1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/libceph.h> 19 #include <linux/ceph/messenger.h> 20 #include <linux/ceph/decode.h> 21 #include <linux/ceph/pagelist.h> 22 #include <linux/export.h> 23 24 /* 25 * Ceph uses the messenger to exchange ceph_msg messages with other 26 * hosts in the system. The messenger provides ordered and reliable 27 * delivery. We tolerate TCP disconnects by reconnecting (with 28 * exponential backoff) in the case of a fault (disconnection, bad 29 * crc, protocol error). Acks allow sent messages to be discarded by 30 * the sender. 31 */ 32 33 /* 34 * We track the state of the socket on a given connection using 35 * values defined below. The transition to a new socket state is 36 * handled by a function which verifies we aren't coming from an 37 * unexpected state. 38 * 39 * -------- 40 * | NEW* | transient initial state 41 * -------- 42 * | con_sock_state_init() 43 * v 44 * ---------- 45 * | CLOSED | initialized, but no socket (and no 46 * ---------- TCP connection) 47 * ^ \ 48 * | \ con_sock_state_connecting() 49 * | ---------------------- 50 * | \ 51 * + con_sock_state_closed() \ 52 * |+--------------------------- \ 53 * | \ \ \ 54 * | ----------- \ \ 55 * | | CLOSING | socket event; \ \ 56 * | ----------- await close \ \ 57 * | ^ \ | 58 * | | \ | 59 * | + con_sock_state_closing() \ | 60 * | / \ | | 61 * | / --------------- | | 62 * | / \ v v 63 * | / -------------- 64 * | / -----------------| CONNECTING | socket created, TCP 65 * | | / -------------- connect initiated 66 * | | | con_sock_state_connected() 67 * | | v 68 * ------------- 69 * | CONNECTED | TCP connection established 70 * ------------- 71 * 72 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 73 */ 74 75 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 76 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 77 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 78 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 79 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 80 81 /* 82 * connection states 83 */ 84 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 85 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 86 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 87 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 88 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 89 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 90 91 /* 92 * ceph_connection flag bits 93 */ 94 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 95 * messages on errors */ 96 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 97 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 98 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 99 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 100 101 static bool con_flag_valid(unsigned long con_flag) 102 { 103 switch (con_flag) { 104 case CON_FLAG_LOSSYTX: 105 case CON_FLAG_KEEPALIVE_PENDING: 106 case CON_FLAG_WRITE_PENDING: 107 case CON_FLAG_SOCK_CLOSED: 108 case CON_FLAG_BACKOFF: 109 return true; 110 default: 111 return false; 112 } 113 } 114 115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 116 { 117 BUG_ON(!con_flag_valid(con_flag)); 118 119 clear_bit(con_flag, &con->flags); 120 } 121 122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 123 { 124 BUG_ON(!con_flag_valid(con_flag)); 125 126 set_bit(con_flag, &con->flags); 127 } 128 129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 130 { 131 BUG_ON(!con_flag_valid(con_flag)); 132 133 return test_bit(con_flag, &con->flags); 134 } 135 136 static bool con_flag_test_and_clear(struct ceph_connection *con, 137 unsigned long con_flag) 138 { 139 BUG_ON(!con_flag_valid(con_flag)); 140 141 return test_and_clear_bit(con_flag, &con->flags); 142 } 143 144 static bool con_flag_test_and_set(struct ceph_connection *con, 145 unsigned long con_flag) 146 { 147 BUG_ON(!con_flag_valid(con_flag)); 148 149 return test_and_set_bit(con_flag, &con->flags); 150 } 151 152 /* static tag bytes (protocol control messages) */ 153 static char tag_msg = CEPH_MSGR_TAG_MSG; 154 static char tag_ack = CEPH_MSGR_TAG_ACK; 155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 156 157 #ifdef CONFIG_LOCKDEP 158 static struct lock_class_key socket_class; 159 #endif 160 161 /* 162 * When skipping (ignoring) a block of input we read it into a "skip 163 * buffer," which is this many bytes in size. 164 */ 165 #define SKIP_BUF_SIZE 1024 166 167 static void queue_con(struct ceph_connection *con); 168 static void con_work(struct work_struct *); 169 static void con_fault(struct ceph_connection *con); 170 171 /* 172 * Nicely render a sockaddr as a string. An array of formatted 173 * strings is used, to approximate reentrancy. 174 */ 175 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 176 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 177 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 178 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 179 180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 181 static atomic_t addr_str_seq = ATOMIC_INIT(0); 182 183 static struct page *zero_page; /* used in certain error cases */ 184 185 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 186 { 187 int i; 188 char *s; 189 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 190 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 191 192 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 193 s = addr_str[i]; 194 195 switch (ss->ss_family) { 196 case AF_INET: 197 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 198 ntohs(in4->sin_port)); 199 break; 200 201 case AF_INET6: 202 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 203 ntohs(in6->sin6_port)); 204 break; 205 206 default: 207 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 208 ss->ss_family); 209 } 210 211 return s; 212 } 213 EXPORT_SYMBOL(ceph_pr_addr); 214 215 static void encode_my_addr(struct ceph_messenger *msgr) 216 { 217 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 218 ceph_encode_addr(&msgr->my_enc_addr); 219 } 220 221 /* 222 * work queue for all reading and writing to/from the socket. 223 */ 224 static struct workqueue_struct *ceph_msgr_wq; 225 226 static void _ceph_msgr_exit(void) 227 { 228 if (ceph_msgr_wq) { 229 destroy_workqueue(ceph_msgr_wq); 230 ceph_msgr_wq = NULL; 231 } 232 233 BUG_ON(zero_page == NULL); 234 kunmap(zero_page); 235 page_cache_release(zero_page); 236 zero_page = NULL; 237 } 238 239 int ceph_msgr_init(void) 240 { 241 BUG_ON(zero_page != NULL); 242 zero_page = ZERO_PAGE(0); 243 page_cache_get(zero_page); 244 245 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0); 246 if (ceph_msgr_wq) 247 return 0; 248 249 pr_err("msgr_init failed to create workqueue\n"); 250 _ceph_msgr_exit(); 251 252 return -ENOMEM; 253 } 254 EXPORT_SYMBOL(ceph_msgr_init); 255 256 void ceph_msgr_exit(void) 257 { 258 BUG_ON(ceph_msgr_wq == NULL); 259 260 _ceph_msgr_exit(); 261 } 262 EXPORT_SYMBOL(ceph_msgr_exit); 263 264 void ceph_msgr_flush(void) 265 { 266 flush_workqueue(ceph_msgr_wq); 267 } 268 EXPORT_SYMBOL(ceph_msgr_flush); 269 270 /* Connection socket state transition functions */ 271 272 static void con_sock_state_init(struct ceph_connection *con) 273 { 274 int old_state; 275 276 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 277 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 278 printk("%s: unexpected old state %d\n", __func__, old_state); 279 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 280 CON_SOCK_STATE_CLOSED); 281 } 282 283 static void con_sock_state_connecting(struct ceph_connection *con) 284 { 285 int old_state; 286 287 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 288 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 289 printk("%s: unexpected old state %d\n", __func__, old_state); 290 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 291 CON_SOCK_STATE_CONNECTING); 292 } 293 294 static void con_sock_state_connected(struct ceph_connection *con) 295 { 296 int old_state; 297 298 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 299 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 300 printk("%s: unexpected old state %d\n", __func__, old_state); 301 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 302 CON_SOCK_STATE_CONNECTED); 303 } 304 305 static void con_sock_state_closing(struct ceph_connection *con) 306 { 307 int old_state; 308 309 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 310 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 311 old_state != CON_SOCK_STATE_CONNECTED && 312 old_state != CON_SOCK_STATE_CLOSING)) 313 printk("%s: unexpected old state %d\n", __func__, old_state); 314 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 315 CON_SOCK_STATE_CLOSING); 316 } 317 318 static void con_sock_state_closed(struct ceph_connection *con) 319 { 320 int old_state; 321 322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 323 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 324 old_state != CON_SOCK_STATE_CLOSING && 325 old_state != CON_SOCK_STATE_CONNECTING && 326 old_state != CON_SOCK_STATE_CLOSED)) 327 printk("%s: unexpected old state %d\n", __func__, old_state); 328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 329 CON_SOCK_STATE_CLOSED); 330 } 331 332 /* 333 * socket callback functions 334 */ 335 336 /* data available on socket, or listen socket received a connect */ 337 static void ceph_sock_data_ready(struct sock *sk, int count_unused) 338 { 339 struct ceph_connection *con = sk->sk_user_data; 340 if (atomic_read(&con->msgr->stopping)) { 341 return; 342 } 343 344 if (sk->sk_state != TCP_CLOSE_WAIT) { 345 dout("%s on %p state = %lu, queueing work\n", __func__, 346 con, con->state); 347 queue_con(con); 348 } 349 } 350 351 /* socket has buffer space for writing */ 352 static void ceph_sock_write_space(struct sock *sk) 353 { 354 struct ceph_connection *con = sk->sk_user_data; 355 356 /* only queue to workqueue if there is data we want to write, 357 * and there is sufficient space in the socket buffer to accept 358 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 359 * doesn't get called again until try_write() fills the socket 360 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 361 * and net/core/stream.c:sk_stream_write_space(). 