)
600 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
601 
602 	bvec.bv_page = page;
603 	bvec.bv_offset = offset;
604 	bvec.bv_len = size;
605 
606 	if (more)
607 		msg.msg_flags |= MSG_MORE;
608 	else
609 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
610 
611 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
612 	ret = sock_sendmsg(sock, &msg);
613 	if (ret == -EAGAIN)
614 		ret = 0;
615 
616 	return ret;
617 }
618 
619 /*
620  * Shutdown/close the socket for the given connection.
621  */
622 static int con_close_socket(struct ceph_connection *con)
623 {
624 	int rc = 0;
625 
626 	dout("con_close_socket on %p sock %p\n", con, con->sock);
627 	if (con->sock) {
628 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
629 		sock_release(con->sock);
630 		con->sock = NULL;
631 	}
632 
633 	/*
634 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
635 	 * independent of the connection mutex, and we could have
636 	 * received a socket close event before we had the chance to
637 	 * shut the socket down.
638 	 */
639 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
640 
641 	con_sock_state_closed(con);
642 	return rc;
643 }
644 
645 /*
646  * Reset a connection.  Discard all incoming and outgoing messages
647  * and clear *_seq state.
648  */
649 static void ceph_msg_remove(struct ceph_msg *msg)
650 {
651 	list_del_init(&msg->list_head);
652 
653 	ceph_msg_put(msg);
654 }
655 static void ceph_msg_remove_list(struct list_head *head)
656 {
657 	while (!list_empty(head)) {
658 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
659 							list_head);
660 		ceph_msg_remove(msg);
661 	}
662 }
663 
664 static void reset_connection(struct ceph_connection *con)
665 {
666 	/* reset connection, out_queue, msg_ and connect_seq */
667 	/* discard existing out_queue and msg_seq */
668 	dout("reset_connection %p\n", con);
669 	ceph_msg_remove_list(&con->out_queue);
670 	ceph_msg_remove_list(&con->out_sent);
671 
672 	if (con->in_msg) {
673 		BUG_ON(con->in_msg->con != con);
674 		ceph_msg_put(con->in_msg);
675 		con->in_msg = NULL;
676 	}
677 
678 	con->connect_seq = 0;
679 	con->out_seq = 0;
680 	if (con->out_msg) {
681 		BUG_ON(con->out_msg->con != con);
682 		ceph_msg_put(con->out_msg);
683 		con->out_msg = NULL;
684 	}
685 	con->in_seq = 0;
686 	con->in_seq_acked = 0;
687 
688 	con->out_skip = 0;
689 }
690 
691 /*
692  * mark a peer down.  drop any open connections.
693  */
694 void ceph_con_close(struct ceph_connection *con)
695 {
696 	mutex_lock(&con->mutex);
697 	dout("con_close %p peer %s\n", con,
698 	     ceph_pr_addr(&con->peer_addr.in_addr));
699 	con->state = CON_STATE_CLOSED;
700 
701 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
702 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
703 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
704 	con_flag_clear(con, CON_FLAG_BACKOFF);
705 
706 	reset_connection(con);
707 	con->peer_global_seq = 0;
708 	cancel_con(con);
709 	con_close_socket(con);
710 	mutex_unlock(&con->mutex);
711 }
712 EXPORT_SYMBOL(ceph_con_close);
713 
714 /*
715  * Reopen a closed connection, with a new peer address.
716  */
717 void ceph_con_open(struct ceph_connection *con,
718 		   __u8 entity_type, __u64 entity_num,
719 		   struct ceph_entity_addr *addr)
720 {
721 	mutex_lock(&con->mutex);
722 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
723 
724 	WARN_ON(con->state != CON_STATE_CLOSED);
725 	con->state = CON_STATE_PREOPEN;
726 
727 	con->peer_name.type = (__u8) entity_type;
728 	con->peer_name.num = cpu_to_le64(entity_num);
729 
730 	memcpy(&con->peer_addr, addr, sizeof(*addr));
731 	con->delay = 0;      /* reset backoff memory */
732 	mutex_unlock(&con->mutex);
733 	queue_con(con);
734 }
735 EXPORT_SYMBOL(ceph_con_open);
736 
737 /*
738  * return true if this connection ever successfully opened
739  */
740 bool ceph_con_opened(struct ceph_connection *con)
741 {
742 	return con->connect_seq > 0;
743 }
744 
745 /*
746  * initialize a new connection.
747  */
748 void ceph_con_init(struct ceph_connection *con, void *private,
749 	const struct ceph_connection_operations *ops,
750 	struct ceph_messenger *msgr)
751 {
752 	dout("con_init %p\n", con);
753 	memset(con, 0, sizeof(*con));
754 	con->private = private;
755 	con->ops = ops;
756 	con->msgr = msgr;
757 
758 	con_sock_state_init(con);
759 
760 	mutex_init(&con->mutex);
761 	INIT_LIST_HEAD(&con->out_queue);
762 	INIT_LIST_HEAD(&con->out_sent);
763 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
764 
765 	con->state = CON_STATE_CLOSED;
766 }
767 EXPORT_SYMBOL(ceph_con_init);
768 
769 
770 /*
771  * We maintain a global counter to order connection attempts.  Get
772  * a unique seq greater than @gt.
773  */
774 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
775 {
776 	u32 ret;
777 
778 	spin_lock(&msgr->global_seq_lock);
779 	if (msgr->global_seq < gt)
780 		msgr->global_seq = gt;
781 	ret = ++msgr->global_seq;
782 	spin_unlock(&msgr->global_seq_lock);
783 	return ret;
784 }
785 
786 static void con_out_kvec_reset(struct ceph_connection *con)
787 {
788 	BUG_ON(con->out_skip);
789 
790 	con->out_kvec_left = 0;
791 	con->out_kvec_bytes = 0;
792 	con->out_kvec_cur = &con->out_kvec[0];
793 }
794 
795 static void con_out_kvec_add(struct ceph_connection *con,
796 				size_t size, void *data)
797 {
798 	int index = con->out_kvec_left;
799 
800 	BUG_ON(con->out_skip);
801 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
802 
803 	con->out_kvec[index].iov_len = size;
804 	con->out_kvec[index].iov_base = data;
805 	con->out_kvec_left++;
806 	con->out_kvec_bytes += size;
807 }
808 
809 /*
810  * Chop off a kvec from the end.  Return residual number of bytes for
811  * that kvec, i.e. how many bytes would have been written if the kvec
812  * hadn't been nuked.
813  */
814 static int con_out_kvec_skip(struct ceph_connection *con)
815 {
816 	int off = con->out_kvec_cur - con->out_kvec;
817 	int skip = 0;
818 
819 	if (con->out_kvec_bytes > 0) {
820 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
821 		BUG_ON(con->out_kvec_bytes < skip);
822 		BUG_ON(!con->out_kvec_left);
823 		con->out_kvec_bytes -= skip;
824 		con->out_kvec_left--;
825 	}
826 
827 	return skip;
828 }
829 
830 #ifdef CONFIG_BLOCK
831 
832 /*
833  * For a bio data item, a piece is whatever remains of the next
834  * entry in the current bio iovec, or the first entry in the next
835  * bio in the list.
836  */
837 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
838 					size_t length)
839 {
840 	struct ceph_msg_data *data = cursor->data;
841 	struct bio *bio;
842 
843 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
844 
845 	bio = data->bio;
846 	BUG_ON(!bio);
847 
848 	cursor->resid = min(length, data->bio_length);
849 	cursor->bio = bio;
850 	cursor->bvec_iter = bio->bi_iter;
851 	cursor->last_piece =
852 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
853 }
854 
855 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
856 						size_t *page_offset,
857 						size_t *length)
858 {
859 	struct ceph_msg_data *data = cursor->data;
860 	struct bio *bio;
861 	struct bio_vec bio_vec;
862 
863 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
864 
865 	bio = cursor->bio;
866 	BUG_ON(!bio);
867 
868 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
869 
870 	*page_offset = (size_t) bio_vec.bv_offset;
871 	BUG_ON(*page_offset >= PAGE_SIZE);
872 	if (cursor->last_piece) /* pagelist offset is always 0 */
873 		*length = cursor->resid;
874 	else
875 		*length = (size_t) bio_vec.bv_len;
876 	BUG_ON(*length > cursor->resid);
877 	BUG_ON(*page_offset + *length > PAGE_SIZE);
878 
879 	return bio_vec.bv_page;
880 }
881 
882 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
883 					size_t bytes)
884 {
885 	struct bio *bio;
886 	struct bio_vec bio_vec;
887 
888 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
889 
890 	bio = cursor->bio;
891 	BUG_ON(!bio);
892 
893 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
894 
895 	/* Advance the cursor offset */
896 
897 	BUG_ON(cursor->resid < bytes);
898 	cursor->resid -= bytes;
899 
900 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
901 
902 	if (bytes < bio_vec.bv_len)
903 		return false;	/* more bytes to process in this segment */
904 
905 	/* Move on to the next segment, and possibly the next bio */
906 
907 	if (!cursor->bvec_iter.bi_size) {
908 		bio = bio->bi_next;
909 		cursor->bio = bio;
910 		if (bio)
911 			cursor->bvec_iter = bio->bi_iter;
912 		else
913 			memset(&cursor->bvec_iter, 0,
914 			       sizeof(cursor->bvec_iter));
915 	}
916 
917 	if (!cursor->last_piece) {
918 		BUG_ON(!cursor->resid);
919 		BUG_ON(!bio);
920 		/* A short read is OK, so use <= rather than == */
921 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
922 			cursor->last_piece = true;
923 	}
924 
925 	return true;
926 }
927 #endif /* CONFIG_BLOCK */
928 
929 /*
930  * For a page array, a piece comes from the first page in the array
931  * that has not already been fully consumed.
932  */
933 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
934 					size_t length)
935 {
936 	struct ceph_msg_data *data = cursor->data;
937 	int page_count;
938 
939 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
940 
941 	BUG_ON(!data->pages);
942 	BUG_ON(!data->length);
943 
944 	cursor->resid = min(length, data->length);
945 	page_count = calc_pages_for(data->alignment, (u64)data->length);
946 	cursor->page_offset = data->alignment & ~PAGE_MASK;
947 	cursor->page_index = 0;
948 	BUG_ON(page_count > (int)USHRT_MAX);
949 	cursor->page_count = (unsigned short)page_count;
950 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
951 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
952 }
953 
954 static struct page *
955 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
956 					size_t *page_offset, size_t *length)
957 {
958 	struct ceph_msg_data *data = cursor->data;
959 
960 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
961 
962 	BUG_ON(cursor->page_index >= cursor->page_count);
963 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
964 
965 	*page_offset = cursor->page_offset;
966 	if (cursor->last_piece)
967 		*length = cursor->resid;
968 	else
969 		*length = PAGE_SIZE - *page_offset;
970 
971 	return data->pages[cursor->page_index];
972 }
973 
974 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
975 						size_t bytes)
976 {
977 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
978 
979 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
980 
981 	/* Advance the cursor page offset */
982 
983 	cursor->resid -= bytes;
984 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
985 	if (!bytes || cursor->page_offset)
986 		return false;	/* more bytes to process in the current page */
987 
988 	if (!cursor->resid)
989 		return false;   /* no more data */
990 
991 	/* Move on to the next page; offset is already at 0 */
992 
993 	BUG_ON(cursor->page_index >= cursor->page_count);
994 	cursor->page_index++;
995 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
996 
997 	return true;
998 }
999 
1000 /*
1001  * For a pagelist, a piece is whatever remains to be consumed in the
1002  * first page in the list, or the front of the next page.
