xref: /openbmc/linux/net/ceph/messenger.c (revision b34e08d5)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
185 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;		/* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 	int i;
197 	char *s;
198 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 	s = addr_str[i];
203 
204 	switch (ss->ss_family) {
205 	case AF_INET:
206 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 			 ntohs(in4->sin_port));
208 		break;
209 
210 	case AF_INET6:
211 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 			 ntohs(in6->sin6_port));
213 		break;
214 
215 	default:
216 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 			 ss->ss_family);
218 	}
219 
220 	return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 	ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237 	BUG_ON(ceph_msg_cache);
238 	ceph_msg_cache = kmem_cache_create("ceph_msg",
239 					sizeof (struct ceph_msg),
240 					__alignof__(struct ceph_msg), 0, NULL);
241 
242 	if (!ceph_msg_cache)
243 		return -ENOMEM;
244 
245 	BUG_ON(ceph_msg_data_cache);
246 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 					sizeof (struct ceph_msg_data),
248 					__alignof__(struct ceph_msg_data),
249 					0, NULL);
250 	if (ceph_msg_data_cache)
251 		return 0;
252 
253 	kmem_cache_destroy(ceph_msg_cache);
254 	ceph_msg_cache = NULL;
255 
256 	return -ENOMEM;
257 }
258 
259 static void ceph_msgr_slab_exit(void)
260 {
261 	BUG_ON(!ceph_msg_data_cache);
262 	kmem_cache_destroy(ceph_msg_data_cache);
263 	ceph_msg_data_cache = NULL;
264 
265 	BUG_ON(!ceph_msg_cache);
266 	kmem_cache_destroy(ceph_msg_cache);
267 	ceph_msg_cache = NULL;
268 }
269 
270 static void _ceph_msgr_exit(void)
271 {
272 	if (ceph_msgr_wq) {
273 		destroy_workqueue(ceph_msgr_wq);
274 		ceph_msgr_wq = NULL;
275 	}
276 
277 	ceph_msgr_slab_exit();
278 
279 	BUG_ON(zero_page == NULL);
280 	kunmap(zero_page);
281 	page_cache_release(zero_page);
282 	zero_page = NULL;
283 }
284 
285 int ceph_msgr_init(void)
286 {
287 	BUG_ON(zero_page != NULL);
288 	zero_page = ZERO_PAGE(0);
289 	page_cache_get(zero_page);
290 
291 	if (ceph_msgr_slab_init())
292 		return -ENOMEM;
293 
294 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 	if (ceph_msgr_wq)
296 		return 0;
297 
298 	pr_err("msgr_init failed to create workqueue\n");
299 	_ceph_msgr_exit();
300 
301 	return -ENOMEM;
302 }
303 EXPORT_SYMBOL(ceph_msgr_init);
304 
305 void ceph_msgr_exit(void)
306 {
307 	BUG_ON(ceph_msgr_wq == NULL);
308 
309 	_ceph_msgr_exit();
310 }
311 EXPORT_SYMBOL(ceph_msgr_exit);
312 
313 void ceph_msgr_flush(void)
314 {
315 	flush_workqueue(ceph_msgr_wq);
316 }
317 EXPORT_SYMBOL(ceph_msgr_flush);
318 
319 /* Connection socket state transition functions */
320 
321 static void con_sock_state_init(struct ceph_connection *con)
322 {
323 	int old_state;
324 
325 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 		printk("%s: unexpected old state %d\n", __func__, old_state);
328 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 	     CON_SOCK_STATE_CLOSED);
330 }
331 
332 static void con_sock_state_connecting(struct ceph_connection *con)
333 {
334 	int old_state;
335 
336 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 		printk("%s: unexpected old state %d\n", __func__, old_state);
339 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 	     CON_SOCK_STATE_CONNECTING);
341 }
342 
343 static void con_sock_state_connected(struct ceph_connection *con)
344 {
345 	int old_state;
346 
347 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 		printk("%s: unexpected old state %d\n", __func__, old_state);
350 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 	     CON_SOCK_STATE_CONNECTED);
352 }
353 
354 static void con_sock_state_closing(struct ceph_connection *con)
355 {
356 	int old_state;
357 
358 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 			old_state != CON_SOCK_STATE_CONNECTED &&
361 			old_state != CON_SOCK_STATE_CLOSING))
362 		printk("%s: unexpected old state %d\n", __func__, old_state);
363 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 	     CON_SOCK_STATE_CLOSING);
365 }
366 
367 static void con_sock_state_closed(struct ceph_connection *con)
368 {
369 	int old_state;
370 
371 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 		    old_state != CON_SOCK_STATE_CLOSING &&
374 		    old_state != CON_SOCK_STATE_CONNECTING &&
375 		    old_state != CON_SOCK_STATE_CLOSED))
376 		printk("%s: unexpected old state %d\n", __func__, old_state);
377 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 	     CON_SOCK_STATE_CLOSED);
379 }
380 
381 /*
382  * socket callback functions
383  */
384 
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk)
387 {
388 	struct ceph_connection *con = sk->sk_user_data;
389 	if (atomic_read(&con->msgr->stopping)) {
390 		return;
391 	}
392 
393 	if (sk->sk_state != TCP_CLOSE_WAIT) {
394 		dout("%s on %p state = %lu, queueing work\n", __func__,
395 		     con, con->state);
396 		queue_con(con);
397 	}
398 }
399 
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
402 {
403 	struct ceph_connection *con = sk->sk_user_data;
404 
405 	/* only queue to workqueue if there is data we want to write,
406 	 * and there is sufficient space in the socket buffer to accept
407 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
408 	 * doesn't get called again until try_write() fills the socket
409 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 	 * and net/core/stream.c:sk_stream_write_space().
411 	 */
412 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 		if (sk_stream_is_writeable(sk)) {
414 			dout("%s %p queueing write work\n", __func__, con);
415 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 			queue_con(con);
417 		}
418 	} else {
419 		dout("%s %p nothing to write\n", __func__, con);
420 	}
421 }
422 
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
425 {
426 	struct ceph_connection *con = sk->sk_user_data;
427 
428 	dout("%s %p state = %lu sk_state = %u\n", __func__,
429 	     con, con->state, sk->sk_state);
430 
431 	switch (sk->sk_state) {
432 	case TCP_CLOSE:
433 		dout("%s TCP_CLOSE\n", __func__);
434 	case TCP_CLOSE_WAIT:
435 		dout("%s TCP_CLOSE_WAIT\n", __func__);
436 		con_sock_state_closing(con);
437 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 		queue_con(con);
439 		break;
440 	case TCP_ESTABLISHED:
441 		dout("%s TCP_ESTABLISHED\n", __func__);
442 		con_sock_state_connected(con);
443 		queue_con(con);
444 		break;
445 	default:	/* Everything else is uninteresting */
446 		break;
447 	}
448 }
449 
450 /*
451  * set up socket callbacks
452  */
453 static void set_sock_callbacks(struct socket *sock,
454 			       struct ceph_connection *con)
455 {
456 	struct sock *sk = sock->sk;
457 	sk->sk_user_data = con;
458 	sk->sk_data_ready = ceph_sock_data_ready;
459 	sk->sk_write_space = ceph_sock_write_space;
460 	sk->sk_state_change = ceph_sock_state_change;
461 }
462 
463 
464 /*
465  * socket helpers
466  */
467 
468 /*
469  * initiate connection to a remote socket.
470  */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 	struct socket *sock;
475 	int ret;
476 
477 	BUG_ON(con->sock);
478 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 			       IPPROTO_TCP, &sock);
480 	if (ret)
481 		return ret;
482 	sock->sk->sk_allocation = GFP_NOFS;
483 
484 #ifdef CONFIG_LOCKDEP
485 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
487 
488 	set_sock_callbacks(sock, con);
489 
490 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491 
492 	con_sock_state_connecting(con);
493 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 				 O_NONBLOCK);
495 	if (ret == -EINPROGRESS) {
496 		dout("connect %s EINPROGRESS sk_state = %u\n",
497 		     ceph_pr_addr(&con->peer_addr.in_addr),
498 		     sock->sk->sk_state);
499 	} else if (ret < 0) {
500 		pr_err("connect %s error %d\n",
501 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 		sock_release(sock);
503 		con->error_msg = "connect error";
504 
505 		return ret;
506 	}
507 	con->sock = sock;
508 	return 0;
509 }
510 
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512 {
513 	struct kvec iov = {buf, len};
514 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 	int r;
516 
517 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 	if (r == -EAGAIN)
519 		r = 0;
520 	return r;
521 }
522 
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 		     int page_offset, size_t length)
525 {
526 	void *kaddr;
527 	int ret;
528 
529 	BUG_ON(page_offset + length > PAGE_SIZE);
530 
531 	kaddr = kmap(page);
532 	BUG_ON(!kaddr);
533 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 	kunmap(page);
535 
536 	return ret;
537 }
538 
539 /*
540  * write something.  @more is true if caller will be sending more data
541  * shortly.
542  */
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 		     size_t kvlen, size_t len, int more)
545 {
546 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 	int r;
548 
549 	if (more)
550 		msg.msg_flags |= MSG_MORE;
551 	else
552 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
553 
554 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 	if (r == -EAGAIN)
556 		r = 0;
557 	return r;
558 }
559 
560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 		     int offset, size_t size, bool more)
562 {
563 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 	int ret;
565 
566 	ret = kernel_sendpage(sock, page, offset, size, flags);
567 	if (ret == -EAGAIN)
568 		ret = 0;
569 
570 	return ret;
571 }
572 
573 
574 /*
575  * Shutdown/close the socket for the given connection.
576  */
577 static int con_close_socket(struct ceph_connection *con)
578 {
579 	int rc = 0;
580 
581 	dout("con_close_socket on %p sock %p\n", con, con->sock);
582 	if (con->sock) {
583 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
584 		sock_release(con->sock);
585 		con->sock = NULL;
586 	}
587 
588 	/*
589 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
590 	 * independent of the connection mutex, and we could have
591 	 * received a socket close event before we had the chance to
592 	 * shut the socket down.
593 	 */
594 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
595 
596 	con_sock_state_closed(con);
597 	return rc;
598 }
599 
600 /*
601  * Reset a connection.  Discard all incoming and outgoing messages
602  * and clear *_seq state.
603  */
604 static void ceph_msg_remove(struct ceph_msg *msg)
605 {
606 	list_del_init(&msg->list_head);
607 	BUG_ON(msg->con == NULL);
608 	msg->con->ops->put(msg->con);
609 	msg->con = NULL;
610 
611 	ceph_msg_put(msg);
612 }
613 static void ceph_msg_remove_list(struct list_head *head)
614 {
615 	while (!list_empty(head)) {
616 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
617 							list_head);
618 		ceph_msg_remove(msg);
619 	}
620 }
621 
622 static void reset_connection(struct ceph_connection *con)
623 {
624 	/* reset connection, out_queue, msg_ and connect_seq */
625 	/* discard existing out_queue and msg_seq */
626 	dout("reset_connection %p\n", con);
627 	ceph_msg_remove_list(&con->out_queue);
628 	ceph_msg_remove_list(&con->out_sent);
629 
630 	if (con->in_msg) {
631 		BUG_ON(con->in_msg->con != con);
632 		con->in_msg->con = NULL;
633 		ceph_msg_put(con->in_msg);
634 		con->in_msg = NULL;
635 		con->ops->put(con);
636 	}
637 
638 	con->connect_seq = 0;
639 	con->out_seq = 0;
640 	if (con->out_msg) {
641 		ceph_msg_put(con->out_msg);
642 		con->out_msg = NULL;
643 	}
644 	con->in_seq = 0;
645 	con->in_seq_acked = 0;
646 }
647 
648 /*
649  * mark a peer down.  drop any open connections.
