1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 166 167 #ifdef CONFIG_LOCKDEP 168 static struct lock_class_key socket_class; 169 #endif 170 171 static void queue_con(struct ceph_connection *con); 172 static void cancel_con(struct ceph_connection *con); 173 static void ceph_con_workfn(struct work_struct *); 174 static void con_fault(struct ceph_connection *con); 175 176 /* 177 * Nicely render a sockaddr as a string. An array of formatted 178 * strings is used, to approximate reentrancy. 179 */ 180 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 181 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 182 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 183 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 184 185 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 186 static atomic_t addr_str_seq = ATOMIC_INIT(0); 187 188 static struct page *zero_page; /* used in certain error cases */ 189 190 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 191 { 192 int i; 193 char *s; 194 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 196 197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 198 s = addr_str[i]; 199 200 switch (ss->ss_family) { 201 case AF_INET: 202 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 203 ntohs(in4->sin_port)); 204 break; 205 206 case AF_INET6: 207 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 208 ntohs(in6->sin6_port)); 209 break; 210 211 default: 212 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 213 ss->ss_family); 214 } 215 216 return s; 217 } 218 EXPORT_SYMBOL(ceph_pr_addr); 219 220 static void encode_my_addr(struct ceph_messenger *msgr) 221 { 222 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 223 ceph_encode_addr(&msgr->my_enc_addr); 224 } 225 226 /* 227 * work queue for all reading and writing to/from the socket. 228 */ 229 static struct workqueue_struct *ceph_msgr_wq; 230 231 static int ceph_msgr_slab_init(void) 232 { 233 BUG_ON(ceph_msg_cache); 234 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 235 if (!ceph_msg_cache) 236 return -ENOMEM; 237 238 BUG_ON(ceph_msg_data_cache); 239 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0); 240 if (ceph_msg_data_cache) 241 return 0; 242 243 kmem_cache_destroy(ceph_msg_cache); 244 ceph_msg_cache = NULL; 245 246 return -ENOMEM; 247 } 248 249 static void ceph_msgr_slab_exit(void) 250 { 251 BUG_ON(!ceph_msg_data_cache); 252 kmem_cache_destroy(ceph_msg_data_cache); 253 ceph_msg_data_cache = NULL; 254 255 BUG_ON(!ceph_msg_cache); 256 kmem_cache_destroy(ceph_msg_cache); 257 ceph_msg_cache = NULL; 258 } 259 260 static void _ceph_msgr_exit(void) 261 { 262 if (ceph_msgr_wq) { 263 destroy_workqueue(ceph_msgr_wq); 264 ceph_msgr_wq = NULL; 265 } 266 267 BUG_ON(zero_page == NULL); 268 put_page(zero_page); 269 zero_page = NULL; 270 271 ceph_msgr_slab_exit(); 272 } 273 274 int __init ceph_msgr_init(void) 275 { 276 if (ceph_msgr_slab_init()) 277 return -ENOMEM; 278 279 BUG_ON(zero_page != NULL); 280 zero_page = ZERO_PAGE(0); 281 get_page(zero_page); 282 283 /* 284 * The number of active work items is limited by the number of 285 * connections, so leave @max_active at default. 286 */ 287 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 288 if (ceph_msgr_wq) 289 return 0; 290 291 pr_err("msgr_init failed to create workqueue\n"); 292 _ceph_msgr_exit(); 293 294 return -ENOMEM; 295 } 296 297 void ceph_msgr_exit(void) 298 { 299 BUG_ON(ceph_msgr_wq == NULL); 300 301 _ceph_msgr_exit(); 302 } 303 304 void ceph_msgr_flush(void) 305 { 306 flush_workqueue(ceph_msgr_wq); 307 } 308 EXPORT_SYMBOL(ceph_msgr_flush); 309 310 /* Connection socket state transition functions */ 311 312 static void con_sock_state_init(struct ceph_connection *con) 313 { 314 int old_state; 315 316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 317 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 318 printk("%s: unexpected old state %d\n", __func__, old_state); 319 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 320 CON_SOCK_STATE_CLOSED); 321 } 322 323 static void con_sock_state_connecting(struct ceph_connection *con) 324 { 325 int old_state; 326 327 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 328 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 329 printk("%s: unexpected old state %d\n", __func__, old_state); 330 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 331 CON_SOCK_STATE_CONNECTING); 332 } 333 334 static void con_sock_state_connected(struct ceph_connection *con) 335 { 336 int old_state; 337 338 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 339 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 340 printk("%s: unexpected old state %d\n", __func__, old_state); 341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 342 CON_SOCK_STATE_CONNECTED); 343 } 344 345 static void con_sock_state_closing(struct ceph_connection *con) 346 { 347 int old_state; 348 349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 351 old_state != CON_SOCK_STATE_CONNECTED && 352 old_state != CON_SOCK_STATE_CLOSING)) 353 printk("%s: unexpected old state %d\n", __func__, old_state); 354 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 355 CON_SOCK_STATE_CLOSING); 356 } 357 358 static void con_sock_state_closed(struct ceph_connection *con) 359 { 360 int old_state; 361 362 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 363 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 364 old_state != CON_SOCK_STATE_CLOSING && 365 old_state != CON_SOCK_STATE_CONNECTING && 366 old_state != CON_SOCK_STATE_CLOSED)) 367 printk("%s: unexpected old state %d\n", __func__, old_state); 368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 369 CON_SOCK_STATE_CLOSED); 370 } 371 372 /* 373 * socket callback functions 374 */ 375 376 /* data available on socket, or listen socket received a connect */ 377 static void ceph_sock_data_ready(struct sock *sk) 378 { 379 struct ceph_connection *con = sk->sk_user_data; 380 if (atomic_read(&con->msgr->stopping)) { 381 return; 382 } 383 384 if (sk->sk_state != TCP_CLOSE_WAIT) { 385 dout("%s on %p state = %lu, queueing work\n", __func__, 386 con, con->state); 387 queue_con(con); 388 } 389 } 390 391 /* socket has buffer space for writing */ 392 static void ceph_sock_write_space(struct sock *sk) 393 { 394 struct ceph_connection *con = sk->sk_user_data; 395 396 /* only queue to workqueue if there is data we want to write, 397 * and there is sufficient space in the socket buffer to accept 398 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 399 * doesn't get called again until try_write() fills the socket 400 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 401 * and net/core/stream.c:sk_stream_write_space(). 402 */ 403 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 404 if (sk_stream_is_writeable(sk)) { 405 dout("%s %p queueing write work\n", __func__, con); 406 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 407 queue_con(con); 408 } 409 } else { 410 dout("%s %p nothing to write\n", __func__, con); 411 } 412 } 413 414 /* socket's state has changed */ 415 static void ceph_sock_state_change(struct sock *sk) 416 { 417 struct ceph_connection *con = sk->sk_user_data; 418 419 dout("%s %p state = %lu sk_state = %u\n", __func__, 420 con, con->state, sk->sk_state); 421 422 switch (sk->sk_state) { 423 case TCP_CLOSE: 424 dout("%s TCP_CLOSE\n", __func__); 425 /* fall through */ 426 case TCP_CLOSE_WAIT: 427 dout("%s TCP_CLOSE_WAIT\n", __func__); 428 con_sock_state_closing(con); 429 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 430 queue_con(con); 431 break; 432 case TCP_ESTABLISHED: 433 dout("%s TCP_ESTABLISHED\n", __func__); 434 con_sock_state_connected(con); 435 queue_con(con); 436 break; 437 default: /* Everything else is uninteresting */ 438 break; 439 } 440 } 441 442 /* 443 * set up socket callbacks 444 */ 445 static void set_sock_callbacks(struct socket *sock, 446 struct ceph_connection *con) 447 { 448 struct sock *sk = sock->sk; 449 sk->sk_user_data = con; 450 sk->sk_data_ready = ceph_sock_data_ready; 451 sk->sk_write_space = ceph_sock_write_space; 452 sk->sk_state_change = ceph_sock_state_change; 453 } 454 455 456 /* 457 * socket helpers 458 */ 459 460 /* 461 * initiate connection to a remote socket. 462 */ 463 static int ceph_tcp_connect(struct ceph_connection *con) 464 { 465 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 466 struct socket *sock; 467 unsigned int noio_flag; 468 int ret; 469 470 BUG_ON(con->sock); 471 472 /* sock_create_kern() allocates with GFP_KERNEL */ 473 noio_flag = memalloc_noio_save(); 474 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 475 SOCK_STREAM, IPPROTO_TCP, &sock); 476 memalloc_noio_restore(noio_flag); 477 if (ret) 478 return ret; 479 sock->sk->sk_allocation = GFP_NOFS; 480 481 #ifdef CONFIG_LOCKDEP 482 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 483 #endif 484 485 set_sock_callbacks(sock, con); 486 487 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 488 489 con_sock_state_connecting(con); 490 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 491 O_NONBLOCK); 492 if (ret == -EINPROGRESS) { 493 dout("connect %s EINPROGRESS sk_state = %u\n", 494 ceph_pr_addr(&con->peer_addr.in_addr), 495 sock->sk->sk_state); 496 } else if (ret < 0) { 497 pr_err("connect %s error %d\n", 498 ceph_pr_addr(&con->peer_addr.in_addr), ret); 499 sock_release(sock); 500 return ret; 501 } 502 503 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 504 int optval = 1; 505 506 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 507 (char *)&optval, sizeof(optval)); 508 if (ret) 509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 510 ret); 511 } 512 513 con->sock = sock; 514 return 0; 515 } 516 517 /* 518 * If @buf is NULL, discard up to @len bytes. 519 */ 520 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 521 { 522 struct kvec iov = {buf, len}; 523 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 524 int r; 525 526 if (!buf) 527 msg.msg_flags |= MSG_TRUNC; 528 529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len); 530 r = sock_recvmsg(sock, &msg, msg.msg_flags); 531 if (r == -EAGAIN) 532 r = 0; 533 return r; 534 } 535 536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 537 int page_offset, size_t length) 538 { 539 struct bio_vec bvec = { 540 .bv_page = page, 541 .bv_offset = page_offset, 542 .bv_len = length 543 }; 544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 545 int r; 546 547 BUG_ON(page_offset + length > PAGE_SIZE); 548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length); 549 r = sock_recvmsg(sock, &msg, msg.msg_flags); 550 if (r == -EAGAIN) 551 r = 0; 552 return r; 553 } 554 555 /* 556 * write something. @more is true if caller will be sending more data 557 * shortly. 558 */ 559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 560 size_t kvlen, size_t len, int more) 561 { 562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 563 int r; 564 565 if (more) 566 msg.msg_flags |= MSG_MORE; 567 else 568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 569 570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 571 if (r == -EAGAIN) 572 r = 0; 573 return r; 574 } 575 576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 577 int offset, size_t size, bool more) 578 { 579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 580 int ret; 581 582 ret = kernel_sendpage(sock, page, offset, size, flags); 583 if (ret == -EAGAIN) 584 ret = 0; 585 586 return ret; 587 } 588 589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 590 int offset, size_t size, bool more) 591 { 592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 593 struct bio_vec bvec; 594 int ret; 595 596 /* sendpage cannot properly handle pages with page_count == 0, 597 * we need to fallback to sendmsg if that's the case */ 598 if (page_count(page) >= 1) 599 return __ceph_tcp_sendpage(sock, page, offset, size, more); 600 601 bvec.bv_page = page; 602 bvec.bv_offset = offset; 603 bvec.bv_len = size; 604 605 if (more) 606 msg.msg_flags |= MSG_MORE; 607 else 608 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 609 610 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size); 611 ret = sock_sendmsg(sock, &msg); 612 if (ret == -EAGAIN) 613 ret = 0; 614 615 return ret; 616 } 617 618 /* 619 * Shutdown/close the socket for the given connection. 