1003  */
1004 static void
1005 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1006 					size_t length)
1007 {
1008 	struct ceph_msg_data *data = cursor->data;
1009 	struct ceph_pagelist *pagelist;
1010 	struct page *page;
1011 
1012 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1013 
1014 	pagelist = data->pagelist;
1015 	BUG_ON(!pagelist);
1016 
1017 	if (!length)
1018 		return;		/* pagelist can be assigned but empty */
1019 
1020 	BUG_ON(list_empty(&pagelist->head));
1021 	page = list_first_entry(&pagelist->head, struct page, lru);
1022 
1023 	cursor->resid = min(length, pagelist->length);
1024 	cursor->page = page;
1025 	cursor->offset = 0;
1026 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1027 }
1028 
1029 static struct page *
1030 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1031 				size_t *page_offset, size_t *length)
1032 {
1033 	struct ceph_msg_data *data = cursor->data;
1034 	struct ceph_pagelist *pagelist;
1035 
1036 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1037 
1038 	pagelist = data->pagelist;
1039 	BUG_ON(!pagelist);
1040 
1041 	BUG_ON(!cursor->page);
1042 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1043 
1044 	/* offset of first page in pagelist is always 0 */
1045 	*page_offset = cursor->offset & ~PAGE_MASK;
1046 	if (cursor->last_piece)
1047 		*length = cursor->resid;
1048 	else
1049 		*length = PAGE_SIZE - *page_offset;
1050 
1051 	return cursor->page;
1052 }
1053 
1054 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1055 						size_t bytes)
1056 {
1057 	struct ceph_msg_data *data = cursor->data;
1058 	struct ceph_pagelist *pagelist;
1059 
1060 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1061 
1062 	pagelist = data->pagelist;
1063 	BUG_ON(!pagelist);
1064 
1065 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1066 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1067 
1068 	/* Advance the cursor offset */
1069 
1070 	cursor->resid -= bytes;
1071 	cursor->offset += bytes;
1072 	/* offset of first page in pagelist is always 0 */
1073 	if (!bytes || cursor->offset & ~PAGE_MASK)
1074 		return false;	/* more bytes to process in the current page */
1075 
1076 	if (!cursor->resid)
1077 		return false;   /* no more data */
1078 
1079 	/* Move on to the next page */
1080 
1081 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1082 	cursor->page = list_next_entry(cursor->page, lru);
1083 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1084 
1085 	return true;
1086 }
1087 
1088 /*
1089  * Message data is handled (sent or received) in pieces, where each
1090  * piece resides on a single page.  The network layer might not
1091  * consume an entire piece at once.  A data item's cursor keeps
1092  * track of which piece is next to process and how much remains to
1093  * be processed in that piece.  It also tracks whether the current
1094  * piece is the last one in the data item.
1095  */
1096 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1097 {
1098 	size_t length = cursor->total_resid;
1099 
1100 	switch (cursor->data->type) {
1101 	case CEPH_MSG_DATA_PAGELIST:
1102 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1103 		break;
1104 	case CEPH_MSG_DATA_PAGES:
1105 		ceph_msg_data_pages_cursor_init(cursor, length);
1106 		break;
1107 #ifdef CONFIG_BLOCK
1108 	case CEPH_MSG_DATA_BIO:
1109 		ceph_msg_data_bio_cursor_init(cursor, length);
1110 		break;
1111 #endif /* CONFIG_BLOCK */
1112 	case CEPH_MSG_DATA_NONE:
1113 	default:
1114 		/* BUG(); */
1115 		break;
1116 	}
1117 	cursor->need_crc = true;
1118 }
1119 
1120 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1121 {
1122 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1123 	struct ceph_msg_data *data;
1124 
1125 	BUG_ON(!length);
1126 	BUG_ON(length > msg->data_length);
1127 	BUG_ON(list_empty(&msg->data));
1128 
1129 	cursor->data_head = &msg->data;
1130 	cursor->total_resid = length;
1131 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1132 	cursor->data = data;
1133 
1134 	__ceph_msg_data_cursor_init(cursor);
1135 }
1136 
1137 /*
1138  * Return the page containing the next piece to process for a given
1139  * data item, and supply the page offset and length of that piece.
1140  * Indicate whether this is the last piece in this data item.
1141  */
1142 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1143 					size_t *page_offset, size_t *length,
1144 					bool *last_piece)
1145 {
1146 	struct page *page;
1147 
1148 	switch (cursor->data->type) {
1149 	case CEPH_MSG_DATA_PAGELIST:
1150 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1151 		break;
1152 	case CEPH_MSG_DATA_PAGES:
1153 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1154 		break;
1155 #ifdef CONFIG_BLOCK
1156 	case CEPH_MSG_DATA_BIO:
1157 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1158 		break;
1159 #endif /* CONFIG_BLOCK */
1160 	case CEPH_MSG_DATA_NONE:
1161 	default:
1162 		page = NULL;
1163 		break;
1164 	}
1165 	BUG_ON(!page);
1166 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1167 	BUG_ON(!*length);
1168 	if (last_piece)
1169 		*last_piece = cursor->last_piece;
1170 
1171 	return page;
1172 }
1173 
1174 /*
1175  * Returns true if the result moves the cursor on to the next piece
1176  * of the data item.
1177  */
1178 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1179 				  size_t bytes)
1180 {
1181 	bool new_piece;
1182 
1183 	BUG_ON(bytes > cursor->resid);
1184 	switch (cursor->data->type) {
1185 	case CEPH_MSG_DATA_PAGELIST:
1186 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1187 		break;
1188 	case CEPH_MSG_DATA_PAGES:
1189 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1190 		break;
1191 #ifdef CONFIG_BLOCK
1192 	case CEPH_MSG_DATA_BIO:
1193 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1194 		break;
1195 #endif /* CONFIG_BLOCK */
1196 	case CEPH_MSG_DATA_NONE:
1197 	default:
1198 		BUG();
1199 		break;
1200 	}
1201 	cursor->total_resid -= bytes;
1202 
1203 	if (!cursor->resid && cursor->total_resid) {
1204 		WARN_ON(!cursor->last_piece);
1205 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1206 		cursor->data = list_next_entry(cursor->data, links);
1207 		__ceph_msg_data_cursor_init(cursor);
1208 		new_piece = true;
1209 	}
1210 	cursor->need_crc = new_piece;
1211 }
1212 
1213 static size_t sizeof_footer(struct ceph_connection *con)
1214 {
1215 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1216 	    sizeof(struct ceph_msg_footer) :
1217 	    sizeof(struct ceph_msg_footer_old);
1218 }
1219 
1220 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1221 {
1222 	BUG_ON(!msg);
1223 	BUG_ON(!data_len);
1224 
1225 	/* Initialize data cursor */
1226 
1227 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1228 }
1229 
1230 /*
1231  * Prepare footer for currently outgoing message, and finish things
1232  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1233  */
1234 static void prepare_write_message_footer(struct ceph_connection *con)
1235 {
1236 	struct ceph_msg *m = con->out_msg;
1237 
1238 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1239 
1240 	dout("prepare_write_message_footer %p\n", con);
1241 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1242 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1243 		if (con->ops->sign_message)
1244 			con->ops->sign_message(m);
1245 		else
1246 			m->footer.sig = 0;
1247 	} else {
1248 		m->old_footer.flags = m->footer.flags;
1249 	}
1250 	con->out_more = m->more_to_follow;
1251 	con->out_msg_done = true;
1252 }
1253 
1254 /*
1255  * Prepare headers for the next outgoing message.
1256  */
1257 static void prepare_write_message(struct ceph_connection *con)
1258 {
1259 	struct ceph_msg *m;
1260 	u32 crc;
1261 
1262 	con_out_kvec_reset(con);
1263 	con->out_msg_done = false;
1264 
1265 	/* Sneak an ack in there first?  If we can get it into the same
1266 	 * TCP packet that's a good thing. */
1267 	if (con->in_seq > con->in_seq_acked) {
1268 		con->in_seq_acked = con->in_seq;
1269 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1270 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1271 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1272 			&con->out_temp_ack);
1273 	}
1274 
1275 	BUG_ON(list_empty(&con->out_queue));
1276 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1277 	con->out_msg = m;
1278 	BUG_ON(m->con != con);
1279 
1280 	/* put message on sent list */
1281 	ceph_msg_get(m);
1282 	list_move_tail(&m->list_head, &con->out_sent);
1283 
1284 	/*
1285 	 * only assign outgoing seq # if we haven't sent this message
1286 	 * yet.  if it is requeued, resend with it's original seq.
1287 	 */
1288 	if (m->needs_out_seq) {
1289 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1290 		m->needs_out_seq = false;
1291 
1292 		if (con->ops->reencode_message)
1293 			con->ops->reencode_message(m);
1294 	}
1295 
1296 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1297 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1298 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1299 	     m->data_length);
1300 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1301 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1302 
1303 	/* tag + hdr + front + middle */
1304 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1305 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1306 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1307 
1308 	if (m->middle)
1309 		con_out_kvec_add(con, m->middle->vec.iov_len,
1310 			m->middle->vec.iov_base);
1311 
1312 	/* fill in hdr crc and finalize hdr */
1313 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1314 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1315 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1316 
1317 	/* fill in front and middle crc, footer */
1318 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1319 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1320 	if (m->middle) {
1321 		crc = crc32c(0, m->middle->vec.iov_base,
1322 				m->middle->vec.iov_len);
1323 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1324 	} else
1325 		con->out_msg->footer.middle_crc = 0;
1326 	dout("%s front_crc %u middle_crc %u\n", __func__,
1327 	     le32_to_cpu(con->out_msg->footer.front_crc),
1328 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1329 	con->out_msg->footer.flags = 0;
1330 
1331 	/* is there a data payload? */
1332 	con->out_msg->footer.data_crc = 0;
1333 	if (m->data_length) {
1334 		prepare_message_data(con->out_msg, m->data_length);
1335 		con->out_more = 1;  /* data + footer will follow */
1336 	} else {
1337 		/* no, queue up footer too and be done */
1338 		prepare_write_message_footer(con);
1339 	}
1340 
1341 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1342 }
1343 
1344 /*
1345  * Prepare an ack.