650  */
651 void ceph_con_close(struct ceph_connection *con)
652 {
653 	mutex_lock(&con->mutex);
654 	dout("con_close %p peer %s\n", con,
655 	     ceph_pr_addr(&con->peer_addr.in_addr));
656 	con->state = CON_STATE_CLOSED;
657 
658 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
659 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
660 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
661 	con_flag_clear(con, CON_FLAG_BACKOFF);
662 
663 	reset_connection(con);
664 	con->peer_global_seq = 0;
665 	cancel_delayed_work(&con->work);
666 	con_close_socket(con);
667 	mutex_unlock(&con->mutex);
668 }
669 EXPORT_SYMBOL(ceph_con_close);
670 
671 /*
672  * Reopen a closed connection, with a new peer address.
673  */
674 void ceph_con_open(struct ceph_connection *con,
675 		   __u8 entity_type, __u64 entity_num,
676 		   struct ceph_entity_addr *addr)
677 {
678 	mutex_lock(&con->mutex);
679 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
680 
681 	WARN_ON(con->state != CON_STATE_CLOSED);
682 	con->state = CON_STATE_PREOPEN;
683 
684 	con->peer_name.type = (__u8) entity_type;
685 	con->peer_name.num = cpu_to_le64(entity_num);
686 
687 	memcpy(&con->peer_addr, addr, sizeof(*addr));
688 	con->delay = 0;      /* reset backoff memory */
689 	mutex_unlock(&con->mutex);
690 	queue_con(con);
691 }
692 EXPORT_SYMBOL(ceph_con_open);
693 
694 /*
695  * return true if this connection ever successfully opened
696  */
697 bool ceph_con_opened(struct ceph_connection *con)
698 {
699 	return con->connect_seq > 0;
700 }
701 
702 /*
703  * initialize a new connection.
704  */
705 void ceph_con_init(struct ceph_connection *con, void *private,
706 	const struct ceph_connection_operations *ops,
707 	struct ceph_messenger *msgr)
708 {
709 	dout("con_init %p\n", con);
710 	memset(con, 0, sizeof(*con));
711 	con->private = private;
712 	con->ops = ops;
713 	con->msgr = msgr;
714 
715 	con_sock_state_init(con);
716 
717 	mutex_init(&con->mutex);
718 	INIT_LIST_HEAD(&con->out_queue);
719 	INIT_LIST_HEAD(&con->out_sent);
720 	INIT_DELAYED_WORK(&con->work, con_work);
721 
722 	con->state = CON_STATE_CLOSED;
723 }
724 EXPORT_SYMBOL(ceph_con_init);
725 
726 
727 /*
728  * We maintain a global counter to order connection attempts.  Get
729  * a unique seq greater than @gt.
730  */
731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
732 {
733 	u32 ret;
734 
735 	spin_lock(&msgr->global_seq_lock);
736 	if (msgr->global_seq < gt)
737 		msgr->global_seq = gt;
738 	ret = ++msgr->global_seq;
739 	spin_unlock(&msgr->global_seq_lock);
740 	return ret;
741 }
742 
743 static void con_out_kvec_reset(struct ceph_connection *con)
744 {
745 	con->out_kvec_left = 0;
746 	con->out_kvec_bytes = 0;
747 	con->out_kvec_cur = &con->out_kvec[0];
748 }
749 
750 static void con_out_kvec_add(struct ceph_connection *con,
751 				size_t size, void *data)
752 {
753 	int index;
754 
755 	index = con->out_kvec_left;
756 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
757 
758 	con->out_kvec[index].iov_len = size;
759 	con->out_kvec[index].iov_base = data;
760 	con->out_kvec_left++;
761 	con->out_kvec_bytes += size;
762 }
763 
764 #ifdef CONFIG_BLOCK
765 
766 /*
767  * For a bio data item, a piece is whatever remains of the next
768  * entry in the current bio iovec, or the first entry in the next
769  * bio in the list.
770  */
771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
772 					size_t length)
773 {
774 	struct ceph_msg_data *data = cursor->data;
775 	struct bio *bio;
776 
777 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
778 
779 	bio = data->bio;
780 	BUG_ON(!bio);
781 
782 	cursor->resid = min(length, data->bio_length);
783 	cursor->bio = bio;
784 	cursor->bvec_iter = bio->bi_iter;
785 	cursor->last_piece =
786 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
787 }
788 
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 						size_t *page_offset,
791 						size_t *length)
792 {
793 	struct ceph_msg_data *data = cursor->data;
794 	struct bio *bio;
795 	struct bio_vec bio_vec;
796 
797 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
798 
799 	bio = cursor->bio;
800 	BUG_ON(!bio);
801 
802 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
803 
804 	*page_offset = (size_t) bio_vec.bv_offset;
805 	BUG_ON(*page_offset >= PAGE_SIZE);
806 	if (cursor->last_piece) /* pagelist offset is always 0 */
807 		*length = cursor->resid;
808 	else
809 		*length = (size_t) bio_vec.bv_len;
810 	BUG_ON(*length > cursor->resid);
811 	BUG_ON(*page_offset + *length > PAGE_SIZE);
812 
813 	return bio_vec.bv_page;
814 }
815 
816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
817 					size_t bytes)
818 {
819 	struct bio *bio;
820 	struct bio_vec bio_vec;
821 
822 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
823 
824 	bio = cursor->bio;
825 	BUG_ON(!bio);
826 
827 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
828 
829 	/* Advance the cursor offset */
830 
831 	BUG_ON(cursor->resid < bytes);
832 	cursor->resid -= bytes;
833 
834 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
835 
836 	if (bytes < bio_vec.bv_len)
837 		return false;	/* more bytes to process in this segment */
838 
839 	/* Move on to the next segment, and possibly the next bio */
840 
841 	if (!cursor->bvec_iter.bi_size) {
842 		bio = bio->bi_next;
843 		cursor->bio = bio;
844 		if (bio)
845 			cursor->bvec_iter = bio->bi_iter;
846 		else
847 			memset(&cursor->bvec_iter, 0,
848 			       sizeof(cursor->bvec_iter));
849 	}
850 
851 	if (!cursor->last_piece) {
852 		BUG_ON(!cursor->resid);
853 		BUG_ON(!bio);
854 		/* A short read is OK, so use <= rather than == */
855 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
856 			cursor->last_piece = true;
857 	}
858 
859 	return true;
860 }
861 #endif /* CONFIG_BLOCK */
862 
863 /*
864  * For a page array, a piece comes from the first page in the array
865  * that has not already been fully consumed.
866  */
867 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
868 					size_t length)
869 {
870 	struct ceph_msg_data *data = cursor->data;
871 	int page_count;
872 
873 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
874 
875 	BUG_ON(!data->pages);
876 	BUG_ON(!data->length);
877 
878 	cursor->resid = min(length, data->length);
879 	page_count = calc_pages_for(data->alignment, (u64)data->length);
880 	cursor->page_offset = data->alignment & ~PAGE_MASK;
881 	cursor->page_index = 0;
882 	BUG_ON(page_count > (int)USHRT_MAX);
883 	cursor->page_count = (unsigned short)page_count;
884 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
885 	cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
886 }
887 
888 static struct page *
889 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
890 					size_t *page_offset, size_t *length)
891 {
892 	struct ceph_msg_data *data = cursor->data;
893 
894 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
895 
896 	BUG_ON(cursor->page_index >= cursor->page_count);
897 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
898 
899 	*page_offset = cursor->page_offset;
900 	if (cursor->last_piece)
901 		*length = cursor->resid;
902 	else
903 		*length = PAGE_SIZE - *page_offset;
904 
905 	return data->pages[cursor->page_index];
906 }
907 
908 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
909 						size_t bytes)
910 {
911 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
912 
913 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
914 
915 	/* Advance the cursor page offset */
916 
917 	cursor->resid -= bytes;
918 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
919 	if (!bytes || cursor->page_offset)
920 		return false;	/* more bytes to process in the current page */
921 
922 	if (!cursor->resid)
923 		return false;   /* no more data */
924 
925 	/* Move on to the next page; offset is already at 0 */
926 
927 	BUG_ON(cursor->page_index >= cursor->page_count);
928 	cursor->page_index++;
929 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
930 
931 	return true;
932 }
933 
934 /*
935  * For a pagelist, a piece is whatever remains to be consumed in the
936  * first page in the list, or the front of the next page.
937  */
938 static void
939 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
940 					size_t length)
941 {
942 	struct ceph_msg_data *data = cursor->data;
943 	struct ceph_pagelist *pagelist;
944 	struct page *page;
945 
946 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947 
948 	pagelist = data->pagelist;
949 	BUG_ON(!pagelist);
950 
951 	if (!length)
952 		return;		/* pagelist can be assigned but empty */
953 
954 	BUG_ON(list_empty(&pagelist->head));
955 	page = list_first_entry(&pagelist->head, struct page, lru);
956 
957 	cursor->resid = min(length, pagelist->length);
958 	cursor->page = page;
959 	cursor->offset = 0;
960 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
961 }
962 
963 static struct page *
964 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
965 				size_t *page_offset, size_t *length)
966 {
967 	struct ceph_msg_data *data = cursor->data;
968 	struct ceph_pagelist *pagelist;
969 
970 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
971 
972 	pagelist = data->pagelist;
973 	BUG_ON(!pagelist);
974 
975 	BUG_ON(!cursor->page);
976 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
977 
978 	/* offset of first page in pagelist is always 0 */
979 	*page_offset = cursor->offset & ~PAGE_MASK;
980 	if (cursor->last_piece)
981 		*length = cursor->resid;
982 	else
983 		*length = PAGE_SIZE - *page_offset;
984 
985 	return cursor->page;
986 }
987 
988 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
989 						size_t bytes)
990 {
991 	struct ceph_msg_data *data = cursor->data;
992 	struct ceph_pagelist *pagelist;
993 
994 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
995 
996 	pagelist = data->pagelist;
997 	BUG_ON(!pagelist);
998 
999 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1000 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1001 
1002 	/* Advance the cursor offset */
1003 
1004 	cursor->resid -= bytes;
1005 	cursor->offset += bytes;
1006 	/* offset of first page in pagelist is always 0 */
1007 	if (!bytes || cursor->offset & ~PAGE_MASK)
1008 		return false;	/* more bytes to process in the current page */
1009 
1010 	if (!cursor->resid)
1011 		return false;   /* no more data */
1012 
1013 	/* Move on to the next page */
1014 
1015 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1016 	cursor->page = list_entry_next(cursor->page, lru);
1017 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1018 
1019 	return true;
1020 }
1021 
1022 /*
1023  * Message data is handled (sent or received) in pieces, where each
1024  * piece resides on a single page.  The network layer might not
1025  * consume an entire piece at once.  A data item's cursor keeps
1026  * track of which piece is next to process and how much remains to
1027  * be processed in that piece.  It also tracks whether the current
1028  * piece is the last one in the data item.