620 */ 621 static int con_close_socket(struct ceph_connection *con) 622 { 623 int rc = 0; 624 625 dout("con_close_socket on %p sock %p\n", con, con->sock); 626 if (con->sock) { 627 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 628 sock_release(con->sock); 629 con->sock = NULL; 630 } 631 632 /* 633 * Forcibly clear the SOCK_CLOSED flag. It gets set 634 * independent of the connection mutex, and we could have 635 * received a socket close event before we had the chance to 636 * shut the socket down. 637 */ 638 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 639 640 con_sock_state_closed(con); 641 return rc; 642 } 643 644 /* 645 * Reset a connection. Discard all incoming and outgoing messages 646 * and clear *_seq state. 647 */ 648 static void ceph_msg_remove(struct ceph_msg *msg) 649 { 650 list_del_init(&msg->list_head); 651 652 ceph_msg_put(msg); 653 } 654 static void ceph_msg_remove_list(struct list_head *head) 655 { 656 while (!list_empty(head)) { 657 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 658 list_head); 659 ceph_msg_remove(msg); 660 } 661 } 662 663 static void reset_connection(struct ceph_connection *con) 664 { 665 /* reset connection, out_queue, msg_ and connect_seq */ 666 /* discard existing out_queue and msg_seq */ 667 dout("reset_connection %p\n", con); 668 ceph_msg_remove_list(&con->out_queue); 669 ceph_msg_remove_list(&con->out_sent); 670 671 if (con->in_msg) { 672 BUG_ON(con->in_msg->con != con); 673 ceph_msg_put(con->in_msg); 674 con->in_msg = NULL; 675 } 676 677 con->connect_seq = 0; 678 con->out_seq = 0; 679 if (con->out_msg) { 680 BUG_ON(con->out_msg->con != con); 681 ceph_msg_put(con->out_msg); 682 con->out_msg = NULL; 683 } 684 con->in_seq = 0; 685 con->in_seq_acked = 0; 686 687 con->out_skip = 0; 688 } 689 690 /* 691 * mark a peer down. drop any open connections. 692 */ 693 void ceph_con_close(struct ceph_connection *con) 694 { 695 mutex_lock(&con->mutex); 696 dout("con_close %p peer %s\n", con, 697 ceph_pr_addr(&con->peer_addr.in_addr)); 698 con->state = CON_STATE_CLOSED; 699 700 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 701 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 702 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 703 con_flag_clear(con, CON_FLAG_BACKOFF); 704 705 reset_connection(con); 706 con->peer_global_seq = 0; 707 cancel_con(con); 708 con_close_socket(con); 709 mutex_unlock(&con->mutex); 710 } 711 EXPORT_SYMBOL(ceph_con_close); 712 713 /* 714 * Reopen a closed connection, with a new peer address. 715 */ 716 void ceph_con_open(struct ceph_connection *con, 717 __u8 entity_type, __u64 entity_num, 718 struct ceph_entity_addr *addr) 719 { 720 mutex_lock(&con->mutex); 721 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 722 723 WARN_ON(con->state != CON_STATE_CLOSED); 724 con->state = CON_STATE_PREOPEN; 725 726 con->peer_name.type = (__u8) entity_type; 727 con->peer_name.num = cpu_to_le64(entity_num); 728 729 memcpy(&con->peer_addr, addr, sizeof(*addr)); 730 con->delay = 0; /* reset backoff memory */ 731 mutex_unlock(&con->mutex); 732 queue_con(con); 733 } 734 EXPORT_SYMBOL(ceph_con_open); 735 736 /* 737 * return true if this connection ever successfully opened 738 */ 739 bool ceph_con_opened(struct ceph_connection *con) 740 { 741 return con->connect_seq > 0; 742 } 743 744 /* 745 * initialize a new connection. 746 */ 747 void ceph_con_init(struct ceph_connection *con, void *private, 748 const struct ceph_connection_operations *ops, 749 struct ceph_messenger *msgr) 750 { 751 dout("con_init %p\n", con); 752 memset(con, 0, sizeof(*con)); 753 con->private = private; 754 con->ops = ops; 755 con->msgr = msgr; 756 757 con_sock_state_init(con); 758 759 mutex_init(&con->mutex); 760 INIT_LIST_HEAD(&con->out_queue); 761 INIT_LIST_HEAD(&con->out_sent); 762 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 763 764 con->state = CON_STATE_CLOSED; 765 } 766 EXPORT_SYMBOL(ceph_con_init); 767 768 769 /* 770 * We maintain a global counter to order connection attempts. Get 771 * a unique seq greater than @gt. 772 */ 773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 774 { 775 u32 ret; 776 777 spin_lock(&msgr->global_seq_lock); 778 if (msgr->global_seq < gt) 779 msgr->global_seq = gt; 780 ret = ++msgr->global_seq; 781 spin_unlock(&msgr->global_seq_lock); 782 return ret; 783 } 784 785 static void con_out_kvec_reset(struct ceph_connection *con) 786 { 787 BUG_ON(con->out_skip); 788 789 con->out_kvec_left = 0; 790 con->out_kvec_bytes = 0; 791 con->out_kvec_cur = &con->out_kvec[0]; 792 } 793 794 static void con_out_kvec_add(struct ceph_connection *con, 795 size_t size, void *data) 796 { 797 int index = con->out_kvec_left; 798 799 BUG_ON(con->out_skip); 800 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 801 802 con->out_kvec[index].iov_len = size; 803 con->out_kvec[index].iov_base = data; 804 con->out_kvec_left++; 805 con->out_kvec_bytes += size; 806 } 807 808 /* 809 * Chop off a kvec from the end. Return residual number of bytes for 810 * that kvec, i.e. how many bytes would have been written if the kvec 811 * hadn't been nuked. 812 */ 813 static int con_out_kvec_skip(struct ceph_connection *con) 814 { 815 int off = con->out_kvec_cur - con->out_kvec; 816 int skip = 0; 817 818 if (con->out_kvec_bytes > 0) { 819 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 820 BUG_ON(con->out_kvec_bytes < skip); 821 BUG_ON(!con->out_kvec_left); 822 con->out_kvec_bytes -= skip; 823 con->out_kvec_left--; 824 } 825 826 return skip; 827 } 828 829 #ifdef CONFIG_BLOCK 830 831 /* 832 * For a bio data item, a piece is whatever remains of the next 833 * entry in the current bio iovec, or the first entry in the next 834 * bio in the list. 835 */ 836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 837 size_t length) 838 { 839 struct ceph_msg_data *data = cursor->data; 840 struct ceph_bio_iter *it = &cursor->bio_iter; 841 842 cursor->resid = min_t(size_t, length, data->bio_length); 843 *it = data->bio_pos; 844 if (cursor->resid < it->iter.bi_size) 845 it->iter.bi_size = cursor->resid; 846 847 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 848 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 849 } 850 851 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 852 size_t *page_offset, 853 size_t *length) 854 { 855 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 856 cursor->bio_iter.iter); 857 858 *page_offset = bv.bv_offset; 859 *length = bv.bv_len; 860 return bv.bv_page; 861 } 862 863 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 864 size_t bytes) 865 { 866 struct ceph_bio_iter *it = &cursor->bio_iter; 867 868 BUG_ON(bytes > cursor->resid); 869 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 870 cursor->resid -= bytes; 871 bio_advance_iter(it->bio, &it->iter, bytes); 872 873 if (!cursor->resid) { 874 BUG_ON(!cursor->last_piece); 875 return false; /* no more data */ 876 } 877 878 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done)) 879 return false; /* more bytes to process in this segment */ 880 881 if (!it->iter.bi_size) { 882 it->bio = it->bio->bi_next; 883 it->iter = it->bio->bi_iter; 884 if (cursor->resid < it->iter.bi_size) 885 it->iter.bi_size = cursor->resid; 886 } 887 888 BUG_ON(cursor->last_piece); 889 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 890 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 891 return true; 892 } 893 #endif /* CONFIG_BLOCK */ 894 895 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 896 size_t length) 897 { 898 struct ceph_msg_data *data = cursor->data; 899 struct bio_vec *bvecs = data->bvec_pos.bvecs; 900 901 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 902 cursor->bvec_iter = data->bvec_pos.iter; 903 cursor->bvec_iter.bi_size = cursor->resid; 904 905 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 906 cursor->last_piece = 907 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 908 } 909 910 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 911 size_t *page_offset, 912 size_t *length) 913 { 914 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 915 cursor->bvec_iter); 916 917 *page_offset = bv.bv_offset; 918 *length = bv.bv_len; 919 return bv.bv_page; 920 } 921 922 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 923 size_t bytes) 924 { 925 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 926 927 BUG_ON(bytes > cursor->resid); 928 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 929 cursor->resid -= bytes; 930 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 931 932 if (!cursor->resid) { 933 BUG_ON(!cursor->last_piece); 934 return false; /* no more data */ 935 } 936 937 if (!bytes || cursor->bvec_iter.bi_bvec_done) 938 return false; /* more bytes to process in this segment */ 939 940 BUG_ON(cursor->last_piece); 941 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 942 cursor->last_piece = 943 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 944 return true; 945 } 946 947 /* 948 * For a page array, a piece comes from the first page in the array 949 * that has not already been fully consumed. 950 */ 951 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 952 size_t length) 953 { 954 struct ceph_msg_data *data = cursor->data; 955 int page_count; 956 957 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 958 959 BUG_ON(!data->pages); 960 BUG_ON(!data->length); 961 962 cursor->resid = min(length, data->length); 963 page_count = calc_pages_for(data->alignment, (u64)data->length); 964 cursor->page_offset = data->alignment & ~PAGE_MASK; 965 cursor->page_index = 0; 966 BUG_ON(page_count > (int)USHRT_MAX); 967 cursor->page_count = (unsigned short)page_count; 968 BUG_ON(length > SIZE_MAX - cursor->page_offset); 969 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 970 } 971 972 static struct page * 973 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 974 size_t *page_offset, size_t *length) 975 { 976 struct ceph_msg_data *data = cursor->data; 977 978 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 979 980 BUG_ON(cursor->page_index >= cursor->page_count); 981 BUG_ON(cursor->page_offset >= PAGE_SIZE); 982 983 *page_offset = cursor->page_offset; 984 if (cursor->last_piece) 985 *length = cursor->resid; 986 else 987 *length = PAGE_SIZE - *page_offset; 988 989 return data->pages[cursor->page_index]; 990 } 991 992 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 993 size_t bytes) 994 { 995 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 996 997 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 998 999 /* Advance the cursor page offset */ 1000 1001 cursor->resid -= bytes; 1002 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 1003 if (!bytes || cursor->page_offset) 1004 return false; /* more bytes to process in the current page */ 1005 1006 if (!cursor->resid) 1007 return false; /* no more data */ 1008 1009 /* Move on to the next page; offset is already at 0 */ 1010 1011 BUG_ON(cursor->page_index >= cursor->page_count); 1012 cursor->page_index++; 1013 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1014 1015 return true; 1016 } 1017 1018 /* 1019 * For a pagelist, a piece is whatever remains to be consumed in the 1020 * first page in the list, or the front of