xref: /openbmc/linux/net/ceph/messenger.c (revision 861e10be)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73 
74 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
79 
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
84 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
89 
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
94 				       * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
99 
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108 
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE	1024
114 
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118 
119 /*
120  * Nicely render a sockaddr as a string.  An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
124 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
127 
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130 
131 static struct page *zero_page;		/* used in certain error cases */
132 
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 	int i;
136 	char *s;
137 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139 
140 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 	s = addr_str[i];
142 
143 	switch (ss->ss_family) {
144 	case AF_INET:
145 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 			 ntohs(in4->sin_port));
147 		break;
148 
149 	case AF_INET6:
150 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 			 ntohs(in6->sin6_port));
152 		break;
153 
154 	default:
155 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 			 ss->ss_family);
157 	}
158 
159 	return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162 
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 	ceph_encode_addr(&msgr->my_enc_addr);
167 }
168 
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
173 
174 void _ceph_msgr_exit(void)
175 {
176 	if (ceph_msgr_wq) {
177 		destroy_workqueue(ceph_msgr_wq);
178 		ceph_msgr_wq = NULL;
179 	}
180 
181 	BUG_ON(zero_page == NULL);
182 	kunmap(zero_page);
183 	page_cache_release(zero_page);
184 	zero_page = NULL;
185 }
186 
187 int ceph_msgr_init(void)
188 {
189 	BUG_ON(zero_page != NULL);
190 	zero_page = ZERO_PAGE(0);
191 	page_cache_get(zero_page);
192 
193 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 	if (ceph_msgr_wq)
195 		return 0;
196 
197 	pr_err("msgr_init failed to create workqueue\n");
198 	_ceph_msgr_exit();
199 
200 	return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203 
204 void ceph_msgr_exit(void)
205 {
206 	BUG_ON(ceph_msgr_wq == NULL);
207 
208 	_ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211 
212 void ceph_msgr_flush(void)
213 {
214 	flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217 
218 /* Connection socket state transition functions */
219 
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 	int old_state;
223 
224 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 		printk("%s: unexpected old state %d\n", __func__, old_state);
227 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 	     CON_SOCK_STATE_CLOSED);
229 }
230 
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 	int old_state;
234 
235 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 		printk("%s: unexpected old state %d\n", __func__, old_state);
238 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 	     CON_SOCK_STATE_CONNECTING);
240 }
241 
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 	int old_state;
245 
246 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 		printk("%s: unexpected old state %d\n", __func__, old_state);
249 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 	     CON_SOCK_STATE_CONNECTED);
251 }
252 
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 	int old_state;
256 
257 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 			old_state != CON_SOCK_STATE_CONNECTED &&
260 			old_state != CON_SOCK_STATE_CLOSING))
261 		printk("%s: unexpected old state %d\n", __func__, old_state);
262 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 	     CON_SOCK_STATE_CLOSING);
264 }
265 
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 	int old_state;
269 
270 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 		    old_state != CON_SOCK_STATE_CLOSING &&
273 		    old_state != CON_SOCK_STATE_CONNECTING &&
274 		    old_state != CON_SOCK_STATE_CLOSED))
275 		printk("%s: unexpected old state %d\n", __func__, old_state);
276 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 	     CON_SOCK_STATE_CLOSED);
278 }
279 
280 /*
281  * socket callback functions
282  */
283 
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 	struct ceph_connection *con = sk->sk_user_data;
288 	if (atomic_read(&con->msgr->stopping)) {
289 		return;
290 	}
291 
292 	if (sk->sk_state != TCP_CLOSE_WAIT) {
293 		dout("%s on %p state = %lu, queueing work\n", __func__,
294 		     con, con->state);
295 		queue_con(con);
296 	}
297 }
298 
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 	struct ceph_connection *con = sk->sk_user_data;
303 
304 	/* only queue to workqueue if there is data we want to write,
305 	 * and there is sufficient space in the socket buffer to accept
306 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
307 	 * doesn't get called again until try_write() fills the socket
308 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 	 * and net/core/stream.c:sk_stream_write_space().
