1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/ceph_features.h> 19 #include <linux/ceph/libceph.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/export.h> 24 25 #define list_entry_next(pos, member) \ 26 list_entry(pos->member.next, typeof(*pos), member) 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void cancel_con(struct ceph_connection *con); 178 static void con_work(struct work_struct *); 179 static void con_fault(struct ceph_connection *con); 180 181 /* 182 * Nicely render a sockaddr as a string. An array of formatted 183 * strings is used, to approximate reentrancy. 184 */ 185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 189 190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 191 static atomic_t addr_str_seq = ATOMIC_INIT(0); 192 193 static struct page *zero_page; /* used in certain error cases */ 194 195 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 196 { 197 int i; 198 char *s; 199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 201 202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 203 s = addr_str[i]; 204 205 switch (ss->ss_family) { 206 case AF_INET: 207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 208 ntohs(in4->sin_port)); 209 break; 210 211 case AF_INET6: 212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 213 ntohs(in6->sin6_port)); 214 break; 215 216 default: 217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 218 ss->ss_family); 219 } 220 221 return s; 222 } 223 EXPORT_SYMBOL(ceph_pr_addr); 224 225 static void encode_my_addr(struct ceph_messenger *msgr) 226 { 227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 228 ceph_encode_addr(&msgr->my_enc_addr); 229 } 230 231 /* 232 * work queue for all reading and writing to/from the socket. 233 */ 234 static struct workqueue_struct *ceph_msgr_wq; 235 236 static int ceph_msgr_slab_init(void) 237 { 238 BUG_ON(ceph_msg_cache); 239 ceph_msg_cache = kmem_cache_create("ceph_msg", 240 sizeof (struct ceph_msg), 241 __alignof__(struct ceph_msg), 0, NULL); 242 243 if (!ceph_msg_cache) 244 return -ENOMEM; 245 246 BUG_ON(ceph_msg_data_cache); 247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 248 sizeof (struct ceph_msg_data), 249 __alignof__(struct ceph_msg_data), 250 0, NULL); 251 if (ceph_msg_data_cache) 252 return 0; 253 254 kmem_cache_destroy(ceph_msg_cache); 255 ceph_msg_cache = NULL; 256 257 return -ENOMEM; 258 } 259 260 static void ceph_msgr_slab_exit(void) 261 { 262 BUG_ON(!ceph_msg_data_cache); 263 kmem_cache_destroy(ceph_msg_data_cache); 264 ceph_msg_data_cache = NULL; 265 266 BUG_ON(!ceph_msg_cache); 267 kmem_cache_destroy(ceph_msg_cache); 268 ceph_msg_cache = NULL; 269 } 270 271 static void _ceph_msgr_exit(void) 272 { 273 if (ceph_msgr_wq) { 274 destroy_workqueue(ceph_msgr_wq); 275 ceph_msgr_wq = NULL; 276 } 277 278 ceph_msgr_slab_exit(); 279 280 BUG_ON(zero_page == NULL); 281 kunmap(zero_page); 282 page_cache_release(zero_page); 283 zero_page = NULL; 284 } 285 286 int ceph_msgr_init(void) 287 { 288 BUG_ON(zero_page != NULL); 289 zero_page = ZERO_PAGE(0); 290 page_cache_get(zero_page); 291 292 if (ceph_msgr_slab_init()) 293 return -ENOMEM; 294 295 /* 296 * The number of active work items is limited by the number of 297 * connections, so leave @max_active at default. 298 */ 299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 300 if (ceph_msgr_wq) 301 return 0; 302 303 pr_err("msgr_init failed to create workqueue\n"); 304 _ceph_msgr_exit(); 305 306 return -ENOMEM; 307 } 308 EXPORT_SYMBOL(ceph_msgr_init); 309 310 void ceph_msgr_exit(void) 311 { 312 BUG_ON(ceph_msgr_wq == NULL); 313 314 _ceph_msgr_exit(); 315 } 316 EXPORT_SYMBOL(ceph_msgr_exit); 317 318 void ceph_msgr_flush(void) 319 { 320 flush_workqueue(ceph_msgr_wq); 321 } 322 EXPORT_SYMBOL(ceph_msgr_flush); 323 324 /* Connection socket state transition functions */ 325 326 static void con_sock_state_init(struct ceph_connection *con) 327 { 328 int old_state; 329 330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 332 printk("%s: unexpected old state %d\n", __func__, old_state); 333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 334 CON_SOCK_STATE_CLOSED); 335 } 336 337 static void con_sock_state_connecting(struct ceph_connection *con) 338 { 339 int old_state; 340 341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 343 printk("%s: unexpected old state %d\n", __func__, old_state); 344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 345 CON_SOCK_STATE_CONNECTING); 346 } 347 348 static void con_sock_state_connected(struct ceph_connection *con) 349 { 350 int old_state; 351 352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 354 printk("%s: unexpected old state %d\n", __func__, old_state); 355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 356 CON_SOCK_STATE_CONNECTED); 357 } 358 359 static void con_sock_state_closing(struct ceph_connection *con) 360 { 361 int old_state; 362 363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 365 old_state != CON_SOCK_STATE_CONNECTED && 366 old_state != CON_SOCK_STATE_CLOSING)) 367 printk("%s: unexpected old state %d\n", __func__, old_state); 368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 369 CON_SOCK_STATE_CLOSING); 370 } 371 372 static void con_sock_state_closed(struct ceph_connection *con) 373 { 374 int old_state; 375 376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 378 old_state != CON_SOCK_STATE_CLOSING && 379 old_state != CON_SOCK_STATE_CONNECTING && 380 old_state != CON_SOCK_STATE_CLOSED)) 381 printk("%s: unexpected old state %d\n", __func__, old_state); 382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 383 CON_SOCK_STATE_CLOSED); 384 } 385 386 /* 387 * socket callback functions 388 */ 389 390 /* data available on socket, or listen socket received a connect */ 391 static void ceph_sock_data_ready(struct sock *sk) 392 { 393 struct ceph_connection *con = sk->sk_user_data; 394 if (atomic_read(&con->msgr->stopping)) { 395 return; 396 } 397 398 if (sk->sk_state != TCP_CLOSE_WAIT) { 399 dout("%s on %p state = %lu, queueing work\n", __func__, 400 con, con->state); 401 queue_con(con); 402 } 403 } 404 405 /* socket has buffer space for writing */ 406 static void ceph_sock_write_space(struct sock *sk) 407 { 408 struct ceph_connection *con = sk->sk_user_data; 409 410 /* only queue to workqueue if there is data we want to write, 411 * and there is sufficient space in the socket buffer to accept 412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 413 * doesn't get called again until try_write() fills the socket 414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 415 * and net/core/stream.c:sk_stream_write_space(). 416 */ 417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 418 if (sk_stream_is_writeable(sk)) { 419 dout("%s %p queueing write work\n", __func__, con); 420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 421 queue_con(con); 422 } 423 } else { 424 dout("%s %p nothing to write\n", __func__, con); 425 } 426 } 427 428 /* socket's state has changed */ 429 static void ceph_sock_state_change(struct sock *sk) 430 { 431 struct ceph_connection *con = sk->sk_user_data; 432 433 dout("%s %p state = %lu sk_state = %u\n", __func__, 434 con, con->state, sk->sk_state); 435 436 switch (sk->sk_state) { 437 case TCP_CLOSE: 438 dout("%s TCP_CLOSE\n", __func__); 439 case TCP_CLOSE_WAIT: 440 dout("%s TCP_CLOSE_WAIT\n", __func__); 441 con_sock_state_closing(con); 442 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 443 queue_con(con); 444 break; 445 case TCP_ESTABLISHED: 446 dout("%s TCP_ESTABLISHED\n", __func__); 447 con_sock_state_connected(con); 448 queue_con(con); 449 break; 450 default: /* Everything else is uninteresting */ 451 break; 452 } 453 } 454 455 /* 456 * set up socket callbacks 457 */ 458 static void set_sock_callbacks(struct socket *sock, 459 struct ceph_connection *con) 460 { 461 struct sock *sk = sock->sk; 462 sk->sk_user_data = con; 463 sk->sk_data_ready = ceph_sock_data_ready; 464 sk->sk_write_space = ceph_sock_write_space; 465 sk->sk_state_change = ceph_sock_state_change; 466 } 467 468 469 /* 470 * socket helpers 471 */ 472 473 /* 474 * initiate connection to a remote socket. 475 */ 476 static int ceph_tcp_connect(struct ceph_connection *con) 477 { 478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 479 struct socket *sock; 480 int ret; 481 482 BUG_ON(con->sock); 483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 484 IPPROTO_TCP, &sock); 485 if (ret) 486 return ret; 487 sock->sk->sk_allocation = GFP_NOFS | __GFP_MEMALLOC; 488 489 #ifdef CONFIG_LOCKDEP 490 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 491 #endif 492 493 set_sock_callbacks(sock, con); 494 495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 496 497 con_sock_state_connecting(con); 498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 499 O_NONBLOCK); 500 if (ret == -EINPROGRESS) { 501 dout("connect %s EINPROGRESS sk_state = %u\n", 502 ceph_pr_addr(&con->peer_addr.in_addr), 503 sock->sk->sk_state); 504 } else if (ret < 0) { 505 pr_err("connect %s error %d\n", 506 ceph_pr_addr(&con->peer_addr.in_addr), ret); 507 sock_release(sock); 508 con->error_msg = "connect error"; 509 510 return ret; 511 } 512 513 sk_set_memalloc(sock->sk); 514 515 con->sock = sock; 516 return 0; 517 } 518 519 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 520 { 521 struct kvec iov = {buf, len}; 522 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 523 int r; 524 525 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 526 if (r == -EAGAIN) 527 r = 0; 528 return r; 529 } 530 531 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 532 int page_offset, size_t length) 533 { 534 void *kaddr; 535 int ret; 536 537 BUG_ON(page_offset + length > PAGE_SIZE); 538 539 kaddr = kmap(page); 540 BUG_ON(!kaddr); 541 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 542 kunmap(page); 543 544 return ret; 545 } 546 547 /* 548 * write something. @more is true if caller will be sending more data 549 * shortly. 550 */ 551 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 552 size_t kvlen, size_t len, int more) 553 { 554 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 555 int r; 556 557 if (more) 558 msg.msg_flags |= MSG_MORE; 559 else 560 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 561 562 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 563 if (r == -EAGAIN) 564 r = 0; 565 return r; 566 } 567 568 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 569 int offset, size_t size, bool more) 570 { 571 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 572 int ret; 573 574 ret = kernel_sendpage(sock, page, offset, size, flags); 575 if (ret == -EAGAIN) 576 ret = 0; 577 578 return ret; 579 } 580 581 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 582 int offset, size_t size, bool more) 583 { 584 int ret; 585 struct kvec iov; 586 587 /* sendpage cannot properly handle pages with page_count == 0, 588 * we need to fallback to sendmsg if that's the case */ 589 if (page_count(page) >= 1) 590 return __ceph_tcp_sendpage(sock, page, offset, size, more); 591 592 iov.iov_base = kmap(page) + offset; 593 iov.iov_len = size; 594 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 595 kunmap(page); 596 597 return ret; 598 } 599 600 /* 601 * Shutdown/close the socket for the given connection. 