362 */ 363 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 364 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 365 dout("%s %p queueing write work\n", __func__, con); 366 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 367 queue_con(con); 368 } 369 } else { 370 dout("%s %p nothing to write\n", __func__, con); 371 } 372 } 373 374 /* socket's state has changed */ 375 static void ceph_sock_state_change(struct sock *sk) 376 { 377 struct ceph_connection *con = sk->sk_user_data; 378 379 dout("%s %p state = %lu sk_state = %u\n", __func__, 380 con, con->state, sk->sk_state); 381 382 switch (sk->sk_state) { 383 case TCP_CLOSE: 384 dout("%s TCP_CLOSE\n", __func__); 385 case TCP_CLOSE_WAIT: 386 dout("%s TCP_CLOSE_WAIT\n", __func__); 387 con_sock_state_closing(con); 388 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 389 queue_con(con); 390 break; 391 case TCP_ESTABLISHED: 392 dout("%s TCP_ESTABLISHED\n", __func__); 393 con_sock_state_connected(con); 394 queue_con(con); 395 break; 396 default: /* Everything else is uninteresting */ 397 break; 398 } 399 } 400 401 /* 402 * set up socket callbacks 403 */ 404 static void set_sock_callbacks(struct socket *sock, 405 struct ceph_connection *con) 406 { 407 struct sock *sk = sock->sk; 408 sk->sk_user_data = con; 409 sk->sk_data_ready = ceph_sock_data_ready; 410 sk->sk_write_space = ceph_sock_write_space; 411 sk->sk_state_change = ceph_sock_state_change; 412 } 413 414 415 /* 416 * socket helpers 417 */ 418 419 /* 420 * initiate connection to a remote socket. 421 */ 422 static int ceph_tcp_connect(struct ceph_connection *con) 423 { 424 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 425 struct socket *sock; 426 int ret; 427 428 BUG_ON(con->sock); 429 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 430 IPPROTO_TCP, &sock); 431 if (ret) 432 return ret; 433 sock->sk->sk_allocation = GFP_NOFS; 434 435 #ifdef CONFIG_LOCKDEP 436 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 437 #endif 438 439 set_sock_callbacks(sock, con); 440 441 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 442 443 con_sock_state_connecting(con); 444 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 445 O_NONBLOCK); 446 if (ret == -EINPROGRESS) { 447 dout("connect %s EINPROGRESS sk_state = %u\n", 448 ceph_pr_addr(&con->peer_addr.in_addr), 449 sock->sk->sk_state); 450 } else if (ret < 0) { 451 pr_err("connect %s error %d\n", 452 ceph_pr_addr(&con->peer_addr.in_addr), ret); 453 sock_release(sock); 454 con->error_msg = "connect error"; 455 456 return ret; 457 } 458 con->sock = sock; 459 return 0; 460 } 461 462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 463 { 464 struct kvec iov = {buf, len}; 465 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 466 int r; 467 468 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 469 if (r == -EAGAIN) 470 r = 0; 471 return r; 472 } 473 474 /* 475 * write something. @more is true if caller will be sending more data 476 * shortly. 477 */ 478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 479 size_t kvlen, size_t len, int more) 480 { 481 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 482 int r; 483 484 if (more) 485 msg.msg_flags |= MSG_MORE; 486 else 487 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 488 489 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 490 if (r == -EAGAIN) 491 r = 0; 492 return r; 493 } 494 495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 496 int offset, size_t size, int more) 497 { 498 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 499 int ret; 500 501 ret = kernel_sendpage(sock, page, offset, size, flags); 502 if (ret == -EAGAIN) 503 ret = 0; 504 505 return ret; 506 } 507 508 509 /* 510 * Shutdown/close the socket for the given connection. 511 */ 512 static int con_close_socket(struct ceph_connection *con) 513 { 514 int rc = 0; 515 516 dout("con_close_socket on %p sock %p\n", con, con->sock); 517 if (con->sock) { 518 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 519 sock_release(con->sock); 520 con->sock = NULL; 521 } 522 523 /* 524 * Forcibly clear the SOCK_CLOSED flag. It gets set 525 * independent of the connection mutex, and we could have 526 * received a socket close event before we had the chance to 527 * shut the socket down. 528 */ 529 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 530 531 con_sock_state_closed(con); 532 return rc; 533 } 534 535 /* 536 * Reset a connection. Discard all incoming and outgoing messages 537 * and clear *_seq state. 538 */ 539 static void ceph_msg_remove(struct ceph_msg *msg) 540 { 541 list_del_init(&msg->list_head); 542 BUG_ON(msg->con == NULL); 543 msg->con->ops->put(msg->con); 544 msg->con = NULL; 545 546 ceph_msg_put(msg); 547 } 548 static void ceph_msg_remove_list(struct list_head *head) 549 { 550 while (!list_empty(head)) { 551 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 552 list_head); 553 ceph_msg_remove(msg); 554 } 555 } 556 557 static void reset_connection(struct ceph_connection *con) 558 { 559 /* reset connection, out_queue, msg_ and connect_seq */ 560 /* discard existing out_queue and msg_seq */ 561 dout("reset_connection %p\n", con); 562 ceph_msg_remove_list(&con->out_queue); 563 ceph_msg_remove_list(&con->out_sent); 564 565 if (con->in_msg) { 566 BUG_ON(con->in_msg->con != con); 567 con->in_msg->con = NULL; 568 ceph_msg_put(con->in_msg); 569 con->in_msg = NULL; 570 con->ops->put(con); 571 } 572 573 con->connect_seq = 0; 574 con->out_seq = 0; 575 if (con->out_msg) { 576 ceph_msg_put(con->out_msg); 577 con->out_msg = NULL; 578 } 579 con->in_seq = 0; 580 con->in_seq_acked = 0; 581 } 582 583 /* 584 * mark a peer down. drop any open connections. 585 */ 586 void ceph_con_close(struct ceph_connection *con) 587 { 588 mutex_lock(&con->mutex); 589 dout("con_close %p peer %s\n", con, 590 ceph_pr_addr(&con->peer_addr.in_addr)); 591 con->state = CON_STATE_CLOSED; 592 593 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 594 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 595 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 596 con_flag_clear(con, CON_FLAG_BACKOFF); 597 598 reset_connection(con); 599 con->peer_global_seq = 0; 600 cancel_delayed_work(&con->work); 601 con_close_socket(con); 602 mutex_unlock(&con->mutex); 603 } 604 EXPORT_SYMBOL(ceph_con_close); 605 606 /* 607 * Reopen a closed connection, with a new peer address. 608 */ 609 void ceph_con_open(struct ceph_connection *con, 610 __u8 entity_type, __u64 entity_num, 611 struct ceph_entity_addr *addr) 612 { 613 mutex_lock(&con->mutex); 614 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 615 616 WARN_ON(con->state != CON_STATE_CLOSED); 617 con->state = CON_STATE_PREOPEN; 618 619 con->peer_name.type = (__u8) entity_type; 620 con->peer_name.num = cpu_to_le64(entity_num); 621 622 memcpy(&con->peer_addr, addr, sizeof(*addr)); 623 con->delay = 0; /* reset backoff memory */ 624 mutex_unlock(&con->mutex); 625 queue_con(con); 626 } 627 EXPORT_SYMBOL(ceph_con_open); 628 629 /* 630 * return true if this connection ever successfully opened 631 */ 632 bool ceph_con_opened(struct ceph_connection *con) 633 { 634 return con->connect_seq > 0; 635 } 636 637 /* 638 * initialize a new connection. 639 */ 640 void ceph_con_init(struct ceph_connection *con, void *private, 641 const struct ceph_connection_operations *ops, 642 struct ceph_messenger *msgr) 643 { 644 dout("con_init %p\n", con); 645 memset(con, 0, sizeof(*con)); 646 con->private = private; 647 con->ops = ops; 648 con->msgr = msgr; 649 650 con_sock_state_init(con); 651 652 mutex_init(&con->mutex); 653 INIT_LIST_HEAD(&con->out_queue); 654 INIT_LIST_HEAD(&con->out_sent); 655 INIT_DELAYED_WORK(&con->work, con_work); 656 657 con->state = CON_STATE_CLOSED; 658 } 659 EXPORT_SYMBOL(ceph_con_init); 660 661 662 /* 663 * We maintain a global counter to order connection attempts. Get 664 * a unique seq greater than @gt. 665 */ 666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 667 { 668 u32 ret; 669 670 spin_lock(&msgr->global_seq_lock); 671 if (msgr->global_seq < gt) 672 msgr->global_seq = gt; 673 ret = ++msgr->global_seq; 674 spin_unlock(&msgr->global_seq_lock); 675 return ret; 676 } 677 678 static void con_out_kvec_reset(struct ceph_connection *con) 679 { 680 con->out_kvec_left = 0; 681 con->out_kvec_bytes = 0; 682 con->out_kvec_cur = &con->out_kvec[0]; 683 } 684 685 static void con_out_kvec_add(struct ceph_connection *con, 686 size_t size, void *data) 687 { 688 int index; 689 690 index = con->out_kvec_left; 691 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 692 693 con->out_kvec[index].iov_len = size; 694 con->out_kvec[index].iov_base = data; 695 con->out_kvec_left++; 696 con->out_kvec_bytes += size; 697 } 698 699 #ifdef CONFIG_BLOCK 700 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg) 701 { 702 if (!bio) { 703 *iter = NULL; 704 *seg = 0; 705 return; 706 } 707 *iter = bio; 708 *seg = bio->bi_idx; 709 } 710 711 static void iter_bio_next(struct bio **bio_iter, int *seg) 712 { 713 if (*bio_iter == NULL) 714 return; 715 716 BUG_ON(*seg >= (*bio_iter)->bi_vcnt); 717 718 (*seg)++; 719 if (*seg == (*bio_iter)->bi_vcnt) 720 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg); 721 } 722 #endif 723 724 static void prepare_write_message_data(struct ceph_connection *con) 725 { 726 struct ceph_msg *msg = con->out_msg; 727 728 BUG_ON(!msg); 729 BUG_ON(!msg->hdr.data_len); 730 731 /* initialize page iterator */ 732 con->out_msg_pos.page = 0; 733 if (msg->pages) 734 con->out_msg_pos.page_pos = msg->page_alignment; 735 else 736 con->out_msg_pos.page_pos = 0; 737 #ifdef CONFIG_BLOCK 738 if (msg->bio) 739 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg); 740 #endif 741 con->out_msg_pos.data_pos = 0; 742 con->out_msg_pos.did_page_crc = false; 743 con->out_more = 1; /* data + footer will follow */ 744 } 745 746 /* 747 * Prepare footer for currently outgoing message, and finish things 748 * off. Assumes out_kvec* are already valid.. we just add on to the end. 749 */ 750 static void prepare_write_message_footer(struct ceph_connection *con) 751 { 752 struct ceph_msg *m = con->out_msg; 753 int v = con->out_kvec_left; 754 755 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 756 757 dout("prepare_write_message_footer %p\n", con); 758 con->out_kvec_is_msg = true; 759 con->out_kvec[v].iov_base = &m->footer; 760 con->out_kvec[v].iov_len = sizeof(m->footer); 761 con->out_kvec_bytes += sizeof(m->footer); 762 con->out_kvec_left++; 763 con->out_more = m->more_to_follow; 764 con->out_msg_done = true; 765 } 766 767 /* 768 * Prepare headers for the next outgoing message. 