1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/nsproxy.h> 10 #include <linux/sched/mm.h> 11 #include <linux/slab.h> 12 #include <linux/socket.h> 13 #include <linux/string.h> 14 #ifdef CONFIG_BLOCK 15 #include <linux/bio.h> 16 #endif /* CONFIG_BLOCK */ 17 #include <linux/dns_resolver.h> 18 #include <net/tcp.h> 19 20 #include <linux/ceph/ceph_features.h> 21 #include <linux/ceph/libceph.h> 22 #include <linux/ceph/messenger.h> 23 #include <linux/ceph/decode.h> 24 #include <linux/ceph/pagelist.h> 25 #include <linux/export.h> 26 27 /* 28 * Ceph uses the messenger to exchange ceph_msg messages with other 29 * hosts in the system. The messenger provides ordered and reliable 30 * delivery. We tolerate TCP disconnects by reconnecting (with 31 * exponential backoff) in the case of a fault (disconnection, bad 32 * crc, protocol error). Acks allow sent messages to be discarded by 33 * the sender. 34 */ 35 36 /* 37 * We track the state of the socket on a given connection using 38 * values defined below. The transition to a new socket state is 39 * handled by a function which verifies we aren't coming from an 40 * unexpected state. 41 * 42 * -------- 43 * | NEW* | transient initial state 44 * -------- 45 * | con_sock_state_init() 46 * v 47 * ---------- 48 * | CLOSED | initialized, but no socket (and no 49 * ---------- TCP connection) 50 * ^ \ 51 * | \ con_sock_state_connecting() 52 * | ---------------------- 53 * | \ 54 * + con_sock_state_closed() \ 55 * |+--------------------------- \ 56 * | \ \ \ 57 * | ----------- \ \ 58 * | | CLOSING | socket event; \ \ 59 * | ----------- await close \ \ 60 * | ^ \ | 61 * | | \ | 62 * | + con_sock_state_closing() \ | 63 * | / \ | | 64 * | / --------------- | | 65 * | / \ v v 66 * | / -------------- 67 * | / -----------------| CONNECTING | socket created, TCP 68 * | | / -------------- connect initiated 69 * | | | con_sock_state_connected() 70 * | | v 71 * ------------- 72 * | CONNECTED | TCP connection established 73 * ------------- 74 * 75 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 76 */ 77 78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 83 84 /* 85 * connection states 86 */ 87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 93 94 /* 95 * ceph_connection flag bits 96 */ 97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 98 * messages on errors */ 99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 103 104 static bool con_flag_valid(unsigned long con_flag) 105 { 106 switch (con_flag) { 107 case CON_FLAG_LOSSYTX: 108 case CON_FLAG_KEEPALIVE_PENDING: 109 case CON_FLAG_WRITE_PENDING: 110 case CON_FLAG_SOCK_CLOSED: 111 case CON_FLAG_BACKOFF: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 119 { 120 BUG_ON(!con_flag_valid(con_flag)); 121 122 clear_bit(con_flag, &con->flags); 123 } 124 125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 126 { 127 BUG_ON(!con_flag_valid(con_flag)); 128 129 set_bit(con_flag, &con->flags); 130 } 131 132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 133 { 134 BUG_ON(!con_flag_valid(con_flag)); 135 136 return test_bit(con_flag, &con->flags); 137 } 138 139 static bool con_flag_test_and_clear(struct ceph_connection *con, 140 unsigned long con_flag) 141 { 142 BUG_ON(!con_flag_valid(con_flag)); 143 144 return test_and_clear_bit(con_flag, &con->flags); 145 } 146 147 static bool con_flag_test_and_set(struct ceph_connection *con, 148 unsigned long con_flag) 149 { 150 BUG_ON(!con_flag_valid(con_flag)); 151 152 return test_and_set_bit(con_flag, &con->flags); 153 } 154 155 /* Slab caches for frequently-allocated structures */ 156 157 static struct kmem_cache *ceph_msg_cache; 158 static struct kmem_cache *ceph_msg_data_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void cancel_con(struct ceph_connection *con); 178 static void ceph_con_workfn(struct work_struct *); 179 static void con_fault(struct ceph_connection *con); 180 181 /* 182 * Nicely render a sockaddr as a string. An array of formatted 183 * strings is used, to approximate reentrancy. 184 */ 185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 189 190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 191 static atomic_t addr_str_seq = ATOMIC_INIT(0); 192 193 static struct page *zero_page; /* used in certain error cases */ 194 195 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 196 { 197 int i; 198 char *s; 199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 201 202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 203 s = addr_str[i]; 204 205 switch (ss->ss_family) { 206 case AF_INET: 207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 208 ntohs(in4->sin_port)); 209 break; 210 211 case AF_INET6: 212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 213 ntohs(in6->sin6_port)); 214 break; 215 216 default: 217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 218 ss->ss_family); 219 } 220 221 return s; 222 } 223 EXPORT_SYMBOL(ceph_pr_addr); 224 225 static void encode_my_addr(struct ceph_messenger *msgr) 226 { 227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 228 ceph_encode_addr(&msgr->my_enc_addr); 229 } 230 231 /* 232 * work queue for all reading and writing to/from the socket. 233 */ 234 static struct workqueue_struct *ceph_msgr_wq; 235 236 static int ceph_msgr_slab_init(void) 237 { 238 BUG_ON(ceph_msg_cache); 239 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 240 if (!ceph_msg_cache) 241 return -ENOMEM; 242 243 BUG_ON(ceph_msg_data_cache); 244 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0); 245 if (ceph_msg_data_cache) 246 return 0; 247 248 kmem_cache_destroy(ceph_msg_cache); 249 ceph_msg_cache = NULL; 250 251 return -ENOMEM; 252 } 253 254 static void ceph_msgr_slab_exit(void) 255 { 256 BUG_ON(!ceph_msg_data_cache); 257 kmem_cache_destroy(ceph_msg_data_cache); 258 ceph_msg_data_cache = NULL; 259 260 BUG_ON(!ceph_msg_cache); 261 kmem_cache_destroy(ceph_msg_cache); 262 ceph_msg_cache = NULL; 263 } 264 265 static void _ceph_msgr_exit(void) 266 { 267 if (ceph_msgr_wq) { 268 destroy_workqueue(ceph_msgr_wq); 269 ceph_msgr_wq = NULL; 270 } 271 272 BUG_ON(zero_page == NULL); 273 put_page(zero_page); 274 zero_page = NULL; 275 276 ceph_msgr_slab_exit(); 277 } 278 279 int ceph_msgr_init(void) 280 { 281 if (ceph_msgr_slab_init()) 282 return -ENOMEM; 283 284 BUG_ON(zero_page != NULL); 285 zero_page = ZERO_PAGE(0); 286 get_page(zero_page); 287 288 /* 289 * The number of active work items is limited by the number of 290 * connections, so leave @max_active at default. 291 */ 292 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 293 if (ceph_msgr_wq) 294 return 0; 295 296 pr_err("msgr_init failed to create workqueue\n"); 297 _ceph_msgr_exit(); 298 299 return -ENOMEM; 300 } 301 EXPORT_SYMBOL(ceph_msgr_init); 302 303 void ceph_msgr_exit(void) 304 { 305 BUG_ON(ceph_msgr_wq == NULL); 306 307 _ceph_msgr_exit(); 308 } 309 EXPORT_SYMBOL(ceph_msgr_exit); 310 311 void ceph_msgr_flush(void) 312 { 313 flush_workqueue(ceph_msgr_wq); 314 } 315 EXPORT_SYMBOL(ceph_msgr_flush); 316 317 /* Connection socket state transition functions */ 318 319 static void con_sock_state_init(struct ceph_connection *con) 320 { 321 int old_state; 322 323 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 324 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 325 printk("%s: unexpected old state %d\n", __func__, old_state); 326 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 327 CON_SOCK_STATE_CLOSED); 328 } 329 330 static void con_sock_state_connecting(struct ceph_connection *con) 331 { 332 int old_state; 333 334 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 335 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 336 printk("%s: unexpected old state %d\n", __func__, old_state); 337 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 338 CON_SOCK_STATE_CONNECTING); 339 } 340 341 static void con_sock_state_connected(struct ceph_connection *con) 342 { 343 int old_state; 344 345 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 346 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 347 printk("%s: unexpected old state %d\n", __func__, old_state); 348 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 349 CON_SOCK_STATE_CONNECTED); 350 } 351 352 static void con_sock_state_closing(struct ceph_connection *con) 353 { 354 int old_state; 355 356 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 357 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 358 old_state != CON_SOCK_STATE_CONNECTED && 359 old_state != CON_SOCK_STATE_CLOSING)) 360 printk("%s: unexpected old state %d\n", __func__, old_state); 361 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 362 CON_SOCK_STATE_CLOSING); 363 } 364 365 static void con_sock_state_closed(struct ceph_connection *con) 366 { 367 int old_state; 368 369 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 370 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 371 old_state != CON_SOCK_STATE_CLOSING && 372 old_state != CON_SOCK_STATE_CONNECTING && 373 old_state != CON_SOCK_STATE_CLOSED)) 374 printk("%s: unexpected old state %d\n", __func__, old_state); 375 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 376 CON_SOCK_STATE_CLOSED); 377 } 378 379 /* 380 * socket callback functions 381 */ 382 383 /* data available on socket, or listen socket received a connect */ 384 static void ceph_sock_data_ready(struct sock *sk) 385 { 386 struct ceph_connection *con = sk->sk_user_data; 387 if (atomic_read(&con->msgr->stopping)) { 388 return; 389 } 390 391 if (sk->sk_state != TCP_CLOSE_WAIT) { 392 dout("%s on %p state = %lu, queueing work\n", __func__, 393 con, con->state); 394 queue_con(con); 395 } 396 } 397 398 /* socket has buffer space for writing */ 399 static void ceph_sock_write_space(struct sock *sk) 400 { 401 struct ceph_connection *con = sk->sk_user_data; 402 403 /* only queue to workqueue if there is data we want to write, 404 * and there is sufficient space in the socket buffer to accept 405 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 406 * doesn't get called again until try_write() fills the socket 407 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 408 * and net/core/stream.c:sk_stream_write_space(). 409 */ 410 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 411 if (sk_stream_is_writeable(sk)) { 412 dout("%s %p queueing write work\n", __func__, con); 413 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 414 queue_con(con); 415 } 416 } else { 417 dout("%s %p nothing to write\n", __func__, con); 418 } 419 } 420 421 /* socket's state has changed */ 422 static void ceph_sock_state_change(struct sock *sk) 423 { 424 struct ceph_connection *con = sk->sk_user_data; 425 426 dout("%s %p state = %lu sk_state = %u\n", __func__, 427 con, con->state, sk->sk_state); 428 429 switch (sk->sk_state) { 430 case TCP_CLOSE: 431 dout("%s TCP_CLOSE\n", __func__); 432 case TCP_CLOSE_WAIT: 433 dout("%s TCP_CLOSE_WAIT\n", __func__); 434 con_sock_state_closing(con); 435 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 436 queue_con(con); 437 break; 438 case TCP_ESTABLISHED: 439 dout("%s TCP_ESTABLISHED\n", __func__); 440 con_sock_state_connected(con); 441 queue_con(con); 442 break; 443 default: /* Everything else is uninteresting */ 444 break; 445 } 446 } 447 448 /* 449 * set up socket callbacks 450 */ 451 static void set_sock_callbacks(struct socket *sock, 452 struct ceph_connection *con) 453 { 454 struct sock *sk = sock->sk; 455 sk->sk_user_data = con; 456 sk->sk_data_ready = ceph_sock_data_ready; 457 sk->sk_write_space = ceph_sock_write_space; 458 sk->sk_state_change = ceph_sock_state_change; 459 } 460 461 462 /* 463 * socket helpers 464 */ 465 466 /* 467 * initiate connection to a remote socket. 