602 */ 603 static int con_close_socket(struct ceph_connection *con) 604 { 605 int rc = 0; 606 607 dout("con_close_socket on %p sock %p\n", con, con->sock); 608 if (con->sock) { 609 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 610 sock_release(con->sock); 611 con->sock = NULL; 612 } 613 614 /* 615 * Forcibly clear the SOCK_CLOSED flag. It gets set 616 * independent of the connection mutex, and we could have 617 * received a socket close event before we had the chance to 618 * shut the socket down. 619 */ 620 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 621 622 con_sock_state_closed(con); 623 return rc; 624 } 625 626 /* 627 * Reset a connection. Discard all incoming and outgoing messages 628 * and clear *_seq state. 629 */ 630 static void ceph_msg_remove(struct ceph_msg *msg) 631 { 632 list_del_init(&msg->list_head); 633 BUG_ON(msg->con == NULL); 634 msg->con->ops->put(msg->con); 635 msg->con = NULL; 636 637 ceph_msg_put(msg); 638 } 639 static void ceph_msg_remove_list(struct list_head *head) 640 { 641 while (!list_empty(head)) { 642 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 643 list_head); 644 ceph_msg_remove(msg); 645 } 646 } 647 648 static void reset_connection(struct ceph_connection *con) 649 { 650 /* reset connection, out_queue, msg_ and connect_seq */ 651 /* discard existing out_queue and msg_seq */ 652 dout("reset_connection %p\n", con); 653 ceph_msg_remove_list(&con->out_queue); 654 ceph_msg_remove_list(&con->out_sent); 655 656 if (con->in_msg) { 657 BUG_ON(con->in_msg->con != con); 658 con->in_msg->con = NULL; 659 ceph_msg_put(con->in_msg); 660 con->in_msg = NULL; 661 con->ops->put(con); 662 } 663 664 con->connect_seq = 0; 665 con->out_seq = 0; 666 if (con->out_msg) { 667 ceph_msg_put(con->out_msg); 668 con->out_msg = NULL; 669 } 670 con->in_seq = 0; 671 con->in_seq_acked = 0; 672 } 673 674 /* 675 * mark a peer down. drop any open connections. 676 */ 677 void ceph_con_close(struct ceph_connection *con) 678 { 679 mutex_lock(&con->mutex); 680 dout("con_close %p peer %s\n", con, 681 ceph_pr_addr(&con->peer_addr.in_addr)); 682 con->state = CON_STATE_CLOSED; 683 684 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 685 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 686 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 687 con_flag_clear(con, CON_FLAG_BACKOFF); 688 689 reset_connection(con); 690 con->peer_global_seq = 0; 691 cancel_con(con); 692 con_close_socket(con); 693 mutex_unlock(&con->mutex); 694 } 695 EXPORT_SYMBOL(ceph_con_close); 696 697 /* 698 * Reopen a closed connection, with a new peer address. 699 */ 700 void ceph_con_open(struct ceph_connection *con, 701 __u8 entity_type, __u64 entity_num, 702 struct ceph_entity_addr *addr) 703 { 704 mutex_lock(&con->mutex); 705 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 706 707 WARN_ON(con->state != CON_STATE_CLOSED); 708 con->state = CON_STATE_PREOPEN; 709 710 con->peer_name.type = (__u8) entity_type; 711 con->peer_name.num = cpu_to_le64(entity_num); 712 713 memcpy(&con->peer_addr, addr, sizeof(*addr)); 714 con->delay = 0; /* reset backoff memory */ 715 mutex_unlock(&con->mutex); 716 queue_con(con); 717 } 718 EXPORT_SYMBOL(ceph_con_open); 719 720 /* 721 * return true if this connection ever successfully opened 722 */ 723 bool ceph_con_opened(struct ceph_connection *con) 724 { 725 return con->connect_seq > 0; 726 } 727 728 /* 729 * initialize a new connection. 730 */ 731 void ceph_con_init(struct ceph_connection *con, void *private, 732 const struct ceph_connection_operations *ops, 733 struct ceph_messenger *msgr) 734 { 735 dout("con_init %p\n", con); 736 memset(con, 0, sizeof(*con)); 737 con->private = private; 738 con->ops = ops; 739 con->msgr = msgr; 740 741 con_sock_state_init(con); 742 743 mutex_init(&con->mutex); 744 INIT_LIST_HEAD(&con->out_queue); 745 INIT_LIST_HEAD(&con->out_sent); 746 INIT_DELAYED_WORK(&con->work, con_work); 747 748 con->state = CON_STATE_CLOSED; 749 } 750 EXPORT_SYMBOL(ceph_con_init); 751 752 753 /* 754 * We maintain a global counter to order connection attempts. Get 755 * a unique seq greater than @gt. 756 */ 757 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 758 { 759 u32 ret; 760 761 spin_lock(&msgr->global_seq_lock); 762 if (msgr->global_seq < gt) 763 msgr->global_seq = gt; 764 ret = ++msgr->global_seq; 765 spin_unlock(&msgr->global_seq_lock); 766 return ret; 767 } 768 769 static void con_out_kvec_reset(struct ceph_connection *con) 770 { 771 con->out_kvec_left = 0; 772 con->out_kvec_bytes = 0; 773 con->out_kvec_cur = &con->out_kvec[0]; 774 } 775 776 static void con_out_kvec_add(struct ceph_connection *con, 777 size_t size, void *data) 778 { 779 int index; 780 781 index = con->out_kvec_left; 782 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 783 784 con->out_kvec[index].iov_len = size; 785 con->out_kvec[index].iov_base = data; 786 con->out_kvec_left++; 787 con->out_kvec_bytes += size; 788 } 789 790 #ifdef CONFIG_BLOCK 791 792 /* 793 * For a bio data item, a piece is whatever remains of the next 794 * entry in the current bio iovec, or the first entry in the next 795 * bio in the list. 796 */ 797 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 798 size_t length) 799 { 800 struct ceph_msg_data *data = cursor->data; 801 struct bio *bio; 802 803 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 804 805 bio = data->bio; 806 BUG_ON(!bio); 807 808 cursor->resid = min(length, data->bio_length); 809 cursor->bio = bio; 810 cursor->bvec_iter = bio->bi_iter; 811 cursor->last_piece = 812 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 813 } 814 815 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 816 size_t *page_offset, 817 size_t *length) 818 { 819 struct ceph_msg_data *data = cursor->data; 820 struct bio *bio; 821 struct bio_vec bio_vec; 822 823 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 824 825 bio = cursor->bio; 826 BUG_ON(!bio); 827 828 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 829 830 *page_offset = (size_t) bio_vec.bv_offset; 831 BUG_ON(*page_offset >= PAGE_SIZE); 832 if (cursor->last_piece) /* pagelist offset is always 0 */ 833 *length = cursor->resid; 834 else 835 *length = (size_t) bio_vec.bv_len; 836 BUG_ON(*length > cursor->resid); 837 BUG_ON(*page_offset + *length > PAGE_SIZE); 838 839 return bio_vec.bv_page; 840 } 841 842 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 843 size_t bytes) 844 { 845 struct bio *bio; 846 struct bio_vec bio_vec; 847 848 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 849 850 bio = cursor->bio; 851 BUG_ON(!bio); 852 853 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 854 855 /* Advance the cursor offset */ 856 857 BUG_ON(cursor->resid < bytes); 858 cursor->resid -= bytes; 859 860 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 861 862 if (bytes < bio_vec.bv_len) 863 return false; /* more bytes to process in this segment */ 864 865 /* Move on to the next segment, and possibly the next bio */ 866 867 if (!cursor->bvec_iter.bi_size) { 868 bio = bio->bi_next; 869 cursor->bio = bio; 870 if (bio) 871 cursor->bvec_iter = bio->bi_iter; 872 else 873 memset(&cursor->bvec_iter, 0, 874 sizeof(cursor->bvec_iter)); 875 } 876 877 if (!cursor->last_piece) { 878 BUG_ON(!cursor->resid); 879 BUG_ON(!bio); 880 /* A short read is OK, so use <= rather than == */ 881 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 882 cursor->last_piece = true; 883 } 884 885 return true; 886 } 887 #endif /* CONFIG_BLOCK */ 888 889 /* 890 * For a page array, a piece comes from the first page in the array 891 * that has not already been fully consumed. 892 */ 893 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 894 size_t length) 895 { 896 struct ceph_msg_data *data = cursor->data; 897 int page_count; 898 899 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 900 901 BUG_ON(!data->pages); 902 BUG_ON(!data->length); 903 904 cursor->resid = min(length, data->length); 905 page_count = calc_pages_for(data->alignment, (u64)data->length); 906 cursor->page_offset = data->alignment & ~PAGE_MASK; 907 cursor->page_index = 0; 908 BUG_ON(page_count > (int)USHRT_MAX); 909 cursor->page_count = (unsigned short)page_count; 910 BUG_ON(length > SIZE_MAX - cursor->page_offset); 911 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 912 } 913 914 static struct page * 915 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 916 size_t *page_offset, size_t *length) 917 { 918 struct ceph_msg_data *data = cursor->data; 919 920 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 921 922 BUG_ON(cursor->page_index >= cursor->page_count); 923 BUG_ON(cursor->page_offset >= PAGE_SIZE); 924 925 *page_offset = cursor->page_offset; 926 if (cursor->last_piece) 927 *length = cursor->resid; 928 else 929 *length = PAGE_SIZE - *page_offset; 930 931 return data->pages[cursor->page_index]; 932 } 933 934 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 935 size_t bytes) 936 { 937 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 938 939 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 940 941 /* Advance the cursor page offset */ 942 943 cursor->resid -= bytes; 944 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 945 if (!bytes || cursor->page_offset) 946 return false; /* more bytes to process in the current page */ 947 948 if (!cursor->resid) 949 return false; /* no more data */ 950 951 /* Move on to the next page; offset is already at 0 */ 952 953 BUG_ON(cursor->page_index >= cursor->page_count); 954 cursor->page_index++; 955 cursor->last_piece = cursor->resid <= PAGE_SIZE; 956 957 return true; 958 } 959 960 /* 961 * For a pagelist, a piece is whatever remains to be consumed in the 962 * first page in the list, or the front of the next page. 963 */ 964 static void 965 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 966 size_t length) 967 { 968 struct ceph_msg_data *data = cursor->data; 969 struct ceph_pagelist *pagelist; 970 struct page *page; 971 972 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 973 974 pagelist = data->pagelist; 975 BUG_ON(!pagelist); 976 977 if (!length) 978 return; /* pagelist can be assigned but empty */ 979 980 BUG_ON(list_empty(&pagelist->head)); 981 page = list_first_entry(&pagelist->head, struct page, lru); 982 983 cursor->resid = min(length, pagelist->length); 984 cursor->page = page; 985 cursor->offset = 0; 986 cursor->last_piece = cursor->resid <= PAGE_SIZE; 987 } 988 989 static struct page * 990 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 991 size_t *page_offset, size_t *length) 992 { 993 struct ceph_msg_data *data = cursor->data; 994 struct ceph_pagelist *pagelist; 995 996 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 997 998 pagelist = data->pagelist; 999 BUG_ON(!pagelist); 1000 1001 BUG_ON(!cursor->page); 1002 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1003 1004 /* offset of first page in pagelist is