xref: /openbmc/linux/net/ceph/messenger.c (revision 9ae05fd1)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/sched/mm.h>
11 #include <linux/slab.h>
12 #include <linux/socket.h>
13 #include <linux/string.h>
14 #ifdef	CONFIG_BLOCK
15 #include <linux/bio.h>
16 #endif	/* CONFIG_BLOCK */
17 #include <linux/dns_resolver.h>
18 #include <net/tcp.h>
19 
20 #include <linux/ceph/ceph_features.h>
21 #include <linux/ceph/libceph.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/export.h>
26 
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35 
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77 
78 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
83 
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93 
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98 				       * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103 
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 	switch (con_flag) {
107 	case CON_FLAG_LOSSYTX:
108 	case CON_FLAG_KEEPALIVE_PENDING:
109 	case CON_FLAG_WRITE_PENDING:
110 	case CON_FLAG_SOCK_CLOSED:
111 	case CON_FLAG_BACKOFF:
112 		return true;
113 	default:
114 		return false;
115 	}
116 }
117 
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 	BUG_ON(!con_flag_valid(con_flag));
121 
122 	clear_bit(con_flag, &con->flags);
123 }
124 
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 	BUG_ON(!con_flag_valid(con_flag));
128 
129 	set_bit(con_flag, &con->flags);
130 }
131 
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 	BUG_ON(!con_flag_valid(con_flag));
135 
136 	return test_bit(con_flag, &con->flags);
137 }
138 
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 					unsigned long con_flag)
141 {
142 	BUG_ON(!con_flag_valid(con_flag));
143 
144 	return test_and_clear_bit(con_flag, &con->flags);
145 }
146 
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 					unsigned long con_flag)
149 {
150 	BUG_ON(!con_flag_valid(con_flag));
151 
152 	return test_and_set_bit(con_flag, &con->flags);
153 }
154 
155 /* Slab caches for frequently-allocated structures */
156 
157 static struct kmem_cache	*ceph_msg_cache;
158 static struct kmem_cache	*ceph_msg_data_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void ceph_con_workfn(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
240 	if (!ceph_msg_cache)
241 		return -ENOMEM;
242 
243 	BUG_ON(ceph_msg_data_cache);
244 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
245 	if (ceph_msg_data_cache)
246 		return 0;
247 
248 	kmem_cache_destroy(ceph_msg_cache);
249 	ceph_msg_cache = NULL;
250 
251 	return -ENOMEM;
252 }
253 
254 static void ceph_msgr_slab_exit(void)
255 {
256 	BUG_ON(!ceph_msg_data_cache);
257 	kmem_cache_destroy(ceph_msg_data_cache);
258 	ceph_msg_data_cache = NULL;
259 
260 	BUG_ON(!ceph_msg_cache);
261 	kmem_cache_destroy(ceph_msg_cache);
262 	ceph_msg_cache = NULL;
263 }
264 
265 static void _ceph_msgr_exit(void)
266 {
267 	if (ceph_msgr_wq) {
268 		destroy_workqueue(ceph_msgr_wq);
269 		ceph_msgr_wq = NULL;
270 	}
271 
272 	BUG_ON(zero_page == NULL);
273 	put_page(zero_page);
274 	zero_page = NULL;
275 
276 	ceph_msgr_slab_exit();
277 }
278 
279 int ceph_msgr_init(void)
280 {
281 	if (ceph_msgr_slab_init())
282 		return -ENOMEM;
283 
284 	BUG_ON(zero_page != NULL);
285 	zero_page = ZERO_PAGE(0);
286 	get_page(zero_page);
287 
288 	/*
289 	 * The number of active work items is limited by the number of
290 	 * connections, so leave @max_active at default.
291 	 */
292 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
293 	if (ceph_msgr_wq)
294 		return 0;
295 
296 	pr_err("msgr_init failed to create workqueue\n");
297 	_ceph_msgr_exit();
298 
299 	return -ENOMEM;
300 }
301 EXPORT_SYMBOL(ceph_msgr_init);
302 
303 void ceph_msgr_exit(void)
304 {
305 	BUG_ON(ceph_msgr_wq == NULL);
306 
307 	_ceph_msgr_exit();
308 }
309 EXPORT_SYMBOL(ceph_msgr_exit);
310 
311 void ceph_msgr_flush(void)
312 {
313 	flush_workqueue(ceph_msgr_wq);
314 }
315 EXPORT_SYMBOL(ceph_msgr_flush);
316 
317 /* Connection socket state transition functions */
318 
319 static void con_sock_state_init(struct ceph_connection *con)
320 {
321 	int old_state;
322 
323 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
324 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
325 		printk("%s: unexpected old state %d\n", __func__, old_state);
326 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
327 	     CON_SOCK_STATE_CLOSED);
328 }
329 
330 static void con_sock_state_connecting(struct ceph_connection *con)
331 {
332 	int old_state;
333 
334 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
335 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
336 		printk("%s: unexpected old state %d\n", __func__, old_state);
337 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
338 	     CON_SOCK_STATE_CONNECTING);
339 }
340 
341 static void con_sock_state_connected(struct ceph_connection *con)
342 {
343 	int old_state;
344 
345 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
346 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
347 		printk("%s: unexpected old state %d\n", __func__, old_state);
348 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
349 	     CON_SOCK_STATE_CONNECTED);
350 }
351 
352 static void con_sock_state_closing(struct ceph_connection *con)
353 {
354 	int old_state;
355 
356 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
357 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
358 			old_state != CON_SOCK_STATE_CONNECTED &&
359 			old_state != CON_SOCK_STATE_CLOSING))
360 		printk("%s: unexpected old state %d\n", __func__, old_state);
361 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
362 	     CON_SOCK_STATE_CLOSING);
363 }
364 
365 static void con_sock_state_closed(struct ceph_connection *con)
366 {
367 	int old_state;
368 
369 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
370 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
371 		    old_state != CON_SOCK_STATE_CLOSING &&
372 		    old_state != CON_SOCK_STATE_CONNECTING &&
373 		    old_state != CON_SOCK_STATE_CLOSED))
374 		printk("%s: unexpected old state %d\n", __func__, old_state);
375 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
376 	     CON_SOCK_STATE_CLOSED);
377 }
378 
379 /*
380  * socket callback functions
381  */
382 
383 /* data available on socket, or listen socket received a connect */
384 static void ceph_sock_data_ready(struct sock *sk)
385 {
386 	struct ceph_connection *con = sk->sk_user_data;
387 	if (atomic_read(&con->msgr->stopping)) {
388 		return;
389 	}
390 
391 	if (sk->sk_state != TCP_CLOSE_WAIT) {
392 		dout("%s on %p state = %lu, queueing work\n", __func__,
393 		     con, con->state);
394 		queue_con(con);
395 	}
396 }
397 
398 /* socket has buffer space for writing */
399 static void ceph_sock_write_space(struct sock *sk)
400 {
401 	struct ceph_connection *con = sk->sk_user_data;
402 
403 	/* only queue to workqueue if there is data we want to write,
404 	 * and there is sufficient space in the socket buffer to accept
405 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
406 	 * doesn't get called again until try_write() fills the socket
407 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
408 	 * and net/core/stream.c:sk_stream_write_space().
409 	 */
410 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
411 		if (sk_stream_is_writeable(sk)) {
412 			dout("%s %p queueing write work\n", __func__, con);
413 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
414 			queue_con(con);
415 		}
416 	} else {
417 		dout("%s %p nothing to write\n", __func__, con);
418 	}
419 }
420 
421 /* socket's state has changed */
422 static void ceph_sock_state_change(struct sock *sk)
423 {
424 	struct ceph_connection *con = sk->sk_user_data;
425 
426 	dout("%s %p state = %lu sk_state = %u\n", __func__,
427 	     con, con->state, sk->sk_state);
428 
429 	switch (sk->sk_state) {
430 	case TCP_CLOSE:
431 		dout("%s TCP_CLOSE\n", __func__);
432 	case TCP_CLOSE_WAIT:
433 		dout("%s TCP_CLOSE_WAIT\n", __func__);
434 		con_sock_state_closing(con);
435 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
436 		queue_con(con);
437 		break;
438 	case TCP_ESTABLISHED:
439 		dout("%s TCP_ESTABLISHED\n", __func__);
440 		con_sock_state_connected(con);
441 		queue_con(con);
442 		break;
443 	default:	/* Everything else is uninteresting */
444 		break;
445 	}
446 }
447 
448 /*
449  * set up socket callbacks
450  */
451 static void set_sock_callbacks(struct socket *sock,
452 			       struct ceph_connection *con)
453 {
454 	struct sock *sk = sock->sk;
455 	sk->sk_user_data = con;
456 	sk->sk_data_ready = ceph_sock_data_ready;
457 	sk->sk_write_space = ceph_sock_write_space;
458 	sk->sk_state_change = ceph_sock_state_change;
459 }
460 
461 
462 /*
463  * socket helpers
464  */
465 
466 /*
467  * initiate connection to a remote socket.
468  */
469 static int ceph_tcp_connect(struct ceph_connection *con)
470 {
471 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
472 	struct socket *sock;
473 	unsigned int noio_flag;
474 	int ret;
475 
476 	BUG_ON(con->sock);
477 
478 	/* sock_create_kern() allocates with GFP_KERNEL */
479 	noio_flag = memalloc_noio_save();
480 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
481 			       SOCK_STREAM, IPPROTO_TCP, &sock);
482 	memalloc_noio_restore(noio_flag);
483 	if (ret)
484 		return ret;
485 	sock->sk->sk_allocation = GFP_NOFS;
486 
487 #ifdef CONFIG_LOCKDEP
488 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490 
491 	set_sock_callbacks(sock, con);
492 
493 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494 
495 	con_sock_state_connecting(con);
496 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 				 O_NONBLOCK);
498 	if (ret == -EINPROGRESS) {
499 		dout("connect %s EINPROGRESS sk_state = %u\n",
500 		     ceph_pr_addr(&con->peer_addr.in_addr),
501 		     sock->sk->sk_state);
502 	} else if (ret < 0) {
503 		pr_err("connect %s error %d\n",
504 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 		sock_release(sock);
506 		return ret;
507 	}
508 
509 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 		int optval = 1;
511 
512 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 					(char *)&optval, sizeof(optval));
514 		if (ret)
515 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 			       ret);
517 	}
518 
519 	con->sock = sock;
520 	return 0;
521 }
522 
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 	struct kvec iov = {buf, len};
526 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 	int r;
528 
529 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 	if (r == -EAGAIN)
532 		r = 0;
533 	return r;
534 }
535 
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 		     int page_offset, size_t length)
538 {
539 	struct bio_vec bvec = {
540 		.bv_page = page,
541 		.bv_offset = page_offset,
542 		.bv_len = length
543 	};
544 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 	int r;
546 
547 	BUG_ON(page_offset + length > PAGE_SIZE);
548 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 	if (r == -EAGAIN)
551 		r = 0;
552 	return r;
553 }
554 
555 /*
556  * write something.  @more is true if caller will be sending more data
557  * shortly.
558  */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 		     size_t kvlen, size_t len, int more)
561 {
562 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 	int r;
564 
565 	if (more)
566 		msg.msg_flags |= MSG_MORE;
567 	else
568 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
569 
570 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 	if (r == -EAGAIN)
572 		r = 0;
573 	return r;
574 }
575 
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 		     int offset, size_t size, bool more)
578 {
579 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 	int ret;
581 
582 	ret = kernel_sendpage(sock, page, offset, size, flags);
583 	if (ret == -EAGAIN)
584 		ret = 0;
585 
586 	return ret;
587 }
588 
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 		     int offset, size_t size, bool more)
591 {
592 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 	struct bio_vec bvec;
594 	int ret;
595 
596 	/* sendpage cannot properly handle pages with page_count == 0,
597 	 * we need to fallback to sendmsg if that's the case */
598 	if (page_count(page) >= 1)
599 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
600 
601 	bvec.bv_page = page;
602 	bvec.bv_offset = offset;
603 	bvec.bv_len = size;
604 
605 	if (more)
606 		msg.msg_flags |= MSG_MORE;
607 	else
608 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
609 
610 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 	ret = sock_sendmsg(sock, &msg);
612 	if (ret == -EAGAIN)
613 		ret = 0;
614 
615 	return ret;
616 }
617 
618 /*
619  * Shutdown/close the socket for the given connection.
