1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #include <linux/bio.h> 13 #include <linux/blkdev.h> 14 #include <linux/dns_resolver.h> 15 #include <net/tcp.h> 16 17 #include <linux/ceph/libceph.h> 18 #include <linux/ceph/messenger.h> 19 #include <linux/ceph/decode.h> 20 #include <linux/ceph/pagelist.h> 21 #include <linux/export.h> 22 23 /* 24 * Ceph uses the messenger to exchange ceph_msg messages with other 25 * hosts in the system. The messenger provides ordered and reliable 26 * delivery. We tolerate TCP disconnects by reconnecting (with 27 * exponential backoff) in the case of a fault (disconnection, bad 28 * crc, protocol error). Acks allow sent messages to be discarded by 29 * the sender. 30 */ 31 32 /* 33 * We track the state of the socket on a given connection using 34 * values defined below. The transition to a new socket state is 35 * handled by a function which verifies we aren't coming from an 36 * unexpected state. 37 * 38 * -------- 39 * | NEW* | transient initial state 40 * -------- 41 * | con_sock_state_init() 42 * v 43 * ---------- 44 * | CLOSED | initialized, but no socket (and no 45 * ---------- TCP connection) 46 * ^ \ 47 * | \ con_sock_state_connecting() 48 * | ---------------------- 49 * | \ 50 * + con_sock_state_closed() \ 51 * |+--------------------------- \ 52 * | \ \ \ 53 * | ----------- \ \ 54 * | | CLOSING | socket event; \ \ 55 * | ----------- await close \ \ 56 * | ^ \ | 57 * | | \ | 58 * | + con_sock_state_closing() \ | 59 * | / \ | | 60 * | / --------------- | | 61 * | / \ v v 62 * | / -------------- 63 * | / -----------------| CONNECTING | socket created, TCP 64 * | | / -------------- connect initiated 65 * | | | con_sock_state_connected() 66 * | | v 67 * ------------- 68 * | CONNECTED | TCP connection established 69 * ------------- 70 * 71 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 72 */ 73 74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 79 80 /* 81 * connection states 82 */ 83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 89 90 /* 91 * ceph_connection flag bits 92 */ 93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 94 * messages on errors */ 95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 99 100 /* static tag bytes (protocol control messages) */ 101 static char tag_msg = CEPH_MSGR_TAG_MSG; 102 static char tag_ack = CEPH_MSGR_TAG_ACK; 103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 104 105 #ifdef CONFIG_LOCKDEP 106 static struct lock_class_key socket_class; 107 #endif 108 109 /* 110 * When skipping (ignoring) a block of input we read it into a "skip 111 * buffer," which is this many bytes in size. 112 */ 113 #define SKIP_BUF_SIZE 1024 114 115 static void queue_con(struct ceph_connection *con); 116 static void con_work(struct work_struct *); 117 static void ceph_fault(struct ceph_connection *con); 118 119 /* 120 * Nicely render a sockaddr as a string. An array of formatted 121 * strings is used, to approximate reentrancy. 122 */ 123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 127 128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 129 static atomic_t addr_str_seq = ATOMIC_INIT(0); 130 131 static struct page *zero_page; /* used in certain error cases */ 132 133 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 134 { 135 int i; 136 char *s; 137 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 138 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 139 140 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 141 s = addr_str[i]; 142 143 switch (ss->ss_family) { 144 case AF_INET: 145 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 146 ntohs(in4->sin_port)); 147 break; 148 149 case AF_INET6: 150 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 151 ntohs(in6->sin6_port)); 152 break; 153 154 default: 155 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 156 ss->ss_family); 157 } 158 159 return s; 160 } 161 EXPORT_SYMBOL(ceph_pr_addr); 162 163 static void encode_my_addr(struct ceph_messenger *msgr) 164 { 165 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 166 ceph_encode_addr(&msgr->my_enc_addr); 167 } 168 169 /* 170 * work queue for all reading and writing to/from the socket. 171 */ 172 static struct workqueue_struct *ceph_msgr_wq; 173 174 void _ceph_msgr_exit(void) 175 { 176 if (ceph_msgr_wq) { 177 destroy_workqueue(ceph_msgr_wq); 178 ceph_msgr_wq = NULL; 179 } 180 181 BUG_ON(zero_page == NULL); 182 kunmap(zero_page); 183 page_cache_release(zero_page); 184 zero_page = NULL; 185 } 186 187 int ceph_msgr_init(void) 188 { 189 BUG_ON(zero_page != NULL); 190 zero_page = ZERO_PAGE(0); 191 page_cache_get(zero_page); 192 193 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0); 194 if (ceph_msgr_wq) 195 return 0; 196 197 pr_err("msgr_init failed to create workqueue\n"); 198 _ceph_msgr_exit(); 199 200 return -ENOMEM; 201 } 202 EXPORT_SYMBOL(ceph_msgr_init); 203 204 void ceph_msgr_exit(void) 205 { 206 BUG_ON(ceph_msgr_wq == NULL); 207 208 _ceph_msgr_exit(); 209 } 210 EXPORT_SYMBOL(ceph_msgr_exit); 211 212 void ceph_msgr_flush(void) 213 { 214 flush_workqueue(ceph_msgr_wq); 215 } 216 EXPORT_SYMBOL(ceph_msgr_flush); 217 218 /* Connection socket state transition functions */ 219 220 static void con_sock_state_init(struct ceph_connection *con) 221 { 222 int old_state; 223 224 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 225 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 226 printk("%s: unexpected old state %d\n", __func__, old_state); 227 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 228 CON_SOCK_STATE_CLOSED); 229 } 230 231 static void con_sock_state_connecting(struct ceph_connection *con) 232 { 233 int old_state; 234 235 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 236 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 237 printk("%s: unexpected old state %d\n", __func__, old_state); 238 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 239 CON_SOCK_STATE_CONNECTING); 240 } 241 242 static void con_sock_state_connected(struct ceph_connection *con) 243 { 244 int old_state; 245 246 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 247 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 248 printk("%s: unexpected old state %d\n", __func__, old_state); 249 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 250 CON_SOCK_STATE_CONNECTED); 251 } 252 253 static void con_sock_state_closing(struct ceph_connection *con) 254 { 255 int old_state; 256 257 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 258 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 259 old_state != CON_SOCK_STATE_CONNECTED && 260 old_state != CON_SOCK_STATE_CLOSING)) 261 printk("%s: unexpected old state %d\n", __func__, old_state); 262 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 263 CON_SOCK_STATE_CLOSING); 264 } 265 266 static void con_sock_state_closed(struct ceph_connection *con) 267 { 268 int old_state; 269 270 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 271 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 272 old_state != CON_SOCK_STATE_CLOSING && 273 old_state != CON_SOCK_STATE_CONNECTING && 274 old_state != CON_SOCK_STATE_CLOSED)) 275 printk("%s: unexpected old state %d\n", __func__, old_state); 276 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 277 CON_SOCK_STATE_CLOSED); 278 } 279 280 /* 281 * socket callback functions 282 */ 283 284 /* data available on socket, or listen socket received a connect */ 285 static void ceph_sock_data_ready(struct sock *sk, int count_unused) 286 { 287 struct ceph_connection *con = sk->sk_user_data; 288 if (atomic_read(&con->msgr->stopping)) { 289 return; 290 } 291 292 if (sk->sk_state != TCP_CLOSE_WAIT) { 293 dout("%s on %p state = %lu, queueing work\n", __func__, 294 con, con->state); 295 queue_con(con); 296 } 297 } 298 299 /* socket has buffer space for writing */ 300 static void ceph_sock_write_space(struct sock *sk) 301 { 302 struct ceph_connection *con = sk->sk_user_data; 303 304 /* only queue to workqueue if there is data we want to write, 305 * and there is sufficient space in the socket buffer to accept 306 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 307 * doesn't get called again until try_write() fills the socket 308 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 309 * and net/core/stream.c:sk_stream_write_space(). 310 */ 311 if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) { 312 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 313 dout("%s %p queueing write work\n", __func__, con); 314 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 315 queue_con(con); 316 } 317 } else { 318 dout("%s %p nothing to write\n", __func__, con); 319 } 320 } 321 322 /* socket's state has changed */ 323 static void ceph_sock_state_change(struct sock *sk) 324 { 325 struct ceph_connection *con = sk->sk_user_data; 326 327 dout("%s %p state = %lu sk_state = %u\n", __func__, 328 con, con->state, sk->sk_state); 329 330 switch (sk->sk_state) { 331 case TCP_CLOSE: 332 dout("%s TCP_CLOSE\n", __func__); 333 case TCP_CLOSE_WAIT: 334 dout("%s TCP_CLOSE_WAIT\n", __func__); 335 con_sock_state_closing(con); 336 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags); 337 queue_con(con); 338 break; 339 case TCP_ESTABLISHED: 340 dout("%s TCP_ESTABLISHED\n", __func__); 341 con_sock_state_connected(con); 342 queue_con(con); 343 break; 344 default: /* Everything else is uninteresting */ 345 break; 346 } 347 } 348 349 /* 350 * set up socket callbacks 351 */ 352 static void set_sock_callbacks(struct socket *sock, 353 struct ceph_connection *con) 354 { 355 struct sock *sk = sock->sk; 356 sk->sk_user_data = con; 357 sk->sk_data_ready = ceph_sock_data_ready; 358 sk->sk_write_space = ceph_sock_write_space; 359 sk->sk_state_change = ceph_sock_state_change; 360 } 361 362 363 /* 364 * socket helpers 365 */ 366 367 /* 368 * initiate connection to a remote socket. 