always 0 */ 1005 *page_offset = cursor->offset & ~PAGE_MASK; 1006 if (cursor->last_piece) 1007 *length = cursor->resid; 1008 else 1009 *length = PAGE_SIZE - *page_offset; 1010 1011 return cursor->page; 1012 } 1013 1014 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1015 size_t bytes) 1016 { 1017 struct ceph_msg_data *data = cursor->data; 1018 struct ceph_pagelist *pagelist; 1019 1020 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1021 1022 pagelist = data->pagelist; 1023 BUG_ON(!pagelist); 1024 1025 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1026 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1027 1028 /* Advance the cursor offset */ 1029 1030 cursor->resid -= bytes; 1031 cursor->offset += bytes; 1032 /* offset of first page in pagelist is always 0 */ 1033 if (!bytes || cursor->offset & ~PAGE_MASK) 1034 return false; /* more bytes to process in the current page */ 1035 1036 if (!cursor->resid) 1037 return false; /* no more data */ 1038 1039 /* Move on to the next page */ 1040 1041 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1042 cursor->page = list_entry_next(cursor->page, lru); 1043 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1044 1045 return true; 1046 } 1047 1048 /* 1049 * Message data is handled (sent or received) in pieces, where each 1050 * piece resides on a single page. The network layer might not 1051 * consume an entire piece at once. A data item's cursor keeps 1052 * track of which piece is next to process and how much remains to 1053 * be processed in that piece. It also tracks whether the current 1054 * piece is the last one in the data item. 1055 */ 1056 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1057 { 1058 size_t length = cursor->total_resid; 1059 1060 switch (cursor->data->type) { 1061 case CEPH_MSG_DATA_PAGELIST: 1062 ceph_msg_data_pagelist_cursor_init(cursor, length); 1063 break; 1064 case CEPH_MSG_DATA_PAGES: 1065 ceph_msg_data_pages_cursor_init(cursor, length); 1066 break; 1067 #ifdef CONFIG_BLOCK 1068 case CEPH_MSG_DATA_BIO: 1069 ceph_msg_data_bio_cursor_init(cursor, length); 1070 break; 1071 #endif /* CONFIG_BLOCK */ 1072 case CEPH_MSG_DATA_NONE: 1073 default: 1074 /* BUG(); */ 1075 break; 1076 } 1077 cursor->need_crc = true; 1078 } 1079 1080 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1081 { 1082 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1083 struct ceph_msg_data *data; 1084 1085 BUG_ON(!length); 1086 BUG_ON(length > msg->data_length); 1087 BUG_ON(list_empty(&msg->data)); 1088 1089 cursor->data_head = &msg->data; 1090 cursor->total_resid = length; 1091 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1092 cursor->data = data; 1093 1094 __ceph_msg_data_cursor_init(cursor); 1095 } 1096 1097 /* 1098 * Return the page containing the next piece to process for a given 1099 * data item, and supply the page offset and length of that piece. 1100 * Indicate whether this is the last piece in this data item. 1101 */ 1102 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1103 size_t *page_offset, size_t *length, 1104 bool *last_piece) 1105 { 1106 struct page *page; 1107 1108 switch (cursor->data->type) { 1109 case CEPH_MSG_DATA_PAGELIST: 1110 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1111 break; 1112 case CEPH_MSG_DATA_PAGES: 1113 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1114 break; 1115 #ifdef CONFIG_BLOCK 1116 case CEPH_MSG_DATA_BIO: 1117 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1118 break; 1119 #endif /* CONFIG_BLOCK */ 1120 case CEPH_MSG_DATA_NONE: 1121 default: 1122 page = NULL; 1123 break; 1124 } 1125 BUG_ON(!page); 1126 BUG_ON(*page_offset + *length > PAGE_SIZE); 1127 BUG_ON(!*length); 1128 if (last_piece) 1129 *last_piece = cursor->last_piece; 1130 1131 return page; 1132 } 1133 1134 /* 1135 * Returns true if the result moves the cursor on to the next piece 1136 * of the data item. 1137 */ 1138 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1139 size_t bytes) 1140 { 1141 bool new_piece; 1142 1143 BUG_ON(bytes > cursor->resid); 1144 switch (cursor->data->type) { 1145 case CEPH_MSG_DATA_PAGELIST: 1146 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1147 break; 1148 case CEPH_MSG_DATA_PAGES: 1149 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1150 break; 1151 #ifdef CONFIG_BLOCK 1152 case CEPH_MSG_DATA_BIO: 1153 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1154 break; 1155 #endif /* CONFIG_BLOCK */ 1156 case CEPH_MSG_DATA_NONE: 1157 default: 1158 BUG(); 1159 break; 1160 } 1161 cursor->total_resid -= bytes; 1162 1163 if (!cursor->resid && cursor->total_resid) { 1164 WARN_ON(!cursor->last_piece); 1165 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1166 cursor->data = list_entry_next(cursor->data, links); 1167 __ceph_msg_data_cursor_init(cursor); 1168 new_piece = true; 1169 } 1170 cursor->need_crc = new_piece; 1171 1172 return new_piece; 1173 } 1174 1175 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1176 { 1177 BUG_ON(!msg); 1178 BUG_ON(!data_len); 1179 1180 /* Initialize data cursor */ 1181 1182 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1183 } 1184 1185 /* 1186 * Prepare footer for currently outgoing message, and finish things 1187 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1188 */ 1189 static void prepare_write_message_footer(struct ceph_connection *con) 1190 { 1191 struct ceph_msg *m = con->out_msg; 1192 int v = con->out_kvec_left; 1193 1194 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1195 1196 dout("prepare_write_message_footer %p\n", con); 1197 con->out_kvec_is_msg = true; 1198 con->out_kvec[v].iov_base = &m->footer; 1199 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1200 if (con->ops->sign_message) 1201 con->ops->sign_message(con, m); 1202 else 1203 m->footer.sig = 0; 1204 con->out_kvec[v].iov_len = sizeof(m->footer); 1205 con->out_kvec_bytes += sizeof(m->footer); 1206 } else { 1207 m->old_footer.flags = m->footer.flags; 1208 con->out_kvec[v].iov_len = sizeof(m->old_footer); 1209 con->out_kvec_bytes += sizeof(m->old_footer); 1210 } 1211 con->out_kvec_left++; 1212 con->out_more = m->more_to_follow; 1213 con->out_msg_done = true; 1214 } 1215 1216 /* 1217 * Prepare headers for the next outgoing message. 1218 */ 1219 static void prepare_write_message(struct ceph_connection *con) 1220 { 1221 struct ceph_msg *m; 1222 u32 crc; 1223 1224 con_out_kvec_reset(con); 1225 con->out_kvec_is_msg = true; 1226 con->out_msg_done = false; 1227 1228 /* Sneak an ack in there first? If we can get it into the same 1229 * TCP packet that's a good thing. */ 1230 if (con->in_seq > con->in_seq_acked) { 1231 con->in_seq_acked = con->in_seq; 1232 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1233 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1234 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1235 &con->out_temp_ack); 1236 } 1237 1238 BUG_ON(list_empty(&con->out_queue)); 1239 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1240 con->out_msg = m; 1241 BUG_ON(m->con != con); 1242 1243 /* put message on sent list */ 1244 ceph_msg_get(m); 1245 list_move_tail(&m->list_head, &con->out_sent); 1246 1247 /* 1248 * only assign outgoing seq # if we haven't sent this message 1249 * yet. if it is requeued, resend with it's original seq. 1250 */ 1251 if (m->needs_out_seq) { 1252 m->hdr.seq = cpu_to_le64(++con->out_seq); 1253 m->needs_out_seq = false; 1254 } 1255 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1256 1257 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1258 m, con->out_seq, le16_to_cpu(m->hdr.type), 1259 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1260 m->data_length); 1261 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1262 1263 /* tag + hdr + front + middle */ 1264 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1265 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1266 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1267 1268 if (m->middle) 1269 con_out_kvec_add(con, m->middle->vec.iov_len, 1270 m->middle->vec.iov_base); 1271 1272 /* fill in crc (except data pages), footer */ 1273 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1274 con->out_msg->hdr.crc = cpu_to_le32(crc); 1275 con->out_msg->footer.flags = 0; 1276 1277 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1278 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1279 if (m->middle) { 1280 crc = crc32c(0, m->middle->vec.iov_base, 1281 m->middle->vec.iov_len); 1282 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1283 } else 1284 con->out_msg->footer.middle_crc = 0; 1285 dout("%s front_crc %u middle_crc %u\n", __func__, 1286 le32_to_cpu(con->out_msg->footer.front_crc), 1287 le32_to_cpu(con->out_msg->footer.middle_crc)); 1288 1289 /* is there a data payload? */ 1290 con->out_msg->footer.data_crc = 0; 1291 if (m->data_length) { 1292 prepare_message_data(con->out_msg, m->data_length); 1293 con->out_more = 1; /* data + footer will follow */ 1294 } else { 1295 /* no, queue up footer too and be done */ 1296 prepare_write_message_footer(con); 1297 } 1298 1299 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1300 } 1301 1302 /* 1303 * Prepare an ack. 1304 */ 1305 static void prepare_write_ack(struct ceph_connection *con) 1306 { 1307 dout("prepare_write_ack %p %llu -> %llu\n", con, 1308 con->in_seq_acked, con->in_seq); 1309 con->in_seq_acked = con->in_seq; 1310 1311 con_out_kvec_reset(con); 1312 1313 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1314 1315 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1316 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1317 &con->out_temp_ack); 1318 1319 con->out_more = 1; /* more will follow.. eventually.. */ 1320 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1321 } 1322 1323 /* 1324 * Prepare to share the seq during handshake 1325 */ 1326 static void prepare_write_seq(struct ceph_connection *con) 1327 { 1328 dout("prepare_write_seq %p %llu -> %llu\n", con, 1329 con->in_seq_acked, con->in_seq); 1330 con->in_seq_acked = con->in_seq; 1331 1332 con_out_kvec_reset(con); 1333 1334 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1335 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1336 &con->out_temp_ack); 1337 1338 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1339 } 1340 1341 /* 1342 * Prepare to write keepalive byte. 1343 */ 1344 static void prepare_write_keepalive(struct ceph_connection *con) 1345 { 1346 dout("prepare_write_keepalive %p\n", con); 1347 con_out_kvec_reset(con); 1348 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1349 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1350 } 1351 1352 /* 1353 * Connection negotiation. 1354 */ 1355 1356 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1357 int *auth_proto) 1358 { 1359 struct ceph_auth_handshake *auth; 1360 1361 if (!con->ops->get_authorizer) { 1362 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1363 con->out_connect.authorizer_len = 0; 1364 return NULL; 1365 } 1366 1367 /* Can't hold the mutex while getting authorizer */ 1368 mutex_unlock(&con->mutex); 1369 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1370 mutex_lock(&con->mutex); 1371 1372 if (IS_ERR(auth)) 1373 return auth; 1374 if (con->state != CON_STATE_NEGOTIATING) 1375 return ERR_PTR(-EAGAIN); 1376 1377 con->auth_reply_buf = auth->authorizer_reply_buf; 1378 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1379 return auth; 1380 } 1381 1382 /* 1383 * We connected to a peer and are saying hello. 