the next page. 1021 */ 1022 static void 1023 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1024 size_t length) 1025 { 1026 struct ceph_msg_data *data = cursor->data; 1027 struct ceph_pagelist *pagelist; 1028 struct page *page; 1029 1030 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1031 1032 pagelist = data->pagelist; 1033 BUG_ON(!pagelist); 1034 1035 if (!length) 1036 return; /* pagelist can be assigned but empty */ 1037 1038 BUG_ON(list_empty(&pagelist->head)); 1039 page = list_first_entry(&pagelist->head, struct page, lru); 1040 1041 cursor->resid = min(length, pagelist->length); 1042 cursor->page = page; 1043 cursor->offset = 0; 1044 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1045 } 1046 1047 static struct page * 1048 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1049 size_t *page_offset, size_t *length) 1050 { 1051 struct ceph_msg_data *data = cursor->data; 1052 struct ceph_pagelist *pagelist; 1053 1054 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1055 1056 pagelist = data->pagelist; 1057 BUG_ON(!pagelist); 1058 1059 BUG_ON(!cursor->page); 1060 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1061 1062 /* offset of first page in pagelist is always 0 */ 1063 *page_offset = cursor->offset & ~PAGE_MASK; 1064 if (cursor->last_piece) 1065 *length = cursor->resid; 1066 else 1067 *length = PAGE_SIZE - *page_offset; 1068 1069 return cursor->page; 1070 } 1071 1072 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1073 size_t bytes) 1074 { 1075 struct ceph_msg_data *data = cursor->data; 1076 struct ceph_pagelist *pagelist; 1077 1078 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1079 1080 pagelist = data->pagelist; 1081 BUG_ON(!pagelist); 1082 1083 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1084 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1085 1086 /* Advance the cursor offset */ 1087 1088 cursor->resid -= bytes; 1089 cursor->offset += bytes; 1090 /* offset of first page in pagelist is always 0 */ 1091 if (!bytes || cursor->offset & ~PAGE_MASK) 1092 return false; /* more bytes to process in the current page */ 1093 1094 if (!cursor->resid) 1095 return false; /* no more data */ 1096 1097 /* Move on to the next page */ 1098 1099 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1100 cursor->page = list_next_entry(cursor->page, lru); 1101 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1102 1103 return true; 1104 } 1105 1106 /* 1107 * Message data is handled (sent or received) in pieces, where each 1108 * piece resides on a single page. The network layer might not 1109 * consume an entire piece at once. A data item's cursor keeps 1110 * track of which piece is next to process and how much remains to 1111 * be processed in that piece. It also tracks whether the current 1112 * piece is the last one in the data item. 1113 */ 1114 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1115 { 1116 size_t length = cursor->total_resid; 1117 1118 switch (cursor->data->type) { 1119 case CEPH_MSG_DATA_PAGELIST: 1120 ceph_msg_data_pagelist_cursor_init(cursor, length); 1121 break; 1122 case CEPH_MSG_DATA_PAGES: 1123 ceph_msg_data_pages_cursor_init(cursor, length); 1124 break; 1125 #ifdef CONFIG_BLOCK 1126 case CEPH_MSG_DATA_BIO: 1127 ceph_msg_data_bio_cursor_init(cursor, length); 1128 break; 1129 #endif /* CONFIG_BLOCK */ 1130 case CEPH_MSG_DATA_BVECS: 1131 ceph_msg_data_bvecs_cursor_init(cursor, length); 1132 break; 1133 case CEPH_MSG_DATA_NONE: 1134 default: 1135 /* BUG(); */ 1136 break; 1137 } 1138 cursor->need_crc = true; 1139 } 1140 1141 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1142 { 1143 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1144 struct ceph_msg_data *data; 1145 1146 BUG_ON(!length); 1147 BUG_ON(length > msg->data_length); 1148 BUG_ON(list_empty(&msg->data)); 1149 1150 cursor->data_head = &msg->data; 1151 cursor->total_resid = length; 1152 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1153 cursor->data = data; 1154 1155 __ceph_msg_data_cursor_init(cursor); 1156 } 1157 1158 /* 1159 * Return the page containing the next piece to process for a given 1160 * data item, and supply the page offset and length of that piece. 1161 * Indicate whether this is the last piece in this data item. 1162 */ 1163 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1164 size_t *page_offset, size_t *length, 1165 bool *last_piece) 1166 { 1167 struct page *page; 1168 1169 switch (cursor->data->type) { 1170 case CEPH_MSG_DATA_PAGELIST: 1171 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1172 break; 1173 case CEPH_MSG_DATA_PAGES: 1174 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1175 break; 1176 #ifdef CONFIG_BLOCK 1177 case CEPH_MSG_DATA_BIO: 1178 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1179 break; 1180 #endif /* CONFIG_BLOCK */ 1181 case CEPH_MSG_DATA_BVECS: 1182 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1183 break; 1184 case CEPH_MSG_DATA_NONE: 1185 default: 1186 page = NULL; 1187 break; 1188 } 1189 1190 BUG_ON(!page); 1191 BUG_ON(*page_offset + *length > PAGE_SIZE); 1192 BUG_ON(!*length); 1193 BUG_ON(*length > cursor->resid); 1194 if (last_piece) 1195 *last_piece = cursor->last_piece; 1196 1197 return page; 1198 } 1199 1200 /* 1201 * Returns true if the result moves the cursor on to the next piece 1202 * of the data item. 1203 */ 1204 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1205 size_t bytes) 1206 { 1207 bool new_piece; 1208 1209 BUG_ON(bytes > cursor->resid); 1210 switch (cursor->data->type) { 1211 case CEPH_MSG_DATA_PAGELIST: 1212 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1213 break; 1214 case CEPH_MSG_DATA_PAGES: 1215 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1216 break; 1217 #ifdef CONFIG_BLOCK 1218 case CEPH_MSG_DATA_BIO: 1219 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1220 break; 1221 #endif /* CONFIG_BLOCK */ 1222 case CEPH_MSG_DATA_BVECS: 1223 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1224 break; 1225 case CEPH_MSG_DATA_NONE: 1226 default: 1227 BUG(); 1228 break; 1229 } 1230 cursor->total_resid -= bytes; 1231 1232 if (!cursor->resid && cursor->total_resid) { 1233 WARN_ON(!cursor->last_piece); 1234 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1235 cursor->data = list_next_entry(cursor->data, links); 1236 __ceph_msg_data_cursor_init(cursor); 1237 new_piece = true; 1238 } 1239 cursor->need_crc = new_piece; 1240 } 1241 1242 static size_t sizeof_footer(struct ceph_connection *con) 1243 { 1244 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1245 sizeof(struct ceph_msg_footer) : 1246 sizeof(struct ceph_msg_footer_old); 1247 } 1248 1249 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1250 { 1251 BUG_ON(!msg); 1252 BUG_ON(!data_len); 1253 1254 /* Initialize data cursor */ 1255 1256 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1257 } 1258 1259 /* 1260 * Prepare footer for currently outgoing message, and finish things 1261 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1262 */ 1263 static void prepare_write_message_footer(struct ceph_connection *con) 1264 { 1265 struct ceph_msg *m = con->out_msg; 1266 1267 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1268 1269 dout("prepare_write_message_footer %p\n", con); 1270 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1271 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1272 if (con->ops->sign_message) 1273 con->ops->sign_message(m); 1274 else 1275 m->footer.sig = 0; 1276 } else { 1277 m->old_footer.flags = m->footer.flags; 1278 } 1279 con->out_more = m->more_to_follow; 1280 con->out_msg_done = true; 1281 } 1282 1283 /* 1284 * Prepare headers for the next outgoing message. 1285 */ 1286 static void prepare_write_message(struct ceph_connection *con) 1287 { 1288 struct ceph_msg *m; 1289 u32 crc; 1290 1291 con_out_kvec_reset(con); 1292 con->out_msg_done = false; 1293 1294 /* Sneak an ack in there first? If we can get it into the same 1295 * TCP packet that's a good thing. */ 1296 if (con->in_seq > con->in_seq_acked) { 1297 con->in_seq_acked = con->in_seq; 1298 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1299 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1300 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1301 &con->out_temp_ack); 1302 } 1303 1304 BUG_ON(list_empty(&con->out_queue)); 1305 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1306 con->out_msg = m; 1307 BUG_ON(m->con != con); 1308 1309 /* put message on sent list */ 1310 ceph_msg_get(m); 1311 list_move_tail(&m->list_head, &con->out_sent); 1312 1313 /* 1314 * only assign outgoing seq # if we haven't sent this message 1315 * yet. if it is requeued, resend with it's original seq. 1316 */ 1317 if (m->needs_out_seq) { 1318 m->hdr.seq = cpu_to_le64(++con->out_seq); 1319 m->needs_out_seq = false; 1320 1321 if (con->ops->reencode_message) 1322 con->ops->reencode_message(m); 1323 } 1324 1325 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1326 m, con->out_seq, le16_to_cpu(m->hdr.type), 1327 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1328 m->data_length); 1329 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1330 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1331 1332 /* tag + hdr + front + middle */ 1333 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1334 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1335 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1336 1337 if (m->middle) 1338 con_out_kvec_add(con, m->middle->vec.iov_len, 1339 m->middle->vec.iov_base); 1340 1341 /* fill in hdr crc and finalize hdr */ 1342 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1343 con->out_msg->hdr.crc = cpu_to_le32(crc); 1344 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1345 1346 /* fill in front and middle crc, footer */ 1347 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1348 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1349 if (m->middle) { 1350 crc = crc32c(0, m->middle->vec.iov_base, 1351 m->middle->vec.iov_len); 1352 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1353 } else 1354 con->out_msg->footer.middle_crc = 0; 1355 dout("%s front_crc %u middle_crc %u\n", __func__, 1356 le32_to_cpu(con->out_msg->footer.front_crc), 1357 le32_to_cpu(con->out_msg->footer.middle_crc)); 1358 con->out_msg->footer.flags = 0; 1359 1360 /* is there a data payload? */ 1361 con->out_msg->footer.data_crc = 0; 1362 if (m->data_length) { 1363 prepare_message_data(con->out_msg, m->data_length); 1364 con->out_more = 1; /* data + footer will follow */ 1365 } else { 1366 /* no, queue up footer too and be done */ 1367 prepare_write_message_footer(con); 1368 } 1369 1370 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1371 } 1372 1373 /* 1374 * Prepare an ack. 1375 */ 1376 static void prepare_write_ack(struct ceph_connection *con) 1377 { 1378 dout("prepare_write_ack %p %llu -> %llu\n", con, 1379 con->in_seq_acked, con->in_seq); 1380 con->in_seq_acked = con->in_seq; 1381 1382 con_out_kvec_reset(con); 1383 1384 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1385 1386 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1387 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1388 &con->out_temp_ack); 1389 1390 con->out_more = 1; /* more will follow.. eventually.. */ 1391 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1392 } 1393 1394 /* 1395 * Prepare to share the seq during handshake 1396 */ 1397 static void prepare_write_seq(struct ceph_connection *con) 1398 { 1399 dout("prepare_write_seq %p %llu -> %llu\n", con, 1400 con->in_seq_acked, con->in_seq); 1401 con->in_seq_acked = con->in_seq; 1402 1403 con_out_kvec_reset(con); 1404 1405 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1406 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1407 &con->out_temp_ack); 1408 1409 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1410 } 1411 1412 /* 1413 * Prepare to write keepalive byte. 1414 */ 1415 static void prepare_write_keepalive(struct ceph_connection *con) 1416 { 1417 dout("prepare_write_keepalive %p\n", con); 1418 con_out_kvec_reset(con); 1419 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1420 struct timespec now; 1421 1422 ktime_get_real_ts(&now); 1423 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1424 ceph_encode_timespec(&con->out_temp_keepalive2, &now); 1425 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1426 &con->out_temp_keepalive2); 1427 } else { 1428 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1429 } 1430 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1431 } 1432 1433 /* 1434 * Connection negotiation. 