1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 static void queue_con(struct ceph_connection *con); 171 static void cancel_con(struct ceph_connection *con); 172 static void ceph_con_workfn(struct work_struct *); 173 static void con_fault(struct ceph_connection *con); 174 175 /* 176 * Nicely render a sockaddr as a string. An array of formatted 177 * strings is used, to approximate reentrancy. 178 */ 179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 183 184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 185 static atomic_t addr_str_seq = ATOMIC_INIT(0); 186 187 static struct page *zero_page; /* used in certain error cases */ 188 189 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 190 { 191 int i; 192 char *s; 193 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 194 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 195 196 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 197 s = addr_str[i]; 198 199 switch (ss->ss_family) { 200 case AF_INET: 201 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 202 ntohs(in4->sin_port)); 203 break; 204 205 case AF_INET6: 206 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 207 ntohs(in6->sin6_port)); 208 break; 209 210 default: 211 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 212 ss->ss_family); 213 } 214 215 return s; 216 } 217 EXPORT_SYMBOL(ceph_pr_addr); 218 219 static void encode_my_addr(struct ceph_messenger *msgr) 220 { 221 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 222 ceph_encode_addr(&msgr->my_enc_addr); 223 } 224 225 /* 226 * work queue for all reading and writing to/from the socket. 227 */ 228 static struct workqueue_struct *ceph_msgr_wq; 229 230 static int ceph_msgr_slab_init(void) 231 { 232 BUG_ON(ceph_msg_cache); 233 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 234 if (!ceph_msg_cache) 235 return -ENOMEM; 236 237 return 0; 238 } 239 240 static void ceph_msgr_slab_exit(void) 241 { 242 BUG_ON(!ceph_msg_cache); 243 kmem_cache_destroy(ceph_msg_cache); 244 ceph_msg_cache = NULL; 245 } 246 247 static void _ceph_msgr_exit(void) 248 { 249 if (ceph_msgr_wq) { 250 destroy_workqueue(ceph_msgr_wq); 251 ceph_msgr_wq = NULL; 252 } 253 254 BUG_ON(zero_page == NULL); 255 put_page(zero_page); 256 zero_page = NULL; 257 258 ceph_msgr_slab_exit(); 259 } 260 261 int __init ceph_msgr_init(void) 262 { 263 if (ceph_msgr_slab_init()) 264 return -ENOMEM; 265 266 BUG_ON(zero_page != NULL); 267 zero_page = ZERO_PAGE(0); 268 get_page(zero_page); 269 270 /* 271 * The number of active work items is limited by the number of 272 * connections, so leave @max_active at default. 273 */ 274 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 275 if (ceph_msgr_wq) 276 return 0; 277 278 pr_err("msgr_init failed to create workqueue\n"); 279 _ceph_msgr_exit(); 280 281 return -ENOMEM; 282 } 283 284 void ceph_msgr_exit(void) 285 { 286 BUG_ON(ceph_msgr_wq == NULL); 287 288 _ceph_msgr_exit(); 289 } 290 291 void ceph_msgr_flush(void) 292 { 293 flush_workqueue(ceph_msgr_wq); 294 } 295 EXPORT_SYMBOL(ceph_msgr_flush); 296 297 /* Connection socket state transition functions */ 298 299 static void con_sock_state_init(struct ceph_connection *con) 300 { 301 int old_state; 302 303 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 304 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 305 printk("%s: unexpected old state %d\n", __func__, old_state); 306 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 307 CON_SOCK_STATE_CLOSED); 308 } 309 310 static void con_sock_state_connecting(struct ceph_connection *con) 311 { 312 int old_state; 313 314 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 315 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 316 printk("%s: unexpected old state %d\n", __func__, old_state); 317 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 318 CON_SOCK_STATE_CONNECTING); 319 } 320 321 static void con_sock_state_connected(struct ceph_connection *con) 322 { 323 int old_state; 324 325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 326 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 327 printk("%s: unexpected old state %d\n", __func__, old_state); 328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 329 CON_SOCK_STATE_CONNECTED); 330 } 331 332 static void con_sock_state_closing(struct ceph_connection *con) 333 { 334 int old_state; 335 336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 337 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 338 old_state != CON_SOCK_STATE_CONNECTED && 339 old_state != CON_SOCK_STATE_CLOSING)) 340 printk("%s: unexpected old state %d\n", __func__, old_state); 341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 342 CON_SOCK_STATE_CLOSING); 343 } 344 345 static void con_sock_state_closed(struct ceph_connection *con) 346 { 347 int old_state; 348 349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 351 old_state != CON_SOCK_STATE_CLOSING && 352 old_state != CON_SOCK_STATE_CONNECTING && 353 old_state != CON_SOCK_STATE_CLOSED)) 354 printk("%s: unexpected old state %d\n", __func__, old_state); 355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 356 CON_SOCK_STATE_CLOSED); 357 } 358 359 /* 360 * socket callback functions 361 */ 362 363 /* data available on socket, or listen socket received a connect */ 364 static void ceph_sock_data_ready(struct sock *sk) 365 { 366 struct ceph_connection *con = sk->sk_user_data; 367 if (atomic_read(&con->msgr->stopping)) { 368 return; 369 } 370 371 if (sk->sk_state != TCP_CLOSE_WAIT) { 372 dout("%s on %p state = %lu, queueing work\n", __func__, 373 con, con->state); 374 queue_con(con); 375 } 376 } 377 378 /* socket has buffer space for writing */ 379 static void ceph_sock_write_space(struct sock *sk) 380 { 381 struct ceph_connection *con = sk->sk_user_data; 382 383 /* only queue to workqueue if there is data we want to write, 384 * and there is sufficient space in the socket buffer to accept 385 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 386 * doesn't get called again until try_write() fills the socket 387 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 388 * and net/core/stream.c:sk_stream_write_space(). 389 */ 390 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 391 if (sk_stream_is_writeable(sk)) { 392 dout("%s %p queueing write work\n", __func__, con); 393 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 394 queue_con(con); 395 } 396 } else { 397 dout("%s %p nothing to write\n", __func__, con); 398 } 399 } 400 401 /* socket's state has changed */ 402 static void ceph_sock_state_change(struct sock *sk) 403 { 404 struct ceph_connection *con = sk->sk_user_data; 405 406 dout("%s %p state = %lu sk_state = %u\n", __func__, 407 con, con->state, sk->sk_state); 408 409 switch (sk->sk_state) { 410 case TCP_CLOSE: 411 dout("%s TCP_CLOSE\n", __func__); 412 /* fall through */ 413 case TCP_CLOSE_WAIT: 414 dout("%s TCP_CLOSE_WAIT\n", __func__); 415 con_sock_state_closing(con); 416 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 417 queue_con(con); 418 break; 419 case TCP_ESTABLISHED: 420 dout("%s TCP_ESTABLISHED\n", __func__); 421 con_sock_state_connected(con); 422 queue_con(con); 423 break; 424 default: /* Everything else is uninteresting */ 425 break; 426 } 427 } 428 429 /* 430 * set up socket callbacks 431 */ 432 static void set_sock_callbacks(struct socket *sock, 433 struct ceph_connection *con) 434 { 435 struct sock *sk = sock->sk; 436 sk->sk_user_data = con; 437 sk->sk_data_ready = ceph_sock_data_ready; 438 sk->sk_write_space = ceph_sock_write_space; 439 sk->sk_state_change = ceph_sock_state_change; 440 } 441 442 443 /* 444 * socket helpers 445 */ 446 447 /* 448 * initiate connection to a remote socket. 449 */ 450 static int ceph_tcp_connect(struct ceph_connection *con) 451 { 452 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 453 struct socket *sock; 454 unsigned int noio_flag; 455 int ret; 456 457 BUG_ON(con->sock); 458 459 /* sock_create_kern() allocates with GFP_KERNEL */ 460 noio_flag = memalloc_noio_save(); 461 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 462 SOCK_STREAM, IPPROTO_TCP, &sock); 463 memalloc_noio_restore(noio_flag); 464 if (ret) 465 return ret; 466 sock->sk->sk_allocation = GFP_NOFS; 467 468 #ifdef CONFIG_LOCKDEP 469 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 470 #endif 471 472 set_sock_callbacks(sock, con); 473 474 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 475 476 con_sock_state_connecting(con); 477 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 478 O_NONBLOCK); 479 if (ret == -EINPROGRESS) { 480 dout("connect %s EINPROGRESS sk_state = %u\n", 481 ceph_pr_addr(&con->peer_addr.in_addr), 482 sock->sk->sk_state); 483 } else if (ret < 0) { 484 pr_err("connect %s error %d\n", 485 ceph_pr_addr(&con->peer_addr.in_addr), ret); 486 sock_release(sock); 487 return ret; 488 } 489 490 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 491 int optval = 1; 492 493 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 494 (char *)&optval, sizeof(optval)); 495 if (ret) 496 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 497 ret); 498 } 499 500 con->sock = sock; 501 return 0; 502 } 503 504 /* 505 * If @buf is NULL, discard up to @len bytes. 506 */ 507 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 508 { 509 struct kvec iov = {buf, len}; 510 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 511 int r; 512 513 if (!buf) 514 msg.msg_flags |= MSG_TRUNC; 515 516 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len); 517 r = sock_recvmsg(sock, &msg, msg.msg_flags); 518 if (r == -EAGAIN) 519 r = 0; 520 return r; 521 } 522 523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 524 int page_offset, size_t length) 525 { 526 struct bio_vec bvec = { 527 .bv_page = page, 528 .bv_offset = page_offset, 529 .bv_len = length 530 }; 531 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 532 int r; 533 534 BUG_ON(page_offset + length > PAGE_SIZE); 535 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length); 536 r = sock_recvmsg(sock, &msg, msg.msg_flags); 537 if (r == -EAGAIN) 538 r = 0; 539 return r; 540 } 541 542 /* 543 * write something. @more is true if caller will be sending more data 544 * shortly. 545 */ 546 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 547 size_t kvlen, size_t len, int more) 548 { 549 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 550 int r; 551 552 if (more) 553 msg.msg_flags |= MSG_MORE; 554 else 555 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 556 557 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 558 if (r == -EAGAIN) 559 r = 0; 560 return r; 561 } 562 563 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 564 int offset, size_t size, bool more) 565 { 566 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 567 int ret; 568 569 ret = kernel_sendpage(sock, page, offset, size, flags); 570 if (ret == -EAGAIN) 571 ret = 0; 572 573 return ret; 574 } 575 576 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 577 int offset, size_t size, bool more) 578 { 579 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 580 struct bio_vec bvec; 581 int ret; 582 583 /* sendpage cannot properly handle pages with page_count == 0, 584 * we need to fallback to sendmsg if that's the case */ 585 if (page_count(page) >= 1) 586 return __ceph_tcp_sendpage(sock, page, offset, size, more); 587 588 bvec.bv_page = page; 589 bvec.bv_offset = offset; 590 bvec.bv_len = size; 591 592 if (more) 593 msg.msg_flags |= MSG_MORE; 594 else 595 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 596 597 iov_iter_bvec(&msg.msg_iter, WRITE, &bvec, 1, size); 598 ret = sock_sendmsg(sock, &msg); 599 if (ret == -EAGAIN) 600 ret = 0; 601 602 return ret; 603 } 604 605 /* 606 * Shutdown/close the socket for the given connection. 