310 	 */
311 	if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 			dout("%s %p queueing write work\n", __func__, con);
314 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 			queue_con(con);
316 		}
317 	} else {
318 		dout("%s %p nothing to write\n", __func__, con);
319 	}
320 }
321 
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 	struct ceph_connection *con = sk->sk_user_data;
326 
327 	dout("%s %p state = %lu sk_state = %u\n", __func__,
328 	     con, con->state, sk->sk_state);
329 
330 	switch (sk->sk_state) {
331 	case TCP_CLOSE:
332 		dout("%s TCP_CLOSE\n", __func__);
333 	case TCP_CLOSE_WAIT:
334 		dout("%s TCP_CLOSE_WAIT\n", __func__);
335 		con_sock_state_closing(con);
336 		set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 		queue_con(con);
338 		break;
339 	case TCP_ESTABLISHED:
340 		dout("%s TCP_ESTABLISHED\n", __func__);
341 		con_sock_state_connected(con);
342 		queue_con(con);
343 		break;
344 	default:	/* Everything else is uninteresting */
345 		break;
346 	}
347 }
348 
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353 			       struct ceph_connection *con)
354 {
355 	struct sock *sk = sock->sk;
356 	sk->sk_user_data = con;
357 	sk->sk_data_ready = ceph_sock_data_ready;
358 	sk->sk_write_space = ceph_sock_write_space;
359 	sk->sk_state_change = ceph_sock_state_change;
360 }
361 
362 
363 /*
364  * socket helpers
365  */
366 
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 	struct socket *sock;
374 	int ret;
375 
376 	BUG_ON(con->sock);
377 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 			       IPPROTO_TCP, &sock);
379 	if (ret)
380 		return ret;
381 	sock->sk->sk_allocation = GFP_NOFS;
382 
383 #ifdef CONFIG_LOCKDEP
384 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386 
387 	set_sock_callbacks(sock, con);
388 
389 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390 
391 	con_sock_state_connecting(con);
392 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 				 O_NONBLOCK);
394 	if (ret == -EINPROGRESS) {
395 		dout("connect %s EINPROGRESS sk_state = %u\n",
396 		     ceph_pr_addr(&con->peer_addr.in_addr),
397 		     sock->sk->sk_state);
398 	} else if (ret < 0) {
399 		pr_err("connect %s error %d\n",
400 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 		sock_release(sock);
402 		con->error_msg = "connect error";
403 
404 		return ret;
405 	}
406 	con->sock = sock;
407 	return 0;
408 }
409 
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 	struct kvec iov = {buf, len};
413 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 	int r;
415 
416 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 	if (r == -EAGAIN)
418 		r = 0;
419 	return r;
420 }
421 
422 /*
423  * write something.  @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 		     size_t kvlen, size_t len, int more)
428 {
429 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 	int r;
431 
432 	if (more)
433 		msg.msg_flags |= MSG_MORE;
434 	else
435 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
436 
437 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 	if (r == -EAGAIN)
439 		r = 0;
440 	return r;
441 }
442 
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 		     int offset, size_t size, int more)
445 {
446 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 	int ret;
448 
449 	ret = kernel_sendpage(sock, page, offset, size, flags);
450 	if (ret == -EAGAIN)
451 		ret = 0;
452 
453 	return ret;
454 }
455 
456 
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462 	int rc = 0;
463 
464 	dout("con_close_socket on %p sock %p\n", con, con->sock);
465 	if (con->sock) {
466 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 		sock_release(con->sock);
468 		con->sock = NULL;
469 	}
470 
471 	/*
472 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
473 	 * independent of the connection mutex, and we could have
474 	 * received a socket close event before we had the chance to
475 	 * shut the socket down.
