xref: /openbmc/linux/net/ceph/messenger.c (revision b802fb99)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef	CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif	/* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25 
26 /*
27  * Ceph uses the messenger to exchange ceph_msg messages with other
28  * hosts in the system.  The messenger provides ordered and reliable
29  * delivery.  We tolerate TCP disconnects by reconnecting (with
30  * exponential backoff) in the case of a fault (disconnection, bad
31  * crc, protocol error).  Acks allow sent messages to be discarded by
32  * the sender.
33  */
34 
35 /*
36  * We track the state of the socket on a given connection using
37  * values defined below.  The transition to a new socket state is
38  * handled by a function which verifies we aren't coming from an
39  * unexpected state.
40  *
41  *      --------
42  *      | NEW* |  transient initial state
43  *      --------
44  *          | con_sock_state_init()
45  *          v
46  *      ----------
47  *      | CLOSED |  initialized, but no socket (and no
48  *      ----------  TCP connection)
49  *       ^      \
50  *       |       \ con_sock_state_connecting()
51  *       |        ----------------------
52  *       |                              \
53  *       + con_sock_state_closed()       \
54  *       |+---------------------------    \
55  *       | \                          \    \
56  *       |  -----------                \    \
57  *       |  | CLOSING |  socket event;  \    \
58  *       |  -----------  await close     \    \
59  *       |       ^                        \   |
60  *       |       |                         \  |
61  *       |       + con_sock_state_closing() \ |
62  *       |      / \                         | |
63  *       |     /   ---------------          | |
64  *       |    /                   \         v v
65  *       |   /                    --------------
66  *       |  /    -----------------| CONNECTING |  socket created, TCP
67  *       |  |   /                 --------------  connect initiated
68  *       |  |   | con_sock_state_connected()
69  *       |  |   v
70  *      -------------
71  *      | CONNECTED |  TCP connection established
72  *      -------------
73  *
74  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75  */
76 
77 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
82 
83 /*
84  * connection states
85  */
86 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
87 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
92 
93 /*
94  * ceph_connection flag bits
95  */
96 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
97 				       * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
102 
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 	switch (con_flag) {
106 	case CON_FLAG_LOSSYTX:
107 	case CON_FLAG_KEEPALIVE_PENDING:
108 	case CON_FLAG_WRITE_PENDING:
109 	case CON_FLAG_SOCK_CLOSED:
110 	case CON_FLAG_BACKOFF:
111 		return true;
112 	default:
113 		return false;
114 	}
115 }
116 
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 	BUG_ON(!con_flag_valid(con_flag));
120 
121 	clear_bit(con_flag, &con->flags);
122 }
123 
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 	BUG_ON(!con_flag_valid(con_flag));
127 
128 	set_bit(con_flag, &con->flags);
129 }
130 
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 	BUG_ON(!con_flag_valid(con_flag));
134 
135 	return test_bit(con_flag, &con->flags);
136 }
137 
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 					unsigned long con_flag)
140 {
141 	BUG_ON(!con_flag_valid(con_flag));
142 
143 	return test_and_clear_bit(con_flag, &con->flags);
144 }
145 
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 					unsigned long con_flag)
148 {
149 	BUG_ON(!con_flag_valid(con_flag));
150 
151 	return test_and_set_bit(con_flag, &con->flags);
152 }
153 
154 /* Slab caches for frequently-allocated structures */
155 
156 static struct kmem_cache	*ceph_msg_cache;
157 static struct kmem_cache	*ceph_msg_data_cache;
158 
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164 
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168 
169 /*
170  * When skipping (ignoring) a block of input we read it into a "skip
171  * buffer," which is this many bytes in size.
172  */
173 #define SKIP_BUF_SIZE	1024
174 
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
185 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;		/* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 	int i;
197 	char *s;
198 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 	s = addr_str[i];
203 
204 	switch (ss->ss_family) {
205 	case AF_INET:
206 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 			 ntohs(in4->sin_port));
208 		break;
209 
210 	case AF_INET6:
211 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 			 ntohs(in6->sin6_port));
213 		break;
214 
215 	default:
216 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 			 ss->ss_family);
218 	}
219 
220 	return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 	ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237 	BUG_ON(ceph_msg_cache);
238 	ceph_msg_cache = kmem_cache_create("ceph_msg",
239 					sizeof (struct ceph_msg),
240 					__alignof__(struct ceph_msg), 0, NULL);
241 
242 	if (!ceph_msg_cache)
243 		return -ENOMEM;
244 
245 	BUG_ON(ceph_msg_data_cache);
246 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 					sizeof (struct ceph_msg_data),
248 					__alignof__(struct ceph_msg_data),
249 					0, NULL);
250 	if (ceph_msg_data_cache)
251 		return 0;
252 
253 	kmem_cache_destroy(ceph_msg_cache);
254 	ceph_msg_cache = NULL;
255 
256 	return -ENOMEM;
257 }
258 
259 static void ceph_msgr_slab_exit(void)
260 {
261 	BUG_ON(!ceph_msg_data_cache);
262 	kmem_cache_destroy(ceph_msg_data_cache);
263 	ceph_msg_data_cache = NULL;
264 
265 	BUG_ON(!ceph_msg_cache);
266 	kmem_cache_destroy(ceph_msg_cache);
267 	ceph_msg_cache = NULL;
268 }
269 
270 static void _ceph_msgr_exit(void)
271 {
272 	if (ceph_msgr_wq) {
273 		destroy_workqueue(ceph_msgr_wq);
274 		ceph_msgr_wq = NULL;
275 	}
276 
277 	BUG_ON(zero_page == NULL);
278 	page_cache_release(zero_page);
279 	zero_page = NULL;
280 
281 	ceph_msgr_slab_exit();
282 }
283 
284 int ceph_msgr_init(void)
285 {
286 	if (ceph_msgr_slab_init())
287 		return -ENOMEM;
288 
289 	BUG_ON(zero_page != NULL);
290 	zero_page = ZERO_PAGE(0);
291 	page_cache_get(zero_page);
292 
293 	/*
294 	 * The number of active work items is limited by the number of
295 	 * connections, so leave @max_active at default.
296 	 */
297 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
298 	if (ceph_msgr_wq)
299 		return 0;
300 
301 	pr_err("msgr_init failed to create workqueue\n");
302 	_ceph_msgr_exit();
303 
304 	return -ENOMEM;
305 }
306 EXPORT_SYMBOL(ceph_msgr_init);
307 
308 void ceph_msgr_exit(void)
309 {
310 	BUG_ON(ceph_msgr_wq == NULL);
311 
312 	_ceph_msgr_exit();
313 }
314 EXPORT_SYMBOL(ceph_msgr_exit);
315 
316 void ceph_msgr_flush(void)
317 {
318 	flush_workqueue(ceph_msgr_wq);
319 }
320 EXPORT_SYMBOL(ceph_msgr_flush);
321 
322 /* Connection socket state transition functions */
323 
324 static void con_sock_state_init(struct ceph_connection *con)
325 {
326 	int old_state;
327 
328 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
329 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
330 		printk("%s: unexpected old state %d\n", __func__, old_state);
331 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332 	     CON_SOCK_STATE_CLOSED);
333 }
334 
335 static void con_sock_state_connecting(struct ceph_connection *con)
336 {
337 	int old_state;
338 
339 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
340 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
341 		printk("%s: unexpected old state %d\n", __func__, old_state);
342 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
343 	     CON_SOCK_STATE_CONNECTING);
344 }
345 
346 static void con_sock_state_connected(struct ceph_connection *con)
347 {
348 	int old_state;
349 
350 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
351 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
352 		printk("%s: unexpected old state %d\n", __func__, old_state);
353 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
354 	     CON_SOCK_STATE_CONNECTED);
355 }
356 
357 static void con_sock_state_closing(struct ceph_connection *con)
358 {
359 	int old_state;
360 
361 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
362 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
363 			old_state != CON_SOCK_STATE_CONNECTED &&
364 			old_state != CON_SOCK_STATE_CLOSING))
365 		printk("%s: unexpected old state %d\n", __func__, old_state);
366 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
367 	     CON_SOCK_STATE_CLOSING);
368 }
369 
370 static void con_sock_state_closed(struct ceph_connection *con)
371 {
372 	int old_state;
373 
374 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
375 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
376 		    old_state != CON_SOCK_STATE_CLOSING &&
377 		    old_state != CON_SOCK_STATE_CONNECTING &&
378 		    old_state != CON_SOCK_STATE_CLOSED))
379 		printk("%s: unexpected old state %d\n", __func__, old_state);
380 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
381 	     CON_SOCK_STATE_CLOSED);
382 }
383 
384 /*
385  * socket callback functions
386  */
387 
388 /* data available on socket, or listen socket received a connect */
389 static void ceph_sock_data_ready(struct sock *sk)
390 {
391 	struct ceph_connection *con = sk->sk_user_data;
392 	if (atomic_read(&con->msgr->stopping)) {
393 		return;
394 	}
395 
396 	if (sk->sk_state != TCP_CLOSE_WAIT) {
397 		dout("%s on %p state = %lu, queueing work\n", __func__,
398 		     con, con->state);
399 		queue_con(con);
400 	}
401 }
402 
403 /* socket has buffer space for writing */
404 static void ceph_sock_write_space(struct sock *sk)
405 {
406 	struct ceph_connection *con = sk->sk_user_data;
407 
408 	/* only queue to workqueue if there is data we want to write,
409 	 * and there is sufficient space in the socket buffer to accept
410 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
411 	 * doesn't get called again until try_write() fills the socket
412 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
413 	 * and net/core/stream.c:sk_stream_write_space().
414 	 */
415 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
416 		if (sk_stream_is_writeable(sk)) {
417 			dout("%s %p queueing write work\n", __func__, con);
418 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
419 			queue_con(con);
420 		}
421 	} else {
422 		dout("%s %p nothing to write\n", __func__, con);
423 	}
424 }
425 
426 /* socket's state has changed */
427 static void ceph_sock_state_change(struct sock *sk)
428 {
429 	struct ceph_connection *con = sk->sk_user_data;
430 
431 	dout("%s %p state = %lu sk_state = %u\n", __func__,
432 	     con, con->state, sk->sk_state);
433 
434 	switch (sk->sk_state) {
435 	case TCP_CLOSE:
436 		dout("%s TCP_CLOSE\n", __func__);
437 	case TCP_CLOSE_WAIT:
438 		dout("%s TCP_CLOSE_WAIT\n", __func__);
439 		con_sock_state_closing(con);
440 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
441 		queue_con(con);
442 		break;
443 	case TCP_ESTABLISHED:
444 		dout("%s TCP_ESTABLISHED\n", __func__);
445 		con_sock_state_connected(con);
446 		queue_con(con);
447 		break;
448 	default:	/* Everything else is uninteresting */
449 		break;
450 	}
451 }
452 
453 /*
454  * set up socket callbacks
455  */
456 static void set_sock_callbacks(struct socket *sock,
457 			       struct ceph_connection *con)
458 {
459 	struct sock *sk = sock->sk;
460 	sk->sk_user_data = con;
461 	sk->sk_data_ready = ceph_sock_data_ready;
462 	sk->sk_write_space = ceph_sock_write_space;
463 	sk->sk_state_change = ceph_sock_state_change;
464 }
465 
466 
467 /*
468  * socket helpers
469  */
470 
471 /*
472  * initiate connection to a remote socket.
473  */
474 static int ceph_tcp_connect(struct ceph_connection *con)
475 {
476 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
477 	struct socket *sock;
478 	int ret;
479 
480 	BUG_ON(con->sock);
481 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
482 			       SOCK_STREAM, IPPROTO_TCP, &sock);
483 	if (ret)
484 		return ret;
485 	sock->sk->sk_allocation = GFP_NOFS;
486 
487 #ifdef CONFIG_LOCKDEP
488 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490 
491 	set_sock_callbacks(sock, con);
492 
493 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494 
495 	con_sock_state_connecting(con);
496 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 				 O_NONBLOCK);
498 	if (ret == -EINPROGRESS) {
499 		dout("connect %s EINPROGRESS sk_state = %u\n",
500 		     ceph_pr_addr(&con->peer_addr.in_addr),
501 		     sock->sk->sk_state);
502 	} else if (ret < 0) {
503 		pr_err("connect %s error %d\n",
504 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 		sock_release(sock);
506 		return ret;
507 	}
508 
509 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 		int optval = 1;
511 
512 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 					(char *)&optval, sizeof(optval));
514 		if (ret)
515 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 			       ret);
517 	}
518 
519 	con->sock = sock;
520 	return 0;
521 }
522 
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 	struct kvec iov = {buf, len};
526 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 	int r;
528 
529 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
530 	if (r == -EAGAIN)
531 		r = 0;
532 	return r;
533 }
534 
535 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
536 		     int page_offset, size_t length)
537 {
538 	void *kaddr;
539 	int ret;
540 
541 	BUG_ON(page_offset + length > PAGE_SIZE);
542 
543 	kaddr = kmap(page);
544 	BUG_ON(!kaddr);
545 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
546 	kunmap(page);
547 
548 	return ret;
549 }
550 
551 /*
552  * write something.  @more is true if caller will be sending more data
553  * shortly.