607 */ 608 static int con_close_socket(struct ceph_connection *con) 609 { 610 int rc = 0; 611 612 dout("con_close_socket on %p sock %p\n", con, con->sock); 613 if (con->sock) { 614 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 615 sock_release(con->sock); 616 con->sock = NULL; 617 } 618 619 /* 620 * Forcibly clear the SOCK_CLOSED flag. It gets set 621 * independent of the connection mutex, and we could have 622 * received a socket close event before we had the chance to 623 * shut the socket down. 624 */ 625 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 626 627 con_sock_state_closed(con); 628 return rc; 629 } 630 631 /* 632 * Reset a connection. Discard all incoming and outgoing messages 633 * and clear *_seq state. 634 */ 635 static void ceph_msg_remove(struct ceph_msg *msg) 636 { 637 list_del_init(&msg->list_head); 638 639 ceph_msg_put(msg); 640 } 641 static void ceph_msg_remove_list(struct list_head *head) 642 { 643 while (!list_empty(head)) { 644 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 645 list_head); 646 ceph_msg_remove(msg); 647 } 648 } 649 650 static void reset_connection(struct ceph_connection *con) 651 { 652 /* reset connection, out_queue, msg_ and connect_seq */ 653 /* discard existing out_queue and msg_seq */ 654 dout("reset_connection %p\n", con); 655 ceph_msg_remove_list(&con->out_queue); 656 ceph_msg_remove_list(&con->out_sent); 657 658 if (con->in_msg) { 659 BUG_ON(con->in_msg->con != con); 660 ceph_msg_put(con->in_msg); 661 con->in_msg = NULL; 662 } 663 664 con->connect_seq = 0; 665 con->out_seq = 0; 666 if (con->out_msg) { 667 BUG_ON(con->out_msg->con != con); 668 ceph_msg_put(con->out_msg); 669 con->out_msg = NULL; 670 } 671 con->in_seq = 0; 672 con->in_seq_acked = 0; 673 674 con->out_skip = 0; 675 } 676 677 /* 678 * mark a peer down. drop any open connections. 679 */ 680 void ceph_con_close(struct ceph_connection *con) 681 { 682 mutex_lock(&con->mutex); 683 dout("con_close %p peer %s\n", con, 684 ceph_pr_addr(&con->peer_addr.in_addr)); 685 con->state = CON_STATE_CLOSED; 686 687 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 688 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 689 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 690 con_flag_clear(con, CON_FLAG_BACKOFF); 691 692 reset_connection(con); 693 con->peer_global_seq = 0; 694 cancel_con(con); 695 con_close_socket(con); 696 mutex_unlock(&con->mutex); 697 } 698 EXPORT_SYMBOL(ceph_con_close); 699 700 /* 701 * Reopen a closed connection, with a new peer address. 702 */ 703 void ceph_con_open(struct ceph_connection *con, 704 __u8 entity_type, __u64 entity_num, 705 struct ceph_entity_addr *addr) 706 { 707 mutex_lock(&con->mutex); 708 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 709 710 WARN_ON(con->state != CON_STATE_CLOSED); 711 con->state = CON_STATE_PREOPEN; 712 713 con->peer_name.type = (__u8) entity_type; 714 con->peer_name.num = cpu_to_le64(entity_num); 715 716 memcpy(&con->peer_addr, addr, sizeof(*addr)); 717 con->delay = 0; /* reset backoff memory */ 718 mutex_unlock(&con->mutex); 719 queue_con(con); 720 } 721 EXPORT_SYMBOL(ceph_con_open); 722 723 /* 724 * return true if this connection ever successfully opened 725 */ 726 bool ceph_con_opened(struct ceph_connection *con) 727 { 728 return con->connect_seq > 0; 729 } 730 731 /* 732 * initialize a new connection. 733 */ 734 void ceph_con_init(struct ceph_connection *con, void *private, 735 const struct ceph_connection_operations *ops, 736 struct ceph_messenger *msgr) 737 { 738 dout("con_init %p\n", con); 739 memset(con, 0, sizeof(*con)); 740 con->private = private; 741 con->ops = ops; 742 con->msgr = msgr; 743 744 con_sock_state_init(con); 745 746 mutex_init(&con->mutex); 747 INIT_LIST_HEAD(&con->out_queue); 748 INIT_LIST_HEAD(&con->out_sent); 749 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 750 751 con->state = CON_STATE_CLOSED; 752 } 753 EXPORT_SYMBOL(ceph_con_init); 754 755 756 /* 757 * We maintain a global counter to order connection attempts. Get 758 * a unique seq greater than @gt. 759 */ 760 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 761 { 762 u32 ret; 763 764 spin_lock(&msgr->global_seq_lock); 765 if (msgr->global_seq < gt) 766 msgr->global_seq = gt; 767 ret = ++msgr->global_seq; 768 spin_unlock(&msgr->global_seq_lock); 769 return ret; 770 } 771 772 static void con_out_kvec_reset(struct ceph_connection *con) 773 { 774 BUG_ON(con->out_skip); 775 776 con->out_kvec_left = 0; 777 con->out_kvec_bytes = 0; 778 con->out_kvec_cur = &con->out_kvec[0]; 779 } 780 781 static void con_out_kvec_add(struct ceph_connection *con, 782 size_t size, void *data) 783 { 784 int index = con->out_kvec_left; 785 786 BUG_ON(con->out_skip); 787 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 788 789 con->out_kvec[index].iov_len = size; 790 con->out_kvec[index].iov_base = data; 791 con->out_kvec_left++; 792 con->out_kvec_bytes += size; 793 } 794 795 /* 796 * Chop off a kvec from the end. Return residual number of bytes for 797 * that kvec, i.e. how many bytes would have been written if the kvec 798 * hadn't been nuked. 799 */ 800 static int con_out_kvec_skip(struct ceph_connection *con) 801 { 802 int off = con->out_kvec_cur - con->out_kvec; 803 int skip = 0; 804 805 if (con->out_kvec_bytes > 0) { 806 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 807 BUG_ON(con->out_kvec_bytes < skip); 808 BUG_ON(!con->out_kvec_left); 809 con->out_kvec_bytes -= skip; 810 con->out_kvec_left--; 811 } 812 813 return skip; 814 } 815 816 #ifdef CONFIG_BLOCK 817 818 /* 819 * For a bio data item, a piece is whatever remains of the next 820 * entry in the current bio iovec, or the first entry in the next 821 * bio in the list. 822 */ 823 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 824 size_t length) 825 { 826 struct ceph_msg_data *data = cursor->data; 827 struct ceph_bio_iter *it = &cursor->bio_iter; 828 829 cursor->resid = min_t(size_t, length, data->bio_length); 830 *it = data->bio_pos; 831 if (cursor->resid < it->iter.bi_size) 832 it->iter.bi_size = cursor->resid; 833 834 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 835 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 836 } 837 838 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 839 size_t *page_offset, 840 size_t *length) 841 { 842 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 843 cursor->bio_iter.iter); 844 845 *page_offset = bv.bv_offset; 846 *length = bv.bv_len; 847 return bv.bv_page; 848 } 849 850 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 851 size_t bytes) 852 { 853 struct ceph_bio_iter *it = &cursor->bio_iter; 854 855 BUG_ON(bytes > cursor->resid); 856 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 857 cursor->resid -= bytes; 858 bio_advance_iter(it->bio, &it->iter, bytes); 859 860 if (!cursor->resid) { 861 BUG_ON(!cursor->last_piece); 862 return false; /* no more data */ 863 } 864 865 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done)) 866 return false; /* more bytes to process in this segment */ 867 868 if (!it->iter.bi_size) { 869 it->bio = it->bio->bi_next; 870 it->iter = it->bio->bi_iter; 871 if (cursor->resid < it->iter.bi_size) 872 it->iter.bi_size = cursor->resid; 873 } 874 875 BUG_ON(cursor->last_piece); 876 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 877 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 878 return true; 879 } 880 #endif /* CONFIG_BLOCK */ 881 882 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 883 size_t length) 884 { 885 struct ceph_msg_data *data = cursor->data; 886 struct bio_vec *bvecs = data->bvec_pos.bvecs; 887 888 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 889 cursor->bvec_iter = data->bvec_pos.iter; 890 cursor->bvec_iter.bi_size = cursor->resid; 891 892 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 893 cursor->last_piece = 894 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 895 } 896 897 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 898 size_t *page_offset, 899 size_t *length) 900 { 901 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 902 cursor->bvec_iter); 903 904 *page_offset = bv.bv_offset; 905 *length = bv.bv_len; 906 return bv.bv_page; 907 } 908 909 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 910 size_t bytes) 911 { 912 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 913 914 BUG_ON(bytes > cursor->resid); 915 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 916 cursor->resid -= bytes; 917 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 918 919 if (!cursor->resid) { 920 BUG_ON(!cursor->last_piece); 921 return false; /* no more data */ 922 } 923 924 if (!bytes || cursor->bvec_iter.bi_bvec_done) 925 return false; /* more bytes to process in this segment */ 926 927 BUG_ON(cursor->last_piece); 928 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 929 cursor->last_piece = 930 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 931 return true; 932 } 933 934 /* 935 * For a page array, a piece comes from the first page in the array 936 * that has not already been fully consumed. 937 */ 938 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 939 size_t length) 940 { 941 struct ceph_msg_data *data = cursor->data; 942 int page_count; 943 944 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 945 946 BUG_ON(!data->pages); 947 BUG_ON(!data->length); 948 949 cursor->resid = min(length, data->length); 950 page_count = calc_pages_for(data->alignment, (u64)data->length); 951 cursor->page_offset = data->alignment & ~PAGE_MASK; 952 cursor->page_index = 0; 953 BUG_ON(page_count > (int)USHRT_MAX); 954 cursor->page_count = (unsigned short)page_count; 955 BUG_ON(length > SIZE_MAX - cursor->page_offset); 956 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 957 } 958 959 static struct page * 960 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 961 size_t *page_offset, size_t *length) 962 { 963 struct ceph_msg_data *data = cursor->data; 964 965 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 966 967 BUG_ON(cursor->page_index >= cursor->page_count); 968 BUG_ON(cursor->page_offset >= PAGE_SIZE); 969 970 *page_offset = cursor->page_offset; 971 if (cursor->last_piece) 972 *length = cursor->resid; 973 else 974 *length = PAGE_SIZE - *page_offset; 975 976 return data->pages[cursor->page_index]; 977 } 978 979 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 980 size_t bytes) 981 { 982 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 983 984 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 985 986 /* Advance the cursor page offset */ 987 988 cursor->resid -= bytes; 989 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 990 if (!bytes || cursor->page_offset) 991 return false; /* more bytes to process in the current page */ 992 993 if (!cursor->resid) 994 return false; /* no more data */ 995 996 /* Move on to the next page; offset is already at 0 */ 997 998 BUG_ON(cursor->page_index >= cursor->page_count); 999 cursor->page_index++; 1000 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1001 1002 return true; 1003 } 1004 1005 /* 1006 * For a pagelist, a piece is whatever remains to be consumed in the 1007 * first page in the list, or the front of the next page. 1008 */ 1009 static void 1010 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1011 size_t length) 1012 { 1013 struct ceph_msg_data *data = cursor->data; 1014 struct ceph_pagelist *pagelist; 1015 struct page *page; 1016 1017 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1018 1019 pagelist = data->pagelist; 1020 BUG_ON(!pagelist); 1021 1022 if (!length) 1023 return; /* pagelist can be assigned but empty */ 1024 1025 BUG_ON(list_empty(&pagelist->head)); 1026 page = list_first_entry(&pagelist->head, struct page, lru); 1027 1028 cursor->resid = min(length, pagelist->length); 1029 cursor->page = page; 1030 cursor->offset = 0; 1031 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1032 } 1033 1034 static struct page * 1035 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1036 size_t *page_offset, size_t *length) 1037 { 1038 struct ceph_msg_data *data = cursor->data; 1039 struct ceph_pagelist *pagelist; 1040 1041 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1042 1043 pagelist = data->pagelist; 1044 BUG_ON(!pagelist); 1045 1046 BUG_ON(!cursor->page); 1047 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1048 1049 /* offset of first page in pagelist is always 0 */ 1050 *page_offset = cursor->offset & ~PAGE_MASK; 1051 if (cursor->last_piece) 1052 *length = cursor->resid; 1053 else 1054 *length = PAGE_SIZE - *page_offset; 1055 1056 return cursor->page; 1057 } 1058 1059 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1060 size_t bytes) 1061 { 1062 struct ceph_msg_data *data = cursor->data; 1063 struct ceph_pagelist *pagelist; 1064 1065 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1066 1067 pagelist = data->pagelist; 1068 BUG_ON(!pagelist); 1069 1070 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1071 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1072 1073 /* Advance the cursor offset */ 1074 1075 cursor->resid -= bytes; 1076 cursor->offset += bytes; 1077 /* offset of first page in pagelist is always 0 */ 1078 if (!bytes || cursor->offset & ~PAGE_MASK) 1079 return false; /* more bytes to process in the current page */ 1080 1081 if (!cursor->resid) 1082 return false; /* no more data */ 1083 1084 /* Move on to the next page */ 1085 1086 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1087 cursor->page = list_next_entry(cursor->page, lru); 1088 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1089 1090 return true; 1091 } 1092 1093 /* 1094 * Message data is handled (sent or received) in pieces, where each 1095 * piece resides on a single page. The network layer might not 1096 * consume an entire piece at once. A data item's cursor keeps 1097 * track of which piece is next to process and how much remains to 1098 * be processed in that piece. It also tracks whether the current 1099 * piece is the last one in the data item. 1100 */ 1101 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1102 { 1103 size_t length = cursor->total_resid; 1104 1105 switch (cursor->data->type) { 1106 case CEPH_MSG_DATA_PAGELIST: 1107 ceph_msg_data_pagelist_cursor_init(cursor, length); 1108 break; 1109 case CEPH_MSG_DATA_PAGES: 1110 ceph_msg_data_pages_cursor_init(cursor, length); 1111 break; 1112 #ifdef CONFIG_BLOCK 1113 case CEPH_MSG_DATA_BIO: 1114 ceph_msg_data_bio_cursor_init(cursor, length); 1115 break; 1116 #endif /* CONFIG_BLOCK */ 1117 case CEPH_MSG_DATA_BVECS: 1118 ceph_msg_data_bvecs_cursor_init(cursor, length); 1119 break; 1120 case CEPH_MSG_DATA_NONE: 1121 default: 1122 /* BUG(); */ 1123 break; 1124 } 1125 cursor->need_crc = true; 1126 } 1127 1128 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1129 { 1130 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1131 1132 BUG_ON(!length); 1133 BUG_ON(length > msg->data_length); 1134 BUG_ON(!msg->num_data_items); 1135 1136 cursor->total_resid = length; 1137 cursor->data = msg->data; 1138 1139 __ceph_msg_data_cursor_init(cursor); 1140 } 1141 1142 /* 1143 * Return the page containing the next piece to process for a given 1144 * data item, and supply the page offset and length of that piece. 1145 * Indicate whether this is the last piece in this data item. 1146 */ 1147 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1148 size_t *page_offset, size_t *length, 1149 bool *last_piece) 1150 { 1151 struct page *page; 1152 1153 switch (cursor->data->type) { 1154 case CEPH_MSG_DATA_PAGELIST: 1155 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1156 break; 1157 case CEPH_MSG_DATA_PAGES: 1158 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1159 break; 1160 #ifdef CONFIG_BLOCK 1161 case CEPH_MSG_DATA_BIO: 1162 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1163 break; 1164 #endif /* CONFIG_BLOCK */ 1165 case CEPH_MSG_DATA_BVECS: 1166 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1167 break; 1168 case CEPH_MSG_DATA_NONE: 1169 default: 1170 page = NULL; 1171 break; 1172 } 1173 1174 BUG_ON(!page); 1175 BUG_ON(*page_offset + *length > PAGE_SIZE); 1176 BUG_ON(!*length); 1177 BUG_ON(*length > cursor->resid); 1178 if (last_piece) 1179 *last_piece = cursor->last_piece; 1180 1181 return page; 1182 } 1183 1184 /* 1185 * Returns true if the result moves the cursor on to the next piece 1186 * of the data item. 1187 */ 1188 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1189 size_t bytes) 1190 { 1191 bool new_piece; 1192 1193 BUG_ON(bytes > cursor->resid); 1194 switch (cursor->data->type) { 1195 case CEPH_MSG_DATA_PAGELIST: 1196 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1197 break; 1198 case CEPH_MSG_DATA_PAGES: 1199 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1200 break; 1201 #ifdef CONFIG_BLOCK 1202 case CEPH_MSG_DATA_BIO: 1203 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1204 break; 1205 #endif /* CONFIG_BLOCK */ 1206 case CEPH_MSG_DATA_BVECS: 1207 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1208 break; 1209 case CEPH_MSG_DATA_NONE: 1210 default: 1211 BUG(); 1212 break; 1213 } 1214 cursor->total_resid -= bytes; 1215 1216 if (!cursor->resid && cursor->total_resid) { 1217 WARN_ON(!cursor->last_piece); 1218 cursor->data++; 1219 __ceph_msg_data_cursor_init(cursor); 1220 new_piece = true; 1221 } 1222 cursor->need_crc = new_piece; 1223 } 1224 1225 static size_t sizeof_footer(struct ceph_connection *con) 1226 { 1227 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1228 sizeof(struct ceph_msg_footer) : 1229 sizeof(struct ceph_msg_footer_old); 1230 } 1231 1232 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1233 { 1234 /* Initialize data cursor */ 1235 1236 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1237 } 1238 1239 /* 1240 * Prepare footer for currently outgoing message, and finish things 1241 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1242 */ 1243 static void prepare_write_message_footer(struct ceph_connection *con) 1244 { 1245 struct ceph_msg *m = con->out_msg; 1246 1247 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1248 1249 dout("prepare_write_message_footer %p\n", con); 1250 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1251 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1252 if (con->ops->sign_message) 1253 con->ops->sign_message(m); 1254 else 1255 m->footer.sig = 0; 1256 } else { 1257 m->old_footer.flags = m->footer.flags; 1258 } 1259 con->out_more = m->more_to_follow; 1260 con->out_msg_done = true; 1261 } 1262 1263 /* 1264 * Prepare headers for the next outgoing message. 1265 */ 1266 static void prepare_write_message(struct ceph_connection *con) 1267 { 1268 struct ceph_msg *m; 1269 u32 crc; 1270 1271 con_out_kvec_reset(con); 1272 con->out_msg_done = false; 1273 1274 /* Sneak an ack in there first? If we can get it into the same 1275 * TCP packet that's a good thing. */ 1276 if (con->in_seq > con->in_seq_acked) { 1277 con->in_seq_acked = con->in_seq; 1278 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1279 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1280 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1281 &con->out_temp_ack); 1282 } 1283 1284 BUG_ON(list_empty(&con->out_queue)); 1285 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1286 con->out_msg = m; 1287 BUG_ON(m->con != con); 1288 1289 /* put message on sent list */ 1290 ceph_msg_get(m); 1291 list_move_tail(&m->list_head, &con->out_sent); 1292 1293 /* 1294 * only assign outgoing seq # if we haven't sent this message 1295 * yet. if it is requeued, resend with it's original seq. 1296 */ 1297 if (m->needs_out_seq) { 1298 m->hdr.seq = cpu_to_le64(++con->out_seq); 1299 m->needs_out_seq = false; 1300 1301 if (con->ops->reencode_message) 1302 con->ops->reencode_message(m); 1303 } 1304 1305 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1306 m, con->out_seq, le16_to_cpu(m->hdr.type), 1307 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1308 m->data_length); 1309 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1310 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1311 1312 /* tag + hdr + front + middle */ 1313 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1314 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1315 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1316 1317 if (m->middle) 1318 con_out_kvec_add(con, m->middle->vec.iov_len, 1319 m->middle->vec.iov_base); 1320 1321 /* fill in hdr crc and finalize hdr */ 1322 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1323 con->out_msg->hdr.crc = cpu_to_le32(crc); 1324 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1325 1326 /* fill in front and middle crc, footer */ 1327 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1328 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1329 if (m->middle) { 1330 crc = crc32c(0, m->middle->vec.iov_base, 1331 m->middle->vec.iov_len); 1332 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1333 } else 1334 con->out_msg->footer.middle_crc = 0; 1335 dout("%s front_crc %u middle_crc %u\n", __func__, 1336 le32_to_cpu(con->out_msg->footer.front_crc), 1337 le32_to_cpu(con->out_msg->footer.middle_crc)); 1338 con->out_msg->footer.flags = 0; 1339 1340 /* is there a data payload? */ 1341 con->out_msg->footer.data_crc = 0; 1342 if (m->data_length) { 1343 prepare_message_data(con->out_msg, m->data_length); 1344 con->out_more = 1; /* data + footer will follow */ 1345 } else { 1346 /* no, queue up footer too and be done */ 1347 prepare_write_message_footer(con); 1348 } 1349 1350 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1351 } 1352 1353 /* 1354 * Prepare an ack. 1355 */ 1356 static void prepare_write_ack(struct ceph_connection *con) 1357 { 1358 dout("prepare_write_ack %p %llu -> %llu\n", con, 1359 con->in_seq_acked, con->in_seq); 1360 con->in_seq_acked = con->in_seq; 1361 1362 con_out_kvec_reset(con); 1363 1364 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1365 1366 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1367 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1368 &con->out_temp_ack); 1369 1370 con->out_more = 1; /* more will follow.. eventually.. */ 1371 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1372 } 1373 1374 /* 1375 * Prepare to share the seq during handshake 1376 */ 1377 static void prepare_write_seq(struct ceph_connection *con) 1378 { 1379 dout("prepare_write_seq %p %llu -> %llu\n", con, 1380 con->in_seq_acked, con->in_seq); 1381 con->in_seq_acked = con->in_seq; 1382 1383 con_out_kvec_reset(con); 1384 1385 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1386 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1387 &con->out_temp_ack); 1388 1389 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1390 } 1391 1392 /* 1393 * Prepare to write keepalive byte. 1394 */ 1395 static void prepare_write_keepalive(struct ceph_connection *con) 1396 { 1397 dout("prepare_write_keepalive %p\n", con); 1398 con_out_kvec_reset(con); 1399 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1400 struct timespec64 now; 1401 1402 ktime_get_real_ts64(&now); 1403 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1404 ceph_encode_timespec64(&con->out_temp_keepalive2, &now); 1405 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1406 &con->out_temp_keepalive2); 1407 } else { 1408 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1409 } 1410 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1411 } 1412 1413 /* 1414 * Connection negotiation. 