1029  */
1030 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1031 {
1032 	size_t length = cursor->total_resid;
1033 
1034 	switch (cursor->data->type) {
1035 	case CEPH_MSG_DATA_PAGELIST:
1036 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1037 		break;
1038 	case CEPH_MSG_DATA_PAGES:
1039 		ceph_msg_data_pages_cursor_init(cursor, length);
1040 		break;
1041 #ifdef CONFIG_BLOCK
1042 	case CEPH_MSG_DATA_BIO:
1043 		ceph_msg_data_bio_cursor_init(cursor, length);
1044 		break;
1045 #endif /* CONFIG_BLOCK */
1046 	case CEPH_MSG_DATA_NONE:
1047 	default:
1048 		/* BUG(); */
1049 		break;
1050 	}
1051 	cursor->need_crc = true;
1052 }
1053 
1054 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1055 {
1056 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1057 	struct ceph_msg_data *data;
1058 
1059 	BUG_ON(!length);
1060 	BUG_ON(length > msg->data_length);
1061 	BUG_ON(list_empty(&msg->data));
1062 
1063 	cursor->data_head = &msg->data;
1064 	cursor->total_resid = length;
1065 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1066 	cursor->data = data;
1067 
1068 	__ceph_msg_data_cursor_init(cursor);
1069 }
1070 
1071 /*
1072  * Return the page containing the next piece to process for a given
1073  * data item, and supply the page offset and length of that piece.
1074  * Indicate whether this is the last piece in this data item.
1075  */
1076 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1077 					size_t *page_offset, size_t *length,
1078 					bool *last_piece)
1079 {
1080 	struct page *page;
1081 
1082 	switch (cursor->data->type) {
1083 	case CEPH_MSG_DATA_PAGELIST:
1084 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1085 		break;
1086 	case CEPH_MSG_DATA_PAGES:
1087 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1088 		break;
1089 #ifdef CONFIG_BLOCK
1090 	case CEPH_MSG_DATA_BIO:
1091 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1092 		break;
1093 #endif /* CONFIG_BLOCK */
1094 	case CEPH_MSG_DATA_NONE:
1095 	default:
1096 		page = NULL;
1097 		break;
1098 	}
1099 	BUG_ON(!page);
1100 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1101 	BUG_ON(!*length);
1102 	if (last_piece)
1103 		*last_piece = cursor->last_piece;
1104 
1105 	return page;
1106 }
1107 
1108 /*
1109  * Returns true if the result moves the cursor on to the next piece
1110  * of the data item.
1111  */
1112 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1113 				size_t bytes)
1114 {
1115 	bool new_piece;
1116 
1117 	BUG_ON(bytes > cursor->resid);
1118 	switch (cursor->data->type) {
1119 	case CEPH_MSG_DATA_PAGELIST:
1120 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1121 		break;
1122 	case CEPH_MSG_DATA_PAGES:
1123 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1124 		break;
1125 #ifdef CONFIG_BLOCK
1126 	case CEPH_MSG_DATA_BIO:
1127 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1128 		break;
1129 #endif /* CONFIG_BLOCK */
1130 	case CEPH_MSG_DATA_NONE:
1131 	default:
1132 		BUG();
1133 		break;
1134 	}
1135 	cursor->total_resid -= bytes;
1136 
1137 	if (!cursor->resid && cursor->total_resid) {
1138 		WARN_ON(!cursor->last_piece);
1139 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1140 		cursor->data = list_entry_next(cursor->data, links);
1141 		__ceph_msg_data_cursor_init(cursor);
1142 		new_piece = true;
1143 	}
1144 	cursor->need_crc = new_piece;
1145 
1146 	return new_piece;
1147 }
1148 
1149 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1150 {
1151 	BUG_ON(!msg);
1152 	BUG_ON(!data_len);
1153 
1154 	/* Initialize data cursor */
1155 
1156 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1157 }
1158 
1159 /*
1160  * Prepare footer for currently outgoing message, and finish things
1161  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1162  */
1163 static void prepare_write_message_footer(struct ceph_connection *con)
1164 {
1165 	struct ceph_msg *m = con->out_msg;
1166 	int v = con->out_kvec_left;
1167 
1168 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1169 
1170 	dout("prepare_write_message_footer %p\n", con);
1171 	con->out_kvec_is_msg = true;
1172 	con->out_kvec[v].iov_base = &m->footer;
1173 	con->out_kvec[v].iov_len = sizeof(m->footer);
1174 	con->out_kvec_bytes += sizeof(m->footer);
1175 	con->out_kvec_left++;
1176 	con->out_more = m->more_to_follow;
1177 	con->out_msg_done = true;
1178 }
1179 
1180 /*
1181  * Prepare headers for the next outgoing message.
1182  */
1183 static void prepare_write_message(struct ceph_connection *con)
1184 {
1185 	struct ceph_msg *m;
1186 	u32 crc;
1187 
1188 	con_out_kvec_reset(con);
1189 	con->out_kvec_is_msg = true;
1190 	con->out_msg_done = false;
1191 
1192 	/* Sneak an ack in there first?  If we can get it into the same
1193 	 * TCP packet that's a good thing. */
1194 	if (con->in_seq > con->in_seq_acked) {
1195 		con->in_seq_acked = con->in_seq;
1196 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1197 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1198 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1199 			&con->out_temp_ack);
1200 	}
1201 
1202 	BUG_ON(list_empty(&con->out_queue));
1203 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1204 	con->out_msg = m;
1205 	BUG_ON(m->con != con);
1206 
1207 	/* put message on sent list */
1208 	ceph_msg_get(m);
1209 	list_move_tail(&m->list_head, &con->out_sent);
1210 
1211 	/*
1212 	 * only assign outgoing seq # if we haven't sent this message
1213 	 * yet.  if it is requeued, resend with it's original seq.
1214 	 */
1215 	if (m->needs_out_seq) {
1216 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1217 		m->needs_out_seq = false;
1218 	}
1219 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1220 
1221 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1222 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1223 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1224 	     m->data_length);
1225 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1226 
1227 	/* tag + hdr + front + middle */
1228 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1229 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1230 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1231 
1232 	if (m->middle)
1233 		con_out_kvec_add(con, m->middle->vec.iov_len,
1234 			m->middle->vec.iov_base);
1235 
1236 	/* fill in crc (except data pages), footer */
1237 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1238 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1239 	con->out_msg->footer.flags = 0;
1240 
1241 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1242 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1243 	if (m->middle) {
1244 		crc = crc32c(0, m->middle->vec.iov_base,
1245 				m->middle->vec.iov_len);
1246 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1247 	} else
1248 		con->out_msg->footer.middle_crc = 0;
1249 	dout("%s front_crc %u middle_crc %u\n", __func__,
1250 	     le32_to_cpu(con->out_msg->footer.front_crc),
1251 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1252 
1253 	/* is there a data payload? */
1254 	con->out_msg->footer.data_crc = 0;
1255 	if (m->data_length) {
1256 		prepare_message_data(con->out_msg, m->data_length);
1257 		con->out_more = 1;  /* data + footer will follow */
1258 	} else {
1259 		/* no, queue up footer too and be done */
1260 		prepare_write_message_footer(con);
1261 	}
1262 
1263 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1264 }
1265 
1266 /*
1267  * Prepare an ack.
1268  */
1269 static void prepare_write_ack(struct ceph_connection *con)
1270 {
1271 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1272 	     con->in_seq_acked, con->in_seq);
1273 	con->in_seq_acked = con->in_seq;
1274 
1275 	con_out_kvec_reset(con);
1276 
1277 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1278 
1279 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1280 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1281 				&con->out_temp_ack);
1282 
1283 	con->out_more = 1;  /* more will follow.. eventually.. */
1284 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1285 }
1286 
1287 /*
1288  * Prepare to share the seq during handshake
1289  */
1290 static void prepare_write_seq(struct ceph_connection *con)
1291 {
1292 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1293 	     con->in_seq_acked, con->in_seq);
1294 	con->in_seq_acked = con->in_seq;
1295 
1296 	con_out_kvec_reset(con);
1297 
1298 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1299 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1300 			 &con->out_temp_ack);
1301 
1302 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303 }
1304 
1305 /*
1306  * Prepare to write keepalive byte.
1307  */
1308 static void prepare_write_keepalive(struct ceph_connection *con)
1309 {
1310 	dout("prepare_write_keepalive %p\n", con);
1311 	con_out_kvec_reset(con);
1312 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1313 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1314 }
1315 
1316 /*
1317  * Connection negotiation.
1318  */
1319 
1320 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1321 						int *auth_proto)
1322 {
1323 	struct ceph_auth_handshake *auth;
1324 
1325 	if (!con->ops->get_authorizer) {
1326 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1327 		con->out_connect.authorizer_len = 0;
1328 		return NULL;
1329 	}
1330 
1331 	/* Can't hold the mutex while getting authorizer */
1332 	mutex_unlock(&con->mutex);
1333 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1334 	mutex_lock(&con->mutex);
1335 
1336 	if (IS_ERR(auth))
1337 		return auth;
1338 	if (con->state != CON_STATE_NEGOTIATING)
1339 		return ERR_PTR(-EAGAIN);
1340 
1341 	con->auth_reply_buf = auth->authorizer_reply_buf;
1342 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1343 	return auth;
1344 }
1345 
1346 /*
1347  * We connected to a peer and are saying hello.
1348  */
1349 static void prepare_write_banner(struct ceph_connection *con)
1350 {
1351 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1352 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1353 					&con->msgr->my_enc_addr);
1354 
1355 	con->out_more = 0;
1356 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1357 }
1358 
1359 static int prepare_write_connect(struct ceph_connection *con)
1360 {
1361 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1362 	int proto;
1363 	int auth_proto;
1364 	struct ceph_auth_handshake *auth;
1365 
1366 	switch (con->peer_name.type) {
1367 	case CEPH_ENTITY_TYPE_MON:
1368 		proto = CEPH_MONC_PROTOCOL;
1369 		break;
1370 	case CEPH_ENTITY_TYPE_OSD:
1371 		proto = CEPH_OSDC_PROTOCOL;
1372 		break;
1373 	case CEPH_ENTITY_TYPE_MDS:
1374 		proto = CEPH_MDSC_PROTOCOL;
1375 		break;
1376 	default:
1377 		BUG();
1378 	}
1379 
1380 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1381 	     con->connect_seq, global_seq, proto);
1382 
1383 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1384 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1385 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1386 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1387 	con->out_connect.protocol_version = cpu_to_le32(proto);
1388 	con->out_connect.flags = 0;
1389 
1390 	auth_proto = CEPH_AUTH_UNKNOWN;
1391 	auth = get_connect_authorizer(con, &auth_proto);
1392 	if (IS_ERR(auth))
1393 		return PTR_ERR(auth);
1394 
1395 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1396 	con->out_connect.authorizer_len = auth ?
1397 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1398 
1399 	con_out_kvec_add(con, sizeof (con->out_connect),
1400 					&con->out_connect);
1401 	if (auth && auth->authorizer_buf_len)
1402 		con_out_kvec_add(con, auth->authorizer_buf_len,
1403 					auth->authorizer_buf);
1404 
1405 	con->out_more = 0;
1406 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1407 
1408 	return 0;
1409 }
1410 
1411 /*
1412  * write as much of pending kvecs to the socket as we can.