620  */
621 static int con_close_socket(struct ceph_connection *con)
622 {
623 	int rc = 0;
624 
625 	dout("con_close_socket on %p sock %p\n", con, con->sock);
626 	if (con->sock) {
627 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 		sock_release(con->sock);
629 		con->sock = NULL;
630 	}
631 
632 	/*
633 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
634 	 * independent of the connection mutex, and we could have
635 	 * received a socket close event before we had the chance to
636 	 * shut the socket down.
637 	 */
638 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639 
640 	con_sock_state_closed(con);
641 	return rc;
642 }
643 
644 /*
645  * Reset a connection.  Discard all incoming and outgoing messages
646  * and clear *_seq state.
647  */
648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 	list_del_init(&msg->list_head);
651 
652 	ceph_msg_put(msg);
653 }
654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 	while (!list_empty(head)) {
657 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 							list_head);
659 		ceph_msg_remove(msg);
660 	}
661 }
662 
663 static void reset_connection(struct ceph_connection *con)
664 {
665 	/* reset connection, out_queue, msg_ and connect_seq */
666 	/* discard existing out_queue and msg_seq */
667 	dout("reset_connection %p\n", con);
668 	ceph_msg_remove_list(&con->out_queue);
669 	ceph_msg_remove_list(&con->out_sent);
670 
671 	if (con->in_msg) {
672 		BUG_ON(con->in_msg->con != con);
673 		ceph_msg_put(con->in_msg);
674 		con->in_msg = NULL;
675 	}
676 
677 	con->connect_seq = 0;
678 	con->out_seq = 0;
679 	if (con->out_msg) {
680 		BUG_ON(con->out_msg->con != con);
681 		ceph_msg_put(con->out_msg);
682 		con->out_msg = NULL;
683 	}
684 	con->in_seq = 0;
685 	con->in_seq_acked = 0;
686 
687 	con->out_skip = 0;
688 }
689 
690 /*
691  * mark a peer down.  drop any open connections.
692  */
693 void ceph_con_close(struct ceph_connection *con)
694 {
695 	mutex_lock(&con->mutex);
696 	dout("con_close %p peer %s\n", con,
697 	     ceph_pr_addr(&con->peer_addr.in_addr));
698 	con->state = CON_STATE_CLOSED;
699 
700 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
701 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 	con_flag_clear(con, CON_FLAG_BACKOFF);
704 
705 	reset_connection(con);
706 	con->peer_global_seq = 0;
707 	cancel_con(con);
708 	con_close_socket(con);
709 	mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712 
713 /*
714  * Reopen a closed connection, with a new peer address.
715  */
716 void ceph_con_open(struct ceph_connection *con,
717 		   __u8 entity_type, __u64 entity_num,
718 		   struct ceph_entity_addr *addr)
719 {
720 	mutex_lock(&con->mutex);
721 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722 
723 	WARN_ON(con->state != CON_STATE_CLOSED);
724 	con->state = CON_STATE_PREOPEN;
725 
726 	con->peer_name.type = (__u8) entity_type;
727 	con->peer_name.num = cpu_to_le64(entity_num);
728 
729 	memcpy(&con->peer_addr, addr, sizeof(*addr));
730 	con->delay = 0;      /* reset backoff memory */
731 	mutex_unlock(&con->mutex);
732 	queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735 
736 /*
737  * return true if this connection ever successfully opened
738  */
739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 	return con->connect_seq > 0;
742 }
743 
744 /*
745  * initialize a new connection.
746  */
747 void ceph_con_init(struct ceph_connection *con, void *private,
748 	const struct ceph_connection_operations *ops,
749 	struct ceph_messenger *msgr)
750 {
751 	dout("con_init %p\n", con);
752 	memset(con, 0, sizeof(*con));
753 	con->private = private;
754 	con->ops = ops;
755 	con->msgr = msgr;
756 
757 	con_sock_state_init(con);
758 
759 	mutex_init(&con->mutex);
760 	INIT_LIST_HEAD(&con->out_queue);
761 	INIT_LIST_HEAD(&con->out_sent);
762 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763 
764 	con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767 
768 
769 /*
770  * We maintain a global counter to order connection attempts.  Get
771  * a unique seq greater than @gt.
772  */
773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 	u32 ret;
776 
777 	spin_lock(&msgr->global_seq_lock);
778 	if (msgr->global_seq < gt)
779 		msgr->global_seq = gt;
780 	ret = ++msgr->global_seq;
781 	spin_unlock(&msgr->global_seq_lock);
782 	return ret;
783 }
784 
785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 	BUG_ON(con->out_skip);
788 
789 	con->out_kvec_left = 0;
790 	con->out_kvec_bytes = 0;
791 	con->out_kvec_cur = &con->out_kvec[0];
792 }
793 
794 static void con_out_kvec_add(struct ceph_connection *con,
795 				size_t size, void *data)
796 {
797 	int index = con->out_kvec_left;
798 
799 	BUG_ON(con->out_skip);
800 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801 
802 	con->out_kvec[index].iov_len = size;
803 	con->out_kvec[index].iov_base = data;
804 	con->out_kvec_left++;
805 	con->out_kvec_bytes += size;
806 }
807 
808 /*
809  * Chop off a kvec from the end.  Return residual number of bytes for
810  * that kvec, i.e. how many bytes would have been written if the kvec
811  * hadn't been nuked.
812  */
813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 	int off = con->out_kvec_cur - con->out_kvec;
816 	int skip = 0;
817 
818 	if (con->out_kvec_bytes > 0) {
819 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 		BUG_ON(con->out_kvec_bytes < skip);
821 		BUG_ON(!con->out_kvec_left);
822 		con->out_kvec_bytes -= skip;
823 		con->out_kvec_left--;
824 	}
825 
826 	return skip;
827 }
828 
829 #ifdef CONFIG_BLOCK
830 
831 /*
832  * For a bio data item, a piece is whatever remains of the next
833  * entry in the current bio iovec, or the first entry in the next
834  * bio in the list.
835  */
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 					size_t length)
838 {
839 	struct ceph_msg_data *data = cursor->data;
840 	struct bio *bio;
841 
842 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
843 
844 	bio = data->bio;
845 	BUG_ON(!bio);
846 
847 	cursor->resid = min(length, data->bio_length);
848 	cursor->bio = bio;
849 	cursor->bvec_iter = bio->bi_iter;
850 	cursor->last_piece =
851 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
852 }
853 
854 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
855 						size_t *page_offset,
856 						size_t *length)
857 {
858 	struct ceph_msg_data *data = cursor->data;
859 	struct bio *bio;
860 	struct bio_vec bio_vec;
861 
862 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
863 
864 	bio = cursor->bio;
865 	BUG_ON(!bio);
866 
867 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
868 
869 	*page_offset = (size_t) bio_vec.bv_offset;
870 	BUG_ON(*page_offset >= PAGE_SIZE);
871 	if (cursor->last_piece) /* pagelist offset is always 0 */
872 		*length = cursor->resid;
873 	else
874 		*length = (size_t) bio_vec.bv_len;
875 	BUG_ON(*length > cursor->resid);
876 	BUG_ON(*page_offset + *length > PAGE_SIZE);
877 
878 	return bio_vec.bv_page;
879 }
880 
881 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
882 					size_t bytes)
883 {
884 	struct bio *bio;
885 	struct bio_vec bio_vec;
886 
887 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
888 
889 	bio = cursor->bio;
890 	BUG_ON(!bio);
891 
892 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
893 
894 	/* Advance the cursor offset */
895 
896 	BUG_ON(cursor->resid < bytes);
897 	cursor->resid -= bytes;
898 
899 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
900 
901 	if (bytes < bio_vec.bv_len)
902 		return false;	/* more bytes to process in this segment */
903 
904 	/* Move on to the next segment, and possibly the next bio */
905 
906 	if (!cursor->bvec_iter.bi_size) {
907 		bio = bio->bi_next;
908 		cursor->bio = bio;
909 		if (bio)
910 			cursor->bvec_iter = bio->bi_iter;
911 		else
912 			memset(&cursor->bvec_iter, 0,
913 			       sizeof(cursor->bvec_iter));
914 	}
915 
916 	if (!cursor->last_piece) {
917 		BUG_ON(!cursor->resid);
918 		BUG_ON(!bio);
919 		/* A short read is OK, so use <= rather than == */
920 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
921 			cursor->last_piece = true;
922 	}
923 
924 	return true;
925 }
926 #endif /* CONFIG_BLOCK */
927 
928 /*
929  * For a page array, a piece comes from the first page in the array
930  * that has not already been fully consumed.
931  */
932 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
933 					size_t length)
934 {
935 	struct ceph_msg_data *data = cursor->data;
936 	int page_count;
937 
938 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
939 
940 	BUG_ON(!data->pages);
941 	BUG_ON(!data->length);
942 
943 	cursor->resid = min(length, data->length);
944 	page_count = calc_pages_for(data->alignment, (u64)data->length);
945 	cursor->page_offset = data->alignment & ~PAGE_MASK;
946 	cursor->page_index = 0;
947 	BUG_ON(page_count > (int)USHRT_MAX);
948 	cursor->page_count = (unsigned short)page_count;
949 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
950 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
951 }
952 
953 static struct page *
954 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
955 					size_t *page_offset, size_t *length)
956 {
957 	struct ceph_msg_data *data = cursor->data;
958 
959 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
960 
961 	BUG_ON(cursor->page_index >= cursor->page_count);
962 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
963 
964 	*page_offset = cursor->page_offset;
965 	if (cursor->last_piece)
966 		*length = cursor->resid;
967 	else
968 		*length = PAGE_SIZE - *page_offset;
969 
970 	return data->pages[cursor->page_index];
971 }
972 
973 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
974 						size_t bytes)
975 {
976 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
977 
978 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
979 
980 	/* Advance the cursor page offset */
981 
982 	cursor->resid -= bytes;
983 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
984 	if (!bytes || cursor->page_offset)
985 		return false;	/* more bytes to process in the current page */
986 
987 	if (!cursor->resid)
988 		return false;   /* no more data */
989 
990 	/* Move on to the next page; offset is already at 0 */
991 
992 	BUG_ON(cursor->page_index >= cursor->page_count);
993 	cursor->page_index++;
994 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
995 
996 	return true;
997 }
998 
999 /*
1000  * For a pagelist, a piece is whatever remains to be consumed in the
1001  * first page in the list, or the front of the next page.
1002  */
1003 static void
1004 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1005 					size_t length)
1006 {
1007 	struct ceph_msg_data *data = cursor->data;
1008 	struct ceph_pagelist *pagelist;
1009 	struct page *page;
1010 
1011 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1012 
1013 	pagelist = data->pagelist;
1014 	BUG_ON(!pagelist);
1015 
1016 	if (!length)
1017 		return;		/* pagelist can be assigned but empty */
1018 
1019 	BUG_ON(list_empty(&pagelist->head));
1020 	page = list_first_entry(&pagelist->head, struct page, lru);
1021 
1022 	cursor->resid = min(length, pagelist->length);
1023 	cursor->page = page;
1024 	cursor->offset = 0;
1025 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1026 }
1027 
1028 static struct page *
1029 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1030 				size_t *page_offset, size_t *length)
1031 {
1032 	struct ceph_msg_data *data = cursor->data;
1033 	struct ceph_pagelist *pagelist;
1034 
1035 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1036 
1037 	pagelist = data->pagelist;
1038 	BUG_ON(!pagelist);
1039 
1040 	BUG_ON(!cursor->page);
1041 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1042 
1043 	/* offset of first page in pagelist is always 0 */
1044 	*page_offset = cursor->offset & ~PAGE_MASK;
1045 	if (cursor->last_piece)
1046 		*length = cursor->resid;
1047 	else
1048 		*length = PAGE_SIZE - *page_offset;
1049 
1050 	return cursor->page;
1051 }
1052 
1053 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1054 						size_t bytes)
1055 {
1056 	struct ceph_msg_data *data = cursor->data;
1057 	struct ceph_pagelist *pagelist;
1058 
1059 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1060 
1061 	pagelist = data->pagelist;
1062 	BUG_ON(!pagelist);
1063 
1064 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1065 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1066 
1067 	/* Advance the cursor offset */
1068 
1069 	cursor->resid -= bytes;
1070 	cursor->offset += bytes;
1071 	/* offset of first page in pagelist is always 0 */
1072 	if (!bytes || cursor->offset & ~PAGE_MASK)
1073 		return false;	/* more bytes to process in the current page */
1074 
1075 	if (!cursor->resid)
1076 		return false;   /* no more data */
1077 
1078 	/* Move on to the next page */
1079 
1080 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1081 	cursor->page = list_next_entry(cursor->page, lru);
1082 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1083 
1084 	return true;
1085 }
1086 
1087 /*
1088  * Message data is handled (sent or received) in pieces, where each
1089  * piece resides on a single page.  The network layer might not
1090  * consume an entire piece at once.  A data item's cursor keeps
1091  * track of which piece is next to process and how much remains to
1092  * be processed in that piece.  It also tracks whether the current
1093  * piece is the last one in the data item.