1435 */ 1436 1437 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1438 int *auth_proto) 1439 { 1440 struct ceph_auth_handshake *auth; 1441 1442 if (!con->ops->get_authorizer) { 1443 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1444 con->out_connect.authorizer_len = 0; 1445 return NULL; 1446 } 1447 1448 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1449 if (IS_ERR(auth)) 1450 return auth; 1451 1452 con->auth_reply_buf = auth->authorizer_reply_buf; 1453 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1454 return auth; 1455 } 1456 1457 /* 1458 * We connected to a peer and are saying hello. 1459 */ 1460 static void prepare_write_banner(struct ceph_connection *con) 1461 { 1462 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1463 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1464 &con->msgr->my_enc_addr); 1465 1466 con->out_more = 0; 1467 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1468 } 1469 1470 static int prepare_write_connect(struct ceph_connection *con) 1471 { 1472 unsigned int global_seq = get_global_seq(con->msgr, 0); 1473 int proto; 1474 int auth_proto; 1475 struct ceph_auth_handshake *auth; 1476 1477 switch (con->peer_name.type) { 1478 case CEPH_ENTITY_TYPE_MON: 1479 proto = CEPH_MONC_PROTOCOL; 1480 break; 1481 case CEPH_ENTITY_TYPE_OSD: 1482 proto = CEPH_OSDC_PROTOCOL; 1483 break; 1484 case CEPH_ENTITY_TYPE_MDS: 1485 proto = CEPH_MDSC_PROTOCOL; 1486 break; 1487 default: 1488 BUG(); 1489 } 1490 1491 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1492 con->connect_seq, global_seq, proto); 1493 1494 con->out_connect.features = 1495 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1496 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1497 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1498 con->out_connect.global_seq = cpu_to_le32(global_seq); 1499 con->out_connect.protocol_version = cpu_to_le32(proto); 1500 con->out_connect.flags = 0; 1501 1502 auth_proto = CEPH_AUTH_UNKNOWN; 1503 auth = get_connect_authorizer(con, &auth_proto); 1504 if (IS_ERR(auth)) 1505 return PTR_ERR(auth); 1506 1507 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1508 con->out_connect.authorizer_len = auth ? 1509 cpu_to_le32(auth->authorizer_buf_len) : 0; 1510 1511 con_out_kvec_add(con, sizeof (con->out_connect), 1512 &con->out_connect); 1513 if (auth && auth->authorizer_buf_len) 1514 con_out_kvec_add(con, auth->authorizer_buf_len, 1515 auth->authorizer_buf); 1516 1517 con->out_more = 0; 1518 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1519 1520 return 0; 1521 } 1522 1523 /* 1524 * write as much of pending kvecs to the socket as we can. 1525 * 1 -> done 1526 * 0 -> socket full, but more to do 1527 * <0 -> error 1528 */ 1529 static int write_partial_kvec(struct ceph_connection *con) 1530 { 1531 int ret; 1532 1533 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1534 while (con->out_kvec_bytes > 0) { 1535 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1536 con->out_kvec_left, con->out_kvec_bytes, 1537 con->out_more); 1538 if (ret <= 0) 1539 goto out; 1540 con->out_kvec_bytes -= ret; 1541 if (con->out_kvec_bytes == 0) 1542 break; /* done */ 1543 1544 /* account for full iov entries consumed */ 1545 while (ret >= con->out_kvec_cur->iov_len) { 1546 BUG_ON(!con->out_kvec_left); 1547 ret -= con->out_kvec_cur->iov_len; 1548 con->out_kvec_cur++; 1549 con->out_kvec_left--; 1550 } 1551 /* and for a partially-consumed entry */ 1552 if (ret) { 1553 con->out_kvec_cur->iov_len -= ret; 1554 con->out_kvec_cur->iov_base += ret; 1555 } 1556 } 1557 con->out_kvec_left = 0; 1558 ret = 1; 1559 out: 1560 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1561 con->out_kvec_bytes, con->out_kvec_left, ret); 1562 return ret; /* done! */ 1563 } 1564 1565 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1566 unsigned int page_offset, 1567 unsigned int length) 1568 { 1569 char *kaddr; 1570 1571 kaddr = kmap(page); 1572 BUG_ON(kaddr == NULL); 1573 crc = crc32c(crc, kaddr + page_offset, length); 1574 kunmap(page); 1575 1576 return crc; 1577 } 1578 /* 1579 * Write as much message data payload as we can. If we finish, queue 1580 * up the footer. 1581 * 1 -> done, footer is now queued in out_kvec[]. 1582 * 0 -> socket full, but more to do 1583 * <0 -> error 1584 */ 1585 static int write_partial_message_data(struct ceph_connection *con) 1586 { 1587 struct ceph_msg *msg = con->out_msg; 1588 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1589 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1590 u32 crc; 1591 1592 dout("%s %p msg %p\n", __func__, con, msg); 1593 1594 if (list_empty(&msg->data)) 1595 return -EINVAL; 1596 1597 /* 1598 * Iterate through each page that contains data to be 1599 * written, and send as much as possible for each. 1600 * 1601 * If we are calculating the data crc (the default), we will 1602 * need to map the page. If we have no pages, they have 1603 * been revoked, so use the zero page. 1604 */ 1605 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1606 while (cursor->total_resid) { 1607 struct page *page; 1608 size_t page_offset; 1609 size_t length; 1610 bool last_piece; 1611 int ret; 1612 1613 if (!cursor->resid) { 1614 ceph_msg_data_advance(cursor, 0); 1615 continue; 1616 } 1617 1618 page = ceph_msg_data_next(cursor, &page_offset, &length, 1619 &last_piece); 1620 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1621 length, !last_piece); 1622 if (ret <= 0) { 1623 if (do_datacrc) 1624 msg->footer.data_crc = cpu_to_le32(crc); 1625 1626 return ret; 1627 } 1628 if (do_datacrc && cursor->need_crc) 1629 crc = ceph_crc32c_page(crc, page, page_offset, length); 1630 ceph_msg_data_advance(cursor, (size_t)ret); 1631 } 1632 1633 dout("%s %p msg %p done\n", __func__, con, msg); 1634 1635 /* prepare and queue up footer, too */ 1636 if (do_datacrc) 1637 msg->footer.data_crc = cpu_to_le32(crc); 1638 else 1639 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1640 con_out_kvec_reset(con); 1641 prepare_write_message_footer(con); 1642 1643 return 1; /* must return > 0 to indicate success */ 1644 } 1645 1646 /* 1647 * write some zeros 1648 */ 1649 static int write_partial_skip(struct ceph_connection *con) 1650 { 1651 int ret; 1652 1653 dout("%s %p %d left\n", __func__, con, con->out_skip); 1654 while (con->out_skip > 0) { 1655 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1656 1657 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1658 if (ret <= 0) 1659 goto out; 1660 con->out_skip -= ret; 1661 } 1662 ret = 1; 1663 out: 1664 return ret; 1665 } 1666 1667 /* 1668 * Prepare to read connection handshake, or an ack. 1669 */ 1670 static void prepare_read_banner(struct ceph_connection *con) 1671 { 1672 dout("prepare_read_banner %p\n", con); 1673 con->in_base_pos = 0; 1674 } 1675 1676 static void prepare_read_connect(struct ceph_connection *con) 1677 { 1678 dout("prepare_read_connect %p\n", con); 1679 con->in_base_pos = 0; 1680 } 1681 1682 static void prepare_read_ack(struct ceph_connection *con) 1683 { 1684 dout("prepare_read_ack %p\n", con); 1685 con->in_base_pos = 0; 1686 } 1687 1688 static void prepare_read_seq(struct ceph_connection *con) 1689 { 1690 dout("prepare_read_seq %p\n", con); 1691 con->in_base_pos = 0; 1692 con->in_tag = CEPH_MSGR_TAG_SEQ; 1693 } 1694 1695 static void prepare_read_tag(struct ceph_connection *con) 1696 { 1697 dout("prepare_read_tag %p\n", con); 1698 con->in_base_pos = 0; 1699 con->in_tag = CEPH_MSGR_TAG_READY; 1700 } 1701 1702 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1703 { 1704 dout("prepare_read_keepalive_ack %p\n", con); 1705 con->in_base_pos = 0; 1706 } 1707 1708 /* 1709 * Prepare to read a message. 1710 */ 1711 static int prepare_read_message(struct ceph_connection *con) 1712 { 1713 dout("prepare_read_message %p\n", con); 1714 BUG_ON(con->in_msg != NULL); 1715 con->in_base_pos = 0; 1716 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1717 return 0; 1718 } 1719 1720 1721 static int read_partial(struct ceph_connection *con, 1722 int end, int size, void *object) 1723 { 1724 while (con->in_base_pos < end) { 1725 int left = end - con->in_base_pos; 1726 int have = size - left; 1727 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1728 if (ret <= 0) 1729 return ret; 1730 con->in_base_pos += ret; 1731 } 1732 return 1; 1733 } 1734 1735 1736 /* 1737 * Read all or part of the connect-side handshake on a new connection 1738 */ 1739 static int read_partial_banner(struct ceph_connection *con) 1740 { 1741 int size; 1742 int end; 1743 int ret; 1744 1745 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1746 1747 /* peer's banner */ 1748 size = strlen(CEPH_BANNER); 1749 end = size; 1750 ret = read_partial(con, end, size, con->in_banner); 1751 if (ret <= 0) 1752 goto out; 1753 1754 size = sizeof (con->actual_peer_addr); 1755 end += size; 1756 ret = read_partial(con, end, size, &con->actual_peer_addr); 1757 if (ret <= 0) 1758 goto out; 1759 1760 size = sizeof (con->peer_addr_for_me); 1761 end += size; 1762 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1763 if (ret <= 0) 1764 goto out; 1765 1766 out: 1767 return ret; 1768 } 1769 1770 static int read_partial_connect(struct ceph_connection *con) 1771 { 1772 int size; 1773 int end; 1774 int ret; 1775 1776 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1777 1778 size = sizeof (con->in_reply); 1779 end = size; 1780 ret = read_partial(con, end, size, &con->in_reply); 1781 if (ret <= 0) 1782 goto out; 1783 1784 size = le32_to_cpu(con->in_reply.authorizer_len); 1785 end += size; 1786 ret = read_partial(con, end, size, con->auth_reply_buf); 1787 if (ret <= 0) 1788 goto out; 1789 1790 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1791 con, (int)con->in_reply.tag, 1792 le32_to_cpu(con->in_reply.connect_seq), 1793 le32_to_cpu(con->in_reply.global_seq)); 1794 out: 1795 return ret; 1796 1797 } 1798 1799 /* 1800 * Verify the hello banner looks okay. 1801 */ 1802 static int verify_hello(struct ceph_connection *con) 1803 { 1804 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1805 pr_err("connect to %s got bad banner\n", 1806 ceph_pr_addr(&con->peer_addr.in_addr)); 1807 con->error_msg = "protocol error, bad banner"; 1808 return -1; 1809 } 1810 return 0; 1811 } 1812 1813 static bool addr_is_blank(struct sockaddr_storage *ss) 1814 { 1815 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1816 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1817 1818 switch (ss->ss_family) { 1819 case AF_INET: 1820 return addr->s_addr == htonl(INADDR_ANY); 1821 case AF_INET6: 1822 return ipv6_addr_any(addr6); 1823 default: 1824 return true; 1825 } 1826 } 1827 1828 static int addr_port(struct sockaddr_storage *ss) 1829 { 1830 switch (ss->ss_family) { 1831 case AF_INET: 1832 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1833 case AF_INET6: 1834 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1835 } 1836 return 0; 1837 } 1838 1839 static void addr_set_port(struct sockaddr_storage *ss, int p) 1840 { 1841 switch (ss->ss_family) { 1842 case AF_INET: 1843 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1844 break; 1845 case AF_INET6: 1846 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1847 break; 1848 } 1849 } 1850 1851 /* 1852 * Unlike other *_pton function semantics, zero indicates success. 