1346  */
1347 static void prepare_write_ack(struct ceph_connection *con)
1348 {
1349 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1350 	     con->in_seq_acked, con->in_seq);
1351 	con->in_seq_acked = con->in_seq;
1352 
1353 	con_out_kvec_reset(con);
1354 
1355 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1356 
1357 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1358 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1359 				&con->out_temp_ack);
1360 
1361 	con->out_more = 1;  /* more will follow.. eventually.. */
1362 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1363 }
1364 
1365 /*
1366  * Prepare to share the seq during handshake
1367  */
1368 static void prepare_write_seq(struct ceph_connection *con)
1369 {
1370 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1371 	     con->in_seq_acked, con->in_seq);
1372 	con->in_seq_acked = con->in_seq;
1373 
1374 	con_out_kvec_reset(con);
1375 
1376 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1377 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1378 			 &con->out_temp_ack);
1379 
1380 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1381 }
1382 
1383 /*
1384  * Prepare to write keepalive byte.
1385  */
1386 static void prepare_write_keepalive(struct ceph_connection *con)
1387 {
1388 	dout("prepare_write_keepalive %p\n", con);
1389 	con_out_kvec_reset(con);
1390 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1391 		struct timespec now;
1392 
1393 		ktime_get_real_ts(&now);
1394 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1395 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1396 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1397 				 &con->out_temp_keepalive2);
1398 	} else {
1399 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1400 	}
1401 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1402 }
1403 
1404 /*
1405  * Connection negotiation.
1406  */
1407 
1408 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1409 						int *auth_proto)
1410 {
1411 	struct ceph_auth_handshake *auth;
1412 
1413 	if (!con->ops->get_authorizer) {
1414 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1415 		con->out_connect.authorizer_len = 0;
1416 		return NULL;
1417 	}
1418 
1419 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1420 	if (IS_ERR(auth))
1421 		return auth;
1422 
1423 	con->auth_reply_buf = auth->authorizer_reply_buf;
1424 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1425 	return auth;
1426 }
1427 
1428 /*
1429  * We connected to a peer and are saying hello.
1430  */
1431 static void prepare_write_banner(struct ceph_connection *con)
1432 {
1433 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1434 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1435 					&con->msgr->my_enc_addr);
1436 
1437 	con->out_more = 0;
1438 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1439 }
1440 
1441 static int prepare_write_connect(struct ceph_connection *con)
1442 {
1443 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1444 	int proto;
1445 	int auth_proto;
1446 	struct ceph_auth_handshake *auth;
1447 
1448 	switch (con->peer_name.type) {
1449 	case CEPH_ENTITY_TYPE_MON:
1450 		proto = CEPH_MONC_PROTOCOL;
1451 		break;
1452 	case CEPH_ENTITY_TYPE_OSD:
1453 		proto = CEPH_OSDC_PROTOCOL;
1454 		break;
1455 	case CEPH_ENTITY_TYPE_MDS:
1456 		proto = CEPH_MDSC_PROTOCOL;
1457 		break;
1458 	default:
1459 		BUG();
1460 	}
1461 
1462 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1463 	     con->connect_seq, global_seq, proto);
1464 
1465 	con->out_connect.features =
1466 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1467 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1468 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1469 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1470 	con->out_connect.protocol_version = cpu_to_le32(proto);
1471 	con->out_connect.flags = 0;
1472 
1473 	auth_proto = CEPH_AUTH_UNKNOWN;
1474 	auth = get_connect_authorizer(con, &auth_proto);
1475 	if (IS_ERR(auth))
1476 		return PTR_ERR(auth);
1477 
1478 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1479 	con->out_connect.authorizer_len = auth ?
1480 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1481 
1482 	con_out_kvec_add(con, sizeof (con->out_connect),
1483 					&con->out_connect);
1484 	if (auth && auth->authorizer_buf_len)
1485 		con_out_kvec_add(con, auth->authorizer_buf_len,
1486 					auth->authorizer_buf);
1487 
1488 	con->out_more = 0;
1489 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1490 
1491 	return 0;
1492 }
1493 
1494 /*
1495  * write as much of pending kvecs to the socket as we can.
1496  *  1 -> done
1497  *  0 -> socket full, but more to do
1498  * <0 -> error
1499  */
1500 static int write_partial_kvec(struct ceph_connection *con)
1501 {
1502 	int ret;
1503 
1504 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1505 	while (con->out_kvec_bytes > 0) {
1506 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1507 				       con->out_kvec_left, con->out_kvec_bytes,
1508 				       con->out_more);
1509 		if (ret <= 0)
1510 			goto out;
1511 		con->out_kvec_bytes -= ret;
1512 		if (con->out_kvec_bytes == 0)
1513 			break;            /* done */
1514 
1515 		/* account for full iov entries consumed */
1516 		while (ret >= con->out_kvec_cur->iov_len) {
1517 			BUG_ON(!con->out_kvec_left);
1518 			ret -= con->out_kvec_cur->iov_len;
1519 			con->out_kvec_cur++;
1520 			con->out_kvec_left--;
1521 		}
1522 		/* and for a partially-consumed entry */
1523 		if (ret) {
1524 			con->out_kvec_cur->iov_len -= ret;
1525 			con->out_kvec_cur->iov_base += ret;
1526 		}
1527 	}
1528 	con->out_kvec_left = 0;
1529 	ret = 1;
1530 out:
1531 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1532 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1533 	return ret;  /* done! */
1534 }
1535 
1536 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1537 				unsigned int page_offset,
1538 				unsigned int length)
1539 {
1540 	char *kaddr;
1541 
1542 	kaddr = kmap(page);
1543 	BUG_ON(kaddr == NULL);
1544 	crc = crc32c(crc, kaddr + page_offset, length);
1545 	kunmap(page);
1546 
1547 	return crc;
1548 }
1549 /*
1550  * Write as much message data payload as we can.  If we finish, queue
1551  * up the footer.
1552  *  1 -> done, footer is now queued in out_kvec[].
1553  *  0 -> socket full, but more to do
1554  * <0 -> error
1555  */
1556 static int write_partial_message_data(struct ceph_connection *con)
1557 {
1558 	struct ceph_msg *msg = con->out_msg;
1559 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1560 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1561 	u32 crc;
1562 
1563 	dout("%s %p msg %p\n", __func__, con, msg);
1564 
1565 	if (list_empty(&msg->data))
1566 		return -EINVAL;
1567 
1568 	/*
1569 	 * Iterate through each page that contains data to be
1570 	 * written, and send as much as possible for each.
1571 	 *
1572 	 * If we are calculating the data crc (the default), we will
1573 	 * need to map the page.  If we have no pages, they have
1574 	 * been revoked, so use the zero page.
1575 	 */
1576 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1577 	while (cursor->resid) {
1578 		struct page *page;
1579 		size_t page_offset;
1580 		size_t length;
1581 		bool last_piece;
1582 		int ret;
1583 
1584 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1585 					  &last_piece);
1586 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1587 					length, !last_piece);
1588 		if (ret <= 0) {
1589 			if (do_datacrc)
1590 				msg->footer.data_crc = cpu_to_le32(crc);
1591 
1592 			return ret;
1593 		}
1594 		if (do_datacrc && cursor->need_crc)
1595 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1596 		ceph_msg_data_advance(cursor, (size_t)ret);
1597 	}
1598 
1599 	dout("%s %p msg %p done\n", __func__, con, msg);
1600 
1601 	/* prepare and queue up footer, too */
1602 	if (do_datacrc)
1603 		msg->footer.data_crc = cpu_to_le32(crc);
1604 	else
1605 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1606 	con_out_kvec_reset(con);
1607 	prepare_write_message_footer(con);
1608 
1609 	return 1;	/* must return > 0 to indicate success */
1610 }
1611 
1612 /*
1613  * write some zeros
1614  */
1615 static int write_partial_skip(struct ceph_connection *con)
1616 {
1617 	int ret;
1618 
1619 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1620 	while (con->out_skip > 0) {
1621 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1622 
1623 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1624 		if (ret <= 0)
1625 			goto out;
1626 		con->out_skip -= ret;
1627 	}
1628 	ret = 1;
1629 out:
1630 	return ret;
1631 }
1632 
1633 /*
1634  * Prepare to read connection handshake, or an ack.
1635  */
1636 static void prepare_read_banner(struct ceph_connection *con)
1637 {
1638 	dout("prepare_read_banner %p\n", con);
1639 	con->in_base_pos = 0;
1640 }
1641 
1642 static void prepare_read_connect(struct ceph_connection *con)
1643 {
1644 	dout("prepare_read_connect %p\n", con);
1645 	con->in_base_pos = 0;
1646 }
1647 
1648 static void prepare_read_ack(struct ceph_connection *con)
1649 {
1650 	dout("prepare_read_ack %p\n", con);
1651 	con->in_base_pos = 0;
1652 }
1653 
1654 static void prepare_read_seq(struct ceph_connection *con)
1655 {
1656 	dout("prepare_read_seq %p\n", con);
1657 	con->in_base_pos = 0;
1658 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1659 }
1660 
1661 static void prepare_read_tag(struct ceph_connection *con)
1662 {
1663 	dout("prepare_read_tag %p\n", con);
1664 	con->in_base_pos = 0;
1665 	con->in_tag = CEPH_MSGR_TAG_READY;
1666 }
1667 
1668 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1669 {
1670 	dout("prepare_read_keepalive_ack %p\n", con);
1671 	con->in_base_pos = 0;
1672 }
1673 
1674 /*
1675  * Prepare to read a message.
1676  */
1677 static int prepare_read_message(struct ceph_connection *con)
1678 {
1679 	dout("prepare_read_message %p\n", con);
1680 	BUG_ON(con->in_msg != NULL);
1681 	con->in_base_pos = 0;
1682 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1683 	return 0;
1684 }
1685 
1686 
1687 static int read_partial(struct ceph_connection *con,
1688 			int end, int size, void *object)
1689 {
1690 	while (con->in_base_pos < end) {
1691 		int left = end - con->in_base_pos;
1692 		int have = size - left;
1693 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1694 		if (ret <= 0)
1695 			return ret;
1696 		con->in_base_pos += ret;
1697 	}
1698 	return 1;
1699 }
1700 
1701 
1702 /*
1703  * Read all or part of the connect-side handshake on a new connection
1704  */
1705 static int read_partial_banner(struct ceph_connection *con)
1706 {
1707 	int size;
1708 	int end;
1709 	int ret;
1710 
1711 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1712 
1713 	/* peer's banner */
1714 	size = strlen(CEPH_BANNER);
1715 	end = size;
1716 	ret = read_partial(con, end, size, con->in_banner);
1717 	if (ret <= 0)
1718 		goto out;
1719 
1720 	size = sizeof (con->actual_peer_addr);
1721 	end += size;
1722 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1723 	if (ret <= 0)
1724 		goto out;
1725 
1726 	size = sizeof (con->peer_addr_for_me);
1727 	end += size;
1728 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1729 	if (ret <= 0)
1730 		goto out;
1731 
1732 out:
1733 	return ret;
1734 }
1735 
1736 static int read_partial_connect(struct ceph_connection *con)
1737 {
1738 	int size;
1739 	int end;
1740 	int ret;
1741 
1742 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1743 
1744 	size = sizeof (con->in_reply);
1745 	end = size;
1746 	ret = read_partial(con, end, size, &con->in_reply);
1747 	if (ret <= 0)
1748 		goto out;
1749 
1750 	size = le32_to_cpu(con->in_reply.authorizer_len);
1751 	end += size;
1752 	ret = read_partial(con, end, size, con->auth_reply_buf);
1753 	if (ret <= 0)
1754 		goto out;
1755 
1756 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1757 	     con, (int)con->in_reply.tag,
1758 	     le32_to_cpu(con->in_reply.connect_seq),
1759 	     le32_to_cpu(con->in_reply.global_seq));
1760 out:
1761 	return ret;
1762 
1763 }
1764 
1765 /*
1766  * Verify the hello banner looks okay.