769 */ 770 static void prepare_write_message(struct ceph_connection *con) 771 { 772 struct ceph_msg *m; 773 u32 crc; 774 775 con_out_kvec_reset(con); 776 con->out_kvec_is_msg = true; 777 con->out_msg_done = false; 778 779 /* Sneak an ack in there first? If we can get it into the same 780 * TCP packet that's a good thing. */ 781 if (con->in_seq > con->in_seq_acked) { 782 con->in_seq_acked = con->in_seq; 783 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 784 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 785 con_out_kvec_add(con, sizeof (con->out_temp_ack), 786 &con->out_temp_ack); 787 } 788 789 BUG_ON(list_empty(&con->out_queue)); 790 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 791 con->out_msg = m; 792 BUG_ON(m->con != con); 793 794 /* put message on sent list */ 795 ceph_msg_get(m); 796 list_move_tail(&m->list_head, &con->out_sent); 797 798 /* 799 * only assign outgoing seq # if we haven't sent this message 800 * yet. if it is requeued, resend with it's original seq. 801 */ 802 if (m->needs_out_seq) { 803 m->hdr.seq = cpu_to_le64(++con->out_seq); 804 m->needs_out_seq = false; 805 } 806 #ifdef CONFIG_BLOCK 807 else 808 m->bio_iter = NULL; 809 #endif 810 811 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", 812 m, con->out_seq, le16_to_cpu(m->hdr.type), 813 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 814 le32_to_cpu(m->hdr.data_len), 815 m->nr_pages); 816 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 817 818 /* tag + hdr + front + middle */ 819 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 820 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 821 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 822 823 if (m->middle) 824 con_out_kvec_add(con, m->middle->vec.iov_len, 825 m->middle->vec.iov_base); 826 827 /* fill in crc (except data pages), footer */ 828 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 829 con->out_msg->hdr.crc = cpu_to_le32(crc); 830 con->out_msg->footer.flags = 0; 831 832 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 833 con->out_msg->footer.front_crc = cpu_to_le32(crc); 834 if (m->middle) { 835 crc = crc32c(0, m->middle->vec.iov_base, 836 m->middle->vec.iov_len); 837 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 838 } else 839 con->out_msg->footer.middle_crc = 0; 840 dout("%s front_crc %u middle_crc %u\n", __func__, 841 le32_to_cpu(con->out_msg->footer.front_crc), 842 le32_to_cpu(con->out_msg->footer.middle_crc)); 843 844 /* is there a data payload? */ 845 con->out_msg->footer.data_crc = 0; 846 if (m->hdr.data_len) 847 prepare_write_message_data(con); 848 else 849 /* no, queue up footer too and be done */ 850 prepare_write_message_footer(con); 851 852 con_flag_set(con, CON_FLAG_WRITE_PENDING); 853 } 854 855 /* 856 * Prepare an ack. 857 */ 858 static void prepare_write_ack(struct ceph_connection *con) 859 { 860 dout("prepare_write_ack %p %llu -> %llu\n", con, 861 con->in_seq_acked, con->in_seq); 862 con->in_seq_acked = con->in_seq; 863 864 con_out_kvec_reset(con); 865 866 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 867 868 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 869 con_out_kvec_add(con, sizeof (con->out_temp_ack), 870 &con->out_temp_ack); 871 872 con->out_more = 1; /* more will follow.. eventually.. */ 873 con_flag_set(con, CON_FLAG_WRITE_PENDING); 874 } 875 876 /* 877 * Prepare to write keepalive byte. 878 */ 879 static void prepare_write_keepalive(struct ceph_connection *con) 880 { 881 dout("prepare_write_keepalive %p\n", con); 882 con_out_kvec_reset(con); 883 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 884 con_flag_set(con, CON_FLAG_WRITE_PENDING); 885 } 886 887 /* 888 * Connection negotiation. 889 */ 890 891 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 892 int *auth_proto) 893 { 894 struct ceph_auth_handshake *auth; 895 896 if (!con->ops->get_authorizer) { 897 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 898 con->out_connect.authorizer_len = 0; 899 return NULL; 900 } 901 902 /* Can't hold the mutex while getting authorizer */ 903 mutex_unlock(&con->mutex); 904 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 905 mutex_lock(&con->mutex); 906 907 if (IS_ERR(auth)) 908 return auth; 909 if (con->state != CON_STATE_NEGOTIATING) 910 return ERR_PTR(-EAGAIN); 911 912 con->auth_reply_buf = auth->authorizer_reply_buf; 913 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 914 return auth; 915 } 916 917 /* 918 * We connected to a peer and are saying hello. 919 */ 920 static void prepare_write_banner(struct ceph_connection *con) 921 { 922 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 923 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 924 &con->msgr->my_enc_addr); 925 926 con->out_more = 0; 927 con_flag_set(con, CON_FLAG_WRITE_PENDING); 928 } 929 930 static int prepare_write_connect(struct ceph_connection *con) 931 { 932 unsigned int global_seq = get_global_seq(con->msgr, 0); 933 int proto; 934 int auth_proto; 935 struct ceph_auth_handshake *auth; 936 937 switch (con->peer_name.type) { 938 case CEPH_ENTITY_TYPE_MON: 939 proto = CEPH_MONC_PROTOCOL; 940 break; 941 case CEPH_ENTITY_TYPE_OSD: 942 proto = CEPH_OSDC_PROTOCOL; 943 break; 944 case CEPH_ENTITY_TYPE_MDS: 945 proto = CEPH_MDSC_PROTOCOL; 946 break; 947 default: 948 BUG(); 949 } 950 951 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 952 con->connect_seq, global_seq, proto); 953 954 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 955 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 956 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 957 con->out_connect.global_seq = cpu_to_le32(global_seq); 958 con->out_connect.protocol_version = cpu_to_le32(proto); 959 con->out_connect.flags = 0; 960 961 auth_proto = CEPH_AUTH_UNKNOWN; 962 auth = get_connect_authorizer(con, &auth_proto); 963 if (IS_ERR(auth)) 964 return PTR_ERR(auth); 965 966 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 967 con->out_connect.authorizer_len = auth ? 968 cpu_to_le32(auth->authorizer_buf_len) : 0; 969 970 con_out_kvec_add(con, sizeof (con->out_connect), 971 &con->out_connect); 972 if (auth && auth->authorizer_buf_len) 973 con_out_kvec_add(con, auth->authorizer_buf_len, 974 auth->authorizer_buf); 975 976 con->out_more = 0; 977 con_flag_set(con, CON_FLAG_WRITE_PENDING); 978 979 return 0; 980 } 981 982 /* 983 * write as much of pending kvecs to the socket as we can. 984 * 1 -> done 985 * 0 -> socket full, but more to do 986 * <0 -> error 987 */ 988 static int write_partial_kvec(struct ceph_connection *con) 989 { 990 int ret; 991 992 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 993 while (con->out_kvec_bytes > 0) { 994 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 995 con->out_kvec_left, con->out_kvec_bytes, 996 con->out_more); 997 if (ret <= 0) 998 goto out; 999 con->out_kvec_bytes -= ret; 1000 if (con->out_kvec_bytes == 0) 1001 break; /* done */ 1002 1003 /* account for full iov entries consumed */ 1004 while (ret >= con->out_kvec_cur->iov_len) { 1005 BUG_ON(!con->out_kvec_left); 1006 ret -= con->out_kvec_cur->iov_len; 1007 con->out_kvec_cur++; 1008 con->out_kvec_left--; 1009 } 1010 /* and for a partially-consumed entry */ 1011 if (ret) { 1012 con->out_kvec_cur->iov_len -= ret; 1013 con->out_kvec_cur->iov_base += ret; 1014 } 1015 } 1016 con->out_kvec_left = 0; 1017 con->out_kvec_is_msg = false; 1018 ret = 1; 1019 out: 1020 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1021 con->out_kvec_bytes, con->out_kvec_left, ret); 1022 return ret; /* done! */ 1023 } 1024 1025 static void out_msg_pos_next(struct ceph_connection *con, struct page *page, 1026 size_t len, size_t sent, bool in_trail) 1027 { 1028 struct ceph_msg *msg = con->out_msg; 1029 1030 BUG_ON(!msg); 1031 BUG_ON(!sent); 1032 1033 con->out_msg_pos.data_pos += sent; 1034 con->out_msg_pos.page_pos += sent; 1035 if (sent < len) 1036 return; 1037 1038 BUG_ON(sent != len); 1039 con->out_msg_pos.page_pos = 0; 1040 con->out_msg_pos.page++; 1041 con->out_msg_pos.did_page_crc = false; 1042 if (in_trail) 1043 list_move_tail(&page->lru, 1044 &msg->trail->head); 1045 else if (msg->pagelist) 1046 list_move_tail(&page->lru, 1047 &msg->pagelist->head); 1048 #ifdef CONFIG_BLOCK 1049 else if (msg->bio) 1050 iter_bio_next(&msg->bio_iter, &msg->bio_seg); 1051 #endif 1052 } 1053 1054 /* 1055 * Write as much message data payload as we can. If we finish, queue 1056 * up the footer. 1057 * 1 -> done, footer is now queued in out_kvec[]. 