1413  *  1 -> done
1414  *  0 -> socket full, but more to do
1415  * <0 -> error
1416  */
1417 static int write_partial_kvec(struct ceph_connection *con)
1418 {
1419 	int ret;
1420 
1421 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1422 	while (con->out_kvec_bytes > 0) {
1423 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1424 				       con->out_kvec_left, con->out_kvec_bytes,
1425 				       con->out_more);
1426 		if (ret <= 0)
1427 			goto out;
1428 		con->out_kvec_bytes -= ret;
1429 		if (con->out_kvec_bytes == 0)
1430 			break;            /* done */
1431 
1432 		/* account for full iov entries consumed */
1433 		while (ret >= con->out_kvec_cur->iov_len) {
1434 			BUG_ON(!con->out_kvec_left);
1435 			ret -= con->out_kvec_cur->iov_len;
1436 			con->out_kvec_cur++;
1437 			con->out_kvec_left--;
1438 		}
1439 		/* and for a partially-consumed entry */
1440 		if (ret) {
1441 			con->out_kvec_cur->iov_len -= ret;
1442 			con->out_kvec_cur->iov_base += ret;
1443 		}
1444 	}
1445 	con->out_kvec_left = 0;
1446 	con->out_kvec_is_msg = false;
1447 	ret = 1;
1448 out:
1449 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1450 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1451 	return ret;  /* done! */
1452 }
1453 
1454 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1455 				unsigned int page_offset,
1456 				unsigned int length)
1457 {
1458 	char *kaddr;
1459 
1460 	kaddr = kmap(page);
1461 	BUG_ON(kaddr == NULL);
1462 	crc = crc32c(crc, kaddr + page_offset, length);
1463 	kunmap(page);
1464 
1465 	return crc;
1466 }
1467 /*
1468  * Write as much message data payload as we can.  If we finish, queue
1469  * up the footer.
1470  *  1 -> done, footer is now queued in out_kvec[].
1471  *  0 -> socket full, but more to do
1472  * <0 -> error
1473  */
1474 static int write_partial_message_data(struct ceph_connection *con)
1475 {
1476 	struct ceph_msg *msg = con->out_msg;
1477 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1478 	bool do_datacrc = !con->msgr->nocrc;
1479 	u32 crc;
1480 
1481 	dout("%s %p msg %p\n", __func__, con, msg);
1482 
1483 	if (list_empty(&msg->data))
1484 		return -EINVAL;
1485 
1486 	/*
1487 	 * Iterate through each page that contains data to be
1488 	 * written, and send as much as possible for each.
1489 	 *
1490 	 * If we are calculating the data crc (the default), we will
1491 	 * need to map the page.  If we have no pages, they have
1492 	 * been revoked, so use the zero page.
1493 	 */
1494 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1495 	while (cursor->resid) {
1496 		struct page *page;
1497 		size_t page_offset;
1498 		size_t length;
1499 		bool last_piece;
1500 		bool need_crc;
1501 		int ret;
1502 
1503 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1504 							&last_piece);
1505 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1506 				      length, last_piece);
1507 		if (ret <= 0) {
1508 			if (do_datacrc)
1509 				msg->footer.data_crc = cpu_to_le32(crc);
1510 
1511 			return ret;
1512 		}
1513 		if (do_datacrc && cursor->need_crc)
1514 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1515 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1516 	}
1517 
1518 	dout("%s %p msg %p done\n", __func__, con, msg);
1519 
1520 	/* prepare and queue up footer, too */
1521 	if (do_datacrc)
1522 		msg->footer.data_crc = cpu_to_le32(crc);
1523 	else
1524 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1525 	con_out_kvec_reset(con);
1526 	prepare_write_message_footer(con);
1527 
1528 	return 1;	/* must return > 0 to indicate success */
1529 }
1530 
1531 /*
1532  * write some zeros
1533  */
1534 static int write_partial_skip(struct ceph_connection *con)
1535 {
1536 	int ret;
1537 
1538 	while (con->out_skip > 0) {
1539 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1540 
1541 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1542 		if (ret <= 0)
1543 			goto out;
1544 		con->out_skip -= ret;
1545 	}
1546 	ret = 1;
1547 out:
1548 	return ret;
1549 }
1550 
1551 /*
1552  * Prepare to read connection handshake, or an ack.
1553  */
1554 static void prepare_read_banner(struct ceph_connection *con)
1555 {
1556 	dout("prepare_read_banner %p\n", con);
1557 	con->in_base_pos = 0;
1558 }
1559 
1560 static void prepare_read_connect(struct ceph_connection *con)
1561 {
1562 	dout("prepare_read_connect %p\n", con);
1563 	con->in_base_pos = 0;
1564 }
1565 
1566 static void prepare_read_ack(struct ceph_connection *con)
1567 {
1568 	dout("prepare_read_ack %p\n", con);
1569 	con->in_base_pos = 0;
1570 }
1571 
1572 static void prepare_read_seq(struct ceph_connection *con)
1573 {
1574 	dout("prepare_read_seq %p\n", con);
1575 	con->in_base_pos = 0;
1576 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1577 }
1578 
1579 static void prepare_read_tag(struct ceph_connection *con)
1580 {
1581 	dout("prepare_read_tag %p\n", con);
1582 	con->in_base_pos = 0;
1583 	con->in_tag = CEPH_MSGR_TAG_READY;
1584 }
1585 
1586 /*
1587  * Prepare to read a message.
1588  */
1589 static int prepare_read_message(struct ceph_connection *con)
1590 {
1591 	dout("prepare_read_message %p\n", con);
1592 	BUG_ON(con->in_msg != NULL);
1593 	con->in_base_pos = 0;
1594 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1595 	return 0;
1596 }
1597 
1598 
1599 static int read_partial(struct ceph_connection *con,
1600 			int end, int size, void *object)
1601 {
1602 	while (con->in_base_pos < end) {
1603 		int left = end - con->in_base_pos;
1604 		int have = size - left;
1605 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1606 		if (ret <= 0)
1607 			return ret;
1608 		con->in_base_pos += ret;
1609 	}
1610 	return 1;
1611 }
1612 
1613 
1614 /*
1615  * Read all or part of the connect-side handshake on a new connection
1616  */
1617 static int read_partial_banner(struct ceph_connection *con)
1618 {
1619 	int size;
1620 	int end;
1621 	int ret;
1622 
1623 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1624 
1625 	/* peer's banner */
1626 	size = strlen(CEPH_BANNER);
1627 	end = size;
1628 	ret = read_partial(con, end, size, con->in_banner);
1629 	if (ret <= 0)
1630 		goto out;
1631 
1632 	size = sizeof (con->actual_peer_addr);
1633 	end += size;
1634 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1635 	if (ret <= 0)
1636 		goto out;
1637 
1638 	size = sizeof (con->peer_addr_for_me);
1639 	end += size;
1640 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1641 	if (ret <= 0)
1642 		goto out;
1643 
1644 out:
1645 	return ret;
1646 }
1647 
1648 static int read_partial_connect(struct ceph_connection *con)
1649 {
1650 	int size;
1651 	int end;
1652 	int ret;
1653 
1654 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1655 
1656 	size = sizeof (con->in_reply);
1657 	end = size;
1658 	ret = read_partial(con, end, size, &con->in_reply);
1659 	if (ret <= 0)
1660 		goto out;
1661 
1662 	size = le32_to_cpu(con->in_reply.authorizer_len);
1663 	end += size;
1664 	ret = read_partial(con, end, size, con->auth_reply_buf);
1665 	if (ret <= 0)
1666 		goto out;
1667 
1668 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1669 	     con, (int)con->in_reply.tag,
1670 	     le32_to_cpu(con->in_reply.connect_seq),
1671 	     le32_to_cpu(con->in_reply.global_seq));
1672 out:
1673 	return ret;
1674 
1675 }
1676 
1677 /*
1678  * Verify the hello banner looks okay.
1679  */
1680 static int verify_hello(struct ceph_connection *con)
1681 {
1682 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1683 		pr_err("connect to %s got bad banner\n",
1684 		       ceph_pr_addr(&con->peer_addr.in_addr));
1685 		con->error_msg = "protocol error, bad banner";
1686 		return -1;
1687 	}
1688 	return 0;
1689 }
1690 
1691 static bool addr_is_blank(struct sockaddr_storage *ss)
1692 {
1693 	switch (ss->ss_family) {
1694 	case AF_INET:
1695 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1696 	case AF_INET6:
1697 		return
1698 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1699 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1700 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1701 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1702 	}
1703 	return false;
1704 }
1705 
1706 static int addr_port(struct sockaddr_storage *ss)
1707 {
1708 	switch (ss->ss_family) {
1709 	case AF_INET:
1710 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1711 	case AF_INET6:
1712 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1713 	}
1714 	return 0;
1715 }
1716 
1717 static void addr_set_port(struct sockaddr_storage *ss, int p)
1718 {
1719 	switch (ss->ss_family) {
1720 	case AF_INET:
1721 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1722 		break;
1723 	case AF_INET6:
1724 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1725 		break;
1726 	}
1727 }
1728 
1729 /*
1730  * Unlike other *_pton function semantics, zero indicates success.
1731  */
1732 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1733 		char delim, const char **ipend)
1734 {
1735 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1736 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1737 
1738 	memset(ss, 0, sizeof(*ss));
1739 
1740 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1741 		ss->ss_family = AF_INET;
1742 		return 0;
1743 	}
1744 
1745 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1746 		ss->ss_family = AF_INET6;
1747 		return 0;
1748 	}
1749 
1750 	return -EINVAL;
1751 }
1752 
1753 /*
1754  * Extract hostname string and resolve using kernel DNS facility.
1755  */
1756 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1757 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1758 		struct sockaddr_storage *ss, char delim, const char **ipend)
1759 {
1760 	const char *end, *delim_p;
1761 	char *colon_p, *ip_addr = NULL;
1762 	int ip_len, ret;
1763 
1764 	/*
1765 	 * The end of the hostname occurs immediately preceding the delimiter or
1766 	 * the port marker (':') where the delimiter takes precedence.
1767 	 */
1768 	delim_p = memchr(name, delim, namelen);
1769 	colon_p = memchr(name, ':', namelen);
1770 
1771 	if (delim_p && colon_p)
1772 		end = delim_p < colon_p ? delim_p : colon_p;
1773 	else if (!delim_p && colon_p)
1774 		end = colon_p;
1775 	else {
1776 		end = delim_p;
1777 		if (!end) /* case: hostname:/ */
1778 			end = name + namelen;
1779 	}
1780 
1781 	if (end <= name)
1782 		return -EINVAL;
1783 
1784 	/* do dns_resolve upcall */
1785 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1786 	if (ip_len > 0)
1787 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1788 	else
1789 		ret = -ESRCH;
1790 
1791 	kfree(ip_addr);
1792 
1793 	*ipend = end;
1794 
1795 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1796 			ret, ret ? "failed" : ceph_pr_addr(ss));
1797 
1798 	return ret;
1799 }
1800 #else
1801 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1802 		struct sockaddr_storage *ss, char delim, const char **ipend)
1803 {
1804 	return -EINVAL;
1805 }
1806 #endif
1807 
1808 /*
1809  * Parse a server name (IP or hostname). If a valid IP address is not found
1810  * then try to extract a hostname to resolve using userspace DNS upcall.
1811  */
1812 static int ceph_parse_server_name(const char *name, size_t namelen,
1813 			struct sockaddr_storage *ss, char delim, const char **ipend)
1814 {
1815 	int ret;
1816 
1817 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1818 	if (ret)
1819 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Parse an ip[:port] list into an addr array.  Use the default
1826  * monitor port if a port isn't specified.