1384 */ 1385 static void prepare_write_banner(struct ceph_connection *con) 1386 { 1387 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1388 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1389 &con->msgr->my_enc_addr); 1390 1391 con->out_more = 0; 1392 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1393 } 1394 1395 static int prepare_write_connect(struct ceph_connection *con) 1396 { 1397 unsigned int global_seq = get_global_seq(con->msgr, 0); 1398 int proto; 1399 int auth_proto; 1400 struct ceph_auth_handshake *auth; 1401 1402 switch (con->peer_name.type) { 1403 case CEPH_ENTITY_TYPE_MON: 1404 proto = CEPH_MONC_PROTOCOL; 1405 break; 1406 case CEPH_ENTITY_TYPE_OSD: 1407 proto = CEPH_OSDC_PROTOCOL; 1408 break; 1409 case CEPH_ENTITY_TYPE_MDS: 1410 proto = CEPH_MDSC_PROTOCOL; 1411 break; 1412 default: 1413 BUG(); 1414 } 1415 1416 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1417 con->connect_seq, global_seq, proto); 1418 1419 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1420 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1421 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1422 con->out_connect.global_seq = cpu_to_le32(global_seq); 1423 con->out_connect.protocol_version = cpu_to_le32(proto); 1424 con->out_connect.flags = 0; 1425 1426 auth_proto = CEPH_AUTH_UNKNOWN; 1427 auth = get_connect_authorizer(con, &auth_proto); 1428 if (IS_ERR(auth)) 1429 return PTR_ERR(auth); 1430 1431 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1432 con->out_connect.authorizer_len = auth ? 1433 cpu_to_le32(auth->authorizer_buf_len) : 0; 1434 1435 con_out_kvec_add(con, sizeof (con->out_connect), 1436 &con->out_connect); 1437 if (auth && auth->authorizer_buf_len) 1438 con_out_kvec_add(con, auth->authorizer_buf_len, 1439 auth->authorizer_buf); 1440 1441 con->out_more = 0; 1442 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1443 1444 return 0; 1445 } 1446 1447 /* 1448 * write as much of pending kvecs to the socket as we can. 1449 * 1 -> done 1450 * 0 -> socket full, but more to do 1451 * <0 -> error 1452 */ 1453 static int write_partial_kvec(struct ceph_connection *con) 1454 { 1455 int ret; 1456 1457 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1458 while (con->out_kvec_bytes > 0) { 1459 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1460 con->out_kvec_left, con->out_kvec_bytes, 1461 con->out_more); 1462 if (ret <= 0) 1463 goto out; 1464 con->out_kvec_bytes -= ret; 1465 if (con->out_kvec_bytes == 0) 1466 break; /* done */ 1467 1468 /* account for full iov entries consumed */ 1469 while (ret >= con->out_kvec_cur->iov_len) { 1470 BUG_ON(!con->out_kvec_left); 1471 ret -= con->out_kvec_cur->iov_len; 1472 con->out_kvec_cur++; 1473 con->out_kvec_left--; 1474 } 1475 /* and for a partially-consumed entry */ 1476 if (ret) { 1477 con->out_kvec_cur->iov_len -= ret; 1478 con->out_kvec_cur->iov_base += ret; 1479 } 1480 } 1481 con->out_kvec_left = 0; 1482 con->out_kvec_is_msg = false; 1483 ret = 1; 1484 out: 1485 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1486 con->out_kvec_bytes, con->out_kvec_left, ret); 1487 return ret; /* done! */ 1488 } 1489 1490 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1491 unsigned int page_offset, 1492 unsigned int length) 1493 { 1494 char *kaddr; 1495 1496 kaddr = kmap(page); 1497 BUG_ON(kaddr == NULL); 1498 crc = crc32c(crc, kaddr + page_offset, length); 1499 kunmap(page); 1500 1501 return crc; 1502 } 1503 /* 1504 * Write as much message data payload as we can. If we finish, queue 1505 * up the footer. 1506 * 1 -> done, footer is now queued in out_kvec[]. 1507 * 0 -> socket full, but more to do 1508 * <0 -> error 1509 */ 1510 static int write_partial_message_data(struct ceph_connection *con) 1511 { 1512 struct ceph_msg *msg = con->out_msg; 1513 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1514 bool do_datacrc = !con->msgr->nocrc; 1515 u32 crc; 1516 1517 dout("%s %p msg %p\n", __func__, con, msg); 1518 1519 if (list_empty(&msg->data)) 1520 return -EINVAL; 1521 1522 /* 1523 * Iterate through each page that contains data to be 1524 * written, and send as much as possible for each. 1525 * 1526 * If we are calculating the data crc (the default), we will 1527 * need to map the page. If we have no pages, they have 1528 * been revoked, so use the zero page. 1529 */ 1530 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1531 while (cursor->resid) { 1532 struct page *page; 1533 size_t page_offset; 1534 size_t length; 1535 bool last_piece; 1536 bool need_crc; 1537 int ret; 1538 1539 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1540 &last_piece); 1541 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1542 length, last_piece); 1543 if (ret <= 0) { 1544 if (do_datacrc) 1545 msg->footer.data_crc = cpu_to_le32(crc); 1546 1547 return ret; 1548 } 1549 if (do_datacrc && cursor->need_crc) 1550 crc = ceph_crc32c_page(crc, page, page_offset, length); 1551 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1552 } 1553 1554 dout("%s %p msg %p done\n", __func__, con, msg); 1555 1556 /* prepare and queue up footer, too */ 1557 if (do_datacrc) 1558 msg->footer.data_crc = cpu_to_le32(crc); 1559 else 1560 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1561 con_out_kvec_reset(con); 1562 prepare_write_message_footer(con); 1563 1564 return 1; /* must return > 0 to indicate success */ 1565 } 1566 1567 /* 1568 * write some zeros 1569 */ 1570 static int write_partial_skip(struct ceph_connection *con) 1571 { 1572 int ret; 1573 1574 while (con->out_skip > 0) { 1575 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1576 1577 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1578 if (ret <= 0) 1579 goto out; 1580 con->out_skip -= ret; 1581 } 1582 ret = 1; 1583 out: 1584 return ret; 1585 } 1586 1587 /* 1588 * Prepare to read connection handshake, or an ack. 1589 */ 1590 static void prepare_read_banner(struct ceph_connection *con) 1591 { 1592 dout("prepare_read_banner %p\n", con); 1593 con->in_base_pos = 0; 1594 } 1595 1596 static void prepare_read_connect(struct ceph_connection *con) 1597 { 1598 dout("prepare_read_connect %p\n", con); 1599 con->in_base_pos = 0; 1600 } 1601 1602 static void prepare_read_ack(struct ceph_connection *con) 1603 { 1604 dout("prepare_read_ack %p\n", con); 1605 con->in_base_pos = 0; 1606 } 1607 1608 static void prepare_read_seq(struct ceph_connection *con) 1609 { 1610 dout("prepare_read_seq %p\n", con); 1611 con->in_base_pos = 0; 1612 con->in_tag = CEPH_MSGR_TAG_SEQ; 1613 } 1614 1615 static void prepare_read_tag(struct ceph_connection *con) 1616 { 1617 dout("prepare_read_tag %p\n", con); 1618 con->in_base_pos = 0; 1619 con->in_tag = CEPH_MSGR_TAG_READY; 1620 } 1621 1622 /* 1623 * Prepare to read a message. 1624 */ 1625 static int prepare_read_message(struct ceph_connection *con) 1626 { 1627 dout("prepare_read_message %p\n", con); 1628 BUG_ON(con->in_msg != NULL); 1629 con->in_base_pos = 0; 1630 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1631 return 0; 1632 } 1633 1634 1635 static int read_partial(struct ceph_connection *con, 1636 int end, int size, void *object) 1637 { 1638 while (con->in_base_pos < end) { 1639 int left = end - con->in_base_pos; 1640 int have = size - left; 1641 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1642 if (ret <= 0) 1643 return ret; 1644 con->in_base_pos += ret; 1645 } 1646 return 1; 1647 } 1648 1649 1650 /* 1651 * Read all or part of the connect-side handshake on a new connection 1652 */ 1653 static int read_partial_banner(struct ceph_connection *con) 1654 { 1655 int size; 1656 int end; 1657 int ret; 1658 1659 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1660 1661 /* peer's banner */ 1662 size = strlen(CEPH_BANNER); 1663 end = size; 1664 ret = read_partial(con, end, size, con->in_banner); 1665 if (ret <= 0) 1666 goto out; 1667 1668 size = sizeof (con->actual_peer_addr); 1669 end += size; 1670 ret = read_partial(con, end, size, &con->actual_peer_addr); 1671 if (ret <= 0) 1672 goto out; 1673 1674 size = sizeof (con->peer_addr_for_me); 1675 end += size; 1676 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1677 if (ret <= 0) 1678 goto out; 1679 1680 out: 1681 return ret; 1682 } 1683 1684 static int read_partial_connect(struct ceph_connection *con) 1685 { 1686 int size; 1687 int end; 1688 int ret; 1689 1690 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1691 1692 size = sizeof (con->in_reply); 1693 end = size; 1694 ret = read_partial(con, end, size, &con->in_reply); 1695 if (ret <= 0) 1696 goto out; 1697 1698 size = le32_to_cpu(con->in_reply.authorizer_len); 1699 end += size; 1700 ret = read_partial(con, end, size, con->auth_reply_buf); 1701 if (ret <= 0) 1702 goto out; 1703 1704 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1705 con, (int)con->in_reply.tag, 1706 le32_to_cpu(con->in_reply.connect_seq), 1707 le32_to_cpu(con->in_reply.global_seq)); 1708 out: 1709 return ret; 1710 1711 } 1712 1713 /* 1714 * Verify the hello banner looks okay. 1715 */ 1716 static int verify_hello(struct ceph_connection *con) 1717 { 1718 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1719 pr_err("connect to %s got bad banner\n", 1720 ceph_pr_addr(&con->peer_addr.in_addr)); 1721 con->error_msg = "protocol error, bad banner"; 1722 return -1; 1723 } 1724 return 0; 1725 } 1726 1727 static bool addr_is_blank(struct sockaddr_storage *ss) 1728 { 1729 switch (ss->ss_family) { 1730 case AF_INET: 1731 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1732 case AF_INET6: 1733 return 1734 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1735 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1736 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1737 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1738 } 1739 return false; 1740 } 1741 1742 static int addr_port(struct sockaddr_storage *ss) 1743 { 1744 switch (ss->ss_family) { 1745 case AF_INET: 1746 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1747 case AF_INET6: 1748 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1749 } 1750 return 0; 1751 } 1752 1753 static void addr_set_port(struct sockaddr_storage *ss, int p) 1754 { 1755 switch (ss->ss_family) { 1756 case AF_INET: 1757 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1758 break; 1759 case AF_INET6: 1760 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1761 break; 1762 } 1763 } 1764 1765 /* 1766 * Unlike other *_pton function semantics, zero indicates success. 