xref: /openbmc/linux/net/ceph/messenger.c (revision a36954f5)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/sched/mm.h>
11 #include <linux/slab.h>
12 #include <linux/socket.h>
13 #include <linux/string.h>
14 #ifdef	CONFIG_BLOCK
15 #include <linux/bio.h>
16 #endif	/* CONFIG_BLOCK */
17 #include <linux/dns_resolver.h>
18 #include <net/tcp.h>
19 
20 #include <linux/ceph/ceph_features.h>
21 #include <linux/ceph/libceph.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/export.h>
26 
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35 
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77 
78 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
83 
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93 
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98 				       * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103 
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 	switch (con_flag) {
107 	case CON_FLAG_LOSSYTX:
108 	case CON_FLAG_KEEPALIVE_PENDING:
109 	case CON_FLAG_WRITE_PENDING:
110 	case CON_FLAG_SOCK_CLOSED:
111 	case CON_FLAG_BACKOFF:
112 		return true;
113 	default:
114 		return false;
115 	}
116 }
117 
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 	BUG_ON(!con_flag_valid(con_flag));
121 
122 	clear_bit(con_flag, &con->flags);
123 }
124 
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 	BUG_ON(!con_flag_valid(con_flag));
128 
129 	set_bit(con_flag, &con->flags);
130 }
131 
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 	BUG_ON(!con_flag_valid(con_flag));
135 
136 	return test_bit(con_flag, &con->flags);
137 }
138 
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 					unsigned long con_flag)
141 {
142 	BUG_ON(!con_flag_valid(con_flag));
143 
144 	return test_and_clear_bit(con_flag, &con->flags);
145 }
146 
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 					unsigned long con_flag)
149 {
150 	BUG_ON(!con_flag_valid(con_flag));
151 
152 	return test_and_set_bit(con_flag, &con->flags);
153 }
154 
155 /* Slab caches for frequently-allocated structures */
156 
157 static struct kmem_cache	*ceph_msg_cache;
158 static struct kmem_cache	*ceph_msg_data_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void ceph_con_workfn(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
240 	if (!ceph_msg_cache)
241 		return -ENOMEM;
242 
243 	BUG_ON(ceph_msg_data_cache);
244 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
245 	if (ceph_msg_data_cache)
246 		return 0;
247 
248 	kmem_cache_destroy(ceph_msg_cache);
249 	ceph_msg_cache = NULL;
250 
251 	return -ENOMEM;
252 }
253 
254 static void ceph_msgr_slab_exit(void)
255 {
256 	BUG_ON(!ceph_msg_data_cache);
257 	kmem_cache_destroy(ceph_msg_data_cache);
258 	ceph_msg_data_cache = NULL;
259 
260 	BUG_ON(!ceph_msg_cache);
261 	kmem_cache_destroy(ceph_msg_cache);
262 	ceph_msg_cache = NULL;
263 }
264 
265 static void _ceph_msgr_exit(void)
266 {
267 	if (ceph_msgr_wq) {
268 		destroy_workqueue(ceph_msgr_wq);
269 		ceph_msgr_wq = NULL;
270 	}
271 
272 	BUG_ON(zero_page == NULL);
273 	put_page(zero_page);
274 	zero_page = NULL;
275 
276 	ceph_msgr_slab_exit();
277 }
278 
279 int ceph_msgr_init(void)
280 {
281 	if (ceph_msgr_slab_init())
282 		return -ENOMEM;
283 
284 	BUG_ON(zero_page != NULL);
285 	zero_page = ZERO_PAGE(0);
286 	get_page(zero_page);
287 
288 	/*
289 	 * The number of active work items is limited by the number of
290 	 * connections, so leave @max_active at default.
291 	 */
292 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
293 	if (ceph_msgr_wq)
294 		return 0;
295 
296 	pr_err("msgr_init failed to create workqueue\n");
297 	_ceph_msgr_exit();
298 
299 	return -ENOMEM;
300 }
301 EXPORT_SYMBOL(ceph_msgr_init);
302 
303 void ceph_msgr_exit(void)
304 {
305 	BUG_ON(ceph_msgr_wq == NULL);
306 
307 	_ceph_msgr_exit();
308 }
309 EXPORT_SYMBOL(ceph_msgr_exit);
310 
311 void ceph_msgr_flush(void)
312 {
313 	flush_workqueue(ceph_msgr_wq);
314 }
315 EXPORT_SYMBOL(ceph_msgr_flush);
316 
317 /* Connection socket state transition functions */
318 
319 static void con_sock_state_init(struct ceph_connection *con)
320 {
321 	int old_state;
322 
323 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
324 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
325 		printk("%s: unexpected old state %d\n", __func__, old_state);
326 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
327 	     CON_SOCK_STATE_CLOSED);
328 }
329 
330 static void con_sock_state_connecting(struct ceph_connection *con)
331 {
332 	int old_state;
333 
334 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
335 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
336 		printk("%s: unexpected old state %d\n", __func__, old_state);
337 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
338 	     CON_SOCK_STATE_CONNECTING);
339 }
340 
341 static void con_sock_state_connected(struct ceph_connection *con)
342 {
343 	int old_state;
344 
345 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
346 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
347 		printk("%s: unexpected old state %d\n", __func__, old_state);
348 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
349 	     CON_SOCK_STATE_CONNECTED);
350 }
351 
352 static void con_sock_state_closing(struct ceph_connection *con)
353 {
354 	int old_state;
355 
356 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
357 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
358 			old_state != CON_SOCK_STATE_CONNECTED &&
359 			old_state != CON_SOCK_STATE_CLOSING))
360 		printk("%s: unexpected old state %d\n", __func__, old_state);
361 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
362 	     CON_SOCK_STATE_CLOSING);
363 }
364 
365 static void con_sock_state_closed(struct ceph_connection *con)
366 {
367 	int old_state;
368 
369 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
370 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
371 		    old_state != CON_SOCK_STATE_CLOSING &&
372 		    old_state != CON_SOCK_STATE_CONNECTING &&
373 		    old_state != CON_SOCK_STATE_CLOSED))
374 		printk("%s: unexpected old state %d\n", __func__, old_state);
375 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
376 	     CON_SOCK_STATE_CLOSED);
377 }
378 
379 /*
380  * socket callback functions
381  */
382 
383 /* data available on socket, or listen socket received a connect */
384 static void ceph_sock_data_ready(struct sock *sk)
385 {
386 	struct ceph_connection *con = sk->sk_user_data;
387 	if (atomic_read(&con->msgr->stopping)) {
388 		return;
389 	}
390 
391 	if (sk->sk_state != TCP_CLOSE_WAIT) {
392 		dout("%s on %p state = %lu, queueing work\n", __func__,
393 		     con, con->state);
394 		queue_con(con);
395 	}
396 }
397 
398 /* socket has buffer space for writing */
399 static void ceph_sock_write_space(struct sock *sk)
400 {
401 	struct ceph_connection *con = sk->sk_user_data;
402 
403 	/* only queue to workqueue if there is data we want to write,
404 	 * and there is sufficient space in the socket buffer to accept
405 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
406 	 * doesn't get called again until try_write() fills the socket
407 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
408 	 * and net/core/stream.c:sk_stream_write_space().
409 	 */
410 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
411 		if (sk_stream_is_writeable(sk)) {
412 			dout("%s %p queueing write work\n", __func__, con);
413 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
414 			queue_con(con);
415 		}
416 	} else {
417 		dout("%s %p nothing to write\n", __func__, con);
418 	}
419 }
420 
421 /* socket's state has changed */
422 static void ceph_sock_state_change(struct sock *sk)
423 {
424 	struct ceph_connection *con = sk->sk_user_data;
425 
426 	dout("%s %p state = %lu sk_state = %u\n", __func__,
427 	     con, con->state, sk->sk_state);
428 
429 	switch (sk->sk_state) {
430 	case TCP_CLOSE:
431 		dout("%s TCP_CLOSE\n", __func__);
432 	case TCP_CLOSE_WAIT:
433 		dout("%s TCP_CLOSE_WAIT\n", __func__);
434 		con_sock_state_closing(con);
435 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
436 		queue_con(con);
437 		break;
438 	case TCP_ESTABLISHED:
439 		dout("%s TCP_ESTABLISHED\n", __func__);
440 		con_sock_state_connected(con);
441 		queue_con(con);
442 		break;
443 	default:	/* Everything else is uninteresting */
444 		break;
445 	}
446 }
447 
448 /*
449  * set up socket callbacks
450  */
451 static void set_sock_callbacks(struct socket *sock,
452 			       struct ceph_connection *con)
453 {
454 	struct sock *sk = sock->sk;
455 	sk->sk_user_data = con;
456 	sk->sk_data_ready = ceph_sock_data_ready;
457 	sk->sk_write_space = ceph_sock_write_space;
458 	sk->sk_state_change = ceph_sock_state_change;
459 }
460 
461 
462 /*
463  * socket helpers
464  */
465 
466 /*
467  * initiate connection to a remote socket.
468  */
469 static int ceph_tcp_connect(struct ceph_connection *con)
470 {
471 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
472 	struct socket *sock;
473 	unsigned int noio_flag;
474 	int ret;
475 
476 	BUG_ON(con->sock);
477 
478 	/* sock_create_kern() allocates with GFP_KERNEL */
479 	noio_flag = memalloc_noio_save();
480 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
481 			       SOCK_STREAM, IPPROTO_TCP, &sock);
482 	memalloc_noio_restore(noio_flag);
483 	if (ret)
484 		return ret;
485 	sock->sk->sk_allocation = GFP_NOFS;
486 
487 #ifdef CONFIG_LOCKDEP
488 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490 
491 	set_sock_callbacks(sock, con);
492 
493 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494 
495 	con_sock_state_connecting(con);
496 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 				 O_NONBLOCK);
498 	if (ret == -EINPROGRESS) {
499 		dout("connect %s EINPROGRESS sk_state = %u\n",
500 		     ceph_pr_addr(&con->peer_addr.in_addr),
501 		     sock->sk->sk_state);
502 	} else if (ret < 0) {
503 		pr_err("connect %s error %d\n",
504 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 		sock_release(sock);
506 		return ret;
507 	}
508 
509 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 		int optval = 1;
511 
512 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 					(char *)&optval, sizeof(optval));
514 		if (ret)
515 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 			       ret);
517 	}
518 
519 	con->sock = sock;
520 	return 0;
521 }
522 
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 	struct kvec iov = {buf, len};
526 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 	int r;
528 
529 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 	if (r == -EAGAIN)
532 		r = 0;
533 	return r;
534 }
535 
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 		     int page_offset, size_t length)
538 {
539 	struct bio_vec bvec = {
540 		.bv_page = page,
541 		.bv_offset = page_offset,
542 		.bv_len = length
543 	};
544 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 	int r;
546 
547 	BUG_ON(page_offset + length > PAGE_SIZE);
548 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 	if (r == -EAGAIN)
551 		r = 0;
552 	return r;
553 }
554 
555 /*
556  * write something.  @more is true if caller will be sending more data
557  * shortly.
558  */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 		     size_t kvlen, size_t len, int more)
561 {
562 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 	int r;
564 
565 	if (more)
566 		msg.msg_flags |= MSG_MORE;
567 	else
568 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
569 
570 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 	if (r == -EAGAIN)
572 		r = 0;
573 	return r;
574 }
575 
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 		     int offset, size_t size, bool more)
578 {
579 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 	int ret;
581 
582 	ret = kernel_sendpage(sock, page, offset, size, flags);
583 	if (ret == -EAGAIN)
584 		ret = 0;
585 
586 	return ret;
587 }
588 
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 		     int offset, size_t size, bool more)
591 {
592 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 	struct bio_vec bvec;
594 	int ret;
595 
596 	/* sendpage cannot properly handle pages with page_count == 0,
597 	 * we need to fallback to sendmsg if that's the case */
598 	if (page_count(page) >= 1)
599 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
600 
601 	bvec.bv_page = page;
602 	bvec.bv_offset = offset;
603 	bvec.bv_len = size;
604 
605 	if (more)
606 		msg.msg_flags |= MSG_MORE;
607 	else
608 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
609 
610 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 	ret = sock_sendmsg(sock, &msg);
612 	if (ret == -EAGAIN)
613 		ret = 0;
614 
615 	return ret;
616 }
617 
618 /*
619  * Shutdown/close the socket for the given connection.