1827  */
1828 int ceph_parse_ips(const char *c, const char *end,
1829 		   struct ceph_entity_addr *addr,
1830 		   int max_count, int *count)
1831 {
1832 	int i, ret = -EINVAL;
1833 	const char *p = c;
1834 
1835 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1836 	for (i = 0; i < max_count; i++) {
1837 		const char *ipend;
1838 		struct sockaddr_storage *ss = &addr[i].in_addr;
1839 		int port;
1840 		char delim = ',';
1841 
1842 		if (*p == '[') {
1843 			delim = ']';
1844 			p++;
1845 		}
1846 
1847 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1848 		if (ret)
1849 			goto bad;
1850 		ret = -EINVAL;
1851 
1852 		p = ipend;
1853 
1854 		if (delim == ']') {
1855 			if (*p != ']') {
1856 				dout("missing matching ']'\n");
1857 				goto bad;
1858 			}
1859 			p++;
1860 		}
1861 
1862 		/* port? */
1863 		if (p < end && *p == ':') {
1864 			port = 0;
1865 			p++;
1866 			while (p < end && *p >= '0' && *p <= '9') {
1867 				port = (port * 10) + (*p - '0');
1868 				p++;
1869 			}
1870 			if (port == 0)
1871 				port = CEPH_MON_PORT;
1872 			else if (port > 65535)
1873 				goto bad;
1874 		} else {
1875 			port = CEPH_MON_PORT;
1876 		}
1877 
1878 		addr_set_port(ss, port);
1879 
1880 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1881 
1882 		if (p == end)
1883 			break;
1884 		if (*p != ',')
1885 			goto bad;
1886 		p++;
1887 	}
1888 
1889 	if (p != end)
1890 		goto bad;
1891 
1892 	if (count)
1893 		*count = i + 1;
1894 	return 0;
1895 
1896 bad:
1897 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1898 	return ret;
1899 }
1900 EXPORT_SYMBOL(ceph_parse_ips);
1901 
1902 static int process_banner(struct ceph_connection *con)
1903 {
1904 	dout("process_banner on %p\n", con);
1905 
1906 	if (verify_hello(con) < 0)
1907 		return -1;
1908 
1909 	ceph_decode_addr(&con->actual_peer_addr);
1910 	ceph_decode_addr(&con->peer_addr_for_me);
1911 
1912 	/*
1913 	 * Make sure the other end is who we wanted.  note that the other
1914 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1915 	 * them the benefit of the doubt.
1916 	 */
1917 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1918 		   sizeof(con->peer_addr)) != 0 &&
1919 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1920 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1921 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1922 			   ceph_pr_addr(&con->peer_addr.in_addr),
1923 			   (int)le32_to_cpu(con->peer_addr.nonce),
1924 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1925 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1926 		con->error_msg = "wrong peer at address";
1927 		return -1;
1928 	}
1929 
1930 	/*
1931 	 * did we learn our address?
1932 	 */
1933 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1934 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1935 
1936 		memcpy(&con->msgr->inst.addr.in_addr,
1937 		       &con->peer_addr_for_me.in_addr,
1938 		       sizeof(con->peer_addr_for_me.in_addr));
1939 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1940 		encode_my_addr(con->msgr);
1941 		dout("process_banner learned my addr is %s\n",
1942 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int process_connect(struct ceph_connection *con)
1949 {
1950 	u64 sup_feat = con->msgr->supported_features;
1951 	u64 req_feat = con->msgr->required_features;
1952 	u64 server_feat = ceph_sanitize_features(
1953 				le64_to_cpu(con->in_reply.features));
1954 	int ret;
1955 
1956 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1957 
1958 	switch (con->in_reply.tag) {
1959 	case CEPH_MSGR_TAG_FEATURES:
1960 		pr_err("%s%lld %s feature set mismatch,"
1961 		       " my %llx < server's %llx, missing %llx\n",
1962 		       ENTITY_NAME(con->peer_name),
1963 		       ceph_pr_addr(&con->peer_addr.in_addr),
1964 		       sup_feat, server_feat, server_feat & ~sup_feat);
1965 		con->error_msg = "missing required protocol features";
1966 		reset_connection(con);
1967 		return -1;
1968 
1969 	case CEPH_MSGR_TAG_BADPROTOVER:
1970 		pr_err("%s%lld %s protocol version mismatch,"
1971 		       " my %d != server's %d\n",
1972 		       ENTITY_NAME(con->peer_name),
1973 		       ceph_pr_addr(&con->peer_addr.in_addr),
1974 		       le32_to_cpu(con->out_connect.protocol_version),
1975 		       le32_to_cpu(con->in_reply.protocol_version));
1976 		con->error_msg = "protocol version mismatch";
1977 		reset_connection(con);
1978 		return -1;
1979 
1980 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1981 		con->auth_retry++;
1982 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1983 		     con->auth_retry);
1984 		if (con->auth_retry == 2) {
1985 			con->error_msg = "connect authorization failure";
1986 			return -1;
1987 		}
1988 		con_out_kvec_reset(con);
1989 		ret = prepare_write_connect(con);
1990 		if (ret < 0)
1991 			return ret;
1992 		prepare_read_connect(con);
1993 		break;
1994 
1995 	case CEPH_MSGR_TAG_RESETSESSION:
1996 		/*
1997 		 * If we connected with a large connect_seq but the peer
1998 		 * has no record of a session with us (no connection, or
1999 		 * connect_seq == 0), they will send RESETSESION to indicate
2000 		 * that they must have reset their session, and may have
2001 		 * dropped messages.
2002 		 */
2003 		dout("process_connect got RESET peer seq %u\n",
2004 		     le32_to_cpu(con->in_reply.connect_seq));
2005 		pr_err("%s%lld %s connection reset\n",
2006 		       ENTITY_NAME(con->peer_name),
2007 		       ceph_pr_addr(&con->peer_addr.in_addr));
2008 		reset_connection(con);
2009 		con_out_kvec_reset(con);
2010 		ret = prepare_write_connect(con);
2011 		if (ret < 0)
2012 			return ret;
2013 		prepare_read_connect(con);
2014 
2015 		/* Tell ceph about it. */
2016 		mutex_unlock(&con->mutex);
2017 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2018 		if (con->ops->peer_reset)
2019 			con->ops->peer_reset(con);
2020 		mutex_lock(&con->mutex);
2021 		if (con->state != CON_STATE_NEGOTIATING)
2022 			return -EAGAIN;
2023 		break;
2024 
2025 	case CEPH_MSGR_TAG_RETRY_SESSION:
2026 		/*
2027 		 * If we sent a smaller connect_seq than the peer has, try
2028 		 * again with a larger value.
2029 		 */
2030 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2031 		     le32_to_cpu(con->out_connect.connect_seq),
2032 		     le32_to_cpu(con->in_reply.connect_seq));
2033 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2034 		con_out_kvec_reset(con);
2035 		ret = prepare_write_connect(con);
2036 		if (ret < 0)
2037 			return ret;
2038 		prepare_read_connect(con);
2039 		break;
2040 
2041 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2042 		/*
2043 		 * If we sent a smaller global_seq than the peer has, try
2044 		 * again with a larger value.
2045 		 */
2046 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2047 		     con->peer_global_seq,
2048 		     le32_to_cpu(con->in_reply.global_seq));
2049 		get_global_seq(con->msgr,
2050 			       le32_to_cpu(con->in_reply.global_seq));
2051 		con_out_kvec_reset(con);
2052 		ret = prepare_write_connect(con);
2053 		if (ret < 0)
2054 			return ret;
2055 		prepare_read_connect(con);
2056 		break;
2057 
2058 	case CEPH_MSGR_TAG_SEQ:
2059 	case CEPH_MSGR_TAG_READY:
2060 		if (req_feat & ~server_feat) {
2061 			pr_err("%s%lld %s protocol feature mismatch,"
2062 			       " my required %llx > server's %llx, need %llx\n",
2063 			       ENTITY_NAME(con->peer_name),
2064 			       ceph_pr_addr(&con->peer_addr.in_addr),
2065 			       req_feat, server_feat, req_feat & ~server_feat);
2066 			con->error_msg = "missing required protocol features";
2067 			reset_connection(con);
2068 			return -1;
2069 		}
2070 
2071 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2072 		con->state = CON_STATE_OPEN;
2073 		con->auth_retry = 0;    /* we authenticated; clear flag */
2074 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2075 		con->connect_seq++;
2076 		con->peer_features = server_feat;
2077 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2078 		     con->peer_global_seq,
2079 		     le32_to_cpu(con->in_reply.connect_seq),
2080 		     con->connect_seq);
2081 		WARN_ON(con->connect_seq !=
2082 			le32_to_cpu(con->in_reply.connect_seq));
2083 
2084 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2085 			con_flag_set(con, CON_FLAG_LOSSYTX);
2086 
2087 		con->delay = 0;      /* reset backoff memory */
2088 
2089 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2090 			prepare_write_seq(con);
2091 			prepare_read_seq(con);
2092 		} else {
2093 			prepare_read_tag(con);
2094 		}
2095 		break;
2096 
2097 	case CEPH_MSGR_TAG_WAIT:
2098 		/*
2099 		 * If there is a connection race (we are opening
2100 		 * connections to each other), one of us may just have
2101 		 * to WAIT.  This shouldn't happen if we are the
2102 		 * client.
2103 		 */
2104 		pr_err("process_connect got WAIT as client\n");
2105 		con->error_msg = "protocol error, got WAIT as client";
2106 		return -1;
2107 
2108 	default:
2109 		pr_err("connect protocol error, will retry\n");
2110 		con->error_msg = "protocol error, garbage tag during connect";
2111 		return -1;
2112 	}
2113 	return 0;
2114 }
2115 
2116 
2117 /*
2118  * read (part of) an ack
2119  */
2120 static int read_partial_ack(struct ceph_connection *con)
2121 {
2122 	int size = sizeof (con->in_temp_ack);
2123 	int end = size;
2124 
2125 	return read_partial(con, end, size, &con->in_temp_ack);
2126 }
2127 
2128 /*
2129  * We can finally discard anything that's been acked.
2130  */
2131 static void process_ack(struct ceph_connection *con)
2132 {
2133 	struct ceph_msg *m;
2134 	u64 ack = le64_to_cpu(con->in_temp_ack);
2135 	u64 seq;
2136 
2137 	while (!list_empty(&con->out_sent)) {
2138 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2139 				     list_head);
2140 		seq = le64_to_cpu(m->hdr.seq);
2141 		if (seq > ack)
2142 			break;
2143 		dout("got ack for seq %llu type %d at %p\n", seq,
2144 		     le16_to_cpu(m->hdr.type), m);
2145 		m->ack_stamp = jiffies;
2146 		ceph_msg_remove(m);
2147 	}
2148 	prepare_read_tag(con);
2149 }
2150 
2151 
2152 static int read_partial_message_section(struct ceph_connection *con,
2153 					struct kvec *section,
2154 					unsigned int sec_len, u32 *crc)
2155 {
2156 	int ret, left;
2157 
2158 	BUG_ON(!section);
2159 
2160 	while (section->iov_len < sec_len) {
2161 		BUG_ON(section->iov_base == NULL);
2162 		left = sec_len - section->iov_len;
2163 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2164 				       section->iov_len, left);
2165 		if (ret <= 0)
2166 			return ret;
2167 		section->iov_len += ret;
2168 	}
2169 	if (section->iov_len == sec_len)
2170 		*crc = crc32c(0, section->iov_base, section->iov_len);
2171 
2172 	return 1;
2173 }
2174 
2175 static int read_partial_msg_data(struct ceph_connection *con)
2176 {
2177 	struct ceph_msg *msg = con->in_msg;
2178 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2179 	const bool do_datacrc = !con->msgr->nocrc;
2180 	struct page *page;
2181 	size_t page_offset;
2182 	size_t length;
2183 	u32 crc = 0;
2184 	int ret;
2185 
2186 	BUG_ON(!msg);
2187 	if (list_empty(&msg->data))
2188 		return -EIO;
2189 
2190 	if (do_datacrc)
2191 		crc = con->in_data_crc;
2192 	while (cursor->resid) {
2193 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2194 							NULL);
2195 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2196 		if (ret <= 0) {
2197 			if (do_datacrc)
2198 				con->in_data_crc = crc;
2199 
2200 			return ret;
2201 		}
2202 
2203 		if (do_datacrc)
2204 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2205 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2206 	}
2207 	if (do_datacrc)
2208 		con->in_data_crc = crc;
2209 
2210 	return 1;	/* must return > 0 to indicate success */
2211 }
2212 
2213 /*
2214  * read (part of) a message.