1853 */ 1854 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1855 char delim, const char **ipend) 1856 { 1857 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1858 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1859 1860 memset(ss, 0, sizeof(*ss)); 1861 1862 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1863 ss->ss_family = AF_INET; 1864 return 0; 1865 } 1866 1867 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1868 ss->ss_family = AF_INET6; 1869 return 0; 1870 } 1871 1872 return -EINVAL; 1873 } 1874 1875 /* 1876 * Extract hostname string and resolve using kernel DNS facility. 1877 */ 1878 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1879 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1880 struct sockaddr_storage *ss, char delim, const char **ipend) 1881 { 1882 const char *end, *delim_p; 1883 char *colon_p, *ip_addr = NULL; 1884 int ip_len, ret; 1885 1886 /* 1887 * The end of the hostname occurs immediately preceding the delimiter or 1888 * the port marker (':') where the delimiter takes precedence. 1889 */ 1890 delim_p = memchr(name, delim, namelen); 1891 colon_p = memchr(name, ':', namelen); 1892 1893 if (delim_p && colon_p) 1894 end = delim_p < colon_p ? delim_p : colon_p; 1895 else if (!delim_p && colon_p) 1896 end = colon_p; 1897 else { 1898 end = delim_p; 1899 if (!end) /* case: hostname:/ */ 1900 end = name + namelen; 1901 } 1902 1903 if (end <= name) 1904 return -EINVAL; 1905 1906 /* do dns_resolve upcall */ 1907 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1908 if (ip_len > 0) 1909 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1910 else 1911 ret = -ESRCH; 1912 1913 kfree(ip_addr); 1914 1915 *ipend = end; 1916 1917 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1918 ret, ret ? "failed" : ceph_pr_addr(ss)); 1919 1920 return ret; 1921 } 1922 #else 1923 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1924 struct sockaddr_storage *ss, char delim, const char **ipend) 1925 { 1926 return -EINVAL; 1927 } 1928 #endif 1929 1930 /* 1931 * Parse a server name (IP or hostname). If a valid IP address is not found 1932 * then try to extract a hostname to resolve using userspace DNS upcall. 1933 */ 1934 static int ceph_parse_server_name(const char *name, size_t namelen, 1935 struct sockaddr_storage *ss, char delim, const char **ipend) 1936 { 1937 int ret; 1938 1939 ret = ceph_pton(name, namelen, ss, delim, ipend); 1940 if (ret) 1941 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1942 1943 return ret; 1944 } 1945 1946 /* 1947 * Parse an ip[:port] list into an addr array. Use the default 1948 * monitor port if a port isn't specified. 1949 */ 1950 int ceph_parse_ips(const char *c, const char *end, 1951 struct ceph_entity_addr *addr, 1952 int max_count, int *count) 1953 { 1954 int i, ret = -EINVAL; 1955 const char *p = c; 1956 1957 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1958 for (i = 0; i < max_count; i++) { 1959 const char *ipend; 1960 struct sockaddr_storage *ss = &addr[i].in_addr; 1961 int port; 1962 char delim = ','; 1963 1964 if (*p == '[') { 1965 delim = ']'; 1966 p++; 1967 } 1968 1969 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1970 if (ret) 1971 goto bad; 1972 ret = -EINVAL; 1973 1974 p = ipend; 1975 1976 if (delim == ']') { 1977 if (*p != ']') { 1978 dout("missing matching ']'\n"); 1979 goto bad; 1980 } 1981 p++; 1982 } 1983 1984 /* port? */ 1985 if (p < end && *p == ':') { 1986 port = 0; 1987 p++; 1988 while (p < end && *p >= '0' && *p <= '9') { 1989 port = (port * 10) + (*p - '0'); 1990 p++; 1991 } 1992 if (port == 0) 1993 port = CEPH_MON_PORT; 1994 else if (port > 65535) 1995 goto bad; 1996 } else { 1997 port = CEPH_MON_PORT; 1998 } 1999 2000 addr_set_port(ss, port); 2001 2002 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 2003 2004 if (p == end) 2005 break; 2006 if (*p != ',') 2007 goto bad; 2008 p++; 2009 } 2010 2011 if (p != end) 2012 goto bad; 2013 2014 if (count) 2015 *count = i + 1; 2016 return 0; 2017 2018 bad: 2019 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 2020 return ret; 2021 } 2022 EXPORT_SYMBOL(ceph_parse_ips); 2023 2024 static int process_banner(struct ceph_connection *con) 2025 { 2026 dout("process_banner on %p\n", con); 2027 2028 if (verify_hello(con) < 0) 2029 return -1; 2030 2031 ceph_decode_addr(&con->actual_peer_addr); 2032 ceph_decode_addr(&con->peer_addr_for_me); 2033 2034 /* 2035 * Make sure the other end is who we wanted. note that the other 2036 * end may not yet know their ip address, so if it's 0.0.0.0, give 2037 * them the benefit of the doubt. 2038 */ 2039 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2040 sizeof(con->peer_addr)) != 0 && 2041 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 2042 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2043 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2044 ceph_pr_addr(&con->peer_addr.in_addr), 2045 (int)le32_to_cpu(con->peer_addr.nonce), 2046 ceph_pr_addr(&con->actual_peer_addr.in_addr), 2047 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2048 con->error_msg = "wrong peer at address"; 2049 return -1; 2050 } 2051 2052 /* 2053 * did we learn our address? 2054 */ 2055 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 2056 int port = addr_port(&con->msgr->inst.addr.in_addr); 2057 2058 memcpy(&con->msgr->inst.addr.in_addr, 2059 &con->peer_addr_for_me.in_addr, 2060 sizeof(con->peer_addr_for_me.in_addr)); 2061 addr_set_port(&con->msgr->inst.addr.in_addr, port); 2062 encode_my_addr(con->msgr); 2063 dout("process_banner learned my addr is %s\n", 2064 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2065 } 2066 2067 return 0; 2068 } 2069 2070 static int process_connect(struct ceph_connection *con) 2071 { 2072 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2073 u64 req_feat = from_msgr(con->msgr)->required_features; 2074 u64 server_feat = le64_to_cpu(con->in_reply.features); 2075 int ret; 2076 2077 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2078 2079 if (con->auth_reply_buf) { 2080 /* 2081 * Any connection that defines ->get_authorizer() 2082 * should also define ->verify_authorizer_reply(). 2083 * See get_connect_authorizer(). 2084 */ 2085 ret = con->ops->verify_authorizer_reply(con); 2086 if (ret < 0) { 2087 con->error_msg = "bad authorize reply"; 2088 return ret; 2089 } 2090 } 2091 2092 switch (con->in_reply.tag) { 2093 case CEPH_MSGR_TAG_FEATURES: 2094 pr_err("%s%lld %s feature set mismatch," 2095 " my %llx < server's %llx, missing %llx\n", 2096 ENTITY_NAME(con->peer_name), 2097 ceph_pr_addr(&con->peer_addr.in_addr), 2098 sup_feat, server_feat, server_feat & ~sup_feat); 2099 con->error_msg = "missing required protocol features"; 2100 reset_connection(con); 2101 return -1; 2102 2103 case CEPH_MSGR_TAG_BADPROTOVER: 2104 pr_err("%s%lld %s protocol version mismatch," 2105 " my %d != server's %d\n", 2106 ENTITY_NAME(con->peer_name), 2107 ceph_pr_addr(&con->peer_addr.in_addr), 2108 le32_to_cpu(con->out_connect.protocol_version), 2109 le32_to_cpu(con->in_reply.protocol_version)); 2110 con->error_msg = "protocol version mismatch"; 2111 reset_connection(con); 2112 return -1; 2113 2114 case CEPH_MSGR_TAG_BADAUTHORIZER: 2115 con->auth_retry++; 2116 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2117 con->auth_retry); 2118 if (con->auth_retry == 2) { 2119 con->error_msg = "connect authorization failure"; 2120 return -1; 2121 } 2122 con_out_kvec_reset(con); 2123 ret = prepare_write_connect(con); 2124 if (ret < 0) 2125 return ret; 2126 prepare_read_connect(con); 2127 break; 2128 2129 case CEPH_MSGR_TAG_RESETSESSION: 2130 /* 2131 * If we connected with a large connect_seq but the peer 2132 * has no record of a session with us (no connection, or 2133 * connect_seq == 0), they will send RESETSESION to indicate 2134 * that they must have reset their session, and may have 2135 * dropped messages. 2136 */ 2137 dout("process_connect got RESET peer seq %u\n", 2138 le32_to_cpu(con->in_reply.connect_seq)); 2139 pr_err("%s%lld %s connection reset\n", 2140 ENTITY_NAME(con->peer_name), 2141 ceph_pr_addr(&con->peer_addr.in_addr)); 2142 reset_connection(con); 2143 con_out_kvec_reset(con); 2144 ret = prepare_write_connect(con); 2145 if (ret < 0) 2146 return ret; 2147 prepare_read_connect(con); 2148 2149 /* Tell ceph about it. */ 2150 mutex_unlock(&con->mutex); 2151 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2152 if (con->ops->peer_reset) 2153 con->ops->peer_reset(con); 2154 mutex_lock(&con->mutex); 2155 if (con->state != CON_STATE_NEGOTIATING) 2156 return -EAGAIN; 2157 break; 2158 2159 case CEPH_MSGR_TAG_RETRY_SESSION: 2160 /* 2161 * If we sent a smaller connect_seq than the peer has, try 2162 * again with a larger value. 2163 */ 2164 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2165 le32_to_cpu(con->out_connect.connect_seq), 2166 le32_to_cpu(con->in_reply.connect_seq)); 2167 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2168 con_out_kvec_reset(con); 2169 ret = prepare_write_connect(con); 2170 if (ret < 0) 2171 return ret; 2172 prepare_read_connect(con); 2173 break; 2174 2175 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2176 /* 2177 * If we sent a smaller global_seq than the peer has, try 2178 * again with a larger value. 2179 */ 2180 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2181 con->peer_global_seq, 2182 le32_to_cpu(con->in_reply.global_seq)); 2183 get_global_seq(con->msgr, 2184 le32_to_cpu(con->in_reply.global_seq)); 2185 con_out_kvec_reset(con); 2186 ret = prepare_write_connect(con); 2187 if (ret < 0) 2188 return ret; 2189 prepare_read_connect(con); 2190 break; 2191 2192 case CEPH_MSGR_TAG_SEQ: 2193 case CEPH_MSGR_TAG_READY: 2194 if (req_feat & ~server_feat) { 2195 pr_err("%s%lld %s protocol feature mismatch," 2196 " my required %llx > server's %llx, need %llx\n", 2197 ENTITY_NAME(con->peer_name), 2198 ceph_pr_addr(&con->peer_addr.in_addr), 2199 req_feat, server_feat, req_feat & ~server_feat); 2200 con->error_msg = "missing required protocol features"; 2201 reset_connection(con); 2202 return -1; 2203 } 2204 2205 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2206 con->state = CON_STATE_OPEN; 2207 con->auth_retry = 0; /* we authenticated; clear flag */ 2208 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2209 con->connect_seq++; 2210 con->peer_features = server_feat; 2211 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2212 con->peer_global_seq, 2213 le32_to_cpu(con->in_reply.connect_seq), 2214 con->connect_seq); 2215 WARN_ON(con->connect_seq != 2216 le32_to_cpu(con->in_reply.connect_seq)); 2217 2218 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2219 con_flag_set(con, CON_FLAG_LOSSYTX); 2220 2221 con->delay = 0; /* reset backoff memory */ 2222 2223 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2224 prepare_write_seq(con); 2225 prepare_read_seq(con); 2226 } else { 2227 prepare_read_tag(con); 2228 } 2229 break; 2230 2231 case CEPH_MSGR_TAG_WAIT: 2232 /* 2233 * If there is a connection race (we are opening 2234 * connections to each other), one of us may just have 2235 * to WAIT. This shouldn't happen if we are the 2236 * client. 2237 */ 2238 con->error_msg = "protocol error, got WAIT as client"; 2239 return -1; 2240 2241 default: 2242 con->error_msg = "protocol error, garbage tag during connect"; 2243 return -1; 2244 } 2245 return 0; 2246 } 2247 2248 2249 /* 2250 * read (part of) an ack 2251 */ 2252 static int read_partial_ack(struct ceph_connection *con) 2253 { 2254 int size = sizeof (con->in_temp_ack); 2255 int end = size; 2256 2257 return read_partial(con, end, size, &con->in_temp_ack); 2258 } 2259 2260 /* 2261 * We can finally discard anything that's been acked. 