1094  */
1095 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1096 {
1097 	size_t length = cursor->total_resid;
1098 
1099 	switch (cursor->data->type) {
1100 	case CEPH_MSG_DATA_PAGELIST:
1101 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1102 		break;
1103 	case CEPH_MSG_DATA_PAGES:
1104 		ceph_msg_data_pages_cursor_init(cursor, length);
1105 		break;
1106 #ifdef CONFIG_BLOCK
1107 	case CEPH_MSG_DATA_BIO:
1108 		ceph_msg_data_bio_cursor_init(cursor, length);
1109 		break;
1110 #endif /* CONFIG_BLOCK */
1111 	case CEPH_MSG_DATA_NONE:
1112 	default:
1113 		/* BUG(); */
1114 		break;
1115 	}
1116 	cursor->need_crc = true;
1117 }
1118 
1119 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1120 {
1121 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1122 	struct ceph_msg_data *data;
1123 
1124 	BUG_ON(!length);
1125 	BUG_ON(length > msg->data_length);
1126 	BUG_ON(list_empty(&msg->data));
1127 
1128 	cursor->data_head = &msg->data;
1129 	cursor->total_resid = length;
1130 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1131 	cursor->data = data;
1132 
1133 	__ceph_msg_data_cursor_init(cursor);
1134 }
1135 
1136 /*
1137  * Return the page containing the next piece to process for a given
1138  * data item, and supply the page offset and length of that piece.
1139  * Indicate whether this is the last piece in this data item.
1140  */
1141 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1142 					size_t *page_offset, size_t *length,
1143 					bool *last_piece)
1144 {
1145 	struct page *page;
1146 
1147 	switch (cursor->data->type) {
1148 	case CEPH_MSG_DATA_PAGELIST:
1149 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1150 		break;
1151 	case CEPH_MSG_DATA_PAGES:
1152 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1153 		break;
1154 #ifdef CONFIG_BLOCK
1155 	case CEPH_MSG_DATA_BIO:
1156 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1157 		break;
1158 #endif /* CONFIG_BLOCK */
1159 	case CEPH_MSG_DATA_NONE:
1160 	default:
1161 		page = NULL;
1162 		break;
1163 	}
1164 	BUG_ON(!page);
1165 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1166 	BUG_ON(!*length);
1167 	if (last_piece)
1168 		*last_piece = cursor->last_piece;
1169 
1170 	return page;
1171 }
1172 
1173 /*
1174  * Returns true if the result moves the cursor on to the next piece
1175  * of the data item.
1176  */
1177 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1178 				size_t bytes)
1179 {
1180 	bool new_piece;
1181 
1182 	BUG_ON(bytes > cursor->resid);
1183 	switch (cursor->data->type) {
1184 	case CEPH_MSG_DATA_PAGELIST:
1185 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1186 		break;
1187 	case CEPH_MSG_DATA_PAGES:
1188 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1189 		break;
1190 #ifdef CONFIG_BLOCK
1191 	case CEPH_MSG_DATA_BIO:
1192 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1193 		break;
1194 #endif /* CONFIG_BLOCK */
1195 	case CEPH_MSG_DATA_NONE:
1196 	default:
1197 		BUG();
1198 		break;
1199 	}
1200 	cursor->total_resid -= bytes;
1201 
1202 	if (!cursor->resid && cursor->total_resid) {
1203 		WARN_ON(!cursor->last_piece);
1204 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1205 		cursor->data = list_next_entry(cursor->data, links);
1206 		__ceph_msg_data_cursor_init(cursor);
1207 		new_piece = true;
1208 	}
1209 	cursor->need_crc = new_piece;
1210 
1211 	return new_piece;
1212 }
1213 
1214 static size_t sizeof_footer(struct ceph_connection *con)
1215 {
1216 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217 	    sizeof(struct ceph_msg_footer) :
1218 	    sizeof(struct ceph_msg_footer_old);
1219 }
1220 
1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222 {
1223 	BUG_ON(!msg);
1224 	BUG_ON(!data_len);
1225 
1226 	/* Initialize data cursor */
1227 
1228 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1229 }
1230 
1231 /*
1232  * Prepare footer for currently outgoing message, and finish things
1233  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1234  */
1235 static void prepare_write_message_footer(struct ceph_connection *con)
1236 {
1237 	struct ceph_msg *m = con->out_msg;
1238 
1239 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1240 
1241 	dout("prepare_write_message_footer %p\n", con);
1242 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1243 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1244 		if (con->ops->sign_message)
1245 			con->ops->sign_message(m);
1246 		else
1247 			m->footer.sig = 0;
1248 	} else {
1249 		m->old_footer.flags = m->footer.flags;
1250 	}
1251 	con->out_more = m->more_to_follow;
1252 	con->out_msg_done = true;
1253 }
1254 
1255 /*
1256  * Prepare headers for the next outgoing message.
1257  */
1258 static void prepare_write_message(struct ceph_connection *con)
1259 {
1260 	struct ceph_msg *m;
1261 	u32 crc;
1262 
1263 	con_out_kvec_reset(con);
1264 	con->out_msg_done = false;
1265 
1266 	/* Sneak an ack in there first?  If we can get it into the same
1267 	 * TCP packet that's a good thing. */
1268 	if (con->in_seq > con->in_seq_acked) {
1269 		con->in_seq_acked = con->in_seq;
1270 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1271 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1272 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1273 			&con->out_temp_ack);
1274 	}
1275 
1276 	BUG_ON(list_empty(&con->out_queue));
1277 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1278 	con->out_msg = m;
1279 	BUG_ON(m->con != con);
1280 
1281 	/* put message on sent list */
1282 	ceph_msg_get(m);
1283 	list_move_tail(&m->list_head, &con->out_sent);
1284 
1285 	/*
1286 	 * only assign outgoing seq # if we haven't sent this message
1287 	 * yet.  if it is requeued, resend with it's original seq.
1288 	 */
1289 	if (m->needs_out_seq) {
1290 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1291 		m->needs_out_seq = false;
1292 	}
1293 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1294 
1295 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1296 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1297 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1298 	     m->data_length);
1299 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1300 
1301 	/* tag + hdr + front + middle */
1302 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1303 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1304 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1305 
1306 	if (m->middle)
1307 		con_out_kvec_add(con, m->middle->vec.iov_len,
1308 			m->middle->vec.iov_base);
1309 
1310 	/* fill in hdr crc and finalize hdr */
1311 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1312 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1313 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1314 
1315 	/* fill in front and middle crc, footer */
1316 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1317 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1318 	if (m->middle) {
1319 		crc = crc32c(0, m->middle->vec.iov_base,
1320 				m->middle->vec.iov_len);
1321 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1322 	} else
1323 		con->out_msg->footer.middle_crc = 0;
1324 	dout("%s front_crc %u middle_crc %u\n", __func__,
1325 	     le32_to_cpu(con->out_msg->footer.front_crc),
1326 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1327 	con->out_msg->footer.flags = 0;
1328 
1329 	/* is there a data payload? */
1330 	con->out_msg->footer.data_crc = 0;
1331 	if (m->data_length) {
1332 		prepare_message_data(con->out_msg, m->data_length);
1333 		con->out_more = 1;  /* data + footer will follow */
1334 	} else {
1335 		/* no, queue up footer too and be done */
1336 		prepare_write_message_footer(con);
1337 	}
1338 
1339 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340 }
1341 
1342 /*
1343  * Prepare an ack.
1344  */
1345 static void prepare_write_ack(struct ceph_connection *con)
1346 {
1347 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1348 	     con->in_seq_acked, con->in_seq);
1349 	con->in_seq_acked = con->in_seq;
1350 
1351 	con_out_kvec_reset(con);
1352 
1353 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1354 
1355 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1356 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1357 				&con->out_temp_ack);
1358 
1359 	con->out_more = 1;  /* more will follow.. eventually.. */
1360 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1361 }
1362 
1363 /*
1364  * Prepare to share the seq during handshake
1365  */
1366 static void prepare_write_seq(struct ceph_connection *con)
1367 {
1368 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1369 	     con->in_seq_acked, con->in_seq);
1370 	con->in_seq_acked = con->in_seq;
1371 
1372 	con_out_kvec_reset(con);
1373 
1374 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1375 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1376 			 &con->out_temp_ack);
1377 
1378 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380 
1381 /*
1382  * Prepare to write keepalive byte.
1383  */
1384 static void prepare_write_keepalive(struct ceph_connection *con)
1385 {
1386 	dout("prepare_write_keepalive %p\n", con);
1387 	con_out_kvec_reset(con);
1388 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1389 		struct timespec now = CURRENT_TIME;
1390 
1391 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1392 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1393 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1394 				 &con->out_temp_keepalive2);
1395 	} else {
1396 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1397 	}
1398 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399 }
1400 
1401 /*
1402  * Connection negotiation.
1403  */
1404 
1405 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1406 						int *auth_proto)
1407 {
1408 	struct ceph_auth_handshake *auth;
1409 
1410 	if (!con->ops->get_authorizer) {
1411 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1412 		con->out_connect.authorizer_len = 0;
1413 		return NULL;
1414 	}
1415 
1416 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1417 	if (IS_ERR(auth))
1418 		return auth;
1419 
1420 	con->auth_reply_buf = auth->authorizer_reply_buf;
1421 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1422 	return auth;
1423 }
1424 
1425 /*
1426  * We connected to a peer and are saying hello.
1427  */
1428 static void prepare_write_banner(struct ceph_connection *con)
1429 {
1430 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1431 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1432 					&con->msgr->my_enc_addr);
1433 
1434 	con->out_more = 0;
1435 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1436 }
1437 
1438 static int prepare_write_connect(struct ceph_connection *con)
1439 {
1440 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1441 	int proto;
1442 	int auth_proto;
1443 	struct ceph_auth_handshake *auth;
1444 
1445 	switch (con->peer_name.type) {
1446 	case CEPH_ENTITY_TYPE_MON:
1447 		proto = CEPH_MONC_PROTOCOL;
1448 		break;
1449 	case CEPH_ENTITY_TYPE_OSD:
1450 		proto = CEPH_OSDC_PROTOCOL;
1451 		break;
1452 	case CEPH_ENTITY_TYPE_MDS:
1453 		proto = CEPH_MDSC_PROTOCOL;
1454 		break;
1455 	default:
1456 		BUG();
1457 	}
1458 
1459 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1460 	     con->connect_seq, global_seq, proto);
1461 
1462 	con->out_connect.features =
1463 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1464 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1465 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1466 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1467 	con->out_connect.protocol_version = cpu_to_le32(proto);
1468 	con->out_connect.flags = 0;
1469 
1470 	auth_proto = CEPH_AUTH_UNKNOWN;
1471 	auth = get_connect_authorizer(con, &auth_proto);
1472 	if (IS_ERR(auth))
1473 		return PTR_ERR(auth);
1474 
1475 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1476 	con->out_connect.authorizer_len = auth ?
1477 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1478 
1479 	con_out_kvec_add(con, sizeof (con->out_connect),
1480 					&con->out_connect);
1481 	if (auth && auth->authorizer_buf_len)
1482 		con_out_kvec_add(con, auth->authorizer_buf_len,
1483 					auth->authorizer_buf);
1484 
1485 	con->out_more = 0;
1486 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1487 
1488 	return 0;
1489 }
1490 
1491 /*
1492  * write as much of pending kvecs to the socket as we can.