1415 */ 1416 1417 static int get_connect_authorizer(struct ceph_connection *con) 1418 { 1419 struct ceph_auth_handshake *auth; 1420 int auth_proto; 1421 1422 if (!con->ops->get_authorizer) { 1423 con->auth = NULL; 1424 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1425 con->out_connect.authorizer_len = 0; 1426 return 0; 1427 } 1428 1429 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry); 1430 if (IS_ERR(auth)) 1431 return PTR_ERR(auth); 1432 1433 con->auth = auth; 1434 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1435 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len); 1436 return 0; 1437 } 1438 1439 /* 1440 * We connected to a peer and are saying hello. 1441 */ 1442 static void prepare_write_banner(struct ceph_connection *con) 1443 { 1444 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1445 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1446 &con->msgr->my_enc_addr); 1447 1448 con->out_more = 0; 1449 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1450 } 1451 1452 static void __prepare_write_connect(struct ceph_connection *con) 1453 { 1454 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect); 1455 if (con->auth) 1456 con_out_kvec_add(con, con->auth->authorizer_buf_len, 1457 con->auth->authorizer_buf); 1458 1459 con->out_more = 0; 1460 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1461 } 1462 1463 static int prepare_write_connect(struct ceph_connection *con) 1464 { 1465 unsigned int global_seq = get_global_seq(con->msgr, 0); 1466 int proto; 1467 int ret; 1468 1469 switch (con->peer_name.type) { 1470 case CEPH_ENTITY_TYPE_MON: 1471 proto = CEPH_MONC_PROTOCOL; 1472 break; 1473 case CEPH_ENTITY_TYPE_OSD: 1474 proto = CEPH_OSDC_PROTOCOL; 1475 break; 1476 case CEPH_ENTITY_TYPE_MDS: 1477 proto = CEPH_MDSC_PROTOCOL; 1478 break; 1479 default: 1480 BUG(); 1481 } 1482 1483 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1484 con->connect_seq, global_seq, proto); 1485 1486 con->out_connect.features = 1487 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1488 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1489 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1490 con->out_connect.global_seq = cpu_to_le32(global_seq); 1491 con->out_connect.protocol_version = cpu_to_le32(proto); 1492 con->out_connect.flags = 0; 1493 1494 ret = get_connect_authorizer(con); 1495 if (ret) 1496 return ret; 1497 1498 __prepare_write_connect(con); 1499 return 0; 1500 } 1501 1502 /* 1503 * write as much of pending kvecs to the socket as we can. 1504 * 1 -> done 1505 * 0 -> socket full, but more to do 1506 * <0 -> error 1507 */ 1508 static int write_partial_kvec(struct ceph_connection *con) 1509 { 1510 int ret; 1511 1512 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1513 while (con->out_kvec_bytes > 0) { 1514 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1515 con->out_kvec_left, con->out_kvec_bytes, 1516 con->out_more); 1517 if (ret <= 0) 1518 goto out; 1519 con->out_kvec_bytes -= ret; 1520 if (con->out_kvec_bytes == 0) 1521 break; /* done */ 1522 1523 /* account for full iov entries consumed */ 1524 while (ret >= con->out_kvec_cur->iov_len) { 1525 BUG_ON(!con->out_kvec_left); 1526 ret -= con->out_kvec_cur->iov_len; 1527 con->out_kvec_cur++; 1528 con->out_kvec_left--; 1529 } 1530 /* and for a partially-consumed entry */ 1531 if (ret) { 1532 con->out_kvec_cur->iov_len -= ret; 1533 con->out_kvec_cur->iov_base += ret; 1534 } 1535 } 1536 con->out_kvec_left = 0; 1537 ret = 1; 1538 out: 1539 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1540 con->out_kvec_bytes, con->out_kvec_left, ret); 1541 return ret; /* done! */ 1542 } 1543 1544 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1545 unsigned int page_offset, 1546 unsigned int length) 1547 { 1548 char *kaddr; 1549 1550 kaddr = kmap(page); 1551 BUG_ON(kaddr == NULL); 1552 crc = crc32c(crc, kaddr + page_offset, length); 1553 kunmap(page); 1554 1555 return crc; 1556 } 1557 /* 1558 * Write as much message data payload as we can. If we finish, queue 1559 * up the footer. 1560 * 1 -> done, footer is now queued in out_kvec[]. 1561 * 0 -> socket full, but more to do 1562 * <0 -> error 1563 */ 1564 static int write_partial_message_data(struct ceph_connection *con) 1565 { 1566 struct ceph_msg *msg = con->out_msg; 1567 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1568 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1569 u32 crc; 1570 1571 dout("%s %p msg %p\n", __func__, con, msg); 1572 1573 if (!msg->num_data_items) 1574 return -EINVAL; 1575 1576 /* 1577 * Iterate through each page that contains data to be 1578 * written, and send as much as possible for each. 1579 * 1580 * If we are calculating the data crc (the default), we will 1581 * need to map the page. If we have no pages, they have 1582 * been revoked, so use the zero page. 1583 */ 1584 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1585 while (cursor->total_resid) { 1586 struct page *page; 1587 size_t page_offset; 1588 size_t length; 1589 bool last_piece; 1590 int ret; 1591 1592 if (!cursor->resid) { 1593 ceph_msg_data_advance(cursor, 0); 1594 continue; 1595 } 1596 1597 page = ceph_msg_data_next(cursor, &page_offset, &length, 1598 &last_piece); 1599 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1600 length, !last_piece); 1601 if (ret <= 0) { 1602 if (do_datacrc) 1603 msg->footer.data_crc = cpu_to_le32(crc); 1604 1605 return ret; 1606 } 1607 if (do_datacrc && cursor->need_crc) 1608 crc = ceph_crc32c_page(crc, page, page_offset, length); 1609 ceph_msg_data_advance(cursor, (size_t)ret); 1610 } 1611 1612 dout("%s %p msg %p done\n", __func__, con, msg); 1613 1614 /* prepare and queue up footer, too */ 1615 if (do_datacrc) 1616 msg->footer.data_crc = cpu_to_le32(crc); 1617 else 1618 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1619 con_out_kvec_reset(con); 1620 prepare_write_message_footer(con); 1621 1622 return 1; /* must return > 0 to indicate success */ 1623 } 1624 1625 /* 1626 * write some zeros 1627 */ 1628 static int write_partial_skip(struct ceph_connection *con) 1629 { 1630 int ret; 1631 1632 dout("%s %p %d left\n", __func__, con, con->out_skip); 1633 while (con->out_skip > 0) { 1634 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1635 1636 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1637 if (ret <= 0) 1638 goto out; 1639 con->out_skip -= ret; 1640 } 1641 ret = 1; 1642 out: 1643 return ret; 1644 } 1645 1646 /* 1647 * Prepare to read connection handshake, or an ack. 1648 */ 1649 static void prepare_read_banner(struct ceph_connection *con) 1650 { 1651 dout("prepare_read_banner %p\n", con); 1652 con->in_base_pos = 0; 1653 } 1654 1655 static void prepare_read_connect(struct ceph_connection *con) 1656 { 1657 dout("prepare_read_connect %p\n", con); 1658 con->in_base_pos = 0; 1659 } 1660 1661 static void prepare_read_ack(struct ceph_connection *con) 1662 { 1663 dout("prepare_read_ack %p\n", con); 1664 con->in_base_pos = 0; 1665 } 1666 1667 static void prepare_read_seq(struct ceph_connection *con) 1668 { 1669 dout("prepare_read_seq %p\n", con); 1670 con->in_base_pos = 0; 1671 con->in_tag = CEPH_MSGR_TAG_SEQ; 1672 } 1673 1674 static void prepare_read_tag(struct ceph_connection *con) 1675 { 1676 dout("prepare_read_tag %p\n", con); 1677 con->in_base_pos = 0; 1678 con->in_tag = CEPH_MSGR_TAG_READY; 1679 } 1680 1681 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1682 { 1683 dout("prepare_read_keepalive_ack %p\n", con); 1684 con->in_base_pos = 0; 1685 } 1686 1687 /* 1688 * Prepare to read a message. 1689 */ 1690 static int prepare_read_message(struct ceph_connection *con) 1691 { 1692 dout("prepare_read_message %p\n", con); 1693 BUG_ON(con->in_msg != NULL); 1694 con->in_base_pos = 0; 1695 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1696 return 0; 1697 } 1698 1699 1700 static int read_partial(struct ceph_connection *con, 1701 int end, int size, void *object) 1702 { 1703 while (con->in_base_pos < end) { 1704 int left = end - con->in_base_pos; 1705 int have = size - left; 1706 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1707 if (ret <= 0) 1708 return ret; 1709 con->in_base_pos += ret; 1710 } 1711 return 1; 1712 } 1713 1714 1715 /* 1716 * Read all or part of the connect-side handshake on a new connection 1717 */ 1718 static int read_partial_banner(struct ceph_connection *con) 1719 { 1720 int size; 1721 int end; 1722 int ret; 1723 1724 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1725 1726 /* peer's banner */ 1727 size = strlen(CEPH_BANNER); 1728 end = size; 1729 ret = read_partial(con, end, size, con->in_banner); 1730 if (ret <= 0) 1731 goto out; 1732 1733 size = sizeof (con->actual_peer_addr); 1734 end += size; 1735 ret = read_partial(con, end, size, &con->actual_peer_addr); 1736 if (ret <= 0) 1737 goto out; 1738 1739 size = sizeof (con->peer_addr_for_me); 1740 end += size; 1741 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1742 if (ret <= 0) 1743 goto out; 1744 1745 out: 1746 return ret; 1747 } 1748 1749 static int read_partial_connect(struct ceph_connection *con) 1750 { 1751 int size; 1752 int end; 1753 int ret; 1754 1755 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1756 1757 size = sizeof (con->in_reply); 1758 end = size; 1759 ret = read_partial(con, end, size, &con->in_reply); 1760 if (ret <= 0) 1761 goto out; 1762 1763 if (con->auth) { 1764 size = le32_to_cpu(con->in_reply.authorizer_len); 1765 if (size > con->auth->authorizer_reply_buf_len) { 1766 pr_err("authorizer reply too big: %d > %zu\n", size, 1767 con->auth->authorizer_reply_buf_len); 1768 ret = -EINVAL; 1769 goto out; 1770 } 1771 1772 end += size; 1773 ret = read_partial(con, end, size, 1774 con->auth->authorizer_reply_buf); 1775 if (ret <= 0) 1776 goto out; 1777 } 1778 1779 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1780 con, (int)con->in_reply.tag, 1781 le32_to_cpu(con->in_reply.connect_seq), 1782 le32_to_cpu(con->in_reply.global_seq)); 1783 out: 1784 return ret; 1785 } 1786 1787 /* 1788 * Verify the hello banner looks okay. 1789 */ 1790 static int verify_hello(struct ceph_connection *con) 1791 { 1792 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1793 pr_err("connect to %s got bad banner\n", 1794 ceph_pr_addr(&con->peer_addr.in_addr)); 1795 con->error_msg = "protocol error, bad banner"; 1796 return -1; 1797 } 1798 return 0; 1799 } 1800 1801 static bool addr_is_blank(struct sockaddr_storage *ss) 1802 { 1803 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1804 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1805 1806 switch (ss->ss_family) { 1807 case AF_INET: 1808 return addr->s_addr == htonl(INADDR_ANY); 1809 case AF_INET6: 1810 return ipv6_addr_any(addr6); 1811 default: 1812 return true; 1813 } 1814 } 1815 1816 static int addr_port(struct sockaddr_storage *ss) 1817 { 1818 switch (ss->ss_family) { 1819 case AF_INET: 1820 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1821 case AF_INET6: 1822 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1823 } 1824 return 0; 1825 } 1826 1827 static void addr_set_port(struct sockaddr_storage *ss, int p) 1828 { 1829 switch (ss->ss_family) { 1830 case AF_INET: 1831 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1832 break; 1833 case AF_INET6: 1834 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1835 break; 1836 } 1837 } 1838 1839 /* 1840 * Unlike other *_pton function semantics, zero indicates success. 