476 	 */
477 	clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478 
479 	con_sock_state_closed(con);
480 	return rc;
481 }
482 
483 /*
484  * Reset a connection.  Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 	list_del_init(&msg->list_head);
490 	BUG_ON(msg->con == NULL);
491 	msg->con->ops->put(msg->con);
492 	msg->con = NULL;
493 
494 	ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 	while (!list_empty(head)) {
499 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 							list_head);
501 		ceph_msg_remove(msg);
502 	}
503 }
504 
505 static void reset_connection(struct ceph_connection *con)
506 {
507 	/* reset connection, out_queue, msg_ and connect_seq */
508 	/* discard existing out_queue and msg_seq */
509 	dout("reset_connection %p\n", con);
510 	ceph_msg_remove_list(&con->out_queue);
511 	ceph_msg_remove_list(&con->out_sent);
512 
513 	if (con->in_msg) {
514 		BUG_ON(con->in_msg->con != con);
515 		con->in_msg->con = NULL;
516 		ceph_msg_put(con->in_msg);
517 		con->in_msg = NULL;
518 		con->ops->put(con);
519 	}
520 
521 	con->connect_seq = 0;
522 	con->out_seq = 0;
523 	if (con->out_msg) {
524 		ceph_msg_put(con->out_msg);
525 		con->out_msg = NULL;
526 	}
527 	con->in_seq = 0;
528 	con->in_seq_acked = 0;
529 }
530 
531 /*
532  * mark a peer down.  drop any open connections.
533  */
534 void ceph_con_close(struct ceph_connection *con)
535 {
536 	mutex_lock(&con->mutex);
537 	dout("con_close %p peer %s\n", con,
538 	     ceph_pr_addr(&con->peer_addr.in_addr));
539 	con->state = CON_STATE_CLOSED;
540 
541 	clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
542 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
543 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
544 	clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
545 	clear_bit(CON_FLAG_BACKOFF, &con->flags);
546 
547 	reset_connection(con);
548 	con->peer_global_seq = 0;
549 	cancel_delayed_work(&con->work);
550 	con_close_socket(con);
551 	mutex_unlock(&con->mutex);
552 }
553 EXPORT_SYMBOL(ceph_con_close);
554 
555 /*
556  * Reopen a closed connection, with a new peer address.
557  */
558 void ceph_con_open(struct ceph_connection *con,
559 		   __u8 entity_type, __u64 entity_num,
560 		   struct ceph_entity_addr *addr)
561 {
562 	mutex_lock(&con->mutex);
563 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
564 
565 	WARN_ON(con->state != CON_STATE_CLOSED);
566 	con->state = CON_STATE_PREOPEN;
567 
568 	con->peer_name.type = (__u8) entity_type;
569 	con->peer_name.num = cpu_to_le64(entity_num);
570 
571 	memcpy(&con->peer_addr, addr, sizeof(*addr));
572 	con->delay = 0;      /* reset backoff memory */
573 	mutex_unlock(&con->mutex);
574 	queue_con(con);
575 }
576 EXPORT_SYMBOL(ceph_con_open);
577 
578 /*
579  * return true if this connection ever successfully opened
580  */
581 bool ceph_con_opened(struct ceph_connection *con)
582 {
583 	return con->connect_seq > 0;
584 }
585 
586 /*
587  * initialize a new connection.
588  */
589 void ceph_con_init(struct ceph_connection *con, void *private,
590 	const struct ceph_connection_operations *ops,
591 	struct ceph_messenger *msgr)
592 {
593 	dout("con_init %p\n", con);
594 	memset(con, 0, sizeof(*con));
595 	con->private = private;
596 	con->ops = ops;
597 	con->msgr = msgr;
598 
599 	con_sock_state_init(con);
600 
601 	mutex_init(&con->mutex);
602 	INIT_LIST_HEAD(&con->out_queue);
603 	INIT_LIST_HEAD(&con->out_sent);
604 	INIT_DELAYED_WORK(&con->work, con_work);
605 
606 	con->state = CON_STATE_CLOSED;
607 }
608 EXPORT_SYMBOL(ceph_con_init);
609 
610 
611 /*
612  * We maintain a global counter to order connection attempts.  Get
613  * a unique seq greater than @gt.