1767 */ 1768 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1769 char delim, const char **ipend) 1770 { 1771 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1772 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1773 1774 memset(ss, 0, sizeof(*ss)); 1775 1776 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1777 ss->ss_family = AF_INET; 1778 return 0; 1779 } 1780 1781 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1782 ss->ss_family = AF_INET6; 1783 return 0; 1784 } 1785 1786 return -EINVAL; 1787 } 1788 1789 /* 1790 * Extract hostname string and resolve using kernel DNS facility. 1791 */ 1792 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1793 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1794 struct sockaddr_storage *ss, char delim, const char **ipend) 1795 { 1796 const char *end, *delim_p; 1797 char *colon_p, *ip_addr = NULL; 1798 int ip_len, ret; 1799 1800 /* 1801 * The end of the hostname occurs immediately preceding the delimiter or 1802 * the port marker (':') where the delimiter takes precedence. 1803 */ 1804 delim_p = memchr(name, delim, namelen); 1805 colon_p = memchr(name, ':', namelen); 1806 1807 if (delim_p && colon_p) 1808 end = delim_p < colon_p ? delim_p : colon_p; 1809 else if (!delim_p && colon_p) 1810 end = colon_p; 1811 else { 1812 end = delim_p; 1813 if (!end) /* case: hostname:/ */ 1814 end = name + namelen; 1815 } 1816 1817 if (end <= name) 1818 return -EINVAL; 1819 1820 /* do dns_resolve upcall */ 1821 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1822 if (ip_len > 0) 1823 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1824 else 1825 ret = -ESRCH; 1826 1827 kfree(ip_addr); 1828 1829 *ipend = end; 1830 1831 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1832 ret, ret ? "failed" : ceph_pr_addr(ss)); 1833 1834 return ret; 1835 } 1836 #else 1837 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1838 struct sockaddr_storage *ss, char delim, const char **ipend) 1839 { 1840 return -EINVAL; 1841 } 1842 #endif 1843 1844 /* 1845 * Parse a server name (IP or hostname). If a valid IP address is not found 1846 * then try to extract a hostname to resolve using userspace DNS upcall. 1847 */ 1848 static int ceph_parse_server_name(const char *name, size_t namelen, 1849 struct sockaddr_storage *ss, char delim, const char **ipend) 1850 { 1851 int ret; 1852 1853 ret = ceph_pton(name, namelen, ss, delim, ipend); 1854 if (ret) 1855 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1856 1857 return ret; 1858 } 1859 1860 /* 1861 * Parse an ip[:port] list into an addr array. Use the default 1862 * monitor port if a port isn't specified. 1863 */ 1864 int ceph_parse_ips(const char *c, const char *end, 1865 struct ceph_entity_addr *addr, 1866 int max_count, int *count) 1867 { 1868 int i, ret = -EINVAL; 1869 const char *p = c; 1870 1871 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1872 for (i = 0; i < max_count; i++) { 1873 const char *ipend; 1874 struct sockaddr_storage *ss = &addr[i].in_addr; 1875 int port; 1876 char delim = ','; 1877 1878 if (*p == '[') { 1879 delim = ']'; 1880 p++; 1881 } 1882 1883 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1884 if (ret) 1885 goto bad; 1886 ret = -EINVAL; 1887 1888 p = ipend; 1889 1890 if (delim == ']') { 1891 if (*p != ']') { 1892 dout("missing matching ']'\n"); 1893 goto bad; 1894 } 1895 p++; 1896 } 1897 1898 /* port? */ 1899 if (p < end && *p == ':') { 1900 port = 0; 1901 p++; 1902 while (p < end && *p >= '0' && *p <= '9') { 1903 port = (port * 10) + (*p - '0'); 1904 p++; 1905 } 1906 if (port == 0) 1907 port = CEPH_MON_PORT; 1908 else if (port > 65535) 1909 goto bad; 1910 } else { 1911 port = CEPH_MON_PORT; 1912 } 1913 1914 addr_set_port(ss, port); 1915 1916 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1917 1918 if (p == end) 1919 break; 1920 if (*p != ',') 1921 goto bad; 1922 p++; 1923 } 1924 1925 if (p != end) 1926 goto bad; 1927 1928 if (count) 1929 *count = i + 1; 1930 return 0; 1931 1932 bad: 1933 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1934 return ret; 1935 } 1936 EXPORT_SYMBOL(ceph_parse_ips); 1937 1938 static int process_banner(struct ceph_connection *con) 1939 { 1940 dout("process_banner on %p\n", con); 1941 1942 if (verify_hello(con) < 0) 1943 return -1; 1944 1945 ceph_decode_addr(&con->actual_peer_addr); 1946 ceph_decode_addr(&con->peer_addr_for_me); 1947 1948 /* 1949 * Make sure the other end is who we wanted. note that the other 1950 * end may not yet know their ip address, so if it's 0.0.0.0, give 1951 * them the benefit of the doubt. 1952 */ 1953 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1954 sizeof(con->peer_addr)) != 0 && 1955 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1956 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1957 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 1958 ceph_pr_addr(&con->peer_addr.in_addr), 1959 (int)le32_to_cpu(con->peer_addr.nonce), 1960 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1961 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1962 con->error_msg = "wrong peer at address"; 1963 return -1; 1964 } 1965 1966 /* 1967 * did we learn our address? 1968 */ 1969 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1970 int port = addr_port(&con->msgr->inst.addr.in_addr); 1971 1972 memcpy(&con->msgr->inst.addr.in_addr, 1973 &con->peer_addr_for_me.in_addr, 1974 sizeof(con->peer_addr_for_me.in_addr)); 1975 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1976 encode_my_addr(con->msgr); 1977 dout("process_banner learned my addr is %s\n", 1978 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1979 } 1980 1981 return 0; 1982 } 1983 1984 static int process_connect(struct ceph_connection *con) 1985 { 1986 u64 sup_feat = con->msgr->supported_features; 1987 u64 req_feat = con->msgr->required_features; 1988 u64 server_feat = ceph_sanitize_features( 1989 le64_to_cpu(con->in_reply.features)); 1990 int ret; 1991 1992 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1993 1994 switch (con->in_reply.tag) { 1995 case CEPH_MSGR_TAG_FEATURES: 1996 pr_err("%s%lld %s feature set mismatch," 1997 " my %llx < server's %llx, missing %llx\n", 1998 ENTITY_NAME(con->peer_name), 1999 ceph_pr_addr(&con->peer_addr.in_addr), 2000 sup_feat, server_feat, server_feat & ~sup_feat); 2001 con->error_msg = "missing required protocol features"; 2002 reset_connection(con); 2003 return -1; 2004 2005 case CEPH_MSGR_TAG_BADPROTOVER: 2006 pr_err("%s%lld %s protocol version mismatch," 2007 " my %d != server's %d\n", 2008 ENTITY_NAME(con->peer_name), 2009 ceph_pr_addr(&con->peer_addr.in_addr), 2010 le32_to_cpu(con->out_connect.protocol_version), 2011 le32_to_cpu(con->in_reply.protocol_version)); 2012 con->error_msg = "protocol version mismatch"; 2013 reset_connection(con); 2014 return -1; 2015 2016 case CEPH_MSGR_TAG_BADAUTHORIZER: 2017 con->auth_retry++; 2018 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2019 con->auth_retry); 2020 if (con->auth_retry == 2) { 2021 con->error_msg = "connect authorization failure"; 2022 return -1; 2023 } 2024 con_out_kvec_reset(con); 2025 ret = prepare_write_connect(con); 2026 if (ret < 0) 2027 return ret; 2028 prepare_read_connect(con); 2029 break; 2030 2031 case CEPH_MSGR_TAG_RESETSESSION: 2032 /* 2033 * If we connected with a large connect_seq but the peer 2034 * has no record of a session with us (no connection, or 2035 * connect_seq == 0), they will send RESETSESION to indicate 2036 * that they must have reset their session, and may have 2037 * dropped messages. 2038 */ 2039 dout("process_connect got RESET peer seq %u\n", 2040 le32_to_cpu(con->in_reply.connect_seq)); 2041 pr_err("%s%lld %s connection reset\n", 2042 ENTITY_NAME(con->peer_name), 2043 ceph_pr_addr(&con->peer_addr.in_addr)); 2044 reset_connection(con); 2045 con_out_kvec_reset(con); 2046 ret = prepare_write_connect(con); 2047 if (ret < 0) 2048 return ret; 2049 prepare_read_connect(con); 2050 2051 /* Tell ceph about it. */ 2052 mutex_unlock(&con->mutex); 2053 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2054 if (con->ops->peer_reset) 2055 con->ops->peer_reset(con); 2056 mutex_lock(&con->mutex); 2057 if (con->state != CON_STATE_NEGOTIATING) 2058 return -EAGAIN; 2059 break; 2060 2061 case CEPH_MSGR_TAG_RETRY_SESSION: 2062 /* 2063 * If we sent a smaller connect_seq than the peer has, try 2064 * again with a larger value. 2065 */ 2066 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2067 le32_to_cpu(con->out_connect.connect_seq), 2068 le32_to_cpu(con->in_reply.connect_seq)); 2069 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2070 con_out_kvec_reset(con); 2071 ret = prepare_write_connect(con); 2072 if (ret < 0) 2073 return ret; 2074 prepare_read_connect(con); 2075 break; 2076 2077 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2078 /* 2079 * If we sent a smaller global_seq than the peer has, try 2080 * again with a larger value. 2081 */ 2082 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2083 con->peer_global_seq, 2084 le32_to_cpu(con->in_reply.global_seq)); 2085 get_global_seq(con->msgr, 2086 le32_to_cpu(con->in_reply.global_seq)); 2087 con_out_kvec_reset(con); 2088 ret = prepare_write_connect(con); 2089 if (ret < 0) 2090 return ret; 2091 prepare_read_connect(con); 2092 break; 2093 2094 case CEPH_MSGR_TAG_SEQ: 2095 case CEPH_MSGR_TAG_READY: 2096 if (req_feat & ~server_feat) { 2097 pr_err("%s%lld %s protocol feature mismatch," 2098 " my required %llx > server's %llx, need %llx\n", 2099 ENTITY_NAME(con->peer_name), 2100 ceph_pr_addr(&con->peer_addr.in_addr), 2101 req_feat, server_feat, req_feat & ~server_feat); 2102 con->error_msg = "missing required protocol features"; 2103 reset_connection(con); 2104 return -1; 2105 } 2106 2107 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2108 con->state = CON_STATE_OPEN; 2109 con->auth_retry = 0; /* we authenticated; clear flag */ 2110 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2111 con->connect_seq++; 2112 con->peer_features = server_feat; 2113 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2114 con->peer_global_seq, 2115 le32_to_cpu(con->in_reply.connect_seq), 2116 con->connect_seq); 2117 WARN_ON(con->connect_seq != 2118 le32_to_cpu(con->in_reply.connect_seq)); 2119 2120 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2121 con_flag_set(con, CON_FLAG_LOSSYTX); 2122 2123 con->delay = 0; /* reset backoff memory */ 2124 2125 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2126 prepare_write_seq(con); 2127 prepare_read_seq(con); 2128 } else { 2129 prepare_read_tag(con); 2130 } 2131 break; 2132 2133 case CEPH_MSGR_TAG_WAIT: 2134 /* 2135 * If there is a connection race (we are opening 2136 * connections to each other), one of us may just have 2137 * to WAIT. This shouldn't happen if we are the 2138 * client. 2139 */ 2140 pr_err("process_connect got WAIT as client\n"); 2141 con->error_msg = "protocol error, got WAIT as client"; 2142 return -1; 2143 2144 default: 2145 pr_err("connect protocol error, will retry\n"); 2146 con->error_msg = "protocol error, garbage tag during connect"; 2147 return -1; 2148 } 2149 return 0; 2150 } 2151 2152 2153 /* 2154 * read (part of) an ack 2155 */ 2156 static int read_partial_ack(struct ceph_connection *con) 2157 { 2158 int size = sizeof (con->in_temp_ack); 2159 int end = size; 2160 2161 return read_partial(con, end, size, &con->in_temp_ack); 2162 } 2163 2164 /* 2165 * We can finally discard anything that's been acked. 