369 */ 370 static int ceph_tcp_connect(struct ceph_connection *con) 371 { 372 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 373 struct socket *sock; 374 int ret; 375 376 BUG_ON(con->sock); 377 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 378 IPPROTO_TCP, &sock); 379 if (ret) 380 return ret; 381 sock->sk->sk_allocation = GFP_NOFS; 382 383 #ifdef CONFIG_LOCKDEP 384 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 385 #endif 386 387 set_sock_callbacks(sock, con); 388 389 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 390 391 con_sock_state_connecting(con); 392 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 393 O_NONBLOCK); 394 if (ret == -EINPROGRESS) { 395 dout("connect %s EINPROGRESS sk_state = %u\n", 396 ceph_pr_addr(&con->peer_addr.in_addr), 397 sock->sk->sk_state); 398 } else if (ret < 0) { 399 pr_err("connect %s error %d\n", 400 ceph_pr_addr(&con->peer_addr.in_addr), ret); 401 sock_release(sock); 402 con->error_msg = "connect error"; 403 404 return ret; 405 } 406 con->sock = sock; 407 return 0; 408 } 409 410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 411 { 412 struct kvec iov = {buf, len}; 413 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 414 int r; 415 416 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 417 if (r == -EAGAIN) 418 r = 0; 419 return r; 420 } 421 422 /* 423 * write something. @more is true if caller will be sending more data 424 * shortly. 425 */ 426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 427 size_t kvlen, size_t len, int more) 428 { 429 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 430 int r; 431 432 if (more) 433 msg.msg_flags |= MSG_MORE; 434 else 435 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 436 437 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 438 if (r == -EAGAIN) 439 r = 0; 440 return r; 441 } 442 443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 444 int offset, size_t size, int more) 445 { 446 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 447 int ret; 448 449 ret = kernel_sendpage(sock, page, offset, size, flags); 450 if (ret == -EAGAIN) 451 ret = 0; 452 453 return ret; 454 } 455 456 457 /* 458 * Shutdown/close the socket for the given connection. 459 */ 460 static int con_close_socket(struct ceph_connection *con) 461 { 462 int rc = 0; 463 464 dout("con_close_socket on %p sock %p\n", con, con->sock); 465 if (con->sock) { 466 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 467 sock_release(con->sock); 468 con->sock = NULL; 469 } 470 471 /* 472 * Forcibly clear the SOCK_CLOSED flag. It gets set 473 * independent of the connection mutex, and we could have 474 * received a socket close event before we had the chance to 475 * shut the socket down. 476 */ 477 clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags); 478 479 con_sock_state_closed(con); 480 return rc; 481 } 482 483 /* 484 * Reset a connection. Discard all incoming and outgoing messages 485 * and clear *_seq state. 486 */ 487 static void ceph_msg_remove(struct ceph_msg *msg) 488 { 489 list_del_init(&msg->list_head); 490 BUG_ON(msg->con == NULL); 491 msg->con->ops->put(msg->con); 492 msg->con = NULL; 493 494 ceph_msg_put(msg); 495 } 496 static void ceph_msg_remove_list(struct list_head *head) 497 { 498 while (!list_empty(head)) { 499 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 500 list_head); 501 ceph_msg_remove(msg); 502 } 503 } 504 505 static void reset_connection(struct ceph_connection *con) 506 { 507 /* reset connection, out_queue, msg_ and connect_seq */ 508 /* discard existing out_queue and msg_seq */ 509 dout("reset_connection %p\n", con); 510 ceph_msg_remove_list(&con->out_queue); 511 ceph_msg_remove_list(&con->out_sent); 512 513 if (con->in_msg) { 514 BUG_ON(con->in_msg->con != con); 515 con->in_msg->con = NULL; 516 ceph_msg_put(con->in_msg); 517 con->in_msg = NULL; 518 con->ops->put(con); 519 } 520 521 con->connect_seq = 0; 522 con->out_seq = 0; 523 if (con->out_msg) { 524 ceph_msg_put(con->out_msg); 525 con->out_msg = NULL; 526 } 527 con->in_seq = 0; 528 con->in_seq_acked = 0; 529 } 530 531 /* 532 * mark a peer down. drop any open connections. 533 */ 534 void ceph_con_close(struct ceph_connection *con) 535 { 536 mutex_lock(&con->mutex); 537 dout("con_close %p peer %s\n", con, 538 ceph_pr_addr(&con->peer_addr.in_addr)); 539 con->state = CON_STATE_CLOSED; 540 541 clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */ 542 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags); 543 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags); 544 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags); 545 clear_bit(CON_FLAG_BACKOFF, &con->flags); 546 547 reset_connection(con); 548 con->peer_global_seq = 0; 549 cancel_delayed_work(&con->work); 550 con_close_socket(con); 551 mutex_unlock(&con->mutex); 552 } 553 EXPORT_SYMBOL(ceph_con_close); 554 555 /* 556 * Reopen a closed connection, with a new peer address. 557 */ 558 void ceph_con_open(struct ceph_connection *con, 559 __u8 entity_type, __u64 entity_num, 560 struct ceph_entity_addr *addr) 561 { 562 mutex_lock(&con->mutex); 563 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 564 565 WARN_ON(con->state != CON_STATE_CLOSED); 566 con->state = CON_STATE_PREOPEN; 567 568 con->peer_name.type = (__u8) entity_type; 569 con->peer_name.num = cpu_to_le64(entity_num); 570 571 memcpy(&con->peer_addr, addr, sizeof(*addr)); 572 con->delay = 0; /* reset backoff memory */ 573 mutex_unlock(&con->mutex); 574 queue_con(con); 575 } 576 EXPORT_SYMBOL(ceph_con_open); 577 578 /* 579 * return true if this connection ever successfully opened 580 */ 581 bool ceph_con_opened(struct ceph_connection *con) 582 { 583 return con->connect_seq > 0; 584 } 585 586 /* 587 * initialize a new connection. 588 */ 589 void ceph_con_init(struct ceph_connection *con, void *private, 590 const struct ceph_connection_operations *ops, 591 struct ceph_messenger *msgr) 592 { 593 dout("con_init %p\n", con); 594 memset(con, 0, sizeof(*con)); 595 con->private = private; 596 con->ops = ops; 597 con->msgr = msgr; 598 599 con_sock_state_init(con); 600 601 mutex_init(&con->mutex); 602 INIT_LIST_HEAD(&con->out_queue); 603 INIT_LIST_HEAD(&con->out_sent); 604 INIT_DELAYED_WORK(&con->work, con_work); 605 606 con->state = CON_STATE_CLOSED; 607 } 608 EXPORT_SYMBOL(ceph_con_init); 609 610 611 /* 612 * We maintain a global counter to order connection attempts. Get 613 * a unique seq greater than @gt. 614 */ 615 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 616 { 617 u32 ret; 618 619 spin_lock(&msgr->global_seq_lock); 620 if (msgr->global_seq < gt) 621 msgr->global_seq = gt; 622 ret = ++msgr->global_seq; 623 spin_unlock(&msgr->global_seq_lock); 624 return ret; 625 } 626 627 static void con_out_kvec_reset(struct ceph_connection *con) 628 { 629 con->out_kvec_left = 0; 630 con->out_kvec_bytes = 0; 631 con->out_kvec_cur = &con->out_kvec[0]; 632 } 633 634 static void con_out_kvec_add(struct ceph_connection *con, 635 size_t size, void *data) 636 { 637 int index; 638 639 index = con->out_kvec_left; 640 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 641 642 con->out_kvec[index].iov_len = size; 643 con->out_kvec[index].iov_base = data; 644 con->out_kvec_left++; 645 con->out_kvec_bytes += size; 646 } 647 648 #ifdef CONFIG_BLOCK 649 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg) 650 { 651 if (!bio) { 652 *iter = NULL; 653 *seg = 0; 654 return; 655 } 656 *iter = bio; 657 *seg = bio->bi_idx; 658 } 659 660 static void iter_bio_next(struct bio **bio_iter, int *seg) 661 { 662 if (*bio_iter == NULL) 663 return; 664 665 BUG_ON(*seg >= (*bio_iter)->bi_vcnt); 666 667 (*seg)++; 668 if (*seg == (*bio_iter)->bi_vcnt) 669 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg); 670 } 671 #endif 672 673 static void prepare_write_message_data(struct ceph_connection *con) 674 { 675 struct ceph_msg *msg = con->out_msg; 676 677 BUG_ON(!msg); 678 BUG_ON(!msg->hdr.data_len); 679 680 /* initialize page iterator */ 681 con->out_msg_pos.page = 0; 682 if (msg->pages) 683 con->out_msg_pos.page_pos = msg->page_alignment; 684 else 685 con->out_msg_pos.page_pos = 0; 686 #ifdef CONFIG_BLOCK 687 if (msg->bio) 688 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg); 689 #endif 690 con->out_msg_pos.data_pos = 0; 691 con->out_msg_pos.did_page_crc = false; 692 con->out_more = 1; /* data + footer will follow */ 693 } 694 695 /* 696 * Prepare footer for currently outgoing message, and finish things 697 * off. Assumes out_kvec* are already valid.. we just add on to the end. 698 */ 699 static void prepare_write_message_footer(struct ceph_connection *con) 700 { 701 struct ceph_msg *m = con->out_msg; 702 int v = con->out_kvec_left; 703 704 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 705 706 dout("prepare_write_message_footer %p\n", con); 707 con->out_kvec_is_msg = true; 708 con->out_kvec[v].iov_base = &m->footer; 709 con->out_kvec[v].iov_len = sizeof(m->footer); 710 con->out_kvec_bytes += sizeof(m->footer); 711 con->out_kvec_left++; 712 con->out_more = m->more_to_follow; 713 con->out_msg_done = true; 714 } 715 716 /* 717 * Prepare headers for the next outgoing message. 