2215  */
2216 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2217 
2218 static int read_partial_message(struct ceph_connection *con)
2219 {
2220 	struct ceph_msg *m = con->in_msg;
2221 	int size;
2222 	int end;
2223 	int ret;
2224 	unsigned int front_len, middle_len, data_len;
2225 	bool do_datacrc = !con->msgr->nocrc;
2226 	u64 seq;
2227 	u32 crc;
2228 
2229 	dout("read_partial_message con %p msg %p\n", con, m);
2230 
2231 	/* header */
2232 	size = sizeof (con->in_hdr);
2233 	end = size;
2234 	ret = read_partial(con, end, size, &con->in_hdr);
2235 	if (ret <= 0)
2236 		return ret;
2237 
2238 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2239 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2240 		pr_err("read_partial_message bad hdr "
2241 		       " crc %u != expected %u\n",
2242 		       crc, con->in_hdr.crc);
2243 		return -EBADMSG;
2244 	}
2245 
2246 	front_len = le32_to_cpu(con->in_hdr.front_len);
2247 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2248 		return -EIO;
2249 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2250 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2251 		return -EIO;
2252 	data_len = le32_to_cpu(con->in_hdr.data_len);
2253 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2254 		return -EIO;
2255 
2256 	/* verify seq# */
2257 	seq = le64_to_cpu(con->in_hdr.seq);
2258 	if ((s64)seq - (s64)con->in_seq < 1) {
2259 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2260 			ENTITY_NAME(con->peer_name),
2261 			ceph_pr_addr(&con->peer_addr.in_addr),
2262 			seq, con->in_seq + 1);
2263 		con->in_base_pos = -front_len - middle_len - data_len -
2264 			sizeof(m->footer);
2265 		con->in_tag = CEPH_MSGR_TAG_READY;
2266 		return 0;
2267 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2268 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2269 		       seq, con->in_seq + 1);
2270 		con->error_msg = "bad message sequence # for incoming message";
2271 		return -EBADMSG;
2272 	}
2273 
2274 	/* allocate message? */
2275 	if (!con->in_msg) {
2276 		int skip = 0;
2277 
2278 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2279 		     front_len, data_len);
2280 		ret = ceph_con_in_msg_alloc(con, &skip);
2281 		if (ret < 0)
2282 			return ret;
2283 
2284 		BUG_ON(!con->in_msg ^ skip);
2285 		if (con->in_msg && data_len > con->in_msg->data_length) {
2286 			pr_warning("%s skipping long message (%u > %zd)\n",
2287 				__func__, data_len, con->in_msg->data_length);
2288 			ceph_msg_put(con->in_msg);
2289 			con->in_msg = NULL;
2290 			skip = 1;
2291 		}
2292 		if (skip) {
2293 			/* skip this message */
2294 			dout("alloc_msg said skip message\n");
2295 			con->in_base_pos = -front_len - middle_len - data_len -
2296 				sizeof(m->footer);
2297 			con->in_tag = CEPH_MSGR_TAG_READY;
2298 			con->in_seq++;
2299 			return 0;
2300 		}
2301 
2302 		BUG_ON(!con->in_msg);
2303 		BUG_ON(con->in_msg->con != con);
2304 		m = con->in_msg;
2305 		m->front.iov_len = 0;    /* haven't read it yet */
2306 		if (m->middle)
2307 			m->middle->vec.iov_len = 0;
2308 
2309 		/* prepare for data payload, if any */
2310 
2311 		if (data_len)
2312 			prepare_message_data(con->in_msg, data_len);
2313 	}
2314 
2315 	/* front */
2316 	ret = read_partial_message_section(con, &m->front, front_len,
2317 					   &con->in_front_crc);
2318 	if (ret <= 0)
2319 		return ret;
2320 
2321 	/* middle */
2322 	if (m->middle) {
2323 		ret = read_partial_message_section(con, &m->middle->vec,
2324 						   middle_len,
2325 						   &con->in_middle_crc);
2326 		if (ret <= 0)
2327 			return ret;
2328 	}
2329 
2330 	/* (page) data */
2331 	if (data_len) {
2332 		ret = read_partial_msg_data(con);
2333 		if (ret <= 0)
2334 			return ret;
2335 	}
2336 
2337 	/* footer */
2338 	size = sizeof (m->footer);
2339 	end += size;
2340 	ret = read_partial(con, end, size, &m->footer);
2341 	if (ret <= 0)
2342 		return ret;
2343 
2344 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2345 	     m, front_len, m->footer.front_crc, middle_len,
2346 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2347 
2348 	/* crc ok? */
2349 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2350 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2351 		       m, con->in_front_crc, m->footer.front_crc);
2352 		return -EBADMSG;
2353 	}
2354 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2355 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2356 		       m, con->in_middle_crc, m->footer.middle_crc);
2357 		return -EBADMSG;
2358 	}
2359 	if (do_datacrc &&
2360 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2361 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2362 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2363 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2364 		return -EBADMSG;
2365 	}
2366 
2367 	return 1; /* done! */
2368 }
2369 
2370 /*
2371  * Process message.  This happens in the worker thread.  The callback should
2372  * be careful not to do anything that waits on other incoming messages or it
2373  * may deadlock.
2374  */
2375 static void process_message(struct ceph_connection *con)
2376 {
2377 	struct ceph_msg *msg;
2378 
2379 	BUG_ON(con->in_msg->con != con);
2380 	con->in_msg->con = NULL;
2381 	msg = con->in_msg;
2382 	con->in_msg = NULL;
2383 	con->ops->put(con);
2384 
2385 	/* if first message, set peer_name */
2386 	if (con->peer_name.type == 0)
2387 		con->peer_name = msg->hdr.src;
2388 
2389 	con->in_seq++;
2390 	mutex_unlock(&con->mutex);
2391 
2392 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2393 	     msg, le64_to_cpu(msg->hdr.seq),
2394 	     ENTITY_NAME(msg->hdr.src),
2395 	     le16_to_cpu(msg->hdr.type),
2396 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2397 	     le32_to_cpu(msg->hdr.front_len),
2398 	     le32_to_cpu(msg->hdr.data_len),
2399 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2400 	con->ops->dispatch(con, msg);
2401 
2402 	mutex_lock(&con->mutex);
2403 }
2404 
2405 
2406 /*
2407  * Write something to the socket.  Called in a worker thread when the
2408  * socket appears to be writeable and we have something ready to send.
2409  */
2410 static int try_write(struct ceph_connection *con)
2411 {
2412 	int ret = 1;
2413 
2414 	dout("try_write start %p state %lu\n", con, con->state);
2415 
2416 more:
2417 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2418 
2419 	/* open the socket first? */
2420 	if (con->state == CON_STATE_PREOPEN) {
2421 		BUG_ON(con->sock);
2422 		con->state = CON_STATE_CONNECTING;
2423 
2424 		con_out_kvec_reset(con);
2425 		prepare_write_banner(con);
2426 		prepare_read_banner(con);
2427 
2428 		BUG_ON(con->in_msg);
2429 		con->in_tag = CEPH_MSGR_TAG_READY;
2430 		dout("try_write initiating connect on %p new state %lu\n",
2431 		     con, con->state);
2432 		ret = ceph_tcp_connect(con);
2433 		if (ret < 0) {
2434 			con->error_msg = "connect error";
2435 			goto out;
2436 		}
2437 	}
2438 
2439 more_kvec:
2440 	/* kvec data queued? */
2441 	if (con->out_skip) {
2442 		ret = write_partial_skip(con);
2443 		if (ret <= 0)
2444 			goto out;
2445 	}
2446 	if (con->out_kvec_left) {
2447 		ret = write_partial_kvec(con);
2448 		if (ret <= 0)
2449 			goto out;
2450 	}
2451 
2452 	/* msg pages? */
2453 	if (con->out_msg) {
2454 		if (con->out_msg_done) {
2455 			ceph_msg_put(con->out_msg);
2456 			con->out_msg = NULL;   /* we're done with this one */
2457 			goto do_next;
2458 		}
2459 
2460 		ret = write_partial_message_data(con);
2461 		if (ret == 1)
2462 			goto more_kvec;  /* we need to send the footer, too! */
2463 		if (ret == 0)
2464 			goto out;
2465 		if (ret < 0) {
2466 			dout("try_write write_partial_message_data err %d\n",
2467 			     ret);
2468 			goto out;
2469 		}
2470 	}
2471 
2472 do_next:
2473 	if (con->state == CON_STATE_OPEN) {
2474 		/* is anything else pending? */
2475 		if (!list_empty(&con->out_queue)) {
2476 			prepare_write_message(con);
2477 			goto more;
2478 		}
2479 		if (con->in_seq > con->in_seq_acked) {
2480 			prepare_write_ack(con);
2481 			goto more;
2482 		}
2483 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2484 			prepare_write_keepalive(con);
2485 			goto more;
2486 		}
2487 	}
2488 
2489 	/* Nothing to do! */
2490 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2491 	dout("try_write nothing else to write.\n");
2492 	ret = 0;
2493 out:
2494 	dout("try_write done on %p ret %d\n", con, ret);
2495 	return ret;
2496 }
2497 
2498 
2499 
2500 /*
2501  * Read what we can from the socket.
2502  */
2503 static int try_read(struct ceph_connection *con)
2504 {
2505 	int ret = -1;
2506 
2507 more:
2508 	dout("try_read start on %p state %lu\n", con, con->state);
2509 	if (con->state != CON_STATE_CONNECTING &&
2510 	    con->state != CON_STATE_NEGOTIATING &&
2511 	    con->state != CON_STATE_OPEN)
2512 		return 0;
2513 
2514 	BUG_ON(!con->sock);
2515 
2516 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2517 	     con->in_base_pos);
2518 
2519 	if (con->state == CON_STATE_CONNECTING) {
2520 		dout("try_read connecting\n");
2521 		ret = read_partial_banner(con);
2522 		if (ret <= 0)
2523 			goto out;
2524 		ret = process_banner(con);
2525 		if (ret < 0)
2526 			goto out;
2527 
2528 		con->state = CON_STATE_NEGOTIATING;
2529 
2530 		/*
2531 		 * Received banner is good, exchange connection info.
2532 		 * Do not reset out_kvec, as sending our banner raced
2533 		 * with receiving peer banner after connect completed.
2534 		 */
2535 		ret = prepare_write_connect(con);
2536 		if (ret < 0)
2537 			goto out;
2538 		prepare_read_connect(con);
2539 
2540 		/* Send connection info before awaiting response */
2541 		goto out;
2542 	}
2543 
2544 	if (con->state == CON_STATE_NEGOTIATING) {
2545 		dout("try_read negotiating\n");
2546 		ret = read_partial_connect(con);
2547 		if (ret <= 0)
2548 			goto out;
2549 		ret = process_connect(con);
2550 		if (ret < 0)
2551 			goto out;
2552 		goto more;
2553 	}
2554 
2555 	WARN_ON(con->state != CON_STATE_OPEN);
2556 
2557 	if (con->in_base_pos < 0) {
2558 		/*
2559 		 * skipping + discarding content.
2560 		 *
2561 		 * FIXME: there must be a better way to do this!
2562 		 */
2563 		static char buf[SKIP_BUF_SIZE];
2564 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2565 
2566 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2567 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2568 		if (ret <= 0)
2569 			goto out;
2570 		con->in_base_pos += ret;
2571 		if (con->in_base_pos)
2572 			goto more;
2573 	}
2574 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2575 		/*
2576 		 * what's next?