1058 * 0 -> socket full, but more to do 1059 * <0 -> error 1060 */ 1061 static int write_partial_msg_pages(struct ceph_connection *con) 1062 { 1063 struct ceph_msg *msg = con->out_msg; 1064 unsigned int data_len = le32_to_cpu(msg->hdr.data_len); 1065 size_t len; 1066 bool do_datacrc = !con->msgr->nocrc; 1067 int ret; 1068 int total_max_write; 1069 bool in_trail = false; 1070 const size_t trail_len = (msg->trail ? msg->trail->length : 0); 1071 const size_t trail_off = data_len - trail_len; 1072 1073 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", 1074 con, msg, con->out_msg_pos.page, msg->nr_pages, 1075 con->out_msg_pos.page_pos); 1076 1077 /* 1078 * Iterate through each page that contains data to be 1079 * written, and send as much as possible for each. 1080 * 1081 * If we are calculating the data crc (the default), we will 1082 * need to map the page. If we have no pages, they have 1083 * been revoked, so use the zero page. 1084 */ 1085 while (data_len > con->out_msg_pos.data_pos) { 1086 struct page *page = NULL; 1087 int max_write = PAGE_SIZE; 1088 int bio_offset = 0; 1089 1090 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off; 1091 if (!in_trail) 1092 total_max_write = trail_off - con->out_msg_pos.data_pos; 1093 1094 if (in_trail) { 1095 total_max_write = data_len - con->out_msg_pos.data_pos; 1096 1097 page = list_first_entry(&msg->trail->head, 1098 struct page, lru); 1099 } else if (msg->pages) { 1100 page = msg->pages[con->out_msg_pos.page]; 1101 } else if (msg->pagelist) { 1102 page = list_first_entry(&msg->pagelist->head, 1103 struct page, lru); 1104 #ifdef CONFIG_BLOCK 1105 } else if (msg->bio) { 1106 struct bio_vec *bv; 1107 1108 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg); 1109 page = bv->bv_page; 1110 bio_offset = bv->bv_offset; 1111 max_write = bv->bv_len; 1112 #endif 1113 } else { 1114 page = zero_page; 1115 } 1116 len = min_t(int, max_write - con->out_msg_pos.page_pos, 1117 total_max_write); 1118 1119 if (do_datacrc && !con->out_msg_pos.did_page_crc) { 1120 void *base; 1121 u32 crc = le32_to_cpu(msg->footer.data_crc); 1122 char *kaddr; 1123 1124 kaddr = kmap(page); 1125 BUG_ON(kaddr == NULL); 1126 base = kaddr + con->out_msg_pos.page_pos + bio_offset; 1127 crc = crc32c(crc, base, len); 1128 kunmap(page); 1129 msg->footer.data_crc = cpu_to_le32(crc); 1130 con->out_msg_pos.did_page_crc = true; 1131 } 1132 ret = ceph_tcp_sendpage(con->sock, page, 1133 con->out_msg_pos.page_pos + bio_offset, 1134 len, 1); 1135 if (ret <= 0) 1136 goto out; 1137 1138 out_msg_pos_next(con, page, len, (size_t) ret, in_trail); 1139 } 1140 1141 dout("write_partial_msg_pages %p msg %p done\n", con, msg); 1142 1143 /* prepare and queue up footer, too */ 1144 if (!do_datacrc) 1145 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1146 con_out_kvec_reset(con); 1147 prepare_write_message_footer(con); 1148 ret = 1; 1149 out: 1150 return ret; 1151 } 1152 1153 /* 1154 * write some zeros 1155 */ 1156 static int write_partial_skip(struct ceph_connection *con) 1157 { 1158 int ret; 1159 1160 while (con->out_skip > 0) { 1161 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1162 1163 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1); 1164 if (ret <= 0) 1165 goto out; 1166 con->out_skip -= ret; 1167 } 1168 ret = 1; 1169 out: 1170 return ret; 1171 } 1172 1173 /* 1174 * Prepare to read connection handshake, or an ack. 1175 */ 1176 static void prepare_read_banner(struct ceph_connection *con) 1177 { 1178 dout("prepare_read_banner %p\n", con); 1179 con->in_base_pos = 0; 1180 } 1181 1182 static void prepare_read_connect(struct ceph_connection *con) 1183 { 1184 dout("prepare_read_connect %p\n", con); 1185 con->in_base_pos = 0; 1186 } 1187 1188 static void prepare_read_ack(struct ceph_connection *con) 1189 { 1190 dout("prepare_read_ack %p\n", con); 1191 con->in_base_pos = 0; 1192 } 1193 1194 static void prepare_read_tag(struct ceph_connection *con) 1195 { 1196 dout("prepare_read_tag %p\n", con); 1197 con->in_base_pos = 0; 1198 con->in_tag = CEPH_MSGR_TAG_READY; 1199 } 1200 1201 /* 1202 * Prepare to read a message. 1203 */ 1204 static int prepare_read_message(struct ceph_connection *con) 1205 { 1206 dout("prepare_read_message %p\n", con); 1207 BUG_ON(con->in_msg != NULL); 1208 con->in_base_pos = 0; 1209 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1210 return 0; 1211 } 1212 1213 1214 static int read_partial(struct ceph_connection *con, 1215 int end, int size, void *object) 1216 { 1217 while (con->in_base_pos < end) { 1218 int left = end - con->in_base_pos; 1219 int have = size - left; 1220 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1221 if (ret <= 0) 1222 return ret; 1223 con->in_base_pos += ret; 1224 } 1225 return 1; 1226 } 1227 1228 1229 /* 1230 * Read all or part of the connect-side handshake on a new connection 1231 */ 1232 static int read_partial_banner(struct ceph_connection *con) 1233 { 1234 int size; 1235 int end; 1236 int ret; 1237 1238 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1239 1240 /* peer's banner */ 1241 size = strlen(CEPH_BANNER); 1242 end = size; 1243 ret = read_partial(con, end, size, con->in_banner); 1244 if (ret <= 0) 1245 goto out; 1246 1247 size = sizeof (con->actual_peer_addr); 1248 end += size; 1249 ret = read_partial(con, end, size, &con->actual_peer_addr); 1250 if (ret <= 0) 1251 goto out; 1252 1253 size = sizeof (con->peer_addr_for_me); 1254 end += size; 1255 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1256 if (ret <= 0) 1257 goto out; 1258 1259 out: 1260 return ret; 1261 } 1262 1263 static int read_partial_connect(struct ceph_connection *con) 1264 { 1265 int size; 1266 int end; 1267 int ret; 1268 1269 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1270 1271 size = sizeof (con->in_reply); 1272 end = size; 1273 ret = read_partial(con, end, size, &con->in_reply); 1274 if (ret <= 0) 1275 goto out; 1276 1277 size = le32_to_cpu(con->in_reply.authorizer_len); 1278 end += size; 1279 ret = read_partial(con, end, size, con->auth_reply_buf); 1280 if (ret <= 0) 1281 goto out; 1282 1283 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1284 con, (int)con->in_reply.tag, 1285 le32_to_cpu(con->in_reply.connect_seq), 1286 le32_to_cpu(con->in_reply.global_seq)); 1287 out: 1288 return ret; 1289 1290 } 1291 1292 /* 1293 * Verify the hello banner looks okay. 1294 */ 1295 static int verify_hello(struct ceph_connection *con) 1296 { 1297 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1298 pr_err("connect to %s got bad banner\n", 1299 ceph_pr_addr(&con->peer_addr.in_addr)); 1300 con->error_msg = "protocol error, bad banner"; 1301 return -1; 1302 } 1303 return 0; 1304 } 1305 1306 static bool addr_is_blank(struct sockaddr_storage *ss) 1307 { 1308 switch (ss->ss_family) { 1309 case AF_INET: 1310 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1311 case AF_INET6: 1312 return 1313 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1314 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1315 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1316 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1317 } 1318 return false; 1319 } 1320 1321 static int addr_port(struct sockaddr_storage *ss) 1322 { 1323 switch (ss->ss_family) { 1324 case AF_INET: 1325 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1326 case AF_INET6: 1327 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1328 } 1329 return 0; 1330 } 1331 1332 static void addr_set_port(struct sockaddr_storage *ss, int p) 1333 { 1334 switch (ss->ss_family) { 1335 case AF_INET: 1336 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1337 break; 1338 case AF_INET6: 1339 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1340 break; 1341 } 1342 } 1343 1344 /* 1345 * Unlike other *_pton function semantics, zero indicates success. 1346 */ 1347 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1348 char delim, const char **ipend) 1349 { 1350 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1351 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1352 1353 memset(ss, 0, sizeof(*ss)); 1354 1355 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1356 ss->ss_family = AF_INET; 1357 return 0; 1358 } 1359 1360 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1361 ss->ss_family = AF_INET6; 1362 return 0; 1363 } 1364 1365 return -EINVAL; 1366 } 1367 1368 /* 1369 * Extract hostname string and resolve using kernel DNS facility. 1370 */ 1371 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1372 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1373 struct sockaddr_storage *ss, char delim, const char **ipend) 1374 { 1375 const char *end, *delim_p; 1376 char *colon_p, *ip_addr = NULL; 1377 int ip_len, ret; 1378 1379 /* 1380 * The end of the hostname occurs immediately preceding the delimiter or 1381 * the port marker (':') where the delimiter takes precedence. 1382 */ 1383 delim_p = memchr(name, delim, namelen); 1384 colon_p = memchr(name, ':', namelen); 1385 1386 if (delim_p && colon_p) 1387 end = delim_p < colon_p ? delim_p : colon_p; 1388 else if (!delim_p && colon_p) 1389 end = colon_p; 1390 else { 1391 end = delim_p; 1392 if (!end) /* case: hostname:/ */ 1393 end = name + namelen; 1394 } 1395 1396 if (end <= name) 1397 return -EINVAL; 1398 1399 /* do dns_resolve upcall */ 1400 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1401 if (ip_len > 0) 1402 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1403 else 1404 ret = -ESRCH; 1405 1406 kfree(ip_addr); 1407 1408 *ipend = end; 1409 1410 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1411 ret, ret ? "failed" : ceph_pr_addr(ss)); 1412 1413 return ret; 1414 } 1415 #else 1416 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1417 struct sockaddr_storage *ss, char delim, const char **ipend) 1418 { 1419 return -EINVAL; 1420 } 1421 #endif 1422 1423 /* 1424 * Parse a server name (IP or hostname). If a valid IP address is not found 1425 * then try to extract a hostname to resolve using userspace DNS upcall. 1426 */ 1427 static int ceph_parse_server_name(const char *name, size_t namelen, 1428 struct sockaddr_storage *ss, char delim, const char **ipend) 1429 { 1430 int ret; 1431 1432 ret = ceph_pton(name, namelen, ss, delim, ipend); 1433 if (ret) 1434 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1435 1436 return ret; 1437 } 1438 1439 /* 1440 * Parse an ip[:port] list into an addr array. Use the default 1441 * monitor port if a port isn't specified. 