2166 */ 2167 static void process_ack(struct ceph_connection *con) 2168 { 2169 struct ceph_msg *m; 2170 u64 ack = le64_to_cpu(con->in_temp_ack); 2171 u64 seq; 2172 2173 while (!list_empty(&con->out_sent)) { 2174 m = list_first_entry(&con->out_sent, struct ceph_msg, 2175 list_head); 2176 seq = le64_to_cpu(m->hdr.seq); 2177 if (seq > ack) 2178 break; 2179 dout("got ack for seq %llu type %d at %p\n", seq, 2180 le16_to_cpu(m->hdr.type), m); 2181 m->ack_stamp = jiffies; 2182 ceph_msg_remove(m); 2183 } 2184 prepare_read_tag(con); 2185 } 2186 2187 2188 static int read_partial_message_section(struct ceph_connection *con, 2189 struct kvec *section, 2190 unsigned int sec_len, u32 *crc) 2191 { 2192 int ret, left; 2193 2194 BUG_ON(!section); 2195 2196 while (section->iov_len < sec_len) { 2197 BUG_ON(section->iov_base == NULL); 2198 left = sec_len - section->iov_len; 2199 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2200 section->iov_len, left); 2201 if (ret <= 0) 2202 return ret; 2203 section->iov_len += ret; 2204 } 2205 if (section->iov_len == sec_len) 2206 *crc = crc32c(0, section->iov_base, section->iov_len); 2207 2208 return 1; 2209 } 2210 2211 static int read_partial_msg_data(struct ceph_connection *con) 2212 { 2213 struct ceph_msg *msg = con->in_msg; 2214 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2215 const bool do_datacrc = !con->msgr->nocrc; 2216 struct page *page; 2217 size_t page_offset; 2218 size_t length; 2219 u32 crc = 0; 2220 int ret; 2221 2222 BUG_ON(!msg); 2223 if (list_empty(&msg->data)) 2224 return -EIO; 2225 2226 if (do_datacrc) 2227 crc = con->in_data_crc; 2228 while (cursor->resid) { 2229 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2230 NULL); 2231 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2232 if (ret <= 0) { 2233 if (do_datacrc) 2234 con->in_data_crc = crc; 2235 2236 return ret; 2237 } 2238 2239 if (do_datacrc) 2240 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2241 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2242 } 2243 if (do_datacrc) 2244 con->in_data_crc = crc; 2245 2246 return 1; /* must return > 0 to indicate success */ 2247 } 2248 2249 /* 2250 * read (part of) a message. 2251 */ 2252 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2253 2254 static int read_partial_message(struct ceph_connection *con) 2255 { 2256 struct ceph_msg *m = con->in_msg; 2257 int size; 2258 int end; 2259 int ret; 2260 unsigned int front_len, middle_len, data_len; 2261 bool do_datacrc = !con->msgr->nocrc; 2262 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2263 u64 seq; 2264 u32 crc; 2265 2266 dout("read_partial_message con %p msg %p\n", con, m); 2267 2268 /* header */ 2269 size = sizeof (con->in_hdr); 2270 end = size; 2271 ret = read_partial(con, end, size, &con->in_hdr); 2272 if (ret <= 0) 2273 return ret; 2274 2275 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2276 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2277 pr_err("read_partial_message bad hdr " 2278 " crc %u != expected %u\n", 2279 crc, con->in_hdr.crc); 2280 return -EBADMSG; 2281 } 2282 2283 front_len = le32_to_cpu(con->in_hdr.front_len); 2284 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2285 return -EIO; 2286 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2287 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2288 return -EIO; 2289 data_len = le32_to_cpu(con->in_hdr.data_len); 2290 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2291 return -EIO; 2292 2293 /* verify seq# */ 2294 seq = le64_to_cpu(con->in_hdr.seq); 2295 if ((s64)seq - (s64)con->in_seq < 1) { 2296 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2297 ENTITY_NAME(con->peer_name), 2298 ceph_pr_addr(&con->peer_addr.in_addr), 2299 seq, con->in_seq + 1); 2300 con->in_base_pos = -front_len - middle_len - data_len - 2301 sizeof(m->footer); 2302 con->in_tag = CEPH_MSGR_TAG_READY; 2303 return 0; 2304 } else if ((s64)seq - (s64)con->in_seq > 1) { 2305 pr_err("read_partial_message bad seq %lld expected %lld\n", 2306 seq, con->in_seq + 1); 2307 con->error_msg = "bad message sequence # for incoming message"; 2308 return -EBADMSG; 2309 } 2310 2311 /* allocate message? */ 2312 if (!con->in_msg) { 2313 int skip = 0; 2314 2315 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2316 front_len, data_len); 2317 ret = ceph_con_in_msg_alloc(con, &skip); 2318 if (ret < 0) 2319 return ret; 2320 2321 BUG_ON(!con->in_msg ^ skip); 2322 if (con->in_msg && data_len > con->in_msg->data_length) { 2323 pr_warn("%s skipping long message (%u > %zd)\n", 2324 __func__, data_len, con->in_msg->data_length); 2325 ceph_msg_put(con->in_msg); 2326 con->in_msg = NULL; 2327 skip = 1; 2328 } 2329 if (skip) { 2330 /* skip this message */ 2331 dout("alloc_msg said skip message\n"); 2332 con->in_base_pos = -front_len - middle_len - data_len - 2333 sizeof(m->footer); 2334 con->in_tag = CEPH_MSGR_TAG_READY; 2335 con->in_seq++; 2336 return 0; 2337 } 2338 2339 BUG_ON(!con->in_msg); 2340 BUG_ON(con->in_msg->con != con); 2341 m = con->in_msg; 2342 m->front.iov_len = 0; /* haven't read it yet */ 2343 if (m->middle) 2344 m->middle->vec.iov_len = 0; 2345 2346 /* prepare for data payload, if any */ 2347 2348 if (data_len) 2349 prepare_message_data(con->in_msg, data_len); 2350 } 2351 2352 /* front */ 2353 ret = read_partial_message_section(con, &m->front, front_len, 2354 &con->in_front_crc); 2355 if (ret <= 0) 2356 return ret; 2357 2358 /* middle */ 2359 if (m->middle) { 2360 ret = read_partial_message_section(con, &m->middle->vec, 2361 middle_len, 2362 &con->in_middle_crc); 2363 if (ret <= 0) 2364 return ret; 2365 } 2366 2367 /* (page) data */ 2368 if (data_len) { 2369 ret = read_partial_msg_data(con); 2370 if (ret <= 0) 2371 return ret; 2372 } 2373 2374 /* footer */ 2375 if (need_sign) 2376 size = sizeof(m->footer); 2377 else 2378 size = sizeof(m->old_footer); 2379 2380 end += size; 2381 ret = read_partial(con, end, size, &m->footer); 2382 if (ret <= 0) 2383 return ret; 2384 2385 if (!need_sign) { 2386 m->footer.flags = m->old_footer.flags; 2387 m->footer.sig = 0; 2388 } 2389 2390 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2391 m, front_len, m->footer.front_crc, middle_len, 2392 m->footer.middle_crc, data_len, m->footer.data_crc); 2393 2394 /* crc ok? */ 2395 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2396 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2397 m, con->in_front_crc, m->footer.front_crc); 2398 return -EBADMSG; 2399 } 2400 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2401 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2402 m, con->in_middle_crc, m->footer.middle_crc); 2403 return -EBADMSG; 2404 } 2405 if (do_datacrc && 2406 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2407 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2408 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2409 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2410 return -EBADMSG; 2411 } 2412 2413 if (need_sign && con->ops->check_message_signature && 2414 con->ops->check_message_signature(con, m)) { 2415 pr_err("read_partial_message %p signature check failed\n", m); 2416 return -EBADMSG; 2417 } 2418 2419 return 1; /* done! */ 2420 } 2421 2422 /* 2423 * Process message. This happens in the worker thread. The callback should 2424 * be careful not to do anything that waits on other incoming messages or it 2425 * may deadlock. 2426 */ 2427 static void process_message(struct ceph_connection *con) 2428 { 2429 struct ceph_msg *msg; 2430 2431 BUG_ON(con->in_msg->con != con); 2432 con->in_msg->con = NULL; 2433 msg = con->in_msg; 2434 con->in_msg = NULL; 2435 con->ops->put(con); 2436 2437 /* if first message, set peer_name */ 2438 if (con->peer_name.type == 0) 2439 con->peer_name = msg->hdr.src; 2440 2441 con->in_seq++; 2442 mutex_unlock(&con->mutex); 2443 2444 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2445 msg, le64_to_cpu(msg->hdr.seq), 2446 ENTITY_NAME(msg->hdr.src), 2447 le16_to_cpu(msg->hdr.type), 2448 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2449 le32_to_cpu(msg->hdr.front_len), 2450 le32_to_cpu(msg->hdr.data_len), 2451 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2452 con->ops->dispatch(con, msg); 2453 2454 mutex_lock(&con->mutex); 2455 } 2456 2457 2458 /* 2459 * Write something to the socket. Called in a worker thread when the 2460 * socket appears to be writeable and we have something ready to send. 2461 */ 2462 static int try_write(struct ceph_connection *con) 2463 { 2464 int ret = 1; 2465 2466 dout("try_write start %p state %lu\n", con, con->state); 2467 2468 more: 2469 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2470 2471 /* open the socket first? */ 2472 if (con->state == CON_STATE_PREOPEN) { 2473 BUG_ON(con->sock); 2474 con->state = CON_STATE_CONNECTING; 2475 2476 con_out_kvec_reset(con); 2477 prepare_write_banner(con); 2478 prepare_read_banner(con); 2479 2480 BUG_ON(con->in_msg); 2481 con->in_tag = CEPH_MSGR_TAG_READY; 2482 dout("try_write initiating connect on %p new state %lu\n", 2483 con, con->state); 2484 ret = ceph_tcp_connect(con); 2485 if (ret < 0) { 2486 con->error_msg = "connect error"; 2487 goto out; 2488 } 2489 } 2490 2491 more_kvec: 2492 /* kvec data queued? */ 2493 if (con->out_skip) { 2494 ret = write_partial_skip(con); 2495 if (ret <= 0) 2496 goto out; 2497 } 2498 if (con->out_kvec_left) { 2499 ret = write_partial_kvec(con); 2500 if (ret <= 0) 2501 goto out; 2502 } 2503 2504 /* msg pages? */ 2505 if (con->out_msg) { 2506 if (con->out_msg_done) { 2507 ceph_msg_put(con->out_msg); 2508 con->out_msg = NULL; /* we're done with this one */ 2509 goto do_next; 2510 } 2511 2512 ret = write_partial_message_data(con); 2513 if (ret == 1) 2514 goto more_kvec; /* we need to send the footer, too! */ 2515 if (ret == 0) 2516 goto out; 2517 if (ret < 0) { 2518 dout("try_write write_partial_message_data err %d\n", 2519 ret); 2520 goto out; 2521 } 2522 } 2523 2524 do_next: 2525 if (con->state == CON_STATE_OPEN) { 2526 /* is anything else pending? */ 2527 if (!list_empty(&con->out_queue)) { 2528 prepare_write_message(con); 2529 goto more; 2530 } 2531 if (con->in_seq > con->in_seq_acked) { 2532 prepare_write_ack(con); 2533 goto more; 2534 } 2535 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2536 prepare_write_keepalive(con); 2537 goto more; 2538 } 2539 } 2540 2541 /* Nothing to do! */ 2542 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2543 dout("try_write nothing else to write.\n"); 2544 ret = 0; 2545 out: 2546 dout("try_write done on %p ret %d\n", con, ret); 2547 return ret; 2548 } 2549 2550 2551 2552 /* 2553 * Read what we can from the socket. 