468 */ 469 static int ceph_tcp_connect(struct ceph_connection *con) 470 { 471 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 472 struct socket *sock; 473 unsigned int noio_flag; 474 int ret; 475 476 BUG_ON(con->sock); 477 478 /* sock_create_kern() allocates with GFP_KERNEL */ 479 noio_flag = memalloc_noio_save(); 480 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 481 SOCK_STREAM, IPPROTO_TCP, &sock); 482 memalloc_noio_restore(noio_flag); 483 if (ret) 484 return ret; 485 sock->sk->sk_allocation = GFP_NOFS; 486 487 #ifdef CONFIG_LOCKDEP 488 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 489 #endif 490 491 set_sock_callbacks(sock, con); 492 493 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 494 495 con_sock_state_connecting(con); 496 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 497 O_NONBLOCK); 498 if (ret == -EINPROGRESS) { 499 dout("connect %s EINPROGRESS sk_state = %u\n", 500 ceph_pr_addr(&con->peer_addr.in_addr), 501 sock->sk->sk_state); 502 } else if (ret < 0) { 503 pr_err("connect %s error %d\n", 504 ceph_pr_addr(&con->peer_addr.in_addr), ret); 505 sock_release(sock); 506 return ret; 507 } 508 509 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 510 int optval = 1; 511 512 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 513 (char *)&optval, sizeof(optval)); 514 if (ret) 515 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 516 ret); 517 } 518 519 con->sock = sock; 520 return 0; 521 } 522 523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 524 { 525 struct kvec iov = {buf, len}; 526 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 527 int r; 528 529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len); 530 r = sock_recvmsg(sock, &msg, msg.msg_flags); 531 if (r == -EAGAIN) 532 r = 0; 533 return r; 534 } 535 536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 537 int page_offset, size_t length) 538 { 539 struct bio_vec bvec = { 540 .bv_page = page, 541 .bv_offset = page_offset, 542 .bv_len = length 543 }; 544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 545 int r; 546 547 BUG_ON(page_offset + length > PAGE_SIZE); 548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length); 549 r = sock_recvmsg(sock, &msg, msg.msg_flags); 550 if (r == -EAGAIN) 551 r = 0; 552 return r; 553 } 554 555 /* 556 * write something. @more is true if caller will be sending more data 557 * shortly. 558 */ 559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 560 size_t kvlen, size_t len, int more) 561 { 562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 563 int r; 564 565 if (more) 566 msg.msg_flags |= MSG_MORE; 567 else 568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 569 570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 571 if (r == -EAGAIN) 572 r = 0; 573 return r; 574 } 575 576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 577 int offset, size_t size, bool more) 578 { 579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 580 int ret; 581 582 ret = kernel_sendpage(sock, page, offset, size, flags); 583 if (ret == -EAGAIN) 584 ret = 0; 585 586 return ret; 587 } 588 589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 590 int offset, size_t size, bool more) 591 { 592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 593 struct bio_vec bvec; 594 int ret; 595 596 /* sendpage cannot properly handle pages with page_count == 0, 597 * we need to fallback to sendmsg if that's the case */ 598 if (page_count(page) >= 1) 599 return __ceph_tcp_sendpage(sock, page, offset, size, more); 600 601 bvec.bv_page = page; 602 bvec.bv_offset = offset; 603 bvec.bv_len = size; 604 605 if (more) 606 msg.msg_flags |= MSG_MORE; 607 else 608 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 609 610 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size); 611 ret = sock_sendmsg(sock, &msg); 612 if (ret == -EAGAIN) 613 ret = 0; 614 615 return ret; 616 } 617 618 /* 619 * Shutdown/close the socket for the given connection. 620 */ 621 static int con_close_socket(struct ceph_connection *con) 622 { 623 int rc = 0; 624 625 dout("con_close_socket on %p sock %p\n", con, con->sock); 626 if (con->sock) { 627 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 628 sock_release(con->sock); 629 con->sock = NULL; 630 } 631 632 /* 633 * Forcibly clear the SOCK_CLOSED flag. It gets set 634 * independent of the connection mutex, and we could have 635 * received a socket close event before we had the chance to 636 * shut the socket down. 637 */ 638 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 639 640 con_sock_state_closed(con); 641 return rc; 642 } 643 644 /* 645 * Reset a connection. Discard all incoming and outgoing messages 646 * and clear *_seq state. 647 */ 648 static void ceph_msg_remove(struct ceph_msg *msg) 649 { 650 list_del_init(&msg->list_head); 651 652 ceph_msg_put(msg); 653 } 654 static void ceph_msg_remove_list(struct list_head *head) 655 { 656 while (!list_empty(head)) { 657 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 658 list_head); 659 ceph_msg_remove(msg); 660 } 661 } 662 663 static void reset_connection(struct ceph_connection *con) 664 { 665 /* reset connection, out_queue, msg_ and connect_seq */ 666 /* discard existing out_queue and msg_seq */ 667 dout("reset_connection %p\n", con); 668 ceph_msg_remove_list(&con->out_queue); 669 ceph_msg_remove_list(&con->out_sent); 670 671 if (con->in_msg) { 672 BUG_ON(con->in_msg->con != con); 673 ceph_msg_put(con->in_msg); 674 con->in_msg = NULL; 675 } 676 677 con->connect_seq = 0; 678 con->out_seq = 0; 679 if (con->out_msg) { 680 BUG_ON(con->out_msg->con != con); 681 ceph_msg_put(con->out_msg); 682 con->out_msg = NULL; 683 } 684 con->in_seq = 0; 685 con->in_seq_acked = 0; 686 687 con->out_skip = 0; 688 } 689 690 /* 691 * mark a peer down. drop any open connections. 692 */ 693 void ceph_con_close(struct ceph_connection *con) 694 { 695 mutex_lock(&con->mutex); 696 dout("con_close %p peer %s\n", con, 697 ceph_pr_addr(&con->peer_addr.in_addr)); 698 con->state = CON_STATE_CLOSED; 699 700 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 701 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 702 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 703 con_flag_clear(con, CON_FLAG_BACKOFF); 704 705 reset_connection(con); 706 con->peer_global_seq = 0; 707 cancel_con(con); 708 con_close_socket(con); 709 mutex_unlock(&con->mutex); 710 } 711 EXPORT_SYMBOL(ceph_con_close); 712 713 /* 714 * Reopen a closed connection, with a new peer address. 715 */ 716 void ceph_con_open(struct ceph_connection *con, 717 __u8 entity_type, __u64 entity_num, 718 struct ceph_entity_addr *addr) 719 { 720 mutex_lock(&con->mutex); 721 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 722 723 WARN_ON(con->state != CON_STATE_CLOSED); 724 con->state = CON_STATE_PREOPEN; 725 726 con->peer_name.type = (__u8) entity_type; 727 con->peer_name.num = cpu_to_le64(entity_num); 728 729 memcpy(&con->peer_addr, addr, sizeof(*addr)); 730 con->delay = 0; /* reset backoff memory */ 731 mutex_unlock(&con->mutex); 732 queue_con(con); 733 } 734 EXPORT_SYMBOL(ceph_con_open); 735 736 /* 737 * return true if this connection ever successfully opened 738 */ 739 bool ceph_con_opened(struct ceph_connection *con) 740 { 741 return con->connect_seq > 0; 742 } 743 744 /* 745 * initialize a new connection. 746 */ 747 void ceph_con_init(struct ceph_connection *con, void *private, 748 const struct ceph_connection_operations *ops, 749 struct ceph_messenger *msgr) 750 { 751 dout("con_init %p\n", con); 752 memset(con, 0, sizeof(*con)); 753 con->private = private; 754 con->ops = ops; 755 con->msgr = msgr; 756 757 con_sock_state_init(con); 758 759 mutex_init(&con->mutex); 760 INIT_LIST_HEAD(&con->out_queue); 761 INIT_LIST_HEAD(&con->out_sent); 762 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 763 764 con->state = CON_STATE_CLOSED; 765 } 766 EXPORT_SYMBOL(ceph_con_init); 767 768 769 /* 770 * We maintain a global counter to order connection attempts. Get 771 * a unique seq greater than @gt. 772 */ 773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 774 { 775 u32 ret; 776 777 spin_lock(&msgr->global_seq_lock); 778 if (msgr->global_seq < gt) 779 msgr->global_seq = gt; 780 ret = ++msgr->global_seq; 781 spin_unlock(&msgr->global_seq_lock); 782 return ret; 783 } 784 785 static void con_out_kvec_reset(struct ceph_connection *con) 786 { 787 BUG_ON(con->out_skip); 788 789 con->out_kvec_left = 0; 790 con->out_kvec_bytes = 0; 791 con->out_kvec_cur = &con->out_kvec[0]; 792 } 793 794 static void con_out_kvec_add(struct ceph_connection *con, 795 size_t size, void *data) 796 { 797 int index = con->out_kvec_left; 798 799 BUG_ON(con->out_skip); 800 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 801 802 con->out_kvec[index].iov_len = size; 803 con->out_kvec[index].iov_base = data; 804 con->out_kvec_left++; 805 con->out_kvec_bytes += size; 806 } 807 808 /* 809 * Chop off a kvec from the end. Return residual number of bytes for 810 * that kvec, i.e. how many bytes would have been written if the kvec 811 * hadn't been nuked. 812 */ 813 static int con_out_kvec_skip(struct ceph_connection *con) 814 { 815 int off = con->out_kvec_cur - con->out_kvec; 816 int skip = 0; 817 818 if (con->out_kvec_bytes > 0) { 819 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 820 BUG_ON(con->out_kvec_bytes < skip); 821 BUG_ON(!con->out_kvec_left); 822 con->out_kvec_bytes -= skip; 823 con->out_kvec_left--; 824 } 825 826 return skip; 827 } 828 829 #ifdef CONFIG_BLOCK 830 831 /* 832 * For a bio data item, a piece is whatever remains of the next 833 * entry in the current bio iovec, or the first entry in the next 834 * bio in the list. 835 */ 836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 837 size_t length) 838 { 839 struct ceph_msg_data *data = cursor->data; 840 struct bio *bio; 841 842 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 843 844 bio = data->bio; 845 BUG_ON(!bio); 846 847 cursor->resid = min(length, data->bio_length); 848 cursor->bio = bio; 849 cursor->bvec_iter = bio->bi_iter; 850 cursor->last_piece = 851 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 852 } 853 854 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 855 size_t *page_offset, 856 size_t *length) 857 { 858 struct ceph_msg_data *data = cursor->data; 859 struct bio *bio; 860 struct bio_vec bio_vec; 861 862 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 863 864 bio = cursor->bio; 865 BUG_ON(!bio); 866 867 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 868 869 *page_offset = (size_t) bio_vec.bv_offset; 870 BUG_ON(*page_offset >= PAGE_SIZE); 871 if (cursor->last_piece) /* pagelist offset is always 0 */ 872 *length = cursor->resid; 873 else 874 *length = (size_t) bio_vec.bv_len; 875 BUG_ON(*length > cursor->resid); 876 BUG_ON(*page_offset + *length > PAGE_SIZE); 877 878 return bio_vec.bv_page; 879 } 880 881 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 882 size_t bytes) 883 { 884 struct bio *bio; 885 struct bio_vec bio_vec; 886 887 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 888 889 bio = cursor->bio; 890 BUG_ON(!bio); 891 892 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 893 894 /* Advance the cursor offset */ 895 896 BUG_ON(cursor->resid < bytes); 897 cursor->resid -= bytes; 898 899 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 900 901 if (bytes < bio_vec.bv_len) 902 return false; /* more bytes to process in this segment */ 903 904 /* Move on to the next segment, and possibly the next bio */ 905 906 if (!cursor->bvec_iter.bi_size) { 907 bio = bio->bi_next; 908 cursor->bio = bio; 909 if (bio) 910 cursor->bvec_iter = bio->bi_iter; 911 else 912 memset(&cursor->bvec_iter, 0, 913 sizeof(cursor->bvec_iter)); 914 } 915 916 if (!cursor->last_piece) { 917 BUG_ON(!cursor->resid); 918 BUG_ON(!bio); 919 /* A short read is OK, so use <= rather than == */ 920 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 921 cursor->last_piece = true; 922 } 923 924 return true; 925 } 926 #endif /* CONFIG_BLOCK */ 927 928 /* 929 * For a page array, a piece comes from the first page in the array 930 * that has not already been fully consumed. 