554  */
555 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
556 		     size_t kvlen, size_t len, int more)
557 {
558 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
559 	int r;
560 
561 	if (more)
562 		msg.msg_flags |= MSG_MORE;
563 	else
564 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
565 
566 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
567 	if (r == -EAGAIN)
568 		r = 0;
569 	return r;
570 }
571 
572 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
573 		     int offset, size_t size, bool more)
574 {
575 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
576 	int ret;
577 
578 	ret = kernel_sendpage(sock, page, offset, size, flags);
579 	if (ret == -EAGAIN)
580 		ret = 0;
581 
582 	return ret;
583 }
584 
585 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
586 		     int offset, size_t size, bool more)
587 {
588 	int ret;
589 	struct kvec iov;
590 
591 	/* sendpage cannot properly handle pages with page_count == 0,
592 	 * we need to fallback to sendmsg if that's the case */
593 	if (page_count(page) >= 1)
594 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
595 
596 	iov.iov_base = kmap(page) + offset;
597 	iov.iov_len = size;
598 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
599 	kunmap(page);
600 
601 	return ret;
602 }
603 
604 /*
605  * Shutdown/close the socket for the given connection.
606  */
607 static int con_close_socket(struct ceph_connection *con)
608 {
609 	int rc = 0;
610 
611 	dout("con_close_socket on %p sock %p\n", con, con->sock);
612 	if (con->sock) {
613 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
614 		sock_release(con->sock);
615 		con->sock = NULL;
616 	}
617 
618 	/*
619 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
620 	 * independent of the connection mutex, and we could have
621 	 * received a socket close event before we had the chance to
622 	 * shut the socket down.
623 	 */
624 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
625 
626 	con_sock_state_closed(con);
627 	return rc;
628 }
629 
630 /*
631  * Reset a connection.  Discard all incoming and outgoing messages
632  * and clear *_seq state.
633  */
634 static void ceph_msg_remove(struct ceph_msg *msg)
635 {
636 	list_del_init(&msg->list_head);
637 
638 	ceph_msg_put(msg);
639 }
640 static void ceph_msg_remove_list(struct list_head *head)
641 {
642 	while (!list_empty(head)) {
643 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
644 							list_head);
645 		ceph_msg_remove(msg);
646 	}
647 }
648 
649 static void reset_connection(struct ceph_connection *con)
650 {
651 	/* reset connection, out_queue, msg_ and connect_seq */
652 	/* discard existing out_queue and msg_seq */
653 	dout("reset_connection %p\n", con);
654 	ceph_msg_remove_list(&con->out_queue);
655 	ceph_msg_remove_list(&con->out_sent);
656 
657 	if (con->in_msg) {
658 		BUG_ON(con->in_msg->con != con);
659 		ceph_msg_put(con->in_msg);
660 		con->in_msg = NULL;
661 	}
662 
663 	con->connect_seq = 0;
664 	con->out_seq = 0;
665 	if (con->out_msg) {
666 		BUG_ON(con->out_msg->con != con);
667 		ceph_msg_put(con->out_msg);
668 		con->out_msg = NULL;
669 	}
670 	con->in_seq = 0;
671 	con->in_seq_acked = 0;
672 
673 	con->out_skip = 0;
674 }
675 
676 /*
677  * mark a peer down.  drop any open connections.
678  */
679 void ceph_con_close(struct ceph_connection *con)
680 {
681 	mutex_lock(&con->mutex);
682 	dout("con_close %p peer %s\n", con,
683 	     ceph_pr_addr(&con->peer_addr.in_addr));
684 	con->state = CON_STATE_CLOSED;
685 
686 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
687 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
688 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
689 	con_flag_clear(con, CON_FLAG_BACKOFF);
690 
691 	reset_connection(con);
692 	con->peer_global_seq = 0;
693 	cancel_con(con);
694 	con_close_socket(con);
695 	mutex_unlock(&con->mutex);
696 }
697 EXPORT_SYMBOL(ceph_con_close);
698 
699 /*
700  * Reopen a closed connection, with a new peer address.
701  */
702 void ceph_con_open(struct ceph_connection *con,
703 		   __u8 entity_type, __u64 entity_num,
704 		   struct ceph_entity_addr *addr)
705 {
706 	mutex_lock(&con->mutex);
707 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
708 
709 	WARN_ON(con->state != CON_STATE_CLOSED);
710 	con->state = CON_STATE_PREOPEN;
711 
712 	con->peer_name.type = (__u8) entity_type;
713 	con->peer_name.num = cpu_to_le64(entity_num);
714 
715 	memcpy(&con->peer_addr, addr, sizeof(*addr));
716 	con->delay = 0;      /* reset backoff memory */
717 	mutex_unlock(&con->mutex);
718 	queue_con(con);
719 }
720 EXPORT_SYMBOL(ceph_con_open);
721 
722 /*
723  * return true if this connection ever successfully opened
724  */
725 bool ceph_con_opened(struct ceph_connection *con)
726 {
727 	return con->connect_seq > 0;
728 }
729 
730 /*
731  * initialize a new connection.
732  */
733 void ceph_con_init(struct ceph_connection *con, void *private,
734 	const struct ceph_connection_operations *ops,
735 	struct ceph_messenger *msgr)
736 {
737 	dout("con_init %p\n", con);
738 	memset(con, 0, sizeof(*con));
739 	con->private = private;
740 	con->ops = ops;
741 	con->msgr = msgr;
742 
743 	con_sock_state_init(con);
744 
745 	mutex_init(&con->mutex);
746 	INIT_LIST_HEAD(&con->out_queue);
747 	INIT_LIST_HEAD(&con->out_sent);
748 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
749 
750 	con->state = CON_STATE_CLOSED;
751 }
752 EXPORT_SYMBOL(ceph_con_init);
753 
754 
755 /*
756  * We maintain a global counter to order connection attempts.  Get
757  * a unique seq greater than @gt.
758  */
759 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
760 {
761 	u32 ret;
762 
763 	spin_lock(&msgr->global_seq_lock);
764 	if (msgr->global_seq < gt)
765 		msgr->global_seq = gt;
766 	ret = ++msgr->global_seq;
767 	spin_unlock(&msgr->global_seq_lock);
768 	return ret;
769 }
770 
771 static void con_out_kvec_reset(struct ceph_connection *con)
772 {
773 	BUG_ON(con->out_skip);
774 
775 	con->out_kvec_left = 0;
776 	con->out_kvec_bytes = 0;
777 	con->out_kvec_cur = &con->out_kvec[0];
778 }
779 
780 static void con_out_kvec_add(struct ceph_connection *con,
781 				size_t size, void *data)
782 {
783 	int index = con->out_kvec_left;
784 
785 	BUG_ON(con->out_skip);
786 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
787 
788 	con->out_kvec[index].iov_len = size;
789 	con->out_kvec[index].iov_base = data;
790 	con->out_kvec_left++;
791 	con->out_kvec_bytes += size;
792 }
793 
794 /*
795  * Chop off a kvec from the end.  Return residual number of bytes for
796  * that kvec, i.e. how many bytes would have been written if the kvec
797  * hadn't been nuked.
798  */
799 static int con_out_kvec_skip(struct ceph_connection *con)
800 {
801 	int off = con->out_kvec_cur - con->out_kvec;
802 	int skip = 0;
803 
804 	if (con->out_kvec_bytes > 0) {
805 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
806 		BUG_ON(con->out_kvec_bytes < skip);
807 		BUG_ON(!con->out_kvec_left);
808 		con->out_kvec_bytes -= skip;
809 		con->out_kvec_left--;
810 	}
811 
812 	return skip;
813 }
814 
815 #ifdef CONFIG_BLOCK
816 
817 /*
818  * For a bio data item, a piece is whatever remains of the next
819  * entry in the current bio iovec, or the first entry in the next
820  * bio in the list.
821  */
822 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
823 					size_t length)
824 {
825 	struct ceph_msg_data *data = cursor->data;
826 	struct bio *bio;
827 
828 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
829 
830 	bio = data->bio;
831 	BUG_ON(!bio);
832 
833 	cursor->resid = min(length, data->bio_length);
834 	cursor->bio = bio;
835 	cursor->bvec_iter = bio->bi_iter;
836 	cursor->last_piece =
837 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
838 }
839 
840 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
841 						size_t *page_offset,
842 						size_t *length)
843 {
844 	struct ceph_msg_data *data = cursor->data;
845 	struct bio *bio;
846 	struct bio_vec bio_vec;
847 
848 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
849 
850 	bio = cursor->bio;
851 	BUG_ON(!bio);
852 
853 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
854 
855 	*page_offset = (size_t) bio_vec.bv_offset;
856 	BUG_ON(*page_offset >= PAGE_SIZE);
857 	if (cursor->last_piece) /* pagelist offset is always 0 */
858 		*length = cursor->resid;
859 	else
860 		*length = (size_t) bio_vec.bv_len;
861 	BUG_ON(*length > cursor->resid);
862 	BUG_ON(*page_offset + *length > PAGE_SIZE);
863 
864 	return bio_vec.bv_page;
865 }
866 
867 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
868 					size_t bytes)
869 {
870 	struct bio *bio;
871 	struct bio_vec bio_vec;
872 
873 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
874 
875 	bio = cursor->bio;
876 	BUG_ON(!bio);
877 
878 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
879 
880 	/* Advance the cursor offset */
881 
882 	BUG_ON(cursor->resid < bytes);
883 	cursor->resid -= bytes;
884 
885 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
886 
887 	if (bytes < bio_vec.bv_len)
888 		return false;	/* more bytes to process in this segment */
889 
890 	/* Move on to the next segment, and possibly the next bio */
891 
892 	if (!cursor->bvec_iter.bi_size) {
893 		bio = bio->bi_next;
894 		cursor->bio = bio;
895 		if (bio)
896 			cursor->bvec_iter = bio->bi_iter;
897 		else
898 			memset(&cursor->bvec_iter, 0,
899 			       sizeof(cursor->bvec_iter));
900 	}
901 
902 	if (!cursor->last_piece) {
903 		BUG_ON(!cursor->resid);
904 		BUG_ON(!bio);
905 		/* A short read is OK, so use <= rather than == */
906 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
907 			cursor->last_piece = true;
908 	}
909 
910 	return true;
911 }
912 #endif /* CONFIG_BLOCK */
913 
914 /*
915  * For a page array, a piece comes from the first page in the array
916  * that has not already been fully consumed.
917  */
918 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
919 					size_t length)
920 {
921 	struct ceph_msg_data *data = cursor->data;
922 	int page_count;
923 
924 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
925 
926 	BUG_ON(!data->pages);
927 	BUG_ON(!data->length);
928 
929 	cursor->resid = min(length, data->length);
930 	page_count = calc_pages_for(data->alignment, (u64)data->length);
931 	cursor->page_offset = data->alignment & ~PAGE_MASK;
932 	cursor->page_index = 0;
933 	BUG_ON(page_count > (int)USHRT_MAX);
934 	cursor->page_count = (unsigned short)page_count;
935 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
936 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
937 }
938 
939 static struct page *
940 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
941 					size_t *page_offset, size_t *length)
942 {
943 	struct ceph_msg_data *data = cursor->data;
944 
945 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
946 
947 	BUG_ON(cursor->page_index >= cursor->page_count);
948 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
949 
950 	*page_offset = cursor->page_offset;
951 	if (cursor->last_piece)
952 		*length = cursor->resid;
953 	else
954 		*length = PAGE_SIZE - *page_offset;
955 
956 	return data->pages[cursor->page_index];
957 }
958 
959 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
960 						size_t bytes)
961 {
962 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
963 
964 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
965 
966 	/* Advance the cursor page offset */
967 
968 	cursor->resid -= bytes;
969 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
970 	if (!bytes || cursor->page_offset)
971 		return false;	/* more bytes to process in the current page */
972 
973 	if (!cursor->resid)
974 		return false;   /* no more data */
975 
976 	/* Move on to the next page; offset is already at 0 */
977 
978 	BUG_ON(cursor->page_index >= cursor->page_count);
979 	cursor->page_index++;
980 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
981 
982 	return true;
983 }
984 
985 /*
986  * For a pagelist, a piece is whatever remains to be consumed in the
987  * first page in the list, or the front of the next page.