1841 */ 1842 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1843 char delim, const char **ipend) 1844 { 1845 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1846 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1847 1848 memset(ss, 0, sizeof(*ss)); 1849 1850 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1851 ss->ss_family = AF_INET; 1852 return 0; 1853 } 1854 1855 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1856 ss->ss_family = AF_INET6; 1857 return 0; 1858 } 1859 1860 return -EINVAL; 1861 } 1862 1863 /* 1864 * Extract hostname string and resolve using kernel DNS facility. 1865 */ 1866 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1867 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1868 struct sockaddr_storage *ss, char delim, const char **ipend) 1869 { 1870 const char *end, *delim_p; 1871 char *colon_p, *ip_addr = NULL; 1872 int ip_len, ret; 1873 1874 /* 1875 * The end of the hostname occurs immediately preceding the delimiter or 1876 * the port marker (':') where the delimiter takes precedence. 1877 */ 1878 delim_p = memchr(name, delim, namelen); 1879 colon_p = memchr(name, ':', namelen); 1880 1881 if (delim_p && colon_p) 1882 end = delim_p < colon_p ? delim_p : colon_p; 1883 else if (!delim_p && colon_p) 1884 end = colon_p; 1885 else { 1886 end = delim_p; 1887 if (!end) /* case: hostname:/ */ 1888 end = name + namelen; 1889 } 1890 1891 if (end <= name) 1892 return -EINVAL; 1893 1894 /* do dns_resolve upcall */ 1895 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1896 if (ip_len > 0) 1897 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1898 else 1899 ret = -ESRCH; 1900 1901 kfree(ip_addr); 1902 1903 *ipend = end; 1904 1905 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1906 ret, ret ? "failed" : ceph_pr_addr(ss)); 1907 1908 return ret; 1909 } 1910 #else 1911 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1912 struct sockaddr_storage *ss, char delim, const char **ipend) 1913 { 1914 return -EINVAL; 1915 } 1916 #endif 1917 1918 /* 1919 * Parse a server name (IP or hostname). If a valid IP address is not found 1920 * then try to extract a hostname to resolve using userspace DNS upcall. 1921 */ 1922 static int ceph_parse_server_name(const char *name, size_t namelen, 1923 struct sockaddr_storage *ss, char delim, const char **ipend) 1924 { 1925 int ret; 1926 1927 ret = ceph_pton(name, namelen, ss, delim, ipend); 1928 if (ret) 1929 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1930 1931 return ret; 1932 } 1933 1934 /* 1935 * Parse an ip[:port] list into an addr array. Use the default 1936 * monitor port if a port isn't specified. 1937 */ 1938 int ceph_parse_ips(const char *c, const char *end, 1939 struct ceph_entity_addr *addr, 1940 int max_count, int *count) 1941 { 1942 int i, ret = -EINVAL; 1943 const char *p = c; 1944 1945 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1946 for (i = 0; i < max_count; i++) { 1947 const char *ipend; 1948 struct sockaddr_storage *ss = &addr[i].in_addr; 1949 int port; 1950 char delim = ','; 1951 1952 if (*p == '[') { 1953 delim = ']'; 1954 p++; 1955 } 1956 1957 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1958 if (ret) 1959 goto bad; 1960 ret = -EINVAL; 1961 1962 p = ipend; 1963 1964 if (delim == ']') { 1965 if (*p != ']') { 1966 dout("missing matching ']'\n"); 1967 goto bad; 1968 } 1969 p++; 1970 } 1971 1972 /* port? */ 1973 if (p < end && *p == ':') { 1974 port = 0; 1975 p++; 1976 while (p < end && *p >= '0' && *p <= '9') { 1977 port = (port * 10) + (*p - '0'); 1978 p++; 1979 } 1980 if (port == 0) 1981 port = CEPH_MON_PORT; 1982 else if (port > 65535) 1983 goto bad; 1984 } else { 1985 port = CEPH_MON_PORT; 1986 } 1987 1988 addr_set_port(ss, port); 1989 1990 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1991 1992 if (p == end) 1993 break; 1994 if (*p != ',') 1995 goto bad; 1996 p++; 1997 } 1998 1999 if (p != end) 2000 goto bad; 2001 2002 if (count) 2003 *count = i + 1; 2004 return 0; 2005 2006 bad: 2007 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 2008 return ret; 2009 } 2010 EXPORT_SYMBOL(ceph_parse_ips); 2011 2012 static int process_banner(struct ceph_connection *con) 2013 { 2014 dout("process_banner on %p\n", con); 2015 2016 if (verify_hello(con) < 0) 2017 return -1; 2018 2019 ceph_decode_addr(&con->actual_peer_addr); 2020 ceph_decode_addr(&con->peer_addr_for_me); 2021 2022 /* 2023 * Make sure the other end is who we wanted. note that the other 2024 * end may not yet know their ip address, so if it's 0.0.0.0, give 2025 * them the benefit of the doubt. 2026 */ 2027 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2028 sizeof(con->peer_addr)) != 0 && 2029 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 2030 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2031 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2032 ceph_pr_addr(&con->peer_addr.in_addr), 2033 (int)le32_to_cpu(con->peer_addr.nonce), 2034 ceph_pr_addr(&con->actual_peer_addr.in_addr), 2035 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2036 con->error_msg = "wrong peer at address"; 2037 return -1; 2038 } 2039 2040 /* 2041 * did we learn our address? 2042 */ 2043 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 2044 int port = addr_port(&con->msgr->inst.addr.in_addr); 2045 2046 memcpy(&con->msgr->inst.addr.in_addr, 2047 &con->peer_addr_for_me.in_addr, 2048 sizeof(con->peer_addr_for_me.in_addr)); 2049 addr_set_port(&con->msgr->inst.addr.in_addr, port); 2050 encode_my_addr(con->msgr); 2051 dout("process_banner learned my addr is %s\n", 2052 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2053 } 2054 2055 return 0; 2056 } 2057 2058 static int process_connect(struct ceph_connection *con) 2059 { 2060 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2061 u64 req_feat = from_msgr(con->msgr)->required_features; 2062 u64 server_feat = le64_to_cpu(con->in_reply.features); 2063 int ret; 2064 2065 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2066 2067 if (con->auth) { 2068 /* 2069 * Any connection that defines ->get_authorizer() 2070 * should also define ->add_authorizer_challenge() and 2071 * ->verify_authorizer_reply(). 2072 * 2073 * See get_connect_authorizer(). 2074 */ 2075 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) { 2076 ret = con->ops->add_authorizer_challenge( 2077 con, con->auth->authorizer_reply_buf, 2078 le32_to_cpu(con->in_reply.authorizer_len)); 2079 if (ret < 0) 2080 return ret; 2081 2082 con_out_kvec_reset(con); 2083 __prepare_write_connect(con); 2084 prepare_read_connect(con); 2085 return 0; 2086 } 2087 2088 ret = con->ops->verify_authorizer_reply(con); 2089 if (ret < 0) { 2090 con->error_msg = "bad authorize reply"; 2091 return ret; 2092 } 2093 } 2094 2095 switch (con->in_reply.tag) { 2096 case CEPH_MSGR_TAG_FEATURES: 2097 pr_err("%s%lld %s feature set mismatch," 2098 " my %llx < server's %llx, missing %llx\n", 2099 ENTITY_NAME(con->peer_name), 2100 ceph_pr_addr(&con->peer_addr.in_addr), 2101 sup_feat, server_feat, server_feat & ~sup_feat); 2102 con->error_msg = "missing required protocol features"; 2103 reset_connection(con); 2104 return -1; 2105 2106 case CEPH_MSGR_TAG_BADPROTOVER: 2107 pr_err("%s%lld %s protocol version mismatch," 2108 " my %d != server's %d\n", 2109 ENTITY_NAME(con->peer_name), 2110 ceph_pr_addr(&con->peer_addr.in_addr), 2111 le32_to_cpu(con->out_connect.protocol_version), 2112 le32_to_cpu(con->in_reply.protocol_version)); 2113 con->error_msg = "protocol version mismatch"; 2114 reset_connection(con); 2115 return -1; 2116 2117 case CEPH_MSGR_TAG_BADAUTHORIZER: 2118 con->auth_retry++; 2119 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2120 con->auth_retry); 2121 if (con->auth_retry == 2) { 2122 con->error_msg = "connect authorization failure"; 2123 return -1; 2124 } 2125 con_out_kvec_reset(con); 2126 ret = prepare_write_connect(con); 2127 if (ret < 0) 2128 return ret; 2129 prepare_read_connect(con); 2130 break; 2131 2132 case CEPH_MSGR_TAG_RESETSESSION: 2133 /* 2134 * If we connected with a large connect_seq but the peer 2135 * has no record of a session with us (no connection, or 2136 * connect_seq == 0), they will send RESETSESION to indicate 2137 * that they must have reset their session, and may have 2138 * dropped messages. 2139 */ 2140 dout("process_connect got RESET peer seq %u\n", 2141 le32_to_cpu(con->in_reply.connect_seq)); 2142 pr_err("%s%lld %s connection reset\n", 2143 ENTITY_NAME(con->peer_name), 2144 ceph_pr_addr(&con->peer_addr.in_addr)); 2145 reset_connection(con); 2146 con_out_kvec_reset(con); 2147 ret = prepare_write_connect(con); 2148 if (ret < 0) 2149 return ret; 2150 prepare_read_connect(con); 2151 2152 /* Tell ceph about it. */ 2153 mutex_unlock(&con->mutex); 2154 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2155 if (con->ops->peer_reset) 2156 con->ops->peer_reset(con); 2157 mutex_lock(&con->mutex); 2158 if (con->state != CON_STATE_NEGOTIATING) 2159 return -EAGAIN; 2160 break; 2161 2162 case CEPH_MSGR_TAG_RETRY_SESSION: 2163 /* 2164 * If we sent a smaller connect_seq than the peer has, try 2165 * again with a larger value. 2166 */ 2167 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2168 le32_to_cpu(con->out_connect.connect_seq), 2169 le32_to_cpu(con->in_reply.connect_seq)); 2170 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2171 con_out_kvec_reset(con); 2172 ret = prepare_write_connect(con); 2173 if (ret < 0) 2174 return ret; 2175 prepare_read_connect(con); 2176 break; 2177 2178 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2179 /* 2180 * If we sent a smaller global_seq than the peer has, try 2181 * again with a larger value. 2182 */ 2183 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2184 con->peer_global_seq, 2185 le32_to_cpu(con->in_reply.global_seq)); 2186 get_global_seq(con->msgr, 2187 le32_to_cpu(con->in_reply.global_seq)); 2188 con_out_kvec_reset(con); 2189 ret = prepare_write_connect(con); 2190 if (ret < 0) 2191 return ret; 2192 prepare_read_connect(con); 2193 break; 2194 2195 case CEPH_MSGR_TAG_SEQ: 2196 case CEPH_MSGR_TAG_READY: 2197 if (req_feat & ~server_feat) { 2198 pr_err("%s%lld %s protocol feature mismatch," 2199 " my required %llx > server's %llx, need %llx\n", 2200 ENTITY_NAME(con->peer_name), 2201 ceph_pr_addr(&con->peer_addr.in_addr), 2202 req_feat, server_feat, req_feat & ~server_feat); 2203 con->error_msg = "missing required protocol features"; 2204 reset_connection(con); 2205 return -1; 2206 } 2207 2208 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2209 con->state = CON_STATE_OPEN; 2210 con->auth_retry = 0; /* we authenticated; clear flag */ 2211 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2212 con->connect_seq++; 2213 con->peer_features = server_feat; 2214 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2215 con->peer_global_seq, 2216 le32_to_cpu(con->in_reply.connect_seq), 2217 con->connect_seq); 2218 WARN_ON(con->connect_seq != 2219 le32_to_cpu(con->in_reply.connect_seq)); 2220 2221 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2222 con_flag_set(con, CON_FLAG_LOSSYTX); 2223 2224 con->delay = 0; /* reset backoff memory */ 2225 2226 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2227 prepare_write_seq(con); 2228 prepare_read_seq(con); 2229 } else { 2230 prepare_read_tag(con); 2231 } 2232 break; 2233 2234 case CEPH_MSGR_TAG_WAIT: 2235 /* 2236 * If there is a connection race (we are opening 2237 * connections to each other), one of us may just have 2238 * to WAIT. This shouldn't happen if we are the 2239 * client. 