718 */ 719 static void prepare_write_message(struct ceph_connection *con) 720 { 721 struct ceph_msg *m; 722 u32 crc; 723 724 con_out_kvec_reset(con); 725 con->out_kvec_is_msg = true; 726 con->out_msg_done = false; 727 728 /* Sneak an ack in there first? If we can get it into the same 729 * TCP packet that's a good thing. */ 730 if (con->in_seq > con->in_seq_acked) { 731 con->in_seq_acked = con->in_seq; 732 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 733 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 734 con_out_kvec_add(con, sizeof (con->out_temp_ack), 735 &con->out_temp_ack); 736 } 737 738 BUG_ON(list_empty(&con->out_queue)); 739 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 740 con->out_msg = m; 741 BUG_ON(m->con != con); 742 743 /* put message on sent list */ 744 ceph_msg_get(m); 745 list_move_tail(&m->list_head, &con->out_sent); 746 747 /* 748 * only assign outgoing seq # if we haven't sent this message 749 * yet. if it is requeued, resend with it's original seq. 750 */ 751 if (m->needs_out_seq) { 752 m->hdr.seq = cpu_to_le64(++con->out_seq); 753 m->needs_out_seq = false; 754 } 755 #ifdef CONFIG_BLOCK 756 else 757 m->bio_iter = NULL; 758 #endif 759 760 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", 761 m, con->out_seq, le16_to_cpu(m->hdr.type), 762 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 763 le32_to_cpu(m->hdr.data_len), 764 m->nr_pages); 765 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 766 767 /* tag + hdr + front + middle */ 768 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 769 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 770 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 771 772 if (m->middle) 773 con_out_kvec_add(con, m->middle->vec.iov_len, 774 m->middle->vec.iov_base); 775 776 /* fill in crc (except data pages), footer */ 777 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 778 con->out_msg->hdr.crc = cpu_to_le32(crc); 779 con->out_msg->footer.flags = 0; 780 781 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 782 con->out_msg->footer.front_crc = cpu_to_le32(crc); 783 if (m->middle) { 784 crc = crc32c(0, m->middle->vec.iov_base, 785 m->middle->vec.iov_len); 786 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 787 } else 788 con->out_msg->footer.middle_crc = 0; 789 dout("%s front_crc %u middle_crc %u\n", __func__, 790 le32_to_cpu(con->out_msg->footer.front_crc), 791 le32_to_cpu(con->out_msg->footer.middle_crc)); 792 793 /* is there a data payload? */ 794 con->out_msg->footer.data_crc = 0; 795 if (m->hdr.data_len) 796 prepare_write_message_data(con); 797 else 798 /* no, queue up footer too and be done */ 799 prepare_write_message_footer(con); 800 801 set_bit(CON_FLAG_WRITE_PENDING, &con->flags); 802 } 803 804 /* 805 * Prepare an ack. 806 */ 807 static void prepare_write_ack(struct ceph_connection *con) 808 { 809 dout("prepare_write_ack %p %llu -> %llu\n", con, 810 con->in_seq_acked, con->in_seq); 811 con->in_seq_acked = con->in_seq; 812 813 con_out_kvec_reset(con); 814 815 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 816 817 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 818 con_out_kvec_add(con, sizeof (con->out_temp_ack), 819 &con->out_temp_ack); 820 821 con->out_more = 1; /* more will follow.. eventually.. */ 822 set_bit(CON_FLAG_WRITE_PENDING, &con->flags); 823 } 824 825 /* 826 * Prepare to write keepalive byte. 827 */ 828 static void prepare_write_keepalive(struct ceph_connection *con) 829 { 830 dout("prepare_write_keepalive %p\n", con); 831 con_out_kvec_reset(con); 832 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 833 set_bit(CON_FLAG_WRITE_PENDING, &con->flags); 834 } 835 836 /* 837 * Connection negotiation. 838 */ 839 840 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 841 int *auth_proto) 842 { 843 struct ceph_auth_handshake *auth; 844 845 if (!con->ops->get_authorizer) { 846 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 847 con->out_connect.authorizer_len = 0; 848 return NULL; 849 } 850 851 /* Can't hold the mutex while getting authorizer */ 852 mutex_unlock(&con->mutex); 853 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 854 mutex_lock(&con->mutex); 855 856 if (IS_ERR(auth)) 857 return auth; 858 if (con->state != CON_STATE_NEGOTIATING) 859 return ERR_PTR(-EAGAIN); 860 861 con->auth_reply_buf = auth->authorizer_reply_buf; 862 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 863 return auth; 864 } 865 866 /* 867 * We connected to a peer and are saying hello. 868 */ 869 static void prepare_write_banner(struct ceph_connection *con) 870 { 871 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 872 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 873 &con->msgr->my_enc_addr); 874 875 con->out_more = 0; 876 set_bit(CON_FLAG_WRITE_PENDING, &con->flags); 877 } 878 879 static int prepare_write_connect(struct ceph_connection *con) 880 { 881 unsigned int global_seq = get_global_seq(con->msgr, 0); 882 int proto; 883 int auth_proto; 884 struct ceph_auth_handshake *auth; 885 886 switch (con->peer_name.type) { 887 case CEPH_ENTITY_TYPE_MON: 888 proto = CEPH_MONC_PROTOCOL; 889 break; 890 case CEPH_ENTITY_TYPE_OSD: 891 proto = CEPH_OSDC_PROTOCOL; 892 break; 893 case CEPH_ENTITY_TYPE_MDS: 894 proto = CEPH_MDSC_PROTOCOL; 895 break; 896 default: 897 BUG(); 898 } 899 900 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 901 con->connect_seq, global_seq, proto); 902 903 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 904 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 905 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 906 con->out_connect.global_seq = cpu_to_le32(global_seq); 907 con->out_connect.protocol_version = cpu_to_le32(proto); 908 con->out_connect.flags = 0; 909 910 auth_proto = CEPH_AUTH_UNKNOWN; 911 auth = get_connect_authorizer(con, &auth_proto); 912 if (IS_ERR(auth)) 913 return PTR_ERR(auth); 914 915 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 916 con->out_connect.authorizer_len = auth ? 917 cpu_to_le32(auth->authorizer_buf_len) : 0; 918 919 con_out_kvec_add(con, sizeof (con->out_connect), 920 &con->out_connect); 921 if (auth && auth->authorizer_buf_len) 922 con_out_kvec_add(con, auth->authorizer_buf_len, 923 auth->authorizer_buf); 924 925 con->out_more = 0; 926 set_bit(CON_FLAG_WRITE_PENDING, &con->flags); 927 928 return 0; 929 } 930 931 /* 932 * write as much of pending kvecs to the socket as we can. 933 * 1 -> done 934 * 0 -> socket full, but more to do 935 * <0 -> error 936 */ 937 static int write_partial_kvec(struct ceph_connection *con) 938 { 939 int ret; 940 941 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 942 while (con->out_kvec_bytes > 0) { 943 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 944 con->out_kvec_left, con->out_kvec_bytes, 945 con->out_more); 946 if (ret <= 0) 947 goto out; 948 con->out_kvec_bytes -= ret; 949 if (con->out_kvec_bytes == 0) 950 break; /* done */ 951 952 /* account for full iov entries consumed */ 953 while (ret >= con->out_kvec_cur->iov_len) { 954 BUG_ON(!con->out_kvec_left); 955 ret -= con->out_kvec_cur->iov_len; 956 con->out_kvec_cur++; 957 con->out_kvec_left--; 958 } 959 /* and for a partially-consumed entry */ 960 if (ret) { 961 con->out_kvec_cur->iov_len -= ret; 962 con->out_kvec_cur->iov_base += ret; 963 } 964 } 965 con->out_kvec_left = 0; 966 con->out_kvec_is_msg = false; 967 ret = 1; 968 out: 969 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 970 con->out_kvec_bytes, con->out_kvec_left, ret); 971 return ret; /* done! */ 972 } 973 974 static void out_msg_pos_next(struct ceph_connection *con, struct page *page, 975 size_t len, size_t sent, bool in_trail) 976 { 977 struct ceph_msg *msg = con->out_msg; 978 979 BUG_ON(!msg); 980 BUG_ON(!sent); 981 982 con->out_msg_pos.data_pos += sent; 983 con->out_msg_pos.page_pos += sent; 984 if (sent < len) 985 return; 986 987 BUG_ON(sent != len); 988 con->out_msg_pos.page_pos = 0; 989 con->out_msg_pos.page++; 990 con->out_msg_pos.did_page_crc = false; 991 if (in_trail) 992 list_move_tail(&page->lru, 993 &msg->trail->head); 994 else if (msg->pagelist) 995 list_move_tail(&page->lru, 996 &msg->pagelist->head); 997 #ifdef CONFIG_BLOCK 998 else if (msg->bio) 999 iter_bio_next(&msg->bio_iter, &msg->bio_seg); 1000 #endif 1001 } 1002 1003 /* 1004 * Write as much message data payload as we can. If we finish, queue 1005 * up the footer. 1006 * 1 -> done, footer is now queued in out_kvec[]. 1007 * 0 -> socket full, but more to do 1008 * <0 -> error 1009 */ 1010 static int write_partial_msg_pages(struct ceph_connection *con) 1011 { 1012 struct ceph_msg *msg = con->out_msg; 1013 unsigned int data_len = le32_to_cpu(msg->hdr.data_len); 1014 size_t len; 1015 bool do_datacrc = !con->msgr->nocrc; 1016 int ret; 1017 int total_max_write; 1018 bool in_trail = false; 1019 const size_t trail_len = (msg->trail ? msg->trail->length : 0); 1020 const size_t trail_off = data_len - trail_len; 1021 1022 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", 1023 con, msg, con->out_msg_pos.page, msg->nr_pages, 1024 con->out_msg_pos.page_pos); 1025 1026 /* 1027 * Iterate through each page that contains data to be 1028 * written, and send as much as possible for each. 1029 * 1030 * If we are calculating the data crc (the default), we will 1031 * need to map the page. If we have no pages, they have 1032 * been revoked, so use the zero page. 1033 */ 1034 while (data_len > con->out_msg_pos.data_pos) { 1035 struct page *page = NULL; 1036 int max_write = PAGE_SIZE; 1037 int bio_offset = 0; 1038 1039 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off; 1040 if (!in_trail) 1041 total_max_write = trail_off - con->out_msg_pos.data_pos; 1042 1043 if (in_trail) { 1044 total_max_write = data_len - con->out_msg_pos.data_pos; 1045 1046 page = list_first_entry(&msg->trail->head, 1047 struct page, lru); 1048 } else if (msg->pages) { 1049 page = msg->pages[con->out_msg_pos.page]; 1050 } else if (msg->pagelist) { 1051 page = list_first_entry(&msg->pagelist->head, 1052 struct page, lru); 1053 #ifdef CONFIG_BLOCK 1054 } else if (msg->bio) { 1055 struct bio_vec *bv; 1056 1057 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg); 1058 page = bv->bv_page; 1059 bio_offset = bv->bv_offset; 1060 max_write = bv->bv_len; 1061 #endif 1062 } else { 