988  */
989 static void
990 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
991 					size_t length)
992 {
993 	struct ceph_msg_data *data = cursor->data;
994 	struct ceph_pagelist *pagelist;
995 	struct page *page;
996 
997 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
998 
999 	pagelist = data->pagelist;
1000 	BUG_ON(!pagelist);
1001 
1002 	if (!length)
1003 		return;		/* pagelist can be assigned but empty */
1004 
1005 	BUG_ON(list_empty(&pagelist->head));
1006 	page = list_first_entry(&pagelist->head, struct page, lru);
1007 
1008 	cursor->resid = min(length, pagelist->length);
1009 	cursor->page = page;
1010 	cursor->offset = 0;
1011 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1012 }
1013 
1014 static struct page *
1015 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1016 				size_t *page_offset, size_t *length)
1017 {
1018 	struct ceph_msg_data *data = cursor->data;
1019 	struct ceph_pagelist *pagelist;
1020 
1021 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1022 
1023 	pagelist = data->pagelist;
1024 	BUG_ON(!pagelist);
1025 
1026 	BUG_ON(!cursor->page);
1027 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1028 
1029 	/* offset of first page in pagelist is always 0 */
1030 	*page_offset = cursor->offset & ~PAGE_MASK;
1031 	if (cursor->last_piece)
1032 		*length = cursor->resid;
1033 	else
1034 		*length = PAGE_SIZE - *page_offset;
1035 
1036 	return cursor->page;
1037 }
1038 
1039 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1040 						size_t bytes)
1041 {
1042 	struct ceph_msg_data *data = cursor->data;
1043 	struct ceph_pagelist *pagelist;
1044 
1045 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1046 
1047 	pagelist = data->pagelist;
1048 	BUG_ON(!pagelist);
1049 
1050 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1051 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1052 
1053 	/* Advance the cursor offset */
1054 
1055 	cursor->resid -= bytes;
1056 	cursor->offset += bytes;
1057 	/* offset of first page in pagelist is always 0 */
1058 	if (!bytes || cursor->offset & ~PAGE_MASK)
1059 		return false;	/* more bytes to process in the current page */
1060 
1061 	if (!cursor->resid)
1062 		return false;   /* no more data */
1063 
1064 	/* Move on to the next page */
1065 
1066 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1067 	cursor->page = list_next_entry(cursor->page, lru);
1068 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1069 
1070 	return true;
1071 }
1072 
1073 /*
1074  * Message data is handled (sent or received) in pieces, where each
1075  * piece resides on a single page.  The network layer might not
1076  * consume an entire piece at once.  A data item's cursor keeps
1077  * track of which piece is next to process and how much remains to
1078  * be processed in that piece.  It also tracks whether the current
1079  * piece is the last one in the data item.
1080  */
1081 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1082 {
1083 	size_t length = cursor->total_resid;
1084 
1085 	switch (cursor->data->type) {
1086 	case CEPH_MSG_DATA_PAGELIST:
1087 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1088 		break;
1089 	case CEPH_MSG_DATA_PAGES:
1090 		ceph_msg_data_pages_cursor_init(cursor, length);
1091 		break;
1092 #ifdef CONFIG_BLOCK
1093 	case CEPH_MSG_DATA_BIO:
1094 		ceph_msg_data_bio_cursor_init(cursor, length);
1095 		break;
1096 #endif /* CONFIG_BLOCK */
1097 	case CEPH_MSG_DATA_NONE:
1098 	default:
1099 		/* BUG(); */
1100 		break;
1101 	}
1102 	cursor->need_crc = true;
1103 }
1104 
1105 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1106 {
1107 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1108 	struct ceph_msg_data *data;
1109 
1110 	BUG_ON(!length);
1111 	BUG_ON(length > msg->data_length);
1112 	BUG_ON(list_empty(&msg->data));
1113 
1114 	cursor->data_head = &msg->data;
1115 	cursor->total_resid = length;
1116 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1117 	cursor->data = data;
1118 
1119 	__ceph_msg_data_cursor_init(cursor);
1120 }
1121 
1122 /*
1123  * Return the page containing the next piece to process for a given
1124  * data item, and supply the page offset and length of that piece.
1125  * Indicate whether this is the last piece in this data item.
1126  */
1127 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1128 					size_t *page_offset, size_t *length,
1129 					bool *last_piece)
1130 {
1131 	struct page *page;
1132 
1133 	switch (cursor->data->type) {
1134 	case CEPH_MSG_DATA_PAGELIST:
1135 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1136 		break;
1137 	case CEPH_MSG_DATA_PAGES:
1138 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1139 		break;
1140 #ifdef CONFIG_BLOCK
1141 	case CEPH_MSG_DATA_BIO:
1142 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1143 		break;
1144 #endif /* CONFIG_BLOCK */
1145 	case CEPH_MSG_DATA_NONE:
1146 	default:
1147 		page = NULL;
1148 		break;
1149 	}
1150 	BUG_ON(!page);
1151 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1152 	BUG_ON(!*length);
1153 	if (last_piece)
1154 		*last_piece = cursor->last_piece;
1155 
1156 	return page;
1157 }
1158 
1159 /*
1160  * Returns true if the result moves the cursor on to the next piece
1161  * of the data item.
1162  */
1163 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1164 				size_t bytes)
1165 {
1166 	bool new_piece;
1167 
1168 	BUG_ON(bytes > cursor->resid);
1169 	switch (cursor->data->type) {
1170 	case CEPH_MSG_DATA_PAGELIST:
1171 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1172 		break;
1173 	case CEPH_MSG_DATA_PAGES:
1174 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1175 		break;
1176 #ifdef CONFIG_BLOCK
1177 	case CEPH_MSG_DATA_BIO:
1178 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1179 		break;
1180 #endif /* CONFIG_BLOCK */
1181 	case CEPH_MSG_DATA_NONE:
1182 	default:
1183 		BUG();
1184 		break;
1185 	}
1186 	cursor->total_resid -= bytes;
1187 
1188 	if (!cursor->resid && cursor->total_resid) {
1189 		WARN_ON(!cursor->last_piece);
1190 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1191 		cursor->data = list_next_entry(cursor->data, links);
1192 		__ceph_msg_data_cursor_init(cursor);
1193 		new_piece = true;
1194 	}
1195 	cursor->need_crc = new_piece;
1196 
1197 	return new_piece;
1198 }
1199 
1200 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1201 {
1202 	BUG_ON(!msg);
1203 	BUG_ON(!data_len);
1204 
1205 	/* Initialize data cursor */
1206 
1207 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1208 }
1209 
1210 /*
1211  * Prepare footer for currently outgoing message, and finish things
1212  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1213  */
1214 static void prepare_write_message_footer(struct ceph_connection *con)
1215 {
1216 	struct ceph_msg *m = con->out_msg;
1217 	int v = con->out_kvec_left;
1218 
1219 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220 
1221 	dout("prepare_write_message_footer %p\n", con);
1222 	con->out_kvec[v].iov_base = &m->footer;
1223 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224 		if (con->ops->sign_message)
1225 			con->ops->sign_message(m);
1226 		else
1227 			m->footer.sig = 0;
1228 		con->out_kvec[v].iov_len = sizeof(m->footer);
1229 		con->out_kvec_bytes += sizeof(m->footer);
1230 	} else {
1231 		m->old_footer.flags = m->footer.flags;
1232 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1233 		con->out_kvec_bytes += sizeof(m->old_footer);
1234 	}
1235 	con->out_kvec_left++;
1236 	con->out_more = m->more_to_follow;
1237 	con->out_msg_done = true;
1238 }
1239 
1240 /*
1241  * Prepare headers for the next outgoing message.
1242  */
1243 static void prepare_write_message(struct ceph_connection *con)
1244 {
1245 	struct ceph_msg *m;
1246 	u32 crc;
1247 
1248 	con_out_kvec_reset(con);
1249 	con->out_msg_done = false;
1250 
1251 	/* Sneak an ack in there first?  If we can get it into the same
1252 	 * TCP packet that's a good thing. */
1253 	if (con->in_seq > con->in_seq_acked) {
1254 		con->in_seq_acked = con->in_seq;
1255 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1256 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1257 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1258 			&con->out_temp_ack);
1259 	}
1260 
1261 	BUG_ON(list_empty(&con->out_queue));
1262 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1263 	con->out_msg = m;
1264 	BUG_ON(m->con != con);
1265 
1266 	/* put message on sent list */
1267 	ceph_msg_get(m);
1268 	list_move_tail(&m->list_head, &con->out_sent);
1269 
1270 	/*
1271 	 * only assign outgoing seq # if we haven't sent this message
1272 	 * yet.  if it is requeued, resend with it's original seq.
1273 	 */
1274 	if (m->needs_out_seq) {
1275 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1276 		m->needs_out_seq = false;
1277 	}
1278 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1279 
1280 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1281 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1282 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1283 	     m->data_length);
1284 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1285 
1286 	/* tag + hdr + front + middle */
1287 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1288 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1289 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1290 
1291 	if (m->middle)
1292 		con_out_kvec_add(con, m->middle->vec.iov_len,
1293 			m->middle->vec.iov_base);
1294 
1295 	/* fill in hdr crc and finalize hdr */
1296 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1297 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1298 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1299 
1300 	/* fill in front and middle crc, footer */
1301 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1302 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1303 	if (m->middle) {
1304 		crc = crc32c(0, m->middle->vec.iov_base,
1305 				m->middle->vec.iov_len);
1306 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1307 	} else
1308 		con->out_msg->footer.middle_crc = 0;
1309 	dout("%s front_crc %u middle_crc %u\n", __func__,
1310 	     le32_to_cpu(con->out_msg->footer.front_crc),
1311 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1312 	con->out_msg->footer.flags = 0;
1313 
1314 	/* is there a data payload? */
1315 	con->out_msg->footer.data_crc = 0;
1316 	if (m->data_length) {
1317 		prepare_message_data(con->out_msg, m->data_length);
1318 		con->out_more = 1;  /* data + footer will follow */
1319 	} else {
1320 		/* no, queue up footer too and be done */
1321 		prepare_write_message_footer(con);
1322 	}
1323 
1324 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1325 }
1326 
1327 /*
1328  * Prepare an ack.
1329  */
1330 static void prepare_write_ack(struct ceph_connection *con)
1331 {
1332 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1333 	     con->in_seq_acked, con->in_seq);
1334 	con->in_seq_acked = con->in_seq;
1335 
1336 	con_out_kvec_reset(con);
1337 
1338 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1339 
1340 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1341 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1342 				&con->out_temp_ack);
1343 
1344 	con->out_more = 1;  /* more will follow.. eventually.. */
1345 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347 
1348 /*
1349  * Prepare to share the seq during handshake
1350  */
1351 static void prepare_write_seq(struct ceph_connection *con)
1352 {
1353 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1354 	     con->in_seq_acked, con->in_seq);
1355 	con->in_seq_acked = con->in_seq;
1356 
1357 	con_out_kvec_reset(con);
1358 
1359 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1360 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1361 			 &con->out_temp_ack);
1362 
1363 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1364 }
1365 
1366 /*
1367  * Prepare to write keepalive byte.
1368  */
1369 static void prepare_write_keepalive(struct ceph_connection *con)
1370 {
1371 	dout("prepare_write_keepalive %p\n", con);
1372 	con_out_kvec_reset(con);
1373 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1374 		struct timespec now = CURRENT_TIME;
1375 
1376 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1377 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1378 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1379 				 &con->out_temp_keepalive2);
1380 	} else {
1381 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1382 	}
1383 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1384 }
1385 
1386 /*
1387  * Connection negotiation.
1388  */
1389 
1390 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1391 						int *auth_proto)
1392 {
1393 	struct ceph_auth_handshake *auth;
1394 
1395 	if (!con->ops->get_authorizer) {
1396 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1397 		con->out_connect.authorizer_len = 0;
1398 		return NULL;
1399 	}
1400 
1401 	/* Can't hold the mutex while getting authorizer */
1402 	mutex_unlock(&con->mutex);
1403 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1404 	mutex_lock(&con->mutex);
1405 
1406 	if (IS_ERR(auth))
1407 		return auth;
1408 	if (con->state != CON_STATE_NEGOTIATING)
1409 		return ERR_PTR(-EAGAIN);
1410 
1411 	con->auth_reply_buf = auth->authorizer_reply_buf;
1412 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1413 	return auth;
1414 }
1415 
1416 /*
1417  * We connected to a peer and are saying hello.