2554 */ 2555 static int try_read(struct ceph_connection *con) 2556 { 2557 int ret = -1; 2558 2559 more: 2560 dout("try_read start on %p state %lu\n", con, con->state); 2561 if (con->state != CON_STATE_CONNECTING && 2562 con->state != CON_STATE_NEGOTIATING && 2563 con->state != CON_STATE_OPEN) 2564 return 0; 2565 2566 BUG_ON(!con->sock); 2567 2568 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2569 con->in_base_pos); 2570 2571 if (con->state == CON_STATE_CONNECTING) { 2572 dout("try_read connecting\n"); 2573 ret = read_partial_banner(con); 2574 if (ret <= 0) 2575 goto out; 2576 ret = process_banner(con); 2577 if (ret < 0) 2578 goto out; 2579 2580 con->state = CON_STATE_NEGOTIATING; 2581 2582 /* 2583 * Received banner is good, exchange connection info. 2584 * Do not reset out_kvec, as sending our banner raced 2585 * with receiving peer banner after connect completed. 2586 */ 2587 ret = prepare_write_connect(con); 2588 if (ret < 0) 2589 goto out; 2590 prepare_read_connect(con); 2591 2592 /* Send connection info before awaiting response */ 2593 goto out; 2594 } 2595 2596 if (con->state == CON_STATE_NEGOTIATING) { 2597 dout("try_read negotiating\n"); 2598 ret = read_partial_connect(con); 2599 if (ret <= 0) 2600 goto out; 2601 ret = process_connect(con); 2602 if (ret < 0) 2603 goto out; 2604 goto more; 2605 } 2606 2607 WARN_ON(con->state != CON_STATE_OPEN); 2608 2609 if (con->in_base_pos < 0) { 2610 /* 2611 * skipping + discarding content. 2612 * 2613 * FIXME: there must be a better way to do this! 2614 */ 2615 static char buf[SKIP_BUF_SIZE]; 2616 int skip = min((int) sizeof (buf), -con->in_base_pos); 2617 2618 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2619 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2620 if (ret <= 0) 2621 goto out; 2622 con->in_base_pos += ret; 2623 if (con->in_base_pos) 2624 goto more; 2625 } 2626 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2627 /* 2628 * what's next? 2629 */ 2630 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2631 if (ret <= 0) 2632 goto out; 2633 dout("try_read got tag %d\n", (int)con->in_tag); 2634 switch (con->in_tag) { 2635 case CEPH_MSGR_TAG_MSG: 2636 prepare_read_message(con); 2637 break; 2638 case CEPH_MSGR_TAG_ACK: 2639 prepare_read_ack(con); 2640 break; 2641 case CEPH_MSGR_TAG_CLOSE: 2642 con_close_socket(con); 2643 con->state = CON_STATE_CLOSED; 2644 goto out; 2645 default: 2646 goto bad_tag; 2647 } 2648 } 2649 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2650 ret = read_partial_message(con); 2651 if (ret <= 0) { 2652 switch (ret) { 2653 case -EBADMSG: 2654 con->error_msg = "bad crc"; 2655 ret = -EIO; 2656 break; 2657 case -EIO: 2658 con->error_msg = "io error"; 2659 break; 2660 } 2661 goto out; 2662 } 2663 if (con->in_tag == CEPH_MSGR_TAG_READY) 2664 goto more; 2665 process_message(con); 2666 if (con->state == CON_STATE_OPEN) 2667 prepare_read_tag(con); 2668 goto more; 2669 } 2670 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2671 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2672 /* 2673 * the final handshake seq exchange is semantically 2674 * equivalent to an ACK 2675 */ 2676 ret = read_partial_ack(con); 2677 if (ret <= 0) 2678 goto out; 2679 process_ack(con); 2680 goto more; 2681 } 2682 2683 out: 2684 dout("try_read done on %p ret %d\n", con, ret); 2685 return ret; 2686 2687 bad_tag: 2688 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2689 con->error_msg = "protocol error, garbage tag"; 2690 ret = -1; 2691 goto out; 2692 } 2693 2694 2695 /* 2696 * Atomically queue work on a connection after the specified delay. 2697 * Bump @con reference to avoid races with connection teardown. 2698 * Returns 0 if work was queued, or an error code otherwise. 2699 */ 2700 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2701 { 2702 if (!con->ops->get(con)) { 2703 dout("%s %p ref count 0\n", __func__, con); 2704 return -ENOENT; 2705 } 2706 2707 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2708 dout("%s %p - already queued\n", __func__, con); 2709 con->ops->put(con); 2710 return -EBUSY; 2711 } 2712 2713 dout("%s %p %lu\n", __func__, con, delay); 2714 return 0; 2715 } 2716 2717 static void queue_con(struct ceph_connection *con) 2718 { 2719 (void) queue_con_delay(con, 0); 2720 } 2721 2722 static void cancel_con(struct ceph_connection *con) 2723 { 2724 if (cancel_delayed_work(&con->work)) { 2725 dout("%s %p\n", __func__, con); 2726 con->ops->put(con); 2727 } 2728 } 2729 2730 static bool con_sock_closed(struct ceph_connection *con) 2731 { 2732 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2733 return false; 2734 2735 #define CASE(x) \ 2736 case CON_STATE_ ## x: \ 2737 con->error_msg = "socket closed (con state " #x ")"; \ 2738 break; 2739 2740 switch (con->state) { 2741 CASE(CLOSED); 2742 CASE(PREOPEN); 2743 CASE(CONNECTING); 2744 CASE(NEGOTIATING); 2745 CASE(OPEN); 2746 CASE(STANDBY); 2747 default: 2748 pr_warn("%s con %p unrecognized state %lu\n", 2749 __func__, con, con->state); 2750 con->error_msg = "unrecognized con state"; 2751 BUG(); 2752 break; 2753 } 2754 #undef CASE 2755 2756 return true; 2757 } 2758 2759 static bool con_backoff(struct ceph_connection *con) 2760 { 2761 int ret; 2762 2763 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2764 return false; 2765 2766 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2767 if (ret) { 2768 dout("%s: con %p FAILED to back off %lu\n", __func__, 2769 con, con->delay); 2770 BUG_ON(ret == -ENOENT); 2771 con_flag_set(con, CON_FLAG_BACKOFF); 2772 } 2773 2774 return true; 2775 } 2776 2777 /* Finish fault handling; con->mutex must *not* be held here */ 2778 2779 static void con_fault_finish(struct ceph_connection *con) 2780 { 2781 /* 2782 * in case we faulted due to authentication, invalidate our 2783 * current tickets so that we can get new ones. 2784 */ 2785 if (con->auth_retry && con->ops->invalidate_authorizer) { 2786 dout("calling invalidate_authorizer()\n"); 2787 con->ops->invalidate_authorizer(con); 2788 } 2789 2790 if (con->ops->fault) 2791 con->ops->fault(con); 2792 } 2793 2794 /* 2795 * Do some work on a connection. Drop a connection ref when we're done. 2796 */ 2797 static void con_work(struct work_struct *work) 2798 { 2799 struct ceph_connection *con = container_of(work, struct ceph_connection, 2800 work.work); 2801 unsigned long pflags = current->flags; 2802 bool fault; 2803 2804 current->flags |= PF_MEMALLOC; 2805 2806 mutex_lock(&con->mutex); 2807 while (true) { 2808 int ret; 2809 2810 if ((fault = con_sock_closed(con))) { 2811 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2812 break; 2813 } 2814 if (con_backoff(con)) { 2815 dout("%s: con %p BACKOFF\n", __func__, con); 2816 break; 2817 } 2818 if (con->state == CON_STATE_STANDBY) { 2819 dout("%s: con %p STANDBY\n", __func__, con); 2820 break; 2821 } 2822 if (con->state == CON_STATE_CLOSED) { 2823 dout("%s: con %p CLOSED\n", __func__, con); 2824 BUG_ON(con->sock); 2825 break; 2826 } 2827 if (con->state == CON_STATE_PREOPEN) { 2828 dout("%s: con %p PREOPEN\n", __func__, con); 2829 BUG_ON(con->sock); 2830 } 2831 2832 ret = try_read(con); 2833 if (ret < 0) { 2834 if (ret == -EAGAIN) 2835 continue; 2836 con->error_msg = "socket error on read"; 2837 fault = true; 2838 break; 2839 } 2840 2841 ret = try_write(con); 2842 if (ret < 0) { 2843 if (ret == -EAGAIN) 2844 continue; 2845 con->error_msg = "socket error on write"; 2846 fault = true; 2847 } 2848 2849 break; /* If we make it to here, we're done */ 2850 } 2851 if (fault) 2852 con_fault(con); 2853 mutex_unlock(&con->mutex); 2854 2855 if (fault) 2856 con_fault_finish(con); 2857 2858 con->ops->put(con); 2859 2860 tsk_restore_flags(current, pflags, PF_MEMALLOC); 2861 } 2862 2863 /* 2864 * Generic error/fault handler. A retry mechanism is used with 2865 * exponential backoff 2866 */ 2867 static void con_fault(struct ceph_connection *con) 2868 { 2869 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2870 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2871 dout("fault %p state %lu to peer %s\n", 2872 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2873 2874 WARN_ON(con->state != CON_STATE_CONNECTING && 2875 con->state != CON_STATE_NEGOTIATING && 2876 con->state != CON_STATE_OPEN); 2877 2878 con_close_socket(con); 2879 2880 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2881 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2882 con->state = CON_STATE_CLOSED; 2883 return; 2884 } 2885 2886 if (con->in_msg) { 2887 BUG_ON(con->in_msg->con != con); 2888 con->in_msg->con = NULL; 2889 ceph_msg_put(con->in_msg); 2890 con->in_msg = NULL; 2891 con->ops->put(con); 2892 } 2893 2894 /* Requeue anything that hasn't been acked */ 2895 list_splice_init(&con->out_sent, &con->out_queue); 2896 2897 /* If there are no messages queued or keepalive pending, place 2898 * the connection in a STANDBY state */ 2899 if (list_empty(&con->out_queue) && 2900 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2901 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2902 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2903 con->state = CON_STATE_STANDBY; 2904 } else { 2905 /* retry after a delay. */ 2906 con->state = CON_STATE_PREOPEN; 2907 if (con->delay == 0) 2908 con->delay = BASE_DELAY_INTERVAL; 2909 else if (con->delay < MAX_DELAY_INTERVAL) 2910 con->delay *= 2; 2911 con_flag_set(con, CON_FLAG_BACKOFF); 2912 queue_con(con); 2913 } 2914 } 2915 2916 2917 2918 /* 2919 * initialize a new messenger instance 2920 */ 2921 void ceph_messenger_init(struct ceph_messenger *msgr, 2922 struct ceph_entity_addr *myaddr, 2923 u64 supported_features, 2924 u64 required_features, 2925 bool nocrc) 2926 { 2927 msgr->supported_features = supported_features; 2928 msgr->required_features = required_features; 2929 2930 spin_lock_init(&msgr->global_seq_lock); 2931 2932 if (myaddr) 2933 msgr->inst.addr = *myaddr; 2934 2935 /* select a random nonce */ 2936 msgr->inst.addr.type = 0; 2937 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2938 encode_my_addr(msgr); 2939 msgr->nocrc = nocrc; 2940 2941 atomic_set(&msgr->stopping, 0); 2942 2943 dout("%s %p\n", __func__, msgr); 2944 } 2945 EXPORT_SYMBOL(ceph_messenger_init); 2946 2947 static void clear_standby(struct ceph_connection *con) 2948 { 2949 /* come back from STANDBY? */ 2950 if (con->state == CON_STATE_STANDBY) { 2951 dout("clear_standby %p and ++connect_seq\n", con); 2952 con->state = CON_STATE_PREOPEN; 2953 con->connect_seq++; 2954 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2955 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2956 } 2957 } 2958 2959 /* 2960 * Queue up an outgoing message on the given connection. 