931 */ 932 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 933 size_t length) 934 { 935 struct ceph_msg_data *data = cursor->data; 936 int page_count; 937 938 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 939 940 BUG_ON(!data->pages); 941 BUG_ON(!data->length); 942 943 cursor->resid = min(length, data->length); 944 page_count = calc_pages_for(data->alignment, (u64)data->length); 945 cursor->page_offset = data->alignment & ~PAGE_MASK; 946 cursor->page_index = 0; 947 BUG_ON(page_count > (int)USHRT_MAX); 948 cursor->page_count = (unsigned short)page_count; 949 BUG_ON(length > SIZE_MAX - cursor->page_offset); 950 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 951 } 952 953 static struct page * 954 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 955 size_t *page_offset, size_t *length) 956 { 957 struct ceph_msg_data *data = cursor->data; 958 959 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 960 961 BUG_ON(cursor->page_index >= cursor->page_count); 962 BUG_ON(cursor->page_offset >= PAGE_SIZE); 963 964 *page_offset = cursor->page_offset; 965 if (cursor->last_piece) 966 *length = cursor->resid; 967 else 968 *length = PAGE_SIZE - *page_offset; 969 970 return data->pages[cursor->page_index]; 971 } 972 973 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 974 size_t bytes) 975 { 976 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 977 978 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 979 980 /* Advance the cursor page offset */ 981 982 cursor->resid -= bytes; 983 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 984 if (!bytes || cursor->page_offset) 985 return false; /* more bytes to process in the current page */ 986 987 if (!cursor->resid) 988 return false; /* no more data */ 989 990 /* Move on to the next page; offset is already at 0 */ 991 992 BUG_ON(cursor->page_index >= cursor->page_count); 993 cursor->page_index++; 994 cursor->last_piece = cursor->resid <= PAGE_SIZE; 995 996 return true; 997 } 998 999 /* 1000 * For a pagelist, a piece is whatever remains to be consumed in the 1001 * first page in the list, or the front of the next page. 1002 */ 1003 static void 1004 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1005 size_t length) 1006 { 1007 struct ceph_msg_data *data = cursor->data; 1008 struct ceph_pagelist *pagelist; 1009 struct page *page; 1010 1011 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1012 1013 pagelist = data->pagelist; 1014 BUG_ON(!pagelist); 1015 1016 if (!length) 1017 return; /* pagelist can be assigned but empty */ 1018 1019 BUG_ON(list_empty(&pagelist->head)); 1020 page = list_first_entry(&pagelist->head, struct page, lru); 1021 1022 cursor->resid = min(length, pagelist->length); 1023 cursor->page = page; 1024 cursor->offset = 0; 1025 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1026 } 1027 1028 static struct page * 1029 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1030 size_t *page_offset, size_t *length) 1031 { 1032 struct ceph_msg_data *data = cursor->data; 1033 struct ceph_pagelist *pagelist; 1034 1035 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1036 1037 pagelist = data->pagelist; 1038 BUG_ON(!pagelist); 1039 1040 BUG_ON(!cursor->page); 1041 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1042 1043 /* offset of first page in pagelist is always 0 */ 1044 *page_offset = cursor->offset & ~PAGE_MASK; 1045 if (cursor->last_piece) 1046 *length = cursor->resid; 1047 else 1048 *length = PAGE_SIZE - *page_offset; 1049 1050 return cursor->page; 1051 } 1052 1053 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1054 size_t bytes) 1055 { 1056 struct ceph_msg_data *data = cursor->data; 1057 struct ceph_pagelist *pagelist; 1058 1059 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1060 1061 pagelist = data->pagelist; 1062 BUG_ON(!pagelist); 1063 1064 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1065 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1066 1067 /* Advance the cursor offset */ 1068 1069 cursor->resid -= bytes; 1070 cursor->offset += bytes; 1071 /* offset of first page in pagelist is always 0 */ 1072 if (!bytes || cursor->offset & ~PAGE_MASK) 1073 return false; /* more bytes to process in the current page */ 1074 1075 if (!cursor->resid) 1076 return false; /* no more data */ 1077 1078 /* Move on to the next page */ 1079 1080 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1081 cursor->page = list_next_entry(cursor->page, lru); 1082 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1083 1084 return true; 1085 } 1086 1087 /* 1088 * Message data is handled (sent or received) in pieces, where each 1089 * piece resides on a single page. The network layer might not 1090 * consume an entire piece at once. A data item's cursor keeps 1091 * track of which piece is next to process and how much remains to 1092 * be processed in that piece. It also tracks whether the current 1093 * piece is the last one in the data item. 1094 */ 1095 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1096 { 1097 size_t length = cursor->total_resid; 1098 1099 switch (cursor->data->type) { 1100 case CEPH_MSG_DATA_PAGELIST: 1101 ceph_msg_data_pagelist_cursor_init(cursor, length); 1102 break; 1103 case CEPH_MSG_DATA_PAGES: 1104 ceph_msg_data_pages_cursor_init(cursor, length); 1105 break; 1106 #ifdef CONFIG_BLOCK 1107 case CEPH_MSG_DATA_BIO: 1108 ceph_msg_data_bio_cursor_init(cursor, length); 1109 break; 1110 #endif /* CONFIG_BLOCK */ 1111 case CEPH_MSG_DATA_NONE: 1112 default: 1113 /* BUG(); */ 1114 break; 1115 } 1116 cursor->need_crc = true; 1117 } 1118 1119 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1120 { 1121 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1122 struct ceph_msg_data *data; 1123 1124 BUG_ON(!length); 1125 BUG_ON(length > msg->data_length); 1126 BUG_ON(list_empty(&msg->data)); 1127 1128 cursor->data_head = &msg->data; 1129 cursor->total_resid = length; 1130 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1131 cursor->data = data; 1132 1133 __ceph_msg_data_cursor_init(cursor); 1134 } 1135 1136 /* 1137 * Return the page containing the next piece to process for a given 1138 * data item, and supply the page offset and length of that piece. 1139 * Indicate whether this is the last piece in this data item. 1140 */ 1141 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1142 size_t *page_offset, size_t *length, 1143 bool *last_piece) 1144 { 1145 struct page *page; 1146 1147 switch (cursor->data->type) { 1148 case CEPH_MSG_DATA_PAGELIST: 1149 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1150 break; 1151 case CEPH_MSG_DATA_PAGES: 1152 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1153 break; 1154 #ifdef CONFIG_BLOCK 1155 case CEPH_MSG_DATA_BIO: 1156 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1157 break; 1158 #endif /* CONFIG_BLOCK */ 1159 case CEPH_MSG_DATA_NONE: 1160 default: 1161 page = NULL; 1162 break; 1163 } 1164 BUG_ON(!page); 1165 BUG_ON(*page_offset + *length > PAGE_SIZE); 1166 BUG_ON(!*length); 1167 if (last_piece) 1168 *last_piece = cursor->last_piece; 1169 1170 return page; 1171 } 1172 1173 /* 1174 * Returns true if the result moves the cursor on to the next piece 1175 * of the data item. 1176 */ 1177 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1178 size_t bytes) 1179 { 1180 bool new_piece; 1181 1182 BUG_ON(bytes > cursor->resid); 1183 switch (cursor->data->type) { 1184 case CEPH_MSG_DATA_PAGELIST: 1185 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1186 break; 1187 case CEPH_MSG_DATA_PAGES: 1188 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1189 break; 1190 #ifdef CONFIG_BLOCK 1191 case CEPH_MSG_DATA_BIO: 1192 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1193 break; 1194 #endif /* CONFIG_BLOCK */ 1195 case CEPH_MSG_DATA_NONE: 1196 default: 1197 BUG(); 1198 break; 1199 } 1200 cursor->total_resid -= bytes; 1201 1202 if (!cursor->resid && cursor->total_resid) { 1203 WARN_ON(!cursor->last_piece); 1204 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1205 cursor->data = list_next_entry(cursor->data, links); 1206 __ceph_msg_data_cursor_init(cursor); 1207 new_piece = true; 1208 } 1209 cursor->need_crc = new_piece; 1210 } 1211 1212 static size_t sizeof_footer(struct ceph_connection *con) 1213 { 1214 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1215 sizeof(struct ceph_msg_footer) : 1216 sizeof(struct ceph_msg_footer_old); 1217 } 1218 1219 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1220 { 1221 BUG_ON(!msg); 1222 BUG_ON(!data_len); 1223 1224 /* Initialize data cursor */ 1225 1226 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1227 } 1228 1229 /* 1230 * Prepare footer for currently outgoing message, and finish things 1231 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1232 */ 1233 static void prepare_write_message_footer(struct ceph_connection *con) 1234 { 1235 struct ceph_msg *m = con->out_msg; 1236 1237 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1238 1239 dout("prepare_write_message_footer %p\n", con); 1240 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1241 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1242 if (con->ops->sign_message) 1243 con->ops->sign_message(m); 1244 else 1245 m->footer.sig = 0; 1246 } else { 1247 m->old_footer.flags = m->footer.flags; 1248 } 1249 con->out_more = m->more_to_follow; 1250 con->out_msg_done = true; 1251 } 1252 1253 /* 1254 * Prepare headers for the next outgoing message. 1255 */ 1256 static void prepare_write_message(struct ceph_connection *con) 1257 { 1258 struct ceph_msg *m; 1259 u32 crc; 1260 1261 con_out_kvec_reset(con); 1262 con->out_msg_done = false; 1263 1264 /* Sneak an ack in there first? If we can get it into the same 1265 * TCP packet that's a good thing. */ 1266 if (con->in_seq > con->in_seq_acked) { 1267 con->in_seq_acked = con->in_seq; 1268 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1269 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1270 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1271 &con->out_temp_ack); 1272 } 1273 1274 BUG_ON(list_empty(&con->out_queue)); 1275 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1276 con->out_msg = m; 1277 BUG_ON(m->con != con); 1278 1279 /* put message on sent list */ 1280 ceph_msg_get(m); 1281 list_move_tail(&m->list_head, &con->out_sent); 1282 1283 /* 1284 * only assign outgoing seq # if we haven't sent this message 1285 * yet. if it is requeued, resend with it's original seq. 1286 */ 1287 if (m->needs_out_seq) { 1288 m->hdr.seq = cpu_to_le64(++con->out_seq); 1289 m->needs_out_seq = false; 1290 } 1291 1292 if (con->ops->reencode_message) 1293 con->ops->reencode_message(m); 1294 1295 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1296 m, con->out_seq, le16_to_cpu(m->hdr.type), 1297 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1298 m->data_length); 1299 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1300 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1301 1302 /* tag + hdr + front + middle */ 1303 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1304 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1305 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1306 1307 if (m->middle) 1308 con_out_kvec_add(con, m->middle->vec.iov_len, 1309 m->middle->vec.iov_base); 1310 1311 /* fill in hdr crc and finalize hdr */ 1312 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1313 con->out_msg->hdr.crc = cpu_to_le32(crc); 1314 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1315 1316 /* fill in front and middle crc, footer */ 1317 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1318 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1319 if (m->middle) { 1320 crc = crc32c(0, m->middle->vec.iov_base, 1321 m->middle->vec.iov_len); 1322 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1323 } else 1324 con->out_msg->footer.middle_crc = 0; 1325 dout("%s front_crc %u middle_crc %u\n", __func__, 1326 le32_to_cpu(con->out_msg->footer.front_crc), 1327 