1493  *  1 -> done
1494  *  0 -> socket full, but more to do
1495  * <0 -> error
1496  */
1497 static int write_partial_kvec(struct ceph_connection *con)
1498 {
1499 	int ret;
1500 
1501 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1502 	while (con->out_kvec_bytes > 0) {
1503 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1504 				       con->out_kvec_left, con->out_kvec_bytes,
1505 				       con->out_more);
1506 		if (ret <= 0)
1507 			goto out;
1508 		con->out_kvec_bytes -= ret;
1509 		if (con->out_kvec_bytes == 0)
1510 			break;            /* done */
1511 
1512 		/* account for full iov entries consumed */
1513 		while (ret >= con->out_kvec_cur->iov_len) {
1514 			BUG_ON(!con->out_kvec_left);
1515 			ret -= con->out_kvec_cur->iov_len;
1516 			con->out_kvec_cur++;
1517 			con->out_kvec_left--;
1518 		}
1519 		/* and for a partially-consumed entry */
1520 		if (ret) {
1521 			con->out_kvec_cur->iov_len -= ret;
1522 			con->out_kvec_cur->iov_base += ret;
1523 		}
1524 	}
1525 	con->out_kvec_left = 0;
1526 	ret = 1;
1527 out:
1528 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1529 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1530 	return ret;  /* done! */
1531 }
1532 
1533 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1534 				unsigned int page_offset,
1535 				unsigned int length)
1536 {
1537 	char *kaddr;
1538 
1539 	kaddr = kmap(page);
1540 	BUG_ON(kaddr == NULL);
1541 	crc = crc32c(crc, kaddr + page_offset, length);
1542 	kunmap(page);
1543 
1544 	return crc;
1545 }
1546 /*
1547  * Write as much message data payload as we can.  If we finish, queue
1548  * up the footer.
1549  *  1 -> done, footer is now queued in out_kvec[].
1550  *  0 -> socket full, but more to do
1551  * <0 -> error
1552  */
1553 static int write_partial_message_data(struct ceph_connection *con)
1554 {
1555 	struct ceph_msg *msg = con->out_msg;
1556 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1557 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1558 	u32 crc;
1559 
1560 	dout("%s %p msg %p\n", __func__, con, msg);
1561 
1562 	if (list_empty(&msg->data))
1563 		return -EINVAL;
1564 
1565 	/*
1566 	 * Iterate through each page that contains data to be
1567 	 * written, and send as much as possible for each.
1568 	 *
1569 	 * If we are calculating the data crc (the default), we will
1570 	 * need to map the page.  If we have no pages, they have
1571 	 * been revoked, so use the zero page.
1572 	 */
1573 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1574 	while (cursor->resid) {
1575 		struct page *page;
1576 		size_t page_offset;
1577 		size_t length;
1578 		bool last_piece;
1579 		bool need_crc;
1580 		int ret;
1581 
1582 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1583 					  &last_piece);
1584 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1585 					length, !last_piece);
1586 		if (ret <= 0) {
1587 			if (do_datacrc)
1588 				msg->footer.data_crc = cpu_to_le32(crc);
1589 
1590 			return ret;
1591 		}
1592 		if (do_datacrc && cursor->need_crc)
1593 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1594 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1595 	}
1596 
1597 	dout("%s %p msg %p done\n", __func__, con, msg);
1598 
1599 	/* prepare and queue up footer, too */
1600 	if (do_datacrc)
1601 		msg->footer.data_crc = cpu_to_le32(crc);
1602 	else
1603 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1604 	con_out_kvec_reset(con);
1605 	prepare_write_message_footer(con);
1606 
1607 	return 1;	/* must return > 0 to indicate success */
1608 }
1609 
1610 /*
1611  * write some zeros
1612  */
1613 static int write_partial_skip(struct ceph_connection *con)
1614 {
1615 	int ret;
1616 
1617 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1618 	while (con->out_skip > 0) {
1619 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1620 
1621 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1622 		if (ret <= 0)
1623 			goto out;
1624 		con->out_skip -= ret;
1625 	}
1626 	ret = 1;
1627 out:
1628 	return ret;
1629 }
1630 
1631 /*
1632  * Prepare to read connection handshake, or an ack.
1633  */
1634 static void prepare_read_banner(struct ceph_connection *con)
1635 {
1636 	dout("prepare_read_banner %p\n", con);
1637 	con->in_base_pos = 0;
1638 }
1639 
1640 static void prepare_read_connect(struct ceph_connection *con)
1641 {
1642 	dout("prepare_read_connect %p\n", con);
1643 	con->in_base_pos = 0;
1644 }
1645 
1646 static void prepare_read_ack(struct ceph_connection *con)
1647 {
1648 	dout("prepare_read_ack %p\n", con);
1649 	con->in_base_pos = 0;
1650 }
1651 
1652 static void prepare_read_seq(struct ceph_connection *con)
1653 {
1654 	dout("prepare_read_seq %p\n", con);
1655 	con->in_base_pos = 0;
1656 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1657 }
1658 
1659 static void prepare_read_tag(struct ceph_connection *con)
1660 {
1661 	dout("prepare_read_tag %p\n", con);
1662 	con->in_base_pos = 0;
1663 	con->in_tag = CEPH_MSGR_TAG_READY;
1664 }
1665 
1666 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1667 {
1668 	dout("prepare_read_keepalive_ack %p\n", con);
1669 	con->in_base_pos = 0;
1670 }
1671 
1672 /*
1673  * Prepare to read a message.
1674  */
1675 static int prepare_read_message(struct ceph_connection *con)
1676 {
1677 	dout("prepare_read_message %p\n", con);
1678 	BUG_ON(con->in_msg != NULL);
1679 	con->in_base_pos = 0;
1680 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1681 	return 0;
1682 }
1683 
1684 
1685 static int read_partial(struct ceph_connection *con,
1686 			int end, int size, void *object)
1687 {
1688 	while (con->in_base_pos < end) {
1689 		int left = end - con->in_base_pos;
1690 		int have = size - left;
1691 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1692 		if (ret <= 0)
1693 			return ret;
1694 		con->in_base_pos += ret;
1695 	}
1696 	return 1;
1697 }
1698 
1699 
1700 /*
1701  * Read all or part of the connect-side handshake on a new connection
1702  */
1703 static int read_partial_banner(struct ceph_connection *con)
1704 {
1705 	int size;
1706 	int end;
1707 	int ret;
1708 
1709 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1710 
1711 	/* peer's banner */
1712 	size = strlen(CEPH_BANNER);
1713 	end = size;
1714 	ret = read_partial(con, end, size, con->in_banner);
1715 	if (ret <= 0)
1716 		goto out;
1717 
1718 	size = sizeof (con->actual_peer_addr);
1719 	end += size;
1720 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1721 	if (ret <= 0)
1722 		goto out;
1723 
1724 	size = sizeof (con->peer_addr_for_me);
1725 	end += size;
1726 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1727 	if (ret <= 0)
1728 		goto out;
1729 
1730 out:
1731 	return ret;
1732 }
1733 
1734 static int read_partial_connect(struct ceph_connection *con)
1735 {
1736 	int size;
1737 	int end;
1738 	int ret;
1739 
1740 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1741 
1742 	size = sizeof (con->in_reply);
1743 	end = size;
1744 	ret = read_partial(con, end, size, &con->in_reply);
1745 	if (ret <= 0)
1746 		goto out;
1747 
1748 	size = le32_to_cpu(con->in_reply.authorizer_len);
1749 	end += size;
1750 	ret = read_partial(con, end, size, con->auth_reply_buf);
1751 	if (ret <= 0)
1752 		goto out;
1753 
1754 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1755 	     con, (int)con->in_reply.tag,
1756 	     le32_to_cpu(con->in_reply.connect_seq),
1757 	     le32_to_cpu(con->in_reply.global_seq));
1758 out:
1759 	return ret;
1760 
1761 }
1762 
1763 /*
1764  * Verify the hello banner looks okay.
1765  */
1766 static int verify_hello(struct ceph_connection *con)
1767 {
1768 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1769 		pr_err("connect to %s got bad banner\n",
1770 		       ceph_pr_addr(&con->peer_addr.in_addr));
1771 		con->error_msg = "protocol error, bad banner";
1772 		return -1;
1773 	}
1774 	return 0;
1775 }
1776 
1777 static bool addr_is_blank(struct sockaddr_storage *ss)
1778 {
1779 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1780 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1781 
1782 	switch (ss->ss_family) {
1783 	case AF_INET:
1784 		return addr->s_addr == htonl(INADDR_ANY);
1785 	case AF_INET6:
1786 		return ipv6_addr_any(addr6);
1787 	default:
1788 		return true;
1789 	}
1790 }
1791 
1792 static int addr_port(struct sockaddr_storage *ss)
1793 {
1794 	switch (ss->ss_family) {
1795 	case AF_INET:
1796 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1797 	case AF_INET6:
1798 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1799 	}
1800 	return 0;
1801 }
1802 
1803 static void addr_set_port(struct sockaddr_storage *ss, int p)
1804 {
1805 	switch (ss->ss_family) {
1806 	case AF_INET:
1807 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1808 		break;
1809 	case AF_INET6:
1810 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1811 		break;
1812 	}
1813 }
1814 
1815 /*
1816  * Unlike other *_pton function semantics, zero indicates success.
1817  */
1818 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1819 		char delim, const char **ipend)
1820 {
1821 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1822 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1823 
1824 	memset(ss, 0, sizeof(*ss));
1825 
1826 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1827 		ss->ss_family = AF_INET;
1828 		return 0;
1829 	}
1830 
1831 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1832 		ss->ss_family = AF_INET6;
1833 		return 0;
1834 	}
1835 
1836 	return -EINVAL;
1837 }
1838 
1839 /*
1840  * Extract hostname string and resolve using kernel DNS facility.
1841  */
1842 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1843 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1844 		struct sockaddr_storage *ss, char delim, const char **ipend)
1845 {
1846 	const char *end, *delim_p;
1847 	char *colon_p, *ip_addr = NULL;
1848 	int ip_len, ret;
1849 
1850 	/*
1851 	 * The end of the hostname occurs immediately preceding the delimiter or
1852 	 * the port marker (':') where the delimiter takes precedence.
1853 	 */
1854 	delim_p = memchr(name, delim, namelen);
1855 	colon_p = memchr(name, ':', namelen);
1856 
1857 	if (delim_p && colon_p)
1858 		end = delim_p < colon_p ? delim_p : colon_p;
1859 	else if (!delim_p && colon_p)
1860 		end = colon_p;
1861 	else {
1862 		end = delim_p;
1863 		if (!end) /* case: hostname:/ */
1864 			end = name + namelen;
1865 	}
1866 
1867 	if (end <= name)
1868 		return -EINVAL;
1869 
1870 	/* do dns_resolve upcall */
1871 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1872 	if (ip_len > 0)
1873 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1874 	else
1875 		ret = -ESRCH;
1876 
1877 	kfree(ip_addr);
1878 
1879 	*ipend = end;
1880 
1881 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1882 			ret, ret ? "failed" : ceph_pr_addr(ss));
1883 
1884 	return ret;
1885 }
1886 #else
1887 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1888 		struct sockaddr_storage *ss, char delim, const char **ipend)
1889 {
1890 	return -EINVAL;
1891 }
1892 #endif
1893 
1894 /*
1895  * Parse a server name (IP or hostname). If a valid IP address is not found
1896  * then try to extract a hostname to resolve using userspace DNS upcall.
1897  */
1898 static int ceph_parse_server_name(const char *name, size_t namelen,
1899 			struct sockaddr_storage *ss, char delim, const char **ipend)
1900 {
1901 	int ret;
1902 
1903 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1904 	if (ret)
1905 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1906 
1907 	return ret;
1908 }
1909 
1910 /*
1911  * Parse an ip[:port] list into an addr array.  Use the default
1912  * monitor port if a port isn't specified.