1767  */
1768 static int verify_hello(struct ceph_connection *con)
1769 {
1770 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1771 		pr_err("connect to %s got bad banner\n",
1772 		       ceph_pr_addr(&con->peer_addr.in_addr));
1773 		con->error_msg = "protocol error, bad banner";
1774 		return -1;
1775 	}
1776 	return 0;
1777 }
1778 
1779 static bool addr_is_blank(struct sockaddr_storage *ss)
1780 {
1781 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1782 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1783 
1784 	switch (ss->ss_family) {
1785 	case AF_INET:
1786 		return addr->s_addr == htonl(INADDR_ANY);
1787 	case AF_INET6:
1788 		return ipv6_addr_any(addr6);
1789 	default:
1790 		return true;
1791 	}
1792 }
1793 
1794 static int addr_port(struct sockaddr_storage *ss)
1795 {
1796 	switch (ss->ss_family) {
1797 	case AF_INET:
1798 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1799 	case AF_INET6:
1800 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1801 	}
1802 	return 0;
1803 }
1804 
1805 static void addr_set_port(struct sockaddr_storage *ss, int p)
1806 {
1807 	switch (ss->ss_family) {
1808 	case AF_INET:
1809 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1810 		break;
1811 	case AF_INET6:
1812 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1813 		break;
1814 	}
1815 }
1816 
1817 /*
1818  * Unlike other *_pton function semantics, zero indicates success.
1819  */
1820 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1821 		char delim, const char **ipend)
1822 {
1823 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1824 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1825 
1826 	memset(ss, 0, sizeof(*ss));
1827 
1828 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1829 		ss->ss_family = AF_INET;
1830 		return 0;
1831 	}
1832 
1833 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1834 		ss->ss_family = AF_INET6;
1835 		return 0;
1836 	}
1837 
1838 	return -EINVAL;
1839 }
1840 
1841 /*
1842  * Extract hostname string and resolve using kernel DNS facility.
1843  */
1844 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1845 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1846 		struct sockaddr_storage *ss, char delim, const char **ipend)
1847 {
1848 	const char *end, *delim_p;
1849 	char *colon_p, *ip_addr = NULL;
1850 	int ip_len, ret;
1851 
1852 	/*
1853 	 * The end of the hostname occurs immediately preceding the delimiter or
1854 	 * the port marker (':') where the delimiter takes precedence.
1855 	 */
1856 	delim_p = memchr(name, delim, namelen);
1857 	colon_p = memchr(name, ':', namelen);
1858 
1859 	if (delim_p && colon_p)
1860 		end = delim_p < colon_p ? delim_p : colon_p;
1861 	else if (!delim_p && colon_p)
1862 		end = colon_p;
1863 	else {
1864 		end = delim_p;
1865 		if (!end) /* case: hostname:/ */
1866 			end = name + namelen;
1867 	}
1868 
1869 	if (end <= name)
1870 		return -EINVAL;
1871 
1872 	/* do dns_resolve upcall */
1873 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1874 	if (ip_len > 0)
1875 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1876 	else
1877 		ret = -ESRCH;
1878 
1879 	kfree(ip_addr);
1880 
1881 	*ipend = end;
1882 
1883 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1884 			ret, ret ? "failed" : ceph_pr_addr(ss));
1885 
1886 	return ret;
1887 }
1888 #else
1889 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1890 		struct sockaddr_storage *ss, char delim, const char **ipend)
1891 {
1892 	return -EINVAL;
1893 }
1894 #endif
1895 
1896 /*
1897  * Parse a server name (IP or hostname). If a valid IP address is not found
1898  * then try to extract a hostname to resolve using userspace DNS upcall.
1899  */
1900 static int ceph_parse_server_name(const char *name, size_t namelen,
1901 			struct sockaddr_storage *ss, char delim, const char **ipend)
1902 {
1903 	int ret;
1904 
1905 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1906 	if (ret)
1907 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1908 
1909 	return ret;
1910 }
1911 
1912 /*
1913  * Parse an ip[:port] list into an addr array.  Use the default
1914  * monitor port if a port isn't specified.
1915  */
1916 int ceph_parse_ips(const char *c, const char *end,
1917 		   struct ceph_entity_addr *addr,
1918 		   int max_count, int *count)
1919 {
1920 	int i, ret = -EINVAL;
1921 	const char *p = c;
1922 
1923 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1924 	for (i = 0; i < max_count; i++) {
1925 		const char *ipend;
1926 		struct sockaddr_storage *ss = &addr[i].in_addr;
1927 		int port;
1928 		char delim = ',';
1929 
1930 		if (*p == '[') {
1931 			delim = ']';
1932 			p++;
1933 		}
1934 
1935 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1936 		if (ret)
1937 			goto bad;
1938 		ret = -EINVAL;
1939 
1940 		p = ipend;
1941 
1942 		if (delim == ']') {
1943 			if (*p != ']') {
1944 				dout("missing matching ']'\n");
1945 				goto bad;
1946 			}
1947 			p++;
1948 		}
1949 
1950 		/* port? */
1951 		if (p < end && *p == ':') {
1952 			port = 0;
1953 			p++;
1954 			while (p < end && *p >= '0' && *p <= '9') {
1955 				port = (port * 10) + (*p - '0');
1956 				p++;
1957 			}
1958 			if (port == 0)
1959 				port = CEPH_MON_PORT;
1960 			else if (port > 65535)
1961 				goto bad;
1962 		} else {
1963 			port = CEPH_MON_PORT;
1964 		}
1965 
1966 		addr_set_port(ss, port);
1967 
1968 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1969 
1970 		if (p == end)
1971 			break;
1972 		if (*p != ',')
1973 			goto bad;
1974 		p++;
1975 	}
1976 
1977 	if (p != end)
1978 		goto bad;
1979 
1980 	if (count)
1981 		*count = i + 1;
1982 	return 0;
1983 
1984 bad:
1985 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL(ceph_parse_ips);
1989 
1990 static int process_banner(struct ceph_connection *con)
1991 {
1992 	dout("process_banner on %p\n", con);
1993 
1994 	if (verify_hello(con) < 0)
1995 		return -1;
1996 
1997 	ceph_decode_addr(&con->actual_peer_addr);
1998 	ceph_decode_addr(&con->peer_addr_for_me);
1999 
2000 	/*
2001 	 * Make sure the other end is who we wanted.  note that the other
2002 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2003 	 * them the benefit of the doubt.
2004 	 */
2005 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2006 		   sizeof(con->peer_addr)) != 0 &&
2007 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2008 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2009 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2010 			ceph_pr_addr(&con->peer_addr.in_addr),
2011 			(int)le32_to_cpu(con->peer_addr.nonce),
2012 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2013 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2014 		con->error_msg = "wrong peer at address";
2015 		return -1;
2016 	}
2017 
2018 	/*
2019 	 * did we learn our address?
2020 	 */
2021 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2022 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2023 
2024 		memcpy(&con->msgr->inst.addr.in_addr,
2025 		       &con->peer_addr_for_me.in_addr,
2026 		       sizeof(con->peer_addr_for_me.in_addr));
2027 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2028 		encode_my_addr(con->msgr);
2029 		dout("process_banner learned my addr is %s\n",
2030 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 static int process_connect(struct ceph_connection *con)
2037 {
2038 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2039 	u64 req_feat = from_msgr(con->msgr)->required_features;
2040 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2041 	int ret;
2042 
2043 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2044 
2045 	if (con->auth_reply_buf) {
2046 		/*
2047 		 * Any connection that defines ->get_authorizer()
2048 		 * should also define ->verify_authorizer_reply().
2049 		 * See get_connect_authorizer().
2050 		 */
2051 		ret = con->ops->verify_authorizer_reply(con);
2052 		if (ret < 0) {
2053 			con->error_msg = "bad authorize reply";
2054 			return ret;
2055 		}
2056 	}
2057 
2058 	switch (con->in_reply.tag) {
2059 	case CEPH_MSGR_TAG_FEATURES:
2060 		pr_err("%s%lld %s feature set mismatch,"
2061 		       " my %llx < server's %llx, missing %llx\n",
2062 		       ENTITY_NAME(con->peer_name),
2063 		       ceph_pr_addr(&con->peer_addr.in_addr),
2064 		       sup_feat, server_feat, server_feat & ~sup_feat);
2065 		con->error_msg = "missing required protocol features";
2066 		reset_connection(con);
2067 		return -1;
2068 
2069 	case CEPH_MSGR_TAG_BADPROTOVER:
2070 		pr_err("%s%lld %s protocol version mismatch,"
2071 		       " my %d != server's %d\n",
2072 		       ENTITY_NAME(con->peer_name),
2073 		       ceph_pr_addr(&con->peer_addr.in_addr),
2074 		       le32_to_cpu(con->out_connect.protocol_version),
2075 		       le32_to_cpu(con->in_reply.protocol_version));
2076 		con->error_msg = "protocol version mismatch";
2077 		reset_connection(con);
2078 		return -1;
2079 
2080 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2081 		con->auth_retry++;
2082 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2083 		     con->auth_retry);
2084 		if (con->auth_retry == 2) {
2085 			con->error_msg = "connect authorization failure";
2086 			return -1;
2087 		}
2088 		con_out_kvec_reset(con);
2089 		ret = prepare_write_connect(con);
2090 		if (ret < 0)
2091 			return ret;
2092 		prepare_read_connect(con);
2093 		break;
2094 
2095 	case CEPH_MSGR_TAG_RESETSESSION:
2096 		/*
2097 		 * If we connected with a large connect_seq but the peer
2098 		 * has no record of a session with us (no connection, or
2099 		 * connect_seq == 0), they will send RESETSESION to indicate
2100 		 * that they must have reset their session, and may have
2101 		 * dropped messages.