1063 page = zero_page; 1064 } 1065 len = min_t(int, max_write - con->out_msg_pos.page_pos, 1066 total_max_write); 1067 1068 if (do_datacrc && !con->out_msg_pos.did_page_crc) { 1069 void *base; 1070 u32 crc = le32_to_cpu(msg->footer.data_crc); 1071 char *kaddr; 1072 1073 kaddr = kmap(page); 1074 BUG_ON(kaddr == NULL); 1075 base = kaddr + con->out_msg_pos.page_pos + bio_offset; 1076 crc = crc32c(crc, base, len); 1077 kunmap(page); 1078 msg->footer.data_crc = cpu_to_le32(crc); 1079 con->out_msg_pos.did_page_crc = true; 1080 } 1081 ret = ceph_tcp_sendpage(con->sock, page, 1082 con->out_msg_pos.page_pos + bio_offset, 1083 len, 1); 1084 if (ret <= 0) 1085 goto out; 1086 1087 out_msg_pos_next(con, page, len, (size_t) ret, in_trail); 1088 } 1089 1090 dout("write_partial_msg_pages %p msg %p done\n", con, msg); 1091 1092 /* prepare and queue up footer, too */ 1093 if (!do_datacrc) 1094 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1095 con_out_kvec_reset(con); 1096 prepare_write_message_footer(con); 1097 ret = 1; 1098 out: 1099 return ret; 1100 } 1101 1102 /* 1103 * write some zeros 1104 */ 1105 static int write_partial_skip(struct ceph_connection *con) 1106 { 1107 int ret; 1108 1109 while (con->out_skip > 0) { 1110 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1111 1112 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1); 1113 if (ret <= 0) 1114 goto out; 1115 con->out_skip -= ret; 1116 } 1117 ret = 1; 1118 out: 1119 return ret; 1120 } 1121 1122 /* 1123 * Prepare to read connection handshake, or an ack. 1124 */ 1125 static void prepare_read_banner(struct ceph_connection *con) 1126 { 1127 dout("prepare_read_banner %p\n", con); 1128 con->in_base_pos = 0; 1129 } 1130 1131 static void prepare_read_connect(struct ceph_connection *con) 1132 { 1133 dout("prepare_read_connect %p\n", con); 1134 con->in_base_pos = 0; 1135 } 1136 1137 static void prepare_read_ack(struct ceph_connection *con) 1138 { 1139 dout("prepare_read_ack %p\n", con); 1140 con->in_base_pos = 0; 1141 } 1142 1143 static void prepare_read_tag(struct ceph_connection *con) 1144 { 1145 dout("prepare_read_tag %p\n", con); 1146 con->in_base_pos = 0; 1147 con->in_tag = CEPH_MSGR_TAG_READY; 1148 } 1149 1150 /* 1151 * Prepare to read a message. 1152 */ 1153 static int prepare_read_message(struct ceph_connection *con) 1154 { 1155 dout("prepare_read_message %p\n", con); 1156 BUG_ON(con->in_msg != NULL); 1157 con->in_base_pos = 0; 1158 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1159 return 0; 1160 } 1161 1162 1163 static int read_partial(struct ceph_connection *con, 1164 int end, int size, void *object) 1165 { 1166 while (con->in_base_pos < end) { 1167 int left = end - con->in_base_pos; 1168 int have = size - left; 1169 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1170 if (ret <= 0) 1171 return ret; 1172 con->in_base_pos += ret; 1173 } 1174 return 1; 1175 } 1176 1177 1178 /* 1179 * Read all or part of the connect-side handshake on a new connection 1180 */ 1181 static int read_partial_banner(struct ceph_connection *con) 1182 { 1183 int size; 1184 int end; 1185 int ret; 1186 1187 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1188 1189 /* peer's banner */ 1190 size = strlen(CEPH_BANNER); 1191 end = size; 1192 ret = read_partial(con, end, size, con->in_banner); 1193 if (ret <= 0) 1194 goto out; 1195 1196 size = sizeof (con->actual_peer_addr); 1197 end += size; 1198 ret = read_partial(con, end, size, &con->actual_peer_addr); 1199 if (ret <= 0) 1200 goto out; 1201 1202 size = sizeof (con->peer_addr_for_me); 1203 end += size; 1204 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1205 if (ret <= 0) 1206 goto out; 1207 1208 out: 1209 return ret; 1210 } 1211 1212 static int read_partial_connect(struct ceph_connection *con) 1213 { 1214 int size; 1215 int end; 1216 int ret; 1217 1218 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1219 1220 size = sizeof (con->in_reply); 1221 end = size; 1222 ret = read_partial(con, end, size, &con->in_reply); 1223 if (ret <= 0) 1224 goto out; 1225 1226 size = le32_to_cpu(con->in_reply.authorizer_len); 1227 end += size; 1228 ret = read_partial(con, end, size, con->auth_reply_buf); 1229 if (ret <= 0) 1230 goto out; 1231 1232 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1233 con, (int)con->in_reply.tag, 1234 le32_to_cpu(con->in_reply.connect_seq), 1235 le32_to_cpu(con->in_reply.global_seq)); 1236 out: 1237 return ret; 1238 1239 } 1240 1241 /* 1242 * Verify the hello banner looks okay. 1243 */ 1244 static int verify_hello(struct ceph_connection *con) 1245 { 1246 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1247 pr_err("connect to %s got bad banner\n", 1248 ceph_pr_addr(&con->peer_addr.in_addr)); 1249 con->error_msg = "protocol error, bad banner"; 1250 return -1; 1251 } 1252 return 0; 1253 } 1254 1255 static bool addr_is_blank(struct sockaddr_storage *ss) 1256 { 1257 switch (ss->ss_family) { 1258 case AF_INET: 1259 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1260 case AF_INET6: 1261 return 1262 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1263 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1264 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1265 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1266 } 1267 return false; 1268 } 1269 1270 static int addr_port(struct sockaddr_storage *ss) 1271 { 1272 switch (ss->ss_family) { 1273 case AF_INET: 1274 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1275 case AF_INET6: 1276 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1277 } 1278 return 0; 1279 } 1280 1281 static void addr_set_port(struct sockaddr_storage *ss, int p) 1282 { 1283 switch (ss->ss_family) { 1284 case AF_INET: 1285 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1286 break; 1287 case AF_INET6: 1288 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1289 break; 1290 } 1291 } 1292 1293 /* 1294 * Unlike other *_pton function semantics, zero indicates success. 1295 */ 1296 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1297 char delim, const char **ipend) 1298 { 1299 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1300 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1301 1302 memset(ss, 0, sizeof(*ss)); 1303 1304 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1305 ss->ss_family = AF_INET; 1306 return 0; 1307 } 1308 1309 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1310 ss->ss_family = AF_INET6; 1311 return 0; 1312 } 1313 1314 return -EINVAL; 1315 } 1316 1317 /* 1318 * Extract hostname string and resolve using kernel DNS facility. 1319 */ 1320 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1321 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1322 struct sockaddr_storage *ss, char delim, const char **ipend) 1323 { 1324 const char *end, *delim_p; 1325 char *colon_p, *ip_addr = NULL; 1326 int ip_len, ret; 1327 1328 /* 1329 * The end of the hostname occurs immediately preceding the delimiter or 1330 * the port marker (':') where the delimiter takes precedence. 1331 */ 1332 delim_p = memchr(name, delim, namelen); 1333 colon_p = memchr(name, ':', namelen); 1334 1335 if (delim_p && colon_p) 1336 end = delim_p < colon_p ? delim_p : colon_p; 1337 else if (!delim_p && colon_p) 1338 end = colon_p; 1339 else { 1340 end = delim_p; 1341 if (!end) /* case: hostname:/ */ 1342 end = name + namelen; 1343 } 1344 1345 if (end <= name) 1346 return -EINVAL; 1347 1348 /* do dns_resolve upcall */ 1349 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1350 if (ip_len > 0) 1351 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1352 else 1353 ret = -ESRCH; 1354 1355 kfree(ip_addr); 1356 1357 *ipend = end; 1358 1359 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1360 ret, ret ? "failed" : ceph_pr_addr(ss)); 1361 1362 return ret; 1363 } 1364 #else 1365 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1366 struct sockaddr_storage *ss, char delim, const char **ipend) 1367 { 1368 return -EINVAL; 1369 } 1370 #endif 1371 1372 /* 1373 * Parse a server name (IP or hostname). If a valid IP address is not found 1374 * then try to extract a hostname to resolve using userspace DNS upcall. 1375 */ 1376 static int ceph_parse_server_name(const char *name, size_t namelen, 1377 struct sockaddr_storage *ss, char delim, const char **ipend) 1378 { 1379 int ret; 1380 1381 ret = ceph_pton(name, namelen, ss, delim, ipend); 1382 if (ret) 1383 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1384 1385 return ret; 1386 } 1387 1388 /* 1389 * Parse an ip[:port] list into an addr array. Use the default 1390 * monitor port if a port isn't specified. 1391 */ 1392 int ceph_parse_ips(const char *c, const char *end, 1393 struct ceph_entity_addr *addr, 1394 int max_count, int *count) 1395 { 1396 int i, ret = -EINVAL; 1397 const char *p = c; 1398 1399 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1400 for (i = 0; i < max_count; i++) { 1401 const char *ipend; 1402 struct sockaddr_storage *ss = &addr[i].in_addr; 1403 int port; 1404 char delim = ','; 1405 1406 if (*p == '[') { 1407 delim = ']'; 1408 p++; 1409 } 1410 1411 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1412 if (ret) 1413 goto bad; 1414 ret = -EINVAL; 1415 1416 p = ipend; 1417 1418 if (delim == ']') { 1419 if (*p != ']') { 1420 dout("missing matching ']'\n"); 1421 goto bad; 1422 } 1423 p++; 1424 } 1425 1426 /* port? */ 1427 if (p < end && *p == ':') { 1428 port = 0; 1429 p++; 1430 while (p < end && *p >= '0' && *p <= '9') { 1431 port = (port * 10) + (*p - '0'); 1432 p++; 1433 } 1434 if (port > 65535 || port == 0) 1435 goto bad; 1436 } else { 1437 port = CEPH_MON_PORT; 1438 } 1439 1440 addr_set_port(ss, port); 1441 1442 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1443 1444 if (p == end) 1445 break; 1446 if (*p != ',') 1447 goto bad; 1448 p++; 1449 } 1450 1451 if (p != end) 1452 goto bad; 1453 1454 if (count) 1455 *count = i + 1; 1456 return 0; 1457 1458 bad: 1459 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1460 return ret; 1461 } 1462 EXPORT_SYMBOL(ceph_parse_ips); 1463 1464 static int process_banner(struct ceph_connection *con) 1465 { 1466 dout("process_banner on %p\n", con); 1467 1468 if (verify_hello(con) < 0) 1469 return -1; 1470 1471 ceph_decode_addr(&con->actual_peer_addr); 1472 ceph_decode_addr(&con->peer_addr_for_me); 1473 1474 /* 1475 * Make sure the other end is who we wanted. note that the other 1476 * end may not yet know their ip address, so if it's 0.0.0.0, give 1477 * them the benefit of the doubt. 