1913  */
1914 int ceph_parse_ips(const char *c, const char *end,
1915 		   struct ceph_entity_addr *addr,
1916 		   int max_count, int *count)
1917 {
1918 	int i, ret = -EINVAL;
1919 	const char *p = c;
1920 
1921 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1922 	for (i = 0; i < max_count; i++) {
1923 		const char *ipend;
1924 		struct sockaddr_storage *ss = &addr[i].in_addr;
1925 		int port;
1926 		char delim = ',';
1927 
1928 		if (*p == '[') {
1929 			delim = ']';
1930 			p++;
1931 		}
1932 
1933 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1934 		if (ret)
1935 			goto bad;
1936 		ret = -EINVAL;
1937 
1938 		p = ipend;
1939 
1940 		if (delim == ']') {
1941 			if (*p != ']') {
1942 				dout("missing matching ']'\n");
1943 				goto bad;
1944 			}
1945 			p++;
1946 		}
1947 
1948 		/* port? */
1949 		if (p < end && *p == ':') {
1950 			port = 0;
1951 			p++;
1952 			while (p < end && *p >= '0' && *p <= '9') {
1953 				port = (port * 10) + (*p - '0');
1954 				p++;
1955 			}
1956 			if (port == 0)
1957 				port = CEPH_MON_PORT;
1958 			else if (port > 65535)
1959 				goto bad;
1960 		} else {
1961 			port = CEPH_MON_PORT;
1962 		}
1963 
1964 		addr_set_port(ss, port);
1965 
1966 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1967 
1968 		if (p == end)
1969 			break;
1970 		if (*p != ',')
1971 			goto bad;
1972 		p++;
1973 	}
1974 
1975 	if (p != end)
1976 		goto bad;
1977 
1978 	if (count)
1979 		*count = i + 1;
1980 	return 0;
1981 
1982 bad:
1983 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL(ceph_parse_ips);
1987 
1988 static int process_banner(struct ceph_connection *con)
1989 {
1990 	dout("process_banner on %p\n", con);
1991 
1992 	if (verify_hello(con) < 0)
1993 		return -1;
1994 
1995 	ceph_decode_addr(&con->actual_peer_addr);
1996 	ceph_decode_addr(&con->peer_addr_for_me);
1997 
1998 	/*
1999 	 * Make sure the other end is who we wanted.  note that the other
2000 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2001 	 * them the benefit of the doubt.
2002 	 */
2003 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2004 		   sizeof(con->peer_addr)) != 0 &&
2005 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2006 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2007 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2008 			ceph_pr_addr(&con->peer_addr.in_addr),
2009 			(int)le32_to_cpu(con->peer_addr.nonce),
2010 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2011 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2012 		con->error_msg = "wrong peer at address";
2013 		return -1;
2014 	}
2015 
2016 	/*
2017 	 * did we learn our address?
2018 	 */
2019 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2020 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2021 
2022 		memcpy(&con->msgr->inst.addr.in_addr,
2023 		       &con->peer_addr_for_me.in_addr,
2024 		       sizeof(con->peer_addr_for_me.in_addr));
2025 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2026 		encode_my_addr(con->msgr);
2027 		dout("process_banner learned my addr is %s\n",
2028 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2029 	}
2030 
2031 	return 0;
2032 }
2033 
2034 static int process_connect(struct ceph_connection *con)
2035 {
2036 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2037 	u64 req_feat = from_msgr(con->msgr)->required_features;
2038 	u64 server_feat = ceph_sanitize_features(
2039 				le64_to_cpu(con->in_reply.features));
2040 	int ret;
2041 
2042 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2043 
2044 	if (con->auth_reply_buf) {
2045 		/*
2046 		 * Any connection that defines ->get_authorizer()
2047 		 * should also define ->verify_authorizer_reply().
2048 		 * See get_connect_authorizer().
2049 		 */
2050 		ret = con->ops->verify_authorizer_reply(con);
2051 		if (ret < 0) {
2052 			con->error_msg = "bad authorize reply";
2053 			return ret;
2054 		}
2055 	}
2056 
2057 	switch (con->in_reply.tag) {
2058 	case CEPH_MSGR_TAG_FEATURES:
2059 		pr_err("%s%lld %s feature set mismatch,"
2060 		       " my %llx < server's %llx, missing %llx\n",
2061 		       ENTITY_NAME(con->peer_name),
2062 		       ceph_pr_addr(&con->peer_addr.in_addr),
2063 		       sup_feat, server_feat, server_feat & ~sup_feat);
2064 		con->error_msg = "missing required protocol features";
2065 		reset_connection(con);
2066 		return -1;
2067 
2068 	case CEPH_MSGR_TAG_BADPROTOVER:
2069 		pr_err("%s%lld %s protocol version mismatch,"
2070 		       " my %d != server's %d\n",
2071 		       ENTITY_NAME(con->peer_name),
2072 		       ceph_pr_addr(&con->peer_addr.in_addr),
2073 		       le32_to_cpu(con->out_connect.protocol_version),
2074 		       le32_to_cpu(con->in_reply.protocol_version));
2075 		con->error_msg = "protocol version mismatch";
2076 		reset_connection(con);
2077 		return -1;
2078 
2079 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2080 		con->auth_retry++;
2081 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2082 		     con->auth_retry);
2083 		if (con->auth_retry == 2) {
2084 			con->error_msg = "connect authorization failure";
2085 			return -1;
2086 		}
2087 		con_out_kvec_reset(con);
2088 		ret = prepare_write_connect(con);
2089 		if (ret < 0)
2090 			return ret;
2091 		prepare_read_connect(con);
2092 		break;
2093 
2094 	case CEPH_MSGR_TAG_RESETSESSION:
2095 		/*
2096 		 * If we connected with a large connect_seq but the peer
2097 		 * has no record of a session with us (no connection, or
2098 		 * connect_seq == 0), they will send RESETSESION to indicate
2099 		 * that they must have reset their session, and may have
2100 		 * dropped messages.
2101 		 */
2102 		dout("process_connect got RESET peer seq %u\n",
2103 		     le32_to_cpu(con->in_reply.connect_seq));
2104 		pr_err("%s%lld %s connection reset\n",
2105 		       ENTITY_NAME(con->peer_name),
2106 		       ceph_pr_addr(&con->peer_addr.in_addr));
2107 		reset_connection(con);
2108 		con_out_kvec_reset(con);
2109 		ret = prepare_write_connect(con);
2110 		if (ret < 0)
2111 			return ret;
2112 		prepare_read_connect(con);
2113 
2114 		/* Tell ceph about it. */
2115 		mutex_unlock(&con->mutex);
2116 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2117 		if (con->ops->peer_reset)
2118 			con->ops->peer_reset(con);
2119 		mutex_lock(&con->mutex);
2120 		if (con->state != CON_STATE_NEGOTIATING)
2121 			return -EAGAIN;
2122 		break;
2123 
2124 	case CEPH_MSGR_TAG_RETRY_SESSION:
2125 		/*
2126 		 * If we sent a smaller connect_seq than the peer has, try
2127 		 * again with a larger value.
2128 		 */
2129 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2130 		     le32_to_cpu(con->out_connect.connect_seq),
2131 		     le32_to_cpu(con->in_reply.connect_seq));
2132 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2133 		con_out_kvec_reset(con);
2134 		ret = prepare_write_connect(con);
2135 		if (ret < 0)
2136 			return ret;
2137 		prepare_read_connect(con);
2138 		break;
2139 
2140 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2141 		/*
2142 		 * If we sent a smaller global_seq than the peer has, try
2143 		 * again with a larger value.
2144 		 */
2145 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2146 		     con->peer_global_seq,
2147 		     le32_to_cpu(con->in_reply.global_seq));
2148 		get_global_seq(con->msgr,
2149 			       le32_to_cpu(con->in_reply.global_seq));
2150 		con_out_kvec_reset(con);
2151 		ret = prepare_write_connect(con);
2152 		if (ret < 0)
2153 			return ret;
2154 		prepare_read_connect(con);
2155 		break;
2156 
2157 	case CEPH_MSGR_TAG_SEQ:
2158 	case CEPH_MSGR_TAG_READY:
2159 		if (req_feat & ~server_feat) {
2160 			pr_err("%s%lld %s protocol feature mismatch,"
2161 			       " my required %llx > server's %llx, need %llx\n",
2162 			       ENTITY_NAME(con->peer_name),
2163 			       ceph_pr_addr(&con->peer_addr.in_addr),
2164 			       req_feat, server_feat, req_feat & ~server_feat);
2165 			con->error_msg = "missing required protocol features";
2166 			reset_connection(con);
2167 			return -1;
2168 		}
2169 
2170 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2171 		con->state = CON_STATE_OPEN;
2172 		con->auth_retry = 0;    /* we authenticated; clear flag */
2173 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2174 		con->connect_seq++;
2175 		con->peer_features = server_feat;
2176 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2177 		     con->peer_global_seq,
2178 		     le32_to_cpu(con->in_reply.connect_seq),
2179 		     con->connect_seq);
2180 		WARN_ON(con->connect_seq !=
2181 			le32_to_cpu(con->in_reply.connect_seq));
2182 
2183 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2184 			con_flag_set(con, CON_FLAG_LOSSYTX);
2185 
2186 		con->delay = 0;      /* reset backoff memory */
2187 
2188 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2189 			prepare_write_seq(con);
2190 			prepare_read_seq(con);
2191 		} else {
2192 			prepare_read_tag(con);
2193 		}
2194 		break;
2195 
2196 	case CEPH_MSGR_TAG_WAIT:
2197 		/*
2198 		 * If there is a connection race (we are opening
2199 		 * connections to each other), one of us may just have
2200 		 * to WAIT.  This shouldn't happen if we are the
2201 		 * client.
2202 		 */
2203 		con->error_msg = "protocol error, got WAIT as client";
2204 		return -1;
2205 
2206 	default:
2207 		con->error_msg = "protocol error, garbage tag during connect";
2208 		return -1;
2209 	}
2210 	return 0;
2211 }
2212 
2213 
2214 /*
2215  * read (part of) an ack
2216  */
2217 static int read_partial_ack(struct ceph_connection *con)
2218 {
2219 	int size = sizeof (con->in_temp_ack);
2220 	int end = size;
2221 
2222 	return read_partial(con, end, size, &con->in_temp_ack);
2223 }
2224 
2225 /*
2226  * We can finally discard anything that's been acked.
2227  */
2228 static void process_ack(struct ceph_connection *con)
2229 {
2230 	struct ceph_msg *m;
2231 	u64 ack = le64_to_cpu(con->in_temp_ack);
2232 	u64 seq;
2233 
2234 	while (!list_empty(&con->out_sent)) {
2235 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2236 				     list_head);
2237 		seq = le64_to_cpu(m->hdr.seq);
2238 		if (seq > ack)
2239 			break;
2240 		dout("got ack for seq %llu type %d at %p\n", seq,
2241 		     le16_to_cpu(m->hdr.type), m);
2242 		m->ack_stamp = jiffies;
2243 		ceph_msg_remove(m);
2244 	}
2245 	prepare_read_tag(con);
2246 }
2247 
2248 
2249 static int read_partial_message_section(struct ceph_connection *con,
2250 					struct kvec *section,
2251 					unsigned int sec_len, u32 *crc)
2252 {
2253 	int ret, left;
2254 
2255 	BUG_ON(!section);
2256 
2257 	while (section->iov_len < sec_len) {
2258 		BUG_ON(section->iov_base == NULL);
2259 		left = sec_len - section->iov_len;
2260 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2261 				       section->iov_len, left);
2262 		if (ret <= 0)
2263 			return ret;
2264 		section->iov_len += ret;
2265 	}
2266 	if (section->iov_len == sec_len)
2267 		*crc = crc32c(0, section->iov_base, section->iov_len);
2268 
2269 	return 1;
2270 }
2271 
2272 static int read_partial_msg_data(struct ceph_connection *con)
2273 {
2274 	struct ceph_msg *msg = con->in_msg;
2275 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2276 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2277 	struct page *page;
2278 	size_t page_offset;
2279 	size_t length;
2280 	u32 crc = 0;
2281 	int ret;
2282 
2283 	BUG_ON(!msg);
2284 	if (list_empty(&msg->data))
2285 		return -EIO;
2286 
2287 	if (do_datacrc)
2288 		crc = con->in_data_crc;
2289 	while (cursor->resid) {
2290 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2291 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2292 		if (ret <= 0) {
2293 			if (do_datacrc)
2294 				con->in_data_crc = crc;
2295 
2296 			return ret;
2297 		}
2298 
2299 		if (do_datacrc)
2300 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2301 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2302 	}
2303 	if (do_datacrc)
2304 		con->in_data_crc = crc;
2305 
2306 	return 1;	/* must return > 0 to indicate success */
2307 }
2308 
2309 /*
2310  * read (part of) a message.