2102 		 */
2103 		dout("process_connect got RESET peer seq %u\n",
2104 		     le32_to_cpu(con->in_reply.connect_seq));
2105 		pr_err("%s%lld %s connection reset\n",
2106 		       ENTITY_NAME(con->peer_name),
2107 		       ceph_pr_addr(&con->peer_addr.in_addr));
2108 		reset_connection(con);
2109 		con_out_kvec_reset(con);
2110 		ret = prepare_write_connect(con);
2111 		if (ret < 0)
2112 			return ret;
2113 		prepare_read_connect(con);
2114 
2115 		/* Tell ceph about it. */
2116 		mutex_unlock(&con->mutex);
2117 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2118 		if (con->ops->peer_reset)
2119 			con->ops->peer_reset(con);
2120 		mutex_lock(&con->mutex);
2121 		if (con->state != CON_STATE_NEGOTIATING)
2122 			return -EAGAIN;
2123 		break;
2124 
2125 	case CEPH_MSGR_TAG_RETRY_SESSION:
2126 		/*
2127 		 * If we sent a smaller connect_seq than the peer has, try
2128 		 * again with a larger value.
2129 		 */
2130 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2131 		     le32_to_cpu(con->out_connect.connect_seq),
2132 		     le32_to_cpu(con->in_reply.connect_seq));
2133 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2134 		con_out_kvec_reset(con);
2135 		ret = prepare_write_connect(con);
2136 		if (ret < 0)
2137 			return ret;
2138 		prepare_read_connect(con);
2139 		break;
2140 
2141 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2142 		/*
2143 		 * If we sent a smaller global_seq than the peer has, try
2144 		 * again with a larger value.
2145 		 */
2146 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2147 		     con->peer_global_seq,
2148 		     le32_to_cpu(con->in_reply.global_seq));
2149 		get_global_seq(con->msgr,
2150 			       le32_to_cpu(con->in_reply.global_seq));
2151 		con_out_kvec_reset(con);
2152 		ret = prepare_write_connect(con);
2153 		if (ret < 0)
2154 			return ret;
2155 		prepare_read_connect(con);
2156 		break;
2157 
2158 	case CEPH_MSGR_TAG_SEQ:
2159 	case CEPH_MSGR_TAG_READY:
2160 		if (req_feat & ~server_feat) {
2161 			pr_err("%s%lld %s protocol feature mismatch,"
2162 			       " my required %llx > server's %llx, need %llx\n",
2163 			       ENTITY_NAME(con->peer_name),
2164 			       ceph_pr_addr(&con->peer_addr.in_addr),
2165 			       req_feat, server_feat, req_feat & ~server_feat);
2166 			con->error_msg = "missing required protocol features";
2167 			reset_connection(con);
2168 			return -1;
2169 		}
2170 
2171 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2172 		con->state = CON_STATE_OPEN;
2173 		con->auth_retry = 0;    /* we authenticated; clear flag */
2174 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2175 		con->connect_seq++;
2176 		con->peer_features = server_feat;
2177 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2178 		     con->peer_global_seq,
2179 		     le32_to_cpu(con->in_reply.connect_seq),
2180 		     con->connect_seq);
2181 		WARN_ON(con->connect_seq !=
2182 			le32_to_cpu(con->in_reply.connect_seq));
2183 
2184 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2185 			con_flag_set(con, CON_FLAG_LOSSYTX);
2186 
2187 		con->delay = 0;      /* reset backoff memory */
2188 
2189 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2190 			prepare_write_seq(con);
2191 			prepare_read_seq(con);
2192 		} else {
2193 			prepare_read_tag(con);
2194 		}
2195 		break;
2196 
2197 	case CEPH_MSGR_TAG_WAIT:
2198 		/*
2199 		 * If there is a connection race (we are opening
2200 		 * connections to each other), one of us may just have
2201 		 * to WAIT.  This shouldn't happen if we are the
2202 		 * client.
2203 		 */
2204 		con->error_msg = "protocol error, got WAIT as client";
2205 		return -1;
2206 
2207 	default:
2208 		con->error_msg = "protocol error, garbage tag during connect";
2209 		return -1;
2210 	}
2211 	return 0;
2212 }
2213 
2214 
2215 /*
2216  * read (part of) an ack
2217  */
2218 static int read_partial_ack(struct ceph_connection *con)
2219 {
2220 	int size = sizeof (con->in_temp_ack);
2221 	int end = size;
2222 
2223 	return read_partial(con, end, size, &con->in_temp_ack);
2224 }
2225 
2226 /*
2227  * We can finally discard anything that's been acked.
2228  */
2229 static void process_ack(struct ceph_connection *con)
2230 {
2231 	struct ceph_msg *m;
2232 	u64 ack = le64_to_cpu(con->in_temp_ack);
2233 	u64 seq;
2234 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2235 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2236 
2237 	/*
2238 	 * In the reconnect case, con_fault() has requeued messages
2239 	 * in out_sent. We should cleanup old messages according to
2240 	 * the reconnect seq.
2241 	 */
2242 	while (!list_empty(list)) {
2243 		m = list_first_entry(list, struct ceph_msg, list_head);
2244 		if (reconnect && m->needs_out_seq)
2245 			break;
2246 		seq = le64_to_cpu(m->hdr.seq);
2247 		if (seq > ack)
2248 			break;
2249 		dout("got ack for seq %llu type %d at %p\n", seq,
2250 		     le16_to_cpu(m->hdr.type), m);
2251 		m->ack_stamp = jiffies;
2252 		ceph_msg_remove(m);
2253 	}
2254 
2255 	prepare_read_tag(con);
2256 }
2257 
2258 
2259 static int read_partial_message_section(struct ceph_connection *con,
2260 					struct kvec *section,
2261 					unsigned int sec_len, u32 *crc)
2262 {
2263 	int ret, left;
2264 
2265 	BUG_ON(!section);
2266 
2267 	while (section->iov_len < sec_len) {
2268 		BUG_ON(section->iov_base == NULL);
2269 		left = sec_len - section->iov_len;
2270 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2271 				       section->iov_len, left);
2272 		if (ret <= 0)
2273 			return ret;
2274 		section->iov_len += ret;
2275 	}
2276 	if (section->iov_len == sec_len)
2277 		*crc = crc32c(0, section->iov_base, section->iov_len);
2278 
2279 	return 1;
2280 }
2281 
2282 static int read_partial_msg_data(struct ceph_connection *con)
2283 {
2284 	struct ceph_msg *msg = con->in_msg;
2285 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2286 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2287 	struct page *page;
2288 	size_t page_offset;
2289 	size_t length;
2290 	u32 crc = 0;
2291 	int ret;
2292 
2293 	BUG_ON(!msg);
2294 	if (list_empty(&msg->data))
2295 		return -EIO;
2296 
2297 	if (do_datacrc)
2298 		crc = con->in_data_crc;
2299 	while (cursor->resid) {
2300 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2301 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2302 		if (ret <= 0) {
2303 			if (do_datacrc)
2304 				con->in_data_crc = crc;
2305 
2306 			return ret;
2307 		}
2308 
2309 		if (do_datacrc)
2310 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2311 		ceph_msg_data_advance(cursor, (size_t)ret);
2312 	}
2313 	if (do_datacrc)
2314 		con->in_data_crc = crc;
2315 
2316 	return 1;	/* must return > 0 to indicate success */
2317 }
2318 
2319 /*
2320  * read (part of) a message.
2321  */
2322 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2323 
2324 static int read_partial_message(struct ceph_connection *con)
2325 {
2326 	struct ceph_msg *m = con->in_msg;
2327 	int size;
2328 	int end;
2329 	int ret;
2330 	unsigned int front_len, middle_len, data_len;
2331 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2332 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2333 	u64 seq;
2334 	u32 crc;
2335 
2336 	dout("read_partial_message con %p msg %p\n", con, m);
2337 
2338 	/* header */
2339 	size = sizeof (con->in_hdr);
2340 	end = size;
2341 	ret = read_partial(con, end, size, &con->in_hdr);
2342 	if (ret <= 0)
2343 		return ret;
2344 
2345 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2346 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2347 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2348 		       crc, con->in_hdr.crc);
2349 		return -EBADMSG;
2350 	}
2351 
2352 	front_len = le32_to_cpu(con->in_hdr.front_len);
2353 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2354 		return -EIO;
2355 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2356 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2357 		return -EIO;
2358 	data_len = le32_to_cpu(con->in_hdr.data_len);
2359 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2360 		return -EIO;
2361 
2362 	/* verify seq# */
2363 	seq = le64_to_cpu(con->in_hdr.seq);
2364 	if ((s64)seq - (s64)con->in_seq < 1) {
2365 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2366 			ENTITY_NAME(con->peer_name),
2367 			ceph_pr_addr(&con->peer_addr.in_addr),
2368 			seq, con->in_seq + 1);
2369 		con->in_base_pos = -front_len - middle_len - data_len -
2370 			sizeof_footer(con);
2371 		con->in_tag = CEPH_MSGR_TAG_READY;
2372 		return 1;
2373 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2374 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2375 		       seq, con->in_seq + 1);
2376 		con->error_msg = "bad message sequence # for incoming message";
2377 		return -EBADE;
2378 	}
2379 
2380 	/* allocate message? */
2381 	if (!con->in_msg) {
2382 		int skip = 0;
2383 
2384 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2385 		     front_len, data_len);
2386 		ret = ceph_con_in_msg_alloc(con, &skip);
2387 		if (ret < 0)
2388 			return ret;
2389 
2390 		BUG_ON(!con->in_msg ^ skip);
2391 		if (skip) {
2392 			/* skip this message */
2393 			dout("alloc_msg said skip message\n");
2394 			con->in_base_pos = -front_len - middle_len - data_len -
2395 				sizeof_footer(con);
2396 			con->in_tag = CEPH_MSGR_TAG_READY;
2397 			con->in_seq++;
2398 			return 1;
2399 		}
2400 
2401 		BUG_ON(!con->in_msg);
2402 		BUG_ON(con->in_msg->con != con);
2403 		m = con->in_msg;
2404 		m->front.iov_len = 0;    /* haven't read it yet */
2405 		if (m->middle)
2406 			m->middle->vec.iov_len = 0;
2407 
2408 		/* prepare for data payload, if any */
2409 
2410 		if (data_len)
2411 			prepare_message_data(con->in_msg, data_len);
2412 	}
2413 
2414 	/* front */
2415 	ret = read_partial_message_section(con, &m->front, front_len,
2416 					   &con->in_front_crc);
2417 	if (ret <= 0)
2418 		return ret;
2419 
2420 	/* middle */
2421 	if (m->middle) {
2422 		ret = read_partial_message_section(con, &m->middle->vec,
2423 						   middle_len,
2424 						   &con->in_middle_crc);
2425 		if (ret <= 0)
2426 			return ret;
2427 	}
2428 
2429 	/* (page) data */
2430 	if (data_len) {
2431 		ret = read_partial_msg_data(con);
2432 		if (ret <= 0)
2433 			return ret;
2434 	}
2435 
2436 	/* footer */
2437 	size = sizeof_footer(con);
2438 	end += size;
2439 	ret = read_partial(con, end, size, &m->footer);
2440 	if (ret <= 0)
2441 		return ret;
2442 
2443 	if (!need_sign) {
2444 		m->footer.flags = m->old_footer.flags;
2445 		m->footer.sig = 0;
2446 	}
2447 
2448 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2449 	     m, front_len, m->footer.front_crc, middle_len,
2450 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2451 
2452 	/* crc ok? */
2453 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2454 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2455 		       m, con->in_front_crc, m->footer.front_crc);
2456 		return -EBADMSG;
2457 	}
2458 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2459 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2460 		       m, con->in_middle_crc, m->footer.middle_crc);
2461 		return -EBADMSG;
2462 	}
2463 	if (do_datacrc &&
2464 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2465 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2466 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2467 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2468 		return -EBADMSG;
2469 	}
2470 
2471 	if (need_sign && con->ops->check_message_signature &&
2472 	    con->ops->check_message_signature(m)) {
2473 		pr_err("read_partial_message %p signature check failed\n", m);
2474 		return -EBADMSG;
2475 	}
2476 
2477 	return 1; /* done! */
2478 }
2479 
2480 /*
2481  * Process message.  This happens in the worker thread.  The callback should
2482  * be careful not to do anything that waits on other incoming messages or it
2483  * may deadlock.