le32_to_cpu(con->out_msg->footer.middle_crc)); 1328 con->out_msg->footer.flags = 0; 1329 1330 /* is there a data payload? */ 1331 con->out_msg->footer.data_crc = 0; 1332 if (m->data_length) { 1333 prepare_message_data(con->out_msg, m->data_length); 1334 con->out_more = 1; /* data + footer will follow */ 1335 } else { 1336 /* no, queue up footer too and be done */ 1337 prepare_write_message_footer(con); 1338 } 1339 1340 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1341 } 1342 1343 /* 1344 * Prepare an ack. 1345 */ 1346 static void prepare_write_ack(struct ceph_connection *con) 1347 { 1348 dout("prepare_write_ack %p %llu -> %llu\n", con, 1349 con->in_seq_acked, con->in_seq); 1350 con->in_seq_acked = con->in_seq; 1351 1352 con_out_kvec_reset(con); 1353 1354 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1355 1356 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1357 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1358 &con->out_temp_ack); 1359 1360 con->out_more = 1; /* more will follow.. eventually.. */ 1361 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1362 } 1363 1364 /* 1365 * Prepare to share the seq during handshake 1366 */ 1367 static void prepare_write_seq(struct ceph_connection *con) 1368 { 1369 dout("prepare_write_seq %p %llu -> %llu\n", con, 1370 con->in_seq_acked, con->in_seq); 1371 con->in_seq_acked = con->in_seq; 1372 1373 con_out_kvec_reset(con); 1374 1375 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1376 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1377 &con->out_temp_ack); 1378 1379 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1380 } 1381 1382 /* 1383 * Prepare to write keepalive byte. 1384 */ 1385 static void prepare_write_keepalive(struct ceph_connection *con) 1386 { 1387 dout("prepare_write_keepalive %p\n", con); 1388 con_out_kvec_reset(con); 1389 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1390 struct timespec now; 1391 1392 ktime_get_real_ts(&now); 1393 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1394 ceph_encode_timespec(&con->out_temp_keepalive2, &now); 1395 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1396 &con->out_temp_keepalive2); 1397 } else { 1398 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1399 } 1400 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1401 } 1402 1403 /* 1404 * Connection negotiation. 1405 */ 1406 1407 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1408 int *auth_proto) 1409 { 1410 struct ceph_auth_handshake *auth; 1411 1412 if (!con->ops->get_authorizer) { 1413 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1414 con->out_connect.authorizer_len = 0; 1415 return NULL; 1416 } 1417 1418 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1419 if (IS_ERR(auth)) 1420 return auth; 1421 1422 con->auth_reply_buf = auth->authorizer_reply_buf; 1423 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1424 return auth; 1425 } 1426 1427 /* 1428 * We connected to a peer and are saying hello. 1429 */ 1430 static void prepare_write_banner(struct ceph_connection *con) 1431 { 1432 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1433 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1434 &con->msgr->my_enc_addr); 1435 1436 con->out_more = 0; 1437 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1438 } 1439 1440 static int prepare_write_connect(struct ceph_connection *con) 1441 { 1442 unsigned int global_seq = get_global_seq(con->msgr, 0); 1443 int proto; 1444 int auth_proto; 1445 struct ceph_auth_handshake *auth; 1446 1447 switch (con->peer_name.type) { 1448 case CEPH_ENTITY_TYPE_MON: 1449 proto = CEPH_MONC_PROTOCOL; 1450 break; 1451 case CEPH_ENTITY_TYPE_OSD: 1452 proto = CEPH_OSDC_PROTOCOL; 1453 break; 1454 case CEPH_ENTITY_TYPE_MDS: 1455 proto = CEPH_MDSC_PROTOCOL; 1456 break; 1457 default: 1458 BUG(); 1459 } 1460 1461 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1462 con->connect_seq, global_seq, proto); 1463 1464 con->out_connect.features = 1465 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1466 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1467 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1468 con->out_connect.global_seq = cpu_to_le32(global_seq); 1469 con->out_connect.protocol_version = cpu_to_le32(proto); 1470 con->out_connect.flags = 0; 1471 1472 auth_proto = CEPH_AUTH_UNKNOWN; 1473 auth = get_connect_authorizer(con, &auth_proto); 1474 if (IS_ERR(auth)) 1475 return PTR_ERR(auth); 1476 1477 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1478 con->out_connect.authorizer_len = auth ? 1479 cpu_to_le32(auth->authorizer_buf_len) : 0; 1480 1481 con_out_kvec_add(con, sizeof (con->out_connect), 1482 &con->out_connect); 1483 if (auth && auth->authorizer_buf_len) 1484 con_out_kvec_add(con, auth->authorizer_buf_len, 1485 auth->authorizer_buf); 1486 1487 con->out_more = 0; 1488 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1489 1490 return 0; 1491 } 1492 1493 /* 1494 * write as much of pending kvecs to the socket as we can. 1495 * 1 -> done 1496 * 0 -> socket full, but more to do 1497 * <0 -> error 1498 */ 1499 static int write_partial_kvec(struct ceph_connection *con) 1500 { 1501 int ret; 1502 1503 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1504 while (con->out_kvec_bytes > 0) { 1505 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1506 con->out_kvec_left, con->out_kvec_bytes, 1507 con->out_more); 1508 if (ret <= 0) 1509 goto out; 1510 con->out_kvec_bytes -= ret; 1511 if (con->out_kvec_bytes == 0) 1512 break; /* done */ 1513 1514 /* account for full iov entries consumed */ 1515 while (ret >= con->out_kvec_cur->iov_len) { 1516 BUG_ON(!con->out_kvec_left); 1517 ret -= con->out_kvec_cur->iov_len; 1518 con->out_kvec_cur++; 1519 con->out_kvec_left--; 1520 } 1521 /* and for a partially-consumed entry */ 1522 if (ret) { 1523 con->out_kvec_cur->iov_len -= ret; 1524 con->out_kvec_cur->iov_base += ret; 1525 } 1526 } 1527 con->out_kvec_left = 0; 1528 ret = 1; 1529 out: 1530 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1531 con->out_kvec_bytes, con->out_kvec_left, ret); 1532 return ret; /* done! */ 1533 } 1534 1535 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1536 unsigned int page_offset, 1537 unsigned int length) 1538 { 1539 char *kaddr; 1540 1541 kaddr = kmap(page); 1542 BUG_ON(kaddr == NULL); 1543 crc = crc32c(crc, kaddr + page_offset, length); 1544 kunmap(page); 1545 1546 return crc; 1547 } 1548 /* 1549 * Write as much message data payload as we can. If we finish, queue 1550 * up the footer. 1551 * 1 -> done, footer is now queued in out_kvec[]. 1552 * 0 -> socket full, but more to do 1553 * <0 -> error 1554 */ 1555 static int write_partial_message_data(struct ceph_connection *con) 1556 { 1557 struct ceph_msg *msg = con->out_msg; 1558 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1559 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1560 u32 crc; 1561 1562 dout("%s %p msg %p\n", __func__, con, msg); 1563 1564 if (list_empty(&msg->data)) 1565 return -EINVAL; 1566 1567 /* 1568 * Iterate through each page that contains data to be 1569 * written, and send as much as possible for each. 1570 * 1571 * If we are calculating the data crc (the default), we will 1572 * need to map the page. If we have no pages, they have 1573 * been revoked, so use the zero page. 1574 */ 1575 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1576 while (cursor->resid) { 1577 struct page *page; 1578 size_t page_offset; 1579 size_t length; 1580 bool last_piece; 1581 int ret; 1582 1583 page = ceph_msg_data_next(cursor, &page_offset, &length, 1584 &last_piece); 1585 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1586 length, !last_piece); 1587 if (ret <= 0) { 1588 if (do_datacrc) 1589 msg->footer.data_crc = cpu_to_le32(crc); 1590 1591 return ret; 1592 } 1593 if (do_datacrc && cursor->need_crc) 1594 crc = ceph_crc32c_page(crc, page, page_offset, length); 1595 ceph_msg_data_advance(cursor, (size_t)ret); 1596 } 1597 1598 dout("%s %p msg %p done\n", __func__, con, msg); 1599 1600 /* prepare and queue up footer, too */ 1601 if (do_datacrc) 1602 msg->footer.data_crc = cpu_to_le32(crc); 1603 else 1604 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1605 con_out_kvec_reset(con); 1606 prepare_write_message_footer(con); 1607 1608 return 1; /* must return > 0 to indicate success */ 1609 } 1610 1611 /* 1612 * write some zeros 1613 */ 1614 static int write_partial_skip(struct ceph_connection *con) 1615 { 1616 int ret; 1617 1618 dout("%s %p %d left\n", __func__, con, con->out_skip); 1619 while (con->out_skip > 0) { 1620 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1621 1622 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1623 if (ret <= 0) 1624 goto out; 1625 con->out_skip -= ret; 1626 } 1627 ret = 1; 1628 out: 1629 return ret; 1630 } 1631 1632 /* 1633 * Prepare to read connection handshake, or an ack. 1634 */ 1635 static void prepare_read_banner(struct ceph_connection *con) 1636 { 1637 dout("prepare_read_banner %p\n", con); 1638 con->in_base_pos = 0; 1639 } 1640 1641 static void prepare_read_connect(struct ceph_connection *con) 1642 { 1643 dout("prepare_read_connect %p\n", con); 1644 con->in_base_pos = 0; 1645 } 1646 1647 static void prepare_read_ack(struct ceph_connection *con) 1648 { 1649 dout("prepare_read_ack %p\n", con); 1650 con->in_base_pos = 0; 1651 } 1652 1653 static void prepare_read_seq(struct ceph_connection *con) 1654 { 1655 dout("prepare_read_seq %p\n", con); 1656 con->in_base_pos = 0; 1657 con->in_tag = CEPH_MSGR_TAG_SEQ; 1658 } 1659 1660 static void prepare_read_tag(struct ceph_connection *con) 1661 { 1662 dout("prepare_read_tag %p\n", con); 1663 con->in_base_pos = 0; 1664 con->in_tag = CEPH_MSGR_TAG_READY; 1665 } 1666 1667 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1668 { 1669 dout("prepare_read_keepalive_ack %p\n", con); 1670 con->in_base_pos = 0; 1671 } 1672 1673 /* 1674 * Prepare to read a message. 1675 */ 1676 static int prepare_read_message(struct ceph_connection *con) 1677 { 1678 dout("prepare_read_message %p\n", con); 1679 BUG_ON(con->in_msg != NULL); 1680 con->in_base_pos = 0; 1681 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1682 return 0; 1683 } 1684 1685 1686 static int read_partial(struct ceph_connection *con, 1687 int end, int size, void *object) 1688 { 1689 while (con->in_base_pos < end) { 1690 int left = end - con->in_base_pos; 1691 int have = size - left; 1692 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1693 if (ret <= 0) 1694 return ret; 1695 con->in_base_pos += ret; 1696 } 1697 return 1; 1698 } 1699 1700 1701 /* 1702 * Read all or part of the connect-side handshake on a new connection 1703 */ 1704 static int read_partial_banner(struct ceph_connection *con) 1705 { 1706 int size; 1707 int end; 1708 int ret; 1709 1710 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1711 1712 /* peer's banner */ 1713 size = strlen(CEPH_BANNER); 1714 end = size; 1715 ret = read_partial(con, end, size, con->in_banner); 1716 if (ret <= 0) 1717 goto out; 1718 1719 size = sizeof (con->actual_peer_addr); 1720 end += size; 1721 ret = read_partial(con, end, size, &con->actual_peer_addr); 1722 if (ret <= 0) 1723 goto out; 1724 1725 size = sizeof (con->peer_addr_for_me); 1726 end += size; 1727 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1728 if (ret <= 0) 1729 goto out; 1730 1731 out: 1732 return ret; 1733 } 1734 1735 static int read_partial_connect(struct ceph_connection *con) 1736 { 1737 int size; 1738 int end; 1739 int ret; 1740 1741 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1742 1743 size = sizeof (con->in_reply); 1744 end = size; 1745 ret = read_partial(con, end, size, &con->in_reply); 1746 if (ret <= 0) 1747 goto out; 1748 1749 size = le32_to_cpu(con->in_reply.authorizer_len); 1750 end += size; 1751 ret = read_partial(con, end, size, con->auth_reply_buf); 1752 if (ret <= 0) 1753 goto out; 1754 1755 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1756 con, (int)con->in_reply.tag, 1757 le32_to_cpu(con->in_reply.connect_seq), 1758 le32_to_cpu(con->in_reply.global_seq)); 1759 out: 1760 return ret; 1761 1762 } 1763 1764 /* 1765 * Verify the hello banner looks okay. 1766 */ 1767 static int verify_hello(struct ceph_connection *con) 1768 { 1769 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1770 pr_err("connect to %s got bad banner\n", 1771 ceph_pr_addr(&con->peer_addr.in_addr)); 1772 con->error_msg = "protocol error, bad banner"; 1773 return -1; 1774 } 1775 return 0; 1776 } 1777 1778 static bool addr_is_blank(struct sockaddr_storage *ss) 1779 { 1780 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1781 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1782 1783 switch (ss->ss_family) { 1784 case AF_INET: 1785 return addr->s_addr == htonl(INADDR_ANY); 1786 case AF_INET6: 1787 return ipv6_addr_any(addr6); 1788 default: 1789 return true; 1790 } 1791 } 1792 1793 static int addr_port(struct sockaddr_storage *ss) 1794 { 1795 switch (ss->ss_family) { 1796 case AF_INET: 1797 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1798 case AF_INET6: 1799 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1800 } 1801 return 0; 1802 } 1803 1804 static void addr_set_port(struct sockaddr_storage *ss, int p) 1805 { 1806 switch (ss->ss_family) { 1807 case AF_INET: 1808 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1809 break; 1810 case AF_INET6: 1811 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1812 break; 1813 } 1814 } 1815 1816 /* 1817 * Unlike other *_pton function semantics, zero indicates success. 