1442 */ 1443 int ceph_parse_ips(const char *c, const char *end, 1444 struct ceph_entity_addr *addr, 1445 int max_count, int *count) 1446 { 1447 int i, ret = -EINVAL; 1448 const char *p = c; 1449 1450 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1451 for (i = 0; i < max_count; i++) { 1452 const char *ipend; 1453 struct sockaddr_storage *ss = &addr[i].in_addr; 1454 int port; 1455 char delim = ','; 1456 1457 if (*p == '[') { 1458 delim = ']'; 1459 p++; 1460 } 1461 1462 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1463 if (ret) 1464 goto bad; 1465 ret = -EINVAL; 1466 1467 p = ipend; 1468 1469 if (delim == ']') { 1470 if (*p != ']') { 1471 dout("missing matching ']'\n"); 1472 goto bad; 1473 } 1474 p++; 1475 } 1476 1477 /* port? */ 1478 if (p < end && *p == ':') { 1479 port = 0; 1480 p++; 1481 while (p < end && *p >= '0' && *p <= '9') { 1482 port = (port * 10) + (*p - '0'); 1483 p++; 1484 } 1485 if (port > 65535 || port == 0) 1486 goto bad; 1487 } else { 1488 port = CEPH_MON_PORT; 1489 } 1490 1491 addr_set_port(ss, port); 1492 1493 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1494 1495 if (p == end) 1496 break; 1497 if (*p != ',') 1498 goto bad; 1499 p++; 1500 } 1501 1502 if (p != end) 1503 goto bad; 1504 1505 if (count) 1506 *count = i + 1; 1507 return 0; 1508 1509 bad: 1510 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1511 return ret; 1512 } 1513 EXPORT_SYMBOL(ceph_parse_ips); 1514 1515 static int process_banner(struct ceph_connection *con) 1516 { 1517 dout("process_banner on %p\n", con); 1518 1519 if (verify_hello(con) < 0) 1520 return -1; 1521 1522 ceph_decode_addr(&con->actual_peer_addr); 1523 ceph_decode_addr(&con->peer_addr_for_me); 1524 1525 /* 1526 * Make sure the other end is who we wanted. note that the other 1527 * end may not yet know their ip address, so if it's 0.0.0.0, give 1528 * them the benefit of the doubt. 1529 */ 1530 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1531 sizeof(con->peer_addr)) != 0 && 1532 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1533 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1534 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1535 ceph_pr_addr(&con->peer_addr.in_addr), 1536 (int)le32_to_cpu(con->peer_addr.nonce), 1537 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1538 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1539 con->error_msg = "wrong peer at address"; 1540 return -1; 1541 } 1542 1543 /* 1544 * did we learn our address? 1545 */ 1546 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1547 int port = addr_port(&con->msgr->inst.addr.in_addr); 1548 1549 memcpy(&con->msgr->inst.addr.in_addr, 1550 &con->peer_addr_for_me.in_addr, 1551 sizeof(con->peer_addr_for_me.in_addr)); 1552 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1553 encode_my_addr(con->msgr); 1554 dout("process_banner learned my addr is %s\n", 1555 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1556 } 1557 1558 return 0; 1559 } 1560 1561 static int process_connect(struct ceph_connection *con) 1562 { 1563 u64 sup_feat = con->msgr->supported_features; 1564 u64 req_feat = con->msgr->required_features; 1565 u64 server_feat = le64_to_cpu(con->in_reply.features); 1566 int ret; 1567 1568 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1569 1570 switch (con->in_reply.tag) { 1571 case CEPH_MSGR_TAG_FEATURES: 1572 pr_err("%s%lld %s feature set mismatch," 1573 " my %llx < server's %llx, missing %llx\n", 1574 ENTITY_NAME(con->peer_name), 1575 ceph_pr_addr(&con->peer_addr.in_addr), 1576 sup_feat, server_feat, server_feat & ~sup_feat); 1577 con->error_msg = "missing required protocol features"; 1578 reset_connection(con); 1579 return -1; 1580 1581 case CEPH_MSGR_TAG_BADPROTOVER: 1582 pr_err("%s%lld %s protocol version mismatch," 1583 " my %d != server's %d\n", 1584 ENTITY_NAME(con->peer_name), 1585 ceph_pr_addr(&con->peer_addr.in_addr), 1586 le32_to_cpu(con->out_connect.protocol_version), 1587 le32_to_cpu(con->in_reply.protocol_version)); 1588 con->error_msg = "protocol version mismatch"; 1589 reset_connection(con); 1590 return -1; 1591 1592 case CEPH_MSGR_TAG_BADAUTHORIZER: 1593 con->auth_retry++; 1594 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1595 con->auth_retry); 1596 if (con->auth_retry == 2) { 1597 con->error_msg = "connect authorization failure"; 1598 return -1; 1599 } 1600 con->auth_retry = 1; 1601 con_out_kvec_reset(con); 1602 ret = prepare_write_connect(con); 1603 if (ret < 0) 1604 return ret; 1605 prepare_read_connect(con); 1606 break; 1607 1608 case CEPH_MSGR_TAG_RESETSESSION: 1609 /* 1610 * If we connected with a large connect_seq but the peer 1611 * has no record of a session with us (no connection, or 1612 * connect_seq == 0), they will send RESETSESION to indicate 1613 * that they must have reset their session, and may have 1614 * dropped messages. 1615 */ 1616 dout("process_connect got RESET peer seq %u\n", 1617 le32_to_cpu(con->in_reply.connect_seq)); 1618 pr_err("%s%lld %s connection reset\n", 1619 ENTITY_NAME(con->peer_name), 1620 ceph_pr_addr(&con->peer_addr.in_addr)); 1621 reset_connection(con); 1622 con_out_kvec_reset(con); 1623 ret = prepare_write_connect(con); 1624 if (ret < 0) 1625 return ret; 1626 prepare_read_connect(con); 1627 1628 /* Tell ceph about it. */ 1629 mutex_unlock(&con->mutex); 1630 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 1631 if (con->ops->peer_reset) 1632 con->ops->peer_reset(con); 1633 mutex_lock(&con->mutex); 1634 if (con->state != CON_STATE_NEGOTIATING) 1635 return -EAGAIN; 1636 break; 1637 1638 case CEPH_MSGR_TAG_RETRY_SESSION: 1639 /* 1640 * If we sent a smaller connect_seq than the peer has, try 1641 * again with a larger value. 1642 */ 1643 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 1644 le32_to_cpu(con->out_connect.connect_seq), 1645 le32_to_cpu(con->in_reply.connect_seq)); 1646 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 1647 con_out_kvec_reset(con); 1648 ret = prepare_write_connect(con); 1649 if (ret < 0) 1650 return ret; 1651 prepare_read_connect(con); 1652 break; 1653 1654 case CEPH_MSGR_TAG_RETRY_GLOBAL: 1655 /* 1656 * If we sent a smaller global_seq than the peer has, try 1657 * again with a larger value. 1658 */ 1659 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 1660 con->peer_global_seq, 1661 le32_to_cpu(con->in_reply.global_seq)); 1662 get_global_seq(con->msgr, 1663 le32_to_cpu(con->in_reply.global_seq)); 1664 con_out_kvec_reset(con); 1665 ret = prepare_write_connect(con); 1666 if (ret < 0) 1667 return ret; 1668 prepare_read_connect(con); 1669 break; 1670 1671 case CEPH_MSGR_TAG_READY: 1672 if (req_feat & ~server_feat) { 1673 pr_err("%s%lld %s protocol feature mismatch," 1674 " my required %llx > server's %llx, need %llx\n", 1675 ENTITY_NAME(con->peer_name), 1676 ceph_pr_addr(&con->peer_addr.in_addr), 1677 req_feat, server_feat, req_feat & ~server_feat); 1678 con->error_msg = "missing required protocol features"; 1679 reset_connection(con); 1680 return -1; 1681 } 1682 1683 WARN_ON(con->state != CON_STATE_NEGOTIATING); 1684 con->state = CON_STATE_OPEN; 1685 1686 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 1687 con->connect_seq++; 1688 con->peer_features = server_feat; 1689 dout("process_connect got READY gseq %d cseq %d (%d)\n", 1690 con->peer_global_seq, 1691 le32_to_cpu(con->in_reply.connect_seq), 1692 con->connect_seq); 1693 WARN_ON(con->connect_seq != 1694 le32_to_cpu(con->in_reply.connect_seq)); 1695 1696 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 1697 con_flag_set(con, CON_FLAG_LOSSYTX); 1698 1699 con->delay = 0; /* reset backoff memory */ 1700 1701 prepare_read_tag(con); 1702 break; 1703 1704 case CEPH_MSGR_TAG_WAIT: 1705 /* 1706 * If there is a connection race (we are opening 1707 * connections to each other), one of us may just have 1708 * to WAIT. This shouldn't happen if we are the 1709 * client. 1710 */ 1711 pr_err("process_connect got WAIT as client\n"); 1712 con->error_msg = "protocol error, got WAIT as client"; 1713 return -1; 1714 1715 default: 1716 pr_err("connect protocol error, will retry\n"); 1717 con->error_msg = "protocol error, garbage tag during connect"; 1718 return -1; 1719 } 1720 return 0; 1721 } 1722 1723 1724 /* 1725 * read (part of) an ack 1726 */ 1727 static int read_partial_ack(struct ceph_connection *con) 1728 { 1729 int size = sizeof (con->in_temp_ack); 1730 int end = size; 1731 1732 return read_partial(con, end, size, &con->in_temp_ack); 1733 } 1734 1735 1736 /* 1737 * We can finally discard anything that's been acked. 1738 */ 1739 static void process_ack(struct ceph_connection *con) 1740 { 1741 struct ceph_msg *m; 1742 u64 ack = le64_to_cpu(con->in_temp_ack); 1743 u64 seq; 1744 1745 while (!list_empty(&con->out_sent)) { 1746 m = list_first_entry(&con->out_sent, struct ceph_msg, 1747 list_head); 1748 seq = le64_to_cpu(m->hdr.seq); 1749 if (seq > ack) 1750 break; 1751 dout("got ack for seq %llu type %d at %p\n", seq, 1752 le16_to_cpu(m->hdr.type), m); 1753 m->ack_stamp = jiffies; 1754 ceph_msg_remove(m); 1755 } 1756 prepare_read_tag(con); 1757 } 1758 1759 1760 1761 1762 static int read_partial_message_section(struct ceph_connection *con, 1763 struct kvec *section, 1764 unsigned int sec_len, u32 *crc) 1765 { 1766 int ret, left; 1767 1768 BUG_ON(!section); 1769 1770 while (section->iov_len < sec_len) { 1771 BUG_ON(section->iov_base == NULL); 1772 left = sec_len - section->iov_len; 1773 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 1774 section->iov_len, left); 1775 if (ret <= 0) 1776 return ret; 1777 section->iov_len += ret; 1778 } 1779 if (section->iov_len == sec_len) 1780 *crc = crc32c(0, section->iov_base, section->iov_len); 1781 1782 return 1; 1783 } 1784 1785 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 1786 1787 static int read_partial_message_pages(struct ceph_connection *con, 1788 struct page **pages, 1789 unsigned int data_len, bool do_datacrc) 1790 { 1791 void *p; 1792 int ret; 1793 int left; 1794 1795 left = min((int)(data_len - con->in_msg_pos.data_pos), 1796 (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); 1797 /* (page) data */ 1798 BUG_ON(pages == NULL); 1799 p = kmap(pages[con->in_msg_pos.page]); 1800 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1801 left); 1802 if (ret > 0 && do_datacrc) 1803 con->in_data_crc = 1804 crc32c(con->in_data_crc, 1805 p + con->in_msg_pos.page_pos, ret); 1806 kunmap(pages[con->in_msg_pos.page]); 1807 if (ret <= 0) 1808 return ret; 1809 con->in_msg_pos.data_pos += ret; 1810 con->in_msg_pos.page_pos += ret; 1811 if (con->in_msg_pos.page_pos == PAGE_SIZE) { 1812 con->in_msg_pos.page_pos = 0; 1813 con->in_msg_pos.page++; 1814 } 1815 1816 return ret; 1817 } 1818 1819 #ifdef CONFIG_BLOCK 1820 static int read_partial_message_bio(struct ceph_connection *con, 1821 struct bio **bio_iter, int *bio_seg, 1822 unsigned int data_len, bool do_datacrc) 1823 { 1824 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg); 1825 void *p; 1826 int ret, left; 1827 1828 left = min((int)(data_len - con->in_msg_pos.data_pos), 1829 (int)(bv->bv_len - con->in_msg_pos.page_pos)); 1830 1831 p = kmap(bv->bv_page) + bv->bv_offset; 1832 1833 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1834 left); 1835 if (ret > 0 && do_datacrc) 1836 con->in_data_crc = 1837 crc32c(con->in_data_crc, 1838 p + con->in_msg_pos.page_pos, ret); 1839 kunmap(bv->bv_page); 1840 if (ret <= 0) 1841 return ret; 1842 con->in_msg_pos.data_pos += ret; 1843 con->in_msg_pos.page_pos += ret; 1844 if (con->in_msg_pos.page_pos == bv->bv_len) { 1845 con->in_msg_pos.page_pos = 0; 1846 iter_bio_next(bio_iter, bio_seg); 1847 } 1848 1849 return ret; 1850 } 1851 #endif 1852 1853 /* 1854 * read (part of) a message. 