620  */
621 static int con_close_socket(struct ceph_connection *con)
622 {
623 	int rc = 0;
624 
625 	dout("con_close_socket on %p sock %p\n", con, con->sock);
626 	if (con->sock) {
627 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 		sock_release(con->sock);
629 		con->sock = NULL;
630 	}
631 
632 	/*
633 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
634 	 * independent of the connection mutex, and we could have
635 	 * received a socket close event before we had the chance to
636 	 * shut the socket down.
637 	 */
638 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639 
640 	con_sock_state_closed(con);
641 	return rc;
642 }
643 
644 /*
645  * Reset a connection.  Discard all incoming and outgoing messages
646  * and clear *_seq state.
647  */
648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 	list_del_init(&msg->list_head);
651 
652 	ceph_msg_put(msg);
653 }
654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 	while (!list_empty(head)) {
657 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 							list_head);
659 		ceph_msg_remove(msg);
660 	}
661 }
662 
663 static void reset_connection(struct ceph_connection *con)
664 {
665 	/* reset connection, out_queue, msg_ and connect_seq */
666 	/* discard existing out_queue and msg_seq */
667 	dout("reset_connection %p\n", con);
668 	ceph_msg_remove_list(&con->out_queue);
669 	ceph_msg_remove_list(&con->out_sent);
670 
671 	if (con->in_msg) {
672 		BUG_ON(con->in_msg->con != con);
673 		ceph_msg_put(con->in_msg);
674 		con->in_msg = NULL;
675 	}
676 
677 	con->connect_seq = 0;
678 	con->out_seq = 0;
679 	if (con->out_msg) {
680 		BUG_ON(con->out_msg->con != con);
681 		ceph_msg_put(con->out_msg);
682 		con->out_msg = NULL;
683 	}
684 	con->in_seq = 0;
685 	con->in_seq_acked = 0;
686 
687 	con->out_skip = 0;
688 }
689 
690 /*
691  * mark a peer down.  drop any open connections.
692  */
693 void ceph_con_close(struct ceph_connection *con)
694 {
695 	mutex_lock(&con->mutex);
696 	dout("con_close %p peer %s\n", con,
697 	     ceph_pr_addr(&con->peer_addr.in_addr));
698 	con->state = CON_STATE_CLOSED;
699 
700 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
701 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 	con_flag_clear(con, CON_FLAG_BACKOFF);
704 
705 	reset_connection(con);
706 	con->peer_global_seq = 0;
707 	cancel_con(con);
708 	con_close_socket(con);
709 	mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712 
713 /*
714  * Reopen a closed connection, with a new peer address.
715  */
716 void ceph_con_open(struct ceph_connection *con,
717 		   __u8 entity_type, __u64 entity_num,
718 		   struct ceph_entity_addr *addr)
719 {
720 	mutex_lock(&con->mutex);
721 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722 
723 	WARN_ON(con->state != CON_STATE_CLOSED);
724 	con->state = CON_STATE_PREOPEN;
725 
726 	con->peer_name.type = (__u8) entity_type;
727 	con->peer_name.num = cpu_to_le64(entity_num);
728 
729 	memcpy(&con->peer_addr, addr, sizeof(*addr));
730 	con->delay = 0;      /* reset backoff memory */
731 	mutex_unlock(&con->mutex);
732 	queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735 
736 /*
737  * return true if this connection ever successfully opened
738  */
739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 	return con->connect_seq > 0;
742 }
743 
744 /*
745  * initialize a new connection.
746  */
747 void ceph_con_init(struct ceph_connection *con, void *private,
748 	const struct ceph_connection_operations *ops,
749 	struct ceph_messenger *msgr)
750 {
751 	dout("con_init %p\n", con);
752 	memset(con, 0, sizeof(*con));
753 	con->private = private;
754 	con->ops = ops;
755 	con->msgr = msgr;
756 
757 	con_sock_state_init(con);
758 
759 	mutex_init(&con->mutex);
760 	INIT_LIST_HEAD(&con->out_queue);
761 	INIT_LIST_HEAD(&con->out_sent);
762 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763 
764 	con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767 
768 
769 /*
770  * We maintain a global counter to order connection attempts.  Get
771  * a unique seq greater than @gt.
772  */
773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 	u32 ret;
776 
777 	spin_lock(&msgr->global_seq_lock);
778 	if (msgr->global_seq < gt)
779 		msgr->global_seq = gt;
780 	ret = ++msgr->global_seq;
781 	spin_unlock(&msgr->global_seq_lock);
782 	return ret;
783 }
784 
785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 	BUG_ON(con->out_skip);
788 
789 	con->out_kvec_left = 0;
790 	con->out_kvec_bytes = 0;
791 	con->out_kvec_cur = &con->out_kvec[0];
792 }
793 
794 static void con_out_kvec_add(struct ceph_connection *con,
795 				size_t size, void *data)
796 {
797 	int index = con->out_kvec_left;
798 
799 	BUG_ON(con->out_skip);
800 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801 
802 	con->out_kvec[index].iov_len = size;
803 	con->out_kvec[index].iov_base = data;
804 	con->out_kvec_left++;
805 	con->out_kvec_bytes += size;
806 }
807 
808 /*
809  * Chop off a kvec from the end.  Return residual number of bytes for
810  * that kvec, i.e. how many bytes would have been written if the kvec
811  * hadn't been nuked.
812  */
813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 	int off = con->out_kvec_cur - con->out_kvec;
816 	int skip = 0;
817 
818 	if (con->out_kvec_bytes > 0) {
819 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 		BUG_ON(con->out_kvec_bytes < skip);
821 		BUG_ON(!con->out_kvec_left);
822 		con->out_kvec_bytes -= skip;
823 		con->out_kvec_left--;
824 	}
825 
826 	return skip;
827 }
828 
829 #ifdef CONFIG_BLOCK
830 
831 /*
832  * For a bio data item, a piece is whatever remains of the next
833  * entry in the current bio iovec, or the first entry in the next
834  * bio in the list.
835  */
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 					size_t length)
838 {
839 	struct ceph_msg_data *data = cursor->data;
840 	struct bio *bio;
841 
842 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
843 
844 	bio = data->bio;
845 	BUG_ON(!bio);
846 
847 	cursor->resid = min(length, data->bio_length);
848 	cursor->bio = bio;
849 	cursor->bvec_iter = bio->bi_iter;
850 	cursor->last_piece =
851 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
852 }
853 
854 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
855 						size_t *page_offset,
856 						size_t *length)
857 {
858 	struct ceph_msg_data *data = cursor->data;
859 	struct bio *bio;
860 	struct bio_vec bio_vec;
861 
862 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
863 
864 	bio = cursor->bio;
865 	BUG_ON(!bio);
866 
867 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
868 
869 	*page_offset = (size_t) bio_vec.bv_offset;
870 	BUG_ON(*page_offset >= PAGE_SIZE);
871 	if (cursor->last_piece) /* pagelist offset is always 0 */
872 		*length = cursor->resid;
873 	else
874 		*length = (size_t) bio_vec.bv_len;
875 	BUG_ON(*length > cursor->resid);
876 	BUG_ON(*page_offset + *length > PAGE_SIZE);
877 
878 	return bio_vec.bv_page;
879 }
880 
881 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
882 					size_t bytes)
883 {
884 	struct bio *bio;
885 	struct bio_vec bio_vec;
886 
887 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
888 
889 	bio = cursor->bio;
890 	BUG_ON(!bio);
891 
892 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
893 
894 	/* Advance the cursor offset */
895 
896 	BUG_ON(cursor->resid < bytes);
897 	cursor->resid -= bytes;
898 
899 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
900 
901 	if (bytes < bio_vec.bv_len)
902 		return false;	/* more bytes to process in this segment */
903 
904 	/* Move on to the next segment, and possibly the next bio */
905 
906 	if (!cursor->bvec_iter.bi_size) {
907 		bio = bio->bi_next;
908 		cursor->bio = bio;
909 		if (bio)
910 			cursor->bvec_iter = bio->bi_iter;
911 		else
912 			memset(&cursor->bvec_iter, 0,
913 			       sizeof(cursor->bvec_iter));
914 	}
915 
916 	if (!cursor->last_piece) {
917 		BUG_ON(!cursor->resid);
918 		BUG_ON(!bio);
919 		/* A short read is OK, so use <= rather than == */
920 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
921 			cursor->last_piece = true;
922 	}
923 
924 	return true;
925 }
926 #endif /* CONFIG_BLOCK */
927 
928 /*
929  * For a page array, a piece comes from the first page in the array
930  * that has not already been fully consumed.
931  */
932 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
933 					size_t length)
934 {
935 	struct ceph_msg_data *data = cursor->data;
936 	int page_count;
937 
938 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
939 
940 	BUG_ON(!data->pages);
941 	BUG_ON(!data->length);
942 
943 	cursor->resid = min(length, data->length);
944 	page_count = calc_pages_for(data->alignment, (u64)data->length);
945 	cursor->page_offset = data->alignment & ~PAGE_MASK;
946 	cursor->page_index = 0;
947 	BUG_ON(page_count > (int)USHRT_MAX);
948 	cursor->page_count = (unsigned short)page_count;
949 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
950 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
951 }
952 
953 static struct page *
954 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
955 					size_t *page_offset, size_t *length)
956 {
957 	struct ceph_msg_data *data = cursor->data;
958 
959 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
960 
961 	BUG_ON(cursor->page_index >= cursor->page_count);
962 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
963 
964 	*page_offset = cursor->page_offset;
965 	if (cursor->last_piece)
966 		*length = cursor->resid;
967 	else
968 		*length = PAGE_SIZE - *page_offset;
969 
970 	return data->pages[cursor->page_index];
971 }
972 
973 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
974 						size_t bytes)
975 {
976 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
977 
978 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
979 
980 	/* Advance the cursor page offset */
981 
982 	cursor->resid -= bytes;
983 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
984 	if (!bytes || cursor->page_offset)
985 		return false;	/* more bytes to process in the current page */
986 
987 	if (!cursor->resid)
988 		return false;   /* no more data */
989 
990 	/* Move on to the next page; offset is already at 0 */
991 
992 	BUG_ON(cursor->page_index >= cursor->page_count);
993 	cursor->page_index++;
994 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
995 
996 	return true;
997 }
998 
999 /*
1000  * For a pagelist, a piece is whatever remains to be consumed in the
1001  * first page in the list, or the front of the next page.
1002  */
1003 static void
1004 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1005 					size_t length)
1006 {
1007 	struct ceph_msg_data *data = cursor->data;
1008 	struct ceph_pagelist *pagelist;
1009 	struct page *page;
1010 
1011 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1012 
1013 	pagelist = data->pagelist;
1014 	BUG_ON(!pagelist);
1015 
1016 	if (!length)
1017 		return;		/* pagelist can be assigned but empty */
1018 
1019 	BUG_ON(list_empty(&pagelist->head));
1020 	page = list_first_entry(&pagelist->head, struct page, lru);
1021 
1022 	cursor->resid = min(length, pagelist->length);
1023 	cursor->page = page;
1024 	cursor->offset = 0;
1025 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1026 }
1027 
1028 static struct page *
1029 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1030 				size_t *page_offset, size_t *length)
1031 {
1032 	struct ceph_msg_data *data = cursor->data;
1033 	struct ceph_pagelist *pagelist;
1034 
1035 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1036 
1037 	pagelist = data->pagelist;
1038 	BUG_ON(!pagelist);
1039 
1040 	BUG_ON(!cursor->page);
1041 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1042 
1043 	/* offset of first page in pagelist is always 0 */
1044 	*page_offset = cursor->offset & ~PAGE_MASK;
1045 	if (cursor->last_piece)
1046 		*length = cursor->resid;
1047 	else
1048 		*length = PAGE_SIZE - *page_offset;
1049 
1050 	return cursor->page;
1051 }
1052 
1053 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1054 						size_t bytes)
1055 {
1056 	struct ceph_msg_data *data = cursor->data;
1057 	struct ceph_pagelist *pagelist;
1058 
1059 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1060 
1061 	pagelist = data->pagelist;
1062 	BUG_ON(!pagelist);
1063 
1064 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1065 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1066 
1067 	/* Advance the cursor offset */
1068 
1069 	cursor->resid -= bytes;
1070 	cursor->offset += bytes;
1071 	/* offset of first page in pagelist is always 0 */
1072 	if (!bytes || cursor->offset & ~PAGE_MASK)
1073 		return false;	/* more bytes to process in the current page */
1074 
1075 	if (!cursor->resid)
1076 		return false;   /* no more data */
1077 
1078 	/* Move on to the next page */
1079 
1080 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1081 	cursor->page = list_next_entry(cursor->page, lru);
1082 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1083 
1084 	return true;
1085 }
1086 
1087 /*
1088  * Message data is handled (sent or received) in pieces, where each
1089  * piece resides on a single page.  The network layer might not
1090  * consume an entire piece at once.  A data item's cursor keeps
1091  * track of which piece is next to process and how much remains to
1092  * be processed in that piece.  It also tracks whether the current
1093  * piece is the last one in the data item.