2484  */
2485 static void process_message(struct ceph_connection *con)
2486 {
2487 	struct ceph_msg *msg = con->in_msg;
2488 
2489 	BUG_ON(con->in_msg->con != con);
2490 	con->in_msg = NULL;
2491 
2492 	/* if first message, set peer_name */
2493 	if (con->peer_name.type == 0)
2494 		con->peer_name = msg->hdr.src;
2495 
2496 	con->in_seq++;
2497 	mutex_unlock(&con->mutex);
2498 
2499 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2500 	     msg, le64_to_cpu(msg->hdr.seq),
2501 	     ENTITY_NAME(msg->hdr.src),
2502 	     le16_to_cpu(msg->hdr.type),
2503 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2504 	     le32_to_cpu(msg->hdr.front_len),
2505 	     le32_to_cpu(msg->hdr.data_len),
2506 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2507 	con->ops->dispatch(con, msg);
2508 
2509 	mutex_lock(&con->mutex);
2510 }
2511 
2512 static int read_keepalive_ack(struct ceph_connection *con)
2513 {
2514 	struct ceph_timespec ceph_ts;
2515 	size_t size = sizeof(ceph_ts);
2516 	int ret = read_partial(con, size, size, &ceph_ts);
2517 	if (ret <= 0)
2518 		return ret;
2519 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2520 	prepare_read_tag(con);
2521 	return 1;
2522 }
2523 
2524 /*
2525  * Write something to the socket.  Called in a worker thread when the
2526  * socket appears to be writeable and we have something ready to send.
2527  */
2528 static int try_write(struct ceph_connection *con)
2529 {
2530 	int ret = 1;
2531 
2532 	dout("try_write start %p state %lu\n", con, con->state);
2533 
2534 more:
2535 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2536 
2537 	/* open the socket first? */
2538 	if (con->state == CON_STATE_PREOPEN) {
2539 		BUG_ON(con->sock);
2540 		con->state = CON_STATE_CONNECTING;
2541 
2542 		con_out_kvec_reset(con);
2543 		prepare_write_banner(con);
2544 		prepare_read_banner(con);
2545 
2546 		BUG_ON(con->in_msg);
2547 		con->in_tag = CEPH_MSGR_TAG_READY;
2548 		dout("try_write initiating connect on %p new state %lu\n",
2549 		     con, con->state);
2550 		ret = ceph_tcp_connect(con);
2551 		if (ret < 0) {
2552 			con->error_msg = "connect error";
2553 			goto out;
2554 		}
2555 	}
2556 
2557 more_kvec:
2558 	/* kvec data queued? */
2559 	if (con->out_kvec_left) {
2560 		ret = write_partial_kvec(con);
2561 		if (ret <= 0)
2562 			goto out;
2563 	}
2564 	if (con->out_skip) {
2565 		ret = write_partial_skip(con);
2566 		if (ret <= 0)
2567 			goto out;
2568 	}
2569 
2570 	/* msg pages? */
2571 	if (con->out_msg) {
2572 		if (con->out_msg_done) {
2573 			ceph_msg_put(con->out_msg);
2574 			con->out_msg = NULL;   /* we're done with this one */
2575 			goto do_next;
2576 		}
2577 
2578 		ret = write_partial_message_data(con);
2579 		if (ret == 1)
2580 			goto more_kvec;  /* we need to send the footer, too! */
2581 		if (ret == 0)
2582 			goto out;
2583 		if (ret < 0) {
2584 			dout("try_write write_partial_message_data err %d\n",
2585 			     ret);
2586 			goto out;
2587 		}
2588 	}
2589 
2590 do_next:
2591 	if (con->state == CON_STATE_OPEN) {
2592 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2593 			prepare_write_keepalive(con);
2594 			goto more;
2595 		}
2596 		/* is anything else pending? */
2597 		if (!list_empty(&con->out_queue)) {
2598 			prepare_write_message(con);
2599 			goto more;
2600 		}
2601 		if (con->in_seq > con->in_seq_acked) {
2602 			prepare_write_ack(con);
2603 			goto more;
2604 		}
2605 	}
2606 
2607 	/* Nothing to do! */
2608 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2609 	dout("try_write nothing else to write.\n");
2610 	ret = 0;
2611 out:
2612 	dout("try_write done on %p ret %d\n", con, ret);
2613 	return ret;
2614 }
2615 
2616 
2617 
2618 /*
2619  * Read what we can from the socket.
2620  */
2621 static int try_read(struct ceph_connection *con)
2622 {
2623 	int ret = -1;
2624 
2625 more:
2626 	dout("try_read start on %p state %lu\n", con, con->state);
2627 	if (con->state != CON_STATE_CONNECTING &&
2628 	    con->state != CON_STATE_NEGOTIATING &&
2629 	    con->state != CON_STATE_OPEN)
2630 		return 0;
2631 
2632 	BUG_ON(!con->sock);
2633 
2634 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2635 	     con->in_base_pos);
2636 
2637 	if (con->state == CON_STATE_CONNECTING) {
2638 		dout("try_read connecting\n");
2639 		ret = read_partial_banner(con);
2640 		if (ret <= 0)
2641 			goto out;
2642 		ret = process_banner(con);
2643 		if (ret < 0)
2644 			goto out;
2645 
2646 		con->state = CON_STATE_NEGOTIATING;
2647 
2648 		/*
2649 		 * Received banner is good, exchange connection info.
2650 		 * Do not reset out_kvec, as sending our banner raced
2651 		 * with receiving peer banner after connect completed.
2652 		 */
2653 		ret = prepare_write_connect(con);
2654 		if (ret < 0)
2655 			goto out;
2656 		prepare_read_connect(con);
2657 
2658 		/* Send connection info before awaiting response */
2659 		goto out;
2660 	}
2661 
2662 	if (con->state == CON_STATE_NEGOTIATING) {
2663 		dout("try_read negotiating\n");
2664 		ret = read_partial_connect(con);
2665 		if (ret <= 0)
2666 			goto out;
2667 		ret = process_connect(con);
2668 		if (ret < 0)
2669 			goto out;
2670 		goto more;
2671 	}
2672 
2673 	WARN_ON(con->state != CON_STATE_OPEN);
2674 
2675 	if (con->in_base_pos < 0) {
2676 		/*
2677 		 * skipping + discarding content.
2678 		 *
2679 		 * FIXME: there must be a better way to do this!
2680 		 */
2681 		static char buf[SKIP_BUF_SIZE];
2682 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2683 
2684 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2685 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2686 		if (ret <= 0)
2687 			goto out;
2688 		con->in_base_pos += ret;
2689 		if (con->in_base_pos)
2690 			goto more;
2691 	}
2692 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2693 		/*
2694 		 * what's next?
2695 		 */
2696 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2697 		if (ret <= 0)
2698 			goto out;
2699 		dout("try_read got tag %d\n", (int)con->in_tag);
2700 		switch (con->in_tag) {
2701 		case CEPH_MSGR_TAG_MSG:
2702 			prepare_read_message(con);
2703 			break;
2704 		case CEPH_MSGR_TAG_ACK:
2705 			prepare_read_ack(con);
2706 			break;
2707 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2708 			prepare_read_keepalive_ack(con);
2709 			break;
2710 		case CEPH_MSGR_TAG_CLOSE:
2711 			con_close_socket(con);
2712 			con->state = CON_STATE_CLOSED;
2713 			goto out;
2714 		default:
2715 			goto bad_tag;
2716 		}
2717 	}
2718 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2719 		ret = read_partial_message(con);
2720 		if (ret <= 0) {
2721 			switch (ret) {
2722 			case -EBADMSG:
2723 				con->error_msg = "bad crc/signature";
2724 				/* fall through */
2725 			case -EBADE:
2726 				ret = -EIO;
2727 				break;
2728 			case -EIO:
2729 				con->error_msg = "io error";
2730 				break;
2731 			}
2732 			goto out;
2733 		}
2734 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2735 			goto more;
2736 		process_message(con);
2737 		if (con->state == CON_STATE_OPEN)
2738 			prepare_read_tag(con);
2739 		goto more;
2740 	}
2741 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2742 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2743 		/*
2744 		 * the final handshake seq exchange is semantically
2745 		 * equivalent to an ACK
2746 		 */
2747 		ret = read_partial_ack(con);
2748 		if (ret <= 0)
2749 			goto out;
2750 		process_ack(con);
2751 		goto more;
2752 	}
2753 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2754 		ret = read_keepalive_ack(con);
2755 		if (ret <= 0)
2756 			goto out;
2757 		goto more;
2758 	}
2759 
2760 out:
2761 	dout("try_read done on %p ret %d\n", con, ret);
2762 	return ret;
2763 
2764 bad_tag:
2765 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2766 	con->error_msg = "protocol error, garbage tag";
2767 	ret = -1;
2768 	goto out;
2769 }
2770 
2771 
2772 /*
2773  * Atomically queue work on a connection after the specified delay.
2774  * Bump @con reference to avoid races with connection teardown.
2775  * Returns 0 if work was queued, or an error code otherwise.