1478 */ 1479 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1480 sizeof(con->peer_addr)) != 0 && 1481 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1482 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1483 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1484 ceph_pr_addr(&con->peer_addr.in_addr), 1485 (int)le32_to_cpu(con->peer_addr.nonce), 1486 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1487 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1488 con->error_msg = "wrong peer at address"; 1489 return -1; 1490 } 1491 1492 /* 1493 * did we learn our address? 1494 */ 1495 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1496 int port = addr_port(&con->msgr->inst.addr.in_addr); 1497 1498 memcpy(&con->msgr->inst.addr.in_addr, 1499 &con->peer_addr_for_me.in_addr, 1500 sizeof(con->peer_addr_for_me.in_addr)); 1501 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1502 encode_my_addr(con->msgr); 1503 dout("process_banner learned my addr is %s\n", 1504 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1505 } 1506 1507 return 0; 1508 } 1509 1510 static int process_connect(struct ceph_connection *con) 1511 { 1512 u64 sup_feat = con->msgr->supported_features; 1513 u64 req_feat = con->msgr->required_features; 1514 u64 server_feat = le64_to_cpu(con->in_reply.features); 1515 int ret; 1516 1517 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1518 1519 switch (con->in_reply.tag) { 1520 case CEPH_MSGR_TAG_FEATURES: 1521 pr_err("%s%lld %s feature set mismatch," 1522 " my %llx < server's %llx, missing %llx\n", 1523 ENTITY_NAME(con->peer_name), 1524 ceph_pr_addr(&con->peer_addr.in_addr), 1525 sup_feat, server_feat, server_feat & ~sup_feat); 1526 con->error_msg = "missing required protocol features"; 1527 reset_connection(con); 1528 return -1; 1529 1530 case CEPH_MSGR_TAG_BADPROTOVER: 1531 pr_err("%s%lld %s protocol version mismatch," 1532 " my %d != server's %d\n", 1533 ENTITY_NAME(con->peer_name), 1534 ceph_pr_addr(&con->peer_addr.in_addr), 1535 le32_to_cpu(con->out_connect.protocol_version), 1536 le32_to_cpu(con->in_reply.protocol_version)); 1537 con->error_msg = "protocol version mismatch"; 1538 reset_connection(con); 1539 return -1; 1540 1541 case CEPH_MSGR_TAG_BADAUTHORIZER: 1542 con->auth_retry++; 1543 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1544 con->auth_retry); 1545 if (con->auth_retry == 2) { 1546 con->error_msg = "connect authorization failure"; 1547 return -1; 1548 } 1549 con->auth_retry = 1; 1550 con_out_kvec_reset(con); 1551 ret = prepare_write_connect(con); 1552 if (ret < 0) 1553 return ret; 1554 prepare_read_connect(con); 1555 break; 1556 1557 case CEPH_MSGR_TAG_RESETSESSION: 1558 /* 1559 * If we connected with a large connect_seq but the peer 1560 * has no record of a session with us (no connection, or 1561 * connect_seq == 0), they will send RESETSESION to indicate 1562 * that they must have reset their session, and may have 1563 * dropped messages. 1564 */ 1565 dout("process_connect got RESET peer seq %u\n", 1566 le32_to_cpu(con->in_reply.connect_seq)); 1567 pr_err("%s%lld %s connection reset\n", 1568 ENTITY_NAME(con->peer_name), 1569 ceph_pr_addr(&con->peer_addr.in_addr)); 1570 reset_connection(con); 1571 con_out_kvec_reset(con); 1572 ret = prepare_write_connect(con); 1573 if (ret < 0) 1574 return ret; 1575 prepare_read_connect(con); 1576 1577 /* Tell ceph about it. */ 1578 mutex_unlock(&con->mutex); 1579 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 1580 if (con->ops->peer_reset) 1581 con->ops->peer_reset(con); 1582 mutex_lock(&con->mutex); 1583 if (con->state != CON_STATE_NEGOTIATING) 1584 return -EAGAIN; 1585 break; 1586 1587 case CEPH_MSGR_TAG_RETRY_SESSION: 1588 /* 1589 * If we sent a smaller connect_seq than the peer has, try 1590 * again with a larger value. 1591 */ 1592 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 1593 le32_to_cpu(con->out_connect.connect_seq), 1594 le32_to_cpu(con->in_reply.connect_seq)); 1595 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 1596 con_out_kvec_reset(con); 1597 ret = prepare_write_connect(con); 1598 if (ret < 0) 1599 return ret; 1600 prepare_read_connect(con); 1601 break; 1602 1603 case CEPH_MSGR_TAG_RETRY_GLOBAL: 1604 /* 1605 * If we sent a smaller global_seq than the peer has, try 1606 * again with a larger value. 1607 */ 1608 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 1609 con->peer_global_seq, 1610 le32_to_cpu(con->in_reply.global_seq)); 1611 get_global_seq(con->msgr, 1612 le32_to_cpu(con->in_reply.global_seq)); 1613 con_out_kvec_reset(con); 1614 ret = prepare_write_connect(con); 1615 if (ret < 0) 1616 return ret; 1617 prepare_read_connect(con); 1618 break; 1619 1620 case CEPH_MSGR_TAG_READY: 1621 if (req_feat & ~server_feat) { 1622 pr_err("%s%lld %s protocol feature mismatch," 1623 " my required %llx > server's %llx, need %llx\n", 1624 ENTITY_NAME(con->peer_name), 1625 ceph_pr_addr(&con->peer_addr.in_addr), 1626 req_feat, server_feat, req_feat & ~server_feat); 1627 con->error_msg = "missing required protocol features"; 1628 reset_connection(con); 1629 return -1; 1630 } 1631 1632 WARN_ON(con->state != CON_STATE_NEGOTIATING); 1633 con->state = CON_STATE_OPEN; 1634 1635 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 1636 con->connect_seq++; 1637 con->peer_features = server_feat; 1638 dout("process_connect got READY gseq %d cseq %d (%d)\n", 1639 con->peer_global_seq, 1640 le32_to_cpu(con->in_reply.connect_seq), 1641 con->connect_seq); 1642 WARN_ON(con->connect_seq != 1643 le32_to_cpu(con->in_reply.connect_seq)); 1644 1645 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 1646 set_bit(CON_FLAG_LOSSYTX, &con->flags); 1647 1648 con->delay = 0; /* reset backoff memory */ 1649 1650 prepare_read_tag(con); 1651 break; 1652 1653 case CEPH_MSGR_TAG_WAIT: 1654 /* 1655 * If there is a connection race (we are opening 1656 * connections to each other), one of us may just have 1657 * to WAIT. This shouldn't happen if we are the 1658 * client. 1659 */ 1660 pr_err("process_connect got WAIT as client\n"); 1661 con->error_msg = "protocol error, got WAIT as client"; 1662 return -1; 1663 1664 default: 1665 pr_err("connect protocol error, will retry\n"); 1666 con->error_msg = "protocol error, garbage tag during connect"; 1667 return -1; 1668 } 1669 return 0; 1670 } 1671 1672 1673 /* 1674 * read (part of) an ack 1675 */ 1676 static int read_partial_ack(struct ceph_connection *con) 1677 { 1678 int size = sizeof (con->in_temp_ack); 1679 int end = size; 1680 1681 return read_partial(con, end, size, &con->in_temp_ack); 1682 } 1683 1684 1685 /* 1686 * We can finally discard anything that's been acked. 1687 */ 1688 static void process_ack(struct ceph_connection *con) 1689 { 1690 struct ceph_msg *m; 1691 u64 ack = le64_to_cpu(con->in_temp_ack); 1692 u64 seq; 1693 1694 while (!list_empty(&con->out_sent)) { 1695 m = list_first_entry(&con->out_sent, struct ceph_msg, 1696 list_head); 1697 seq = le64_to_cpu(m->hdr.seq); 1698 if (seq > ack) 1699 break; 1700 dout("got ack for seq %llu type %d at %p\n", seq, 1701 le16_to_cpu(m->hdr.type), m); 1702 m->ack_stamp = jiffies; 1703 ceph_msg_remove(m); 1704 } 1705 prepare_read_tag(con); 1706 } 1707 1708 1709 1710 1711 static int read_partial_message_section(struct ceph_connection *con, 1712 struct kvec *section, 1713 unsigned int sec_len, u32 *crc) 1714 { 1715 int ret, left; 1716 1717 BUG_ON(!section); 1718 1719 while (section->iov_len < sec_len) { 1720 BUG_ON(section->iov_base == NULL); 1721 left = sec_len - section->iov_len; 1722 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 1723 section->iov_len, left); 1724 if (ret <= 0) 1725 return ret; 1726 section->iov_len += ret; 1727 } 1728 if (section->iov_len == sec_len) 1729 *crc = crc32c(0, section->iov_base, section->iov_len); 1730 1731 return 1; 1732 } 1733 1734 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 1735 1736 static int read_partial_message_pages(struct ceph_connection *con, 1737 struct page **pages, 1738 unsigned int data_len, bool do_datacrc) 1739 { 1740 void *p; 1741 int ret; 1742 int left; 1743 1744 left = min((int)(data_len - con->in_msg_pos.data_pos), 1745 (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); 1746 /* (page) data */ 1747 BUG_ON(pages == NULL); 1748 p = kmap(pages[con->in_msg_pos.page]); 1749 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1750 left); 1751 if (ret > 0 && do_datacrc) 1752 con->in_data_crc = 1753 crc32c(con->in_data_crc, 1754 p + con->in_msg_pos.page_pos, ret); 1755 kunmap(pages[con->in_msg_pos.page]); 1756 if (ret <= 0) 1757 return ret; 1758 con->in_msg_pos.data_pos += ret; 1759 con->in_msg_pos.page_pos += ret; 1760 if (con->in_msg_pos.page_pos == PAGE_SIZE) { 1761 con->in_msg_pos.page_pos = 0; 1762 con->in_msg_pos.page++; 1763 } 1764 1765 return ret; 1766 } 1767 1768 #ifdef CONFIG_BLOCK 1769 static int read_partial_message_bio(struct ceph_connection *con, 1770 struct bio **bio_iter, int *bio_seg, 1771 unsigned int data_len, bool do_datacrc) 1772 { 1773 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg); 1774 void *p; 1775 int ret, left; 1776 1777 left = min((int)(data_len - con->in_msg_pos.data_pos), 1778 (int)(bv->bv_len - con->in_msg_pos.page_pos)); 1779 1780 p = kmap(bv->bv_page) + bv->bv_offset; 1781 1782 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, 1783 left); 1784 if (ret > 0 && do_datacrc) 1785 con->in_data_crc = 1786 crc32c(con->in_data_crc, 1787 p + con->in_msg_pos.page_pos, ret); 1788 kunmap(bv->bv_page); 1789 if (ret <= 0) 1790 return ret; 1791 con->in_msg_pos.data_pos += ret; 1792 con->in_msg_pos.page_pos += ret; 1793 if (con->in_msg_pos.page_pos == bv->bv_len) { 1794 con->in_msg_pos.page_pos = 0; 1795 iter_bio_next(bio_iter, bio_seg); 1796 } 1797 1798 return ret; 1799 } 1800 #endif 1801 1802 /* 1803 * read (part of) a message. 