2262 */ 2263 static void process_ack(struct ceph_connection *con) 2264 { 2265 struct ceph_msg *m; 2266 u64 ack = le64_to_cpu(con->in_temp_ack); 2267 u64 seq; 2268 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2269 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2270 2271 /* 2272 * In the reconnect case, con_fault() has requeued messages 2273 * in out_sent. We should cleanup old messages according to 2274 * the reconnect seq. 2275 */ 2276 while (!list_empty(list)) { 2277 m = list_first_entry(list, struct ceph_msg, list_head); 2278 if (reconnect && m->needs_out_seq) 2279 break; 2280 seq = le64_to_cpu(m->hdr.seq); 2281 if (seq > ack) 2282 break; 2283 dout("got ack for seq %llu type %d at %p\n", seq, 2284 le16_to_cpu(m->hdr.type), m); 2285 m->ack_stamp = jiffies; 2286 ceph_msg_remove(m); 2287 } 2288 2289 prepare_read_tag(con); 2290 } 2291 2292 2293 static int read_partial_message_section(struct ceph_connection *con, 2294 struct kvec *section, 2295 unsigned int sec_len, u32 *crc) 2296 { 2297 int ret, left; 2298 2299 BUG_ON(!section); 2300 2301 while (section->iov_len < sec_len) { 2302 BUG_ON(section->iov_base == NULL); 2303 left = sec_len - section->iov_len; 2304 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2305 section->iov_len, left); 2306 if (ret <= 0) 2307 return ret; 2308 section->iov_len += ret; 2309 } 2310 if (section->iov_len == sec_len) 2311 *crc = crc32c(0, section->iov_base, section->iov_len); 2312 2313 return 1; 2314 } 2315 2316 static int read_partial_msg_data(struct ceph_connection *con) 2317 { 2318 struct ceph_msg *msg = con->in_msg; 2319 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2320 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2321 struct page *page; 2322 size_t page_offset; 2323 size_t length; 2324 u32 crc = 0; 2325 int ret; 2326 2327 BUG_ON(!msg); 2328 if (list_empty(&msg->data)) 2329 return -EIO; 2330 2331 if (do_datacrc) 2332 crc = con->in_data_crc; 2333 while (cursor->total_resid) { 2334 if (!cursor->resid) { 2335 ceph_msg_data_advance(cursor, 0); 2336 continue; 2337 } 2338 2339 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2340 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2341 if (ret <= 0) { 2342 if (do_datacrc) 2343 con->in_data_crc = crc; 2344 2345 return ret; 2346 } 2347 2348 if (do_datacrc) 2349 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2350 ceph_msg_data_advance(cursor, (size_t)ret); 2351 } 2352 if (do_datacrc) 2353 con->in_data_crc = crc; 2354 2355 return 1; /* must return > 0 to indicate success */ 2356 } 2357 2358 /* 2359 * read (part of) a message. 2360 */ 2361 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2362 2363 static int read_partial_message(struct ceph_connection *con) 2364 { 2365 struct ceph_msg *m = con->in_msg; 2366 int size; 2367 int end; 2368 int ret; 2369 unsigned int front_len, middle_len, data_len; 2370 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2371 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2372 u64 seq; 2373 u32 crc; 2374 2375 dout("read_partial_message con %p msg %p\n", con, m); 2376 2377 /* header */ 2378 size = sizeof (con->in_hdr); 2379 end = size; 2380 ret = read_partial(con, end, size, &con->in_hdr); 2381 if (ret <= 0) 2382 return ret; 2383 2384 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2385 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2386 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2387 crc, con->in_hdr.crc); 2388 return -EBADMSG; 2389 } 2390 2391 front_len = le32_to_cpu(con->in_hdr.front_len); 2392 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2393 return -EIO; 2394 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2395 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2396 return -EIO; 2397 data_len = le32_to_cpu(con->in_hdr.data_len); 2398 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2399 return -EIO; 2400 2401 /* verify seq# */ 2402 seq = le64_to_cpu(con->in_hdr.seq); 2403 if ((s64)seq - (s64)con->in_seq < 1) { 2404 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2405 ENTITY_NAME(con->peer_name), 2406 ceph_pr_addr(&con->peer_addr.in_addr), 2407 seq, con->in_seq + 1); 2408 con->in_base_pos = -front_len - middle_len - data_len - 2409 sizeof_footer(con); 2410 con->in_tag = CEPH_MSGR_TAG_READY; 2411 return 1; 2412 } else if ((s64)seq - (s64)con->in_seq > 1) { 2413 pr_err("read_partial_message bad seq %lld expected %lld\n", 2414 seq, con->in_seq + 1); 2415 con->error_msg = "bad message sequence # for incoming message"; 2416 return -EBADE; 2417 } 2418 2419 /* allocate message? */ 2420 if (!con->in_msg) { 2421 int skip = 0; 2422 2423 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2424 front_len, data_len); 2425 ret = ceph_con_in_msg_alloc(con, &skip); 2426 if (ret < 0) 2427 return ret; 2428 2429 BUG_ON(!con->in_msg ^ skip); 2430 if (skip) { 2431 /* skip this message */ 2432 dout("alloc_msg said skip message\n"); 2433 con->in_base_pos = -front_len - middle_len - data_len - 2434 sizeof_footer(con); 2435 con->in_tag = CEPH_MSGR_TAG_READY; 2436 con->in_seq++; 2437 return 1; 2438 } 2439 2440 BUG_ON(!con->in_msg); 2441 BUG_ON(con->in_msg->con != con); 2442 m = con->in_msg; 2443 m->front.iov_len = 0; /* haven't read it yet */ 2444 if (m->middle) 2445 m->middle->vec.iov_len = 0; 2446 2447 /* prepare for data payload, if any */ 2448 2449 if (data_len) 2450 prepare_message_data(con->in_msg, data_len); 2451 } 2452 2453 /* front */ 2454 ret = read_partial_message_section(con, &m->front, front_len, 2455 &con->in_front_crc); 2456 if (ret <= 0) 2457 return ret; 2458 2459 /* middle */ 2460 if (m->middle) { 2461 ret = read_partial_message_section(con, &m->middle->vec, 2462 middle_len, 2463 &con->in_middle_crc); 2464 if (ret <= 0) 2465 return ret; 2466 } 2467 2468 /* (page) data */ 2469 if (data_len) { 2470 ret = read_partial_msg_data(con); 2471 if (ret <= 0) 2472 return ret; 2473 } 2474 2475 /* footer */ 2476 size = sizeof_footer(con); 2477 end += size; 2478 ret = read_partial(con, end, size, &m->footer); 2479 if (ret <= 0) 2480 return ret; 2481 2482 if (!need_sign) { 2483 m->footer.flags = m->old_footer.flags; 2484 m->footer.sig = 0; 2485 } 2486 2487 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2488 m, front_len, m->footer.front_crc, middle_len, 2489 m->footer.middle_crc, data_len, m->footer.data_crc); 2490 2491 /* crc ok? */ 2492 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2493 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2494 m, con->in_front_crc, m->footer.front_crc); 2495 return -EBADMSG; 2496 } 2497 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2498 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2499 m, con->in_middle_crc, m->footer.middle_crc); 2500 return -EBADMSG; 2501 } 2502 if (do_datacrc && 2503 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2504 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2505 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2506 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2507 return -EBADMSG; 2508 } 2509 2510 if (need_sign && con->ops->check_message_signature && 2511 con->ops->check_message_signature(m)) { 2512 pr_err("read_partial_message %p signature check failed\n", m); 2513 return -EBADMSG; 2514 } 2515 2516 return 1; /* done! */ 2517 } 2518 2519 /* 2520 * Process message. This happens in the worker thread. The callback should 2521 * be careful not to do anything that waits on other incoming messages or it 2522 * may deadlock. 2523 */ 2524 static void process_message(struct ceph_connection *con) 2525 { 2526 struct ceph_msg *msg = con->in_msg; 2527 2528 BUG_ON(con->in_msg->con != con); 2529 con->in_msg = NULL; 2530 2531 /* if first message, set peer_name */ 2532 if (con->peer_name.type == 0) 2533 con->peer_name = msg->hdr.src; 2534 2535 con->in_seq++; 2536 mutex_unlock(&con->mutex); 2537 2538 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2539 msg, le64_to_cpu(msg->hdr.seq), 2540 ENTITY_NAME(msg->hdr.src), 2541 le16_to_cpu(msg->hdr.type), 2542 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2543 le32_to_cpu(msg->hdr.front_len), 2544 le32_to_cpu(msg->hdr.data_len), 2545 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2546 con->ops->dispatch(con, msg); 2547 2548 mutex_lock(&con->mutex); 2549 } 2550 2551 static int read_keepalive_ack(struct ceph_connection *con) 2552 { 2553 struct ceph_timespec ceph_ts; 2554 size_t size = sizeof(ceph_ts); 2555 int ret = read_partial(con, size, size, &ceph_ts); 2556 if (ret <= 0) 2557 return ret; 2558 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts); 2559 prepare_read_tag(con); 2560 return 1; 2561 } 2562 2563 /* 2564 * Write something to the socket. Called in a worker thread when the 2565 * socket appears to be writeable and we have something ready to send. 2566 */ 2567 static int try_write(struct ceph_connection *con) 2568 { 2569 int ret = 1; 2570 2571 dout("try_write start %p state %lu\n", con, con->state); 2572 if (con->state != CON_STATE_PREOPEN && 2573 con->state != CON_STATE_CONNECTING && 2574 con->state != CON_STATE_NEGOTIATING && 2575 con->state != CON_STATE_OPEN) 2576 return 0; 2577 2578 /* open the socket first? */ 2579 if (con->state == CON_STATE_PREOPEN) { 2580 BUG_ON(con->sock); 2581 con->state = CON_STATE_CONNECTING; 2582 2583 con_out_kvec_reset(con); 2584 prepare_write_banner(con); 2585 prepare_read_banner(con); 2586 2587 BUG_ON(con->in_msg); 2588 con->in_tag = CEPH_MSGR_TAG_READY; 2589 dout("try_write initiating connect on %p new state %lu\n", 2590 con, con->state); 2591 ret = ceph_tcp_connect(con); 2592 if (ret < 0) { 2593 con->error_msg = "connect error"; 2594 goto out; 2595 } 2596 } 2597 2598 more: 2599 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2600 BUG_ON(!con->sock); 2601 2602 /* kvec data queued? */ 2603 if (con->out_kvec_left) { 2604 ret = write_partial_kvec(con); 2605 if (ret <= 0) 2606 goto out; 2607 } 2608 if (con->out_skip) { 2609 ret = write_partial_skip(con); 2610 if (ret <= 0) 2611 goto out; 2612 } 2613 2614 /* msg pages? */ 2615 if (con->out_msg) { 2616 if (con->out_msg_done) { 2617 ceph_msg_put(con->out_msg); 2618 con->out_msg = NULL; /* we're done with this one */ 2619 goto do_next; 2620 } 2621 2622 ret = write_partial_message_data(con); 2623 if (ret == 1) 2624 goto more; /* we need to send the footer, too! */ 2625 if (ret == 0) 2626 goto out; 2627 if (ret < 0) { 2628 dout("try_write write_partial_message_data err %d\n", 2629 ret); 2630 goto out; 2631 } 2632 } 2633 2634 do_next: 2635 if (con->state == CON_STATE_OPEN) { 2636 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2637 prepare_write_keepalive(con); 2638 goto more; 2639 } 2640 /* is anything else pending? */ 2641 if (!list_empty(&con->out_queue)) { 2642 prepare_write_message(con); 2643 goto more; 2644 } 2645 if (con->in_seq > con->in_seq_acked) { 2646 prepare_write_ack(con); 2647 goto more; 2648 } 2649 } 2650 2651 /* Nothing to do! */ 2652 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2653 dout("try_write nothing else to write.\n"); 2654 ret = 0; 2655 out: 2656 dout("try_write done on %p ret %d\n", con, ret); 2657 return ret; 2658 } 2659 2660 /* 2661 * Read what we can from the socket. 