2240 */ 2241 con->error_msg = "protocol error, got WAIT as client"; 2242 return -1; 2243 2244 default: 2245 con->error_msg = "protocol error, garbage tag during connect"; 2246 return -1; 2247 } 2248 return 0; 2249 } 2250 2251 2252 /* 2253 * read (part of) an ack 2254 */ 2255 static int read_partial_ack(struct ceph_connection *con) 2256 { 2257 int size = sizeof (con->in_temp_ack); 2258 int end = size; 2259 2260 return read_partial(con, end, size, &con->in_temp_ack); 2261 } 2262 2263 /* 2264 * We can finally discard anything that's been acked. 2265 */ 2266 static void process_ack(struct ceph_connection *con) 2267 { 2268 struct ceph_msg *m; 2269 u64 ack = le64_to_cpu(con->in_temp_ack); 2270 u64 seq; 2271 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2272 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2273 2274 /* 2275 * In the reconnect case, con_fault() has requeued messages 2276 * in out_sent. We should cleanup old messages according to 2277 * the reconnect seq. 2278 */ 2279 while (!list_empty(list)) { 2280 m = list_first_entry(list, struct ceph_msg, list_head); 2281 if (reconnect && m->needs_out_seq) 2282 break; 2283 seq = le64_to_cpu(m->hdr.seq); 2284 if (seq > ack) 2285 break; 2286 dout("got ack for seq %llu type %d at %p\n", seq, 2287 le16_to_cpu(m->hdr.type), m); 2288 m->ack_stamp = jiffies; 2289 ceph_msg_remove(m); 2290 } 2291 2292 prepare_read_tag(con); 2293 } 2294 2295 2296 static int read_partial_message_section(struct ceph_connection *con, 2297 struct kvec *section, 2298 unsigned int sec_len, u32 *crc) 2299 { 2300 int ret, left; 2301 2302 BUG_ON(!section); 2303 2304 while (section->iov_len < sec_len) { 2305 BUG_ON(section->iov_base == NULL); 2306 left = sec_len - section->iov_len; 2307 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2308 section->iov_len, left); 2309 if (ret <= 0) 2310 return ret; 2311 section->iov_len += ret; 2312 } 2313 if (section->iov_len == sec_len) 2314 *crc = crc32c(0, section->iov_base, section->iov_len); 2315 2316 return 1; 2317 } 2318 2319 static int read_partial_msg_data(struct ceph_connection *con) 2320 { 2321 struct ceph_msg *msg = con->in_msg; 2322 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2323 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2324 struct page *page; 2325 size_t page_offset; 2326 size_t length; 2327 u32 crc = 0; 2328 int ret; 2329 2330 if (!msg->num_data_items) 2331 return -EIO; 2332 2333 if (do_datacrc) 2334 crc = con->in_data_crc; 2335 while (cursor->total_resid) { 2336 if (!cursor->resid) { 2337 ceph_msg_data_advance(cursor, 0); 2338 continue; 2339 } 2340 2341 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2342 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2343 if (ret <= 0) { 2344 if (do_datacrc) 2345 con->in_data_crc = crc; 2346 2347 return ret; 2348 } 2349 2350 if (do_datacrc) 2351 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2352 ceph_msg_data_advance(cursor, (size_t)ret); 2353 } 2354 if (do_datacrc) 2355 con->in_data_crc = crc; 2356 2357 return 1; /* must return > 0 to indicate success */ 2358 } 2359 2360 /* 2361 * read (part of) a message. 2362 */ 2363 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2364 2365 static int read_partial_message(struct ceph_connection *con) 2366 { 2367 struct ceph_msg *m = con->in_msg; 2368 int size; 2369 int end; 2370 int ret; 2371 unsigned int front_len, middle_len, data_len; 2372 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2373 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2374 u64 seq; 2375 u32 crc; 2376 2377 dout("read_partial_message con %p msg %p\n", con, m); 2378 2379 /* header */ 2380 size = sizeof (con->in_hdr); 2381 end = size; 2382 ret = read_partial(con, end, size, &con->in_hdr); 2383 if (ret <= 0) 2384 return ret; 2385 2386 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2387 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2388 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2389 crc, con->in_hdr.crc); 2390 return -EBADMSG; 2391 } 2392 2393 front_len = le32_to_cpu(con->in_hdr.front_len); 2394 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2395 return -EIO; 2396 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2397 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2398 return -EIO; 2399 data_len = le32_to_cpu(con->in_hdr.data_len); 2400 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2401 return -EIO; 2402 2403 /* verify seq# */ 2404 seq = le64_to_cpu(con->in_hdr.seq); 2405 if ((s64)seq - (s64)con->in_seq < 1) { 2406 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2407 ENTITY_NAME(con->peer_name), 2408 ceph_pr_addr(&con->peer_addr.in_addr), 2409 seq, con->in_seq + 1); 2410 con->in_base_pos = -front_len - middle_len - data_len - 2411 sizeof_footer(con); 2412 con->in_tag = CEPH_MSGR_TAG_READY; 2413 return 1; 2414 } else if ((s64)seq - (s64)con->in_seq > 1) { 2415 pr_err("read_partial_message bad seq %lld expected %lld\n", 2416 seq, con->in_seq + 1); 2417 con->error_msg = "bad message sequence # for incoming message"; 2418 return -EBADE; 2419 } 2420 2421 /* allocate message? */ 2422 if (!con->in_msg) { 2423 int skip = 0; 2424 2425 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2426 front_len, data_len); 2427 ret = ceph_con_in_msg_alloc(con, &skip); 2428 if (ret < 0) 2429 return ret; 2430 2431 BUG_ON(!con->in_msg ^ skip); 2432 if (skip) { 2433 /* skip this message */ 2434 dout("alloc_msg said skip message\n"); 2435 con->in_base_pos = -front_len - middle_len - data_len - 2436 sizeof_footer(con); 2437 con->in_tag = CEPH_MSGR_TAG_READY; 2438 con->in_seq++; 2439 return 1; 2440 } 2441 2442 BUG_ON(!con->in_msg); 2443 BUG_ON(con->in_msg->con != con); 2444 m = con->in_msg; 2445 m->front.iov_len = 0; /* haven't read it yet */ 2446 if (m->middle) 2447 m->middle->vec.iov_len = 0; 2448 2449 /* prepare for data payload, if any */ 2450 2451 if (data_len) 2452 prepare_message_data(con->in_msg, data_len); 2453 } 2454 2455 /* front */ 2456 ret = read_partial_message_section(con, &m->front, front_len, 2457 &con->in_front_crc); 2458 if (ret <= 0) 2459 return ret; 2460 2461 /* middle */ 2462 if (m->middle) { 2463 ret = read_partial_message_section(con, &m->middle->vec, 2464 middle_len, 2465 &con->in_middle_crc); 2466 if (ret <= 0) 2467 return ret; 2468 } 2469 2470 /* (page) data */ 2471 if (data_len) { 2472 ret = read_partial_msg_data(con); 2473 if (ret <= 0) 2474 return ret; 2475 } 2476 2477 /* footer */ 2478 size = sizeof_footer(con); 2479 end += size; 2480 ret = read_partial(con, end, size, &m->footer); 2481 if (ret <= 0) 2482 return ret; 2483 2484 if (!need_sign) { 2485 m->footer.flags = m->old_footer.flags; 2486 m->footer.sig = 0; 2487 } 2488 2489 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2490 m, front_len, m->footer.front_crc, middle_len, 2491 m->footer.middle_crc, data_len, m->footer.data_crc); 2492 2493 /* crc ok? */ 2494 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2495 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2496 m, con->in_front_crc, m->footer.front_crc); 2497 return -EBADMSG; 2498 } 2499 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2500 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2501 m, con->in_middle_crc, m->footer.middle_crc); 2502 return -EBADMSG; 2503 } 2504 if (do_datacrc && 2505 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2506 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2507 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2508 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2509 return -EBADMSG; 2510 } 2511 2512 if (need_sign && con->ops->check_message_signature && 2513 con->ops->check_message_signature(m)) { 2514 pr_err("read_partial_message %p signature check failed\n", m); 2515 return -EBADMSG; 2516 } 2517 2518 return 1; /* done! */ 2519 } 2520 2521 /* 2522 * Process message. This happens in the worker thread. The callback should 2523 * be careful not to do anything that waits on other incoming messages or it 2524 * may deadlock. 2525 */ 2526 static void process_message(struct ceph_connection *con) 2527 { 2528 struct ceph_msg *msg = con->in_msg; 2529 2530 BUG_ON(con->in_msg->con != con); 2531 con->in_msg = NULL; 2532 2533 /* if first message, set peer_name */ 2534 if (con->peer_name.type == 0) 2535 con->peer_name = msg->hdr.src; 2536 2537 con->in_seq++; 2538 mutex_unlock(&con->mutex); 2539 2540 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2541 msg, le64_to_cpu(msg->hdr.seq), 2542 ENTITY_NAME(msg->hdr.src), 2543 le16_to_cpu(msg->hdr.type), 2544 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2545 le32_to_cpu(msg->hdr.front_len), 2546 le32_to_cpu(msg->hdr.data_len), 2547 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2548 con->ops->dispatch(con, msg); 2549 2550 mutex_lock(&con->mutex); 2551 } 2552 2553 static int read_keepalive_ack(struct ceph_connection *con) 2554 { 2555 struct ceph_timespec ceph_ts; 2556 size_t size = sizeof(ceph_ts); 2557 int ret = read_partial(con, size, size, &ceph_ts); 2558 if (ret <= 0) 2559 return ret; 2560 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts); 2561 prepare_read_tag(con); 2562 return 1; 2563 } 2564 2565 /* 2566 * Write something to the socket. Called in a worker thread when the 2567 * socket appears to be writeable and we have something ready to send. 2568 */ 2569 static int try_write(struct ceph_connection *con) 2570 { 2571 int ret = 1; 2572 2573 dout("try_write start %p state %lu\n", con, con->state); 2574 if (con->state != CON_STATE_PREOPEN && 2575 con->state != CON_STATE_CONNECTING && 2576 con->state != CON_STATE_NEGOTIATING && 2577 con->state != CON_STATE_OPEN) 2578 return 0; 2579 2580 /* open the socket first? */ 2581 if (con->state == CON_STATE_PREOPEN) { 2582 BUG_ON(con->sock); 2583 con->state = CON_STATE_CONNECTING; 2584 2585 con_out_kvec_reset(con); 2586 prepare_write_banner(con); 2587 prepare_read_banner(con); 2588 2589 BUG_ON(con->in_msg); 2590 con->in_tag = CEPH_MSGR_TAG_READY; 2591 dout("try_write initiating connect on %p new state %lu\n", 2592 con, con->state); 2593 ret = ceph_tcp_connect(con); 2594 if (ret < 0) { 2595 con->error_msg = "connect error"; 2596 goto out; 2597 } 2598 } 2599 2600 more: 2601 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2602 BUG_ON(!con->sock); 2603 2604 /* kvec data queued? */ 2605 if (con->out_kvec_left) { 2606 ret = write_partial_kvec(con); 2607 if (ret <= 0) 2608 goto out; 2609 } 2610 if (con->out_skip) { 2611 ret = write_partial_skip(con); 2612 if (ret <= 0) 2613 goto out; 2614 } 2615 2616 /* msg pages? */ 2617 if (con->out_msg) { 2618 if (con->out_msg_done) { 2619 ceph_msg_put(con->out_msg); 2620 con->out_msg = NULL; /* we're done with this one */ 2621 goto do_next; 2622 } 2623 2624 ret = write_partial_message_data(con); 2625 if (ret == 1) 2626 goto more; /* we need to send the footer, too! */ 2627 if (ret == 0) 2628 goto out; 2629 if (ret < 0) { 2630 dout("try_write write_partial_message_data err %d\n", 2631 ret); 2632 goto out; 2633 } 2634 } 2635 2636 do_next: 2637 if (con->state == CON_STATE_OPEN) { 2638 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2639 prepare_write_keepalive(con); 2640 goto more; 2641 } 2642 /* is anything else pending? */ 2643 if (!list_empty(&con->out_queue)) { 2644 prepare_write_message(con); 2645 goto more; 2646 } 2647 if (con->in_seq > con->in_seq_acked) { 2648 prepare_write_ack(con); 2649 goto more; 2650 } 2651 } 2652 2653 /* Nothing to do! */ 2654 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2655 dout("try_write nothing else to write.\n"); 2656 ret = 0; 2657 out: 2658 dout("try_write done on %p ret %d\n", con, ret); 2659 return ret; 2660 } 2661 2662 /* 2663 * Read what we can from the socket. 