1094  */
1095 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1096 {
1097 	size_t length = cursor->total_resid;
1098 
1099 	switch (cursor->data->type) {
1100 	case CEPH_MSG_DATA_PAGELIST:
1101 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1102 		break;
1103 	case CEPH_MSG_DATA_PAGES:
1104 		ceph_msg_data_pages_cursor_init(cursor, length);
1105 		break;
1106 #ifdef CONFIG_BLOCK
1107 	case CEPH_MSG_DATA_BIO:
1108 		ceph_msg_data_bio_cursor_init(cursor, length);
1109 		break;
1110 #endif /* CONFIG_BLOCK */
1111 	case CEPH_MSG_DATA_NONE:
1112 	default:
1113 		/* BUG(); */
1114 		break;
1115 	}
1116 	cursor->need_crc = true;
1117 }
1118 
1119 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1120 {
1121 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1122 	struct ceph_msg_data *data;
1123 
1124 	BUG_ON(!length);
1125 	BUG_ON(length > msg->data_length);
1126 	BUG_ON(list_empty(&msg->data));
1127 
1128 	cursor->data_head = &msg->data;
1129 	cursor->total_resid = length;
1130 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1131 	cursor->data = data;
1132 
1133 	__ceph_msg_data_cursor_init(cursor);
1134 }
1135 
1136 /*
1137  * Return the page containing the next piece to process for a given
1138  * data item, and supply the page offset and length of that piece.
1139  * Indicate whether this is the last piece in this data item.
1140  */
1141 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1142 					size_t *page_offset, size_t *length,
1143 					bool *last_piece)
1144 {
1145 	struct page *page;
1146 
1147 	switch (cursor->data->type) {
1148 	case CEPH_MSG_DATA_PAGELIST:
1149 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1150 		break;
1151 	case CEPH_MSG_DATA_PAGES:
1152 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1153 		break;
1154 #ifdef CONFIG_BLOCK
1155 	case CEPH_MSG_DATA_BIO:
1156 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1157 		break;
1158 #endif /* CONFIG_BLOCK */
1159 	case CEPH_MSG_DATA_NONE:
1160 	default:
1161 		page = NULL;
1162 		break;
1163 	}
1164 	BUG_ON(!page);
1165 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1166 	BUG_ON(!*length);
1167 	if (last_piece)
1168 		*last_piece = cursor->last_piece;
1169 
1170 	return page;
1171 }
1172 
1173 /*
1174  * Returns true if the result moves the cursor on to the next piece
1175  * of the data item.
1176  */
1177 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1178 				size_t bytes)
1179 {
1180 	bool new_piece;
1181 
1182 	BUG_ON(bytes > cursor->resid);
1183 	switch (cursor->data->type) {
1184 	case CEPH_MSG_DATA_PAGELIST:
1185 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1186 		break;
1187 	case CEPH_MSG_DATA_PAGES:
1188 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1189 		break;
1190 #ifdef CONFIG_BLOCK
1191 	case CEPH_MSG_DATA_BIO:
1192 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1193 		break;
1194 #endif /* CONFIG_BLOCK */
1195 	case CEPH_MSG_DATA_NONE:
1196 	default:
1197 		BUG();
1198 		break;
1199 	}
1200 	cursor->total_resid -= bytes;
1201 
1202 	if (!cursor->resid && cursor->total_resid) {
1203 		WARN_ON(!cursor->last_piece);
1204 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1205 		cursor->data = list_next_entry(cursor->data, links);
1206 		__ceph_msg_data_cursor_init(cursor);
1207 		new_piece = true;
1208 	}
1209 	cursor->need_crc = new_piece;
1210 
1211 	return new_piece;
1212 }
1213 
1214 static size_t sizeof_footer(struct ceph_connection *con)
1215 {
1216 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217 	    sizeof(struct ceph_msg_footer) :
1218 	    sizeof(struct ceph_msg_footer_old);
1219 }
1220 
1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222 {
1223 	BUG_ON(!msg);
1224 	BUG_ON(!data_len);
1225 
1226 	/* Initialize data cursor */
1227 
1228 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1229 }
1230 
1231 /*
1232  * Prepare footer for currently outgoing message, and finish things
1233  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1234  */
1235 static void prepare_write_message_footer(struct ceph_connection *con)
1236 {
1237 	struct ceph_msg *m = con->out_msg;
1238 
1239 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1240 
1241 	dout("prepare_write_message_footer %p\n", con);
1242 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1243 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1244 		if (con->ops->sign_message)
1245 			con->ops->sign_message(m);
1246 		else
1247 			m->footer.sig = 0;
1248 	} else {
1249 		m->old_footer.flags = m->footer.flags;
1250 	}
1251 	con->out_more = m->more_to_follow;
1252 	con->out_msg_done = true;
1253 }
1254 
1255 /*
1256  * Prepare headers for the next outgoing message.
1257  */
1258 static void prepare_write_message(struct ceph_connection *con)
1259 {
1260 	struct ceph_msg *m;
1261 	u32 crc;
1262 
1263 	con_out_kvec_reset(con);
1264 	con->out_msg_done = false;
1265 
1266 	/* Sneak an ack in there first?  If we can get it into the same
1267 	 * TCP packet that's a good thing. */
1268 	if (con->in_seq > con->in_seq_acked) {
1269 		con->in_seq_acked = con->in_seq;
1270 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1271 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1272 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1273 			&con->out_temp_ack);
1274 	}
1275 
1276 	BUG_ON(list_empty(&con->out_queue));
1277 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1278 	con->out_msg = m;
1279 	BUG_ON(m->con != con);
1280 
1281 	/* put message on sent list */
1282 	ceph_msg_get(m);
1283 	list_move_tail(&m->list_head, &con->out_sent);
1284 
1285 	/*
1286 	 * only assign outgoing seq # if we haven't sent this message
1287 	 * yet.  if it is requeued, resend with it's original seq.
1288 	 */
1289 	if (m->needs_out_seq) {
1290 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1291 		m->needs_out_seq = false;
1292 	}
1293 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1294 
1295 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1296 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1297 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1298 	     m->data_length);
1299 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1300 
1301 	/* tag + hdr + front + middle */
1302 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1303 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1304 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1305 
1306 	if (m->middle)
1307 		con_out_kvec_add(con, m->middle->vec.iov_len,
1308 			m->middle->vec.iov_base);
1309 
1310 	/* fill in hdr crc and finalize hdr */
1311 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1312 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1313 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1314 
1315 	/* fill in front and middle crc, footer */
1316 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1317 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1318 	if (m->middle) {
1319 		crc = crc32c(0, m->middle->vec.iov_base,
1320 				m->middle->vec.iov_len);
1321 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1322 	} else
1323 		con->out_msg->footer.middle_crc = 0;
1324 	dout("%s front_crc %u middle_crc %u\n", __func__,
1325 	     le32_to_cpu(con->out_msg->footer.front_crc),
1326 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1327 	con->out_msg->footer.flags = 0;
1328 
1329 	/* is there a data payload? */
1330 	con->out_msg->footer.data_crc = 0;
1331 	if (m->data_length) {
1332 		prepare_message_data(con->out_msg, m->data_length);
1333 		con->out_more = 1;  /* data + footer will follow */
1334 	} else {
1335 		/* no, queue up footer too and be done */
1336 		prepare_write_message_footer(con);
1337 	}
1338 
1339 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340 }
1341 
1342 /*
1343  * Prepare an ack.
1344  */
1345 static void prepare_write_ack(struct ceph_connection *con)
1346 {
1347 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1348 	     con->in_seq_acked, con->in_seq);
1349 	con->in_seq_acked = con->in_seq;
1350 
1351 	con_out_kvec_reset(con);
1352 
1353 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1354 
1355 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1356 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1357 				&con->out_temp_ack);
1358 
1359 	con->out_more = 1;  /* more will follow.. eventually.. */
1360 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1361 }
1362 
1363 /*
1364  * Prepare to share the seq during handshake
1365  */
1366 static void prepare_write_seq(struct ceph_connection *con)
1367 {
1368 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1369 	     con->in_seq_acked, con->in_seq);
1370 	con->in_seq_acked = con->in_seq;
1371 
1372 	con_out_kvec_reset(con);
1373 
1374 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1375 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1376 			 &con->out_temp_ack);
1377 
1378 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380 
1381 /*
1382  * Prepare to write keepalive byte.
1383  */
1384 static void prepare_write_keepalive(struct ceph_connection *con)
1385 {
1386 	dout("prepare_write_keepalive %p\n", con);
1387 	con_out_kvec_reset(con);
1388 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1389 		struct timespec now;
1390 
1391 		ktime_get_real_ts(&now);
1392 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1393 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1394 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1395 				 &con->out_temp_keepalive2);
1396 	} else {
1397 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1398 	}
1399 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1400 }
1401 
1402 /*
1403  * Connection negotiation.
1404  */
1405 
1406 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1407 						int *auth_proto)
1408 {
1409 	struct ceph_auth_handshake *auth;
1410 
1411 	if (!con->ops->get_authorizer) {
1412 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1413 		con->out_connect.authorizer_len = 0;
1414 		return NULL;
1415 	}
1416 
1417 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1418 	if (IS_ERR(auth))
1419 		return auth;
1420 
1421 	con->auth_reply_buf = auth->authorizer_reply_buf;
1422 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1423 	return auth;
1424 }
1425 
1426 /*
1427  * We connected to a peer and are saying hello.
1428  */
1429 static void prepare_write_banner(struct ceph_connection *con)
1430 {
1431 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1432 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1433 					&con->msgr->my_enc_addr);
1434 
1435 	con->out_more = 0;
1436 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1437 }
1438 
1439 static int prepare_write_connect(struct ceph_connection *con)
1440 {
1441 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1442 	int proto;
1443 	int auth_proto;
1444 	struct ceph_auth_handshake *auth;
1445 
1446 	switch (con->peer_name.type) {
1447 	case CEPH_ENTITY_TYPE_MON:
1448 		proto = CEPH_MONC_PROTOCOL;
1449 		break;
1450 	case CEPH_ENTITY_TYPE_OSD:
1451 		proto = CEPH_OSDC_PROTOCOL;
1452 		break;
1453 	case CEPH_ENTITY_TYPE_MDS:
1454 		proto = CEPH_MDSC_PROTOCOL;
1455 		break;
1456 	default:
1457 		BUG();
1458 	}
1459 
1460 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1461 	     con->connect_seq, global_seq, proto);
1462 
1463 	con->out_connect.features =
1464 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1465 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1466 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1467 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1468 	con->out_connect.protocol_version = cpu_to_le32(proto);
1469 	con->out_connect.flags = 0;
1470 
1471 	auth_proto = CEPH_AUTH_UNKNOWN;
1472 	auth = get_connect_authorizer(con, &auth_proto);
1473 	if (IS_ERR(auth))
1474 		return PTR_ERR(auth);
1475 
1476 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1477 	con->out_connect.authorizer_len = auth ?
1478 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1479 
1480 	con_out_kvec_add(con, sizeof (con->out_connect),
1481 					&con->out_connect);
1482 	if (auth && auth->authorizer_buf_len)
1483 		con_out_kvec_add(con, auth->authorizer_buf_len,
1484 					auth->authorizer_buf);
1485 
1486 	con->out_more = 0;
1487 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1488 
1489 	return 0;
1490 }
1491 
1492 /*
1493  * write as much of pending kvecs to the socket as we can.