2776  */
2777 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2778 {
2779 	if (!con->ops->get(con)) {
2780 		dout("%s %p ref count 0\n", __func__, con);
2781 		return -ENOENT;
2782 	}
2783 
2784 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2785 		dout("%s %p - already queued\n", __func__, con);
2786 		con->ops->put(con);
2787 		return -EBUSY;
2788 	}
2789 
2790 	dout("%s %p %lu\n", __func__, con, delay);
2791 	return 0;
2792 }
2793 
2794 static void queue_con(struct ceph_connection *con)
2795 {
2796 	(void) queue_con_delay(con, 0);
2797 }
2798 
2799 static void cancel_con(struct ceph_connection *con)
2800 {
2801 	if (cancel_delayed_work(&con->work)) {
2802 		dout("%s %p\n", __func__, con);
2803 		con->ops->put(con);
2804 	}
2805 }
2806 
2807 static bool con_sock_closed(struct ceph_connection *con)
2808 {
2809 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2810 		return false;
2811 
2812 #define CASE(x)								\
2813 	case CON_STATE_ ## x:						\
2814 		con->error_msg = "socket closed (con state " #x ")";	\
2815 		break;
2816 
2817 	switch (con->state) {
2818 	CASE(CLOSED);
2819 	CASE(PREOPEN);
2820 	CASE(CONNECTING);
2821 	CASE(NEGOTIATING);
2822 	CASE(OPEN);
2823 	CASE(STANDBY);
2824 	default:
2825 		pr_warn("%s con %p unrecognized state %lu\n",
2826 			__func__, con, con->state);
2827 		con->error_msg = "unrecognized con state";
2828 		BUG();
2829 		break;
2830 	}
2831 #undef CASE
2832 
2833 	return true;
2834 }
2835 
2836 static bool con_backoff(struct ceph_connection *con)
2837 {
2838 	int ret;
2839 
2840 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2841 		return false;
2842 
2843 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2844 	if (ret) {
2845 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2846 			con, con->delay);
2847 		BUG_ON(ret == -ENOENT);
2848 		con_flag_set(con, CON_FLAG_BACKOFF);
2849 	}
2850 
2851 	return true;
2852 }
2853 
2854 /* Finish fault handling; con->mutex must *not* be held here */
2855 
2856 static void con_fault_finish(struct ceph_connection *con)
2857 {
2858 	dout("%s %p\n", __func__, con);
2859 
2860 	/*
2861 	 * in case we faulted due to authentication, invalidate our
2862 	 * current tickets so that we can get new ones.
2863 	 */
2864 	if (con->auth_retry) {
2865 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2866 		if (con->ops->invalidate_authorizer)
2867 			con->ops->invalidate_authorizer(con);
2868 		con->auth_retry = 0;
2869 	}
2870 
2871 	if (con->ops->fault)
2872 		con->ops->fault(con);
2873 }
2874 
2875 /*
2876  * Do some work on a connection.  Drop a connection ref when we're done.
2877  */
2878 static void ceph_con_workfn(struct work_struct *work)
2879 {
2880 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2881 						   work.work);
2882 	bool fault;
2883 
2884 	mutex_lock(&con->mutex);
2885 	while (true) {
2886 		int ret;
2887 
2888 		if ((fault = con_sock_closed(con))) {
2889 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2890 			break;
2891 		}
2892 		if (con_backoff(con)) {
2893 			dout("%s: con %p BACKOFF\n", __func__, con);
2894 			break;
2895 		}
2896 		if (con->state == CON_STATE_STANDBY) {
2897 			dout("%s: con %p STANDBY\n", __func__, con);
2898 			break;
2899 		}
2900 		if (con->state == CON_STATE_CLOSED) {
2901 			dout("%s: con %p CLOSED\n", __func__, con);
2902 			BUG_ON(con->sock);
2903 			break;
2904 		}
2905 		if (con->state == CON_STATE_PREOPEN) {
2906 			dout("%s: con %p PREOPEN\n", __func__, con);
2907 			BUG_ON(con->sock);
2908 		}
2909 
2910 		ret = try_read(con);
2911 		if (ret < 0) {
2912 			if (ret == -EAGAIN)
2913 				continue;
2914 			if (!con->error_msg)
2915 				con->error_msg = "socket error on read";
2916 			fault = true;
2917 			break;
2918 		}
2919 
2920 		ret = try_write(con);
2921 		if (ret < 0) {
2922 			if (ret == -EAGAIN)
2923 				continue;
2924 			if (!con->error_msg)
2925 				con->error_msg = "socket error on write";
2926 			fault = true;
2927 		}
2928 
2929 		break;	/* If we make it to here, we're done */
2930 	}
2931 	if (fault)
2932 		con_fault(con);
2933 	mutex_unlock(&con->mutex);
2934 
2935 	if (fault)
2936 		con_fault_finish(con);
2937 
2938 	con->ops->put(con);
2939 }
2940 
2941 /*
2942  * Generic error/fault handler.  A retry mechanism is used with
2943  * exponential backoff
2944  */
2945 static void con_fault(struct ceph_connection *con)
2946 {
2947 	dout("fault %p state %lu to peer %s\n",
2948 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2949 
2950 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2951 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2952 	con->error_msg = NULL;
2953 
2954 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2955 	       con->state != CON_STATE_NEGOTIATING &&
2956 	       con->state != CON_STATE_OPEN);
2957 
2958 	con_close_socket(con);
2959 
2960 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2961 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2962 		con->state = CON_STATE_CLOSED;
2963 		return;
2964 	}
2965 
2966 	if (con->in_msg) {
2967 		BUG_ON(con->in_msg->con != con);
2968 		ceph_msg_put(con->in_msg);
2969 		con->in_msg = NULL;
2970 	}
2971 
2972 	/* Requeue anything that hasn't been acked */
2973 	list_splice_init(&con->out_sent, &con->out_queue);
2974 
2975 	/* If there are no messages queued or keepalive pending, place
2976 	 * the connection in a STANDBY state */
2977 	if (list_empty(&con->out_queue) &&
2978 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2979 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2980 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2981 		con->state = CON_STATE_STANDBY;
2982 	} else {
2983 		/* retry after a delay. */
2984 		con->state = CON_STATE_PREOPEN;
2985 		if (con->delay == 0)
2986 			con->delay = BASE_DELAY_INTERVAL;
2987 		else if (con->delay < MAX_DELAY_INTERVAL)
2988 			con->delay *= 2;
2989 		con_flag_set(con, CON_FLAG_BACKOFF);
2990 		queue_con(con);
2991 	}
2992 }
2993 
2994 
2995 
2996 /*
2997  * initialize a new messenger instance
2998  */
2999 void ceph_messenger_init(struct ceph_messenger *msgr,
3000 			 struct ceph_entity_addr *myaddr)
3001 {
3002 	spin_lock_init(&msgr->global_seq_lock);
3003 
3004 	if (myaddr)
3005 		msgr->inst.addr = *myaddr;
3006 
3007 	/* select a random nonce */
3008 	msgr->inst.addr.type = 0;
3009 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3010 	encode_my_addr(msgr);
3011 
3012 	atomic_set(&msgr->stopping, 0);
3013 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3014 
3015 	dout("%s %p\n", __func__, msgr);
3016 }
3017 EXPORT_SYMBOL(ceph_messenger_init);
3018 
3019 void ceph_messenger_fini(struct ceph_messenger *msgr)
3020 {
3021 	put_net(read_pnet(&msgr->net));
3022 }
3023 EXPORT_SYMBOL(ceph_messenger_fini);
3024 
3025 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3026 {
3027 	if (msg->con)
3028 		msg->con->ops->put(msg->con);
3029 
3030 	msg->con = con ? con->ops->get(con) : NULL;
3031 	BUG_ON(msg->con != con);
3032 }
3033 
3034 static void clear_standby(struct ceph_connection *con)
3035 {
3036 	/* come back from STANDBY? */
3037 	if (con->state == CON_STATE_STANDBY) {
3038 		dout("clear_standby %p and ++connect_seq\n", con);
3039 		con->state = CON_STATE_PREOPEN;
3040 		con->connect_seq++;
3041 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3042 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3043 	}
3044 }
3045 
3046 /*
3047  * Queue up an outgoing message on the given connection.
3048  */
3049 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3050 {
3051 	/* set src+dst */
3052 	msg->hdr.src = con->msgr->inst.name;
3053 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3054 	msg->needs_out_seq = true;
3055 
3056 	mutex_lock(&con->mutex);
3057 
3058 	if (con->state == CON_STATE_CLOSED) {
3059 		dout("con_send %p closed, dropping %p\n", con, msg);
3060 		ceph_msg_put(msg);
3061 		mutex_unlock(&con->mutex);
3062 		return;
3063 	}
3064 
3065 	msg_con_set(msg, con);
3066 
3067 	BUG_ON(!list_empty(&msg->list_head));
3068 	list_add_tail(&msg->list_head, &con->out_queue);
3069 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3070 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3071 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3072 	     le32_to_cpu(msg->hdr.front_len),
3073 	     le32_to_cpu(msg->hdr.middle_len),
3074 	     le32_to_cpu(msg->hdr.data_len));
3075 
3076 	clear_standby(con);
3077 	mutex_unlock(&con->mutex);
3078 
3079 	/* if there wasn't anything waiting to send before, queue
3080 	 * new work */
3081 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3082 		queue_con(con);
3083 }
3084 EXPORT_SYMBOL(ceph_con_send);
3085 
3086 /*
3087  * Revoke a message that was previously queued for send
3088  */
3089 void ceph_msg_revoke(struct ceph_msg *msg)
3090 {
3091 	struct ceph_connection *con = msg->con;
3092 
3093 	if (!con) {
3094 		dout("%s msg %p null con\n", __func__, msg);
3095 		return;		/* Message not in our possession */
3096 	}
3097 
3098 	mutex_lock(&con->mutex);
3099 	if (!list_empty(&msg->list_head)) {
3100 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3101 		list_del_init(&msg->list_head);
3102 		msg->hdr.seq = 0;
3103 
3104 		ceph_msg_put(msg);
3105 	}
3106 	if (con->out_msg == msg) {
3107 		BUG_ON(con->out_skip);
3108 		/* footer */
3109 		if (con->out_msg_done) {
3110 			con->out_skip += con_out_kvec_skip(con);
3111 		} else {
3112 			BUG_ON(!msg->data_length);
3113 			con->out_skip += sizeof_footer(con);
3114 		}
3115 		/* data, middle, front */
3116 		if (msg->data_length)
3117 			con->out_skip += msg->cursor.total_resid;
3118 		if (msg->middle)
3119 			con->out_skip += con_out_kvec_skip(con);
3120 		con->out_skip += con_out_kvec_skip(con);
3121 
3122 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3123 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3124 		msg->hdr.seq = 0;
3125 		con->out_msg = NULL;
3126 		ceph_msg_put(msg);
3127 	}
3128 
3129 	mutex_unlock(&con->mutex);
3130 }
3131 
3132 /*
3133  * Revoke a message that we may be reading data into
3134  */
3135 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3136 {
3137 	struct ceph_connection *con = msg->con;
3138 
3139 	if (!con) {
3140 		dout("%s msg %p null con\n", __func__, msg);
3141 		return;		/* Message not in our possession */
3142 	}
3143 
3144 	mutex_lock(&con->mutex);
3145 	if (con->in_msg == msg) {
3146 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3147 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3148 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3149 
3150 		/* skip rest of message */
3151 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3152 		con->in_base_pos = con->in_base_pos -
3153 				sizeof(struct ceph_msg_header) -
3154 				front_len -
3155 				middle_len -
3156 				data_len -
3157 				sizeof(struct ceph_msg_footer);
3158 		ceph_msg_put(con->in_msg);
3159 		con->in_msg = NULL;
3160 		con->in_tag = CEPH_MSGR_TAG_READY;
3161 		con->in_seq++;
3162 	} else {
3163 		dout("%s %p in_msg %p msg %p no-op\n",
3164 		     __func__, con, con->in_msg, msg);
3165 	}
3166 	mutex_unlock(&con->mutex);
3167 }
3168 
3169 /*
3170  * Queue a keepalive byte to ensure the tcp connection is alive.