2664 */ 2665 static int try_read(struct ceph_connection *con) 2666 { 2667 int ret = -1; 2668 2669 more: 2670 dout("try_read start on %p state %lu\n", con, con->state); 2671 if (con->state != CON_STATE_CONNECTING && 2672 con->state != CON_STATE_NEGOTIATING && 2673 con->state != CON_STATE_OPEN) 2674 return 0; 2675 2676 BUG_ON(!con->sock); 2677 2678 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2679 con->in_base_pos); 2680 2681 if (con->state == CON_STATE_CONNECTING) { 2682 dout("try_read connecting\n"); 2683 ret = read_partial_banner(con); 2684 if (ret <= 0) 2685 goto out; 2686 ret = process_banner(con); 2687 if (ret < 0) 2688 goto out; 2689 2690 con->state = CON_STATE_NEGOTIATING; 2691 2692 /* 2693 * Received banner is good, exchange connection info. 2694 * Do not reset out_kvec, as sending our banner raced 2695 * with receiving peer banner after connect completed. 2696 */ 2697 ret = prepare_write_connect(con); 2698 if (ret < 0) 2699 goto out; 2700 prepare_read_connect(con); 2701 2702 /* Send connection info before awaiting response */ 2703 goto out; 2704 } 2705 2706 if (con->state == CON_STATE_NEGOTIATING) { 2707 dout("try_read negotiating\n"); 2708 ret = read_partial_connect(con); 2709 if (ret <= 0) 2710 goto out; 2711 ret = process_connect(con); 2712 if (ret < 0) 2713 goto out; 2714 goto more; 2715 } 2716 2717 WARN_ON(con->state != CON_STATE_OPEN); 2718 2719 if (con->in_base_pos < 0) { 2720 /* 2721 * skipping + discarding content. 2722 */ 2723 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos); 2724 if (ret <= 0) 2725 goto out; 2726 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos); 2727 con->in_base_pos += ret; 2728 if (con->in_base_pos) 2729 goto more; 2730 } 2731 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2732 /* 2733 * what's next? 2734 */ 2735 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2736 if (ret <= 0) 2737 goto out; 2738 dout("try_read got tag %d\n", (int)con->in_tag); 2739 switch (con->in_tag) { 2740 case CEPH_MSGR_TAG_MSG: 2741 prepare_read_message(con); 2742 break; 2743 case CEPH_MSGR_TAG_ACK: 2744 prepare_read_ack(con); 2745 break; 2746 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2747 prepare_read_keepalive_ack(con); 2748 break; 2749 case CEPH_MSGR_TAG_CLOSE: 2750 con_close_socket(con); 2751 con->state = CON_STATE_CLOSED; 2752 goto out; 2753 default: 2754 goto bad_tag; 2755 } 2756 } 2757 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2758 ret = read_partial_message(con); 2759 if (ret <= 0) { 2760 switch (ret) { 2761 case -EBADMSG: 2762 con->error_msg = "bad crc/signature"; 2763 /* fall through */ 2764 case -EBADE: 2765 ret = -EIO; 2766 break; 2767 case -EIO: 2768 con->error_msg = "io error"; 2769 break; 2770 } 2771 goto out; 2772 } 2773 if (con->in_tag == CEPH_MSGR_TAG_READY) 2774 goto more; 2775 process_message(con); 2776 if (con->state == CON_STATE_OPEN) 2777 prepare_read_tag(con); 2778 goto more; 2779 } 2780 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2781 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2782 /* 2783 * the final handshake seq exchange is semantically 2784 * equivalent to an ACK 2785 */ 2786 ret = read_partial_ack(con); 2787 if (ret <= 0) 2788 goto out; 2789 process_ack(con); 2790 goto more; 2791 } 2792 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2793 ret = read_keepalive_ack(con); 2794 if (ret <= 0) 2795 goto out; 2796 goto more; 2797 } 2798 2799 out: 2800 dout("try_read done on %p ret %d\n", con, ret); 2801 return ret; 2802 2803 bad_tag: 2804 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2805 con->error_msg = "protocol error, garbage tag"; 2806 ret = -1; 2807 goto out; 2808 } 2809 2810 2811 /* 2812 * Atomically queue work on a connection after the specified delay. 2813 * Bump @con reference to avoid races with connection teardown. 2814 * Returns 0 if work was queued, or an error code otherwise. 2815 */ 2816 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2817 { 2818 if (!con->ops->get(con)) { 2819 dout("%s %p ref count 0\n", __func__, con); 2820 return -ENOENT; 2821 } 2822 2823 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2824 dout("%s %p - already queued\n", __func__, con); 2825 con->ops->put(con); 2826 return -EBUSY; 2827 } 2828 2829 dout("%s %p %lu\n", __func__, con, delay); 2830 return 0; 2831 } 2832 2833 static void queue_con(struct ceph_connection *con) 2834 { 2835 (void) queue_con_delay(con, 0); 2836 } 2837 2838 static void cancel_con(struct ceph_connection *con) 2839 { 2840 if (cancel_delayed_work(&con->work)) { 2841 dout("%s %p\n", __func__, con); 2842 con->ops->put(con); 2843 } 2844 } 2845 2846 static bool con_sock_closed(struct ceph_connection *con) 2847 { 2848 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2849 return false; 2850 2851 #define CASE(x) \ 2852 case CON_STATE_ ## x: \ 2853 con->error_msg = "socket closed (con state " #x ")"; \ 2854 break; 2855 2856 switch (con->state) { 2857 CASE(CLOSED); 2858 CASE(PREOPEN); 2859 CASE(CONNECTING); 2860 CASE(NEGOTIATING); 2861 CASE(OPEN); 2862 CASE(STANDBY); 2863 default: 2864 pr_warn("%s con %p unrecognized state %lu\n", 2865 __func__, con, con->state); 2866 con->error_msg = "unrecognized con state"; 2867 BUG(); 2868 break; 2869 } 2870 #undef CASE 2871 2872 return true; 2873 } 2874 2875 static bool con_backoff(struct ceph_connection *con) 2876 { 2877 int ret; 2878 2879 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2880 return false; 2881 2882 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2883 if (ret) { 2884 dout("%s: con %p FAILED to back off %lu\n", __func__, 2885 con, con->delay); 2886 BUG_ON(ret == -ENOENT); 2887 con_flag_set(con, CON_FLAG_BACKOFF); 2888 } 2889 2890 return true; 2891 } 2892 2893 /* Finish fault handling; con->mutex must *not* be held here */ 2894 2895 static void con_fault_finish(struct ceph_connection *con) 2896 { 2897 dout("%s %p\n", __func__, con); 2898 2899 /* 2900 * in case we faulted due to authentication, invalidate our 2901 * current tickets so that we can get new ones. 2902 */ 2903 if (con->auth_retry) { 2904 dout("auth_retry %d, invalidating\n", con->auth_retry); 2905 if (con->ops->invalidate_authorizer) 2906 con->ops->invalidate_authorizer(con); 2907 con->auth_retry = 0; 2908 } 2909 2910 if (con->ops->fault) 2911 con->ops->fault(con); 2912 } 2913 2914 /* 2915 * Do some work on a connection. Drop a connection ref when we're done. 2916 */ 2917 static void ceph_con_workfn(struct work_struct *work) 2918 { 2919 struct ceph_connection *con = container_of(work, struct ceph_connection, 2920 work.work); 2921 bool fault; 2922 2923 mutex_lock(&con->mutex); 2924 while (true) { 2925 int ret; 2926 2927 if ((fault = con_sock_closed(con))) { 2928 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2929 break; 2930 } 2931 if (con_backoff(con)) { 2932 dout("%s: con %p BACKOFF\n", __func__, con); 2933 break; 2934 } 2935 if (con->state == CON_STATE_STANDBY) { 2936 dout("%s: con %p STANDBY\n", __func__, con); 2937 break; 2938 } 2939 if (con->state == CON_STATE_CLOSED) { 2940 dout("%s: con %p CLOSED\n", __func__, con); 2941 BUG_ON(con->sock); 2942 break; 2943 } 2944 if (con->state == CON_STATE_PREOPEN) { 2945 dout("%s: con %p PREOPEN\n", __func__, con); 2946 BUG_ON(con->sock); 2947 } 2948 2949 ret = try_read(con); 2950 if (ret < 0) { 2951 if (ret == -EAGAIN) 2952 continue; 2953 if (!con->error_msg) 2954 con->error_msg = "socket error on read"; 2955 fault = true; 2956 break; 2957 } 2958 2959 ret = try_write(con); 2960 if (ret < 0) { 2961 if (ret == -EAGAIN) 2962 continue; 2963 if (!con->error_msg) 2964 con->error_msg = "socket error on write"; 2965 fault = true; 2966 } 2967 2968 break; /* If we make it to here, we're done */ 2969 } 2970 if (fault) 2971 con_fault(con); 2972 mutex_unlock(&con->mutex); 2973 2974 if (fault) 2975 con_fault_finish(con); 2976 2977 con->ops->put(con); 2978 } 2979 2980 /* 2981 * Generic error/fault handler. A retry mechanism is used with 2982 * exponential backoff 2983 */ 2984 static void con_fault(struct ceph_connection *con) 2985 { 2986 dout("fault %p state %lu to peer %s\n", 2987 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2988 2989 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2990 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2991 con->error_msg = NULL; 2992 2993 WARN_ON(con->state != CON_STATE_CONNECTING && 2994 con->state != CON_STATE_NEGOTIATING && 2995 con->state != CON_STATE_OPEN); 2996 2997 con_close_socket(con); 2998 2999 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 3000 dout("fault on LOSSYTX channel, marking CLOSED\n"); 3001 con->state = CON_STATE_CLOSED; 3002 return; 3003 } 3004 3005 if (con->in_msg) { 3006 BUG_ON(con->in_msg->con != con); 3007 ceph_msg_put(con->in_msg); 3008 con->in_msg = NULL; 3009 } 3010 3011 /* Requeue anything that hasn't been acked */ 3012 list_splice_init(&con->out_sent, &con->out_queue); 3013 3014 /* If there are no messages queued or keepalive pending, place 3015 * the connection in a STANDBY state */ 3016 if (list_empty(&con->out_queue) && 3017 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 3018 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 3019 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 3020 con->state = CON_STATE_STANDBY; 3021 } else { 3022 /* retry after a delay. */ 3023 con->state = CON_STATE_PREOPEN; 3024 if (con->delay == 0) 3025 con->delay = BASE_DELAY_INTERVAL; 3026 else if (con->delay < MAX_DELAY_INTERVAL) 3027 con->delay *= 2; 3028 con_flag_set(con, CON_FLAG_BACKOFF); 3029 queue_con(con); 3030 } 3031 } 3032 3033 3034 3035 /* 3036 * initialize a new messenger instance 3037 */ 3038 void ceph_messenger_init(struct ceph_messenger *msgr, 3039 struct ceph_entity_addr *myaddr) 3040 { 3041 spin_lock_init(&msgr->global_seq_lock); 3042 3043 if (myaddr) 3044 msgr->inst.addr = *myaddr; 3045 3046 /* select a random nonce */ 3047 msgr->inst.addr.type = 0; 3048 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3049 encode_my_addr(msgr); 3050 3051 atomic_set(&msgr->stopping, 0); 3052 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3053 3054 dout("%s %p\n", __func__, msgr); 3055 } 3056 EXPORT_SYMBOL(ceph_messenger_init); 3057 3058 void ceph_messenger_fini(struct ceph_messenger *msgr) 3059 { 3060 put_net(read_pnet(&msgr->net)); 3061 } 3062 EXPORT_SYMBOL(ceph_messenger_fini); 3063 3064 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3065 { 3066 if (msg->con) 3067 msg->con->ops->put(msg->con); 3068 3069 msg->con = con ? con->ops->get(con) : NULL; 3070 BUG_ON(msg->con != con); 3071 } 3072 3073 static void clear_standby(struct ceph_connection *con) 3074 { 3075 /* come back from STANDBY? */ 3076 if (con->state == CON_STATE_STANDBY) { 3077 dout("clear_standby %p and ++connect_seq\n", con); 3078 con->state = CON_STATE_PREOPEN; 3079 con->connect_seq++; 3080 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3081 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3082 } 3083 } 3084 3085 /* 3086 * Queue up an outgoing message on the given connection. 