1418  */
1419 static void prepare_write_banner(struct ceph_connection *con)
1420 {
1421 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1422 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1423 					&con->msgr->my_enc_addr);
1424 
1425 	con->out_more = 0;
1426 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1427 }
1428 
1429 static int prepare_write_connect(struct ceph_connection *con)
1430 {
1431 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1432 	int proto;
1433 	int auth_proto;
1434 	struct ceph_auth_handshake *auth;
1435 
1436 	switch (con->peer_name.type) {
1437 	case CEPH_ENTITY_TYPE_MON:
1438 		proto = CEPH_MONC_PROTOCOL;
1439 		break;
1440 	case CEPH_ENTITY_TYPE_OSD:
1441 		proto = CEPH_OSDC_PROTOCOL;
1442 		break;
1443 	case CEPH_ENTITY_TYPE_MDS:
1444 		proto = CEPH_MDSC_PROTOCOL;
1445 		break;
1446 	default:
1447 		BUG();
1448 	}
1449 
1450 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1451 	     con->connect_seq, global_seq, proto);
1452 
1453 	con->out_connect.features =
1454 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1455 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1456 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1457 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1458 	con->out_connect.protocol_version = cpu_to_le32(proto);
1459 	con->out_connect.flags = 0;
1460 
1461 	auth_proto = CEPH_AUTH_UNKNOWN;
1462 	auth = get_connect_authorizer(con, &auth_proto);
1463 	if (IS_ERR(auth))
1464 		return PTR_ERR(auth);
1465 
1466 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1467 	con->out_connect.authorizer_len = auth ?
1468 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1469 
1470 	con_out_kvec_add(con, sizeof (con->out_connect),
1471 					&con->out_connect);
1472 	if (auth && auth->authorizer_buf_len)
1473 		con_out_kvec_add(con, auth->authorizer_buf_len,
1474 					auth->authorizer_buf);
1475 
1476 	con->out_more = 0;
1477 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * write as much of pending kvecs to the socket as we can.
1484  *  1 -> done
1485  *  0 -> socket full, but more to do
1486  * <0 -> error
1487  */
1488 static int write_partial_kvec(struct ceph_connection *con)
1489 {
1490 	int ret;
1491 
1492 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1493 	while (con->out_kvec_bytes > 0) {
1494 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1495 				       con->out_kvec_left, con->out_kvec_bytes,
1496 				       con->out_more);
1497 		if (ret <= 0)
1498 			goto out;
1499 		con->out_kvec_bytes -= ret;
1500 		if (con->out_kvec_bytes == 0)
1501 			break;            /* done */
1502 
1503 		/* account for full iov entries consumed */
1504 		while (ret >= con->out_kvec_cur->iov_len) {
1505 			BUG_ON(!con->out_kvec_left);
1506 			ret -= con->out_kvec_cur->iov_len;
1507 			con->out_kvec_cur++;
1508 			con->out_kvec_left--;
1509 		}
1510 		/* and for a partially-consumed entry */
1511 		if (ret) {
1512 			con->out_kvec_cur->iov_len -= ret;
1513 			con->out_kvec_cur->iov_base += ret;
1514 		}
1515 	}
1516 	con->out_kvec_left = 0;
1517 	ret = 1;
1518 out:
1519 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1520 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1521 	return ret;  /* done! */
1522 }
1523 
1524 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1525 				unsigned int page_offset,
1526 				unsigned int length)
1527 {
1528 	char *kaddr;
1529 
1530 	kaddr = kmap(page);
1531 	BUG_ON(kaddr == NULL);
1532 	crc = crc32c(crc, kaddr + page_offset, length);
1533 	kunmap(page);
1534 
1535 	return crc;
1536 }
1537 /*
1538  * Write as much message data payload as we can.  If we finish, queue
1539  * up the footer.
1540  *  1 -> done, footer is now queued in out_kvec[].
1541  *  0 -> socket full, but more to do
1542  * <0 -> error
1543  */
1544 static int write_partial_message_data(struct ceph_connection *con)
1545 {
1546 	struct ceph_msg *msg = con->out_msg;
1547 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1548 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1549 	u32 crc;
1550 
1551 	dout("%s %p msg %p\n", __func__, con, msg);
1552 
1553 	if (list_empty(&msg->data))
1554 		return -EINVAL;
1555 
1556 	/*
1557 	 * Iterate through each page that contains data to be
1558 	 * written, and send as much as possible for each.
1559 	 *
1560 	 * If we are calculating the data crc (the default), we will
1561 	 * need to map the page.  If we have no pages, they have
1562 	 * been revoked, so use the zero page.
1563 	 */
1564 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1565 	while (cursor->resid) {
1566 		struct page *page;
1567 		size_t page_offset;
1568 		size_t length;
1569 		bool last_piece;
1570 		bool need_crc;
1571 		int ret;
1572 
1573 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1574 					  &last_piece);
1575 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1576 					length, !last_piece);
1577 		if (ret <= 0) {
1578 			if (do_datacrc)
1579 				msg->footer.data_crc = cpu_to_le32(crc);
1580 
1581 			return ret;
1582 		}
1583 		if (do_datacrc && cursor->need_crc)
1584 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1585 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1586 	}
1587 
1588 	dout("%s %p msg %p done\n", __func__, con, msg);
1589 
1590 	/* prepare and queue up footer, too */
1591 	if (do_datacrc)
1592 		msg->footer.data_crc = cpu_to_le32(crc);
1593 	else
1594 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1595 	con_out_kvec_reset(con);
1596 	prepare_write_message_footer(con);
1597 
1598 	return 1;	/* must return > 0 to indicate success */
1599 }
1600 
1601 /*
1602  * write some zeros
1603  */
1604 static int write_partial_skip(struct ceph_connection *con)
1605 {
1606 	int ret;
1607 
1608 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1609 	while (con->out_skip > 0) {
1610 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1611 
1612 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1613 		if (ret <= 0)
1614 			goto out;
1615 		con->out_skip -= ret;
1616 	}
1617 	ret = 1;
1618 out:
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Prepare to read connection handshake, or an ack.
1624  */
1625 static void prepare_read_banner(struct ceph_connection *con)
1626 {
1627 	dout("prepare_read_banner %p\n", con);
1628 	con->in_base_pos = 0;
1629 }
1630 
1631 static void prepare_read_connect(struct ceph_connection *con)
1632 {
1633 	dout("prepare_read_connect %p\n", con);
1634 	con->in_base_pos = 0;
1635 }
1636 
1637 static void prepare_read_ack(struct ceph_connection *con)
1638 {
1639 	dout("prepare_read_ack %p\n", con);
1640 	con->in_base_pos = 0;
1641 }
1642 
1643 static void prepare_read_seq(struct ceph_connection *con)
1644 {
1645 	dout("prepare_read_seq %p\n", con);
1646 	con->in_base_pos = 0;
1647 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1648 }
1649 
1650 static void prepare_read_tag(struct ceph_connection *con)
1651 {
1652 	dout("prepare_read_tag %p\n", con);
1653 	con->in_base_pos = 0;
1654 	con->in_tag = CEPH_MSGR_TAG_READY;
1655 }
1656 
1657 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1658 {
1659 	dout("prepare_read_keepalive_ack %p\n", con);
1660 	con->in_base_pos = 0;
1661 }
1662 
1663 /*
1664  * Prepare to read a message.
1665  */
1666 static int prepare_read_message(struct ceph_connection *con)
1667 {
1668 	dout("prepare_read_message %p\n", con);
1669 	BUG_ON(con->in_msg != NULL);
1670 	con->in_base_pos = 0;
1671 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1672 	return 0;
1673 }
1674 
1675 
1676 static int read_partial(struct ceph_connection *con,
1677 			int end, int size, void *object)
1678 {
1679 	while (con->in_base_pos < end) {
1680 		int left = end - con->in_base_pos;
1681 		int have = size - left;
1682 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1683 		if (ret <= 0)
1684 			return ret;
1685 		con->in_base_pos += ret;
1686 	}
1687 	return 1;
1688 }
1689 
1690 
1691 /*
1692  * Read all or part of the connect-side handshake on a new connection
1693  */
1694 static int read_partial_banner(struct ceph_connection *con)
1695 {
1696 	int size;
1697 	int end;
1698 	int ret;
1699 
1700 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1701 
1702 	/* peer's banner */
1703 	size = strlen(CEPH_BANNER);
1704 	end = size;
1705 	ret = read_partial(con, end, size, con->in_banner);
1706 	if (ret <= 0)
1707 		goto out;
1708 
1709 	size = sizeof (con->actual_peer_addr);
1710 	end += size;
1711 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1712 	if (ret <= 0)
1713 		goto out;
1714 
1715 	size = sizeof (con->peer_addr_for_me);
1716 	end += size;
1717 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1718 	if (ret <= 0)
1719 		goto out;
1720 
1721 out:
1722 	return ret;
1723 }
1724 
1725 static int read_partial_connect(struct ceph_connection *con)
1726 {
1727 	int size;
1728 	int end;
1729 	int ret;
1730 
1731 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1732 
1733 	size = sizeof (con->in_reply);
1734 	end = size;
1735 	ret = read_partial(con, end, size, &con->in_reply);
1736 	if (ret <= 0)
1737 		goto out;
1738 
1739 	size = le32_to_cpu(con->in_reply.authorizer_len);
1740 	end += size;
1741 	ret = read_partial(con, end, size, con->auth_reply_buf);
1742 	if (ret <= 0)
1743 		goto out;
1744 
1745 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1746 	     con, (int)con->in_reply.tag,
1747 	     le32_to_cpu(con->in_reply.connect_seq),
1748 	     le32_to_cpu(con->in_reply.global_seq));
1749 out:
1750 	return ret;
1751 
1752 }
1753 
1754 /*
1755  * Verify the hello banner looks okay.
1756  */
1757 static int verify_hello(struct ceph_connection *con)
1758 {
1759 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1760 		pr_err("connect to %s got bad banner\n",
1761 		       ceph_pr_addr(&con->peer_addr.in_addr));
1762 		con->error_msg = "protocol error, bad banner";
1763 		return -1;
1764 	}
1765 	return 0;
1766 }
1767 
1768 static bool addr_is_blank(struct sockaddr_storage *ss)
1769 {
1770 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1771 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1772 
1773 	switch (ss->ss_family) {
1774 	case AF_INET:
1775 		return addr->s_addr == htonl(INADDR_ANY);
1776 	case AF_INET6:
1777 		return ipv6_addr_any(addr6);
1778 	default:
1779 		return true;
1780 	}
1781 }
1782 
1783 static int addr_port(struct sockaddr_storage *ss)
1784 {
1785 	switch (ss->ss_family) {
1786 	case AF_INET:
1787 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1788 	case AF_INET6:
1789 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1790 	}
1791 	return 0;
1792 }
1793 
1794 static void addr_set_port(struct sockaddr_storage *ss, int p)
1795 {
1796 	switch (ss->ss_family) {
1797 	case AF_INET:
1798 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1799 		break;
1800 	case AF_INET6:
1801 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1802 		break;
1803 	}
1804 }
1805 
1806 /*
1807  * Unlike other *_pton function semantics, zero indicates success.
1808  */
1809 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1810 		char delim, const char **ipend)
1811 {
1812 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1813 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1814 
1815 	memset(ss, 0, sizeof(*ss));
1816 
1817 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1818 		ss->ss_family = AF_INET;
1819 		return 0;
1820 	}
1821 
1822 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1823 		ss->ss_family = AF_INET6;
1824 		return 0;
1825 	}
1826 
1827 	return -EINVAL;
1828 }
1829 
1830 /*
1831  * Extract hostname string and resolve using kernel DNS facility.
1832  */
1833 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1834 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1835 		struct sockaddr_storage *ss, char delim, const char **ipend)
1836 {
1837 	const char *end, *delim_p;
1838 	char *colon_p, *ip_addr = NULL;
1839 	int ip_len, ret;
1840 
1841 	/*
1842 	 * The end of the hostname occurs immediately preceding the delimiter or
1843 	 * the port marker (':') where the delimiter takes precedence.