2311  */
2312 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2313 
2314 static int read_partial_message(struct ceph_connection *con)
2315 {
2316 	struct ceph_msg *m = con->in_msg;
2317 	int size;
2318 	int end;
2319 	int ret;
2320 	unsigned int front_len, middle_len, data_len;
2321 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2322 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2323 	u64 seq;
2324 	u32 crc;
2325 
2326 	dout("read_partial_message con %p msg %p\n", con, m);
2327 
2328 	/* header */
2329 	size = sizeof (con->in_hdr);
2330 	end = size;
2331 	ret = read_partial(con, end, size, &con->in_hdr);
2332 	if (ret <= 0)
2333 		return ret;
2334 
2335 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2336 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2337 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2338 		       crc, con->in_hdr.crc);
2339 		return -EBADMSG;
2340 	}
2341 
2342 	front_len = le32_to_cpu(con->in_hdr.front_len);
2343 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2344 		return -EIO;
2345 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2346 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2347 		return -EIO;
2348 	data_len = le32_to_cpu(con->in_hdr.data_len);
2349 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2350 		return -EIO;
2351 
2352 	/* verify seq# */
2353 	seq = le64_to_cpu(con->in_hdr.seq);
2354 	if ((s64)seq - (s64)con->in_seq < 1) {
2355 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2356 			ENTITY_NAME(con->peer_name),
2357 			ceph_pr_addr(&con->peer_addr.in_addr),
2358 			seq, con->in_seq + 1);
2359 		con->in_base_pos = -front_len - middle_len - data_len -
2360 			sizeof_footer(con);
2361 		con->in_tag = CEPH_MSGR_TAG_READY;
2362 		return 1;
2363 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2364 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2365 		       seq, con->in_seq + 1);
2366 		con->error_msg = "bad message sequence # for incoming message";
2367 		return -EBADE;
2368 	}
2369 
2370 	/* allocate message? */
2371 	if (!con->in_msg) {
2372 		int skip = 0;
2373 
2374 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2375 		     front_len, data_len);
2376 		ret = ceph_con_in_msg_alloc(con, &skip);
2377 		if (ret < 0)
2378 			return ret;
2379 
2380 		BUG_ON(!con->in_msg ^ skip);
2381 		if (skip) {
2382 			/* skip this message */
2383 			dout("alloc_msg said skip message\n");
2384 			con->in_base_pos = -front_len - middle_len - data_len -
2385 				sizeof_footer(con);
2386 			con->in_tag = CEPH_MSGR_TAG_READY;
2387 			con->in_seq++;
2388 			return 1;
2389 		}
2390 
2391 		BUG_ON(!con->in_msg);
2392 		BUG_ON(con->in_msg->con != con);
2393 		m = con->in_msg;
2394 		m->front.iov_len = 0;    /* haven't read it yet */
2395 		if (m->middle)
2396 			m->middle->vec.iov_len = 0;
2397 
2398 		/* prepare for data payload, if any */
2399 
2400 		if (data_len)
2401 			prepare_message_data(con->in_msg, data_len);
2402 	}
2403 
2404 	/* front */
2405 	ret = read_partial_message_section(con, &m->front, front_len,
2406 					   &con->in_front_crc);
2407 	if (ret <= 0)
2408 		return ret;
2409 
2410 	/* middle */
2411 	if (m->middle) {
2412 		ret = read_partial_message_section(con, &m->middle->vec,
2413 						   middle_len,
2414 						   &con->in_middle_crc);
2415 		if (ret <= 0)
2416 			return ret;
2417 	}
2418 
2419 	/* (page) data */
2420 	if (data_len) {
2421 		ret = read_partial_msg_data(con);
2422 		if (ret <= 0)
2423 			return ret;
2424 	}
2425 
2426 	/* footer */
2427 	size = sizeof_footer(con);
2428 	end += size;
2429 	ret = read_partial(con, end, size, &m->footer);
2430 	if (ret <= 0)
2431 		return ret;
2432 
2433 	if (!need_sign) {
2434 		m->footer.flags = m->old_footer.flags;
2435 		m->footer.sig = 0;
2436 	}
2437 
2438 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2439 	     m, front_len, m->footer.front_crc, middle_len,
2440 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2441 
2442 	/* crc ok? */
2443 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2444 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2445 		       m, con->in_front_crc, m->footer.front_crc);
2446 		return -EBADMSG;
2447 	}
2448 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2449 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2450 		       m, con->in_middle_crc, m->footer.middle_crc);
2451 		return -EBADMSG;
2452 	}
2453 	if (do_datacrc &&
2454 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2455 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2456 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2457 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2458 		return -EBADMSG;
2459 	}
2460 
2461 	if (need_sign && con->ops->check_message_signature &&
2462 	    con->ops->check_message_signature(m)) {
2463 		pr_err("read_partial_message %p signature check failed\n", m);
2464 		return -EBADMSG;
2465 	}
2466 
2467 	return 1; /* done! */
2468 }
2469 
2470 /*
2471  * Process message.  This happens in the worker thread.  The callback should
2472  * be careful not to do anything that waits on other incoming messages or it
2473  * may deadlock.
2474  */
2475 static void process_message(struct ceph_connection *con)
2476 {
2477 	struct ceph_msg *msg = con->in_msg;
2478 
2479 	BUG_ON(con->in_msg->con != con);
2480 	con->in_msg = NULL;
2481 
2482 	/* if first message, set peer_name */
2483 	if (con->peer_name.type == 0)
2484 		con->peer_name = msg->hdr.src;
2485 
2486 	con->in_seq++;
2487 	mutex_unlock(&con->mutex);
2488 
2489 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2490 	     msg, le64_to_cpu(msg->hdr.seq),
2491 	     ENTITY_NAME(msg->hdr.src),
2492 	     le16_to_cpu(msg->hdr.type),
2493 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2494 	     le32_to_cpu(msg->hdr.front_len),
2495 	     le32_to_cpu(msg->hdr.data_len),
2496 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2497 	con->ops->dispatch(con, msg);
2498 
2499 	mutex_lock(&con->mutex);
2500 }
2501 
2502 static int read_keepalive_ack(struct ceph_connection *con)
2503 {
2504 	struct ceph_timespec ceph_ts;
2505 	size_t size = sizeof(ceph_ts);
2506 	int ret = read_partial(con, size, size, &ceph_ts);
2507 	if (ret <= 0)
2508 		return ret;
2509 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2510 	prepare_read_tag(con);
2511 	return 1;
2512 }
2513 
2514 /*
2515  * Write something to the socket.  Called in a worker thread when the
2516  * socket appears to be writeable and we have something ready to send.
2517  */
2518 static int try_write(struct ceph_connection *con)
2519 {
2520 	int ret = 1;
2521 
2522 	dout("try_write start %p state %lu\n", con, con->state);
2523 
2524 more:
2525 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2526 
2527 	/* open the socket first? */
2528 	if (con->state == CON_STATE_PREOPEN) {
2529 		BUG_ON(con->sock);
2530 		con->state = CON_STATE_CONNECTING;
2531 
2532 		con_out_kvec_reset(con);
2533 		prepare_write_banner(con);
2534 		prepare_read_banner(con);
2535 
2536 		BUG_ON(con->in_msg);
2537 		con->in_tag = CEPH_MSGR_TAG_READY;
2538 		dout("try_write initiating connect on %p new state %lu\n",
2539 		     con, con->state);
2540 		ret = ceph_tcp_connect(con);
2541 		if (ret < 0) {
2542 			con->error_msg = "connect error";
2543 			goto out;
2544 		}
2545 	}
2546 
2547 more_kvec:
2548 	/* kvec data queued? */
2549 	if (con->out_kvec_left) {
2550 		ret = write_partial_kvec(con);
2551 		if (ret <= 0)
2552 			goto out;
2553 	}
2554 	if (con->out_skip) {
2555 		ret = write_partial_skip(con);
2556 		if (ret <= 0)
2557 			goto out;
2558 	}
2559 
2560 	/* msg pages? */
2561 	if (con->out_msg) {
2562 		if (con->out_msg_done) {
2563 			ceph_msg_put(con->out_msg);
2564 			con->out_msg = NULL;   /* we're done with this one */
2565 			goto do_next;
2566 		}
2567 
2568 		ret = write_partial_message_data(con);
2569 		if (ret == 1)
2570 			goto more_kvec;  /* we need to send the footer, too! */
2571 		if (ret == 0)
2572 			goto out;
2573 		if (ret < 0) {
2574 			dout("try_write write_partial_message_data err %d\n",
2575 			     ret);
2576 			goto out;
2577 		}
2578 	}
2579 
2580 do_next:
2581 	if (con->state == CON_STATE_OPEN) {
2582 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2583 			prepare_write_keepalive(con);
2584 			goto more;
2585 		}
2586 		/* is anything else pending? */
2587 		if (!list_empty(&con->out_queue)) {
2588 			prepare_write_message(con);
2589 			goto more;
2590 		}
2591 		if (con->in_seq > con->in_seq_acked) {
2592 			prepare_write_ack(con);
2593 			goto more;
2594 		}
2595 	}
2596 
2597 	/* Nothing to do! */
2598 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2599 	dout("try_write nothing else to write.\n");
2600 	ret = 0;
2601 out:
2602 	dout("try_write done on %p ret %d\n", con, ret);
2603 	return ret;
2604 }
2605 
2606 
2607 
2608 /*
2609  * Read what we can from the socket.
2610  */
2611 static int try_read(struct ceph_connection *con)
2612 {
2613 	int ret = -1;
2614 
2615 more:
2616 	dout("try_read start on %p state %lu\n", con, con->state);
2617 	if (con->state != CON_STATE_CONNECTING &&
2618 	    con->state != CON_STATE_NEGOTIATING &&
2619 	    con->state != CON_STATE_OPEN)
2620 		return 0;
2621 
2622 	BUG_ON(!con->sock);
2623 
2624 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2625 	     con->in_base_pos);
2626 
2627 	if (con->state == CON_STATE_CONNECTING) {
2628 		dout("try_read connecting\n");
2629 		ret = read_partial_banner(con);
2630 		if (ret <= 0)
2631 			goto out;
2632 		ret = process_banner(con);
2633 		if (ret < 0)
2634 			goto out;
2635 
2636 		con->state = CON_STATE_NEGOTIATING;
2637 
2638 		/*
2639 		 * Received banner is good, exchange connection info.
2640 		 * Do not reset out_kvec, as sending our banner raced
2641 		 * with receiving peer banner after connect completed.
2642 		 */
2643 		ret = prepare_write_connect(con);
2644 		if (ret < 0)
2645 			goto out;
2646 		prepare_read_connect(con);
2647 
2648 		/* Send connection info before awaiting response */
2649 		goto out;
2650 	}
2651 
2652 	if (con->state == CON_STATE_NEGOTIATING) {
2653 		dout("try_read negotiating\n");
2654 		ret = read_partial_connect(con);
2655 		if (ret <= 0)
2656 			goto out;
2657 		ret = process_connect(con);
2658 		if (ret < 0)
2659 			goto out;
2660 		goto more;
2661 	}
2662 
2663 	WARN_ON(con->state != CON_STATE_OPEN);
2664 
2665 	if (con->in_base_pos < 0) {
2666 		/*
2667 		 * skipping + discarding content.
2668 		 *
2669 		 * FIXME: there must be a better way to do this!
2670 		 */
2671 		static char buf[SKIP_BUF_SIZE];
2672 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2673 
2674 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2675 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2676 		if (ret <= 0)
2677 			goto out;
2678 		con->in_base_pos += ret;
2679 		if (con->in_base_pos)
2680 			goto more;
2681 	}
2682 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2683 		/*
2684 		 * what's next?