1804 */ 1805 static int read_partial_message(struct ceph_connection *con) 1806 { 1807 struct ceph_msg *m = con->in_msg; 1808 int size; 1809 int end; 1810 int ret; 1811 unsigned int front_len, middle_len, data_len; 1812 bool do_datacrc = !con->msgr->nocrc; 1813 u64 seq; 1814 u32 crc; 1815 1816 dout("read_partial_message con %p msg %p\n", con, m); 1817 1818 /* header */ 1819 size = sizeof (con->in_hdr); 1820 end = size; 1821 ret = read_partial(con, end, size, &con->in_hdr); 1822 if (ret <= 0) 1823 return ret; 1824 1825 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 1826 if (cpu_to_le32(crc) != con->in_hdr.crc) { 1827 pr_err("read_partial_message bad hdr " 1828 " crc %u != expected %u\n", 1829 crc, con->in_hdr.crc); 1830 return -EBADMSG; 1831 } 1832 1833 front_len = le32_to_cpu(con->in_hdr.front_len); 1834 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 1835 return -EIO; 1836 middle_len = le32_to_cpu(con->in_hdr.middle_len); 1837 if (middle_len > CEPH_MSG_MAX_DATA_LEN) 1838 return -EIO; 1839 data_len = le32_to_cpu(con->in_hdr.data_len); 1840 if (data_len > CEPH_MSG_MAX_DATA_LEN) 1841 return -EIO; 1842 1843 /* verify seq# */ 1844 seq = le64_to_cpu(con->in_hdr.seq); 1845 if ((s64)seq - (s64)con->in_seq < 1) { 1846 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 1847 ENTITY_NAME(con->peer_name), 1848 ceph_pr_addr(&con->peer_addr.in_addr), 1849 seq, con->in_seq + 1); 1850 con->in_base_pos = -front_len - middle_len - data_len - 1851 sizeof(m->footer); 1852 con->in_tag = CEPH_MSGR_TAG_READY; 1853 return 0; 1854 } else if ((s64)seq - (s64)con->in_seq > 1) { 1855 pr_err("read_partial_message bad seq %lld expected %lld\n", 1856 seq, con->in_seq + 1); 1857 con->error_msg = "bad message sequence # for incoming message"; 1858 return -EBADMSG; 1859 } 1860 1861 /* allocate message? */ 1862 if (!con->in_msg) { 1863 int skip = 0; 1864 1865 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 1866 con->in_hdr.front_len, con->in_hdr.data_len); 1867 ret = ceph_con_in_msg_alloc(con, &skip); 1868 if (ret < 0) 1869 return ret; 1870 if (skip) { 1871 /* skip this message */ 1872 dout("alloc_msg said skip message\n"); 1873 BUG_ON(con->in_msg); 1874 con->in_base_pos = -front_len - middle_len - data_len - 1875 sizeof(m->footer); 1876 con->in_tag = CEPH_MSGR_TAG_READY; 1877 con->in_seq++; 1878 return 0; 1879 } 1880 1881 BUG_ON(!con->in_msg); 1882 BUG_ON(con->in_msg->con != con); 1883 m = con->in_msg; 1884 m->front.iov_len = 0; /* haven't read it yet */ 1885 if (m->middle) 1886 m->middle->vec.iov_len = 0; 1887 1888 con->in_msg_pos.page = 0; 1889 if (m->pages) 1890 con->in_msg_pos.page_pos = m->page_alignment; 1891 else 1892 con->in_msg_pos.page_pos = 0; 1893 con->in_msg_pos.data_pos = 0; 1894 1895 #ifdef CONFIG_BLOCK 1896 if (m->bio) 1897 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg); 1898 #endif 1899 } 1900 1901 /* front */ 1902 ret = read_partial_message_section(con, &m->front, front_len, 1903 &con->in_front_crc); 1904 if (ret <= 0) 1905 return ret; 1906 1907 /* middle */ 1908 if (m->middle) { 1909 ret = read_partial_message_section(con, &m->middle->vec, 1910 middle_len, 1911 &con->in_middle_crc); 1912 if (ret <= 0) 1913 return ret; 1914 } 1915 1916 /* (page) data */ 1917 while (con->in_msg_pos.data_pos < data_len) { 1918 if (m->pages) { 1919 ret = read_partial_message_pages(con, m->pages, 1920 data_len, do_datacrc); 1921 if (ret <= 0) 1922 return ret; 1923 #ifdef CONFIG_BLOCK 1924 } else if (m->bio) { 1925 BUG_ON(!m->bio_iter); 1926 ret = read_partial_message_bio(con, 1927 &m->bio_iter, &m->bio_seg, 1928 data_len, do_datacrc); 1929 if (ret <= 0) 1930 return ret; 1931 #endif 1932 } else { 1933 BUG_ON(1); 1934 } 1935 } 1936 1937 /* footer */ 1938 size = sizeof (m->footer); 1939 end += size; 1940 ret = read_partial(con, end, size, &m->footer); 1941 if (ret <= 0) 1942 return ret; 1943 1944 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 1945 m, front_len, m->footer.front_crc, middle_len, 1946 m->footer.middle_crc, data_len, m->footer.data_crc); 1947 1948 /* crc ok? */ 1949 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 1950 pr_err("read_partial_message %p front crc %u != exp. %u\n", 1951 m, con->in_front_crc, m->footer.front_crc); 1952 return -EBADMSG; 1953 } 1954 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 1955 pr_err("read_partial_message %p middle crc %u != exp %u\n", 1956 m, con->in_middle_crc, m->footer.middle_crc); 1957 return -EBADMSG; 1958 } 1959 if (do_datacrc && 1960 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 1961 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 1962 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 1963 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 1964 return -EBADMSG; 1965 } 1966 1967 return 1; /* done! */ 1968 } 1969 1970 /* 1971 * Process message. This happens in the worker thread. The callback should 1972 * be careful not to do anything that waits on other incoming messages or it 1973 * may deadlock. 1974 */ 1975 static void process_message(struct ceph_connection *con) 1976 { 1977 struct ceph_msg *msg; 1978 1979 BUG_ON(con->in_msg->con != con); 1980 con->in_msg->con = NULL; 1981 msg = con->in_msg; 1982 con->in_msg = NULL; 1983 con->ops->put(con); 1984 1985 /* if first message, set peer_name */ 1986 if (con->peer_name.type == 0) 1987 con->peer_name = msg->hdr.src; 1988 1989 con->in_seq++; 1990 mutex_unlock(&con->mutex); 1991 1992 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 1993 msg, le64_to_cpu(msg->hdr.seq), 1994 ENTITY_NAME(msg->hdr.src), 1995 le16_to_cpu(msg->hdr.type), 1996 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1997 le32_to_cpu(msg->hdr.front_len), 1998 le32_to_cpu(msg->hdr.data_len), 1999 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2000 con->ops->dispatch(con, msg); 2001 2002 mutex_lock(&con->mutex); 2003 } 2004 2005 2006 /* 2007 * Write something to the socket. Called in a worker thread when the 2008 * socket appears to be writeable and we have something ready to send. 2009 */ 2010 static int try_write(struct ceph_connection *con) 2011 { 2012 int ret = 1; 2013 2014 dout("try_write start %p state %lu\n", con, con->state); 2015 2016 more: 2017 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2018 2019 /* open the socket first? */ 2020 if (con->state == CON_STATE_PREOPEN) { 2021 BUG_ON(con->sock); 2022 con->state = CON_STATE_CONNECTING; 2023 2024 con_out_kvec_reset(con); 2025 prepare_write_banner(con); 2026 prepare_read_banner(con); 2027 2028 BUG_ON(con->in_msg); 2029 con->in_tag = CEPH_MSGR_TAG_READY; 2030 dout("try_write initiating connect on %p new state %lu\n", 2031 con, con->state); 2032 ret = ceph_tcp_connect(con); 2033 if (ret < 0) { 2034 con->error_msg = "connect error"; 2035 goto out; 2036 } 2037 } 2038 2039 more_kvec: 2040 /* kvec data queued? */ 2041 if (con->out_skip) { 2042 ret = write_partial_skip(con); 2043 if (ret <= 0) 2044 goto out; 2045 } 2046 if (con->out_kvec_left) { 2047 ret = write_partial_kvec(con); 2048 if (ret <= 0) 2049 goto out; 2050 } 2051 2052 /* msg pages? */ 2053 if (con->out_msg) { 2054 if (con->out_msg_done) { 2055 ceph_msg_put(con->out_msg); 2056 con->out_msg = NULL; /* we're done with this one */ 2057 goto do_next; 2058 } 2059 2060 ret = write_partial_msg_pages(con); 2061 if (ret == 1) 2062 goto more_kvec; /* we need to send the footer, too! */ 2063 if (ret == 0) 2064 goto out; 2065 if (ret < 0) { 2066 dout("try_write write_partial_msg_pages err %d\n", 2067 ret); 2068 goto out; 2069 } 2070 } 2071 2072 do_next: 2073 if (con->state == CON_STATE_OPEN) { 2074 /* is anything else pending? */ 2075 if (!list_empty(&con->out_queue)) { 2076 prepare_write_message(con); 2077 goto more; 2078 } 2079 if (con->in_seq > con->in_seq_acked) { 2080 prepare_write_ack(con); 2081 goto more; 2082 } 2083 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING, 2084 &con->flags)) { 2085 prepare_write_keepalive(con); 2086 goto more; 2087 } 2088 } 2089 2090 /* Nothing to do! */ 2091 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags); 2092 dout("try_write nothing else to write.\n"); 2093 ret = 0; 2094 out: 2095 dout("try_write done on %p ret %d\n", con, ret); 2096 return ret; 2097 } 2098 2099 2100 2101 /* 2102 * Read what we can from the socket. 2103 */ 2104 static int try_read(struct ceph_connection *con) 2105 { 2106 int ret = -1; 2107 2108 more: 2109 dout("try_read start on %p state %lu\n", con, con->state); 2110 if (con->state != CON_STATE_CONNECTING && 2111 con->state != CON_STATE_NEGOTIATING && 2112 con->state != CON_STATE_OPEN) 2113 return 0; 2114 2115 BUG_ON(!con->sock); 2116 2117 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2118 con->in_base_pos); 2119 2120 if (con->state == CON_STATE_CONNECTING) { 2121 dout("try_read connecting\n"); 2122 ret = read_partial_banner(con); 2123 if (ret <= 0) 2124 goto out; 2125 ret = process_banner(con); 2126 if (ret < 0) 2127 goto out; 2128 2129 con->state = CON_STATE_NEGOTIATING; 2130 2131 /* 2132 * Received banner is good, exchange connection info. 2133 * Do not reset out_kvec, as sending our banner raced 2134 * with receiving peer banner after connect completed. 