1818 */ 1819 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1820 char delim, const char **ipend) 1821 { 1822 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1823 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1824 1825 memset(ss, 0, sizeof(*ss)); 1826 1827 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1828 ss->ss_family = AF_INET; 1829 return 0; 1830 } 1831 1832 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1833 ss->ss_family = AF_INET6; 1834 return 0; 1835 } 1836 1837 return -EINVAL; 1838 } 1839 1840 /* 1841 * Extract hostname string and resolve using kernel DNS facility. 1842 */ 1843 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1844 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1845 struct sockaddr_storage *ss, char delim, const char **ipend) 1846 { 1847 const char *end, *delim_p; 1848 char *colon_p, *ip_addr = NULL; 1849 int ip_len, ret; 1850 1851 /* 1852 * The end of the hostname occurs immediately preceding the delimiter or 1853 * the port marker (':') where the delimiter takes precedence. 1854 */ 1855 delim_p = memchr(name, delim, namelen); 1856 colon_p = memchr(name, ':', namelen); 1857 1858 if (delim_p && colon_p) 1859 end = delim_p < colon_p ? delim_p : colon_p; 1860 else if (!delim_p && colon_p) 1861 end = colon_p; 1862 else { 1863 end = delim_p; 1864 if (!end) /* case: hostname:/ */ 1865 end = name + namelen; 1866 } 1867 1868 if (end <= name) 1869 return -EINVAL; 1870 1871 /* do dns_resolve upcall */ 1872 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1873 if (ip_len > 0) 1874 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1875 else 1876 ret = -ESRCH; 1877 1878 kfree(ip_addr); 1879 1880 *ipend = end; 1881 1882 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1883 ret, ret ? "failed" : ceph_pr_addr(ss)); 1884 1885 return ret; 1886 } 1887 #else 1888 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1889 struct sockaddr_storage *ss, char delim, const char **ipend) 1890 { 1891 return -EINVAL; 1892 } 1893 #endif 1894 1895 /* 1896 * Parse a server name (IP or hostname). If a valid IP address is not found 1897 * then try to extract a hostname to resolve using userspace DNS upcall. 1898 */ 1899 static int ceph_parse_server_name(const char *name, size_t namelen, 1900 struct sockaddr_storage *ss, char delim, const char **ipend) 1901 { 1902 int ret; 1903 1904 ret = ceph_pton(name, namelen, ss, delim, ipend); 1905 if (ret) 1906 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1907 1908 return ret; 1909 } 1910 1911 /* 1912 * Parse an ip[:port] list into an addr array. Use the default 1913 * monitor port if a port isn't specified. 1914 */ 1915 int ceph_parse_ips(const char *c, const char *end, 1916 struct ceph_entity_addr *addr, 1917 int max_count, int *count) 1918 { 1919 int i, ret = -EINVAL; 1920 const char *p = c; 1921 1922 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1923 for (i = 0; i < max_count; i++) { 1924 const char *ipend; 1925 struct sockaddr_storage *ss = &addr[i].in_addr; 1926 int port; 1927 char delim = ','; 1928 1929 if (*p == '[') { 1930 delim = ']'; 1931 p++; 1932 } 1933 1934 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1935 if (ret) 1936 goto bad; 1937 ret = -EINVAL; 1938 1939 p = ipend; 1940 1941 if (delim == ']') { 1942 if (*p != ']') { 1943 dout("missing matching ']'\n"); 1944 goto bad; 1945 } 1946 p++; 1947 } 1948 1949 /* port? */ 1950 if (p < end && *p == ':') { 1951 port = 0; 1952 p++; 1953 while (p < end && *p >= '0' && *p <= '9') { 1954 port = (port * 10) + (*p - '0'); 1955 p++; 1956 } 1957 if (port == 0) 1958 port = CEPH_MON_PORT; 1959 else if (port > 65535) 1960 goto bad; 1961 } else { 1962 port = CEPH_MON_PORT; 1963 } 1964 1965 addr_set_port(ss, port); 1966 1967 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1968 1969 if (p == end) 1970 break; 1971 if (*p != ',') 1972 goto bad; 1973 p++; 1974 } 1975 1976 if (p != end) 1977 goto bad; 1978 1979 if (count) 1980 *count = i + 1; 1981 return 0; 1982 1983 bad: 1984 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1985 return ret; 1986 } 1987 EXPORT_SYMBOL(ceph_parse_ips); 1988 1989 static int process_banner(struct ceph_connection *con) 1990 { 1991 dout("process_banner on %p\n", con); 1992 1993 if (verify_hello(con) < 0) 1994 return -1; 1995 1996 ceph_decode_addr(&con->actual_peer_addr); 1997 ceph_decode_addr(&con->peer_addr_for_me); 1998 1999 /* 2000 * Make sure the other end is who we wanted. note that the other 2001 * end may not yet know their ip address, so if it's 0.0.0.0, give 2002 * them the benefit of the doubt. 2003 */ 2004 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2005 sizeof(con->peer_addr)) != 0 && 2006 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 2007 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2008 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2009 ceph_pr_addr(&con->peer_addr.in_addr), 2010 (int)le32_to_cpu(con->peer_addr.nonce), 2011 ceph_pr_addr(&con->actual_peer_addr.in_addr), 2012 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2013 con->error_msg = "wrong peer at address"; 2014 return -1; 2015 } 2016 2017 /* 2018 * did we learn our address? 2019 */ 2020 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 2021 int port = addr_port(&con->msgr->inst.addr.in_addr); 2022 2023 memcpy(&con->msgr->inst.addr.in_addr, 2024 &con->peer_addr_for_me.in_addr, 2025 sizeof(con->peer_addr_for_me.in_addr)); 2026 addr_set_port(&con->msgr->inst.addr.in_addr, port); 2027 encode_my_addr(con->msgr); 2028 dout("process_banner learned my addr is %s\n", 2029 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2030 } 2031 2032 return 0; 2033 } 2034 2035 static int process_connect(struct ceph_connection *con) 2036 { 2037 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2038 u64 req_feat = from_msgr(con->msgr)->required_features; 2039 u64 server_feat = le64_to_cpu(con->in_reply.features); 2040 int ret; 2041 2042 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2043 2044 if (con->auth_reply_buf) { 2045 /* 2046 * Any connection that defines ->get_authorizer() 2047 * should also define ->verify_authorizer_reply(). 2048 * See get_connect_authorizer(). 2049 */ 2050 ret = con->ops->verify_authorizer_reply(con); 2051 if (ret < 0) { 2052 con->error_msg = "bad authorize reply"; 2053 return ret; 2054 } 2055 } 2056 2057 switch (con->in_reply.tag) { 2058 case CEPH_MSGR_TAG_FEATURES: 2059 pr_err("%s%lld %s feature set mismatch," 2060 " my %llx < server's %llx, missing %llx\n", 2061 ENTITY_NAME(con->peer_name), 2062 ceph_pr_addr(&con->peer_addr.in_addr), 2063 sup_feat, server_feat, server_feat & ~sup_feat); 2064 con->error_msg = "missing required protocol features"; 2065 reset_connection(con); 2066 return -1; 2067 2068 case CEPH_MSGR_TAG_BADPROTOVER: 2069 pr_err("%s%lld %s protocol version mismatch," 2070 " my %d != server's %d\n", 2071 ENTITY_NAME(con->peer_name), 2072 ceph_pr_addr(&con->peer_addr.in_addr), 2073 le32_to_cpu(con->out_connect.protocol_version), 2074 le32_to_cpu(con->in_reply.protocol_version)); 2075 con->error_msg = "protocol version mismatch"; 2076 reset_connection(con); 2077 return -1; 2078 2079 case CEPH_MSGR_TAG_BADAUTHORIZER: 2080 con->auth_retry++; 2081 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2082 con->auth_retry); 2083 if (con->auth_retry == 2) { 2084 con->error_msg = "connect authorization failure"; 2085 return -1; 2086 } 2087 con_out_kvec_reset(con); 2088 ret = prepare_write_connect(con); 2089 if (ret < 0) 2090 return ret; 2091 prepare_read_connect(con); 2092 break; 2093 2094 case CEPH_MSGR_TAG_RESETSESSION: 2095 /* 2096 * If we connected with a large connect_seq but the peer 2097 * has no record of a session with us (no connection, or 2098 * connect_seq == 0), they will send RESETSESION to indicate 2099 * that they must have reset their session, and may have 2100 * dropped messages. 2101 */ 2102 dout("process_connect got RESET peer seq %u\n", 2103 le32_to_cpu(con->in_reply.connect_seq)); 2104 pr_err("%s%lld %s connection reset\n", 2105 ENTITY_NAME(con->peer_name), 2106 ceph_pr_addr(&con->peer_addr.in_addr)); 2107 reset_connection(con); 2108 con_out_kvec_reset(con); 2109 ret = prepare_write_connect(con); 2110 if (ret < 0) 2111 return ret; 2112 prepare_read_connect(con); 2113 2114 /* Tell ceph about it. */ 2115 mutex_unlock(&con->mutex); 2116 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2117 if (con->ops->peer_reset) 2118 con->ops->peer_reset(con); 2119 mutex_lock(&con->mutex); 2120 if (con->state != CON_STATE_NEGOTIATING) 2121 return -EAGAIN; 2122 break; 2123 2124 case CEPH_MSGR_TAG_RETRY_SESSION: 2125 /* 2126 * If we sent a smaller connect_seq than the peer has, try 2127 * again with a larger value. 2128 */ 2129 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2130 le32_to_cpu(con->out_connect.connect_seq), 2131 le32_to_cpu(con->in_reply.connect_seq)); 2132 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2133 con_out_kvec_reset(con); 2134 ret = prepare_write_connect(con); 2135 if (ret < 0) 2136 return ret; 2137 prepare_read_connect(con); 2138 break; 2139 2140 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2141 /* 2142 * If we sent a smaller global_seq than the peer has, try 2143 * again with a larger value. 2144 */ 2145 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2146 con->peer_global_seq, 2147 le32_to_cpu(con->in_reply.global_seq)); 2148 get_global_seq(con->msgr, 2149 le32_to_cpu(con->in_reply.global_seq)); 2150 con_out_kvec_reset(con); 2151 ret = prepare_write_connect(con); 2152 if (ret < 0) 2153 return ret; 2154 prepare_read_connect(con); 2155 break; 2156 2157 case CEPH_MSGR_TAG_SEQ: 2158 case CEPH_MSGR_TAG_READY: 2159 if (req_feat & ~server_feat) { 2160 pr_err("%s%lld %s protocol feature mismatch," 2161 " my required %llx > server's %llx, need %llx\n", 2162 ENTITY_NAME(con->peer_name), 2163 ceph_pr_addr(&con->peer_addr.in_addr), 2164 req_feat, server_feat, req_feat & ~server_feat); 2165 con->error_msg = "missing required protocol features"; 2166 reset_connection(con); 2167 return -1; 2168 } 2169 2170 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2171 con->state = CON_STATE_OPEN; 2172 con->auth_retry = 0; /* we authenticated; clear flag */ 2173 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2174 con->connect_seq++; 2175 con->peer_features = server_feat; 2176 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2177 con->peer_global_seq, 2178 le32_to_cpu(con->in_reply.connect_seq), 2179 con->connect_seq); 2180 WARN_ON(con->connect_seq != 2181 le32_to_cpu(con->in_reply.connect_seq)); 2182 2183 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2184 con_flag_set(con, CON_FLAG_LOSSYTX); 2185 2186 con->delay = 0; /* reset backoff memory */ 2187 2188 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2189 prepare_write_seq(con); 2190 prepare_read_seq(con); 2191 } else { 2192 prepare_read_tag(con); 2193 } 2194 break; 2195 2196 case CEPH_MSGR_TAG_WAIT: 2197 /* 2198 * If there is a connection race (we are opening 2199 * connections to each other), one of us may just have 2200 * to WAIT. This shouldn't happen if we are the 2201 * client. 