2685 		 */
2686 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2687 		if (ret <= 0)
2688 			goto out;
2689 		dout("try_read got tag %d\n", (int)con->in_tag);
2690 		switch (con->in_tag) {
2691 		case CEPH_MSGR_TAG_MSG:
2692 			prepare_read_message(con);
2693 			break;
2694 		case CEPH_MSGR_TAG_ACK:
2695 			prepare_read_ack(con);
2696 			break;
2697 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2698 			prepare_read_keepalive_ack(con);
2699 			break;
2700 		case CEPH_MSGR_TAG_CLOSE:
2701 			con_close_socket(con);
2702 			con->state = CON_STATE_CLOSED;
2703 			goto out;
2704 		default:
2705 			goto bad_tag;
2706 		}
2707 	}
2708 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2709 		ret = read_partial_message(con);
2710 		if (ret <= 0) {
2711 			switch (ret) {
2712 			case -EBADMSG:
2713 				con->error_msg = "bad crc/signature";
2714 				/* fall through */
2715 			case -EBADE:
2716 				ret = -EIO;
2717 				break;
2718 			case -EIO:
2719 				con->error_msg = "io error";
2720 				break;
2721 			}
2722 			goto out;
2723 		}
2724 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2725 			goto more;
2726 		process_message(con);
2727 		if (con->state == CON_STATE_OPEN)
2728 			prepare_read_tag(con);
2729 		goto more;
2730 	}
2731 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2732 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2733 		/*
2734 		 * the final handshake seq exchange is semantically
2735 		 * equivalent to an ACK
2736 		 */
2737 		ret = read_partial_ack(con);
2738 		if (ret <= 0)
2739 			goto out;
2740 		process_ack(con);
2741 		goto more;
2742 	}
2743 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2744 		ret = read_keepalive_ack(con);
2745 		if (ret <= 0)
2746 			goto out;
2747 		goto more;
2748 	}
2749 
2750 out:
2751 	dout("try_read done on %p ret %d\n", con, ret);
2752 	return ret;
2753 
2754 bad_tag:
2755 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2756 	con->error_msg = "protocol error, garbage tag";
2757 	ret = -1;
2758 	goto out;
2759 }
2760 
2761 
2762 /*
2763  * Atomically queue work on a connection after the specified delay.
2764  * Bump @con reference to avoid races with connection teardown.
2765  * Returns 0 if work was queued, or an error code otherwise.
2766  */
2767 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2768 {
2769 	if (!con->ops->get(con)) {
2770 		dout("%s %p ref count 0\n", __func__, con);
2771 		return -ENOENT;
2772 	}
2773 
2774 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2775 		dout("%s %p - already queued\n", __func__, con);
2776 		con->ops->put(con);
2777 		return -EBUSY;
2778 	}
2779 
2780 	dout("%s %p %lu\n", __func__, con, delay);
2781 	return 0;
2782 }
2783 
2784 static void queue_con(struct ceph_connection *con)
2785 {
2786 	(void) queue_con_delay(con, 0);
2787 }
2788 
2789 static void cancel_con(struct ceph_connection *con)
2790 {
2791 	if (cancel_delayed_work(&con->work)) {
2792 		dout("%s %p\n", __func__, con);
2793 		con->ops->put(con);
2794 	}
2795 }
2796 
2797 static bool con_sock_closed(struct ceph_connection *con)
2798 {
2799 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2800 		return false;
2801 
2802 #define CASE(x)								\
2803 	case CON_STATE_ ## x:						\
2804 		con->error_msg = "socket closed (con state " #x ")";	\
2805 		break;
2806 
2807 	switch (con->state) {
2808 	CASE(CLOSED);
2809 	CASE(PREOPEN);
2810 	CASE(CONNECTING);
2811 	CASE(NEGOTIATING);
2812 	CASE(OPEN);
2813 	CASE(STANDBY);
2814 	default:
2815 		pr_warn("%s con %p unrecognized state %lu\n",
2816 			__func__, con, con->state);
2817 		con->error_msg = "unrecognized con state";
2818 		BUG();
2819 		break;
2820 	}
2821 #undef CASE
2822 
2823 	return true;
2824 }
2825 
2826 static bool con_backoff(struct ceph_connection *con)
2827 {
2828 	int ret;
2829 
2830 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2831 		return false;
2832 
2833 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2834 	if (ret) {
2835 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2836 			con, con->delay);
2837 		BUG_ON(ret == -ENOENT);
2838 		con_flag_set(con, CON_FLAG_BACKOFF);
2839 	}
2840 
2841 	return true;
2842 }
2843 
2844 /* Finish fault handling; con->mutex must *not* be held here */
2845 
2846 static void con_fault_finish(struct ceph_connection *con)
2847 {
2848 	dout("%s %p\n", __func__, con);
2849 
2850 	/*
2851 	 * in case we faulted due to authentication, invalidate our
2852 	 * current tickets so that we can get new ones.
2853 	 */
2854 	if (con->auth_retry) {
2855 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2856 		if (con->ops->invalidate_authorizer)
2857 			con->ops->invalidate_authorizer(con);
2858 		con->auth_retry = 0;
2859 	}
2860 
2861 	if (con->ops->fault)
2862 		con->ops->fault(con);
2863 }
2864 
2865 /*
2866  * Do some work on a connection.  Drop a connection ref when we're done.
2867  */
2868 static void ceph_con_workfn(struct work_struct *work)
2869 {
2870 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2871 						   work.work);
2872 	bool fault;
2873 
2874 	mutex_lock(&con->mutex);
2875 	while (true) {
2876 		int ret;
2877 
2878 		if ((fault = con_sock_closed(con))) {
2879 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2880 			break;
2881 		}
2882 		if (con_backoff(con)) {
2883 			dout("%s: con %p BACKOFF\n", __func__, con);
2884 			break;
2885 		}
2886 		if (con->state == CON_STATE_STANDBY) {
2887 			dout("%s: con %p STANDBY\n", __func__, con);
2888 			break;
2889 		}
2890 		if (con->state == CON_STATE_CLOSED) {
2891 			dout("%s: con %p CLOSED\n", __func__, con);
2892 			BUG_ON(con->sock);
2893 			break;
2894 		}
2895 		if (con->state == CON_STATE_PREOPEN) {
2896 			dout("%s: con %p PREOPEN\n", __func__, con);
2897 			BUG_ON(con->sock);
2898 		}
2899 
2900 		ret = try_read(con);
2901 		if (ret < 0) {
2902 			if (ret == -EAGAIN)
2903 				continue;
2904 			if (!con->error_msg)
2905 				con->error_msg = "socket error on read";
2906 			fault = true;
2907 			break;
2908 		}
2909 
2910 		ret = try_write(con);
2911 		if (ret < 0) {
2912 			if (ret == -EAGAIN)
2913 				continue;
2914 			if (!con->error_msg)
2915 				con->error_msg = "socket error on write";
2916 			fault = true;
2917 		}
2918 
2919 		break;	/* If we make it to here, we're done */
2920 	}
2921 	if (fault)
2922 		con_fault(con);
2923 	mutex_unlock(&con->mutex);
2924 
2925 	if (fault)
2926 		con_fault_finish(con);
2927 
2928 	con->ops->put(con);
2929 }
2930 
2931 /*
2932  * Generic error/fault handler.  A retry mechanism is used with
2933  * exponential backoff
2934  */
2935 static void con_fault(struct ceph_connection *con)
2936 {
2937 	dout("fault %p state %lu to peer %s\n",
2938 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2939 
2940 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2941 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2942 	con->error_msg = NULL;
2943 
2944 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2945 	       con->state != CON_STATE_NEGOTIATING &&
2946 	       con->state != CON_STATE_OPEN);
2947 
2948 	con_close_socket(con);
2949 
2950 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2951 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2952 		con->state = CON_STATE_CLOSED;
2953 		return;
2954 	}
2955 
2956 	if (con->in_msg) {
2957 		BUG_ON(con->in_msg->con != con);
2958 		ceph_msg_put(con->in_msg);
2959 		con->in_msg = NULL;
2960 	}
2961 
2962 	/* Requeue anything that hasn't been acked */
2963 	list_splice_init(&con->out_sent, &con->out_queue);
2964 
2965 	/* If there are no messages queued or keepalive pending, place
2966 	 * the connection in a STANDBY state */
2967 	if (list_empty(&con->out_queue) &&
2968 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2969 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2970 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2971 		con->state = CON_STATE_STANDBY;
2972 	} else {
2973 		/* retry after a delay. */
2974 		con->state = CON_STATE_PREOPEN;
2975 		if (con->delay == 0)
2976 			con->delay = BASE_DELAY_INTERVAL;
2977 		else if (con->delay < MAX_DELAY_INTERVAL)
2978 			con->delay *= 2;
2979 		con_flag_set(con, CON_FLAG_BACKOFF);
2980 		queue_con(con);
2981 	}
2982 }
2983 
2984 
2985 
2986 /*
2987  * initialize a new messenger instance
2988  */
2989 void ceph_messenger_init(struct ceph_messenger *msgr,
2990 			 struct ceph_entity_addr *myaddr)
2991 {
2992 	spin_lock_init(&msgr->global_seq_lock);
2993 
2994 	if (myaddr)
2995 		msgr->inst.addr = *myaddr;
2996 
2997 	/* select a random nonce */
2998 	msgr->inst.addr.type = 0;
2999 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3000 	encode_my_addr(msgr);
3001 
3002 	atomic_set(&msgr->stopping, 0);
3003 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3004 
3005 	dout("%s %p\n", __func__, msgr);
3006 }
3007 EXPORT_SYMBOL(ceph_messenger_init);
3008 
3009 void ceph_messenger_fini(struct ceph_messenger *msgr)
3010 {
3011 	put_net(read_pnet(&msgr->net));
3012 }
3013 EXPORT_SYMBOL(ceph_messenger_fini);
3014 
3015 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3016 {
3017 	if (msg->con)
3018 		msg->con->ops->put(msg->con);
3019 
3020 	msg->con = con ? con->ops->get(con) : NULL;
3021 	BUG_ON(msg->con != con);
3022 }
3023 
3024 static void clear_standby(struct ceph_connection *con)
3025 {
3026 	/* come back from STANDBY? */
3027 	if (con->state == CON_STATE_STANDBY) {
3028 		dout("clear_standby %p and ++connect_seq\n", con);
3029 		con->state = CON_STATE_PREOPEN;
3030 		con->connect_seq++;
3031 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3032 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3033 	}
3034 }
3035 
3036 /*
3037  * Queue up an outgoing message on the given connection.
3038  */
3039 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3040 {
3041 	/* set src+dst */
3042 	msg->hdr.src = con->msgr->inst.name;
3043 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3044 	msg->needs_out_seq = true;
3045 
3046 	mutex_lock(&con->mutex);
3047 
3048 	if (con->state == CON_STATE_CLOSED) {
3049 		dout("con_send %p closed, dropping %p\n", con, msg);
3050 		ceph_msg_put(msg);
3051 		mutex_unlock(&con->mutex);
3052 		return;
3053 	}
3054 
3055 	msg_con_set(msg, con);
3056 
3057 	BUG_ON(!list_empty(&msg->list_head));
3058 	list_add_tail(&msg->list_head, &con->out_queue);
3059 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3060 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3061 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3062 	     le32_to_cpu(msg->hdr.front_len),
3063 	     le32_to_cpu(msg->hdr.middle_len),
3064 	     le32_to_cpu(msg->hdr.data_len));
3065 
3066 	clear_standby(con);
3067 	mutex_unlock(&con->mutex);
3068 
3069 	/* if there wasn't anything waiting to send before, queue
3070 	 * new work */
3071 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3072 		queue_con(con);
3073 }
3074 EXPORT_SYMBOL(ceph_con_send);
3075 
3076 /*
3077  * Revoke a message that was previously queued for send
3078  */
3079 void ceph_msg_revoke(struct ceph_msg *msg)
3080 {
3081 	struct ceph_connection *con = msg->con;
3082 
3083 	if (!con) {
3084 		dout("%s msg %p null con\n", __func__, msg);
3085 		return;		/* Message not in our possession */
3086 	}
3087 
3088 	mutex_lock(&con->mutex);
3089 	if (!list_empty(&msg->list_head)) {
3090 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3091 		list_del_init(&msg->list_head);
3092 		msg->hdr.seq = 0;
3093 
3094 		ceph_msg_put(msg);
3095 	}
3096 	if (con->out_msg == msg) {
3097 		BUG_ON(con->out_skip);
3098 		/* footer */
3099 		if (con->out_msg_done) {
3100 			con->out_skip += con_out_kvec_skip(con);
3101 		} else {
3102 			BUG_ON(!msg->data_length);
3103 			con->out_skip += sizeof_footer(con);
3104 		}
3105 		/* data, middle, front */
3106 		if (msg->data_length)
3107 			con->out_skip += msg->cursor.total_resid;
3108 		if (msg->middle)
3109 			con->out_skip += con_out_kvec_skip(con);
3110 		con->out_skip += con_out_kvec_skip(con);
3111 
3112 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3113 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3114 		msg->hdr.seq = 0;
3115 		con->out_msg = NULL;
3116 		ceph_msg_put(msg);
3117 	}
3118 
3119 	mutex_unlock(&con->mutex);
3120 }
3121 
3122 /*
3123  * Revoke a message that we may be reading data into
3124  */
3125 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3126 {
3127 	struct ceph_connection *con = msg->con;
3128 
3129 	if (!con) {
3130 		dout("%s msg %p null con\n", __func__, msg);
3131 		return;		/* Message not in our possession */
3132 	}
3133 
3134 	mutex_lock(&con->mutex);
3135 	if (con->in_msg == msg) {
3136 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3137 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3138 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3139 
3140 		/* skip rest of message */
3141 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3142 		con->in_base_pos = con->in_base_pos -
3143 				sizeof(struct ceph_msg_header) -
3144 				front_len -
3145 				middle_len -
3146 				data_len -
3147 				sizeof(struct ceph_msg_footer);
3148 		ceph_msg_put(con->in_msg);
3149 		con->in_msg = NULL;
3150 		con->in_tag = CEPH_MSGR_TAG_READY;
3151 		con->in_seq++;
3152 	} else {
3153 		dout("%s %p in_msg %p msg %p no-op\n",
3154 		     __func__, con, con->in_msg, msg);
3155 	}
3156 	mutex_unlock(&con->mutex);
3157 }
3158 
3159 /*
3160  * Queue a keepalive byte to ensure the tcp connection is alive.