614  */
615 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
616 {
617 	u32 ret;
618 
619 	spin_lock(&msgr->global_seq_lock);
620 	if (msgr->global_seq < gt)
621 		msgr->global_seq = gt;
622 	ret = ++msgr->global_seq;
623 	spin_unlock(&msgr->global_seq_lock);
624 	return ret;
625 }
626 
627 static void con_out_kvec_reset(struct ceph_connection *con)
628 {
629 	con->out_kvec_left = 0;
630 	con->out_kvec_bytes = 0;
631 	con->out_kvec_cur = &con->out_kvec[0];
632 }
633 
634 static void con_out_kvec_add(struct ceph_connection *con,
635 				size_t size, void *data)
636 {
637 	int index;
638 
639 	index = con->out_kvec_left;
640 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
641 
642 	con->out_kvec[index].iov_len = size;
643 	con->out_kvec[index].iov_base = data;
644 	con->out_kvec_left++;
645 	con->out_kvec_bytes += size;
646 }
647 
648 #ifdef CONFIG_BLOCK
649 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
650 {
651 	if (!bio) {
652 		*iter = NULL;
653 		*seg = 0;
654 		return;
655 	}
656 	*iter = bio;
657 	*seg = bio->bi_idx;
658 }
659 
660 static void iter_bio_next(struct bio **bio_iter, int *seg)
661 {
662 	if (*bio_iter == NULL)
663 		return;
664 
665 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
666 
667 	(*seg)++;
668 	if (*seg == (*bio_iter)->bi_vcnt)
669 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
670 }
671 #endif
672 
673 static void prepare_write_message_data(struct ceph_connection *con)
674 {
675 	struct ceph_msg *msg = con->out_msg;
676 
677 	BUG_ON(!msg);
678 	BUG_ON(!msg->hdr.data_len);
679 
680 	/* initialize page iterator */
681 	con->out_msg_pos.page = 0;
682 	if (msg->pages)
683 		con->out_msg_pos.page_pos = msg->page_alignment;
684 	else
685 		con->out_msg_pos.page_pos = 0;
686 #ifdef CONFIG_BLOCK
687 	if (msg->bio)
688 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
689 #endif
690 	con->out_msg_pos.data_pos = 0;
691 	con->out_msg_pos.did_page_crc = false;
692 	con->out_more = 1;  /* data + footer will follow */
693 }
694 
695 /*
696  * Prepare footer for currently outgoing message, and finish things
697  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
698  */
699 static void prepare_write_message_footer(struct ceph_connection *con)
700 {
701 	struct ceph_msg *m = con->out_msg;
702 	int v = con->out_kvec_left;
703 
704 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
705 
706 	dout("prepare_write_message_footer %p\n", con);
707 	con->out_kvec_is_msg = true;
708 	con->out_kvec[v].iov_base = &m->footer;
709 	con->out_kvec[v].iov_len = sizeof(m->footer);
710 	con->out_kvec_bytes += sizeof(m->footer);
711 	con->out_kvec_left++;
712 	con->out_more = m->more_to_follow;
713 	con->out_msg_done = true;
714 }
715 
716 /*
717  * Prepare headers for the next outgoing message.
718  */
719 static void prepare_write_message(struct ceph_connection *con)
720 {
721 	struct ceph_msg *m;
722 	u32 crc;
723 
724 	con_out_kvec_reset(con);
725 	con->out_kvec_is_msg = true;
726 	con->out_msg_done = false;
727 
728 	/* Sneak an ack in there first?  If we can get it into the same
729 	 * TCP packet that's a good thing. */
730 	if (con->in_seq > con->in_seq_acked) {
731 		con->in_seq_acked = con->in_seq;
732 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
733 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
734 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
735 			&con->out_temp_ack);
736 	}
737 
738 	BUG_ON(list_empty(&con->out_queue));
739 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
740 	con->out_msg = m;
741 	BUG_ON(m->con != con);
742 
743 	/* put message on sent list */
744 	ceph_msg_get(m);
745 	list_move_tail(&m->list_head, &con->out_sent);
746 
747 	/*
748 	 * only assign outgoing seq # if we haven't sent this message
749 	 * yet.  if it is requeued, resend with it's original seq.