2577 		 */
2578 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2579 		if (ret <= 0)
2580 			goto out;
2581 		dout("try_read got tag %d\n", (int)con->in_tag);
2582 		switch (con->in_tag) {
2583 		case CEPH_MSGR_TAG_MSG:
2584 			prepare_read_message(con);
2585 			break;
2586 		case CEPH_MSGR_TAG_ACK:
2587 			prepare_read_ack(con);
2588 			break;
2589 		case CEPH_MSGR_TAG_CLOSE:
2590 			con_close_socket(con);
2591 			con->state = CON_STATE_CLOSED;
2592 			goto out;
2593 		default:
2594 			goto bad_tag;
2595 		}
2596 	}
2597 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2598 		ret = read_partial_message(con);
2599 		if (ret <= 0) {
2600 			switch (ret) {
2601 			case -EBADMSG:
2602 				con->error_msg = "bad crc";
2603 				ret = -EIO;
2604 				break;
2605 			case -EIO:
2606 				con->error_msg = "io error";
2607 				break;
2608 			}
2609 			goto out;
2610 		}
2611 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2612 			goto more;
2613 		process_message(con);
2614 		if (con->state == CON_STATE_OPEN)
2615 			prepare_read_tag(con);
2616 		goto more;
2617 	}
2618 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2619 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2620 		/*
2621 		 * the final handshake seq exchange is semantically
2622 		 * equivalent to an ACK
2623 		 */
2624 		ret = read_partial_ack(con);
2625 		if (ret <= 0)
2626 			goto out;
2627 		process_ack(con);
2628 		goto more;
2629 	}
2630 
2631 out:
2632 	dout("try_read done on %p ret %d\n", con, ret);
2633 	return ret;
2634 
2635 bad_tag:
2636 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2637 	con->error_msg = "protocol error, garbage tag";
2638 	ret = -1;
2639 	goto out;
2640 }
2641 
2642 
2643 /*
2644  * Atomically queue work on a connection after the specified delay.
2645  * Bump @con reference to avoid races with connection teardown.
2646  * Returns 0 if work was queued, or an error code otherwise.
2647  */
2648 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2649 {
2650 	if (!con->ops->get(con)) {
2651 		dout("%s %p ref count 0\n", __func__, con);
2652 
2653 		return -ENOENT;
2654 	}
2655 
2656 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2657 		dout("%s %p - already queued\n", __func__, con);
2658 		con->ops->put(con);
2659 
2660 		return -EBUSY;
2661 	}
2662 
2663 	dout("%s %p %lu\n", __func__, con, delay);
2664 
2665 	return 0;
2666 }
2667 
2668 static void queue_con(struct ceph_connection *con)
2669 {
2670 	(void) queue_con_delay(con, 0);
2671 }
2672 
2673 static bool con_sock_closed(struct ceph_connection *con)
2674 {
2675 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2676 		return false;
2677 
2678 #define CASE(x)								\
2679 	case CON_STATE_ ## x:						\
2680 		con->error_msg = "socket closed (con state " #x ")";	\
2681 		break;
2682 
2683 	switch (con->state) {
2684 	CASE(CLOSED);
2685 	CASE(PREOPEN);
2686 	CASE(CONNECTING);
2687 	CASE(NEGOTIATING);
2688 	CASE(OPEN);
2689 	CASE(STANDBY);
2690 	default:
2691 		pr_warning("%s con %p unrecognized state %lu\n",
2692 			__func__, con, con->state);
2693 		con->error_msg = "unrecognized con state";
2694 		BUG();
2695 		break;
2696 	}
2697 #undef CASE
2698 
2699 	return true;
2700 }
2701 
2702 static bool con_backoff(struct ceph_connection *con)
2703 {
2704 	int ret;
2705 
2706 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2707 		return false;
2708 
2709 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2710 	if (ret) {
2711 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2712 			con, con->delay);
2713 		BUG_ON(ret == -ENOENT);
2714 		con_flag_set(con, CON_FLAG_BACKOFF);
2715 	}
2716 
2717 	return true;
2718 }
2719 
2720 /* Finish fault handling; con->mutex must *not* be held here */
2721 
2722 static void con_fault_finish(struct ceph_connection *con)
2723 {
2724 	/*
2725 	 * in case we faulted due to authentication, invalidate our
2726 	 * current tickets so that we can get new ones.
2727 	 */
2728 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2729 		dout("calling invalidate_authorizer()\n");
2730 		con->ops->invalidate_authorizer(con);
2731 	}
2732 
2733 	if (con->ops->fault)
2734 		con->ops->fault(con);
2735 }
2736 
2737 /*
2738  * Do some work on a connection.  Drop a connection ref when we're done.
2739  */
2740 static void con_work(struct work_struct *work)
2741 {
2742 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2743 						   work.work);
2744 	bool fault;
2745 
2746 	mutex_lock(&con->mutex);
2747 	while (true) {
2748 		int ret;
2749 
2750 		if ((fault = con_sock_closed(con))) {
2751 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2752 			break;
2753 		}
2754 		if (con_backoff(con)) {
2755 			dout("%s: con %p BACKOFF\n", __func__, con);
2756 			break;
2757 		}
2758 		if (con->state == CON_STATE_STANDBY) {
2759 			dout("%s: con %p STANDBY\n", __func__, con);
2760 			break;
2761 		}
2762 		if (con->state == CON_STATE_CLOSED) {
2763 			dout("%s: con %p CLOSED\n", __func__, con);
2764 			BUG_ON(con->sock);
2765 			break;
2766 		}
2767 		if (con->state == CON_STATE_PREOPEN) {
2768 			dout("%s: con %p PREOPEN\n", __func__, con);
2769 			BUG_ON(con->sock);
2770 		}
2771 
2772 		ret = try_read(con);
2773 		if (ret < 0) {
2774 			if (ret == -EAGAIN)
2775 				continue;
2776 			con->error_msg = "socket error on read";
2777 			fault = true;
2778 			break;
2779 		}
2780 
2781 		ret = try_write(con);
2782 		if (ret < 0) {
2783 			if (ret == -EAGAIN)
2784 				continue;
2785 			con->error_msg = "socket error on write";
2786 			fault = true;
2787 		}
2788 
2789 		break;	/* If we make it to here, we're done */
2790 	}
2791 	if (fault)
2792 		con_fault(con);
2793 	mutex_unlock(&con->mutex);
2794 
2795 	if (fault)
2796 		con_fault_finish(con);
2797 
2798 	con->ops->put(con);
2799 }
2800 
2801 /*
2802  * Generic error/fault handler.  A retry mechanism is used with
2803  * exponential backoff
2804  */
2805 static void con_fault(struct ceph_connection *con)
2806 {
2807 	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2808 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2809 	dout("fault %p state %lu to peer %s\n",
2810 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2811 
2812 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2813 	       con->state != CON_STATE_NEGOTIATING &&
2814 	       con->state != CON_STATE_OPEN);
2815 
2816 	con_close_socket(con);
2817 
2818 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2819 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2820 		con->state = CON_STATE_CLOSED;
2821 		return;
2822 	}
2823 
2824 	if (con->in_msg) {
2825 		BUG_ON(con->in_msg->con != con);
2826 		con->in_msg->con = NULL;
2827 		ceph_msg_put(con->in_msg);
2828 		con->in_msg = NULL;
2829 		con->ops->put(con);
2830 	}
2831 
2832 	/* Requeue anything that hasn't been acked */
2833 	list_splice_init(&con->out_sent, &con->out_queue);
2834 
2835 	/* If there are no messages queued or keepalive pending, place
2836 	 * the connection in a STANDBY state */
2837 	if (list_empty(&con->out_queue) &&
2838 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2839 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2840 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2841 		con->state = CON_STATE_STANDBY;
2842 	} else {
2843 		/* retry after a delay. */
2844 		con->state = CON_STATE_PREOPEN;
2845 		if (con->delay == 0)
2846 			con->delay = BASE_DELAY_INTERVAL;
2847 		else if (con->delay < MAX_DELAY_INTERVAL)
2848 			con->delay *= 2;
2849 		con_flag_set(con, CON_FLAG_BACKOFF);
2850 		queue_con(con);
2851 	}
2852 }
2853 
2854 
2855 
2856 /*
2857  * initialize a new messenger instance
2858  */
2859 void ceph_messenger_init(struct ceph_messenger *msgr,
2860 			struct ceph_entity_addr *myaddr,
2861 			u64 supported_features,
2862 			u64 required_features,
2863 			bool nocrc)
2864 {
2865 	msgr->supported_features = supported_features;
2866 	msgr->required_features = required_features;
2867 
2868 	spin_lock_init(&msgr->global_seq_lock);
2869 
2870 	if (myaddr)
2871 		msgr->inst.addr = *myaddr;
2872 
2873 	/* select a random nonce */
2874 	msgr->inst.addr.type = 0;
2875 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2876 	encode_my_addr(msgr);
2877 	msgr->nocrc = nocrc;
2878 
2879 	atomic_set(&msgr->stopping, 0);
2880 
2881 	dout("%s %p\n", __func__, msgr);
2882 }
2883 EXPORT_SYMBOL(ceph_messenger_init);
2884 
2885 static void clear_standby(struct ceph_connection *con)
2886 {
2887 	/* come back from STANDBY? */
2888 	if (con->state == CON_STATE_STANDBY) {
2889 		dout("clear_standby %p and ++connect_seq\n", con);
2890 		con->state = CON_STATE_PREOPEN;
2891 		con->connect_seq++;
2892 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2893 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2894 	}
2895 }
2896 
2897 /*
2898  * Queue up an outgoing message on the given connection.
2899  */
2900 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2901 {
2902 	/* set src+dst */
2903 	msg->hdr.src = con->msgr->inst.name;
2904 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2905 	msg->needs_out_seq = true;
2906 
2907 	mutex_lock(&con->mutex);
2908 
2909 	if (con->state == CON_STATE_CLOSED) {
2910 		dout("con_send %p closed, dropping %p\n", con, msg);
2911 		ceph_msg_put(msg);
2912 		mutex_unlock(&con->mutex);
2913 		return;
2914 	}
2915 
2916 	BUG_ON(msg->con != NULL);
2917 	msg->con = con->ops->get(con);
2918 	BUG_ON(msg->con == NULL);
2919 
2920 	BUG_ON(!list_empty(&msg->list_head));
2921 	list_add_tail(&msg->list_head, &con->out_queue);
2922 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2923 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2924 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2925 	     le32_to_cpu(msg->hdr.front_len),
2926 	     le32_to_cpu(msg->hdr.middle_len),
2927 	     le32_to_cpu(msg->hdr.data_len));
2928 
2929 	clear_standby(con);
2930 	mutex_unlock(&con->mutex);
2931 
2932 	/* if there wasn't anything waiting to send before, queue
2933 	 * new work */
2934 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2935 		queue_con(con);
2936 }
2937 EXPORT_SYMBOL(ceph_con_send);
2938 
2939 /*
2940  * Revoke a message that was previously queued for send
2941  */
2942 void ceph_msg_revoke(struct ceph_msg *msg)
2943 {
2944 	struct ceph_connection *con = msg->con;
2945 
2946 	if (!con)
2947 		return;		/* Message not in our possession */
2948 
2949 	mutex_lock(&con->mutex);
2950 	if (!list_empty(&msg->list_head)) {
2951 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2952 		list_del_init(&msg->list_head);
2953 		BUG_ON(msg->con == NULL);
2954 		msg->con->ops->put(msg->con);
2955 		msg->con = NULL;
2956 		msg->hdr.seq = 0;
2957 
2958 		ceph_msg_put(msg);
2959 	}
2960 	if (con->out_msg == msg) {
2961 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2962 		con->out_msg = NULL;
2963 		if (con->out_kvec_is_msg) {
2964 			con->out_skip = con->out_kvec_bytes;
2965 			con->out_kvec_is_msg = false;
2966 		}
2967 		msg->hdr.seq = 0;
2968 
2969 		ceph_msg_put(msg);
2970 	}
2971 	mutex_unlock(&con->mutex);
2972 }
2973 
2974 /*
2975  * Revoke a message that we may be reading data into
2976  */
2977 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2978 {
2979 	struct ceph_connection *con;
2980 
2981 	BUG_ON(msg == NULL);
2982 	if (!msg->con) {
2983 		dout("%s msg %p null con\n", __func__, msg);
2984 
2985 		return;		/* Message not in our possession */
2986 	}
2987 
2988 	con = msg->con;
2989 	mutex_lock(&con->mutex);
2990 	if (con->in_msg == msg) {
2991 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2992 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2993 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2994 
2995 		/* skip rest of message */
2996 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2997 		con->in_base_pos = con->in_base_pos -
2998 				sizeof(struct ceph_msg_header) -
2999 				front_len -
3000 				middle_len -
3001 				data_len -
3002 				sizeof(struct ceph_msg_footer);
3003 		ceph_msg_put(con->in_msg);
3004 		con->in_msg = NULL;
3005 		con->in_tag = CEPH_MSGR_TAG_READY;
3006 		con->in_seq++;
3007 	} else {
3008 		dout("%s %p in_msg %p msg %p no-op\n",
3009 		     __func__, con, con->in_msg, msg);
3010 	}
3011 	mutex_unlock(&con->mutex);
3012 }
3013 
3014 /*
3015  * Queue a keepalive byte to ensure the tcp connection is alive.