1494  *  1 -> done
1495  *  0 -> socket full, but more to do
1496  * <0 -> error
1497  */
1498 static int write_partial_kvec(struct ceph_connection *con)
1499 {
1500 	int ret;
1501 
1502 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1503 	while (con->out_kvec_bytes > 0) {
1504 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1505 				       con->out_kvec_left, con->out_kvec_bytes,
1506 				       con->out_more);
1507 		if (ret <= 0)
1508 			goto out;
1509 		con->out_kvec_bytes -= ret;
1510 		if (con->out_kvec_bytes == 0)
1511 			break;            /* done */
1512 
1513 		/* account for full iov entries consumed */
1514 		while (ret >= con->out_kvec_cur->iov_len) {
1515 			BUG_ON(!con->out_kvec_left);
1516 			ret -= con->out_kvec_cur->iov_len;
1517 			con->out_kvec_cur++;
1518 			con->out_kvec_left--;
1519 		}
1520 		/* and for a partially-consumed entry */
1521 		if (ret) {
1522 			con->out_kvec_cur->iov_len -= ret;
1523 			con->out_kvec_cur->iov_base += ret;
1524 		}
1525 	}
1526 	con->out_kvec_left = 0;
1527 	ret = 1;
1528 out:
1529 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1530 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1531 	return ret;  /* done! */
1532 }
1533 
1534 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1535 				unsigned int page_offset,
1536 				unsigned int length)
1537 {
1538 	char *kaddr;
1539 
1540 	kaddr = kmap(page);
1541 	BUG_ON(kaddr == NULL);
1542 	crc = crc32c(crc, kaddr + page_offset, length);
1543 	kunmap(page);
1544 
1545 	return crc;
1546 }
1547 /*
1548  * Write as much message data payload as we can.  If we finish, queue
1549  * up the footer.
1550  *  1 -> done, footer is now queued in out_kvec[].
1551  *  0 -> socket full, but more to do
1552  * <0 -> error
1553  */
1554 static int write_partial_message_data(struct ceph_connection *con)
1555 {
1556 	struct ceph_msg *msg = con->out_msg;
1557 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1558 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1559 	u32 crc;
1560 
1561 	dout("%s %p msg %p\n", __func__, con, msg);
1562 
1563 	if (list_empty(&msg->data))
1564 		return -EINVAL;
1565 
1566 	/*
1567 	 * Iterate through each page that contains data to be
1568 	 * written, and send as much as possible for each.
1569 	 *
1570 	 * If we are calculating the data crc (the default), we will
1571 	 * need to map the page.  If we have no pages, they have
1572 	 * been revoked, so use the zero page.
1573 	 */
1574 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1575 	while (cursor->resid) {
1576 		struct page *page;
1577 		size_t page_offset;
1578 		size_t length;
1579 		bool last_piece;
1580 		bool need_crc;
1581 		int ret;
1582 
1583 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1584 					  &last_piece);
1585 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1586 					length, !last_piece);
1587 		if (ret <= 0) {
1588 			if (do_datacrc)
1589 				msg->footer.data_crc = cpu_to_le32(crc);
1590 
1591 			return ret;
1592 		}
1593 		if (do_datacrc && cursor->need_crc)
1594 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1595 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1596 	}
1597 
1598 	dout("%s %p msg %p done\n", __func__, con, msg);
1599 
1600 	/* prepare and queue up footer, too */
1601 	if (do_datacrc)
1602 		msg->footer.data_crc = cpu_to_le32(crc);
1603 	else
1604 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1605 	con_out_kvec_reset(con);
1606 	prepare_write_message_footer(con);
1607 
1608 	return 1;	/* must return > 0 to indicate success */
1609 }
1610 
1611 /*
1612  * write some zeros
1613  */
1614 static int write_partial_skip(struct ceph_connection *con)
1615 {
1616 	int ret;
1617 
1618 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1619 	while (con->out_skip > 0) {
1620 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1621 
1622 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1623 		if (ret <= 0)
1624 			goto out;
1625 		con->out_skip -= ret;
1626 	}
1627 	ret = 1;
1628 out:
1629 	return ret;
1630 }
1631 
1632 /*
1633  * Prepare to read connection handshake, or an ack.
1634  */
1635 static void prepare_read_banner(struct ceph_connection *con)
1636 {
1637 	dout("prepare_read_banner %p\n", con);
1638 	con->in_base_pos = 0;
1639 }
1640 
1641 static void prepare_read_connect(struct ceph_connection *con)
1642 {
1643 	dout("prepare_read_connect %p\n", con);
1644 	con->in_base_pos = 0;
1645 }
1646 
1647 static void prepare_read_ack(struct ceph_connection *con)
1648 {
1649 	dout("prepare_read_ack %p\n", con);
1650 	con->in_base_pos = 0;
1651 }
1652 
1653 static void prepare_read_seq(struct ceph_connection *con)
1654 {
1655 	dout("prepare_read_seq %p\n", con);
1656 	con->in_base_pos = 0;
1657 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1658 }
1659 
1660 static void prepare_read_tag(struct ceph_connection *con)
1661 {
1662 	dout("prepare_read_tag %p\n", con);
1663 	con->in_base_pos = 0;
1664 	con->in_tag = CEPH_MSGR_TAG_READY;
1665 }
1666 
1667 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1668 {
1669 	dout("prepare_read_keepalive_ack %p\n", con);
1670 	con->in_base_pos = 0;
1671 }
1672 
1673 /*
1674  * Prepare to read a message.
1675  */
1676 static int prepare_read_message(struct ceph_connection *con)
1677 {
1678 	dout("prepare_read_message %p\n", con);
1679 	BUG_ON(con->in_msg != NULL);
1680 	con->in_base_pos = 0;
1681 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1682 	return 0;
1683 }
1684 
1685 
1686 static int read_partial(struct ceph_connection *con,
1687 			int end, int size, void *object)
1688 {
1689 	while (con->in_base_pos < end) {
1690 		int left = end - con->in_base_pos;
1691 		int have = size - left;
1692 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1693 		if (ret <= 0)
1694 			return ret;
1695 		con->in_base_pos += ret;
1696 	}
1697 	return 1;
1698 }
1699 
1700 
1701 /*
1702  * Read all or part of the connect-side handshake on a new connection
1703  */
1704 static int read_partial_banner(struct ceph_connection *con)
1705 {
1706 	int size;
1707 	int end;
1708 	int ret;
1709 
1710 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1711 
1712 	/* peer's banner */
1713 	size = strlen(CEPH_BANNER);
1714 	end = size;
1715 	ret = read_partial(con, end, size, con->in_banner);
1716 	if (ret <= 0)
1717 		goto out;
1718 
1719 	size = sizeof (con->actual_peer_addr);
1720 	end += size;
1721 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1722 	if (ret <= 0)
1723 		goto out;
1724 
1725 	size = sizeof (con->peer_addr_for_me);
1726 	end += size;
1727 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1728 	if (ret <= 0)
1729 		goto out;
1730 
1731 out:
1732 	return ret;
1733 }
1734 
1735 static int read_partial_connect(struct ceph_connection *con)
1736 {
1737 	int size;
1738 	int end;
1739 	int ret;
1740 
1741 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1742 
1743 	size = sizeof (con->in_reply);
1744 	end = size;
1745 	ret = read_partial(con, end, size, &con->in_reply);
1746 	if (ret <= 0)
1747 		goto out;
1748 
1749 	size = le32_to_cpu(con->in_reply.authorizer_len);
1750 	end += size;
1751 	ret = read_partial(con, end, size, con->auth_reply_buf);
1752 	if (ret <= 0)
1753 		goto out;
1754 
1755 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1756 	     con, (int)con->in_reply.tag,
1757 	     le32_to_cpu(con->in_reply.connect_seq),
1758 	     le32_to_cpu(con->in_reply.global_seq));
1759 out:
1760 	return ret;
1761 
1762 }
1763 
1764 /*
1765  * Verify the hello banner looks okay.
1766  */
1767 static int verify_hello(struct ceph_connection *con)
1768 {
1769 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1770 		pr_err("connect to %s got bad banner\n",
1771 		       ceph_pr_addr(&con->peer_addr.in_addr));
1772 		con->error_msg = "protocol error, bad banner";
1773 		return -1;
1774 	}
1775 	return 0;
1776 }
1777 
1778 static bool addr_is_blank(struct sockaddr_storage *ss)
1779 {
1780 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1781 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1782 
1783 	switch (ss->ss_family) {
1784 	case AF_INET:
1785 		return addr->s_addr == htonl(INADDR_ANY);
1786 	case AF_INET6:
1787 		return ipv6_addr_any(addr6);
1788 	default:
1789 		return true;
1790 	}
1791 }
1792 
1793 static int addr_port(struct sockaddr_storage *ss)
1794 {
1795 	switch (ss->ss_family) {
1796 	case AF_INET:
1797 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1798 	case AF_INET6:
1799 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1800 	}
1801 	return 0;
1802 }
1803 
1804 static void addr_set_port(struct sockaddr_storage *ss, int p)
1805 {
1806 	switch (ss->ss_family) {
1807 	case AF_INET:
1808 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1809 		break;
1810 	case AF_INET6:
1811 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1812 		break;
1813 	}
1814 }
1815 
1816 /*
1817  * Unlike other *_pton function semantics, zero indicates success.
1818  */
1819 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1820 		char delim, const char **ipend)
1821 {
1822 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1823 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1824 
1825 	memset(ss, 0, sizeof(*ss));
1826 
1827 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1828 		ss->ss_family = AF_INET;
1829 		return 0;
1830 	}
1831 
1832 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1833 		ss->ss_family = AF_INET6;
1834 		return 0;
1835 	}
1836 
1837 	return -EINVAL;
1838 }
1839 
1840 /*
1841  * Extract hostname string and resolve using kernel DNS facility.
1842  */
1843 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1844 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1845 		struct sockaddr_storage *ss, char delim, const char **ipend)
1846 {
1847 	const char *end, *delim_p;
1848 	char *colon_p, *ip_addr = NULL;
1849 	int ip_len, ret;
1850 
1851 	/*
1852 	 * The end of the hostname occurs immediately preceding the delimiter or
1853 	 * the port marker (':') where the delimiter takes precedence.
1854 	 */
1855 	delim_p = memchr(name, delim, namelen);
1856 	colon_p = memchr(name, ':', namelen);
1857 
1858 	if (delim_p && colon_p)
1859 		end = delim_p < colon_p ? delim_p : colon_p;
1860 	else if (!delim_p && colon_p)
1861 		end = colon_p;
1862 	else {
1863 		end = delim_p;
1864 		if (!end) /* case: hostname:/ */
1865 			end = name + namelen;
1866 	}
1867 
1868 	if (end <= name)
1869 		return -EINVAL;
1870 
1871 	/* do dns_resolve upcall */
1872 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1873 	if (ip_len > 0)
1874 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1875 	else
1876 		ret = -ESRCH;
1877 
1878 	kfree(ip_addr);
1879 
1880 	*ipend = end;
1881 
1882 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1883 			ret, ret ? "failed" : ceph_pr_addr(ss));
1884 
1885 	return ret;
1886 }
1887 #else
1888 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1889 		struct sockaddr_storage *ss, char delim, const char **ipend)
1890 {
1891 	return -EINVAL;
1892 }
1893 #endif
1894 
1895 /*
1896  * Parse a server name (IP or hostname). If a valid IP address is not found
1897  * then try to extract a hostname to resolve using userspace DNS upcall.
1898  */
1899 static int ceph_parse_server_name(const char *name, size_t namelen,
1900 			struct sockaddr_storage *ss, char delim, const char **ipend)
1901 {
1902 	int ret;
1903 
1904 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1905 	if (ret)
1906 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1907 
1908 	return ret;
1909 }
1910 
1911 /*
1912  * Parse an ip[:port] list into an addr array.  Use the default
1913  * monitor port if a port isn't specified.