1844 	 */
1845 	delim_p = memchr(name, delim, namelen);
1846 	colon_p = memchr(name, ':', namelen);
1847 
1848 	if (delim_p && colon_p)
1849 		end = delim_p < colon_p ? delim_p : colon_p;
1850 	else if (!delim_p && colon_p)
1851 		end = colon_p;
1852 	else {
1853 		end = delim_p;
1854 		if (!end) /* case: hostname:/ */
1855 			end = name + namelen;
1856 	}
1857 
1858 	if (end <= name)
1859 		return -EINVAL;
1860 
1861 	/* do dns_resolve upcall */
1862 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1863 	if (ip_len > 0)
1864 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1865 	else
1866 		ret = -ESRCH;
1867 
1868 	kfree(ip_addr);
1869 
1870 	*ipend = end;
1871 
1872 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1873 			ret, ret ? "failed" : ceph_pr_addr(ss));
1874 
1875 	return ret;
1876 }
1877 #else
1878 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1879 		struct sockaddr_storage *ss, char delim, const char **ipend)
1880 {
1881 	return -EINVAL;
1882 }
1883 #endif
1884 
1885 /*
1886  * Parse a server name (IP or hostname). If a valid IP address is not found
1887  * then try to extract a hostname to resolve using userspace DNS upcall.
1888  */
1889 static int ceph_parse_server_name(const char *name, size_t namelen,
1890 			struct sockaddr_storage *ss, char delim, const char **ipend)
1891 {
1892 	int ret;
1893 
1894 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1895 	if (ret)
1896 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1897 
1898 	return ret;
1899 }
1900 
1901 /*
1902  * Parse an ip[:port] list into an addr array.  Use the default
1903  * monitor port if a port isn't specified.
1904  */
1905 int ceph_parse_ips(const char *c, const char *end,
1906 		   struct ceph_entity_addr *addr,
1907 		   int max_count, int *count)
1908 {
1909 	int i, ret = -EINVAL;
1910 	const char *p = c;
1911 
1912 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1913 	for (i = 0; i < max_count; i++) {
1914 		const char *ipend;
1915 		struct sockaddr_storage *ss = &addr[i].in_addr;
1916 		int port;
1917 		char delim = ',';
1918 
1919 		if (*p == '[') {
1920 			delim = ']';
1921 			p++;
1922 		}
1923 
1924 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1925 		if (ret)
1926 			goto bad;
1927 		ret = -EINVAL;
1928 
1929 		p = ipend;
1930 
1931 		if (delim == ']') {
1932 			if (*p != ']') {
1933 				dout("missing matching ']'\n");
1934 				goto bad;
1935 			}
1936 			p++;
1937 		}
1938 
1939 		/* port? */
1940 		if (p < end && *p == ':') {
1941 			port = 0;
1942 			p++;
1943 			while (p < end && *p >= '0' && *p <= '9') {
1944 				port = (port * 10) + (*p - '0');
1945 				p++;
1946 			}
1947 			if (port == 0)
1948 				port = CEPH_MON_PORT;
1949 			else if (port > 65535)
1950 				goto bad;
1951 		} else {
1952 			port = CEPH_MON_PORT;
1953 		}
1954 
1955 		addr_set_port(ss, port);
1956 
1957 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1958 
1959 		if (p == end)
1960 			break;
1961 		if (*p != ',')
1962 			goto bad;
1963 		p++;
1964 	}
1965 
1966 	if (p != end)
1967 		goto bad;
1968 
1969 	if (count)
1970 		*count = i + 1;
1971 	return 0;
1972 
1973 bad:
1974 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL(ceph_parse_ips);
1978 
1979 static int process_banner(struct ceph_connection *con)
1980 {
1981 	dout("process_banner on %p\n", con);
1982 
1983 	if (verify_hello(con) < 0)
1984 		return -1;
1985 
1986 	ceph_decode_addr(&con->actual_peer_addr);
1987 	ceph_decode_addr(&con->peer_addr_for_me);
1988 
1989 	/*
1990 	 * Make sure the other end is who we wanted.  note that the other
1991 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1992 	 * them the benefit of the doubt.
1993 	 */
1994 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1995 		   sizeof(con->peer_addr)) != 0 &&
1996 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1997 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1998 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1999 			ceph_pr_addr(&con->peer_addr.in_addr),
2000 			(int)le32_to_cpu(con->peer_addr.nonce),
2001 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2002 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2003 		con->error_msg = "wrong peer at address";
2004 		return -1;
2005 	}
2006 
2007 	/*
2008 	 * did we learn our address?
2009 	 */
2010 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2011 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2012 
2013 		memcpy(&con->msgr->inst.addr.in_addr,
2014 		       &con->peer_addr_for_me.in_addr,
2015 		       sizeof(con->peer_addr_for_me.in_addr));
2016 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2017 		encode_my_addr(con->msgr);
2018 		dout("process_banner learned my addr is %s\n",
2019 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 static int process_connect(struct ceph_connection *con)
2026 {
2027 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2028 	u64 req_feat = from_msgr(con->msgr)->required_features;
2029 	u64 server_feat = ceph_sanitize_features(
2030 				le64_to_cpu(con->in_reply.features));
2031 	int ret;
2032 
2033 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2034 
2035 	switch (con->in_reply.tag) {
2036 	case CEPH_MSGR_TAG_FEATURES:
2037 		pr_err("%s%lld %s feature set mismatch,"
2038 		       " my %llx < server's %llx, missing %llx\n",
2039 		       ENTITY_NAME(con->peer_name),
2040 		       ceph_pr_addr(&con->peer_addr.in_addr),
2041 		       sup_feat, server_feat, server_feat & ~sup_feat);
2042 		con->error_msg = "missing required protocol features";
2043 		reset_connection(con);
2044 		return -1;
2045 
2046 	case CEPH_MSGR_TAG_BADPROTOVER:
2047 		pr_err("%s%lld %s protocol version mismatch,"
2048 		       " my %d != server's %d\n",
2049 		       ENTITY_NAME(con->peer_name),
2050 		       ceph_pr_addr(&con->peer_addr.in_addr),
2051 		       le32_to_cpu(con->out_connect.protocol_version),
2052 		       le32_to_cpu(con->in_reply.protocol_version));
2053 		con->error_msg = "protocol version mismatch";
2054 		reset_connection(con);
2055 		return -1;
2056 
2057 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2058 		con->auth_retry++;
2059 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2060 		     con->auth_retry);
2061 		if (con->auth_retry == 2) {
2062 			con->error_msg = "connect authorization failure";
2063 			return -1;
2064 		}
2065 		con_out_kvec_reset(con);
2066 		ret = prepare_write_connect(con);
2067 		if (ret < 0)
2068 			return ret;
2069 		prepare_read_connect(con);
2070 		break;
2071 
2072 	case CEPH_MSGR_TAG_RESETSESSION:
2073 		/*
2074 		 * If we connected with a large connect_seq but the peer
2075 		 * has no record of a session with us (no connection, or
2076 		 * connect_seq == 0), they will send RESETSESION to indicate
2077 		 * that they must have reset their session, and may have
2078 		 * dropped messages.
2079 		 */
2080 		dout("process_connect got RESET peer seq %u\n",
2081 		     le32_to_cpu(con->in_reply.connect_seq));
2082 		pr_err("%s%lld %s connection reset\n",
2083 		       ENTITY_NAME(con->peer_name),
2084 		       ceph_pr_addr(&con->peer_addr.in_addr));
2085 		reset_connection(con);
2086 		con_out_kvec_reset(con);
2087 		ret = prepare_write_connect(con);
2088 		if (ret < 0)
2089 			return ret;
2090 		prepare_read_connect(con);
2091 
2092 		/* Tell ceph about it. */
2093 		mutex_unlock(&con->mutex);
2094 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2095 		if (con->ops->peer_reset)
2096 			con->ops->peer_reset(con);
2097 		mutex_lock(&con->mutex);
2098 		if (con->state != CON_STATE_NEGOTIATING)
2099 			return -EAGAIN;
2100 		break;
2101 
2102 	case CEPH_MSGR_TAG_RETRY_SESSION:
2103 		/*
2104 		 * If we sent a smaller connect_seq than the peer has, try
2105 		 * again with a larger value.
2106 		 */
2107 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2108 		     le32_to_cpu(con->out_connect.connect_seq),
2109 		     le32_to_cpu(con->in_reply.connect_seq));
2110 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2111 		con_out_kvec_reset(con);
2112 		ret = prepare_write_connect(con);
2113 		if (ret < 0)
2114 			return ret;
2115 		prepare_read_connect(con);
2116 		break;
2117 
2118 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2119 		/*
2120 		 * If we sent a smaller global_seq than the peer has, try
2121 		 * again with a larger value.
2122 		 */
2123 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2124 		     con->peer_global_seq,
2125 		     le32_to_cpu(con->in_reply.global_seq));
2126 		get_global_seq(con->msgr,
2127 			       le32_to_cpu(con->in_reply.global_seq));
2128 		con_out_kvec_reset(con);
2129 		ret = prepare_write_connect(con);
2130 		if (ret < 0)
2131 			return ret;
2132 		prepare_read_connect(con);
2133 		break;
2134 
2135 	case CEPH_MSGR_TAG_SEQ:
2136 	case CEPH_MSGR_TAG_READY:
2137 		if (req_feat & ~server_feat) {
2138 			pr_err("%s%lld %s protocol feature mismatch,"
2139 			       " my required %llx > server's %llx, need %llx\n",
2140 			       ENTITY_NAME(con->peer_name),
2141 			       ceph_pr_addr(&con->peer_addr.in_addr),
2142 			       req_feat, server_feat, req_feat & ~server_feat);
2143 			con->error_msg = "missing required protocol features";
2144 			reset_connection(con);
2145 			return -1;
2146 		}
2147 
2148 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2149 		con->state = CON_STATE_OPEN;
2150 		con->auth_retry = 0;    /* we authenticated; clear flag */
2151 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2152 		con->connect_seq++;
2153 		con->peer_features = server_feat;
2154 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2155 		     con->peer_global_seq,
2156 		     le32_to_cpu(con->in_reply.connect_seq),
2157 		     con->connect_seq);
2158 		WARN_ON(con->connect_seq !=
2159 			le32_to_cpu(con->in_reply.connect_seq));
2160 
2161 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2162 			con_flag_set(con, CON_FLAG_LOSSYTX);
2163 
2164 		con->delay = 0;      /* reset backoff memory */
2165 
2166 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2167 			prepare_write_seq(con);
2168 			prepare_read_seq(con);
2169 		} else {
2170 			prepare_read_tag(con);
2171 		}
2172 		break;
2173 
2174 	case CEPH_MSGR_TAG_WAIT:
2175 		/*
2176 		 * If there is a connection race (we are opening
2177 		 * connections to each other), one of us may just have
2178 		 * to WAIT.  This shouldn't happen if we are the
2179 		 * client.
2180 		 */
2181 		con->error_msg = "protocol error, got WAIT as client";
2182 		return -1;
2183 
2184 	default:
2185 		con->error_msg = "protocol error, garbage tag during connect";
2186 		return -1;
2187 	}
2188 	return 0;
2189 }
2190 
2191 
2192 /*
2193  * read (part of) an ack
2194  */
2195 static int read_partial_ack(struct ceph_connection *con)
2196 {
2197 	int size = sizeof (con->in_temp_ack);
2198 	int end = size;
2199 
2200 	return read_partial(con, end, size, &con->in_temp_ack);
2201 }
2202 
2203 /*
2204  * We can finally discard anything that's been acked.
2205  */
2206 static void process_ack(struct ceph_connection *con)
2207 {
2208 	struct ceph_msg *m;
2209 	u64 ack = le64_to_cpu(con->in_temp_ack);
2210 	u64 seq;
2211 
2212 	while (!list_empty(&con->out_sent)) {
2213 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2214 				     list_head);
2215 		seq = le64_to_cpu(m->hdr.seq);
2216 		if (seq > ack)
2217 			break;
2218 		dout("got ack for seq %llu type %d at %p\n", seq,
2219 		     le16_to_cpu(m->hdr.type), m);
2220 		m->ack_stamp = jiffies;
2221 		ceph_msg_remove(m);
2222 	}
2223 	prepare_read_tag(con);
2224 }
2225 
2226 
2227 static int read_partial_message_section(struct ceph_connection *con,
2228 					struct kvec *section,
2229 					unsigned int sec_len, u32 *crc)
2230 {
2231 	int ret, left;
2232 
2233 	BUG_ON(!section);
2234 
2235 	while (section->iov_len < sec_len) {
2236 		BUG_ON(section->iov_base == NULL);
2237 		left = sec_len - section->iov_len;
2238 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2239 				       section->iov_len, left);
2240 		if (ret <= 0)
2241 			return ret;
2242 		section->iov_len += ret;
2243 	}
2244 	if (section->iov_len == sec_len)
2245 		*crc = crc32c(0, section->iov_base, section->iov_len);
2246 
2247 	return 1;
2248 }
2249 
2250 static int read_partial_msg_data(struct ceph_connection *con)
2251 {
2252 	struct ceph_msg *msg = con->in_msg;
2253 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2254 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2255 	struct page *page;
2256 	size_t page_offset;
2257 	size_t length;
2258 	u32 crc = 0;
2259 	int ret;
2260 
2261 	BUG_ON(!msg);
2262 	if (list_empty(&msg->data))
2263 		return -EIO;
2264 
2265 	if (do_datacrc)
2266 		crc = con->in_data_crc;
2267 	while (cursor->resid) {
2268 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2269 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2270 		if (ret <= 0) {
2271 			if (do_datacrc)
2272 				con->in_data_crc = crc;
2273 
2274 			return ret;
2275 		}
2276 
2277 		if (do_datacrc)
2278 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2279 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2280 	}
2281 	if (do_datacrc)
2282 		con->in_data_crc = crc;
2283 
2284 	return 1;	/* must return > 0 to indicate success */
2285 }
2286 
2287 /*
2288  * read (part of) a message.