2662 */ 2663 static int try_read(struct ceph_connection *con) 2664 { 2665 int ret = -1; 2666 2667 more: 2668 dout("try_read start on %p state %lu\n", con, con->state); 2669 if (con->state != CON_STATE_CONNECTING && 2670 con->state != CON_STATE_NEGOTIATING && 2671 con->state != CON_STATE_OPEN) 2672 return 0; 2673 2674 BUG_ON(!con->sock); 2675 2676 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2677 con->in_base_pos); 2678 2679 if (con->state == CON_STATE_CONNECTING) { 2680 dout("try_read connecting\n"); 2681 ret = read_partial_banner(con); 2682 if (ret <= 0) 2683 goto out; 2684 ret = process_banner(con); 2685 if (ret < 0) 2686 goto out; 2687 2688 con->state = CON_STATE_NEGOTIATING; 2689 2690 /* 2691 * Received banner is good, exchange connection info. 2692 * Do not reset out_kvec, as sending our banner raced 2693 * with receiving peer banner after connect completed. 2694 */ 2695 ret = prepare_write_connect(con); 2696 if (ret < 0) 2697 goto out; 2698 prepare_read_connect(con); 2699 2700 /* Send connection info before awaiting response */ 2701 goto out; 2702 } 2703 2704 if (con->state == CON_STATE_NEGOTIATING) { 2705 dout("try_read negotiating\n"); 2706 ret = read_partial_connect(con); 2707 if (ret <= 0) 2708 goto out; 2709 ret = process_connect(con); 2710 if (ret < 0) 2711 goto out; 2712 goto more; 2713 } 2714 2715 WARN_ON(con->state != CON_STATE_OPEN); 2716 2717 if (con->in_base_pos < 0) { 2718 /* 2719 * skipping + discarding content. 2720 */ 2721 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos); 2722 if (ret <= 0) 2723 goto out; 2724 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos); 2725 con->in_base_pos += ret; 2726 if (con->in_base_pos) 2727 goto more; 2728 } 2729 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2730 /* 2731 * what's next? 2732 */ 2733 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2734 if (ret <= 0) 2735 goto out; 2736 dout("try_read got tag %d\n", (int)con->in_tag); 2737 switch (con->in_tag) { 2738 case CEPH_MSGR_TAG_MSG: 2739 prepare_read_message(con); 2740 break; 2741 case CEPH_MSGR_TAG_ACK: 2742 prepare_read_ack(con); 2743 break; 2744 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2745 prepare_read_keepalive_ack(con); 2746 break; 2747 case CEPH_MSGR_TAG_CLOSE: 2748 con_close_socket(con); 2749 con->state = CON_STATE_CLOSED; 2750 goto out; 2751 default: 2752 goto bad_tag; 2753 } 2754 } 2755 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2756 ret = read_partial_message(con); 2757 if (ret <= 0) { 2758 switch (ret) { 2759 case -EBADMSG: 2760 con->error_msg = "bad crc/signature"; 2761 /* fall through */ 2762 case -EBADE: 2763 ret = -EIO; 2764 break; 2765 case -EIO: 2766 con->error_msg = "io error"; 2767 break; 2768 } 2769 goto out; 2770 } 2771 if (con->in_tag == CEPH_MSGR_TAG_READY) 2772 goto more; 2773 process_message(con); 2774 if (con->state == CON_STATE_OPEN) 2775 prepare_read_tag(con); 2776 goto more; 2777 } 2778 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2779 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2780 /* 2781 * the final handshake seq exchange is semantically 2782 * equivalent to an ACK 2783 */ 2784 ret = read_partial_ack(con); 2785 if (ret <= 0) 2786 goto out; 2787 process_ack(con); 2788 goto more; 2789 } 2790 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2791 ret = read_keepalive_ack(con); 2792 if (ret <= 0) 2793 goto out; 2794 goto more; 2795 } 2796 2797 out: 2798 dout("try_read done on %p ret %d\n", con, ret); 2799 return ret; 2800 2801 bad_tag: 2802 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2803 con->error_msg = "protocol error, garbage tag"; 2804 ret = -1; 2805 goto out; 2806 } 2807 2808 2809 /* 2810 * Atomically queue work on a connection after the specified delay. 2811 * Bump @con reference to avoid races with connection teardown. 2812 * Returns 0 if work was queued, or an error code otherwise. 2813 */ 2814 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2815 { 2816 if (!con->ops->get(con)) { 2817 dout("%s %p ref count 0\n", __func__, con); 2818 return -ENOENT; 2819 } 2820 2821 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2822 dout("%s %p - already queued\n", __func__, con); 2823 con->ops->put(con); 2824 return -EBUSY; 2825 } 2826 2827 dout("%s %p %lu\n", __func__, con, delay); 2828 return 0; 2829 } 2830 2831 static void queue_con(struct ceph_connection *con) 2832 { 2833 (void) queue_con_delay(con, 0); 2834 } 2835 2836 static void cancel_con(struct ceph_connection *con) 2837 { 2838 if (cancel_delayed_work(&con->work)) { 2839 dout("%s %p\n", __func__, con); 2840 con->ops->put(con); 2841 } 2842 } 2843 2844 static bool con_sock_closed(struct ceph_connection *con) 2845 { 2846 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2847 return false; 2848 2849 #define CASE(x) \ 2850 case CON_STATE_ ## x: \ 2851 con->error_msg = "socket closed (con state " #x ")"; \ 2852 break; 2853 2854 switch (con->state) { 2855 CASE(CLOSED); 2856 CASE(PREOPEN); 2857 CASE(CONNECTING); 2858 CASE(NEGOTIATING); 2859 CASE(OPEN); 2860 CASE(STANDBY); 2861 default: 2862 pr_warn("%s con %p unrecognized state %lu\n", 2863 __func__, con, con->state); 2864 con->error_msg = "unrecognized con state"; 2865 BUG(); 2866 break; 2867 } 2868 #undef CASE 2869 2870 return true; 2871 } 2872 2873 static bool con_backoff(struct ceph_connection *con) 2874 { 2875 int ret; 2876 2877 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2878 return false; 2879 2880 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2881 if (ret) { 2882 dout("%s: con %p FAILED to back off %lu\n", __func__, 2883 con, con->delay); 2884 BUG_ON(ret == -ENOENT); 2885 con_flag_set(con, CON_FLAG_BACKOFF); 2886 } 2887 2888 return true; 2889 } 2890 2891 /* Finish fault handling; con->mutex must *not* be held here */ 2892 2893 static void con_fault_finish(struct ceph_connection *con) 2894 { 2895 dout("%s %p\n", __func__, con); 2896 2897 /* 2898 * in case we faulted due to authentication, invalidate our 2899 * current tickets so that we can get new ones. 2900 */ 2901 if (con->auth_retry) { 2902 dout("auth_retry %d, invalidating\n", con->auth_retry); 2903 if (con->ops->invalidate_authorizer) 2904 con->ops->invalidate_authorizer(con); 2905 con->auth_retry = 0; 2906 } 2907 2908 if (con->ops->fault) 2909 con->ops->fault(con); 2910 } 2911 2912 /* 2913 * Do some work on a connection. Drop a connection ref when we're done. 2914 */ 2915 static void ceph_con_workfn(struct work_struct *work) 2916 { 2917 struct ceph_connection *con = container_of(work, struct ceph_connection, 2918 work.work); 2919 bool fault; 2920 2921 mutex_lock(&con->mutex); 2922 while (true) { 2923 int ret; 2924 2925 if ((fault = con_sock_closed(con))) { 2926 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2927 break; 2928 } 2929 if (con_backoff(con)) { 2930 dout("%s: con %p BACKOFF\n", __func__, con); 2931 break; 2932 } 2933 if (con->state == CON_STATE_STANDBY) { 2934 dout("%s: con %p STANDBY\n", __func__, con); 2935 break; 2936 } 2937 if (con->state == CON_STATE_CLOSED) { 2938 dout("%s: con %p CLOSED\n", __func__, con); 2939 BUG_ON(con->sock); 2940 break; 2941 } 2942 if (con->state == CON_STATE_PREOPEN) { 2943 dout("%s: con %p PREOPEN\n", __func__, con); 2944 BUG_ON(con->sock); 2945 } 2946 2947 ret = try_read(con); 2948 if (ret < 0) { 2949 if (ret == -EAGAIN) 2950 continue; 2951 if (!con->error_msg) 2952 con->error_msg = "socket error on read"; 2953 fault = true; 2954 break; 2955 } 2956 2957 ret = try_write(con); 2958 if (ret < 0) { 2959 if (ret == -EAGAIN) 2960 continue; 2961 if (!con->error_msg) 2962 con->error_msg = "socket error on write"; 2963 fault = true; 2964 } 2965 2966 break; /* If we make it to here, we're done */ 2967 } 2968 if (fault) 2969 con_fault(con); 2970 mutex_unlock(&con->mutex); 2971 2972 if (fault) 2973 con_fault_finish(con); 2974 2975 con->ops->put(con); 2976 } 2977 2978 /* 2979 * Generic error/fault handler. A retry mechanism is used with 2980 * exponential backoff 2981 */ 2982 static void con_fault(struct ceph_connection *con) 2983 { 2984 dout("fault %p state %lu to peer %s\n", 2985 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2986 2987 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2988 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2989 con->error_msg = NULL; 2990 2991 WARN_ON(con->state != CON_STATE_CONNECTING && 2992 con->state != CON_STATE_NEGOTIATING && 2993 con->state != CON_STATE_OPEN); 2994 2995 con_close_socket(con); 2996 2997 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2998 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2999 con->state = CON_STATE_CLOSED; 3000 return; 3001 } 3002 3003 if (con->in_msg) { 3004 BUG_ON(con->in_msg->con != con); 3005 ceph_msg_put(con->in_msg); 3006 con->in_msg = NULL; 3007 } 3008 3009 /* Requeue anything that hasn't been acked */ 3010 list_splice_init(&con->out_sent, &con->out_queue); 3011 3012 /* If there are no messages queued or keepalive pending, place 3013 * the connection in a STANDBY state */ 3014 if (list_empty(&con->out_queue) && 3015 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 3016 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 3017 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 3018 con->state = CON_STATE_STANDBY; 3019 } else { 3020 /* retry after a delay. */ 3021 con->state = CON_STATE_PREOPEN; 3022 if (con->delay == 0) 3023 con->delay = BASE_DELAY_INTERVAL; 3024 else if (con->delay < MAX_DELAY_INTERVAL) 3025 con->delay *= 2; 3026 con_flag_set(con, CON_FLAG_BACKOFF); 3027 queue_con(con); 3028 } 3029 } 3030 3031 3032 3033 /* 3034 * initialize a new messenger instance 3035 */ 3036 void ceph_messenger_init(struct ceph_messenger *msgr, 3037 struct ceph_entity_addr *myaddr) 3038 { 3039 spin_lock_init(&msgr->global_seq_lock); 3040 3041 if (myaddr) 3042 msgr->inst.addr = *myaddr; 3043 3044 /* select a random nonce */ 3045 msgr->inst.addr.type = 0; 3046 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3047 encode_my_addr(msgr); 3048 3049 atomic_set(&msgr->stopping, 0); 3050 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3051 3052 dout("%s %p\n", __func__, msgr); 3053 } 3054 EXPORT_SYMBOL(ceph_messenger_init); 3055 3056 void ceph_messenger_fini(struct ceph_messenger *msgr) 3057 { 3058 put_net(read_pnet(&msgr->net)); 3059 } 3060 EXPORT_SYMBOL(ceph_messenger_fini); 3061 3062 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3063 { 3064 if (msg->con) 3065 msg->con->ops->put(msg->con); 3066 3067 msg->con = con ? con->ops->get(con) : NULL; 3068 BUG_ON(msg->con != con); 3069 } 3070 3071 static void clear_standby(struct ceph_connection *con) 3072 { 3073 /* come back from STANDBY? */ 3074 if (con->state == CON_STATE_STANDBY) { 3075 dout("clear_standby %p and ++connect_seq\n", con); 3076 con->state = CON_STATE_PREOPEN; 3077 con->connect_seq++; 3078 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3079 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3080 } 3081 } 3082 3083 /* 3084 * Queue up an outgoing message on the given connection. 