1914  */
1915 int ceph_parse_ips(const char *c, const char *end,
1916 		   struct ceph_entity_addr *addr,
1917 		   int max_count, int *count)
1918 {
1919 	int i, ret = -EINVAL;
1920 	const char *p = c;
1921 
1922 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1923 	for (i = 0; i < max_count; i++) {
1924 		const char *ipend;
1925 		struct sockaddr_storage *ss = &addr[i].in_addr;
1926 		int port;
1927 		char delim = ',';
1928 
1929 		if (*p == '[') {
1930 			delim = ']';
1931 			p++;
1932 		}
1933 
1934 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1935 		if (ret)
1936 			goto bad;
1937 		ret = -EINVAL;
1938 
1939 		p = ipend;
1940 
1941 		if (delim == ']') {
1942 			if (*p != ']') {
1943 				dout("missing matching ']'\n");
1944 				goto bad;
1945 			}
1946 			p++;
1947 		}
1948 
1949 		/* port? */
1950 		if (p < end && *p == ':') {
1951 			port = 0;
1952 			p++;
1953 			while (p < end && *p >= '0' && *p <= '9') {
1954 				port = (port * 10) + (*p - '0');
1955 				p++;
1956 			}
1957 			if (port == 0)
1958 				port = CEPH_MON_PORT;
1959 			else if (port > 65535)
1960 				goto bad;
1961 		} else {
1962 			port = CEPH_MON_PORT;
1963 		}
1964 
1965 		addr_set_port(ss, port);
1966 
1967 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1968 
1969 		if (p == end)
1970 			break;
1971 		if (*p != ',')
1972 			goto bad;
1973 		p++;
1974 	}
1975 
1976 	if (p != end)
1977 		goto bad;
1978 
1979 	if (count)
1980 		*count = i + 1;
1981 	return 0;
1982 
1983 bad:
1984 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL(ceph_parse_ips);
1988 
1989 static int process_banner(struct ceph_connection *con)
1990 {
1991 	dout("process_banner on %p\n", con);
1992 
1993 	if (verify_hello(con) < 0)
1994 		return -1;
1995 
1996 	ceph_decode_addr(&con->actual_peer_addr);
1997 	ceph_decode_addr(&con->peer_addr_for_me);
1998 
1999 	/*
2000 	 * Make sure the other end is who we wanted.  note that the other
2001 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2002 	 * them the benefit of the doubt.
2003 	 */
2004 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2005 		   sizeof(con->peer_addr)) != 0 &&
2006 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2007 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2008 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2009 			ceph_pr_addr(&con->peer_addr.in_addr),
2010 			(int)le32_to_cpu(con->peer_addr.nonce),
2011 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2012 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2013 		con->error_msg = "wrong peer at address";
2014 		return -1;
2015 	}
2016 
2017 	/*
2018 	 * did we learn our address?
2019 	 */
2020 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2021 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2022 
2023 		memcpy(&con->msgr->inst.addr.in_addr,
2024 		       &con->peer_addr_for_me.in_addr,
2025 		       sizeof(con->peer_addr_for_me.in_addr));
2026 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2027 		encode_my_addr(con->msgr);
2028 		dout("process_banner learned my addr is %s\n",
2029 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 static int process_connect(struct ceph_connection *con)
2036 {
2037 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2038 	u64 req_feat = from_msgr(con->msgr)->required_features;
2039 	u64 server_feat = ceph_sanitize_features(
2040 				le64_to_cpu(con->in_reply.features));
2041 	int ret;
2042 
2043 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2044 
2045 	if (con->auth_reply_buf) {
2046 		/*
2047 		 * Any connection that defines ->get_authorizer()
2048 		 * should also define ->verify_authorizer_reply().
2049 		 * See get_connect_authorizer().
2050 		 */
2051 		ret = con->ops->verify_authorizer_reply(con);
2052 		if (ret < 0) {
2053 			con->error_msg = "bad authorize reply";
2054 			return ret;
2055 		}
2056 	}
2057 
2058 	switch (con->in_reply.tag) {
2059 	case CEPH_MSGR_TAG_FEATURES:
2060 		pr_err("%s%lld %s feature set mismatch,"
2061 		       " my %llx < server's %llx, missing %llx\n",
2062 		       ENTITY_NAME(con->peer_name),
2063 		       ceph_pr_addr(&con->peer_addr.in_addr),
2064 		       sup_feat, server_feat, server_feat & ~sup_feat);
2065 		con->error_msg = "missing required protocol features";
2066 		reset_connection(con);
2067 		return -1;
2068 
2069 	case CEPH_MSGR_TAG_BADPROTOVER:
2070 		pr_err("%s%lld %s protocol version mismatch,"
2071 		       " my %d != server's %d\n",
2072 		       ENTITY_NAME(con->peer_name),
2073 		       ceph_pr_addr(&con->peer_addr.in_addr),
2074 		       le32_to_cpu(con->out_connect.protocol_version),
2075 		       le32_to_cpu(con->in_reply.protocol_version));
2076 		con->error_msg = "protocol version mismatch";
2077 		reset_connection(con);
2078 		return -1;
2079 
2080 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2081 		con->auth_retry++;
2082 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2083 		     con->auth_retry);
2084 		if (con->auth_retry == 2) {
2085 			con->error_msg = "connect authorization failure";
2086 			return -1;
2087 		}
2088 		con_out_kvec_reset(con);
2089 		ret = prepare_write_connect(con);
2090 		if (ret < 0)
2091 			return ret;
2092 		prepare_read_connect(con);
2093 		break;
2094 
2095 	case CEPH_MSGR_TAG_RESETSESSION:
2096 		/*
2097 		 * If we connected with a large connect_seq but the peer
2098 		 * has no record of a session with us (no connection, or
2099 		 * connect_seq == 0), they will send RESETSESION to indicate
2100 		 * that they must have reset their session, and may have
2101 		 * dropped messages.
2102 		 */
2103 		dout("process_connect got RESET peer seq %u\n",
2104 		     le32_to_cpu(con->in_reply.connect_seq));
2105 		pr_err("%s%lld %s connection reset\n",
2106 		       ENTITY_NAME(con->peer_name),
2107 		       ceph_pr_addr(&con->peer_addr.in_addr));
2108 		reset_connection(con);
2109 		con_out_kvec_reset(con);
2110 		ret = prepare_write_connect(con);
2111 		if (ret < 0)
2112 			return ret;
2113 		prepare_read_connect(con);
2114 
2115 		/* Tell ceph about it. */
2116 		mutex_unlock(&con->mutex);
2117 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2118 		if (con->ops->peer_reset)
2119 			con->ops->peer_reset(con);
2120 		mutex_lock(&con->mutex);
2121 		if (con->state != CON_STATE_NEGOTIATING)
2122 			return -EAGAIN;
2123 		break;
2124 
2125 	case CEPH_MSGR_TAG_RETRY_SESSION:
2126 		/*
2127 		 * If we sent a smaller connect_seq than the peer has, try
2128 		 * again with a larger value.
2129 		 */
2130 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2131 		     le32_to_cpu(con->out_connect.connect_seq),
2132 		     le32_to_cpu(con->in_reply.connect_seq));
2133 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2134 		con_out_kvec_reset(con);
2135 		ret = prepare_write_connect(con);
2136 		if (ret < 0)
2137 			return ret;
2138 		prepare_read_connect(con);
2139 		break;
2140 
2141 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2142 		/*
2143 		 * If we sent a smaller global_seq than the peer has, try
2144 		 * again with a larger value.
2145 		 */
2146 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2147 		     con->peer_global_seq,
2148 		     le32_to_cpu(con->in_reply.global_seq));
2149 		get_global_seq(con->msgr,
2150 			       le32_to_cpu(con->in_reply.global_seq));
2151 		con_out_kvec_reset(con);
2152 		ret = prepare_write_connect(con);
2153 		if (ret < 0)
2154 			return ret;
2155 		prepare_read_connect(con);
2156 		break;
2157 
2158 	case CEPH_MSGR_TAG_SEQ:
2159 	case CEPH_MSGR_TAG_READY:
2160 		if (req_feat & ~server_feat) {
2161 			pr_err("%s%lld %s protocol feature mismatch,"
2162 			       " my required %llx > server's %llx, need %llx\n",
2163 			       ENTITY_NAME(con->peer_name),
2164 			       ceph_pr_addr(&con->peer_addr.in_addr),
2165 			       req_feat, server_feat, req_feat & ~server_feat);
2166 			con->error_msg = "missing required protocol features";
2167 			reset_connection(con);
2168 			return -1;
2169 		}
2170 
2171 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2172 		con->state = CON_STATE_OPEN;
2173 		con->auth_retry = 0;    /* we authenticated; clear flag */
2174 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2175 		con->connect_seq++;
2176 		con->peer_features = server_feat;
2177 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2178 		     con->peer_global_seq,
2179 		     le32_to_cpu(con->in_reply.connect_seq),
2180 		     con->connect_seq);
2181 		WARN_ON(con->connect_seq !=
2182 			le32_to_cpu(con->in_reply.connect_seq));
2183 
2184 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2185 			con_flag_set(con, CON_FLAG_LOSSYTX);
2186 
2187 		con->delay = 0;      /* reset backoff memory */
2188 
2189 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2190 			prepare_write_seq(con);
2191 			prepare_read_seq(con);
2192 		} else {
2193 			prepare_read_tag(con);
2194 		}
2195 		break;
2196 
2197 	case CEPH_MSGR_TAG_WAIT:
2198 		/*
2199 		 * If there is a connection race (we are opening
2200 		 * connections to each other), one of us may just have
2201 		 * to WAIT.  This shouldn't happen if we are the
2202 		 * client.
2203 		 */
2204 		con->error_msg = "protocol error, got WAIT as client";
2205 		return -1;
2206 
2207 	default:
2208 		con->error_msg = "protocol error, garbage tag during connect";
2209 		return -1;
2210 	}
2211 	return 0;
2212 }
2213 
2214 
2215 /*
2216  * read (part of) an ack
2217  */
2218 static int read_partial_ack(struct ceph_connection *con)
2219 {
2220 	int size = sizeof (con->in_temp_ack);
2221 	int end = size;
2222 
2223 	return read_partial(con, end, size, &con->in_temp_ack);
2224 }
2225 
2226 /*
2227  * We can finally discard anything that's been acked.
2228  */
2229 static void process_ack(struct ceph_connection *con)
2230 {
2231 	struct ceph_msg *m;
2232 	u64 ack = le64_to_cpu(con->in_temp_ack);
2233 	u64 seq;
2234 
2235 	while (!list_empty(&con->out_sent)) {
2236 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2237 				     list_head);
2238 		seq = le64_to_cpu(m->hdr.seq);
2239 		if (seq > ack)
2240 			break;
2241 		dout("got ack for seq %llu type %d at %p\n", seq,
2242 		     le16_to_cpu(m->hdr.type), m);
2243 		m->ack_stamp = jiffies;
2244 		ceph_msg_remove(m);
2245 	}
2246 	prepare_read_tag(con);
2247 }
2248 
2249 
2250 static int read_partial_message_section(struct ceph_connection *con,
2251 					struct kvec *section,
2252 					unsigned int sec_len, u32 *crc)
2253 {
2254 	int ret, left;
2255 
2256 	BUG_ON(!section);
2257 
2258 	while (section->iov_len < sec_len) {
2259 		BUG_ON(section->iov_base == NULL);
2260 		left = sec_len - section->iov_len;
2261 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2262 				       section->iov_len, left);
2263 		if (ret <= 0)
2264 			return ret;
2265 		section->iov_len += ret;
2266 	}
2267 	if (section->iov_len == sec_len)
2268 		*crc = crc32c(0, section->iov_base, section->iov_len);
2269 
2270 	return 1;
2271 }
2272 
2273 static int read_partial_msg_data(struct ceph_connection *con)
2274 {
2275 	struct ceph_msg *msg = con->in_msg;
2276 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2277 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2278 	struct page *page;
2279 	size_t page_offset;
2280 	size_t length;
2281 	u32 crc = 0;
2282 	int ret;
2283 
2284 	BUG_ON(!msg);
2285 	if (list_empty(&msg->data))
2286 		return -EIO;
2287 
2288 	if (do_datacrc)
2289 		crc = con->in_data_crc;
2290 	while (cursor->resid) {
2291 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2292 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2293 		if (ret <= 0) {
2294 			if (do_datacrc)
2295 				con->in_data_crc = crc;
2296 
2297 			return ret;
2298 		}
2299 
2300 		if (do_datacrc)
2301 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2302 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2303 	}
2304 	if (do_datacrc)
2305 		con->in_data_crc = crc;
2306 
2307 	return 1;	/* must return > 0 to indicate success */
2308 }
2309 
2310 /*
2311  * read (part of) a message.