2289  */
2290 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2291 
2292 static int read_partial_message(struct ceph_connection *con)
2293 {
2294 	struct ceph_msg *m = con->in_msg;
2295 	int size;
2296 	int end;
2297 	int ret;
2298 	unsigned int front_len, middle_len, data_len;
2299 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2300 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2301 	u64 seq;
2302 	u32 crc;
2303 
2304 	dout("read_partial_message con %p msg %p\n", con, m);
2305 
2306 	/* header */
2307 	size = sizeof (con->in_hdr);
2308 	end = size;
2309 	ret = read_partial(con, end, size, &con->in_hdr);
2310 	if (ret <= 0)
2311 		return ret;
2312 
2313 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2314 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2315 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2316 		       crc, con->in_hdr.crc);
2317 		return -EBADMSG;
2318 	}
2319 
2320 	front_len = le32_to_cpu(con->in_hdr.front_len);
2321 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2322 		return -EIO;
2323 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2324 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2325 		return -EIO;
2326 	data_len = le32_to_cpu(con->in_hdr.data_len);
2327 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2328 		return -EIO;
2329 
2330 	/* verify seq# */
2331 	seq = le64_to_cpu(con->in_hdr.seq);
2332 	if ((s64)seq - (s64)con->in_seq < 1) {
2333 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2334 			ENTITY_NAME(con->peer_name),
2335 			ceph_pr_addr(&con->peer_addr.in_addr),
2336 			seq, con->in_seq + 1);
2337 		con->in_base_pos = -front_len - middle_len - data_len -
2338 			sizeof(m->footer);
2339 		con->in_tag = CEPH_MSGR_TAG_READY;
2340 		return 0;
2341 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2342 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2343 		       seq, con->in_seq + 1);
2344 		con->error_msg = "bad message sequence # for incoming message";
2345 		return -EBADE;
2346 	}
2347 
2348 	/* allocate message? */
2349 	if (!con->in_msg) {
2350 		int skip = 0;
2351 
2352 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2353 		     front_len, data_len);
2354 		ret = ceph_con_in_msg_alloc(con, &skip);
2355 		if (ret < 0)
2356 			return ret;
2357 
2358 		BUG_ON(!con->in_msg ^ skip);
2359 		if (skip) {
2360 			/* skip this message */
2361 			dout("alloc_msg said skip message\n");
2362 			con->in_base_pos = -front_len - middle_len - data_len -
2363 				sizeof(m->footer);
2364 			con->in_tag = CEPH_MSGR_TAG_READY;
2365 			con->in_seq++;
2366 			return 0;
2367 		}
2368 
2369 		BUG_ON(!con->in_msg);
2370 		BUG_ON(con->in_msg->con != con);
2371 		m = con->in_msg;
2372 		m->front.iov_len = 0;    /* haven't read it yet */
2373 		if (m->middle)
2374 			m->middle->vec.iov_len = 0;
2375 
2376 		/* prepare for data payload, if any */
2377 
2378 		if (data_len)
2379 			prepare_message_data(con->in_msg, data_len);
2380 	}
2381 
2382 	/* front */
2383 	ret = read_partial_message_section(con, &m->front, front_len,
2384 					   &con->in_front_crc);
2385 	if (ret <= 0)
2386 		return ret;
2387 
2388 	/* middle */
2389 	if (m->middle) {
2390 		ret = read_partial_message_section(con, &m->middle->vec,
2391 						   middle_len,
2392 						   &con->in_middle_crc);
2393 		if (ret <= 0)
2394 			return ret;
2395 	}
2396 
2397 	/* (page) data */
2398 	if (data_len) {
2399 		ret = read_partial_msg_data(con);
2400 		if (ret <= 0)
2401 			return ret;
2402 	}
2403 
2404 	/* footer */
2405 	if (need_sign)
2406 		size = sizeof(m->footer);
2407 	else
2408 		size = sizeof(m->old_footer);
2409 
2410 	end += size;
2411 	ret = read_partial(con, end, size, &m->footer);
2412 	if (ret <= 0)
2413 		return ret;
2414 
2415 	if (!need_sign) {
2416 		m->footer.flags = m->old_footer.flags;
2417 		m->footer.sig = 0;
2418 	}
2419 
2420 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2421 	     m, front_len, m->footer.front_crc, middle_len,
2422 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2423 
2424 	/* crc ok? */
2425 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2426 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2427 		       m, con->in_front_crc, m->footer.front_crc);
2428 		return -EBADMSG;
2429 	}
2430 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2431 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2432 		       m, con->in_middle_crc, m->footer.middle_crc);
2433 		return -EBADMSG;
2434 	}
2435 	if (do_datacrc &&
2436 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2437 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2438 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2439 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2440 		return -EBADMSG;
2441 	}
2442 
2443 	if (need_sign && con->ops->check_message_signature &&
2444 	    con->ops->check_message_signature(m)) {
2445 		pr_err("read_partial_message %p signature check failed\n", m);
2446 		return -EBADMSG;
2447 	}
2448 
2449 	return 1; /* done! */
2450 }
2451 
2452 /*
2453  * Process message.  This happens in the worker thread.  The callback should
2454  * be careful not to do anything that waits on other incoming messages or it
2455  * may deadlock.
2456  */
2457 static void process_message(struct ceph_connection *con)
2458 {
2459 	struct ceph_msg *msg = con->in_msg;
2460 
2461 	BUG_ON(con->in_msg->con != con);
2462 	con->in_msg = NULL;
2463 
2464 	/* if first message, set peer_name */
2465 	if (con->peer_name.type == 0)
2466 		con->peer_name = msg->hdr.src;
2467 
2468 	con->in_seq++;
2469 	mutex_unlock(&con->mutex);
2470 
2471 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2472 	     msg, le64_to_cpu(msg->hdr.seq),
2473 	     ENTITY_NAME(msg->hdr.src),
2474 	     le16_to_cpu(msg->hdr.type),
2475 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2476 	     le32_to_cpu(msg->hdr.front_len),
2477 	     le32_to_cpu(msg->hdr.data_len),
2478 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2479 	con->ops->dispatch(con, msg);
2480 
2481 	mutex_lock(&con->mutex);
2482 }
2483 
2484 static int read_keepalive_ack(struct ceph_connection *con)
2485 {
2486 	struct ceph_timespec ceph_ts;
2487 	size_t size = sizeof(ceph_ts);
2488 	int ret = read_partial(con, size, size, &ceph_ts);
2489 	if (ret <= 0)
2490 		return ret;
2491 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2492 	prepare_read_tag(con);
2493 	return 1;
2494 }
2495 
2496 /*
2497  * Write something to the socket.  Called in a worker thread when the
2498  * socket appears to be writeable and we have something ready to send.
2499  */
2500 static int try_write(struct ceph_connection *con)
2501 {
2502 	int ret = 1;
2503 
2504 	dout("try_write start %p state %lu\n", con, con->state);
2505 
2506 more:
2507 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2508 
2509 	/* open the socket first? */
2510 	if (con->state == CON_STATE_PREOPEN) {
2511 		BUG_ON(con->sock);
2512 		con->state = CON_STATE_CONNECTING;
2513 
2514 		con_out_kvec_reset(con);
2515 		prepare_write_banner(con);
2516 		prepare_read_banner(con);
2517 
2518 		BUG_ON(con->in_msg);
2519 		con->in_tag = CEPH_MSGR_TAG_READY;
2520 		dout("try_write initiating connect on %p new state %lu\n",
2521 		     con, con->state);
2522 		ret = ceph_tcp_connect(con);
2523 		if (ret < 0) {
2524 			con->error_msg = "connect error";
2525 			goto out;
2526 		}
2527 	}
2528 
2529 more_kvec:
2530 	/* kvec data queued? */
2531 	if (con->out_kvec_left) {
2532 		ret = write_partial_kvec(con);
2533 		if (ret <= 0)
2534 			goto out;
2535 	}
2536 	if (con->out_skip) {
2537 		ret = write_partial_skip(con);
2538 		if (ret <= 0)
2539 			goto out;
2540 	}
2541 
2542 	/* msg pages? */
2543 	if (con->out_msg) {
2544 		if (con->out_msg_done) {
2545 			ceph_msg_put(con->out_msg);
2546 			con->out_msg = NULL;   /* we're done with this one */
2547 			goto do_next;
2548 		}
2549 
2550 		ret = write_partial_message_data(con);
2551 		if (ret == 1)
2552 			goto more_kvec;  /* we need to send the footer, too! */
2553 		if (ret == 0)
2554 			goto out;
2555 		if (ret < 0) {
2556 			dout("try_write write_partial_message_data err %d\n",
2557 			     ret);
2558 			goto out;
2559 		}
2560 	}
2561 
2562 do_next:
2563 	if (con->state == CON_STATE_OPEN) {
2564 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2565 			prepare_write_keepalive(con);
2566 			goto more;
2567 		}
2568 		/* is anything else pending? */
2569 		if (!list_empty(&con->out_queue)) {
2570 			prepare_write_message(con);
2571 			goto more;
2572 		}
2573 		if (con->in_seq > con->in_seq_acked) {
2574 			prepare_write_ack(con);
2575 			goto more;
2576 		}
2577 	}
2578 
2579 	/* Nothing to do! */
2580 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2581 	dout("try_write nothing else to write.\n");
2582 	ret = 0;
2583 out:
2584 	dout("try_write done on %p ret %d\n", con, ret);
2585 	return ret;
2586 }
2587 
2588 
2589 
2590 /*
2591  * Read what we can from the socket.
2592  */
2593 static int try_read(struct ceph_connection *con)
2594 {
2595 	int ret = -1;
2596 
2597 more:
2598 	dout("try_read start on %p state %lu\n", con, con->state);
2599 	if (con->state != CON_STATE_CONNECTING &&
2600 	    con->state != CON_STATE_NEGOTIATING &&
2601 	    con->state != CON_STATE_OPEN)
2602 		return 0;
2603 
2604 	BUG_ON(!con->sock);
2605 
2606 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2607 	     con->in_base_pos);
2608 
2609 	if (con->state == CON_STATE_CONNECTING) {
2610 		dout("try_read connecting\n");
2611 		ret = read_partial_banner(con);
2612 		if (ret <= 0)
2613 			goto out;
2614 		ret = process_banner(con);
2615 		if (ret < 0)
2616 			goto out;
2617 
2618 		con->state = CON_STATE_NEGOTIATING;
2619 
2620 		/*
2621 		 * Received banner is good, exchange connection info.
2622 		 * Do not reset out_kvec, as sending our banner raced
2623 		 * with receiving peer banner after connect completed.
2624 		 */
2625 		ret = prepare_write_connect(con);
2626 		if (ret < 0)
2627 			goto out;
2628 		prepare_read_connect(con);
2629 
2630 		/* Send connection info before awaiting response */
2631 		goto out;
2632 	}
2633 
2634 	if (con->state == CON_STATE_NEGOTIATING) {
2635 		dout("try_read negotiating\n");
2636 		ret = read_partial_connect(con);
2637 		if (ret <= 0)
2638 			goto out;
2639 		ret = process_connect(con);
2640 		if (ret < 0)
2641 			goto out;
2642 		goto more;
2643 	}
2644 
2645 	WARN_ON(con->state != CON_STATE_OPEN);
2646 
2647 	if (con->in_base_pos < 0) {
2648 		/*
2649 		 * skipping + discarding content.
2650 		 *
2651 		 * FIXME: there must be a better way to do this!
2652 		 */
2653 		static char buf[SKIP_BUF_SIZE];
2654 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2655 
2656 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2657 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2658 		if (ret <= 0)
2659 			goto out;
2660 		con->in_base_pos += ret;
2661 		if (con->in_base_pos)
2662 			goto more;
2663 	}
2664 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2665 		/*
2666 		 * what's next?