2135 */ 2136 ret = prepare_write_connect(con); 2137 if (ret < 0) 2138 goto out; 2139 prepare_read_connect(con); 2140 2141 /* Send connection info before awaiting response */ 2142 goto out; 2143 } 2144 2145 if (con->state == CON_STATE_NEGOTIATING) { 2146 dout("try_read negotiating\n"); 2147 ret = read_partial_connect(con); 2148 if (ret <= 0) 2149 goto out; 2150 ret = process_connect(con); 2151 if (ret < 0) 2152 goto out; 2153 goto more; 2154 } 2155 2156 WARN_ON(con->state != CON_STATE_OPEN); 2157 2158 if (con->in_base_pos < 0) { 2159 /* 2160 * skipping + discarding content. 2161 * 2162 * FIXME: there must be a better way to do this! 2163 */ 2164 static char buf[SKIP_BUF_SIZE]; 2165 int skip = min((int) sizeof (buf), -con->in_base_pos); 2166 2167 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2168 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2169 if (ret <= 0) 2170 goto out; 2171 con->in_base_pos += ret; 2172 if (con->in_base_pos) 2173 goto more; 2174 } 2175 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2176 /* 2177 * what's next? 2178 */ 2179 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2180 if (ret <= 0) 2181 goto out; 2182 dout("try_read got tag %d\n", (int)con->in_tag); 2183 switch (con->in_tag) { 2184 case CEPH_MSGR_TAG_MSG: 2185 prepare_read_message(con); 2186 break; 2187 case CEPH_MSGR_TAG_ACK: 2188 prepare_read_ack(con); 2189 break; 2190 case CEPH_MSGR_TAG_CLOSE: 2191 con_close_socket(con); 2192 con->state = CON_STATE_CLOSED; 2193 goto out; 2194 default: 2195 goto bad_tag; 2196 } 2197 } 2198 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2199 ret = read_partial_message(con); 2200 if (ret <= 0) { 2201 switch (ret) { 2202 case -EBADMSG: 2203 con->error_msg = "bad crc"; 2204 ret = -EIO; 2205 break; 2206 case -EIO: 2207 con->error_msg = "io error"; 2208 break; 2209 } 2210 goto out; 2211 } 2212 if (con->in_tag == CEPH_MSGR_TAG_READY) 2213 goto more; 2214 process_message(con); 2215 if (con->state == CON_STATE_OPEN) 2216 prepare_read_tag(con); 2217 goto more; 2218 } 2219 if (con->in_tag == CEPH_MSGR_TAG_ACK) { 2220 ret = read_partial_ack(con); 2221 if (ret <= 0) 2222 goto out; 2223 process_ack(con); 2224 goto more; 2225 } 2226 2227 out: 2228 dout("try_read done on %p ret %d\n", con, ret); 2229 return ret; 2230 2231 bad_tag: 2232 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2233 con->error_msg = "protocol error, garbage tag"; 2234 ret = -1; 2235 goto out; 2236 } 2237 2238 2239 /* 2240 * Atomically queue work on a connection after the specified delay. 2241 * Bump @con reference to avoid races with connection teardown. 2242 * Returns 0 if work was queued, or an error code otherwise. 2243 */ 2244 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2245 { 2246 if (!con->ops->get(con)) { 2247 dout("%s %p ref count 0\n", __func__, con); 2248 2249 return -ENOENT; 2250 } 2251 2252 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2253 dout("%s %p - already queued\n", __func__, con); 2254 con->ops->put(con); 2255 2256 return -EBUSY; 2257 } 2258 2259 dout("%s %p %lu\n", __func__, con, delay); 2260 2261 return 0; 2262 } 2263 2264 static void queue_con(struct ceph_connection *con) 2265 { 2266 (void) queue_con_delay(con, 0); 2267 } 2268 2269 static bool con_sock_closed(struct ceph_connection *con) 2270 { 2271 if (!test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) 2272 return false; 2273 2274 #define CASE(x) \ 2275 case CON_STATE_ ## x: \ 2276 con->error_msg = "socket closed (con state " #x ")"; \ 2277 break; 2278 2279 switch (con->state) { 2280 CASE(CLOSED); 2281 CASE(PREOPEN); 2282 CASE(CONNECTING); 2283 CASE(NEGOTIATING); 2284 CASE(OPEN); 2285 CASE(STANDBY); 2286 default: 2287 pr_warning("%s con %p unrecognized state %lu\n", 2288 __func__, con, con->state); 2289 con->error_msg = "unrecognized con state"; 2290 BUG(); 2291 break; 2292 } 2293 #undef CASE 2294 2295 return true; 2296 } 2297 2298 /* 2299 * Do some work on a connection. Drop a connection ref when we're done. 2300 */ 2301 static void con_work(struct work_struct *work) 2302 { 2303 struct ceph_connection *con = container_of(work, struct ceph_connection, 2304 work.work); 2305 int ret; 2306 2307 mutex_lock(&con->mutex); 2308 restart: 2309 if (con_sock_closed(con)) 2310 goto fault; 2311 2312 if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) { 2313 dout("con_work %p backing off\n", con); 2314 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2315 if (ret) { 2316 dout("con_work %p FAILED to back off %lu\n", con, 2317 con->delay); 2318 BUG_ON(ret == -ENOENT); 2319 set_bit(CON_FLAG_BACKOFF, &con->flags); 2320 } 2321 goto done; 2322 } 2323 2324 if (con->state == CON_STATE_STANDBY) { 2325 dout("con_work %p STANDBY\n", con); 2326 goto done; 2327 } 2328 if (con->state == CON_STATE_CLOSED) { 2329 dout("con_work %p CLOSED\n", con); 2330 BUG_ON(con->sock); 2331 goto done; 2332 } 2333 if (con->state == CON_STATE_PREOPEN) { 2334 dout("con_work OPENING\n"); 2335 BUG_ON(con->sock); 2336 } 2337 2338 ret = try_read(con); 2339 if (ret == -EAGAIN) 2340 goto restart; 2341 if (ret < 0) { 2342 con->error_msg = "socket error on read"; 2343 goto fault; 2344 } 2345 2346 ret = try_write(con); 2347 if (ret == -EAGAIN) 2348 goto restart; 2349 if (ret < 0) { 2350 con->error_msg = "socket error on write"; 2351 goto fault; 2352 } 2353 2354 done: 2355 mutex_unlock(&con->mutex); 2356 done_unlocked: 2357 con->ops->put(con); 2358 return; 2359 2360 fault: 2361 ceph_fault(con); /* error/fault path */ 2362 goto done_unlocked; 2363 } 2364 2365 2366 /* 2367 * Generic error/fault handler. A retry mechanism is used with 2368 * exponential backoff 2369 */ 2370 static void ceph_fault(struct ceph_connection *con) 2371 __releases(con->mutex) 2372 { 2373 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2374 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2375 dout("fault %p state %lu to peer %s\n", 2376 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2377 2378 WARN_ON(con->state != CON_STATE_CONNECTING && 2379 con->state != CON_STATE_NEGOTIATING && 2380 con->state != CON_STATE_OPEN); 2381 2382 con_close_socket(con); 2383 2384 if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) { 2385 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2386 con->state = CON_STATE_CLOSED; 2387 goto out_unlock; 2388 } 2389 2390 if (con->in_msg) { 2391 BUG_ON(con->in_msg->con != con); 2392 con->in_msg->con = NULL; 2393 ceph_msg_put(con->in_msg); 2394 con->in_msg = NULL; 2395 con->ops->put(con); 2396 } 2397 2398 /* Requeue anything that hasn't been acked */ 2399 list_splice_init(&con->out_sent, &con->out_queue); 2400 2401 /* If there are no messages queued or keepalive pending, place 2402 * the connection in a STANDBY state */ 2403 if (list_empty(&con->out_queue) && 2404 !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) { 2405 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2406 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags); 2407 con->state = CON_STATE_STANDBY; 2408 } else { 2409 /* retry after a delay. */ 2410 con->state = CON_STATE_PREOPEN; 2411 if (con->delay == 0) 2412 con->delay = BASE_DELAY_INTERVAL; 2413 else if (con->delay < MAX_DELAY_INTERVAL) 2414 con->delay *= 2; 2415 set_bit(CON_FLAG_BACKOFF, &con->flags); 2416 queue_con(con); 2417 } 2418 2419 out_unlock: 2420 mutex_unlock(&con->mutex); 2421 /* 2422 * in case we faulted due to authentication, invalidate our 2423 * current tickets so that we can get new ones. 2424 */ 2425 if (con->auth_retry && con->ops->invalidate_authorizer) { 2426 dout("calling invalidate_authorizer()\n"); 2427 con->ops->invalidate_authorizer(con); 2428 } 2429 2430 if (con->ops->fault) 2431 con->ops->fault(con); 2432 } 2433 2434 2435 2436 /* 2437 * initialize a new messenger instance 2438 */ 2439 void ceph_messenger_init(struct ceph_messenger *msgr, 2440 struct ceph_entity_addr *myaddr, 2441 u32 supported_features, 2442 u32 required_features, 2443 bool nocrc) 2444 { 2445 msgr->supported_features = supported_features; 2446 msgr->required_features = required_features; 2447 2448 spin_lock_init(&msgr->global_seq_lock); 2449 2450 if (myaddr) 2451 msgr->inst.addr = *myaddr; 2452 2453 /* select a random nonce */ 2454 msgr->inst.addr.type = 0; 2455 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2456 encode_my_addr(msgr); 2457 msgr->nocrc = nocrc; 2458 2459 atomic_set(&msgr->stopping, 0); 2460 2461 dout("%s %p\n", __func__, msgr); 2462 } 2463 EXPORT_SYMBOL(ceph_messenger_init); 2464 2465 static void clear_standby(struct ceph_connection *con) 2466 { 2467 /* come back from STANDBY? */ 2468 if (con->state == CON_STATE_STANDBY) { 2469 dout("clear_standby %p and ++connect_seq\n", con); 2470 con->state = CON_STATE_PREOPEN; 2471 con->connect_seq++; 2472 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags)); 2473 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)); 2474 } 2475 } 2476 2477 /* 2478 * Queue up an outgoing message on the given connection. 