2312  */
2313 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2314 
2315 static int read_partial_message(struct ceph_connection *con)
2316 {
2317 	struct ceph_msg *m = con->in_msg;
2318 	int size;
2319 	int end;
2320 	int ret;
2321 	unsigned int front_len, middle_len, data_len;
2322 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2323 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2324 	u64 seq;
2325 	u32 crc;
2326 
2327 	dout("read_partial_message con %p msg %p\n", con, m);
2328 
2329 	/* header */
2330 	size = sizeof (con->in_hdr);
2331 	end = size;
2332 	ret = read_partial(con, end, size, &con->in_hdr);
2333 	if (ret <= 0)
2334 		return ret;
2335 
2336 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2337 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2338 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2339 		       crc, con->in_hdr.crc);
2340 		return -EBADMSG;
2341 	}
2342 
2343 	front_len = le32_to_cpu(con->in_hdr.front_len);
2344 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2345 		return -EIO;
2346 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2347 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2348 		return -EIO;
2349 	data_len = le32_to_cpu(con->in_hdr.data_len);
2350 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2351 		return -EIO;
2352 
2353 	/* verify seq# */
2354 	seq = le64_to_cpu(con->in_hdr.seq);
2355 	if ((s64)seq - (s64)con->in_seq < 1) {
2356 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2357 			ENTITY_NAME(con->peer_name),
2358 			ceph_pr_addr(&con->peer_addr.in_addr),
2359 			seq, con->in_seq + 1);
2360 		con->in_base_pos = -front_len - middle_len - data_len -
2361 			sizeof_footer(con);
2362 		con->in_tag = CEPH_MSGR_TAG_READY;
2363 		return 1;
2364 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2365 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2366 		       seq, con->in_seq + 1);
2367 		con->error_msg = "bad message sequence # for incoming message";
2368 		return -EBADE;
2369 	}
2370 
2371 	/* allocate message? */
2372 	if (!con->in_msg) {
2373 		int skip = 0;
2374 
2375 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2376 		     front_len, data_len);
2377 		ret = ceph_con_in_msg_alloc(con, &skip);
2378 		if (ret < 0)
2379 			return ret;
2380 
2381 		BUG_ON(!con->in_msg ^ skip);
2382 		if (skip) {
2383 			/* skip this message */
2384 			dout("alloc_msg said skip message\n");
2385 			con->in_base_pos = -front_len - middle_len - data_len -
2386 				sizeof_footer(con);
2387 			con->in_tag = CEPH_MSGR_TAG_READY;
2388 			con->in_seq++;
2389 			return 1;
2390 		}
2391 
2392 		BUG_ON(!con->in_msg);
2393 		BUG_ON(con->in_msg->con != con);
2394 		m = con->in_msg;
2395 		m->front.iov_len = 0;    /* haven't read it yet */
2396 		if (m->middle)
2397 			m->middle->vec.iov_len = 0;
2398 
2399 		/* prepare for data payload, if any */
2400 
2401 		if (data_len)
2402 			prepare_message_data(con->in_msg, data_len);
2403 	}
2404 
2405 	/* front */
2406 	ret = read_partial_message_section(con, &m->front, front_len,
2407 					   &con->in_front_crc);
2408 	if (ret <= 0)
2409 		return ret;
2410 
2411 	/* middle */
2412 	if (m->middle) {
2413 		ret = read_partial_message_section(con, &m->middle->vec,
2414 						   middle_len,
2415 						   &con->in_middle_crc);
2416 		if (ret <= 0)
2417 			return ret;
2418 	}
2419 
2420 	/* (page) data */
2421 	if (data_len) {
2422 		ret = read_partial_msg_data(con);
2423 		if (ret <= 0)
2424 			return ret;
2425 	}
2426 
2427 	/* footer */
2428 	size = sizeof_footer(con);
2429 	end += size;
2430 	ret = read_partial(con, end, size, &m->footer);
2431 	if (ret <= 0)
2432 		return ret;
2433 
2434 	if (!need_sign) {
2435 		m->footer.flags = m->old_footer.flags;
2436 		m->footer.sig = 0;
2437 	}
2438 
2439 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2440 	     m, front_len, m->footer.front_crc, middle_len,
2441 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2442 
2443 	/* crc ok? */
2444 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2445 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2446 		       m, con->in_front_crc, m->footer.front_crc);
2447 		return -EBADMSG;
2448 	}
2449 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2450 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2451 		       m, con->in_middle_crc, m->footer.middle_crc);
2452 		return -EBADMSG;
2453 	}
2454 	if (do_datacrc &&
2455 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2456 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2457 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2458 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2459 		return -EBADMSG;
2460 	}
2461 
2462 	if (need_sign && con->ops->check_message_signature &&
2463 	    con->ops->check_message_signature(m)) {
2464 		pr_err("read_partial_message %p signature check failed\n", m);
2465 		return -EBADMSG;
2466 	}
2467 
2468 	return 1; /* done! */
2469 }
2470 
2471 /*
2472  * Process message.  This happens in the worker thread.  The callback should
2473  * be careful not to do anything that waits on other incoming messages or it
2474  * may deadlock.
2475  */
2476 static void process_message(struct ceph_connection *con)
2477 {
2478 	struct ceph_msg *msg = con->in_msg;
2479 
2480 	BUG_ON(con->in_msg->con != con);
2481 	con->in_msg = NULL;
2482 
2483 	/* if first message, set peer_name */
2484 	if (con->peer_name.type == 0)
2485 		con->peer_name = msg->hdr.src;
2486 
2487 	con->in_seq++;
2488 	mutex_unlock(&con->mutex);
2489 
2490 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2491 	     msg, le64_to_cpu(msg->hdr.seq),
2492 	     ENTITY_NAME(msg->hdr.src),
2493 	     le16_to_cpu(msg->hdr.type),
2494 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2495 	     le32_to_cpu(msg->hdr.front_len),
2496 	     le32_to_cpu(msg->hdr.data_len),
2497 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2498 	con->ops->dispatch(con, msg);
2499 
2500 	mutex_lock(&con->mutex);
2501 }
2502 
2503 static int read_keepalive_ack(struct ceph_connection *con)
2504 {
2505 	struct ceph_timespec ceph_ts;
2506 	size_t size = sizeof(ceph_ts);
2507 	int ret = read_partial(con, size, size, &ceph_ts);
2508 	if (ret <= 0)
2509 		return ret;
2510 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2511 	prepare_read_tag(con);
2512 	return 1;
2513 }
2514 
2515 /*
2516  * Write something to the socket.  Called in a worker thread when the
2517  * socket appears to be writeable and we have something ready to send.
2518  */
2519 static int try_write(struct ceph_connection *con)
2520 {
2521 	int ret = 1;
2522 
2523 	dout("try_write start %p state %lu\n", con, con->state);
2524 
2525 more:
2526 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2527 
2528 	/* open the socket first? */
2529 	if (con->state == CON_STATE_PREOPEN) {
2530 		BUG_ON(con->sock);
2531 		con->state = CON_STATE_CONNECTING;
2532 
2533 		con_out_kvec_reset(con);
2534 		prepare_write_banner(con);
2535 		prepare_read_banner(con);
2536 
2537 		BUG_ON(con->in_msg);
2538 		con->in_tag = CEPH_MSGR_TAG_READY;
2539 		dout("try_write initiating connect on %p new state %lu\n",
2540 		     con, con->state);
2541 		ret = ceph_tcp_connect(con);
2542 		if (ret < 0) {
2543 			con->error_msg = "connect error";
2544 			goto out;
2545 		}
2546 	}
2547 
2548 more_kvec:
2549 	/* kvec data queued? */
2550 	if (con->out_kvec_left) {
2551 		ret = write_partial_kvec(con);
2552 		if (ret <= 0)
2553 			goto out;
2554 	}
2555 	if (con->out_skip) {
2556 		ret = write_partial_skip(con);
2557 		if (ret <= 0)
2558 			goto out;
2559 	}
2560 
2561 	/* msg pages? */
2562 	if (con->out_msg) {
2563 		if (con->out_msg_done) {
2564 			ceph_msg_put(con->out_msg);
2565 			con->out_msg = NULL;   /* we're done with this one */
2566 			goto do_next;
2567 		}
2568 
2569 		ret = write_partial_message_data(con);
2570 		if (ret == 1)
2571 			goto more_kvec;  /* we need to send the footer, too! */
2572 		if (ret == 0)
2573 			goto out;
2574 		if (ret < 0) {
2575 			dout("try_write write_partial_message_data err %d\n",
2576 			     ret);
2577 			goto out;
2578 		}
2579 	}
2580 
2581 do_next:
2582 	if (con->state == CON_STATE_OPEN) {
2583 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2584 			prepare_write_keepalive(con);
2585 			goto more;
2586 		}
2587 		/* is anything else pending? */
2588 		if (!list_empty(&con->out_queue)) {
2589 			prepare_write_message(con);
2590 			goto more;
2591 		}
2592 		if (con->in_seq > con->in_seq_acked) {
2593 			prepare_write_ack(con);
2594 			goto more;
2595 		}
2596 	}
2597 
2598 	/* Nothing to do! */
2599 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2600 	dout("try_write nothing else to write.\n");
2601 	ret = 0;
2602 out:
2603 	dout("try_write done on %p ret %d\n", con, ret);
2604 	return ret;
2605 }
2606 
2607 
2608 
2609 /*
2610  * Read what we can from the socket.
2611  */
2612 static int try_read(struct ceph_connection *con)
2613 {
2614 	int ret = -1;
2615 
2616 more:
2617 	dout("try_read start on %p state %lu\n", con, con->state);
2618 	if (con->state != CON_STATE_CONNECTING &&
2619 	    con->state != CON_STATE_NEGOTIATING &&
2620 	    con->state != CON_STATE_OPEN)
2621 		return 0;
2622 
2623 	BUG_ON(!con->sock);
2624 
2625 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2626 	     con->in_base_pos);
2627 
2628 	if (con->state == CON_STATE_CONNECTING) {
2629 		dout("try_read connecting\n");
2630 		ret = read_partial_banner(con);
2631 		if (ret <= 0)
2632 			goto out;
2633 		ret = process_banner(con);
2634 		if (ret < 0)
2635 			goto out;
2636 
2637 		con->state = CON_STATE_NEGOTIATING;
2638 
2639 		/*
2640 		 * Received banner is good, exchange connection info.
2641 		 * Do not reset out_kvec, as sending our banner raced
2642 		 * with receiving peer banner after connect completed.
2643 		 */
2644 		ret = prepare_write_connect(con);
2645 		if (ret < 0)
2646 			goto out;
2647 		prepare_read_connect(con);
2648 
2649 		/* Send connection info before awaiting response */
2650 		goto out;
2651 	}
2652 
2653 	if (con->state == CON_STATE_NEGOTIATING) {
2654 		dout("try_read negotiating\n");
2655 		ret = read_partial_connect(con);
2656 		if (ret <= 0)
2657 			goto out;
2658 		ret = process_connect(con);
2659 		if (ret < 0)
2660 			goto out;
2661 		goto more;
2662 	}
2663 
2664 	WARN_ON(con->state != CON_STATE_OPEN);
2665 
2666 	if (con->in_base_pos < 0) {
2667 		/*
2668 		 * skipping + discarding content.
2669 		 *
2670 		 * FIXME: there must be a better way to do this!
2671 		 */
2672 		static char buf[SKIP_BUF_SIZE];
2673 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2674 
2675 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2676 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2677 		if (ret <= 0)
2678 			goto out;
2679 		con->in_base_pos += ret;
2680 		if (con->in_base_pos)
2681 			goto more;
2682 	}
2683 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2684 		/*
2685 		 * what's next?