2202 */ 2203 con->error_msg = "protocol error, got WAIT as client"; 2204 return -1; 2205 2206 default: 2207 con->error_msg = "protocol error, garbage tag during connect"; 2208 return -1; 2209 } 2210 return 0; 2211 } 2212 2213 2214 /* 2215 * read (part of) an ack 2216 */ 2217 static int read_partial_ack(struct ceph_connection *con) 2218 { 2219 int size = sizeof (con->in_temp_ack); 2220 int end = size; 2221 2222 return read_partial(con, end, size, &con->in_temp_ack); 2223 } 2224 2225 /* 2226 * We can finally discard anything that's been acked. 2227 */ 2228 static void process_ack(struct ceph_connection *con) 2229 { 2230 struct ceph_msg *m; 2231 u64 ack = le64_to_cpu(con->in_temp_ack); 2232 u64 seq; 2233 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2234 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2235 2236 /* 2237 * In the reconnect case, con_fault() has requeued messages 2238 * in out_sent. We should cleanup old messages according to 2239 * the reconnect seq. 2240 */ 2241 while (!list_empty(list)) { 2242 m = list_first_entry(list, struct ceph_msg, list_head); 2243 if (reconnect && m->needs_out_seq) 2244 break; 2245 seq = le64_to_cpu(m->hdr.seq); 2246 if (seq > ack) 2247 break; 2248 dout("got ack for seq %llu type %d at %p\n", seq, 2249 le16_to_cpu(m->hdr.type), m); 2250 m->ack_stamp = jiffies; 2251 ceph_msg_remove(m); 2252 } 2253 2254 prepare_read_tag(con); 2255 } 2256 2257 2258 static int read_partial_message_section(struct ceph_connection *con, 2259 struct kvec *section, 2260 unsigned int sec_len, u32 *crc) 2261 { 2262 int ret, left; 2263 2264 BUG_ON(!section); 2265 2266 while (section->iov_len < sec_len) { 2267 BUG_ON(section->iov_base == NULL); 2268 left = sec_len - section->iov_len; 2269 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2270 section->iov_len, left); 2271 if (ret <= 0) 2272 return ret; 2273 section->iov_len += ret; 2274 } 2275 if (section->iov_len == sec_len) 2276 *crc = crc32c(0, section->iov_base, section->iov_len); 2277 2278 return 1; 2279 } 2280 2281 static int read_partial_msg_data(struct ceph_connection *con) 2282 { 2283 struct ceph_msg *msg = con->in_msg; 2284 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2285 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2286 struct page *page; 2287 size_t page_offset; 2288 size_t length; 2289 u32 crc = 0; 2290 int ret; 2291 2292 BUG_ON(!msg); 2293 if (list_empty(&msg->data)) 2294 return -EIO; 2295 2296 if (do_datacrc) 2297 crc = con->in_data_crc; 2298 while (cursor->resid) { 2299 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2300 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2301 if (ret <= 0) { 2302 if (do_datacrc) 2303 con->in_data_crc = crc; 2304 2305 return ret; 2306 } 2307 2308 if (do_datacrc) 2309 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2310 ceph_msg_data_advance(cursor, (size_t)ret); 2311 } 2312 if (do_datacrc) 2313 con->in_data_crc = crc; 2314 2315 return 1; /* must return > 0 to indicate success */ 2316 } 2317 2318 /* 2319 * read (part of) a message. 2320 */ 2321 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2322 2323 static int read_partial_message(struct ceph_connection *con) 2324 { 2325 struct ceph_msg *m = con->in_msg; 2326 int size; 2327 int end; 2328 int ret; 2329 unsigned int front_len, middle_len, data_len; 2330 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2331 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2332 u64 seq; 2333 u32 crc; 2334 2335 dout("read_partial_message con %p msg %p\n", con, m); 2336 2337 /* header */ 2338 size = sizeof (con->in_hdr); 2339 end = size; 2340 ret = read_partial(con, end, size, &con->in_hdr); 2341 if (ret <= 0) 2342 return ret; 2343 2344 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2345 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2346 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2347 crc, con->in_hdr.crc); 2348 return -EBADMSG; 2349 } 2350 2351 front_len = le32_to_cpu(con->in_hdr.front_len); 2352 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2353 return -EIO; 2354 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2355 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2356 return -EIO; 2357 data_len = le32_to_cpu(con->in_hdr.data_len); 2358 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2359 return -EIO; 2360 2361 /* verify seq# */ 2362 seq = le64_to_cpu(con->in_hdr.seq); 2363 if ((s64)seq - (s64)con->in_seq < 1) { 2364 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2365 ENTITY_NAME(con->peer_name), 2366 ceph_pr_addr(&con->peer_addr.in_addr), 2367 seq, con->in_seq + 1); 2368 con->in_base_pos = -front_len - middle_len - data_len - 2369 sizeof_footer(con); 2370 con->in_tag = CEPH_MSGR_TAG_READY; 2371 return 1; 2372 } else if ((s64)seq - (s64)con->in_seq > 1) { 2373 pr_err("read_partial_message bad seq %lld expected %lld\n", 2374 seq, con->in_seq + 1); 2375 con->error_msg = "bad message sequence # for incoming message"; 2376 return -EBADE; 2377 } 2378 2379 /* allocate message? */ 2380 if (!con->in_msg) { 2381 int skip = 0; 2382 2383 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2384 front_len, data_len); 2385 ret = ceph_con_in_msg_alloc(con, &skip); 2386 if (ret < 0) 2387 return ret; 2388 2389 BUG_ON(!con->in_msg ^ skip); 2390 if (skip) { 2391 /* skip this message */ 2392 dout("alloc_msg said skip message\n"); 2393 con->in_base_pos = -front_len - middle_len - data_len - 2394 sizeof_footer(con); 2395 con->in_tag = CEPH_MSGR_TAG_READY; 2396 con->in_seq++; 2397 return 1; 2398 } 2399 2400 BUG_ON(!con->in_msg); 2401 BUG_ON(con->in_msg->con != con); 2402 m = con->in_msg; 2403 m->front.iov_len = 0; /* haven't read it yet */ 2404 if (m->middle) 2405 m->middle->vec.iov_len = 0; 2406 2407 /* prepare for data payload, if any */ 2408 2409 if (data_len) 2410 prepare_message_data(con->in_msg, data_len); 2411 } 2412 2413 /* front */ 2414 ret = read_partial_message_section(con, &m->front, front_len, 2415 &con->in_front_crc); 2416 if (ret <= 0) 2417 return ret; 2418 2419 /* middle */ 2420 if (m->middle) { 2421 ret = read_partial_message_section(con, &m->middle->vec, 2422 middle_len, 2423 &con->in_middle_crc); 2424 if (ret <= 0) 2425 return ret; 2426 } 2427 2428 /* (page) data */ 2429 if (data_len) { 2430 ret = read_partial_msg_data(con); 2431 if (ret <= 0) 2432 return ret; 2433 } 2434 2435 /* footer */ 2436 size = sizeof_footer(con); 2437 end += size; 2438 ret = read_partial(con, end, size, &m->footer); 2439 if (ret <= 0) 2440 return ret; 2441 2442 if (!need_sign) { 2443 m->footer.flags = m->old_footer.flags; 2444 m->footer.sig = 0; 2445 } 2446 2447 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2448 m, front_len, m->footer.front_crc, middle_len, 2449 m->footer.middle_crc, data_len, m->footer.data_crc); 2450 2451 /* crc ok? */ 2452 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2453 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2454 m, con->in_front_crc, m->footer.front_crc); 2455 return -EBADMSG; 2456 } 2457 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2458 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2459 m, con->in_middle_crc, m->footer.middle_crc); 2460 return -EBADMSG; 2461 } 2462 if (do_datacrc && 2463 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2464 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2465 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2466 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2467 return -EBADMSG; 2468 } 2469 2470 if (need_sign && con->ops->check_message_signature && 2471 con->ops->check_message_signature(m)) { 2472 pr_err("read_partial_message %p signature check failed\n", m); 2473 return -EBADMSG; 2474 } 2475 2476 return 1; /* done! */ 2477 } 2478 2479 /* 2480 * Process message. This happens in the worker thread. The callback should 2481 * be careful not to do anything that waits on other incoming messages or it 2482 * may deadlock. 2483 */ 2484 static void process_message(struct ceph_connection *con) 2485 { 2486 struct ceph_msg *msg = con->in_msg; 2487 2488 BUG_ON(con->in_msg->con != con); 2489 con->in_msg = NULL; 2490 2491 /* if first message, set peer_name */ 2492 if (con->peer_name.type == 0) 2493 con->peer_name = msg->hdr.src; 2494 2495 con->in_seq++; 2496 mutex_unlock(&con->mutex); 2497 2498 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2499 msg, le64_to_cpu(msg->hdr.seq), 2500 ENTITY_NAME(msg->hdr.src), 2501 le16_to_cpu(msg->hdr.type), 2502 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2503 le32_to_cpu(msg->hdr.front_len), 2504 le32_to_cpu(msg->hdr.data_len), 2505 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2506 con->ops->dispatch(con, msg); 2507 2508 mutex_lock(&con->mutex); 2509 } 2510 2511 static int read_keepalive_ack(struct ceph_connection *con) 2512 { 2513 struct ceph_timespec ceph_ts; 2514 size_t size = sizeof(ceph_ts); 2515 int ret = read_partial(con, size, size, &ceph_ts); 2516 if (ret <= 0) 2517 return ret; 2518 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts); 2519 prepare_read_tag(con); 2520 return 1; 2521 } 2522 2523 /* 2524 * Write something to the socket. Called in a worker thread when the 2525 * socket appears to be writeable and we have something ready to send. 2526 */ 2527 static int try_write(struct ceph_connection *con) 2528 { 2529 int ret = 1; 2530 2531 dout("try_write start %p state %lu\n", con, con->state); 2532 2533 more: 2534 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2535 2536 /* open the socket first? */ 2537 if (con->state == CON_STATE_PREOPEN) { 2538 BUG_ON(con->sock); 2539 con->state = CON_STATE_CONNECTING; 2540 2541 con_out_kvec_reset(con); 2542 prepare_write_banner(con); 2543 prepare_read_banner(con); 2544 2545 BUG_ON(con->in_msg); 2546 con->in_tag = CEPH_MSGR_TAG_READY; 2547 dout("try_write initiating connect on %p new state %lu\n", 2548 con, con->state); 2549 ret = ceph_tcp_connect(con); 2550 if (ret < 0) { 2551 con->error_msg = "connect error"; 2552 goto out; 2553 } 2554 } 2555 2556 more_kvec: 2557 /* kvec data queued? */ 2558 if (con->out_kvec_left) { 2559 ret = write_partial_kvec(con); 2560 if (ret <= 0) 2561 goto out; 2562 } 2563 if (con->out_skip) { 2564 ret = write_partial_skip(con); 2565 if (ret <= 0) 2566 goto out; 2567 } 2568 2569 /* msg pages? */ 2570 if (con->out_msg) { 2571 if (con->out_msg_done) { 2572 ceph_msg_put(con->out_msg); 2573 con->out_msg = NULL; /* we're done with this one */ 2574 goto do_next; 2575 } 2576 2577 ret = write_partial_message_data(con); 2578 if (ret == 1) 2579 goto more_kvec; /* we need to send the footer, too! */ 2580 if (ret == 0) 2581 goto out; 2582 if (ret < 0) { 2583 dout("try_write write_partial_message_data err %d\n", 2584 ret); 2585 goto out; 2586 } 2587 } 2588 2589 do_next: 2590 if (con->state == CON_STATE_OPEN) { 2591 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2592 prepare_write_keepalive(con); 2593 goto more; 2594 } 2595 /* is anything else pending? */ 2596 if (!list_empty(&con->out_queue)) { 2597 prepare_write_message(con); 2598 goto more; 2599 } 2600 if (con->in_seq > con->in_seq_acked) { 2601 prepare_write_ack(con); 2602 goto more; 2603 } 2604 } 2605 2606 /* Nothing to do! */ 2607 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2608 dout("try_write nothing else to write.