2479 */ 2480 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2481 { 2482 /* set src+dst */ 2483 msg->hdr.src = con->msgr->inst.name; 2484 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2485 msg->needs_out_seq = true; 2486 2487 mutex_lock(&con->mutex); 2488 2489 if (con->state == CON_STATE_CLOSED) { 2490 dout("con_send %p closed, dropping %p\n", con, msg); 2491 ceph_msg_put(msg); 2492 mutex_unlock(&con->mutex); 2493 return; 2494 } 2495 2496 BUG_ON(msg->con != NULL); 2497 msg->con = con->ops->get(con); 2498 BUG_ON(msg->con == NULL); 2499 2500 BUG_ON(!list_empty(&msg->list_head)); 2501 list_add_tail(&msg->list_head, &con->out_queue); 2502 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2503 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2504 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2505 le32_to_cpu(msg->hdr.front_len), 2506 le32_to_cpu(msg->hdr.middle_len), 2507 le32_to_cpu(msg->hdr.data_len)); 2508 2509 clear_standby(con); 2510 mutex_unlock(&con->mutex); 2511 2512 /* if there wasn't anything waiting to send before, queue 2513 * new work */ 2514 if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0) 2515 queue_con(con); 2516 } 2517 EXPORT_SYMBOL(ceph_con_send); 2518 2519 /* 2520 * Revoke a message that was previously queued for send 2521 */ 2522 void ceph_msg_revoke(struct ceph_msg *msg) 2523 { 2524 struct ceph_connection *con = msg->con; 2525 2526 if (!con) 2527 return; /* Message not in our possession */ 2528 2529 mutex_lock(&con->mutex); 2530 if (!list_empty(&msg->list_head)) { 2531 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2532 list_del_init(&msg->list_head); 2533 BUG_ON(msg->con == NULL); 2534 msg->con->ops->put(msg->con); 2535 msg->con = NULL; 2536 msg->hdr.seq = 0; 2537 2538 ceph_msg_put(msg); 2539 } 2540 if (con->out_msg == msg) { 2541 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2542 con->out_msg = NULL; 2543 if (con->out_kvec_is_msg) { 2544 con->out_skip = con->out_kvec_bytes; 2545 con->out_kvec_is_msg = false; 2546 } 2547 msg->hdr.seq = 0; 2548 2549 ceph_msg_put(msg); 2550 } 2551 mutex_unlock(&con->mutex); 2552 } 2553 2554 /* 2555 * Revoke a message that we may be reading data into 2556 */ 2557 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 2558 { 2559 struct ceph_connection *con; 2560 2561 BUG_ON(msg == NULL); 2562 if (!msg->con) { 2563 dout("%s msg %p null con\n", __func__, msg); 2564 2565 return; /* Message not in our possession */ 2566 } 2567 2568 con = msg->con; 2569 mutex_lock(&con->mutex); 2570 if (con->in_msg == msg) { 2571 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 2572 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 2573 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 2574 2575 /* skip rest of message */ 2576 dout("%s %p msg %p revoked\n", __func__, con, msg); 2577 con->in_base_pos = con->in_base_pos - 2578 sizeof(struct ceph_msg_header) - 2579 front_len - 2580 middle_len - 2581 data_len - 2582 sizeof(struct ceph_msg_footer); 2583 ceph_msg_put(con->in_msg); 2584 con->in_msg = NULL; 2585 con->in_tag = CEPH_MSGR_TAG_READY; 2586 con->in_seq++; 2587 } else { 2588 dout("%s %p in_msg %p msg %p no-op\n", 2589 __func__, con, con->in_msg, msg); 2590 } 2591 mutex_unlock(&con->mutex); 2592 } 2593 2594 /* 2595 * Queue a keepalive byte to ensure the tcp connection is alive. 2596 */ 2597 void ceph_con_keepalive(struct ceph_connection *con) 2598 { 2599 dout("con_keepalive %p\n", con); 2600 mutex_lock(&con->mutex); 2601 clear_standby(con); 2602 mutex_unlock(&con->mutex); 2603 if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 && 2604 test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0) 2605 queue_con(con); 2606 } 2607 EXPORT_SYMBOL(ceph_con_keepalive); 2608 2609 2610 /* 2611 * construct a new message with given type, size 2612 * the new msg has a ref count of 1. 2613 */ 2614 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 2615 bool can_fail) 2616 { 2617 struct ceph_msg *m; 2618 2619 m = kmalloc(sizeof(*m), flags); 2620 if (m == NULL) 2621 goto out; 2622 kref_init(&m->kref); 2623 2624 m->con = NULL; 2625 INIT_LIST_HEAD(&m->list_head); 2626 2627 m->hdr.tid = 0; 2628 m->hdr.type = cpu_to_le16(type); 2629 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 2630 m->hdr.version = 0; 2631 m->hdr.front_len = cpu_to_le32(front_len); 2632 m->hdr.middle_len = 0; 2633 m->hdr.data_len = 0; 2634 m->hdr.data_off = 0; 2635 m->hdr.reserved = 0; 2636 m->footer.front_crc = 0; 2637 m->footer.middle_crc = 0; 2638 m->footer.data_crc = 0; 2639 m->footer.flags = 0; 2640 m->front_max = front_len; 2641 m->front_is_vmalloc = false; 2642 m->more_to_follow = false; 2643 m->ack_stamp = 0; 2644 m->pool = NULL; 2645 2646 /* middle */ 2647 m->middle = NULL; 2648 2649 /* data */ 2650 m->nr_pages = 0; 2651 m->page_alignment = 0; 2652 m->pages = NULL; 2653 m->pagelist = NULL; 2654 m->bio = NULL; 2655 m->bio_iter = NULL; 2656 m->bio_seg = 0; 2657 m->trail = NULL; 2658 2659 /* front */ 2660 if (front_len) { 2661 if (front_len > PAGE_CACHE_SIZE) { 2662 m->front.iov_base = __vmalloc(front_len, flags, 2663 PAGE_KERNEL); 2664 m->front_is_vmalloc = true; 2665 } else { 2666 m->front.iov_base = kmalloc(front_len, flags); 2667 } 2668 if (m->front.iov_base == NULL) { 2669 dout("ceph_msg_new can't allocate %d bytes\n", 2670 front_len); 2671 goto out2; 2672 } 2673 } else { 2674 m->front.iov_base = NULL; 2675 } 2676 m->front.iov_len = front_len; 2677 2678 dout("ceph_msg_new %p front %d\n", m, front_len); 2679 return m; 2680 2681 out2: 2682 ceph_msg_put(m); 2683 out: 2684 if (!can_fail) { 2685 pr_err("msg_new can't create type %d front %d\n", type, 2686 front_len); 2687 WARN_ON(1); 2688 } else { 2689 dout("msg_new can't create type %d front %d\n", type, 2690 front_len); 2691 } 2692 return NULL; 2693 } 2694 EXPORT_SYMBOL(ceph_msg_new); 2695 2696 /* 2697 * Allocate "middle" portion of a message, if it is needed and wasn't 2698 * allocated by alloc_msg. This allows us to read a small fixed-size 2699 * per-type header in the front and then gracefully fail (i.e., 2700 * propagate the error to the caller based on info in the front) when 2701 * the middle is too large. 2702 */ 2703 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 2704 { 2705 int type = le16_to_cpu(msg->hdr.type); 2706 int middle_len = le32_to_cpu(msg->hdr.middle_len); 2707 2708 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 2709 ceph_msg_type_name(type), middle_len); 2710 BUG_ON(!middle_len); 2711 BUG_ON(msg->middle); 2712 2713 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 2714 if (!msg->middle) 2715 return -ENOMEM; 2716 return 0; 2717 } 2718 2719 /* 2720 * Allocate a message for receiving an incoming message on a 2721 * connection, and save the result in con->in_msg. Uses the 2722 * connection's private alloc_msg op if available. 2723 * 2724 * Returns 0 on success, or a negative error code. 2725 * 2726 * On success, if we set *skip = 1: 2727 * - the next message should be skipped and ignored. 2728 * - con->in_msg == NULL 2729 * or if we set *skip = 0: 2730 * - con->in_msg is non-null. 2731 * On error (ENOMEM, EAGAIN, ...), 2732 * - con->in_msg == NULL 2733 */ 2734 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 2735 { 2736 struct ceph_msg_header *hdr = &con->in_hdr; 2737 int type = le16_to_cpu(hdr->type); 2738 int front_len = le32_to_cpu(hdr->front_len); 2739 int middle_len = le32_to_cpu(hdr->middle_len); 2740 int ret = 0; 2741 2742 BUG_ON(con->in_msg != NULL); 2743 2744 if (con->ops->alloc_msg) { 2745 struct ceph_msg *msg; 2746 2747 mutex_unlock(&con->mutex); 2748 msg = con->ops->alloc_msg(con, hdr, skip); 2749 mutex_lock(&con->mutex); 2750 if (con->state != CON_STATE_OPEN) { 2751 if (msg) 2752 ceph_msg_put(msg); 2753 return -EAGAIN; 2754 } 2755 con->in_msg = msg; 2756 if (con->in_msg) { 2757 con->in_msg->con = con->ops->get(con); 2758 BUG_ON(con->in_msg->con == NULL); 2759 } 2760 if (*skip) { 2761 con->in_msg = NULL; 2762 return 0; 2763 } 2764 if (!con->in_msg) { 2765 con->error_msg = 2766 "error allocating memory for incoming message"; 2767 return -ENOMEM; 2768 } 2769 } 2770 if (!con->in_msg) { 2771 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 2772 if (!con->in_msg) { 2773 pr_err("unable to allocate msg type %d len %d\n", 2774 type, front_len); 2775 return -ENOMEM; 2776 } 2777 con->in_msg->con = con->ops->get(con); 2778 BUG_ON(con->in_msg->con == NULL); 2779 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off); 2780 } 2781 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 2782 2783 if (middle_len && !con->in_msg->middle) { 2784 ret = ceph_alloc_middle(con, con->in_msg); 2785 if (ret < 0) { 2786 ceph_msg_put(con->in_msg); 2787 con->in_msg = NULL; 2788 } 2789 } 2790 2791 return ret; 2792 } 2793 2794 2795 /* 2796 * Free a generically kmalloc'd message. 2797 */ 2798 void ceph_msg_kfree(struct ceph_msg *m) 2799 { 2800 dout("msg_kfree %p\n", m); 2801 if (m->front_is_vmalloc) 2802 vfree(m->front.iov_base); 2803 else 2804 kfree(m->front.iov_base); 2805 kfree(m); 2806 } 2807 2808 /* 2809 * Drop a msg ref. Destroy as needed. 2810 */ 2811 void ceph_msg_last_put(struct kref *kref) 2812 { 2813 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2814 2815 dout("ceph_msg_put last one on %p\n", m); 2816 WARN_ON(!list_empty(&m->list_head)); 2817 2818 /* drop middle, data, if any */ 2819 if (m->middle) { 2820 ceph_buffer_put(m->middle); 2821 m->middle = NULL; 2822 } 2823 m->nr_pages = 0; 2824 m->pages = NULL; 2825 2826 if (m->pagelist) { 2827 ceph_pagelist_release(m->pagelist); 2828 kfree(m->pagelist); 2829 m->pagelist = NULL; 2830 } 2831 2832 m->trail = NULL; 2833 2834 if (m->pool) 2835 ceph_msgpool_put(m->pool, m); 2836 else 2837 ceph_msg_kfree(m); 2838 } 2839 EXPORT_SYMBOL(ceph_msg_last_put); 2840 2841 void ceph_msg_dump(struct ceph_msg *msg) 2842 { 2843 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg, 2844 msg->front_max, msg->nr_pages); 2845 print_hex_dump(KERN_DEBUG, "header: ", 2846 DUMP_PREFIX_OFFSET, 16, 1, 2847 &msg->hdr, sizeof(msg->hdr), true); 2848 print_hex_dump(KERN_DEBUG, " front: ", 2849 DUMP_PREFIX_OFFSET, 16, 1, 2850 msg->front.iov_base, msg->front.iov_len, true); 2851 if (msg->middle) 2852 print_hex_dump(KERN_DEBUG, "middle: ", 2853 DUMP_PREFIX_OFFSET, 16, 1, 2854 msg->middle->vec.iov_base, 2855 msg->middle->vec.iov_len, true); 2856 print_hex_dump(KERN_DEBUG, "footer: ", 2857 DUMP_PREFIX_OFFSET, 16, 1, 2858 &msg->footer, sizeof(msg->footer), true); 2859 } 2860 EXPORT_SYMBOL(ceph_msg_dump); 2861