2961 */ 2962 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2963 { 2964 /* set src+dst */ 2965 msg->hdr.src = con->msgr->inst.name; 2966 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2967 msg->needs_out_seq = true; 2968 2969 mutex_lock(&con->mutex); 2970 2971 if (con->state == CON_STATE_CLOSED) { 2972 dout("con_send %p closed, dropping %p\n", con, msg); 2973 ceph_msg_put(msg); 2974 mutex_unlock(&con->mutex); 2975 return; 2976 } 2977 2978 BUG_ON(msg->con != NULL); 2979 msg->con = con->ops->get(con); 2980 BUG_ON(msg->con == NULL); 2981 2982 BUG_ON(!list_empty(&msg->list_head)); 2983 list_add_tail(&msg->list_head, &con->out_queue); 2984 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2985 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2986 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2987 le32_to_cpu(msg->hdr.front_len), 2988 le32_to_cpu(msg->hdr.middle_len), 2989 le32_to_cpu(msg->hdr.data_len)); 2990 2991 clear_standby(con); 2992 mutex_unlock(&con->mutex); 2993 2994 /* if there wasn't anything waiting to send before, queue 2995 * new work */ 2996 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2997 queue_con(con); 2998 } 2999 EXPORT_SYMBOL(ceph_con_send); 3000 3001 /* 3002 * Revoke a message that was previously queued for send 3003 */ 3004 void ceph_msg_revoke(struct ceph_msg *msg) 3005 { 3006 struct ceph_connection *con = msg->con; 3007 3008 if (!con) 3009 return; /* Message not in our possession */ 3010 3011 mutex_lock(&con->mutex); 3012 if (!list_empty(&msg->list_head)) { 3013 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3014 list_del_init(&msg->list_head); 3015 BUG_ON(msg->con == NULL); 3016 msg->con->ops->put(msg->con); 3017 msg->con = NULL; 3018 msg->hdr.seq = 0; 3019 3020 ceph_msg_put(msg); 3021 } 3022 if (con->out_msg == msg) { 3023 dout("%s %p msg %p - was sending\n", __func__, con, msg); 3024 con->out_msg = NULL; 3025 if (con->out_kvec_is_msg) { 3026 con->out_skip = con->out_kvec_bytes; 3027 con->out_kvec_is_msg = false; 3028 } 3029 msg->hdr.seq = 0; 3030 3031 ceph_msg_put(msg); 3032 } 3033 mutex_unlock(&con->mutex); 3034 } 3035 3036 /* 3037 * Revoke a message that we may be reading data into 3038 */ 3039 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3040 { 3041 struct ceph_connection *con; 3042 3043 BUG_ON(msg == NULL); 3044 if (!msg->con) { 3045 dout("%s msg %p null con\n", __func__, msg); 3046 3047 return; /* Message not in our possession */ 3048 } 3049 3050 con = msg->con; 3051 mutex_lock(&con->mutex); 3052 if (con->in_msg == msg) { 3053 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3054 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3055 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3056 3057 /* skip rest of message */ 3058 dout("%s %p msg %p revoked\n", __func__, con, msg); 3059 con->in_base_pos = con->in_base_pos - 3060 sizeof(struct ceph_msg_header) - 3061 front_len - 3062 middle_len - 3063 data_len - 3064 sizeof(struct ceph_msg_footer); 3065 ceph_msg_put(con->in_msg); 3066 con->in_msg = NULL; 3067 con->in_tag = CEPH_MSGR_TAG_READY; 3068 con->in_seq++; 3069 } else { 3070 dout("%s %p in_msg %p msg %p no-op\n", 3071 __func__, con, con->in_msg, msg); 3072 } 3073 mutex_unlock(&con->mutex); 3074 } 3075 3076 /* 3077 * Queue a keepalive byte to ensure the tcp connection is alive. 3078 */ 3079 void ceph_con_keepalive(struct ceph_connection *con) 3080 { 3081 dout("con_keepalive %p\n", con); 3082 mutex_lock(&con->mutex); 3083 clear_standby(con); 3084 mutex_unlock(&con->mutex); 3085 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3086 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3087 queue_con(con); 3088 } 3089 EXPORT_SYMBOL(ceph_con_keepalive); 3090 3091 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3092 { 3093 struct ceph_msg_data *data; 3094 3095 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3096 return NULL; 3097 3098 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3099 if (data) 3100 data->type = type; 3101 INIT_LIST_HEAD(&data->links); 3102 3103 return data; 3104 } 3105 3106 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3107 { 3108 if (!data) 3109 return; 3110 3111 WARN_ON(!list_empty(&data->links)); 3112 if (data->type == CEPH_MSG_DATA_PAGELIST) 3113 ceph_pagelist_release(data->pagelist); 3114 kmem_cache_free(ceph_msg_data_cache, data); 3115 } 3116 3117 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3118 size_t length, size_t alignment) 3119 { 3120 struct ceph_msg_data *data; 3121 3122 BUG_ON(!pages); 3123 BUG_ON(!length); 3124 3125 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3126 BUG_ON(!data); 3127 data->pages = pages; 3128 data->length = length; 3129 data->alignment = alignment & ~PAGE_MASK; 3130 3131 list_add_tail(&data->links, &msg->data); 3132 msg->data_length += length; 3133 } 3134 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3135 3136 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3137 struct ceph_pagelist *pagelist) 3138 { 3139 struct ceph_msg_data *data; 3140 3141 BUG_ON(!pagelist); 3142 BUG_ON(!pagelist->length); 3143 3144 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3145 BUG_ON(!data); 3146 data->pagelist = pagelist; 3147 3148 list_add_tail(&data->links, &msg->data); 3149 msg->data_length += pagelist->length; 3150 } 3151 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3152 3153 #ifdef CONFIG_BLOCK 3154 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3155 size_t length) 3156 { 3157 struct ceph_msg_data *data; 3158 3159 BUG_ON(!bio); 3160 3161 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3162 BUG_ON(!data); 3163 data->bio = bio; 3164 data->bio_length = length; 3165 3166 list_add_tail(&data->links, &msg->data); 3167 msg->data_length += length; 3168 } 3169 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3170 #endif /* CONFIG_BLOCK */ 3171 3172 /* 3173 * construct a new message with given type, size 3174 * the new msg has a ref count of 1. 3175 */ 3176 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3177 bool can_fail) 3178 { 3179 struct ceph_msg *m; 3180 3181 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3182 if (m == NULL) 3183 goto out; 3184 3185 m->hdr.type = cpu_to_le16(type); 3186 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3187 m->hdr.front_len = cpu_to_le32(front_len); 3188 3189 INIT_LIST_HEAD(&m->list_head); 3190 kref_init(&m->kref); 3191 INIT_LIST_HEAD(&m->data); 3192 3193 /* front */ 3194 if (front_len) { 3195 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3196 if (m->front.iov_base == NULL) { 3197 dout("ceph_msg_new can't allocate %d bytes\n", 3198 front_len); 3199 goto out2; 3200 } 3201 } else { 3202 m->front.iov_base = NULL; 3203 } 3204 m->front_alloc_len = m->front.iov_len = front_len; 3205 3206 dout("ceph_msg_new %p front %d\n", m, front_len); 3207 return m; 3208 3209 out2: 3210 ceph_msg_put(m); 3211 out: 3212 if (!can_fail) { 3213 pr_err("msg_new can't create type %d front %d\n", type, 3214 front_len); 3215 WARN_ON(1); 3216 } else { 3217 dout("msg_new can't create type %d front %d\n", type, 3218 front_len); 3219 } 3220 return NULL; 3221 } 3222 EXPORT_SYMBOL(ceph_msg_new); 3223 3224 /* 3225 * Allocate "middle" portion of a message, if it is needed and wasn't 3226 * allocated by alloc_msg. This allows us to read a small fixed-size 3227 * per-type header in the front and then gracefully fail (i.e., 3228 * propagate the error to the caller based on info in the front) when 3229 * the middle is too large. 3230 */ 3231 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3232 { 3233 int type = le16_to_cpu(msg->hdr.type); 3234 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3235 3236 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3237 ceph_msg_type_name(type), middle_len); 3238 BUG_ON(!middle_len); 3239 BUG_ON(msg->middle); 3240 3241 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3242 if (!msg->middle) 3243 return -ENOMEM; 3244 return 0; 3245 } 3246 3247 /* 3248 * Allocate a message for receiving an incoming message on a 3249 * connection, and save the result in con->in_msg. Uses the 3250 * connection's private alloc_msg op if available. 3251 * 3252 * Returns 0 on success, or a negative error code. 3253 * 3254 * On success, if we set *skip = 1: 3255 * - the next message should be skipped and ignored. 3256 * - con->in_msg == NULL 3257 * or if we set *skip = 0: 3258 * - con->in_msg is non-null. 3259 * On error (ENOMEM, EAGAIN, ...), 3260 * - con->in_msg == NULL 3261 */ 3262 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3263 { 3264 struct ceph_msg_header *hdr = &con->in_hdr; 3265 int middle_len = le32_to_cpu(hdr->middle_len); 3266 struct ceph_msg *msg; 3267 int ret = 0; 3268 3269 BUG_ON(con->in_msg != NULL); 3270 BUG_ON(!con->ops->alloc_msg); 3271 3272 mutex_unlock(&con->mutex); 3273 msg = con->ops->alloc_msg(con, hdr, skip); 3274 mutex_lock(&con->mutex); 3275 if (con->state != CON_STATE_OPEN) { 3276 if (msg) 3277 ceph_msg_put(msg); 3278 return -EAGAIN; 3279 } 3280 if (msg) { 3281 BUG_ON(*skip); 3282 con->in_msg = msg; 3283 con->in_msg->con = con->ops->get(con); 3284 BUG_ON(con->in_msg->con == NULL); 3285 } else { 3286 /* 3287 * Null message pointer means either we should skip 3288 * this message or we couldn't allocate memory. The 3289 * former is not an error. 3290 */ 3291 if (*skip) 3292 return 0; 3293 con->error_msg = "error allocating memory for incoming message"; 3294 3295 return -ENOMEM; 3296 } 3297 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3298 3299 if (middle_len && !con->in_msg->middle) { 3300 ret = ceph_alloc_middle(con, con->in_msg); 3301 if (ret < 0) { 3302 ceph_msg_put(con->in_msg); 3303 con->in_msg = NULL; 3304 } 3305 } 3306 3307 return ret; 3308 } 3309 3310 3311 /* 3312 * Free a generically kmalloc'd message. 3313 */ 3314 static void ceph_msg_free(struct ceph_msg *m) 3315 { 3316 dout("%s %p\n", __func__, m); 3317 kvfree(m->front.iov_base); 3318 kmem_cache_free(ceph_msg_cache, m); 3319 } 3320 3321 static void ceph_msg_release(struct kref *kref) 3322 { 3323 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3324 LIST_HEAD(data); 3325 struct list_head *links; 3326 struct list_head *next; 3327 3328 dout("%s %p\n", __func__, m); 3329 WARN_ON(!list_empty(&m->list_head)); 3330 3331 /* drop middle, data, if any */ 3332 if (m->middle) { 3333 ceph_buffer_put(m->middle); 3334 m->middle = NULL; 3335 } 3336 3337 list_splice_init(&m->data, &data); 3338 list_for_each_safe(links, next, &data) { 3339 struct ceph_msg_data *data; 3340 3341 data = list_entry(links, struct ceph_msg_data, links); 3342 list_del_init(links); 3343 ceph_msg_data_destroy(data); 3344 } 3345 m->data_length = 0; 3346 3347 if (m->pool) 3348 ceph_msgpool_put(m->pool, m); 3349 else 3350 ceph_msg_free(m); 3351 } 3352 3353 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3354 { 3355 dout("%s %p (was %d)\n", __func__, msg, 3356 atomic_read(&msg->kref.refcount)); 3357 kref_get(&msg->kref); 3358 return msg; 3359 } 3360 EXPORT_SYMBOL(ceph_msg_get); 3361 3362 void ceph_msg_put(struct ceph_msg *msg) 3363 { 3364 dout("%s %p (was %d)\n", __func__, msg, 3365 atomic_read(&msg->kref.refcount)); 3366 kref_put(&msg->kref, ceph_msg_release); 3367 } 3368 EXPORT_SYMBOL(ceph_msg_put); 3369 3370 void ceph_msg_dump(struct ceph_msg *msg) 3371 { 3372 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3373 msg->front_alloc_len, msg->data_length); 3374 print_hex_dump(KERN_DEBUG, "header: ", 3375 DUMP_PREFIX_OFFSET, 16, 1, 3376 &msg->hdr, sizeof(msg->hdr), true); 3377 print_hex_dump(KERN_DEBUG, " front: ", 3378 DUMP_PREFIX_OFFSET, 16, 1, 3379 msg->front.iov_base, msg->front.iov_len, true); 3380 if (msg->middle) 3381 print_hex_dump(KERN_DEBUG, "middle: ", 3382 DUMP_PREFIX_OFFSET, 16, 1, 3383 msg->middle->vec.iov_base, 3384 msg->middle->vec.iov_len, true); 3385 print_hex_dump(KERN_DEBUG, "footer: ", 3386 DUMP_PREFIX_OFFSET, 16, 1, 3387 &msg->footer, sizeof(msg->footer), true); 3388 } 3389 EXPORT_SYMBOL(ceph_msg_dump); 3390