\n"); 2609 ret = 0; 2610 out: 2611 dout("try_write done on %p ret %d\n", con, ret); 2612 return ret; 2613 } 2614 2615 2616 2617 /* 2618 * Read what we can from the socket. 2619 */ 2620 static int try_read(struct ceph_connection *con) 2621 { 2622 int ret = -1; 2623 2624 more: 2625 dout("try_read start on %p state %lu\n", con, con->state); 2626 if (con->state != CON_STATE_CONNECTING && 2627 con->state != CON_STATE_NEGOTIATING && 2628 con->state != CON_STATE_OPEN) 2629 return 0; 2630 2631 BUG_ON(!con->sock); 2632 2633 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2634 con->in_base_pos); 2635 2636 if (con->state == CON_STATE_CONNECTING) { 2637 dout("try_read connecting\n"); 2638 ret = read_partial_banner(con); 2639 if (ret <= 0) 2640 goto out; 2641 ret = process_banner(con); 2642 if (ret < 0) 2643 goto out; 2644 2645 con->state = CON_STATE_NEGOTIATING; 2646 2647 /* 2648 * Received banner is good, exchange connection info. 2649 * Do not reset out_kvec, as sending our banner raced 2650 * with receiving peer banner after connect completed. 2651 */ 2652 ret = prepare_write_connect(con); 2653 if (ret < 0) 2654 goto out; 2655 prepare_read_connect(con); 2656 2657 /* Send connection info before awaiting response */ 2658 goto out; 2659 } 2660 2661 if (con->state == CON_STATE_NEGOTIATING) { 2662 dout("try_read negotiating\n"); 2663 ret = read_partial_connect(con); 2664 if (ret <= 0) 2665 goto out; 2666 ret = process_connect(con); 2667 if (ret < 0) 2668 goto out; 2669 goto more; 2670 } 2671 2672 WARN_ON(con->state != CON_STATE_OPEN); 2673 2674 if (con->in_base_pos < 0) { 2675 /* 2676 * skipping + discarding content. 2677 * 2678 * FIXME: there must be a better way to do this! 2679 */ 2680 static char buf[SKIP_BUF_SIZE]; 2681 int skip = min((int) sizeof (buf), -con->in_base_pos); 2682 2683 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2684 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2685 if (ret <= 0) 2686 goto out; 2687 con->in_base_pos += ret; 2688 if (con->in_base_pos) 2689 goto more; 2690 } 2691 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2692 /* 2693 * what's next? 2694 */ 2695 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2696 if (ret <= 0) 2697 goto out; 2698 dout("try_read got tag %d\n", (int)con->in_tag); 2699 switch (con->in_tag) { 2700 case CEPH_MSGR_TAG_MSG: 2701 prepare_read_message(con); 2702 break; 2703 case CEPH_MSGR_TAG_ACK: 2704 prepare_read_ack(con); 2705 break; 2706 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2707 prepare_read_keepalive_ack(con); 2708 break; 2709 case CEPH_MSGR_TAG_CLOSE: 2710 con_close_socket(con); 2711 con->state = CON_STATE_CLOSED; 2712 goto out; 2713 default: 2714 goto bad_tag; 2715 } 2716 } 2717 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2718 ret = read_partial_message(con); 2719 if (ret <= 0) { 2720 switch (ret) { 2721 case -EBADMSG: 2722 con->error_msg = "bad crc/signature"; 2723 /* fall through */ 2724 case -EBADE: 2725 ret = -EIO; 2726 break; 2727 case -EIO: 2728 con->error_msg = "io error"; 2729 break; 2730 } 2731 goto out; 2732 } 2733 if (con->in_tag == CEPH_MSGR_TAG_READY) 2734 goto more; 2735 process_message(con); 2736 if (con->state == CON_STATE_OPEN) 2737 prepare_read_tag(con); 2738 goto more; 2739 } 2740 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2741 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2742 /* 2743 * the final handshake seq exchange is semantically 2744 * equivalent to an ACK 2745 */ 2746 ret = read_partial_ack(con); 2747 if (ret <= 0) 2748 goto out; 2749 process_ack(con); 2750 goto more; 2751 } 2752 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2753 ret = read_keepalive_ack(con); 2754 if (ret <= 0) 2755 goto out; 2756 goto more; 2757 } 2758 2759 out: 2760 dout("try_read done on %p ret %d\n", con, ret); 2761 return ret; 2762 2763 bad_tag: 2764 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2765 con->error_msg = "protocol error, garbage tag"; 2766 ret = -1; 2767 goto out; 2768 } 2769 2770 2771 /* 2772 * Atomically queue work on a connection after the specified delay. 2773 * Bump @con reference to avoid races with connection teardown. 2774 * Returns 0 if work was queued, or an error code otherwise. 2775 */ 2776 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2777 { 2778 if (!con->ops->get(con)) { 2779 dout("%s %p ref count 0\n", __func__, con); 2780 return -ENOENT; 2781 } 2782 2783 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2784 dout("%s %p - already queued\n", __func__, con); 2785 con->ops->put(con); 2786 return -EBUSY; 2787 } 2788 2789 dout("%s %p %lu\n", __func__, con, delay); 2790 return 0; 2791 } 2792 2793 static void queue_con(struct ceph_connection *con) 2794 { 2795 (void) queue_con_delay(con, 0); 2796 } 2797 2798 static void cancel_con(struct ceph_connection *con) 2799 { 2800 if (cancel_delayed_work(&con->work)) { 2801 dout("%s %p\n", __func__, con); 2802 con->ops->put(con); 2803 } 2804 } 2805 2806 static bool con_sock_closed(struct ceph_connection *con) 2807 { 2808 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2809 return false; 2810 2811 #define CASE(x) \ 2812 case CON_STATE_ ## x: \ 2813 con->error_msg = "socket closed (con state " #x ")"; \ 2814 break; 2815 2816 switch (con->state) { 2817 CASE(CLOSED); 2818 CASE(PREOPEN); 2819 CASE(CONNECTING); 2820 CASE(NEGOTIATING); 2821 CASE(OPEN); 2822 CASE(STANDBY); 2823 default: 2824 pr_warn("%s con %p unrecognized state %lu\n", 2825 __func__, con, con->state); 2826 con->error_msg = "unrecognized con state"; 2827 BUG(); 2828 break; 2829 } 2830 #undef CASE 2831 2832 return true; 2833 } 2834 2835 static bool con_backoff(struct ceph_connection *con) 2836 { 2837 int ret; 2838 2839 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2840 return false; 2841 2842 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2843 if (ret) { 2844 dout("%s: con %p FAILED to back off %lu\n", __func__, 2845 con, con->delay); 2846 BUG_ON(ret == -ENOENT); 2847 con_flag_set(con, CON_FLAG_BACKOFF); 2848 } 2849 2850 return true; 2851 } 2852 2853 /* Finish fault handling; con->mutex must *not* be held here */ 2854 2855 static void con_fault_finish(struct ceph_connection *con) 2856 { 2857 dout("%s %p\n", __func__, con); 2858 2859 /* 2860 * in case we faulted due to authentication, invalidate our 2861 * current tickets so that we can get new ones. 2862 */ 2863 if (con->auth_retry) { 2864 dout("auth_retry %d, invalidating\n", con->auth_retry); 2865 if (con->ops->invalidate_authorizer) 2866 con->ops->invalidate_authorizer(con); 2867 con->auth_retry = 0; 2868 } 2869 2870 if (con->ops->fault) 2871 con->ops->fault(con); 2872 } 2873 2874 /* 2875 * Do some work on a connection. Drop a connection ref when we're done. 2876 */ 2877 static void ceph_con_workfn(struct work_struct *work) 2878 { 2879 struct ceph_connection *con = container_of(work, struct ceph_connection, 2880 work.work); 2881 bool fault; 2882 2883 mutex_lock(&con->mutex); 2884 while (true) { 2885 int ret; 2886 2887 if ((fault = con_sock_closed(con))) { 2888 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2889 break; 2890 } 2891 if (con_backoff(con)) { 2892 dout("%s: con %p BACKOFF\n", __func__, con); 2893 break; 2894 } 2895 if (con->state == CON_STATE_STANDBY) { 2896 dout("%s: con %p STANDBY\n", __func__, con); 2897 break; 2898 } 2899 if (con->state == CON_STATE_CLOSED) { 2900 dout("%s: con %p CLOSED\n", __func__, con); 2901 BUG_ON(con->sock); 2902 break; 2903 } 2904 if (con->state == CON_STATE_PREOPEN) { 2905 dout("%s: con %p PREOPEN\n", __func__, con); 2906 BUG_ON(con->sock); 2907 } 2908 2909 ret = try_read(con); 2910 if (ret < 0) { 2911 if (ret == -EAGAIN) 2912 continue; 2913 if (!con->error_msg) 2914 con->error_msg = "socket error on read"; 2915 fault = true; 2916 break; 2917 } 2918 2919 ret = try_write(con); 2920 if (ret < 0) { 2921 if (ret == -EAGAIN) 2922 continue; 2923 if (!con->error_msg) 2924 con->error_msg = "socket error on write"; 2925 fault = true; 2926 } 2927 2928 break; /* If we make it to here, we're done */ 2929 } 2930 if (fault) 2931 con_fault(con); 2932 mutex_unlock(&con->mutex); 2933 2934 if (fault) 2935 con_fault_finish(con); 2936 2937 con->ops->put(con); 2938 } 2939 2940 /* 2941 * Generic error/fault handler. A retry mechanism is used with 2942 * exponential backoff 2943 */ 2944 static void con_fault(struct ceph_connection *con) 2945 { 2946 dout("fault %p state %lu to peer %s\n", 2947 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2948 2949 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2950 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2951 con->error_msg = NULL; 2952 2953 WARN_ON(con->state != CON_STATE_CONNECTING && 2954 con->state != CON_STATE_NEGOTIATING && 2955 con->state != CON_STATE_OPEN); 2956 2957 con_close_socket(con); 2958 2959 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2960 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2961 con->state = CON_STATE_CLOSED; 2962 return; 2963 } 2964 2965 if (con->in_msg) { 2966 BUG_ON(con->in_msg->con != con); 2967 ceph_msg_put(con->in_msg); 2968 con->in_msg = NULL; 2969 } 2970 2971 /* Requeue anything that hasn't been acked */ 2972 list_splice_init(&con->out_sent, &con->out_queue); 2973 2974 /* If there are no messages queued or keepalive pending, place 2975 * the connection in a STANDBY state */ 2976 if (list_empty(&con->out_queue) && 2977 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2978 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2979 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2980 con->state = CON_STATE_STANDBY; 2981 } else { 2982 /* retry after a delay. */ 2983 con->state = CON_STATE_PREOPEN; 2984 if (con->delay == 0) 2985 con->delay = BASE_DELAY_INTERVAL; 2986 else if (con->delay < MAX_DELAY_INTERVAL) 2987 con->delay *= 2; 2988 con_flag_set(con, CON_FLAG_BACKOFF); 2989 queue_con(con); 2990 } 2991 } 2992 2993 2994 2995 /* 2996 * initialize a new messenger instance 2997 */ 2998 void ceph_messenger_init(struct ceph_messenger *msgr, 2999 struct ceph_entity_addr *myaddr) 3000 { 3001 spin_lock_init(&msgr->global_seq_lock); 3002 3003 if (myaddr) 3004 msgr->inst.addr = *myaddr; 3005 3006 /* select a random nonce */ 3007 msgr->inst.addr.type = 0; 3008 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3009 encode_my_addr(msgr); 3010 3011 atomic_set(&msgr->stopping, 0); 3012 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3013 3014 dout("%s %p\n", __func__, msgr); 3015 } 3016 EXPORT_SYMBOL(ceph_messenger_init); 3017 3018 void ceph_messenger_fini(struct ceph_messenger *msgr) 3019 { 3020 put_net(read_pnet(&msgr->net)); 3021 } 3022 EXPORT_SYMBOL(ceph_messenger_fini); 3023 3024 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3025 { 3026 if (msg->con) 3027 msg->con->ops->put(msg->con); 3028 3029 msg->con = con ? con->ops->get(con) : NULL; 3030 BUG_ON(msg->con != con); 3031 } 3032 3033 static void clear_standby(struct ceph_connection *con) 3034 { 3035 /* come back from STANDBY? */ 3036 if (con->state == CON_STATE_STANDBY) { 3037 dout("clear_standby %p and ++connect_seq\n", con); 3038 con->state = CON_STATE_PREOPEN; 3039 con->connect_seq++; 3040 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3041 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3042 } 3043 } 3044 3045 /* 3046 * Queue up an outgoing message on the given connection. 