3087 */ 3088 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3089 { 3090 /* set src+dst */ 3091 msg->hdr.src = con->msgr->inst.name; 3092 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3093 msg->needs_out_seq = true; 3094 3095 mutex_lock(&con->mutex); 3096 3097 if (con->state == CON_STATE_CLOSED) { 3098 dout("con_send %p closed, dropping %p\n", con, msg); 3099 ceph_msg_put(msg); 3100 mutex_unlock(&con->mutex); 3101 return; 3102 } 3103 3104 msg_con_set(msg, con); 3105 3106 BUG_ON(!list_empty(&msg->list_head)); 3107 list_add_tail(&msg->list_head, &con->out_queue); 3108 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3109 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3110 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3111 le32_to_cpu(msg->hdr.front_len), 3112 le32_to_cpu(msg->hdr.middle_len), 3113 le32_to_cpu(msg->hdr.data_len)); 3114 3115 clear_standby(con); 3116 mutex_unlock(&con->mutex); 3117 3118 /* if there wasn't anything waiting to send before, queue 3119 * new work */ 3120 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3121 queue_con(con); 3122 } 3123 EXPORT_SYMBOL(ceph_con_send); 3124 3125 /* 3126 * Revoke a message that was previously queued for send 3127 */ 3128 void ceph_msg_revoke(struct ceph_msg *msg) 3129 { 3130 struct ceph_connection *con = msg->con; 3131 3132 if (!con) { 3133 dout("%s msg %p null con\n", __func__, msg); 3134 return; /* Message not in our possession */ 3135 } 3136 3137 mutex_lock(&con->mutex); 3138 if (!list_empty(&msg->list_head)) { 3139 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3140 list_del_init(&msg->list_head); 3141 msg->hdr.seq = 0; 3142 3143 ceph_msg_put(msg); 3144 } 3145 if (con->out_msg == msg) { 3146 BUG_ON(con->out_skip); 3147 /* footer */ 3148 if (con->out_msg_done) { 3149 con->out_skip += con_out_kvec_skip(con); 3150 } else { 3151 BUG_ON(!msg->data_length); 3152 con->out_skip += sizeof_footer(con); 3153 } 3154 /* data, middle, front */ 3155 if (msg->data_length) 3156 con->out_skip += msg->cursor.total_resid; 3157 if (msg->middle) 3158 con->out_skip += con_out_kvec_skip(con); 3159 con->out_skip += con_out_kvec_skip(con); 3160 3161 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3162 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3163 msg->hdr.seq = 0; 3164 con->out_msg = NULL; 3165 ceph_msg_put(msg); 3166 } 3167 3168 mutex_unlock(&con->mutex); 3169 } 3170 3171 /* 3172 * Revoke a message that we may be reading data into 3173 */ 3174 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3175 { 3176 struct ceph_connection *con = msg->con; 3177 3178 if (!con) { 3179 dout("%s msg %p null con\n", __func__, msg); 3180 return; /* Message not in our possession */ 3181 } 3182 3183 mutex_lock(&con->mutex); 3184 if (con->in_msg == msg) { 3185 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3186 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3187 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3188 3189 /* skip rest of message */ 3190 dout("%s %p msg %p revoked\n", __func__, con, msg); 3191 con->in_base_pos = con->in_base_pos - 3192 sizeof(struct ceph_msg_header) - 3193 front_len - 3194 middle_len - 3195 data_len - 3196 sizeof(struct ceph_msg_footer); 3197 ceph_msg_put(con->in_msg); 3198 con->in_msg = NULL; 3199 con->in_tag = CEPH_MSGR_TAG_READY; 3200 con->in_seq++; 3201 } else { 3202 dout("%s %p in_msg %p msg %p no-op\n", 3203 __func__, con, con->in_msg, msg); 3204 } 3205 mutex_unlock(&con->mutex); 3206 } 3207 3208 /* 3209 * Queue a keepalive byte to ensure the tcp connection is alive. 3210 */ 3211 void ceph_con_keepalive(struct ceph_connection *con) 3212 { 3213 dout("con_keepalive %p\n", con); 3214 mutex_lock(&con->mutex); 3215 clear_standby(con); 3216 mutex_unlock(&con->mutex); 3217 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3218 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3219 queue_con(con); 3220 } 3221 EXPORT_SYMBOL(ceph_con_keepalive); 3222 3223 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3224 unsigned long interval) 3225 { 3226 if (interval > 0 && 3227 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3228 struct timespec64 now; 3229 struct timespec64 ts; 3230 ktime_get_real_ts64(&now); 3231 jiffies_to_timespec64(interval, &ts); 3232 ts = timespec64_add(con->last_keepalive_ack, ts); 3233 return timespec64_compare(&now, &ts) >= 0; 3234 } 3235 return false; 3236 } 3237 3238 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 3239 { 3240 BUG_ON(msg->num_data_items >= msg->max_data_items); 3241 return &msg->data[msg->num_data_items++]; 3242 } 3243 3244 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3245 { 3246 if (data->type == CEPH_MSG_DATA_PAGELIST) 3247 ceph_pagelist_release(data->pagelist); 3248 } 3249 3250 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3251 size_t length, size_t alignment) 3252 { 3253 struct ceph_msg_data *data; 3254 3255 BUG_ON(!pages); 3256 BUG_ON(!length); 3257 3258 data = ceph_msg_data_add(msg); 3259 data->type = CEPH_MSG_DATA_PAGES; 3260 data->pages = pages; 3261 data->length = length; 3262 data->alignment = alignment & ~PAGE_MASK; 3263 3264 msg->data_length += length; 3265 } 3266 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3267 3268 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3269 struct ceph_pagelist *pagelist) 3270 { 3271 struct ceph_msg_data *data; 3272 3273 BUG_ON(!pagelist); 3274 BUG_ON(!pagelist->length); 3275 3276 data = ceph_msg_data_add(msg); 3277 data->type = CEPH_MSG_DATA_PAGELIST; 3278 refcount_inc(&pagelist->refcnt); 3279 data->pagelist = pagelist; 3280 3281 msg->data_length += pagelist->length; 3282 } 3283 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3284 3285 #ifdef CONFIG_BLOCK 3286 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 3287 u32 length) 3288 { 3289 struct ceph_msg_data *data; 3290 3291 data = ceph_msg_data_add(msg); 3292 data->type = CEPH_MSG_DATA_BIO; 3293 data->bio_pos = *bio_pos; 3294 data->bio_length = length; 3295 3296 msg->data_length += length; 3297 } 3298 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3299 #endif /* CONFIG_BLOCK */ 3300 3301 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 3302 struct ceph_bvec_iter *bvec_pos) 3303 { 3304 struct ceph_msg_data *data; 3305 3306 data = ceph_msg_data_add(msg); 3307 data->type = CEPH_MSG_DATA_BVECS; 3308 data->bvec_pos = *bvec_pos; 3309 3310 msg->data_length += bvec_pos->iter.bi_size; 3311 } 3312 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 3313 3314 /* 3315 * construct a new message with given type, size 3316 * the new msg has a ref count of 1. 3317 */ 3318 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 3319 gfp_t flags, bool can_fail) 3320 { 3321 struct ceph_msg *m; 3322 3323 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3324 if (m == NULL) 3325 goto out; 3326 3327 m->hdr.type = cpu_to_le16(type); 3328 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3329 m->hdr.front_len = cpu_to_le32(front_len); 3330 3331 INIT_LIST_HEAD(&m->list_head); 3332 kref_init(&m->kref); 3333 3334 /* front */ 3335 if (front_len) { 3336 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3337 if (m->front.iov_base == NULL) { 3338 dout("ceph_msg_new can't allocate %d bytes\n", 3339 front_len); 3340 goto out2; 3341 } 3342 } else { 3343 m->front.iov_base = NULL; 3344 } 3345 m->front_alloc_len = m->front.iov_len = front_len; 3346 3347 if (max_data_items) { 3348 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 3349 flags); 3350 if (!m->data) 3351 goto out2; 3352 3353 m->max_data_items = max_data_items; 3354 } 3355 3356 dout("ceph_msg_new %p front %d\n", m, front_len); 3357 return m; 3358 3359 out2: 3360 ceph_msg_put(m); 3361 out: 3362 if (!can_fail) { 3363 pr_err("msg_new can't create type %d front %d\n", type, 3364 front_len); 3365 WARN_ON(1); 3366 } else { 3367 dout("msg_new can't create type %d front %d\n", type, 3368 front_len); 3369 } 3370 return NULL; 3371 } 3372 EXPORT_SYMBOL(ceph_msg_new2); 3373 3374 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3375 bool can_fail) 3376 { 3377 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 3378 } 3379 EXPORT_SYMBOL(ceph_msg_new); 3380 3381 /* 3382 * Allocate "middle" portion of a message, if it is needed and wasn't 3383 * allocated by alloc_msg. This allows us to read a small fixed-size 3384 * per-type header in the front and then gracefully fail (i.e., 3385 * propagate the error to the caller based on info in the front) when 3386 * the middle is too large. 3387 */ 3388 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3389 { 3390 int type = le16_to_cpu(msg->hdr.type); 3391 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3392 3393 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3394 ceph_msg_type_name(type), middle_len); 3395 BUG_ON(!middle_len); 3396 BUG_ON(msg->middle); 3397 3398 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3399 if (!msg->middle) 3400 return -ENOMEM; 3401 return 0; 3402 } 3403 3404 /* 3405 * Allocate a message for receiving an incoming message on a 3406 * connection, and save the result in con->in_msg. Uses the 3407 * connection's private alloc_msg op if available. 3408 * 3409 * Returns 0 on success, or a negative error code. 3410 * 3411 * On success, if we set *skip = 1: 3412 * - the next message should be skipped and ignored. 3413 * - con->in_msg == NULL 3414 * or if we set *skip = 0: 3415 * - con->in_msg is non-null. 3416 * On error (ENOMEM, EAGAIN, ...), 3417 * - con->in_msg == NULL 3418 */ 3419 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3420 { 3421 struct ceph_msg_header *hdr = &con->in_hdr; 3422 int middle_len = le32_to_cpu(hdr->middle_len); 3423 struct ceph_msg *msg; 3424 int ret = 0; 3425 3426 BUG_ON(con->in_msg != NULL); 3427 BUG_ON(!con->ops->alloc_msg); 3428 3429 mutex_unlock(&con->mutex); 3430 msg = con->ops->alloc_msg(con, hdr, skip); 3431 mutex_lock(&con->mutex); 3432 if (con->state != CON_STATE_OPEN) { 3433 if (msg) 3434 ceph_msg_put(msg); 3435 return -EAGAIN; 3436 } 3437 if (msg) { 3438 BUG_ON(*skip); 3439 msg_con_set(msg, con); 3440 con->in_msg = msg; 3441 } else { 3442 /* 3443 * Null message pointer means either we should skip 3444 * this message or we couldn't allocate memory. The 3445 * former is not an error. 3446 */ 3447 if (*skip) 3448 return 0; 3449 3450 con->error_msg = "error allocating memory for incoming message"; 3451 return -ENOMEM; 3452 } 3453 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3454 3455 if (middle_len && !con->in_msg->middle) { 3456 ret = ceph_alloc_middle(con, con->in_msg); 3457 if (ret < 0) { 3458 ceph_msg_put(con->in_msg); 3459 con->in_msg = NULL; 3460 } 3461 } 3462 3463 return ret; 3464 } 3465 3466 3467 /* 3468 * Free a generically kmalloc'd message. 3469 */ 3470 static void ceph_msg_free(struct ceph_msg *m) 3471 { 3472 dout("%s %p\n", __func__, m); 3473 kvfree(m->front.iov_base); 3474 kfree(m->data); 3475 kmem_cache_free(ceph_msg_cache, m); 3476 } 3477 3478 static void ceph_msg_release(struct kref *kref) 3479 { 3480 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3481 int i; 3482 3483 dout("%s %p\n", __func__, m); 3484 WARN_ON(!list_empty(&m->list_head)); 3485 3486 msg_con_set(m, NULL); 3487 3488 /* drop middle, data, if any */ 3489 if (m->middle) { 3490 ceph_buffer_put(m->middle); 3491 m->middle = NULL; 3492 } 3493 3494 for (i = 0; i < m->num_data_items; i++) 3495 ceph_msg_data_destroy(&m->data[i]); 3496 3497 if (m->pool) 3498 ceph_msgpool_put(m->pool, m); 3499 else 3500 ceph_msg_free(m); 3501 } 3502 3503 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3504 { 3505 dout("%s %p (was %d)\n", __func__, msg, 3506 kref_read(&msg->kref)); 3507 kref_get(&msg->kref); 3508 return msg; 3509 } 3510 EXPORT_SYMBOL(ceph_msg_get); 3511 3512 void ceph_msg_put(struct ceph_msg *msg) 3513 { 3514 dout("%s %p (was %d)\n", __func__, msg, 3515 kref_read(&msg->kref)); 3516 kref_put(&msg->kref, ceph_msg_release); 3517 } 3518 EXPORT_SYMBOL(ceph_msg_put); 3519 3520 void ceph_msg_dump(struct ceph_msg *msg) 3521 { 3522 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3523 msg->front_alloc_len, msg->data_length); 3524 print_hex_dump(KERN_DEBUG, "header: ", 3525 DUMP_PREFIX_OFFSET, 16, 1, 3526 &msg->hdr, sizeof(msg->hdr), true); 3527 print_hex_dump(KERN_DEBUG, " front: ", 3528 DUMP_PREFIX_OFFSET, 16, 1, 3529 msg->front.iov_base, msg->front.iov_len, true); 3530 if (msg->middle) 3531 print_hex_dump(KERN_DEBUG, "middle: ", 3532 DUMP_PREFIX_OFFSET, 16, 1, 3533 msg->middle->vec.iov_base, 3534 msg->middle->vec.iov_len, true); 3535 print_hex_dump(KERN_DEBUG, "footer: ", 3536 DUMP_PREFIX_OFFSET, 16, 1, 3537 &msg->footer, sizeof(msg->footer), true); 3538 } 3539 EXPORT_SYMBOL(ceph_msg_dump); 3540