1855 */ 1856 static int read_partial_message(struct ceph_connection *con) 1857 { 1858 struct ceph_msg *m = con->in_msg; 1859 int size; 1860 int end; 1861 int ret; 1862 unsigned int front_len, middle_len, data_len; 1863 bool do_datacrc = !con->msgr->nocrc; 1864 u64 seq; 1865 u32 crc; 1866 1867 dout("read_partial_message con %p msg %p\n", con, m); 1868 1869 /* header */ 1870 size = sizeof (con->in_hdr); 1871 end = size; 1872 ret = read_partial(con, end, size, &con->in_hdr); 1873 if (ret <= 0) 1874 return ret; 1875 1876 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 1877 if (cpu_to_le32(crc) != con->in_hdr.crc) { 1878 pr_err("read_partial_message bad hdr " 1879 " crc %u != expected %u\n", 1880 crc, con->in_hdr.crc); 1881 return -EBADMSG; 1882 } 1883 1884 front_len = le32_to_cpu(con->in_hdr.front_len); 1885 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 1886 return -EIO; 1887 middle_len = le32_to_cpu(con->in_hdr.middle_len); 1888 if (middle_len > CEPH_MSG_MAX_DATA_LEN) 1889 return -EIO; 1890 data_len = le32_to_cpu(con->in_hdr.data_len); 1891 if (data_len > CEPH_MSG_MAX_DATA_LEN) 1892 return -EIO; 1893 1894 /* verify seq# */ 1895 seq = le64_to_cpu(con->in_hdr.seq); 1896 if ((s64)seq - (s64)con->in_seq < 1) { 1897 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 1898 ENTITY_NAME(con->peer_name), 1899 ceph_pr_addr(&con->peer_addr.in_addr), 1900 seq, con->in_seq + 1); 1901 con->in_base_pos = -front_len - middle_len - data_len - 1902 sizeof(m->footer); 1903 con->in_tag = CEPH_MSGR_TAG_READY; 1904 return 0; 1905 } else if ((s64)seq - (s64)con->in_seq > 1) { 1906 pr_err("read_partial_message bad seq %lld expected %lld\n", 1907 seq, con->in_seq + 1); 1908 con->error_msg = "bad message sequence # for incoming message"; 1909 return -EBADMSG; 1910 } 1911 1912 /* allocate message? */ 1913 if (!con->in_msg) { 1914 int skip = 0; 1915 1916 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 1917 con->in_hdr.front_len, con->in_hdr.data_len); 1918 ret = ceph_con_in_msg_alloc(con, &skip); 1919 if (ret < 0) 1920 return ret; 1921 if (skip) { 1922 /* skip this message */ 1923 dout("alloc_msg said skip message\n"); 1924 BUG_ON(con->in_msg); 1925 con->in_base_pos = -front_len - middle_len - data_len - 1926 sizeof(m->footer); 1927 con->in_tag = CEPH_MSGR_TAG_READY; 1928 con->in_seq++; 1929 return 0; 1930 } 1931 1932 BUG_ON(!con->in_msg); 1933 BUG_ON(con->in_msg->con != con); 1934 m = con->in_msg; 1935 m->front.iov_len = 0; /* haven't read it yet */ 1936 if (m->middle) 1937 m->middle->vec.iov_len = 0; 1938 1939 con->in_msg_pos.page = 0; 1940 if (m->pages) 1941 con->in_msg_pos.page_pos = m->page_alignment; 1942 else 1943 con->in_msg_pos.page_pos = 0; 1944 con->in_msg_pos.data_pos = 0; 1945 1946 #ifdef CONFIG_BLOCK 1947 if (m->bio) 1948 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg); 1949 #endif 1950 } 1951 1952 /* front */ 1953 ret = read_partial_message_section(con, &m->front, front_len, 1954 &con->in_front_crc); 1955 if (ret <= 0) 1956 return ret; 1957 1958 /* middle */ 1959 if (m->middle) { 1960 ret = read_partial_message_section(con, &m->middle->vec, 1961 middle_len, 1962 &con->in_middle_crc); 1963 if (ret <= 0) 1964 return ret; 1965 } 1966 1967 /* (page) data */ 1968 while (con->in_msg_pos.data_pos < data_len) { 1969 if (m->pages) { 1970 ret = read_partial_message_pages(con, m->pages, 1971 data_len, do_datacrc); 1972 if (ret <= 0) 1973 return ret; 1974 #ifdef CONFIG_BLOCK 1975 } else if (m->bio) { 1976 BUG_ON(!m->bio_iter); 1977 ret = read_partial_message_bio(con, 1978 &m->bio_iter, &m->bio_seg, 1979 data_len, do_datacrc); 1980 if (ret <= 0) 1981 return ret; 1982 #endif 1983 } else { 1984 BUG_ON(1); 1985 } 1986 } 1987 1988 /* footer */ 1989 size = sizeof (m->footer); 1990 end += size; 1991 ret = read_partial(con, end, size, &m->footer); 1992 if (ret <= 0) 1993 return ret; 1994 1995 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 1996 m, front_len, m->footer.front_crc, middle_len, 1997 m->footer.middle_crc, data_len, m->footer.data_crc); 1998 1999 /* crc ok? */ 2000 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2001 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2002 m, con->in_front_crc, m->footer.front_crc); 2003 return -EBADMSG; 2004 } 2005 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2006 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2007 m, con->in_middle_crc, m->footer.middle_crc); 2008 return -EBADMSG; 2009 } 2010 if (do_datacrc && 2011 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2012 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2013 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2014 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2015 return -EBADMSG; 2016 } 2017 2018 return 1; /* done! */ 2019 } 2020 2021 /* 2022 * Process message. This happens in the worker thread. The callback should 2023 * be careful not to do anything that waits on other incoming messages or it 2024 * may deadlock. 2025 */ 2026 static void process_message(struct ceph_connection *con) 2027 { 2028 struct ceph_msg *msg; 2029 2030 BUG_ON(con->in_msg->con != con); 2031 con->in_msg->con = NULL; 2032 msg = con->in_msg; 2033 con->in_msg = NULL; 2034 con->ops->put(con); 2035 2036 /* if first message, set peer_name */ 2037 if (con->peer_name.type == 0) 2038 con->peer_name = msg->hdr.src; 2039 2040 con->in_seq++; 2041 mutex_unlock(&con->mutex); 2042 2043 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2044 msg, le64_to_cpu(msg->hdr.seq), 2045 ENTITY_NAME(msg->hdr.src), 2046 le16_to_cpu(msg->hdr.type), 2047 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2048 le32_to_cpu(msg->hdr.front_len), 2049 le32_to_cpu(msg->hdr.data_len), 2050 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2051 con->ops->dispatch(con, msg); 2052 2053 mutex_lock(&con->mutex); 2054 } 2055 2056 2057 /* 2058 * Write something to the socket. Called in a worker thread when the 2059 * socket appears to be writeable and we have something ready to send. 2060 */ 2061 static int try_write(struct ceph_connection *con) 2062 { 2063 int ret = 1; 2064 2065 dout("try_write start %p state %lu\n", con, con->state); 2066 2067 more: 2068 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2069 2070 /* open the socket first? */ 2071 if (con->state == CON_STATE_PREOPEN) { 2072 BUG_ON(con->sock); 2073 con->state = CON_STATE_CONNECTING; 2074 2075 con_out_kvec_reset(con); 2076 prepare_write_banner(con); 2077 prepare_read_banner(con); 2078 2079 BUG_ON(con->in_msg); 2080 con->in_tag = CEPH_MSGR_TAG_READY; 2081 dout("try_write initiating connect on %p new state %lu\n", 2082 con, con->state); 2083 ret = ceph_tcp_connect(con); 2084 if (ret < 0) { 2085 con->error_msg = "connect error"; 2086 goto out; 2087 } 2088 } 2089 2090 more_kvec: 2091 /* kvec data queued? */ 2092 if (con->out_skip) { 2093 ret = write_partial_skip(con); 2094 if (ret <= 0) 2095 goto out; 2096 } 2097 if (con->out_kvec_left) { 2098 ret = write_partial_kvec(con); 2099 if (ret <= 0) 2100 goto out; 2101 } 2102 2103 /* msg pages? */ 2104 if (con->out_msg) { 2105 if (con->out_msg_done) { 2106 ceph_msg_put(con->out_msg); 2107 con->out_msg = NULL; /* we're done with this one */ 2108 goto do_next; 2109 } 2110 2111 ret = write_partial_msg_pages(con); 2112 if (ret == 1) 2113 goto more_kvec; /* we need to send the footer, too! */ 2114 if (ret == 0) 2115 goto out; 2116 if (ret < 0) { 2117 dout("try_write write_partial_msg_pages err %d\n", 2118 ret); 2119 goto out; 2120 } 2121 } 2122 2123 do_next: 2124 if (con->state == CON_STATE_OPEN) { 2125 /* is anything else pending? */ 2126 if (!list_empty(&con->out_queue)) { 2127 prepare_write_message(con); 2128 goto more; 2129 } 2130 if (con->in_seq > con->in_seq_acked) { 2131 prepare_write_ack(con); 2132 goto more; 2133 } 2134 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2135 prepare_write_keepalive(con); 2136 goto more; 2137 } 2138 } 2139 2140 /* Nothing to do! */ 2141 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2142 dout("try_write nothing else to write.\n"); 2143 ret = 0; 2144 out: 2145 dout("try_write done on %p ret %d\n", con, ret); 2146 return ret; 2147 } 2148 2149 2150 2151 /* 2152 * Read what we can from the socket. 2153 */ 2154 static int try_read(struct ceph_connection *con) 2155 { 2156 int ret = -1; 2157 2158 more: 2159 dout("try_read start on %p state %lu\n", con, con->state); 2160 if (con->state != CON_STATE_CONNECTING && 2161 con->state != CON_STATE_NEGOTIATING && 2162 con->state != CON_STATE_OPEN) 2163 return 0; 2164 2165 BUG_ON(!con->sock); 2166 2167 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2168 con->in_base_pos); 2169 2170 if (con->state == CON_STATE_CONNECTING) { 2171 dout("try_read connecting\n"); 2172 ret = read_partial_banner(con); 2173 if (ret <= 0) 2174 goto out; 2175 ret = process_banner(con); 2176 if (ret < 0) 2177 goto out; 2178 2179 con->state = CON_STATE_NEGOTIATING; 2180 2181 /* 2182 * Received banner is good, exchange connection info. 2183 * Do not reset out_kvec, as sending our banner raced 2184 * with receiving peer banner after connect completed. 