3016  */
3017 void ceph_con_keepalive(struct ceph_connection *con)
3018 {
3019 	dout("con_keepalive %p\n", con);
3020 	mutex_lock(&con->mutex);
3021 	clear_standby(con);
3022 	mutex_unlock(&con->mutex);
3023 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3024 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3025 		queue_con(con);
3026 }
3027 EXPORT_SYMBOL(ceph_con_keepalive);
3028 
3029 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3030 {
3031 	struct ceph_msg_data *data;
3032 
3033 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3034 		return NULL;
3035 
3036 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3037 	if (data)
3038 		data->type = type;
3039 	INIT_LIST_HEAD(&data->links);
3040 
3041 	return data;
3042 }
3043 
3044 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3045 {
3046 	if (!data)
3047 		return;
3048 
3049 	WARN_ON(!list_empty(&data->links));
3050 	if (data->type == CEPH_MSG_DATA_PAGELIST) {
3051 		ceph_pagelist_release(data->pagelist);
3052 		kfree(data->pagelist);
3053 	}
3054 	kmem_cache_free(ceph_msg_data_cache, data);
3055 }
3056 
3057 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3058 		size_t length, size_t alignment)
3059 {
3060 	struct ceph_msg_data *data;
3061 
3062 	BUG_ON(!pages);
3063 	BUG_ON(!length);
3064 
3065 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3066 	BUG_ON(!data);
3067 	data->pages = pages;
3068 	data->length = length;
3069 	data->alignment = alignment & ~PAGE_MASK;
3070 
3071 	list_add_tail(&data->links, &msg->data);
3072 	msg->data_length += length;
3073 }
3074 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3075 
3076 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3077 				struct ceph_pagelist *pagelist)
3078 {
3079 	struct ceph_msg_data *data;
3080 
3081 	BUG_ON(!pagelist);
3082 	BUG_ON(!pagelist->length);
3083 
3084 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3085 	BUG_ON(!data);
3086 	data->pagelist = pagelist;
3087 
3088 	list_add_tail(&data->links, &msg->data);
3089 	msg->data_length += pagelist->length;
3090 }
3091 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3092 
3093 #ifdef	CONFIG_BLOCK
3094 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3095 		size_t length)
3096 {
3097 	struct ceph_msg_data *data;
3098 
3099 	BUG_ON(!bio);
3100 
3101 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3102 	BUG_ON(!data);
3103 	data->bio = bio;
3104 	data->bio_length = length;
3105 
3106 	list_add_tail(&data->links, &msg->data);
3107 	msg->data_length += length;
3108 }
3109 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3110 #endif	/* CONFIG_BLOCK */
3111 
3112 /*
3113  * construct a new message with given type, size
3114  * the new msg has a ref count of 1.
3115  */
3116 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3117 			      bool can_fail)
3118 {
3119 	struct ceph_msg *m;
3120 
3121 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3122 	if (m == NULL)
3123 		goto out;
3124 
3125 	m->hdr.type = cpu_to_le16(type);
3126 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3127 	m->hdr.front_len = cpu_to_le32(front_len);
3128 
3129 	INIT_LIST_HEAD(&m->list_head);
3130 	kref_init(&m->kref);
3131 	INIT_LIST_HEAD(&m->data);
3132 
3133 	/* front */
3134 	if (front_len) {
3135 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3136 		if (m->front.iov_base == NULL) {
3137 			dout("ceph_msg_new can't allocate %d bytes\n",
3138 			     front_len);
3139 			goto out2;
3140 		}
3141 	} else {
3142 		m->front.iov_base = NULL;
3143 	}
3144 	m->front_alloc_len = m->front.iov_len = front_len;
3145 
3146 	dout("ceph_msg_new %p front %d\n", m, front_len);
3147 	return m;
3148 
3149 out2:
3150 	ceph_msg_put(m);
3151 out:
3152 	if (!can_fail) {
3153 		pr_err("msg_new can't create type %d front %d\n", type,
3154 		       front_len);
3155 		WARN_ON(1);
3156 	} else {
3157 		dout("msg_new can't create type %d front %d\n", type,
3158 		     front_len);
3159 	}
3160 	return NULL;
3161 }
3162 EXPORT_SYMBOL(ceph_msg_new);
3163 
3164 /*
3165  * Allocate "middle" portion of a message, if it is needed and wasn't
3166  * allocated by alloc_msg.  This allows us to read a small fixed-size
3167  * per-type header in the front and then gracefully fail (i.e.,
3168  * propagate the error to the caller based on info in the front) when
3169  * the middle is too large.
3170  */
3171 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3172 {
3173 	int type = le16_to_cpu(msg->hdr.type);
3174 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3175 
3176 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3177 	     ceph_msg_type_name(type), middle_len);
3178 	BUG_ON(!middle_len);
3179 	BUG_ON(msg->middle);
3180 
3181 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3182 	if (!msg->middle)
3183 		return -ENOMEM;
3184 	return 0;
3185 }
3186 
3187 /*
3188  * Allocate a message for receiving an incoming message on a
3189  * connection, and save the result in con->in_msg.  Uses the
3190  * connection's private alloc_msg op if available.
3191  *
3192  * Returns 0 on success, or a negative error code.
3193  *
3194  * On success, if we set *skip = 1:
3195  *  - the next message should be skipped and ignored.
3196  *  - con->in_msg == NULL
3197  * or if we set *skip = 0:
3198  *  - con->in_msg is non-null.
3199  * On error (ENOMEM, EAGAIN, ...),
3200  *  - con->in_msg == NULL
3201  */
3202 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3203 {
3204 	struct ceph_msg_header *hdr = &con->in_hdr;
3205 	int middle_len = le32_to_cpu(hdr->middle_len);
3206 	struct ceph_msg *msg;
3207 	int ret = 0;
3208 
3209 	BUG_ON(con->in_msg != NULL);
3210 	BUG_ON(!con->ops->alloc_msg);
3211 
3212 	mutex_unlock(&con->mutex);
3213 	msg = con->ops->alloc_msg(con, hdr, skip);
3214 	mutex_lock(&con->mutex);
3215 	if (con->state != CON_STATE_OPEN) {
3216 		if (msg)
3217 			ceph_msg_put(msg);
3218 		return -EAGAIN;
3219 	}
3220 	if (msg) {
3221 		BUG_ON(*skip);
3222 		con->in_msg = msg;
3223 		con->in_msg->con = con->ops->get(con);
3224 		BUG_ON(con->in_msg->con == NULL);
3225 	} else {
3226 		/*
3227 		 * Null message pointer means either we should skip
3228 		 * this message or we couldn't allocate memory.  The
3229 		 * former is not an error.
3230 		 */
3231 		if (*skip)
3232 			return 0;
3233 		con->error_msg = "error allocating memory for incoming message";
3234 
3235 		return -ENOMEM;
3236 	}
3237 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3238 
3239 	if (middle_len && !con->in_msg->middle) {
3240 		ret = ceph_alloc_middle(con, con->in_msg);
3241 		if (ret < 0) {
3242 			ceph_msg_put(con->in_msg);
3243 			con->in_msg = NULL;
3244 		}
3245 	}
3246 
3247 	return ret;
3248 }
3249 
3250 
3251 /*
3252  * Free a generically kmalloc'd message.
3253  */
3254 void ceph_msg_kfree(struct ceph_msg *m)
3255 {
3256 	dout("msg_kfree %p\n", m);
3257 	ceph_kvfree(m->front.iov_base);
3258 	kmem_cache_free(ceph_msg_cache, m);
3259 }
3260 
3261 /*
3262  * Drop a msg ref.  Destroy as needed.
3263  */
3264 void ceph_msg_last_put(struct kref *kref)
3265 {
3266 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3267 	LIST_HEAD(data);
3268 	struct list_head *links;
3269 	struct list_head *next;
3270 
3271 	dout("ceph_msg_put last one on %p\n", m);
3272 	WARN_ON(!list_empty(&m->list_head));
3273 
3274 	/* drop middle, data, if any */
3275 	if (m->middle) {
3276 		ceph_buffer_put(m->middle);
3277 		m->middle = NULL;
3278 	}
3279 
3280 	list_splice_init(&m->data, &data);
3281 	list_for_each_safe(links, next, &data) {
3282 		struct ceph_msg_data *data;
3283 
3284 		data = list_entry(links, struct ceph_msg_data, links);
3285 		list_del_init(links);
3286 		ceph_msg_data_destroy(data);
3287 	}
3288 	m->data_length = 0;
3289 
3290 	if (m->pool)
3291 		ceph_msgpool_put(m->pool, m);
3292 	else
3293 		ceph_msg_kfree(m);
3294 }
3295 EXPORT_SYMBOL(ceph_msg_last_put);
3296 
3297 void ceph_msg_dump(struct ceph_msg *msg)
3298 {
3299 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3300 		 msg->front_alloc_len, msg->data_length);
3301 	print_hex_dump(KERN_DEBUG, "header: ",
3302 		       DUMP_PREFIX_OFFSET, 16, 1,
3303 		       &msg->hdr, sizeof(msg->hdr), true);
3304 	print_hex_dump(KERN_DEBUG, " front: ",
3305 		       DUMP_PREFIX_OFFSET, 16, 1,
3306 		       msg->front.iov_base, msg->front.iov_len, true);
3307 	if (msg->middle)
3308 		print_hex_dump(KERN_DEBUG, "middle: ",
3309 			       DUMP_PREFIX_OFFSET, 16, 1,
3310 			       msg->middle->vec.iov_base,
3311 			       msg->middle->vec.iov_len, true);
3312 	print_hex_dump(KERN_DEBUG, "footer: ",
3313 		       DUMP_PREFIX_OFFSET, 16, 1,
3314 		       &msg->footer, sizeof(msg->footer), true);
3315 }
3316 EXPORT_SYMBOL(ceph_msg_dump);
3317