2686 		 */
2687 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2688 		if (ret <= 0)
2689 			goto out;
2690 		dout("try_read got tag %d\n", (int)con->in_tag);
2691 		switch (con->in_tag) {
2692 		case CEPH_MSGR_TAG_MSG:
2693 			prepare_read_message(con);
2694 			break;
2695 		case CEPH_MSGR_TAG_ACK:
2696 			prepare_read_ack(con);
2697 			break;
2698 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2699 			prepare_read_keepalive_ack(con);
2700 			break;
2701 		case CEPH_MSGR_TAG_CLOSE:
2702 			con_close_socket(con);
2703 			con->state = CON_STATE_CLOSED;
2704 			goto out;
2705 		default:
2706 			goto bad_tag;
2707 		}
2708 	}
2709 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2710 		ret = read_partial_message(con);
2711 		if (ret <= 0) {
2712 			switch (ret) {
2713 			case -EBADMSG:
2714 				con->error_msg = "bad crc/signature";
2715 				/* fall through */
2716 			case -EBADE:
2717 				ret = -EIO;
2718 				break;
2719 			case -EIO:
2720 				con->error_msg = "io error";
2721 				break;
2722 			}
2723 			goto out;
2724 		}
2725 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2726 			goto more;
2727 		process_message(con);
2728 		if (con->state == CON_STATE_OPEN)
2729 			prepare_read_tag(con);
2730 		goto more;
2731 	}
2732 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2733 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2734 		/*
2735 		 * the final handshake seq exchange is semantically
2736 		 * equivalent to an ACK
2737 		 */
2738 		ret = read_partial_ack(con);
2739 		if (ret <= 0)
2740 			goto out;
2741 		process_ack(con);
2742 		goto more;
2743 	}
2744 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2745 		ret = read_keepalive_ack(con);
2746 		if (ret <= 0)
2747 			goto out;
2748 		goto more;
2749 	}
2750 
2751 out:
2752 	dout("try_read done on %p ret %d\n", con, ret);
2753 	return ret;
2754 
2755 bad_tag:
2756 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2757 	con->error_msg = "protocol error, garbage tag";
2758 	ret = -1;
2759 	goto out;
2760 }
2761 
2762 
2763 /*
2764  * Atomically queue work on a connection after the specified delay.
2765  * Bump @con reference to avoid races with connection teardown.
2766  * Returns 0 if work was queued, or an error code otherwise.
2767  */
2768 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2769 {
2770 	if (!con->ops->get(con)) {
2771 		dout("%s %p ref count 0\n", __func__, con);
2772 		return -ENOENT;
2773 	}
2774 
2775 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2776 		dout("%s %p - already queued\n", __func__, con);
2777 		con->ops->put(con);
2778 		return -EBUSY;
2779 	}
2780 
2781 	dout("%s %p %lu\n", __func__, con, delay);
2782 	return 0;
2783 }
2784 
2785 static void queue_con(struct ceph_connection *con)
2786 {
2787 	(void) queue_con_delay(con, 0);
2788 }
2789 
2790 static void cancel_con(struct ceph_connection *con)
2791 {
2792 	if (cancel_delayed_work(&con->work)) {
2793 		dout("%s %p\n", __func__, con);
2794 		con->ops->put(con);
2795 	}
2796 }
2797 
2798 static bool con_sock_closed(struct ceph_connection *con)
2799 {
2800 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2801 		return false;
2802 
2803 #define CASE(x)								\
2804 	case CON_STATE_ ## x:						\
2805 		con->error_msg = "socket closed (con state " #x ")";	\
2806 		break;
2807 
2808 	switch (con->state) {
2809 	CASE(CLOSED);
2810 	CASE(PREOPEN);
2811 	CASE(CONNECTING);
2812 	CASE(NEGOTIATING);
2813 	CASE(OPEN);
2814 	CASE(STANDBY);
2815 	default:
2816 		pr_warn("%s con %p unrecognized state %lu\n",
2817 			__func__, con, con->state);
2818 		con->error_msg = "unrecognized con state";
2819 		BUG();
2820 		break;
2821 	}
2822 #undef CASE
2823 
2824 	return true;
2825 }
2826 
2827 static bool con_backoff(struct ceph_connection *con)
2828 {
2829 	int ret;
2830 
2831 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2832 		return false;
2833 
2834 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2835 	if (ret) {
2836 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2837 			con, con->delay);
2838 		BUG_ON(ret == -ENOENT);
2839 		con_flag_set(con, CON_FLAG_BACKOFF);
2840 	}
2841 
2842 	return true;
2843 }
2844 
2845 /* Finish fault handling; con->mutex must *not* be held here */
2846 
2847 static void con_fault_finish(struct ceph_connection *con)
2848 {
2849 	dout("%s %p\n", __func__, con);
2850 
2851 	/*
2852 	 * in case we faulted due to authentication, invalidate our
2853 	 * current tickets so that we can get new ones.
2854 	 */
2855 	if (con->auth_retry) {
2856 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2857 		if (con->ops->invalidate_authorizer)
2858 			con->ops->invalidate_authorizer(con);
2859 		con->auth_retry = 0;
2860 	}
2861 
2862 	if (con->ops->fault)
2863 		con->ops->fault(con);
2864 }
2865 
2866 /*
2867  * Do some work on a connection.  Drop a connection ref when we're done.
2868  */
2869 static void ceph_con_workfn(struct work_struct *work)
2870 {
2871 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2872 						   work.work);
2873 	bool fault;
2874 
2875 	mutex_lock(&con->mutex);
2876 	while (true) {
2877 		int ret;
2878 
2879 		if ((fault = con_sock_closed(con))) {
2880 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2881 			break;
2882 		}
2883 		if (con_backoff(con)) {
2884 			dout("%s: con %p BACKOFF\n", __func__, con);
2885 			break;
2886 		}
2887 		if (con->state == CON_STATE_STANDBY) {
2888 			dout("%s: con %p STANDBY\n", __func__, con);
2889 			break;
2890 		}
2891 		if (con->state == CON_STATE_CLOSED) {
2892 			dout("%s: con %p CLOSED\n", __func__, con);
2893 			BUG_ON(con->sock);
2894 			break;
2895 		}
2896 		if (con->state == CON_STATE_PREOPEN) {
2897 			dout("%s: con %p PREOPEN\n", __func__, con);
2898 			BUG_ON(con->sock);
2899 		}
2900 
2901 		ret = try_read(con);
2902 		if (ret < 0) {
2903 			if (ret == -EAGAIN)
2904 				continue;
2905 			if (!con->error_msg)
2906 				con->error_msg = "socket error on read";
2907 			fault = true;
2908 			break;
2909 		}
2910 
2911 		ret = try_write(con);
2912 		if (ret < 0) {
2913 			if (ret == -EAGAIN)
2914 				continue;
2915 			if (!con->error_msg)
2916 				con->error_msg = "socket error on write";
2917 			fault = true;
2918 		}
2919 
2920 		break;	/* If we make it to here, we're done */
2921 	}
2922 	if (fault)
2923 		con_fault(con);
2924 	mutex_unlock(&con->mutex);
2925 
2926 	if (fault)
2927 		con_fault_finish(con);
2928 
2929 	con->ops->put(con);
2930 }
2931 
2932 /*
2933  * Generic error/fault handler.  A retry mechanism is used with
2934  * exponential backoff
2935  */
2936 static void con_fault(struct ceph_connection *con)
2937 {
2938 	dout("fault %p state %lu to peer %s\n",
2939 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2940 
2941 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2942 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2943 	con->error_msg = NULL;
2944 
2945 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2946 	       con->state != CON_STATE_NEGOTIATING &&
2947 	       con->state != CON_STATE_OPEN);
2948 
2949 	con_close_socket(con);
2950 
2951 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2952 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2953 		con->state = CON_STATE_CLOSED;
2954 		return;
2955 	}
2956 
2957 	if (con->in_msg) {
2958 		BUG_ON(con->in_msg->con != con);
2959 		ceph_msg_put(con->in_msg);
2960 		con->in_msg = NULL;
2961 	}
2962 
2963 	/* Requeue anything that hasn't been acked */
2964 	list_splice_init(&con->out_sent, &con->out_queue);
2965 
2966 	/* If there are no messages queued or keepalive pending, place
2967 	 * the connection in a STANDBY state */
2968 	if (list_empty(&con->out_queue) &&
2969 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2970 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2971 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2972 		con->state = CON_STATE_STANDBY;
2973 	} else {
2974 		/* retry after a delay. */
2975 		con->state = CON_STATE_PREOPEN;
2976 		if (con->delay == 0)
2977 			con->delay = BASE_DELAY_INTERVAL;
2978 		else if (con->delay < MAX_DELAY_INTERVAL)
2979 			con->delay *= 2;
2980 		con_flag_set(con, CON_FLAG_BACKOFF);
2981 		queue_con(con);
2982 	}
2983 }
2984 
2985 
2986 
2987 /*
2988  * initialize a new messenger instance
2989  */
2990 void ceph_messenger_init(struct ceph_messenger *msgr,
2991 			 struct ceph_entity_addr *myaddr)
2992 {
2993 	spin_lock_init(&msgr->global_seq_lock);
2994 
2995 	if (myaddr)
2996 		msgr->inst.addr = *myaddr;
2997 
2998 	/* select a random nonce */
2999 	msgr->inst.addr.type = 0;
3000 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3001 	encode_my_addr(msgr);
3002 
3003 	atomic_set(&msgr->stopping, 0);
3004 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3005 
3006 	dout("%s %p\n", __func__, msgr);
3007 }
3008 EXPORT_SYMBOL(ceph_messenger_init);
3009 
3010 void ceph_messenger_fini(struct ceph_messenger *msgr)
3011 {
3012 	put_net(read_pnet(&msgr->net));
3013 }
3014 EXPORT_SYMBOL(ceph_messenger_fini);
3015 
3016 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3017 {
3018 	if (msg->con)
3019 		msg->con->ops->put(msg->con);
3020 
3021 	msg->con = con ? con->ops->get(con) : NULL;
3022 	BUG_ON(msg->con != con);
3023 }
3024 
3025 static void clear_standby(struct ceph_connection *con)
3026 {
3027 	/* come back from STANDBY? */
3028 	if (con->state == CON_STATE_STANDBY) {
3029 		dout("clear_standby %p and ++connect_seq\n", con);
3030 		con->state = CON_STATE_PREOPEN;
3031 		con->connect_seq++;
3032 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3033 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3034 	}
3035 }
3036 
3037 /*
3038  * Queue up an outgoing message on the given connection.
3039  */
3040 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3041 {
3042 	/* set src+dst */
3043 	msg->hdr.src = con->msgr->inst.name;
3044 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3045 	msg->needs_out_seq = true;
3046 
3047 	mutex_lock(&con->mutex);
3048 
3049 	if (con->state == CON_STATE_CLOSED) {
3050 		dout("con_send %p closed, dropping %p\n", con, msg);
3051 		ceph_msg_put(msg);
3052 		mutex_unlock(&con->mutex);
3053 		return;
3054 	}
3055 
3056 	msg_con_set(msg, con);
3057 
3058 	BUG_ON(!list_empty(&msg->list_head));
3059 	list_add_tail(&msg->list_head, &con->out_queue);
3060 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3061 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3062 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3063 	     le32_to_cpu(msg->hdr.front_len),
3064 	     le32_to_cpu(msg->hdr.middle_len),
3065 	     le32_to_cpu(msg->hdr.data_len));
3066 
3067 	clear_standby(con);
3068 	mutex_unlock(&con->mutex);
3069 
3070 	/* if there wasn't anything waiting to send before, queue
3071 	 * new work */
3072 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3073 		queue_con(con);
3074 }
3075 EXPORT_SYMBOL(ceph_con_send);
3076 
3077 /*
3078  * Revoke a message that was previously queued for send
3079  */
3080 void ceph_msg_revoke(struct ceph_msg *msg)
3081 {
3082 	struct ceph_connection *con = msg->con;
3083 
3084 	if (!con) {
3085 		dout("%s msg %p null con\n", __func__, msg);
3086 		return;		/* Message not in our possession */
3087 	}
3088 
3089 	mutex_lock(&con->mutex);
3090 	if (!list_empty(&msg->list_head)) {
3091 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3092 		list_del_init(&msg->list_head);
3093 		msg->hdr.seq = 0;
3094 
3095 		ceph_msg_put(msg);
3096 	}
3097 	if (con->out_msg == msg) {
3098 		BUG_ON(con->out_skip);
3099 		/* footer */
3100 		if (con->out_msg_done) {
3101 			con->out_skip += con_out_kvec_skip(con);
3102 		} else {
3103 			BUG_ON(!msg->data_length);
3104 			con->out_skip += sizeof_footer(con);
3105 		}
3106 		/* data, middle, front */
3107 		if (msg->data_length)
3108 			con->out_skip += msg->cursor.total_resid;
3109 		if (msg->middle)
3110 			con->out_skip += con_out_kvec_skip(con);
3111 		con->out_skip += con_out_kvec_skip(con);
3112 
3113 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3114 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3115 		msg->hdr.seq = 0;
3116 		con->out_msg = NULL;
3117 		ceph_msg_put(msg);
3118 	}
3119 
3120 	mutex_unlock(&con->mutex);
3121 }
3122 
3123 /*
3124  * Revoke a message that we may be reading data into
3125  */
3126 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3127 {
3128 	struct ceph_connection *con = msg->con;
3129 
3130 	if (!con) {
3131 		dout("%s msg %p null con\n", __func__, msg);
3132 		return;		/* Message not in our possession */
3133 	}
3134 
3135 	mutex_lock(&con->mutex);
3136 	if (con->in_msg == msg) {
3137 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3138 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3139 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3140 
3141 		/* skip rest of message */
3142 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3143 		con->in_base_pos = con->in_base_pos -
3144 				sizeof(struct ceph_msg_header) -
3145 				front_len -
3146 				middle_len -
3147 				data_len -
3148 				sizeof(struct ceph_msg_footer);
3149 		ceph_msg_put(con->in_msg);
3150 		con->in_msg = NULL;
3151 		con->in_tag = CEPH_MSGR_TAG_READY;
3152 		con->in_seq++;
3153 	} else {
3154 		dout("%s %p in_msg %p msg %p no-op\n",
3155 		     __func__, con, con->in_msg, msg);
3156 	}
3157 	mutex_unlock(&con->mutex);
3158 }
3159 
3160 /*
3161  * Queue a keepalive byte to ensure the tcp connection is alive.