2185 */ 2186 ret = prepare_write_connect(con); 2187 if (ret < 0) 2188 goto out; 2189 prepare_read_connect(con); 2190 2191 /* Send connection info before awaiting response */ 2192 goto out; 2193 } 2194 2195 if (con->state == CON_STATE_NEGOTIATING) { 2196 dout("try_read negotiating\n"); 2197 ret = read_partial_connect(con); 2198 if (ret <= 0) 2199 goto out; 2200 ret = process_connect(con); 2201 if (ret < 0) 2202 goto out; 2203 goto more; 2204 } 2205 2206 WARN_ON(con->state != CON_STATE_OPEN); 2207 2208 if (con->in_base_pos < 0) { 2209 /* 2210 * skipping + discarding content. 2211 * 2212 * FIXME: there must be a better way to do this! 2213 */ 2214 static char buf[SKIP_BUF_SIZE]; 2215 int skip = min((int) sizeof (buf), -con->in_base_pos); 2216 2217 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2218 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2219 if (ret <= 0) 2220 goto out; 2221 con->in_base_pos += ret; 2222 if (con->in_base_pos) 2223 goto more; 2224 } 2225 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2226 /* 2227 * what's next? 2228 */ 2229 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2230 if (ret <= 0) 2231 goto out; 2232 dout("try_read got tag %d\n", (int)con->in_tag); 2233 switch (con->in_tag) { 2234 case CEPH_MSGR_TAG_MSG: 2235 prepare_read_message(con); 2236 break; 2237 case CEPH_MSGR_TAG_ACK: 2238 prepare_read_ack(con); 2239 break; 2240 case CEPH_MSGR_TAG_CLOSE: 2241 con_close_socket(con); 2242 con->state = CON_STATE_CLOSED; 2243 goto out; 2244 default: 2245 goto bad_tag; 2246 } 2247 } 2248 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2249 ret = read_partial_message(con); 2250 if (ret <= 0) { 2251 switch (ret) { 2252 case -EBADMSG: 2253 con->error_msg = "bad crc"; 2254 ret = -EIO; 2255 break; 2256 case -EIO: 2257 con->error_msg = "io error"; 2258 break; 2259 } 2260 goto out; 2261 } 2262 if (con->in_tag == CEPH_MSGR_TAG_READY) 2263 goto more; 2264 process_message(con); 2265 if (con->state == CON_STATE_OPEN) 2266 prepare_read_tag(con); 2267 goto more; 2268 } 2269 if (con->in_tag == CEPH_MSGR_TAG_ACK) { 2270 ret = read_partial_ack(con); 2271 if (ret <= 0) 2272 goto out; 2273 process_ack(con); 2274 goto more; 2275 } 2276 2277 out: 2278 dout("try_read done on %p ret %d\n", con, ret); 2279 return ret; 2280 2281 bad_tag: 2282 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2283 con->error_msg = "protocol error, garbage tag"; 2284 ret = -1; 2285 goto out; 2286 } 2287 2288 2289 /* 2290 * Atomically queue work on a connection after the specified delay. 2291 * Bump @con reference to avoid races with connection teardown. 2292 * Returns 0 if work was queued, or an error code otherwise. 2293 */ 2294 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2295 { 2296 if (!con->ops->get(con)) { 2297 dout("%s %p ref count 0\n", __func__, con); 2298 2299 return -ENOENT; 2300 } 2301 2302 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2303 dout("%s %p - already queued\n", __func__, con); 2304 con->ops->put(con); 2305 2306 return -EBUSY; 2307 } 2308 2309 dout("%s %p %lu\n", __func__, con, delay); 2310 2311 return 0; 2312 } 2313 2314 static void queue_con(struct ceph_connection *con) 2315 { 2316 (void) queue_con_delay(con, 0); 2317 } 2318 2319 static bool con_sock_closed(struct ceph_connection *con) 2320 { 2321 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2322 return false; 2323 2324 #define CASE(x) \ 2325 case CON_STATE_ ## x: \ 2326 con->error_msg = "socket closed (con state " #x ")"; \ 2327 break; 2328 2329 switch (con->state) { 2330 CASE(CLOSED); 2331 CASE(PREOPEN); 2332 CASE(CONNECTING); 2333 CASE(NEGOTIATING); 2334 CASE(OPEN); 2335 CASE(STANDBY); 2336 default: 2337 pr_warning("%s con %p unrecognized state %lu\n", 2338 __func__, con, con->state); 2339 con->error_msg = "unrecognized con state"; 2340 BUG(); 2341 break; 2342 } 2343 #undef CASE 2344 2345 return true; 2346 } 2347 2348 static bool con_backoff(struct ceph_connection *con) 2349 { 2350 int ret; 2351 2352 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2353 return false; 2354 2355 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2356 if (ret) { 2357 dout("%s: con %p FAILED to back off %lu\n", __func__, 2358 con, con->delay); 2359 BUG_ON(ret == -ENOENT); 2360 con_flag_set(con, CON_FLAG_BACKOFF); 2361 } 2362 2363 return true; 2364 } 2365 2366 /* Finish fault handling; con->mutex must *not* be held here */ 2367 2368 static void con_fault_finish(struct ceph_connection *con) 2369 { 2370 /* 2371 * in case we faulted due to authentication, invalidate our 2372 * current tickets so that we can get new ones. 2373 */ 2374 if (con->auth_retry && con->ops->invalidate_authorizer) { 2375 dout("calling invalidate_authorizer()\n"); 2376 con->ops->invalidate_authorizer(con); 2377 } 2378 2379 if (con->ops->fault) 2380 con->ops->fault(con); 2381 } 2382 2383 /* 2384 * Do some work on a connection. Drop a connection ref when we're done. 2385 */ 2386 static void con_work(struct work_struct *work) 2387 { 2388 struct ceph_connection *con = container_of(work, struct ceph_connection, 2389 work.work); 2390 bool fault; 2391 2392 mutex_lock(&con->mutex); 2393 while (true) { 2394 int ret; 2395 2396 if ((fault = con_sock_closed(con))) { 2397 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2398 break; 2399 } 2400 if (con_backoff(con)) { 2401 dout("%s: con %p BACKOFF\n", __func__, con); 2402 break; 2403 } 2404 if (con->state == CON_STATE_STANDBY) { 2405 dout("%s: con %p STANDBY\n", __func__, con); 2406 break; 2407 } 2408 if (con->state == CON_STATE_CLOSED) { 2409 dout("%s: con %p CLOSED\n", __func__, con); 2410 BUG_ON(con->sock); 2411 break; 2412 } 2413 if (con->state == CON_STATE_PREOPEN) { 2414 dout("%s: con %p PREOPEN\n", __func__, con); 2415 BUG_ON(con->sock); 2416 } 2417 2418 ret = try_read(con); 2419 if (ret < 0) { 2420 if (ret == -EAGAIN) 2421 continue; 2422 con->error_msg = "socket error on read"; 2423 fault = true; 2424 break; 2425 } 2426 2427 ret = try_write(con); 2428 if (ret < 0) { 2429 if (ret == -EAGAIN) 2430 continue; 2431 con->error_msg = "socket error on write"; 2432 fault = true; 2433 } 2434 2435 break; /* If we make it to here, we're done */ 2436 } 2437 if (fault) 2438 con_fault(con); 2439 mutex_unlock(&con->mutex); 2440 2441 if (fault) 2442 con_fault_finish(con); 2443 2444 con->ops->put(con); 2445 } 2446 2447 /* 2448 * Generic error/fault handler. A retry mechanism is used with 2449 * exponential backoff 2450 */ 2451 static void con_fault(struct ceph_connection *con) 2452 { 2453 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2454 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2455 dout("fault %p state %lu to peer %s\n", 2456 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2457 2458 WARN_ON(con->state != CON_STATE_CONNECTING && 2459 con->state != CON_STATE_NEGOTIATING && 2460 con->state != CON_STATE_OPEN); 2461 2462 con_close_socket(con); 2463 2464 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2465 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2466 con->state = CON_STATE_CLOSED; 2467 return; 2468 } 2469 2470 if (con->in_msg) { 2471 BUG_ON(con->in_msg->con != con); 2472 con->in_msg->con = NULL; 2473 ceph_msg_put(con->in_msg); 2474 con->in_msg = NULL; 2475 con->ops->put(con); 2476 } 2477 2478 /* Requeue anything that hasn't been acked */ 2479 list_splice_init(&con->out_sent, &con->out_queue); 2480 2481 /* If there are no messages queued or keepalive pending, place 2482 * the connection in a STANDBY state */ 2483 if (list_empty(&con->out_queue) && 2484 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2485 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2486 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2487 con->state = CON_STATE_STANDBY; 2488 } else { 2489 /* retry after a delay. */ 2490 con->state = CON_STATE_PREOPEN; 2491 if (con->delay == 0) 2492 con->delay = BASE_DELAY_INTERVAL; 2493 else if (con->delay < MAX_DELAY_INTERVAL) 2494 con->delay *= 2; 2495 con_flag_set(con, CON_FLAG_BACKOFF); 2496 queue_con(con); 2497 } 2498 } 2499 2500 2501 2502 /* 2503 * initialize a new messenger instance 2504 */ 2505 void ceph_messenger_init(struct ceph_messenger *msgr, 2506 struct ceph_entity_addr *myaddr, 2507 u32 supported_features, 2508 u32 required_features, 2509 bool nocrc) 2510 { 2511 msgr->supported_features = supported_features; 2512 msgr->required_features = required_features; 2513 2514 spin_lock_init(&msgr->global_seq_lock); 2515 2516 if (myaddr) 2517 msgr->inst.addr = *myaddr; 2518 2519 /* select a random nonce */ 2520 msgr->inst.addr.type = 0; 2521 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2522 encode_my_addr(msgr); 2523 msgr->nocrc = nocrc; 2524 2525 atomic_set(&msgr->stopping, 0); 2526 2527 dout("%s %p\n", __func__, msgr); 2528 } 2529 EXPORT_SYMBOL(ceph_messenger_init); 2530 2531 static void clear_standby(struct ceph_connection *con) 2532 { 2533 /* come back from STANDBY? */ 2534 if (con->state == CON_STATE_STANDBY) { 2535 dout("clear_standby %p and ++connect_seq\n", con); 2536 con->state = CON_STATE_PREOPEN; 2537 con->connect_seq++; 2538 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2539 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2540 } 2541 } 2542 2543 /* 2544 * Queue up an outgoing message on the given connection. 