2667 		 */
2668 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2669 		if (ret <= 0)
2670 			goto out;
2671 		dout("try_read got tag %d\n", (int)con->in_tag);
2672 		switch (con->in_tag) {
2673 		case CEPH_MSGR_TAG_MSG:
2674 			prepare_read_message(con);
2675 			break;
2676 		case CEPH_MSGR_TAG_ACK:
2677 			prepare_read_ack(con);
2678 			break;
2679 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2680 			prepare_read_keepalive_ack(con);
2681 			break;
2682 		case CEPH_MSGR_TAG_CLOSE:
2683 			con_close_socket(con);
2684 			con->state = CON_STATE_CLOSED;
2685 			goto out;
2686 		default:
2687 			goto bad_tag;
2688 		}
2689 	}
2690 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2691 		ret = read_partial_message(con);
2692 		if (ret <= 0) {
2693 			switch (ret) {
2694 			case -EBADMSG:
2695 				con->error_msg = "bad crc/signature";
2696 				/* fall through */
2697 			case -EBADE:
2698 				ret = -EIO;
2699 				break;
2700 			case -EIO:
2701 				con->error_msg = "io error";
2702 				break;
2703 			}
2704 			goto out;
2705 		}
2706 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2707 			goto more;
2708 		process_message(con);
2709 		if (con->state == CON_STATE_OPEN)
2710 			prepare_read_tag(con);
2711 		goto more;
2712 	}
2713 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2714 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2715 		/*
2716 		 * the final handshake seq exchange is semantically
2717 		 * equivalent to an ACK
2718 		 */
2719 		ret = read_partial_ack(con);
2720 		if (ret <= 0)
2721 			goto out;
2722 		process_ack(con);
2723 		goto more;
2724 	}
2725 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2726 		ret = read_keepalive_ack(con);
2727 		if (ret <= 0)
2728 			goto out;
2729 		goto more;
2730 	}
2731 
2732 out:
2733 	dout("try_read done on %p ret %d\n", con, ret);
2734 	return ret;
2735 
2736 bad_tag:
2737 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2738 	con->error_msg = "protocol error, garbage tag";
2739 	ret = -1;
2740 	goto out;
2741 }
2742 
2743 
2744 /*
2745  * Atomically queue work on a connection after the specified delay.
2746  * Bump @con reference to avoid races with connection teardown.
2747  * Returns 0 if work was queued, or an error code otherwise.
2748  */
2749 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2750 {
2751 	if (!con->ops->get(con)) {
2752 		dout("%s %p ref count 0\n", __func__, con);
2753 		return -ENOENT;
2754 	}
2755 
2756 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2757 		dout("%s %p - already queued\n", __func__, con);
2758 		con->ops->put(con);
2759 		return -EBUSY;
2760 	}
2761 
2762 	dout("%s %p %lu\n", __func__, con, delay);
2763 	return 0;
2764 }
2765 
2766 static void queue_con(struct ceph_connection *con)
2767 {
2768 	(void) queue_con_delay(con, 0);
2769 }
2770 
2771 static void cancel_con(struct ceph_connection *con)
2772 {
2773 	if (cancel_delayed_work(&con->work)) {
2774 		dout("%s %p\n", __func__, con);
2775 		con->ops->put(con);
2776 	}
2777 }
2778 
2779 static bool con_sock_closed(struct ceph_connection *con)
2780 {
2781 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2782 		return false;
2783 
2784 #define CASE(x)								\
2785 	case CON_STATE_ ## x:						\
2786 		con->error_msg = "socket closed (con state " #x ")";	\
2787 		break;
2788 
2789 	switch (con->state) {
2790 	CASE(CLOSED);
2791 	CASE(PREOPEN);
2792 	CASE(CONNECTING);
2793 	CASE(NEGOTIATING);
2794 	CASE(OPEN);
2795 	CASE(STANDBY);
2796 	default:
2797 		pr_warn("%s con %p unrecognized state %lu\n",
2798 			__func__, con, con->state);
2799 		con->error_msg = "unrecognized con state";
2800 		BUG();
2801 		break;
2802 	}
2803 #undef CASE
2804 
2805 	return true;
2806 }
2807 
2808 static bool con_backoff(struct ceph_connection *con)
2809 {
2810 	int ret;
2811 
2812 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2813 		return false;
2814 
2815 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2816 	if (ret) {
2817 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2818 			con, con->delay);
2819 		BUG_ON(ret == -ENOENT);
2820 		con_flag_set(con, CON_FLAG_BACKOFF);
2821 	}
2822 
2823 	return true;
2824 }
2825 
2826 /* Finish fault handling; con->mutex must *not* be held here */
2827 
2828 static void con_fault_finish(struct ceph_connection *con)
2829 {
2830 	dout("%s %p\n", __func__, con);
2831 
2832 	/*
2833 	 * in case we faulted due to authentication, invalidate our
2834 	 * current tickets so that we can get new ones.
2835 	 */
2836 	if (con->auth_retry) {
2837 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2838 		if (con->ops->invalidate_authorizer)
2839 			con->ops->invalidate_authorizer(con);
2840 		con->auth_retry = 0;
2841 	}
2842 
2843 	if (con->ops->fault)
2844 		con->ops->fault(con);
2845 }
2846 
2847 /*
2848  * Do some work on a connection.  Drop a connection ref when we're done.
2849  */
2850 static void ceph_con_workfn(struct work_struct *work)
2851 {
2852 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2853 						   work.work);
2854 	bool fault;
2855 
2856 	mutex_lock(&con->mutex);
2857 	while (true) {
2858 		int ret;
2859 
2860 		if ((fault = con_sock_closed(con))) {
2861 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2862 			break;
2863 		}
2864 		if (con_backoff(con)) {
2865 			dout("%s: con %p BACKOFF\n", __func__, con);
2866 			break;
2867 		}
2868 		if (con->state == CON_STATE_STANDBY) {
2869 			dout("%s: con %p STANDBY\n", __func__, con);
2870 			break;
2871 		}
2872 		if (con->state == CON_STATE_CLOSED) {
2873 			dout("%s: con %p CLOSED\n", __func__, con);
2874 			BUG_ON(con->sock);
2875 			break;
2876 		}
2877 		if (con->state == CON_STATE_PREOPEN) {
2878 			dout("%s: con %p PREOPEN\n", __func__, con);
2879 			BUG_ON(con->sock);
2880 		}
2881 
2882 		ret = try_read(con);
2883 		if (ret < 0) {
2884 			if (ret == -EAGAIN)
2885 				continue;
2886 			if (!con->error_msg)
2887 				con->error_msg = "socket error on read";
2888 			fault = true;
2889 			break;
2890 		}
2891 
2892 		ret = try_write(con);
2893 		if (ret < 0) {
2894 			if (ret == -EAGAIN)
2895 				continue;
2896 			if (!con->error_msg)
2897 				con->error_msg = "socket error on write";
2898 			fault = true;
2899 		}
2900 
2901 		break;	/* If we make it to here, we're done */
2902 	}
2903 	if (fault)
2904 		con_fault(con);
2905 	mutex_unlock(&con->mutex);
2906 
2907 	if (fault)
2908 		con_fault_finish(con);
2909 
2910 	con->ops->put(con);
2911 }
2912 
2913 /*
2914  * Generic error/fault handler.  A retry mechanism is used with
2915  * exponential backoff
2916  */
2917 static void con_fault(struct ceph_connection *con)
2918 {
2919 	dout("fault %p state %lu to peer %s\n",
2920 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2921 
2922 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2923 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2924 	con->error_msg = NULL;
2925 
2926 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2927 	       con->state != CON_STATE_NEGOTIATING &&
2928 	       con->state != CON_STATE_OPEN);
2929 
2930 	con_close_socket(con);
2931 
2932 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2933 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2934 		con->state = CON_STATE_CLOSED;
2935 		return;
2936 	}
2937 
2938 	if (con->in_msg) {
2939 		BUG_ON(con->in_msg->con != con);
2940 		ceph_msg_put(con->in_msg);
2941 		con->in_msg = NULL;
2942 	}
2943 
2944 	/* Requeue anything that hasn't been acked */
2945 	list_splice_init(&con->out_sent, &con->out_queue);
2946 
2947 	/* If there are no messages queued or keepalive pending, place
2948 	 * the connection in a STANDBY state */
2949 	if (list_empty(&con->out_queue) &&
2950 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2951 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2952 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2953 		con->state = CON_STATE_STANDBY;
2954 	} else {
2955 		/* retry after a delay. */
2956 		con->state = CON_STATE_PREOPEN;
2957 		if (con->delay == 0)
2958 			con->delay = BASE_DELAY_INTERVAL;
2959 		else if (con->delay < MAX_DELAY_INTERVAL)
2960 			con->delay *= 2;
2961 		con_flag_set(con, CON_FLAG_BACKOFF);
2962 		queue_con(con);
2963 	}
2964 }
2965 
2966 
2967 
2968 /*
2969  * initialize a new messenger instance
2970  */
2971 void ceph_messenger_init(struct ceph_messenger *msgr,
2972 			 struct ceph_entity_addr *myaddr)
2973 {
2974 	spin_lock_init(&msgr->global_seq_lock);
2975 
2976 	if (myaddr)
2977 		msgr->inst.addr = *myaddr;
2978 
2979 	/* select a random nonce */
2980 	msgr->inst.addr.type = 0;
2981 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2982 	encode_my_addr(msgr);
2983 
2984 	atomic_set(&msgr->stopping, 0);
2985 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2986 
2987 	dout("%s %p\n", __func__, msgr);
2988 }
2989 EXPORT_SYMBOL(ceph_messenger_init);
2990 
2991 void ceph_messenger_fini(struct ceph_messenger *msgr)
2992 {
2993 	put_net(read_pnet(&msgr->net));
2994 }
2995 EXPORT_SYMBOL(ceph_messenger_fini);
2996 
2997 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2998 {
2999 	if (msg->con)
3000 		msg->con->ops->put(msg->con);
3001 
3002 	msg->con = con ? con->ops->get(con) : NULL;
3003 	BUG_ON(msg->con != con);
3004 }
3005 
3006 static void clear_standby(struct ceph_connection *con)
3007 {
3008 	/* come back from STANDBY? */
3009 	if (con->state == CON_STATE_STANDBY) {
3010 		dout("clear_standby %p and ++connect_seq\n", con);
3011 		con->state = CON_STATE_PREOPEN;
3012 		con->connect_seq++;
3013 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3014 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3015 	}
3016 }
3017 
3018 /*
3019  * Queue up an outgoing message on the given connection.