3162  */
3163 void ceph_con_keepalive(struct ceph_connection *con)
3164 {
3165 	dout("con_keepalive %p\n", con);
3166 	mutex_lock(&con->mutex);
3167 	clear_standby(con);
3168 	mutex_unlock(&con->mutex);
3169 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3170 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3171 		queue_con(con);
3172 }
3173 EXPORT_SYMBOL(ceph_con_keepalive);
3174 
3175 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3176 			       unsigned long interval)
3177 {
3178 	if (interval > 0 &&
3179 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3180 		struct timespec now;
3181 		struct timespec ts;
3182 		ktime_get_real_ts(&now);
3183 		jiffies_to_timespec(interval, &ts);
3184 		ts = timespec_add(con->last_keepalive_ack, ts);
3185 		return timespec_compare(&now, &ts) >= 0;
3186 	}
3187 	return false;
3188 }
3189 
3190 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3191 {
3192 	struct ceph_msg_data *data;
3193 
3194 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3195 		return NULL;
3196 
3197 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3198 	if (data)
3199 		data->type = type;
3200 	INIT_LIST_HEAD(&data->links);
3201 
3202 	return data;
3203 }
3204 
3205 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3206 {
3207 	if (!data)
3208 		return;
3209 
3210 	WARN_ON(!list_empty(&data->links));
3211 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3212 		ceph_pagelist_release(data->pagelist);
3213 	kmem_cache_free(ceph_msg_data_cache, data);
3214 }
3215 
3216 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3217 		size_t length, size_t alignment)
3218 {
3219 	struct ceph_msg_data *data;
3220 
3221 	BUG_ON(!pages);
3222 	BUG_ON(!length);
3223 
3224 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3225 	BUG_ON(!data);
3226 	data->pages = pages;
3227 	data->length = length;
3228 	data->alignment = alignment & ~PAGE_MASK;
3229 
3230 	list_add_tail(&data->links, &msg->data);
3231 	msg->data_length += length;
3232 }
3233 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3234 
3235 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3236 				struct ceph_pagelist *pagelist)
3237 {
3238 	struct ceph_msg_data *data;
3239 
3240 	BUG_ON(!pagelist);
3241 	BUG_ON(!pagelist->length);
3242 
3243 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3244 	BUG_ON(!data);
3245 	data->pagelist = pagelist;
3246 
3247 	list_add_tail(&data->links, &msg->data);
3248 	msg->data_length += pagelist->length;
3249 }
3250 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3251 
3252 #ifdef	CONFIG_BLOCK
3253 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3254 		size_t length)
3255 {
3256 	struct ceph_msg_data *data;
3257 
3258 	BUG_ON(!bio);
3259 
3260 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3261 	BUG_ON(!data);
3262 	data->bio = bio;
3263 	data->bio_length = length;
3264 
3265 	list_add_tail(&data->links, &msg->data);
3266 	msg->data_length += length;
3267 }
3268 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3269 #endif	/* CONFIG_BLOCK */
3270 
3271 /*
3272  * construct a new message with given type, size
3273  * the new msg has a ref count of 1.
3274  */
3275 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3276 			      bool can_fail)
3277 {
3278 	struct ceph_msg *m;
3279 
3280 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3281 	if (m == NULL)
3282 		goto out;
3283 
3284 	m->hdr.type = cpu_to_le16(type);
3285 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3286 	m->hdr.front_len = cpu_to_le32(front_len);
3287 
3288 	INIT_LIST_HEAD(&m->list_head);
3289 	kref_init(&m->kref);
3290 	INIT_LIST_HEAD(&m->data);
3291 
3292 	/* front */
3293 	if (front_len) {
3294 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3295 		if (m->front.iov_base == NULL) {
3296 			dout("ceph_msg_new can't allocate %d bytes\n",
3297 			     front_len);
3298 			goto out2;
3299 		}
3300 	} else {
3301 		m->front.iov_base = NULL;
3302 	}
3303 	m->front_alloc_len = m->front.iov_len = front_len;
3304 
3305 	dout("ceph_msg_new %p front %d\n", m, front_len);
3306 	return m;
3307 
3308 out2:
3309 	ceph_msg_put(m);
3310 out:
3311 	if (!can_fail) {
3312 		pr_err("msg_new can't create type %d front %d\n", type,
3313 		       front_len);
3314 		WARN_ON(1);
3315 	} else {
3316 		dout("msg_new can't create type %d front %d\n", type,
3317 		     front_len);
3318 	}
3319 	return NULL;
3320 }
3321 EXPORT_SYMBOL(ceph_msg_new);
3322 
3323 /*
3324  * Allocate "middle" portion of a message, if it is needed and wasn't
3325  * allocated by alloc_msg.  This allows us to read a small fixed-size
3326  * per-type header in the front and then gracefully fail (i.e.,
3327  * propagate the error to the caller based on info in the front) when
3328  * the middle is too large.
3329  */
3330 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3331 {
3332 	int type = le16_to_cpu(msg->hdr.type);
3333 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3334 
3335 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3336 	     ceph_msg_type_name(type), middle_len);
3337 	BUG_ON(!middle_len);
3338 	BUG_ON(msg->middle);
3339 
3340 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3341 	if (!msg->middle)
3342 		return -ENOMEM;
3343 	return 0;
3344 }
3345 
3346 /*
3347  * Allocate a message for receiving an incoming message on a
3348  * connection, and save the result in con->in_msg.  Uses the
3349  * connection's private alloc_msg op if available.
3350  *
3351  * Returns 0 on success, or a negative error code.
3352  *
3353  * On success, if we set *skip = 1:
3354  *  - the next message should be skipped and ignored.
3355  *  - con->in_msg == NULL
3356  * or if we set *skip = 0:
3357  *  - con->in_msg is non-null.
3358  * On error (ENOMEM, EAGAIN, ...),
3359  *  - con->in_msg == NULL
3360  */
3361 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3362 {
3363 	struct ceph_msg_header *hdr = &con->in_hdr;
3364 	int middle_len = le32_to_cpu(hdr->middle_len);
3365 	struct ceph_msg *msg;
3366 	int ret = 0;
3367 
3368 	BUG_ON(con->in_msg != NULL);
3369 	BUG_ON(!con->ops->alloc_msg);
3370 
3371 	mutex_unlock(&con->mutex);
3372 	msg = con->ops->alloc_msg(con, hdr, skip);
3373 	mutex_lock(&con->mutex);
3374 	if (con->state != CON_STATE_OPEN) {
3375 		if (msg)
3376 			ceph_msg_put(msg);
3377 		return -EAGAIN;
3378 	}
3379 	if (msg) {
3380 		BUG_ON(*skip);
3381 		msg_con_set(msg, con);
3382 		con->in_msg = msg;
3383 	} else {
3384 		/*
3385 		 * Null message pointer means either we should skip
3386 		 * this message or we couldn't allocate memory.  The
3387 		 * former is not an error.
3388 		 */
3389 		if (*skip)
3390 			return 0;
3391 
3392 		con->error_msg = "error allocating memory for incoming message";
3393 		return -ENOMEM;
3394 	}
3395 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3396 
3397 	if (middle_len && !con->in_msg->middle) {
3398 		ret = ceph_alloc_middle(con, con->in_msg);
3399 		if (ret < 0) {
3400 			ceph_msg_put(con->in_msg);
3401 			con->in_msg = NULL;
3402 		}
3403 	}
3404 
3405 	return ret;
3406 }
3407 
3408 
3409 /*
3410  * Free a generically kmalloc'd message.
3411  */
3412 static void ceph_msg_free(struct ceph_msg *m)
3413 {
3414 	dout("%s %p\n", __func__, m);
3415 	kvfree(m->front.iov_base);
3416 	kmem_cache_free(ceph_msg_cache, m);
3417 }
3418 
3419 static void ceph_msg_release(struct kref *kref)
3420 {
3421 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3422 	struct ceph_msg_data *data, *next;
3423 
3424 	dout("%s %p\n", __func__, m);
3425 	WARN_ON(!list_empty(&m->list_head));
3426 
3427 	msg_con_set(m, NULL);
3428 
3429 	/* drop middle, data, if any */
3430 	if (m->middle) {
3431 		ceph_buffer_put(m->middle);
3432 		m->middle = NULL;
3433 	}
3434 
3435 	list_for_each_entry_safe(data, next, &m->data, links) {
3436 		list_del_init(&data->links);
3437 		ceph_msg_data_destroy(data);
3438 	}
3439 	m->data_length = 0;
3440 
3441 	if (m->pool)
3442 		ceph_msgpool_put(m->pool, m);
3443 	else
3444 		ceph_msg_free(m);
3445 }
3446 
3447 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3448 {
3449 	dout("%s %p (was %d)\n", __func__, msg,
3450 	     kref_read(&msg->kref));
3451 	kref_get(&msg->kref);
3452 	return msg;
3453 }
3454 EXPORT_SYMBOL(ceph_msg_get);
3455 
3456 void ceph_msg_put(struct ceph_msg *msg)
3457 {
3458 	dout("%s %p (was %d)\n", __func__, msg,
3459 	     kref_read(&msg->kref));
3460 	kref_put(&msg->kref, ceph_msg_release);
3461 }
3462 EXPORT_SYMBOL(ceph_msg_put);
3463 
3464 void ceph_msg_dump(struct ceph_msg *msg)
3465 {
3466 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3467 		 msg->front_alloc_len, msg->data_length);
3468 	print_hex_dump(KERN_DEBUG, "header: ",
3469 		       DUMP_PREFIX_OFFSET, 16, 1,
3470 		       &msg->hdr, sizeof(msg->hdr), true);
3471 	print_hex_dump(KERN_DEBUG, " front: ",
3472 		       DUMP_PREFIX_OFFSET, 16, 1,
3473 		       msg->front.iov_base, msg->front.iov_len, true);
3474 	if (msg->middle)
3475 		print_hex_dump(KERN_DEBUG, "middle: ",
3476 			       DUMP_PREFIX_OFFSET, 16, 1,
3477 			       msg->middle->vec.iov_base,
3478 			       msg->middle->vec.iov_len, true);
3479 	print_hex_dump(KERN_DEBUG, "footer: ",
3480 		       DUMP_PREFIX_OFFSET, 16, 1,
3481 		       &msg->footer, sizeof(msg->footer), true);
3482 }
3483 EXPORT_SYMBOL(ceph_msg_dump);
3484