2545 */ 2546 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2547 { 2548 /* set src+dst */ 2549 msg->hdr.src = con->msgr->inst.name; 2550 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2551 msg->needs_out_seq = true; 2552 2553 mutex_lock(&con->mutex); 2554 2555 if (con->state == CON_STATE_CLOSED) { 2556 dout("con_send %p closed, dropping %p\n", con, msg); 2557 ceph_msg_put(msg); 2558 mutex_unlock(&con->mutex); 2559 return; 2560 } 2561 2562 BUG_ON(msg->con != NULL); 2563 msg->con = con->ops->get(con); 2564 BUG_ON(msg->con == NULL); 2565 2566 BUG_ON(!list_empty(&msg->list_head)); 2567 list_add_tail(&msg->list_head, &con->out_queue); 2568 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2569 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2570 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2571 le32_to_cpu(msg->hdr.front_len), 2572 le32_to_cpu(msg->hdr.middle_len), 2573 le32_to_cpu(msg->hdr.data_len)); 2574 2575 clear_standby(con); 2576 mutex_unlock(&con->mutex); 2577 2578 /* if there wasn't anything waiting to send before, queue 2579 * new work */ 2580 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2581 queue_con(con); 2582 } 2583 EXPORT_SYMBOL(ceph_con_send); 2584 2585 /* 2586 * Revoke a message that was previously queued for send 2587 */ 2588 void ceph_msg_revoke(struct ceph_msg *msg) 2589 { 2590 struct ceph_connection *con = msg->con; 2591 2592 if (!con) 2593 return; /* Message not in our possession */ 2594 2595 mutex_lock(&con->mutex); 2596 if (!list_empty(&msg->list_head)) { 2597 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2598 list_del_init(&msg->list_head); 2599 BUG_ON(msg->con == NULL); 2600 msg->con->ops->put(msg->con); 2601 msg->con = NULL; 2602 msg->hdr.seq = 0; 2603 2604 ceph_msg_put(msg); 2605 } 2606 if (con->out_msg == msg) { 2607 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2608 con->out_msg = NULL; 2609 if (con->out_kvec_is_msg) { 2610 con->out_skip = con->out_kvec_bytes; 2611 con->out_kvec_is_msg = false; 2612 } 2613 msg->hdr.seq = 0; 2614 2615 ceph_msg_put(msg); 2616 } 2617 mutex_unlock(&con->mutex); 2618 } 2619 2620 /* 2621 * Revoke a message that we may be reading data into 2622 */ 2623 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 2624 { 2625 struct ceph_connection *con; 2626 2627 BUG_ON(msg == NULL); 2628 if (!msg->con) { 2629 dout("%s msg %p null con\n", __func__, msg); 2630 2631 return; /* Message not in our possession */ 2632 } 2633 2634 con = msg->con; 2635 mutex_lock(&con->mutex); 2636 if (con->in_msg == msg) { 2637 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 2638 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 2639 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 2640 2641 /* skip rest of message */ 2642 dout("%s %p msg %p revoked\n", __func__, con, msg); 2643 con->in_base_pos = con->in_base_pos - 2644 sizeof(struct ceph_msg_header) - 2645 front_len - 2646 middle_len - 2647 data_len - 2648 sizeof(struct ceph_msg_footer); 2649 ceph_msg_put(con->in_msg); 2650 con->in_msg = NULL; 2651 con->in_tag = CEPH_MSGR_TAG_READY; 2652 con->in_seq++; 2653 } else { 2654 dout("%s %p in_msg %p msg %p no-op\n", 2655 __func__, con, con->in_msg, msg); 2656 } 2657 mutex_unlock(&con->mutex); 2658 } 2659 2660 /* 2661 * Queue a keepalive byte to ensure the tcp connection is alive. 2662 */ 2663 void ceph_con_keepalive(struct ceph_connection *con) 2664 { 2665 dout("con_keepalive %p\n", con); 2666 mutex_lock(&con->mutex); 2667 clear_standby(con); 2668 mutex_unlock(&con->mutex); 2669 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 2670 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2671 queue_con(con); 2672 } 2673 EXPORT_SYMBOL(ceph_con_keepalive); 2674 2675 2676 /* 2677 * construct a new message with given type, size 2678 * the new msg has a ref count of 1. 2679 */ 2680 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 2681 bool can_fail) 2682 { 2683 struct ceph_msg *m; 2684 2685 m = kmalloc(sizeof(*m), flags); 2686 if (m == NULL) 2687 goto out; 2688 kref_init(&m->kref); 2689 2690 m->con = NULL; 2691 INIT_LIST_HEAD(&m->list_head); 2692 2693 m->hdr.tid = 0; 2694 m->hdr.type = cpu_to_le16(type); 2695 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 2696 m->hdr.version = 0; 2697 m->hdr.front_len = cpu_to_le32(front_len); 2698 m->hdr.middle_len = 0; 2699 m->hdr.data_len = 0; 2700 m->hdr.data_off = 0; 2701 m->hdr.reserved = 0; 2702 m->footer.front_crc = 0; 2703 m->footer.middle_crc = 0; 2704 m->footer.data_crc = 0; 2705 m->footer.flags = 0; 2706 m->front_max = front_len; 2707 m->front_is_vmalloc = false; 2708 m->more_to_follow = false; 2709 m->ack_stamp = 0; 2710 m->pool = NULL; 2711 2712 /* middle */ 2713 m->middle = NULL; 2714 2715 /* data */ 2716 m->nr_pages = 0; 2717 m->page_alignment = 0; 2718 m->pages = NULL; 2719 m->pagelist = NULL; 2720 #ifdef CONFIG_BLOCK 2721 m->bio = NULL; 2722 m->bio_iter = NULL; 2723 m->bio_seg = 0; 2724 #endif /* CONFIG_BLOCK */ 2725 m->trail = NULL; 2726 2727 /* front */ 2728 if (front_len) { 2729 if (front_len > PAGE_CACHE_SIZE) { 2730 m->front.iov_base = __vmalloc(front_len, flags, 2731 PAGE_KERNEL); 2732 m->front_is_vmalloc = true; 2733 } else { 2734 m->front.iov_base = kmalloc(front_len, flags); 2735 } 2736 if (m->front.iov_base == NULL) { 2737 dout("ceph_msg_new can't allocate %d bytes\n", 2738 front_len); 2739 goto out2; 2740 } 2741 } else { 2742 m->front.iov_base = NULL; 2743 } 2744 m->front.iov_len = front_len; 2745 2746 dout("ceph_msg_new %p front %d\n", m, front_len); 2747 return m; 2748 2749 out2: 2750 ceph_msg_put(m); 2751 out: 2752 if (!can_fail) { 2753 pr_err("msg_new can't create type %d front %d\n", type, 2754 front_len); 2755 WARN_ON(1); 2756 } else { 2757 dout("msg_new can't create type %d front %d\n", type, 2758 front_len); 2759 } 2760 return NULL; 2761 } 2762 EXPORT_SYMBOL(ceph_msg_new); 2763 2764 /* 2765 * Allocate "middle" portion of a message, if it is needed and wasn't 2766 * allocated by alloc_msg. This allows us to read a small fixed-size 2767 * per-type header in the front and then gracefully fail (i.e., 2768 * propagate the error to the caller based on info in the front) when 2769 * the middle is too large. 2770 */ 2771 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 2772 { 2773 int type = le16_to_cpu(msg->hdr.type); 2774 int middle_len = le32_to_cpu(msg->hdr.middle_len); 2775 2776 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 2777 ceph_msg_type_name(type), middle_len); 2778 BUG_ON(!middle_len); 2779 BUG_ON(msg->middle); 2780 2781 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 2782 if (!msg->middle) 2783 return -ENOMEM; 2784 return 0; 2785 } 2786 2787 /* 2788 * Allocate a message for receiving an incoming message on a 2789 * connection, and save the result in con->in_msg. Uses the 2790 * connection's private alloc_msg op if available. 2791 * 2792 * Returns 0 on success, or a negative error code. 2793 * 2794 * On success, if we set *skip = 1: 2795 * - the next message should be skipped and ignored. 2796 * - con->in_msg == NULL 2797 * or if we set *skip = 0: 2798 * - con->in_msg is non-null. 2799 * On error (ENOMEM, EAGAIN, ...), 2800 * - con->in_msg == NULL 2801 */ 2802 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 2803 { 2804 struct ceph_msg_header *hdr = &con->in_hdr; 2805 int type = le16_to_cpu(hdr->type); 2806 int front_len = le32_to_cpu(hdr->front_len); 2807 int middle_len = le32_to_cpu(hdr->middle_len); 2808 int ret = 0; 2809 2810 BUG_ON(con->in_msg != NULL); 2811 2812 if (con->ops->alloc_msg) { 2813 struct ceph_msg *msg; 2814 2815 mutex_unlock(&con->mutex); 2816 msg = con->ops->alloc_msg(con, hdr, skip); 2817 mutex_lock(&con->mutex); 2818 if (con->state != CON_STATE_OPEN) { 2819 if (msg) 2820 ceph_msg_put(msg); 2821 return -EAGAIN; 2822 } 2823 con->in_msg = msg; 2824 if (con->in_msg) { 2825 con->in_msg->con = con->ops->get(con); 2826 BUG_ON(con->in_msg->con == NULL); 2827 } 2828 if (*skip) { 2829 con->in_msg = NULL; 2830 return 0; 2831 } 2832 if (!con->in_msg) { 2833 con->error_msg = 2834 "error allocating memory for incoming message"; 2835 return -ENOMEM; 2836 } 2837 } 2838 if (!con->in_msg) { 2839 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 2840 if (!con->in_msg) { 2841 pr_err("unable to allocate msg type %d len %d\n", 2842 type, front_len); 2843 return -ENOMEM; 2844 } 2845 con->in_msg->con = con->ops->get(con); 2846 BUG_ON(con->in_msg->con == NULL); 2847 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off); 2848 } 2849 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 2850 2851 if (middle_len && !con->in_msg->middle) { 2852 ret = ceph_alloc_middle(con, con->in_msg); 2853 if (ret < 0) { 2854 ceph_msg_put(con->in_msg); 2855 con->in_msg = NULL; 2856 } 2857 } 2858 2859 return ret; 2860 } 2861 2862 2863 /* 2864 * Free a generically kmalloc'd message. 2865 */ 2866 void ceph_msg_kfree(struct ceph_msg *m) 2867 { 2868 dout("msg_kfree %p\n", m); 2869 if (m->front_is_vmalloc) 2870 vfree(m->front.iov_base); 2871 else 2872 kfree(m->front.iov_base); 2873 kfree(m); 2874 } 2875 2876 /* 2877 * Drop a msg ref. Destroy as needed. 2878 */ 2879 void ceph_msg_last_put(struct kref *kref) 2880 { 2881 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2882 2883 dout("ceph_msg_put last one on %p\n", m); 2884 WARN_ON(!list_empty(&m->list_head)); 2885 2886 /* drop middle, data, if any */ 2887 if (m->middle) { 2888 ceph_buffer_put(m->middle); 2889 m->middle = NULL; 2890 } 2891 m->nr_pages = 0; 2892 m->pages = NULL; 2893 2894 if (m->pagelist) { 2895 ceph_pagelist_release(m->pagelist); 2896 kfree(m->pagelist); 2897 m->pagelist = NULL; 2898 } 2899 2900 m->trail = NULL; 2901 2902 if (m->pool) 2903 ceph_msgpool_put(m->pool, m); 2904 else 2905 ceph_msg_kfree(m); 2906 } 2907 EXPORT_SYMBOL(ceph_msg_last_put); 2908 2909 void ceph_msg_dump(struct ceph_msg *msg) 2910 { 2911 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg, 2912 msg->front_max, msg->nr_pages); 2913 print_hex_dump(KERN_DEBUG, "header: ", 2914 DUMP_PREFIX_OFFSET, 16, 1, 2915 &msg->hdr, sizeof(msg->hdr), true); 2916 print_hex_dump(KERN_DEBUG, " front: ", 2917 DUMP_PREFIX_OFFSET, 16, 1, 2918 msg->front.iov_base, msg->front.iov_len, true); 2919 if (msg->middle) 2920 print_hex_dump(KERN_DEBUG, "middle: ", 2921 DUMP_PREFIX_OFFSET, 16, 1, 2922 msg->middle->vec.iov_base, 2923 msg->middle->vec.iov_len, true); 2924 print_hex_dump(KERN_DEBUG, "footer: ", 2925 DUMP_PREFIX_OFFSET, 16, 1, 2926 &msg->footer, sizeof(msg->footer), true); 2927 } 2928 EXPORT_SYMBOL(ceph_msg_dump); 2929