3020  */
3021 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3022 {
3023 	/* set src+dst */
3024 	msg->hdr.src = con->msgr->inst.name;
3025 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3026 	msg->needs_out_seq = true;
3027 
3028 	mutex_lock(&con->mutex);
3029 
3030 	if (con->state == CON_STATE_CLOSED) {
3031 		dout("con_send %p closed, dropping %p\n", con, msg);
3032 		ceph_msg_put(msg);
3033 		mutex_unlock(&con->mutex);
3034 		return;
3035 	}
3036 
3037 	msg_con_set(msg, con);
3038 
3039 	BUG_ON(!list_empty(&msg->list_head));
3040 	list_add_tail(&msg->list_head, &con->out_queue);
3041 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3042 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3043 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3044 	     le32_to_cpu(msg->hdr.front_len),
3045 	     le32_to_cpu(msg->hdr.middle_len),
3046 	     le32_to_cpu(msg->hdr.data_len));
3047 
3048 	clear_standby(con);
3049 	mutex_unlock(&con->mutex);
3050 
3051 	/* if there wasn't anything waiting to send before, queue
3052 	 * new work */
3053 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3054 		queue_con(con);
3055 }
3056 EXPORT_SYMBOL(ceph_con_send);
3057 
3058 /*
3059  * Revoke a message that was previously queued for send
3060  */
3061 void ceph_msg_revoke(struct ceph_msg *msg)
3062 {
3063 	struct ceph_connection *con = msg->con;
3064 
3065 	if (!con) {
3066 		dout("%s msg %p null con\n", __func__, msg);
3067 		return;		/* Message not in our possession */
3068 	}
3069 
3070 	mutex_lock(&con->mutex);
3071 	if (!list_empty(&msg->list_head)) {
3072 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3073 		list_del_init(&msg->list_head);
3074 		msg->hdr.seq = 0;
3075 
3076 		ceph_msg_put(msg);
3077 	}
3078 	if (con->out_msg == msg) {
3079 		BUG_ON(con->out_skip);
3080 		/* footer */
3081 		if (con->out_msg_done) {
3082 			con->out_skip += con_out_kvec_skip(con);
3083 		} else {
3084 			BUG_ON(!msg->data_length);
3085 			if (con->peer_features & CEPH_FEATURE_MSG_AUTH)
3086 				con->out_skip += sizeof(msg->footer);
3087 			else
3088 				con->out_skip += sizeof(msg->old_footer);
3089 		}
3090 		/* data, middle, front */
3091 		if (msg->data_length)
3092 			con->out_skip += msg->cursor.total_resid;
3093 		if (msg->middle)
3094 			con->out_skip += con_out_kvec_skip(con);
3095 		con->out_skip += con_out_kvec_skip(con);
3096 
3097 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3098 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3099 		msg->hdr.seq = 0;
3100 		con->out_msg = NULL;
3101 		ceph_msg_put(msg);
3102 	}
3103 
3104 	mutex_unlock(&con->mutex);
3105 }
3106 
3107 /*
3108  * Revoke a message that we may be reading data into
3109  */
3110 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3111 {
3112 	struct ceph_connection *con = msg->con;
3113 
3114 	if (!con) {
3115 		dout("%s msg %p null con\n", __func__, msg);
3116 		return;		/* Message not in our possession */
3117 	}
3118 
3119 	mutex_lock(&con->mutex);
3120 	if (con->in_msg == msg) {
3121 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3122 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3123 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3124 
3125 		/* skip rest of message */
3126 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3127 		con->in_base_pos = con->in_base_pos -
3128 				sizeof(struct ceph_msg_header) -
3129 				front_len -
3130 				middle_len -
3131 				data_len -
3132 				sizeof(struct ceph_msg_footer);
3133 		ceph_msg_put(con->in_msg);
3134 		con->in_msg = NULL;
3135 		con->in_tag = CEPH_MSGR_TAG_READY;
3136 		con->in_seq++;
3137 	} else {
3138 		dout("%s %p in_msg %p msg %p no-op\n",
3139 		     __func__, con, con->in_msg, msg);
3140 	}
3141 	mutex_unlock(&con->mutex);
3142 }
3143 
3144 /*
3145  * Queue a keepalive byte to ensure the tcp connection is alive.
3146  */
3147 void ceph_con_keepalive(struct ceph_connection *con)
3148 {
3149 	dout("con_keepalive %p\n", con);
3150 	mutex_lock(&con->mutex);
3151 	clear_standby(con);
3152 	mutex_unlock(&con->mutex);
3153 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3154 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3155 		queue_con(con);
3156 }
3157 EXPORT_SYMBOL(ceph_con_keepalive);
3158 
3159 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3160 			       unsigned long interval)
3161 {
3162 	if (interval > 0 &&
3163 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3164 		struct timespec now = CURRENT_TIME;
3165 		struct timespec ts;
3166 		jiffies_to_timespec(interval, &ts);
3167 		ts = timespec_add(con->last_keepalive_ack, ts);
3168 		return timespec_compare(&now, &ts) >= 0;
3169 	}
3170 	return false;
3171 }
3172 
3173 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3174 {
3175 	struct ceph_msg_data *data;
3176 
3177 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3178 		return NULL;
3179 
3180 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3181 	if (data)
3182 		data->type = type;
3183 	INIT_LIST_HEAD(&data->links);
3184 
3185 	return data;
3186 }
3187 
3188 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3189 {
3190 	if (!data)
3191 		return;
3192 
3193 	WARN_ON(!list_empty(&data->links));
3194 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3195 		ceph_pagelist_release(data->pagelist);
3196 	kmem_cache_free(ceph_msg_data_cache, data);
3197 }
3198 
3199 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3200 		size_t length, size_t alignment)
3201 {
3202 	struct ceph_msg_data *data;
3203 
3204 	BUG_ON(!pages);
3205 	BUG_ON(!length);
3206 
3207 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3208 	BUG_ON(!data);
3209 	data->pages = pages;
3210 	data->length = length;
3211 	data->alignment = alignment & ~PAGE_MASK;
3212 
3213 	list_add_tail(&data->links, &msg->data);
3214 	msg->data_length += length;
3215 }
3216 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3217 
3218 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3219 				struct ceph_pagelist *pagelist)
3220 {
3221 	struct ceph_msg_data *data;
3222 
3223 	BUG_ON(!pagelist);
3224 	BUG_ON(!pagelist->length);
3225 
3226 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3227 	BUG_ON(!data);
3228 	data->pagelist = pagelist;
3229 
3230 	list_add_tail(&data->links, &msg->data);
3231 	msg->data_length += pagelist->length;
3232 }
3233 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3234 
3235 #ifdef	CONFIG_BLOCK
3236 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3237 		size_t length)
3238 {
3239 	struct ceph_msg_data *data;
3240 
3241 	BUG_ON(!bio);
3242 
3243 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3244 	BUG_ON(!data);
3245 	data->bio = bio;
3246 	data->bio_length = length;
3247 
3248 	list_add_tail(&data->links, &msg->data);
3249 	msg->data_length += length;
3250 }
3251 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3252 #endif	/* CONFIG_BLOCK */
3253 
3254 /*
3255  * construct a new message with given type, size
3256  * the new msg has a ref count of 1.
3257  */
3258 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3259 			      bool can_fail)
3260 {
3261 	struct ceph_msg *m;
3262 
3263 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3264 	if (m == NULL)
3265 		goto out;
3266 
3267 	m->hdr.type = cpu_to_le16(type);
3268 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3269 	m->hdr.front_len = cpu_to_le32(front_len);
3270 
3271 	INIT_LIST_HEAD(&m->list_head);
3272 	kref_init(&m->kref);
3273 	INIT_LIST_HEAD(&m->data);
3274 
3275 	/* front */
3276 	if (front_len) {
3277 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3278 		if (m->front.iov_base == NULL) {
3279 			dout("ceph_msg_new can't allocate %d bytes\n",
3280 			     front_len);
3281 			goto out2;
3282 		}
3283 	} else {
3284 		m->front.iov_base = NULL;
3285 	}
3286 	m->front_alloc_len = m->front.iov_len = front_len;
3287 
3288 	dout("ceph_msg_new %p front %d\n", m, front_len);
3289 	return m;
3290 
3291 out2:
3292 	ceph_msg_put(m);
3293 out:
3294 	if (!can_fail) {
3295 		pr_err("msg_new can't create type %d front %d\n", type,
3296 		       front_len);
3297 		WARN_ON(1);
3298 	} else {
3299 		dout("msg_new can't create type %d front %d\n", type,
3300 		     front_len);
3301 	}
3302 	return NULL;
3303 }
3304 EXPORT_SYMBOL(ceph_msg_new);
3305 
3306 /*
3307  * Allocate "middle" portion of a message, if it is needed and wasn't
3308  * allocated by alloc_msg.  This allows us to read a small fixed-size
3309  * per-type header in the front and then gracefully fail (i.e.,
3310  * propagate the error to the caller based on info in the front) when
3311  * the middle is too large.
3312  */
3313 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3314 {
3315 	int type = le16_to_cpu(msg->hdr.type);
3316 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3317 
3318 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3319 	     ceph_msg_type_name(type), middle_len);
3320 	BUG_ON(!middle_len);
3321 	BUG_ON(msg->middle);
3322 
3323 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3324 	if (!msg->middle)
3325 		return -ENOMEM;
3326 	return 0;
3327 }
3328 
3329 /*
3330  * Allocate a message for receiving an incoming message on a
3331  * connection, and save the result in con->in_msg.  Uses the
3332  * connection's private alloc_msg op if available.
3333  *
3334  * Returns 0 on success, or a negative error code.
3335  *
3336  * On success, if we set *skip = 1:
3337  *  - the next message should be skipped and ignored.
3338  *  - con->in_msg == NULL
3339  * or if we set *skip = 0:
3340  *  - con->in_msg is non-null.
3341  * On error (ENOMEM, EAGAIN, ...),
3342  *  - con->in_msg == NULL
3343  */
3344 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3345 {
3346 	struct ceph_msg_header *hdr = &con->in_hdr;
3347 	int middle_len = le32_to_cpu(hdr->middle_len);
3348 	struct ceph_msg *msg;
3349 	int ret = 0;
3350 
3351 	BUG_ON(con->in_msg != NULL);
3352 	BUG_ON(!con->ops->alloc_msg);
3353 
3354 	mutex_unlock(&con->mutex);
3355 	msg = con->ops->alloc_msg(con, hdr, skip);
3356 	mutex_lock(&con->mutex);
3357 	if (con->state != CON_STATE_OPEN) {
3358 		if (msg)
3359 			ceph_msg_put(msg);
3360 		return -EAGAIN;
3361 	}
3362 	if (msg) {
3363 		BUG_ON(*skip);
3364 		msg_con_set(msg, con);
3365 		con->in_msg = msg;
3366 	} else {
3367 		/*
3368 		 * Null message pointer means either we should skip
3369 		 * this message or we couldn't allocate memory.  The
3370 		 * former is not an error.
3371 		 */
3372 		if (*skip)
3373 			return 0;
3374 
3375 		con->error_msg = "error allocating memory for incoming message";
3376 		return -ENOMEM;
3377 	}
3378 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3379 
3380 	if (middle_len && !con->in_msg->middle) {
3381 		ret = ceph_alloc_middle(con, con->in_msg);
3382 		if (ret < 0) {
3383 			ceph_msg_put(con->in_msg);
3384 			con->in_msg = NULL;
3385 		}
3386 	}
3387 
3388 	return ret;
3389 }
3390 
3391 
3392 /*
3393  * Free a generically kmalloc'd message.
3394  */
3395 static void ceph_msg_free(struct ceph_msg *m)
3396 {
3397 	dout("%s %p\n", __func__, m);
3398 	kvfree(m->front.iov_base);
3399 	kmem_cache_free(ceph_msg_cache, m);
3400 }
3401 
3402 static void ceph_msg_release(struct kref *kref)
3403 {
3404 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3405 	struct ceph_msg_data *data, *next;
3406 
3407 	dout("%s %p\n", __func__, m);
3408 	WARN_ON(!list_empty(&m->list_head));
3409 
3410 	msg_con_set(m, NULL);
3411 
3412 	/* drop middle, data, if any */
3413 	if (m->middle) {
3414 		ceph_buffer_put(m->middle);
3415 		m->middle = NULL;
3416 	}
3417 
3418 	list_for_each_entry_safe(data, next, &m->data, links) {
3419 		list_del_init(&data->links);
3420 		ceph_msg_data_destroy(data);
3421 	}
3422 	m->data_length = 0;
3423 
3424 	if (m->pool)
3425 		ceph_msgpool_put(m->pool, m);
3426 	else
3427 		ceph_msg_free(m);
3428 }
3429 
3430 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3431 {
3432 	dout("%s %p (was %d)\n", __func__, msg,
3433 	     atomic_read(&msg->kref.refcount));
3434 	kref_get(&msg->kref);
3435 	return msg;
3436 }
3437 EXPORT_SYMBOL(ceph_msg_get);
3438 
3439 void ceph_msg_put(struct ceph_msg *msg)
3440 {
3441 	dout("%s %p (was %d)\n", __func__, msg,
3442 	     atomic_read(&msg->kref.refcount));
3443 	kref_put(&msg->kref, ceph_msg_release);
3444 }
3445 EXPORT_SYMBOL(ceph_msg_put);
3446 
3447 void ceph_msg_dump(struct ceph_msg *msg)
3448 {
3449 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3450 		 msg->front_alloc_len, msg->data_length);
3451 	print_hex_dump(KERN_DEBUG, "header: ",
3452 		       DUMP_PREFIX_OFFSET, 16, 1,
3453 		       &msg->hdr, sizeof(msg->hdr), true);
3454 	print_hex_dump(KERN_DEBUG, " front: ",
3455 		       DUMP_PREFIX_OFFSET, 16, 1,
3456 		       msg->front.iov_base, msg->front.iov_len, true);
3457 	if (msg->middle)
3458 		print_hex_dump(KERN_DEBUG, "middle: ",
3459 			       DUMP_PREFIX_OFFSET, 16, 1,
3460 			       msg->middle->vec.iov_base,
3461 			       msg->middle->vec.iov_len, true);
3462 	print_hex_dump(KERN_DEBUG, "footer: ",
3463 		       DUMP_PREFIX_OFFSET, 16, 1,
3464 		       &msg->footer, sizeof(msg->footer), true);
3465 }
3466 EXPORT_SYMBOL(ceph_msg_dump);
3467