3085 */ 3086 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3087 { 3088 /* set src+dst */ 3089 msg->hdr.src = con->msgr->inst.name; 3090 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3091 msg->needs_out_seq = true; 3092 3093 mutex_lock(&con->mutex); 3094 3095 if (con->state == CON_STATE_CLOSED) { 3096 dout("con_send %p closed, dropping %p\n", con, msg); 3097 ceph_msg_put(msg); 3098 mutex_unlock(&con->mutex); 3099 return; 3100 } 3101 3102 msg_con_set(msg, con); 3103 3104 BUG_ON(!list_empty(&msg->list_head)); 3105 list_add_tail(&msg->list_head, &con->out_queue); 3106 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3107 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3108 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3109 le32_to_cpu(msg->hdr.front_len), 3110 le32_to_cpu(msg->hdr.middle_len), 3111 le32_to_cpu(msg->hdr.data_len)); 3112 3113 clear_standby(con); 3114 mutex_unlock(&con->mutex); 3115 3116 /* if there wasn't anything waiting to send before, queue 3117 * new work */ 3118 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3119 queue_con(con); 3120 } 3121 EXPORT_SYMBOL(ceph_con_send); 3122 3123 /* 3124 * Revoke a message that was previously queued for send 3125 */ 3126 void ceph_msg_revoke(struct ceph_msg *msg) 3127 { 3128 struct ceph_connection *con = msg->con; 3129 3130 if (!con) { 3131 dout("%s msg %p null con\n", __func__, msg); 3132 return; /* Message not in our possession */ 3133 } 3134 3135 mutex_lock(&con->mutex); 3136 if (!list_empty(&msg->list_head)) { 3137 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3138 list_del_init(&msg->list_head); 3139 msg->hdr.seq = 0; 3140 3141 ceph_msg_put(msg); 3142 } 3143 if (con->out_msg == msg) { 3144 BUG_ON(con->out_skip); 3145 /* footer */ 3146 if (con->out_msg_done) { 3147 con->out_skip += con_out_kvec_skip(con); 3148 } else { 3149 BUG_ON(!msg->data_length); 3150 con->out_skip += sizeof_footer(con); 3151 } 3152 /* data, middle, front */ 3153 if (msg->data_length) 3154 con->out_skip += msg->cursor.total_resid; 3155 if (msg->middle) 3156 con->out_skip += con_out_kvec_skip(con); 3157 con->out_skip += con_out_kvec_skip(con); 3158 3159 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3160 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3161 msg->hdr.seq = 0; 3162 con->out_msg = NULL; 3163 ceph_msg_put(msg); 3164 } 3165 3166 mutex_unlock(&con->mutex); 3167 } 3168 3169 /* 3170 * Revoke a message that we may be reading data into 3171 */ 3172 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3173 { 3174 struct ceph_connection *con = msg->con; 3175 3176 if (!con) { 3177 dout("%s msg %p null con\n", __func__, msg); 3178 return; /* Message not in our possession */ 3179 } 3180 3181 mutex_lock(&con->mutex); 3182 if (con->in_msg == msg) { 3183 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3184 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3185 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3186 3187 /* skip rest of message */ 3188 dout("%s %p msg %p revoked\n", __func__, con, msg); 3189 con->in_base_pos = con->in_base_pos - 3190 sizeof(struct ceph_msg_header) - 3191 front_len - 3192 middle_len - 3193 data_len - 3194 sizeof(struct ceph_msg_footer); 3195 ceph_msg_put(con->in_msg); 3196 con->in_msg = NULL; 3197 con->in_tag = CEPH_MSGR_TAG_READY; 3198 con->in_seq++; 3199 } else { 3200 dout("%s %p in_msg %p msg %p no-op\n", 3201 __func__, con, con->in_msg, msg); 3202 } 3203 mutex_unlock(&con->mutex); 3204 } 3205 3206 /* 3207 * Queue a keepalive byte to ensure the tcp connection is alive. 3208 */ 3209 void ceph_con_keepalive(struct ceph_connection *con) 3210 { 3211 dout("con_keepalive %p\n", con); 3212 mutex_lock(&con->mutex); 3213 clear_standby(con); 3214 mutex_unlock(&con->mutex); 3215 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3216 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3217 queue_con(con); 3218 } 3219 EXPORT_SYMBOL(ceph_con_keepalive); 3220 3221 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3222 unsigned long interval) 3223 { 3224 if (interval > 0 && 3225 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3226 struct timespec now; 3227 struct timespec ts; 3228 ktime_get_real_ts(&now); 3229 jiffies_to_timespec(interval, &ts); 3230 ts = timespec_add(con->last_keepalive_ack, ts); 3231 return timespec_compare(&now, &ts) >= 0; 3232 } 3233 return false; 3234 } 3235 3236 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3237 { 3238 struct ceph_msg_data *data; 3239 3240 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3241 return NULL; 3242 3243 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3244 if (!data) 3245 return NULL; 3246 3247 data->type = type; 3248 INIT_LIST_HEAD(&data->links); 3249 3250 return data; 3251 } 3252 3253 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3254 { 3255 if (!data) 3256 return; 3257 3258 WARN_ON(!list_empty(&data->links)); 3259 if (data->type == CEPH_MSG_DATA_PAGELIST) 3260 ceph_pagelist_release(data->pagelist); 3261 kmem_cache_free(ceph_msg_data_cache, data); 3262 } 3263 3264 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3265 size_t length, size_t alignment) 3266 { 3267 struct ceph_msg_data *data; 3268 3269 BUG_ON(!pages); 3270 BUG_ON(!length); 3271 3272 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3273 BUG_ON(!data); 3274 data->pages = pages; 3275 data->length = length; 3276 data->alignment = alignment & ~PAGE_MASK; 3277 3278 list_add_tail(&data->links, &msg->data); 3279 msg->data_length += length; 3280 } 3281 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3282 3283 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3284 struct ceph_pagelist *pagelist) 3285 { 3286 struct ceph_msg_data *data; 3287 3288 BUG_ON(!pagelist); 3289 BUG_ON(!pagelist->length); 3290 3291 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3292 BUG_ON(!data); 3293 data->pagelist = pagelist; 3294 3295 list_add_tail(&data->links, &msg->data); 3296 msg->data_length += pagelist->length; 3297 } 3298 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3299 3300 #ifdef CONFIG_BLOCK 3301 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 3302 u32 length) 3303 { 3304 struct ceph_msg_data *data; 3305 3306 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3307 BUG_ON(!data); 3308 data->bio_pos = *bio_pos; 3309 data->bio_length = length; 3310 3311 list_add_tail(&data->links, &msg->data); 3312 msg->data_length += length; 3313 } 3314 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3315 #endif /* CONFIG_BLOCK */ 3316 3317 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 3318 struct ceph_bvec_iter *bvec_pos) 3319 { 3320 struct ceph_msg_data *data; 3321 3322 data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS); 3323 BUG_ON(!data); 3324 data->bvec_pos = *bvec_pos; 3325 3326 list_add_tail(&data->links, &msg->data); 3327 msg->data_length += bvec_pos->iter.bi_size; 3328 } 3329 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 3330 3331 /* 3332 * construct a new message with given type, size 3333 * the new msg has a ref count of 1. 3334 */ 3335 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3336 bool can_fail) 3337 { 3338 struct ceph_msg *m; 3339 3340 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3341 if (m == NULL) 3342 goto out; 3343 3344 m->hdr.type = cpu_to_le16(type); 3345 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3346 m->hdr.front_len = cpu_to_le32(front_len); 3347 3348 INIT_LIST_HEAD(&m->list_head); 3349 kref_init(&m->kref); 3350 INIT_LIST_HEAD(&m->data); 3351 3352 /* front */ 3353 if (front_len) { 3354 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3355 if (m->front.iov_base == NULL) { 3356 dout("ceph_msg_new can't allocate %d bytes\n", 3357 front_len); 3358 goto out2; 3359 } 3360 } else { 3361 m->front.iov_base = NULL; 3362 } 3363 m->front_alloc_len = m->front.iov_len = front_len; 3364 3365 dout("ceph_msg_new %p front %d\n", m, front_len); 3366 return m; 3367 3368 out2: 3369 ceph_msg_put(m); 3370 out: 3371 if (!can_fail) { 3372 pr_err("msg_new can't create type %d front %d\n", type, 3373 front_len); 3374 WARN_ON(1); 3375 } else { 3376 dout("msg_new can't create type %d front %d\n", type, 3377 front_len); 3378 } 3379 return NULL; 3380 } 3381 EXPORT_SYMBOL(ceph_msg_new); 3382 3383 /* 3384 * Allocate "middle" portion of a message, if it is needed and wasn't 3385 * allocated by alloc_msg. This allows us to read a small fixed-size 3386 * per-type header in the front and then gracefully fail (i.e., 3387 * propagate the error to the caller based on info in the front) when 3388 * the middle is too large. 3389 */ 3390 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3391 { 3392 int type = le16_to_cpu(msg->hdr.type); 3393 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3394 3395 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3396 ceph_msg_type_name(type), middle_len); 3397 BUG_ON(!middle_len); 3398 BUG_ON(msg->middle); 3399 3400 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3401 if (!msg->middle) 3402 return -ENOMEM; 3403 return 0; 3404 } 3405 3406 /* 3407 * Allocate a message for receiving an incoming message on a 3408 * connection, and save the result in con->in_msg. Uses the 3409 * connection's private alloc_msg op if available. 3410 * 3411 * Returns 0 on success, or a negative error code. 3412 * 3413 * On success, if we set *skip = 1: 3414 * - the next message should be skipped and ignored. 3415 * - con->in_msg == NULL 3416 * or if we set *skip = 0: 3417 * - con->in_msg is non-null. 3418 * On error (ENOMEM, EAGAIN, ...), 3419 * - con->in_msg == NULL 3420 */ 3421 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3422 { 3423 struct ceph_msg_header *hdr = &con->in_hdr; 3424 int middle_len = le32_to_cpu(hdr->middle_len); 3425 struct ceph_msg *msg; 3426 int ret = 0; 3427 3428 BUG_ON(con->in_msg != NULL); 3429 BUG_ON(!con->ops->alloc_msg); 3430 3431 mutex_unlock(&con->mutex); 3432 msg = con->ops->alloc_msg(con, hdr, skip); 3433 mutex_lock(&con->mutex); 3434 if (con->state != CON_STATE_OPEN) { 3435 if (msg) 3436 ceph_msg_put(msg); 3437 return -EAGAIN; 3438 } 3439 if (msg) { 3440 BUG_ON(*skip); 3441 msg_con_set(msg, con); 3442 con->in_msg = msg; 3443 } else { 3444 /* 3445 * Null message pointer means either we should skip 3446 * this message or we couldn't allocate memory. The 3447 * former is not an error. 3448 */ 3449 if (*skip) 3450 return 0; 3451 3452 con->error_msg = "error allocating memory for incoming message"; 3453 return -ENOMEM; 3454 } 3455 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3456 3457 if (middle_len && !con->in_msg->middle) { 3458 ret = ceph_alloc_middle(con, con->in_msg); 3459 if (ret < 0) { 3460 ceph_msg_put(con->in_msg); 3461 con->in_msg = NULL; 3462 } 3463 } 3464 3465 return ret; 3466 } 3467 3468 3469 /* 3470 * Free a generically kmalloc'd message. 3471 */ 3472 static void ceph_msg_free(struct ceph_msg *m) 3473 { 3474 dout("%s %p\n", __func__, m); 3475 kvfree(m->front.iov_base); 3476 kmem_cache_free(ceph_msg_cache, m); 3477 } 3478 3479 static void ceph_msg_release(struct kref *kref) 3480 { 3481 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3482 struct ceph_msg_data *data, *next; 3483 3484 dout("%s %p\n", __func__, m); 3485 WARN_ON(!list_empty(&m->list_head)); 3486 3487 msg_con_set(m, NULL); 3488 3489 /* drop middle, data, if any */ 3490 if (m->middle) { 3491 ceph_buffer_put(m->middle); 3492 m->middle = NULL; 3493 } 3494 3495 list_for_each_entry_safe(data, next, &m->data, links) { 3496 list_del_init(&data->links); 3497 ceph_msg_data_destroy(data); 3498 } 3499 m->data_length = 0; 3500 3501 if (m->pool) 3502 ceph_msgpool_put(m->pool, m); 3503 else 3504 ceph_msg_free(m); 3505 } 3506 3507 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3508 { 3509 dout("%s %p (was %d)\n", __func__, msg, 3510 kref_read(&msg->kref)); 3511 kref_get(&msg->kref); 3512 return msg; 3513 } 3514 EXPORT_SYMBOL(ceph_msg_get); 3515 3516 void ceph_msg_put(struct ceph_msg *msg) 3517 { 3518 dout("%s %p (was %d)\n", __func__, msg, 3519 kref_read(&msg->kref)); 3520 kref_put(&msg->kref, ceph_msg_release); 3521 } 3522 EXPORT_SYMBOL(ceph_msg_put); 3523 3524 void ceph_msg_dump(struct ceph_msg *msg) 3525 { 3526 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3527 msg->front_alloc_len, msg->data_length); 3528 print_hex_dump(KERN_DEBUG, "header: ", 3529 DUMP_PREFIX_OFFSET, 16, 1, 3530 &msg->hdr, sizeof(msg->hdr), true); 3531 print_hex_dump(KERN_DEBUG, " front: ", 3532 DUMP_PREFIX_OFFSET, 16, 1, 3533 msg->front.iov_base, msg->front.iov_len, true); 3534 if (msg->middle) 3535 print_hex_dump(KERN_DEBUG, "middle: ", 3536 DUMP_PREFIX_OFFSET, 16, 1, 3537 msg->middle->vec.iov_base, 3538 msg->middle->vec.iov_len, true); 3539 print_hex_dump(KERN_DEBUG, "footer: ", 3540 DUMP_PREFIX_OFFSET, 16, 1, 3541 &msg->footer, sizeof(msg->footer), true); 3542 } 3543 EXPORT_SYMBOL(ceph_msg_dump); 3544