3161  */
3162 void ceph_con_keepalive(struct ceph_connection *con)
3163 {
3164 	dout("con_keepalive %p\n", con);
3165 	mutex_lock(&con->mutex);
3166 	clear_standby(con);
3167 	mutex_unlock(&con->mutex);
3168 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3169 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3170 		queue_con(con);
3171 }
3172 EXPORT_SYMBOL(ceph_con_keepalive);
3173 
3174 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3175 			       unsigned long interval)
3176 {
3177 	if (interval > 0 &&
3178 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3179 		struct timespec now = CURRENT_TIME;
3180 		struct timespec ts;
3181 		jiffies_to_timespec(interval, &ts);
3182 		ts = timespec_add(con->last_keepalive_ack, ts);
3183 		return timespec_compare(&now, &ts) >= 0;
3184 	}
3185 	return false;
3186 }
3187 
3188 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3189 {
3190 	struct ceph_msg_data *data;
3191 
3192 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3193 		return NULL;
3194 
3195 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3196 	if (data)
3197 		data->type = type;
3198 	INIT_LIST_HEAD(&data->links);
3199 
3200 	return data;
3201 }
3202 
3203 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3204 {
3205 	if (!data)
3206 		return;
3207 
3208 	WARN_ON(!list_empty(&data->links));
3209 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3210 		ceph_pagelist_release(data->pagelist);
3211 	kmem_cache_free(ceph_msg_data_cache, data);
3212 }
3213 
3214 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3215 		size_t length, size_t alignment)
3216 {
3217 	struct ceph_msg_data *data;
3218 
3219 	BUG_ON(!pages);
3220 	BUG_ON(!length);
3221 
3222 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3223 	BUG_ON(!data);
3224 	data->pages = pages;
3225 	data->length = length;
3226 	data->alignment = alignment & ~PAGE_MASK;
3227 
3228 	list_add_tail(&data->links, &msg->data);
3229 	msg->data_length += length;
3230 }
3231 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3232 
3233 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3234 				struct ceph_pagelist *pagelist)
3235 {
3236 	struct ceph_msg_data *data;
3237 
3238 	BUG_ON(!pagelist);
3239 	BUG_ON(!pagelist->length);
3240 
3241 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3242 	BUG_ON(!data);
3243 	data->pagelist = pagelist;
3244 
3245 	list_add_tail(&data->links, &msg->data);
3246 	msg->data_length += pagelist->length;
3247 }
3248 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3249 
3250 #ifdef	CONFIG_BLOCK
3251 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3252 		size_t length)
3253 {
3254 	struct ceph_msg_data *data;
3255 
3256 	BUG_ON(!bio);
3257 
3258 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3259 	BUG_ON(!data);
3260 	data->bio = bio;
3261 	data->bio_length = length;
3262 
3263 	list_add_tail(&data->links, &msg->data);
3264 	msg->data_length += length;
3265 }
3266 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3267 #endif	/* CONFIG_BLOCK */
3268 
3269 /*
3270  * construct a new message with given type, size
3271  * the new msg has a ref count of 1.
3272  */
3273 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3274 			      bool can_fail)
3275 {
3276 	struct ceph_msg *m;
3277 
3278 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3279 	if (m == NULL)
3280 		goto out;
3281 
3282 	m->hdr.type = cpu_to_le16(type);
3283 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3284 	m->hdr.front_len = cpu_to_le32(front_len);
3285 
3286 	INIT_LIST_HEAD(&m->list_head);
3287 	kref_init(&m->kref);
3288 	INIT_LIST_HEAD(&m->data);
3289 
3290 	/* front */
3291 	if (front_len) {
3292 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3293 		if (m->front.iov_base == NULL) {
3294 			dout("ceph_msg_new can't allocate %d bytes\n",
3295 			     front_len);
3296 			goto out2;
3297 		}
3298 	} else {
3299 		m->front.iov_base = NULL;
3300 	}
3301 	m->front_alloc_len = m->front.iov_len = front_len;
3302 
3303 	dout("ceph_msg_new %p front %d\n", m, front_len);
3304 	return m;
3305 
3306 out2:
3307 	ceph_msg_put(m);
3308 out:
3309 	if (!can_fail) {
3310 		pr_err("msg_new can't create type %d front %d\n", type,
3311 		       front_len);
3312 		WARN_ON(1);
3313 	} else {
3314 		dout("msg_new can't create type %d front %d\n", type,
3315 		     front_len);
3316 	}
3317 	return NULL;
3318 }
3319 EXPORT_SYMBOL(ceph_msg_new);
3320 
3321 /*
3322  * Allocate "middle" portion of a message, if it is needed and wasn't
3323  * allocated by alloc_msg.  This allows us to read a small fixed-size
3324  * per-type header in the front and then gracefully fail (i.e.,
3325  * propagate the error to the caller based on info in the front) when
3326  * the middle is too large.
3327  */
3328 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3329 {
3330 	int type = le16_to_cpu(msg->hdr.type);
3331 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3332 
3333 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3334 	     ceph_msg_type_name(type), middle_len);
3335 	BUG_ON(!middle_len);
3336 	BUG_ON(msg->middle);
3337 
3338 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3339 	if (!msg->middle)
3340 		return -ENOMEM;
3341 	return 0;
3342 }
3343 
3344 /*
3345  * Allocate a message for receiving an incoming message on a
3346  * connection, and save the result in con->in_msg.  Uses the
3347  * connection's private alloc_msg op if available.
3348  *
3349  * Returns 0 on success, or a negative error code.
3350  *
3351  * On success, if we set *skip = 1:
3352  *  - the next message should be skipped and ignored.
3353  *  - con->in_msg == NULL
3354  * or if we set *skip = 0:
3355  *  - con->in_msg is non-null.
3356  * On error (ENOMEM, EAGAIN, ...),
3357  *  - con->in_msg == NULL
3358  */
3359 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3360 {
3361 	struct ceph_msg_header *hdr = &con->in_hdr;
3362 	int middle_len = le32_to_cpu(hdr->middle_len);
3363 	struct ceph_msg *msg;
3364 	int ret = 0;
3365 
3366 	BUG_ON(con->in_msg != NULL);
3367 	BUG_ON(!con->ops->alloc_msg);
3368 
3369 	mutex_unlock(&con->mutex);
3370 	msg = con->ops->alloc_msg(con, hdr, skip);
3371 	mutex_lock(&con->mutex);
3372 	if (con->state != CON_STATE_OPEN) {
3373 		if (msg)
3374 			ceph_msg_put(msg);
3375 		return -EAGAIN;
3376 	}
3377 	if (msg) {
3378 		BUG_ON(*skip);
3379 		msg_con_set(msg, con);
3380 		con->in_msg = msg;
3381 	} else {
3382 		/*
3383 		 * Null message pointer means either we should skip
3384 		 * this message or we couldn't allocate memory.  The
3385 		 * former is not an error.
3386 		 */
3387 		if (*skip)
3388 			return 0;
3389 
3390 		con->error_msg = "error allocating memory for incoming message";
3391 		return -ENOMEM;
3392 	}
3393 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3394 
3395 	if (middle_len && !con->in_msg->middle) {
3396 		ret = ceph_alloc_middle(con, con->in_msg);
3397 		if (ret < 0) {
3398 			ceph_msg_put(con->in_msg);
3399 			con->in_msg = NULL;
3400 		}
3401 	}
3402 
3403 	return ret;
3404 }
3405 
3406 
3407 /*
3408  * Free a generically kmalloc'd message.
3409  */
3410 static void ceph_msg_free(struct ceph_msg *m)
3411 {
3412 	dout("%s %p\n", __func__, m);
3413 	kvfree(m->front.iov_base);
3414 	kmem_cache_free(ceph_msg_cache, m);
3415 }
3416 
3417 static void ceph_msg_release(struct kref *kref)
3418 {
3419 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3420 	struct ceph_msg_data *data, *next;
3421 
3422 	dout("%s %p\n", __func__, m);
3423 	WARN_ON(!list_empty(&m->list_head));
3424 
3425 	msg_con_set(m, NULL);
3426 
3427 	/* drop middle, data, if any */
3428 	if (m->middle) {
3429 		ceph_buffer_put(m->middle);
3430 		m->middle = NULL;
3431 	}
3432 
3433 	list_for_each_entry_safe(data, next, &m->data, links) {
3434 		list_del_init(&data->links);
3435 		ceph_msg_data_destroy(data);
3436 	}
3437 	m->data_length = 0;
3438 
3439 	if (m->pool)
3440 		ceph_msgpool_put(m->pool, m);
3441 	else
3442 		ceph_msg_free(m);
3443 }
3444 
3445 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3446 {
3447 	dout("%s %p (was %d)\n", __func__, msg,
3448 	     kref_read(&msg->kref));
3449 	kref_get(&msg->kref);
3450 	return msg;
3451 }
3452 EXPORT_SYMBOL(ceph_msg_get);
3453 
3454 void ceph_msg_put(struct ceph_msg *msg)
3455 {
3456 	dout("%s %p (was %d)\n", __func__, msg,
3457 	     kref_read(&msg->kref));
3458 	kref_put(&msg->kref, ceph_msg_release);
3459 }
3460 EXPORT_SYMBOL(ceph_msg_put);
3461 
3462 void ceph_msg_dump(struct ceph_msg *msg)
3463 {
3464 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3465 		 msg->front_alloc_len, msg->data_length);
3466 	print_hex_dump(KERN_DEBUG, "header: ",
3467 		       DUMP_PREFIX_OFFSET, 16, 1,
3468 		       &msg->hdr, sizeof(msg->hdr), true);
3469 	print_hex_dump(KERN_DEBUG, " front: ",
3470 		       DUMP_PREFIX_OFFSET, 16, 1,
3471 		       msg->front.iov_base, msg->front.iov_len, true);
3472 	if (msg->middle)
3473 		print_hex_dump(KERN_DEBUG, "middle: ",
3474 			       DUMP_PREFIX_OFFSET, 16, 1,
3475 			       msg->middle->vec.iov_base,
3476 			       msg->middle->vec.iov_len, true);
3477 	print_hex_dump(KERN_DEBUG, "footer: ",
3478 		       DUMP_PREFIX_OFFSET, 16, 1,
3479 		       &msg->footer, sizeof(msg->footer), true);
3480 }
3481 EXPORT_SYMBOL(ceph_msg_dump);
3482