3171  */
3172 void ceph_con_keepalive(struct ceph_connection *con)
3173 {
3174 	dout("con_keepalive %p\n", con);
3175 	mutex_lock(&con->mutex);
3176 	clear_standby(con);
3177 	mutex_unlock(&con->mutex);
3178 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3179 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3180 		queue_con(con);
3181 }
3182 EXPORT_SYMBOL(ceph_con_keepalive);
3183 
3184 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3185 			       unsigned long interval)
3186 {
3187 	if (interval > 0 &&
3188 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3189 		struct timespec now;
3190 		struct timespec ts;
3191 		ktime_get_real_ts(&now);
3192 		jiffies_to_timespec(interval, &ts);
3193 		ts = timespec_add(con->last_keepalive_ack, ts);
3194 		return timespec_compare(&now, &ts) >= 0;
3195 	}
3196 	return false;
3197 }
3198 
3199 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3200 {
3201 	struct ceph_msg_data *data;
3202 
3203 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3204 		return NULL;
3205 
3206 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3207 	if (!data)
3208 		return NULL;
3209 
3210 	data->type = type;
3211 	INIT_LIST_HEAD(&data->links);
3212 
3213 	return data;
3214 }
3215 
3216 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3217 {
3218 	if (!data)
3219 		return;
3220 
3221 	WARN_ON(!list_empty(&data->links));
3222 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3223 		ceph_pagelist_release(data->pagelist);
3224 	kmem_cache_free(ceph_msg_data_cache, data);
3225 }
3226 
3227 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3228 		size_t length, size_t alignment)
3229 {
3230 	struct ceph_msg_data *data;
3231 
3232 	BUG_ON(!pages);
3233 	BUG_ON(!length);
3234 
3235 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3236 	BUG_ON(!data);
3237 	data->pages = pages;
3238 	data->length = length;
3239 	data->alignment = alignment & ~PAGE_MASK;
3240 
3241 	list_add_tail(&data->links, &msg->data);
3242 	msg->data_length += length;
3243 }
3244 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3245 
3246 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3247 				struct ceph_pagelist *pagelist)
3248 {
3249 	struct ceph_msg_data *data;
3250 
3251 	BUG_ON(!pagelist);
3252 	BUG_ON(!pagelist->length);
3253 
3254 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3255 	BUG_ON(!data);
3256 	data->pagelist = pagelist;
3257 
3258 	list_add_tail(&data->links, &msg->data);
3259 	msg->data_length += pagelist->length;
3260 }
3261 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3262 
3263 #ifdef	CONFIG_BLOCK
3264 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3265 		size_t length)
3266 {
3267 	struct ceph_msg_data *data;
3268 
3269 	BUG_ON(!bio);
3270 
3271 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3272 	BUG_ON(!data);
3273 	data->bio = bio;
3274 	data->bio_length = length;
3275 
3276 	list_add_tail(&data->links, &msg->data);
3277 	msg->data_length += length;
3278 }
3279 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3280 #endif	/* CONFIG_BLOCK */
3281 
3282 /*
3283  * construct a new message with given type, size
3284  * the new msg has a ref count of 1.
3285  */
3286 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3287 			      bool can_fail)
3288 {
3289 	struct ceph_msg *m;
3290 
3291 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3292 	if (m == NULL)
3293 		goto out;
3294 
3295 	m->hdr.type = cpu_to_le16(type);
3296 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3297 	m->hdr.front_len = cpu_to_le32(front_len);
3298 
3299 	INIT_LIST_HEAD(&m->list_head);
3300 	kref_init(&m->kref);
3301 	INIT_LIST_HEAD(&m->data);
3302 
3303 	/* front */
3304 	if (front_len) {
3305 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3306 		if (m->front.iov_base == NULL) {
3307 			dout("ceph_msg_new can't allocate %d bytes\n",
3308 			     front_len);
3309 			goto out2;
3310 		}
3311 	} else {
3312 		m->front.iov_base = NULL;
3313 	}
3314 	m->front_alloc_len = m->front.iov_len = front_len;
3315 
3316 	dout("ceph_msg_new %p front %d\n", m, front_len);
3317 	return m;
3318 
3319 out2:
3320 	ceph_msg_put(m);
3321 out:
3322 	if (!can_fail) {
3323 		pr_err("msg_new can't create type %d front %d\n", type,
3324 		       front_len);
3325 		WARN_ON(1);
3326 	} else {
3327 		dout("msg_new can't create type %d front %d\n", type,
3328 		     front_len);
3329 	}
3330 	return NULL;
3331 }
3332 EXPORT_SYMBOL(ceph_msg_new);
3333 
3334 /*
3335  * Allocate "middle" portion of a message, if it is needed and wasn't
3336  * allocated by alloc_msg.  This allows us to read a small fixed-size
3337  * per-type header in the front and then gracefully fail (i.e.,
3338  * propagate the error to the caller based on info in the front) when
3339  * the middle is too large.
3340  */
3341 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3342 {
3343 	int type = le16_to_cpu(msg->hdr.type);
3344 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3345 
3346 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3347 	     ceph_msg_type_name(type), middle_len);
3348 	BUG_ON(!middle_len);
3349 	BUG_ON(msg->middle);
3350 
3351 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3352 	if (!msg->middle)
3353 		return -ENOMEM;
3354 	return 0;
3355 }
3356 
3357 /*
3358  * Allocate a message for receiving an incoming message on a
3359  * connection, and save the result in con->in_msg.  Uses the
3360  * connection's private alloc_msg op if available.
3361  *
3362  * Returns 0 on success, or a negative error code.
3363  *
3364  * On success, if we set *skip = 1:
3365  *  - the next message should be skipped and ignored.
3366  *  - con->in_msg == NULL
3367  * or if we set *skip = 0:
3368  *  - con->in_msg is non-null.
3369  * On error (ENOMEM, EAGAIN, ...),
3370  *  - con->in_msg == NULL
3371  */
3372 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3373 {
3374 	struct ceph_msg_header *hdr = &con->in_hdr;
3375 	int middle_len = le32_to_cpu(hdr->middle_len);
3376 	struct ceph_msg *msg;
3377 	int ret = 0;
3378 
3379 	BUG_ON(con->in_msg != NULL);
3380 	BUG_ON(!con->ops->alloc_msg);
3381 
3382 	mutex_unlock(&con->mutex);
3383 	msg = con->ops->alloc_msg(con, hdr, skip);
3384 	mutex_lock(&con->mutex);
3385 	if (con->state != CON_STATE_OPEN) {
3386 		if (msg)
3387 			ceph_msg_put(msg);
3388 		return -EAGAIN;
3389 	}
3390 	if (msg) {
3391 		BUG_ON(*skip);
3392 		msg_con_set(msg, con);
3393 		con->in_msg = msg;
3394 	} else {
3395 		/*
3396 		 * Null message pointer means either we should skip
3397 		 * this message or we couldn't allocate memory.  The
3398 		 * former is not an error.
3399 		 */
3400 		if (*skip)
3401 			return 0;
3402 
3403 		con->error_msg = "error allocating memory for incoming message";
3404 		return -ENOMEM;
3405 	}
3406 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3407 
3408 	if (middle_len && !con->in_msg->middle) {
3409 		ret = ceph_alloc_middle(con, con->in_msg);
3410 		if (ret < 0) {
3411 			ceph_msg_put(con->in_msg);
3412 			con->in_msg = NULL;
3413 		}
3414 	}
3415 
3416 	return ret;
3417 }
3418 
3419 
3420 /*
3421  * Free a generically kmalloc'd message.
3422  */
3423 static void ceph_msg_free(struct ceph_msg *m)
3424 {
3425 	dout("%s %p\n", __func__, m);
3426 	kvfree(m->front.iov_base);
3427 	kmem_cache_free(ceph_msg_cache, m);
3428 }
3429 
3430 static void ceph_msg_release(struct kref *kref)
3431 {
3432 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3433 	struct ceph_msg_data *data, *next;
3434 
3435 	dout("%s %p\n", __func__, m);
3436 	WARN_ON(!list_empty(&m->list_head));
3437 
3438 	msg_con_set(m, NULL);
3439 
3440 	/* drop middle, data, if any */
3441 	if (m->middle) {
3442 		ceph_buffer_put(m->middle);
3443 		m->middle = NULL;
3444 	}
3445 
3446 	list_for_each_entry_safe(data, next, &m->data, links) {
3447 		list_del_init(&data->links);
3448 		ceph_msg_data_destroy(data);
3449 	}
3450 	m->data_length = 0;
3451 
3452 	if (m->pool)
3453 		ceph_msgpool_put(m->pool, m);
3454 	else
3455 		ceph_msg_free(m);
3456 }
3457 
3458 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3459 {
3460 	dout("%s %p (was %d)\n", __func__, msg,
3461 	     kref_read(&msg->kref));
3462 	kref_get(&msg->kref);
3463 	return msg;
3464 }
3465 EXPORT_SYMBOL(ceph_msg_get);
3466 
3467 void ceph_msg_put(struct ceph_msg *msg)
3468 {
3469 	dout("%s %p (was %d)\n", __func__, msg,
3470 	     kref_read(&msg->kref));
3471 	kref_put(&msg->kref, ceph_msg_release);
3472 }
3473 EXPORT_SYMBOL(ceph_msg_put);
3474 
3475 void ceph_msg_dump(struct ceph_msg *msg)
3476 {
3477 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3478 		 msg->front_alloc_len, msg->data_length);
3479 	print_hex_dump(KERN_DEBUG, "header: ",
3480 		       DUMP_PREFIX_OFFSET, 16, 1,
3481 		       &msg->hdr, sizeof(msg->hdr), true);
3482 	print_hex_dump(KERN_DEBUG, " front: ",
3483 		       DUMP_PREFIX_OFFSET, 16, 1,
3484 		       msg->front.iov_base, msg->front.iov_len, true);
3485 	if (msg->middle)
3486 		print_hex_dump(KERN_DEBUG, "middle: ",
3487 			       DUMP_PREFIX_OFFSET, 16, 1,
3488 			       msg->middle->vec.iov_base,
3489 			       msg->middle->vec.iov_len, true);
3490 	print_hex_dump(KERN_DEBUG, "footer: ",
3491 		       DUMP_PREFIX_OFFSET, 16, 1,
3492 		       &msg->footer, sizeof(msg->footer), true);
3493 }
3494 EXPORT_SYMBOL(ceph_msg_dump);
3495