3047 */ 3048 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3049 { 3050 /* set src+dst */ 3051 msg->hdr.src = con->msgr->inst.name; 3052 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3053 msg->needs_out_seq = true; 3054 3055 mutex_lock(&con->mutex); 3056 3057 if (con->state == CON_STATE_CLOSED) { 3058 dout("con_send %p closed, dropping %p\n", con, msg); 3059 ceph_msg_put(msg); 3060 mutex_unlock(&con->mutex); 3061 return; 3062 } 3063 3064 msg_con_set(msg, con); 3065 3066 BUG_ON(!list_empty(&msg->list_head)); 3067 list_add_tail(&msg->list_head, &con->out_queue); 3068 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3069 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3070 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3071 le32_to_cpu(msg->hdr.front_len), 3072 le32_to_cpu(msg->hdr.middle_len), 3073 le32_to_cpu(msg->hdr.data_len)); 3074 3075 clear_standby(con); 3076 mutex_unlock(&con->mutex); 3077 3078 /* if there wasn't anything waiting to send before, queue 3079 * new work */ 3080 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3081 queue_con(con); 3082 } 3083 EXPORT_SYMBOL(ceph_con_send); 3084 3085 /* 3086 * Revoke a message that was previously queued for send 3087 */ 3088 void ceph_msg_revoke(struct ceph_msg *msg) 3089 { 3090 struct ceph_connection *con = msg->con; 3091 3092 if (!con) { 3093 dout("%s msg %p null con\n", __func__, msg); 3094 return; /* Message not in our possession */ 3095 } 3096 3097 mutex_lock(&con->mutex); 3098 if (!list_empty(&msg->list_head)) { 3099 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3100 list_del_init(&msg->list_head); 3101 msg->hdr.seq = 0; 3102 3103 ceph_msg_put(msg); 3104 } 3105 if (con->out_msg == msg) { 3106 BUG_ON(con->out_skip); 3107 /* footer */ 3108 if (con->out_msg_done) { 3109 con->out_skip += con_out_kvec_skip(con); 3110 } else { 3111 BUG_ON(!msg->data_length); 3112 con->out_skip += sizeof_footer(con); 3113 } 3114 /* data, middle, front */ 3115 if (msg->data_length) 3116 con->out_skip += msg->cursor.total_resid; 3117 if (msg->middle) 3118 con->out_skip += con_out_kvec_skip(con); 3119 con->out_skip += con_out_kvec_skip(con); 3120 3121 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3122 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3123 msg->hdr.seq = 0; 3124 con->out_msg = NULL; 3125 ceph_msg_put(msg); 3126 } 3127 3128 mutex_unlock(&con->mutex); 3129 } 3130 3131 /* 3132 * Revoke a message that we may be reading data into 3133 */ 3134 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3135 { 3136 struct ceph_connection *con = msg->con; 3137 3138 if (!con) { 3139 dout("%s msg %p null con\n", __func__, msg); 3140 return; /* Message not in our possession */ 3141 } 3142 3143 mutex_lock(&con->mutex); 3144 if (con->in_msg == msg) { 3145 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3146 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3147 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3148 3149 /* skip rest of message */ 3150 dout("%s %p msg %p revoked\n", __func__, con, msg); 3151 con->in_base_pos = con->in_base_pos - 3152 sizeof(struct ceph_msg_header) - 3153 front_len - 3154 middle_len - 3155 data_len - 3156 sizeof(struct ceph_msg_footer); 3157 ceph_msg_put(con->in_msg); 3158 con->in_msg = NULL; 3159 con->in_tag = CEPH_MSGR_TAG_READY; 3160 con->in_seq++; 3161 } else { 3162 dout("%s %p in_msg %p msg %p no-op\n", 3163 __func__, con, con->in_msg, msg); 3164 } 3165 mutex_unlock(&con->mutex); 3166 } 3167 3168 /* 3169 * Queue a keepalive byte to ensure the tcp connection is alive. 3170 */ 3171 void ceph_con_keepalive(struct ceph_connection *con) 3172 { 3173 dout("con_keepalive %p\n", con); 3174 mutex_lock(&con->mutex); 3175 clear_standby(con); 3176 mutex_unlock(&con->mutex); 3177 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3178 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3179 queue_con(con); 3180 } 3181 EXPORT_SYMBOL(ceph_con_keepalive); 3182 3183 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3184 unsigned long interval) 3185 { 3186 if (interval > 0 && 3187 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3188 struct timespec now; 3189 struct timespec ts; 3190 ktime_get_real_ts(&now); 3191 jiffies_to_timespec(interval, &ts); 3192 ts = timespec_add(con->last_keepalive_ack, ts); 3193 return timespec_compare(&now, &ts) >= 0; 3194 } 3195 return false; 3196 } 3197 3198 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3199 { 3200 struct ceph_msg_data *data; 3201 3202 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3203 return NULL; 3204 3205 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3206 if (!data) 3207 return NULL; 3208 3209 data->type = type; 3210 INIT_LIST_HEAD(&data->links); 3211 3212 return data; 3213 } 3214 3215 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3216 { 3217 if (!data) 3218 return; 3219 3220 WARN_ON(!list_empty(&data->links)); 3221 if (data->type == CEPH_MSG_DATA_PAGELIST) 3222 ceph_pagelist_release(data->pagelist); 3223 kmem_cache_free(ceph_msg_data_cache, data); 3224 } 3225 3226 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3227 size_t length, size_t alignment) 3228 { 3229 struct ceph_msg_data *data; 3230 3231 BUG_ON(!pages); 3232 BUG_ON(!length); 3233 3234 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3235 BUG_ON(!data); 3236 data->pages = pages; 3237 data->length = length; 3238 data->alignment = alignment & ~PAGE_MASK; 3239 3240 list_add_tail(&data->links, &msg->data); 3241 msg->data_length += length; 3242 } 3243 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3244 3245 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3246 struct ceph_pagelist *pagelist) 3247 { 3248 struct ceph_msg_data *data; 3249 3250 BUG_ON(!pagelist); 3251 BUG_ON(!pagelist->length); 3252 3253 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3254 BUG_ON(!data); 3255 data->pagelist = pagelist; 3256 3257 list_add_tail(&data->links, &msg->data); 3258 msg->data_length += pagelist->length; 3259 } 3260 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3261 3262 #ifdef CONFIG_BLOCK 3263 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3264 size_t length) 3265 { 3266 struct ceph_msg_data *data; 3267 3268 BUG_ON(!bio); 3269 3270 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3271 BUG_ON(!data); 3272 data->bio = bio; 3273 data->bio_length = length; 3274 3275 list_add_tail(&data->links, &msg->data); 3276 msg->data_length += length; 3277 } 3278 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3279 #endif /* CONFIG_BLOCK */ 3280 3281 /* 3282 * construct a new message with given type, size 3283 * the new msg has a ref count of 1. 3284 */ 3285 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3286 bool can_fail) 3287 { 3288 struct ceph_msg *m; 3289 3290 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3291 if (m == NULL) 3292 goto out; 3293 3294 m->hdr.type = cpu_to_le16(type); 3295 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3296 m->hdr.front_len = cpu_to_le32(front_len); 3297 3298 INIT_LIST_HEAD(&m->list_head); 3299 kref_init(&m->kref); 3300 INIT_LIST_HEAD(&m->data); 3301 3302 /* front */ 3303 if (front_len) { 3304 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3305 if (m->front.iov_base == NULL) { 3306 dout("ceph_msg_new can't allocate %d bytes\n", 3307 front_len); 3308 goto out2; 3309 } 3310 } else { 3311 m->front.iov_base = NULL; 3312 } 3313 m->front_alloc_len = m->front.iov_len = front_len; 3314 3315 dout("ceph_msg_new %p front %d\n", m, front_len); 3316 return m; 3317 3318 out2: 3319 ceph_msg_put(m); 3320 out: 3321 if (!can_fail) { 3322 pr_err("msg_new can't create type %d front %d\n", type, 3323 front_len); 3324 WARN_ON(1); 3325 } else { 3326 dout("msg_new can't create type %d front %d\n", type, 3327 front_len); 3328 } 3329 return NULL; 3330 } 3331 EXPORT_SYMBOL(ceph_msg_new); 3332 3333 /* 3334 * Allocate "middle" portion of a message, if it is needed and wasn't 3335 * allocated by alloc_msg. This allows us to read a small fixed-size 3336 * per-type header in the front and then gracefully fail (i.e., 3337 * propagate the error to the caller based on info in the front) when 3338 * the middle is too large. 3339 */ 3340 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3341 { 3342 int type = le16_to_cpu(msg->hdr.type); 3343 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3344 3345 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3346 ceph_msg_type_name(type), middle_len); 3347 BUG_ON(!middle_len); 3348 BUG_ON(msg->middle); 3349 3350 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3351 if (!msg->middle) 3352 return -ENOMEM; 3353 return 0; 3354 } 3355 3356 /* 3357 * Allocate a message for receiving an incoming message on a 3358 * connection, and save the result in con->in_msg. Uses the 3359 * connection's private alloc_msg op if available. 3360 * 3361 * Returns 0 on success, or a negative error code. 3362 * 3363 * On success, if we set *skip = 1: 3364 * - the next message should be skipped and ignored. 3365 * - con->in_msg == NULL 3366 * or if we set *skip = 0: 3367 * - con->in_msg is non-null. 3368 * On error (ENOMEM, EAGAIN, ...), 3369 * - con->in_msg == NULL 3370 */ 3371 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3372 { 3373 struct ceph_msg_header *hdr = &con->in_hdr; 3374 int middle_len = le32_to_cpu(hdr->middle_len); 3375 struct ceph_msg *msg; 3376 int ret = 0; 3377 3378 BUG_ON(con->in_msg != NULL); 3379 BUG_ON(!con->ops->alloc_msg); 3380 3381 mutex_unlock(&con->mutex); 3382 msg = con->ops->alloc_msg(con, hdr, skip); 3383 mutex_lock(&con->mutex); 3384 if (con->state != CON_STATE_OPEN) { 3385 if (msg) 3386 ceph_msg_put(msg); 3387 return -EAGAIN; 3388 } 3389 if (msg) { 3390 BUG_ON(*skip); 3391 msg_con_set(msg, con); 3392 con->in_msg = msg; 3393 } else { 3394 /* 3395 * Null message pointer means either we should skip 3396 * this message or we couldn't allocate memory. The 3397 * former is not an error. 3398 */ 3399 if (*skip) 3400 return 0; 3401 3402 con->error_msg = "error allocating memory for incoming message"; 3403 return -ENOMEM; 3404 } 3405 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3406 3407 if (middle_len && !con->in_msg->middle) { 3408 ret = ceph_alloc_middle(con, con->in_msg); 3409 if (ret < 0) { 3410 ceph_msg_put(con->in_msg); 3411 con->in_msg = NULL; 3412 } 3413 } 3414 3415 return ret; 3416 } 3417 3418 3419 /* 3420 * Free a generically kmalloc'd message. 3421 */ 3422 static void ceph_msg_free(struct ceph_msg *m) 3423 { 3424 dout("%s %p\n", __func__, m); 3425 kvfree(m->front.iov_base); 3426 kmem_cache_free(ceph_msg_cache, m); 3427 } 3428 3429 static void ceph_msg_release(struct kref *kref) 3430 { 3431 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3432 struct ceph_msg_data *data, *next; 3433 3434 dout("%s %p\n", __func__, m); 3435 WARN_ON(!list_empty(&m->list_head)); 3436 3437 msg_con_set(m, NULL); 3438 3439 /* drop middle, data, if any */ 3440 if (m->middle) { 3441 ceph_buffer_put(m->middle); 3442 m->middle = NULL; 3443 } 3444 3445 list_for_each_entry_safe(data, next, &m->data, links) { 3446 list_del_init(&data->links); 3447 ceph_msg_data_destroy(data); 3448 } 3449 m->data_length = 0; 3450 3451 if (m->pool) 3452 ceph_msgpool_put(m->pool, m); 3453 else 3454 ceph_msg_free(m); 3455 } 3456 3457 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3458 { 3459 dout("%s %p (was %d)\n", __func__, msg, 3460 kref_read(&msg->kref)); 3461 kref_get(&msg->kref); 3462 return msg; 3463 } 3464 EXPORT_SYMBOL(ceph_msg_get); 3465 3466 void ceph_msg_put(struct ceph_msg *msg) 3467 { 3468 dout("%s %p (was %d)\n", __func__, msg, 3469 kref_read(&msg->kref)); 3470 kref_put(&msg->kref, ceph_msg_release); 3471 } 3472 EXPORT_SYMBOL(ceph_msg_put); 3473 3474 void ceph_msg_dump(struct ceph_msg *msg) 3475 { 3476 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3477 msg->front_alloc_len, msg->data_length); 3478 print_hex_dump(KERN_DEBUG, "header: ", 3479 DUMP_PREFIX_OFFSET, 16, 1, 3480 &msg->hdr, sizeof(msg->hdr), true); 3481 print_hex_dump(KERN_DEBUG, " front: ", 3482 DUMP_PREFIX_OFFSET, 16, 1, 3483 msg->front.iov_base, msg->front.iov_len, true); 3484 if (msg->middle) 3485 print_hex_dump(KERN_DEBUG, "middle: ", 3486 DUMP_PREFIX_OFFSET, 16, 1, 3487 msg->middle->vec.iov_base, 3488 msg->middle->vec.iov_len, true); 3489 print_hex_dump(KERN_DEBUG, "footer: ", 3490 DUMP_PREFIX_OFFSET, 16, 1, 3491 &msg->footer, sizeof(msg->footer), true); 3492 } 3493 EXPORT_SYMBOL(ceph_msg_dump); 3494