750 	 */
751 	if (m->needs_out_seq) {
752 		m->hdr.seq = cpu_to_le64(++con->out_seq);
753 		m->needs_out_seq = false;
754 	}
755 #ifdef CONFIG_BLOCK
756 	else
757 		m->bio_iter = NULL;
758 #endif
759 
760 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
761 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
762 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
763 	     le32_to_cpu(m->hdr.data_len),
764 	     m->nr_pages);
765 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
766 
767 	/* tag + hdr + front + middle */
768 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
769 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
770 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
771 
772 	if (m->middle)
773 		con_out_kvec_add(con, m->middle->vec.iov_len,
774 			m->middle->vec.iov_base);
775 
776 	/* fill in crc (except data pages), footer */
777 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
778 	con->out_msg->hdr.crc = cpu_to_le32(crc);
779 	con->out_msg->footer.flags = 0;
780 
781 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
782 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
783 	if (m->middle) {
784 		crc = crc32c(0, m->middle->vec.iov_base,
785 				m->middle->vec.iov_len);
786 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
787 	} else
788 		con->out_msg->footer.middle_crc = 0;
789 	dout("%s front_crc %u middle_crc %u\n", __func__,
790 	     le32_to_cpu(con->out_msg->footer.front_crc),
791 	     le32_to_cpu(con->out_msg->footer.middle_crc));
792 
793 	/* is there a data payload? */
794 	con->out_msg->footer.data_crc = 0;
795 	if (m->hdr.data_len)
796 		prepare_write_message_data(con);
797 	else
798 		/* no, queue up footer too and be done */
799 		prepare_write_message_footer(con);
800 
801 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
802 }
803 
804 /*
805  * Prepare an ack.
806  */
807 static void prepare_write_ack(struct ceph_connection *con)
808 {
809 	dout("prepare_write_ack %p %llu -> %llu\n", con,
810 	     con->in_seq_acked, con->in_seq);
811 	con->in_seq_acked = con->in_seq;
812 
813 	con_out_kvec_reset(con);
814 
815 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
816 
817 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
818 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
819 				&con->out_temp_ack);
820 
821 	con->out_more = 1;  /* more will follow.. eventually.. */
822 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
823 }
824 
825 /*
826  * Prepare to write keepalive byte.
827  */
828 static void prepare_write_keepalive(struct ceph_connection *con)
829 {
830 	dout("prepare_write_keepalive %p\n", con);
831 	con_out_kvec_reset(con);
832 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
833 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
834 }
835 
836 /*
837  * Connection negotiation.
838  */
839 
840 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
841 						int *auth_proto)
842 {
843 	struct ceph_auth_handshake *auth;
844 
845 	if (!con->ops->get_authorizer) {
846 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
847 		con->out_connect.authorizer_len = 0;
848 		return NULL;
849 	}
850 
851 	/* Can't hold the mutex while getting authorizer */
852 	mutex_unlock(&con->mutex);
853 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
854 	mutex_lock(&con->mutex);
855 
856 	if (IS_ERR(auth))
857 		return auth;
858 	if (con->state != CON_STATE_NEGOTIATING)
859 		return ERR_PTR(-EAGAIN);
860 
861 	con->auth_reply_buf = auth->authorizer_reply_buf;
862 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
863 	return auth;
864 }
865 
866 /*
867  * We connected to a peer and are saying hello.
868  */
869 static void prepare_write_banner(struct ceph_connection *con)
870 {
871 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
872 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
873 					&con->msgr->my_enc_addr);
874 
875 	con->out_more = 0;
876 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
877 }
878 
879 static int prepare_write_connect(struct ceph_connection *con)
880 {
881 	unsigned int global_seq = get_global_seq(con->msgr, 0);
882 	int proto;
883 	int auth_proto;
884 	struct ceph_auth_handshake *auth;
885 
886 	switch (con->peer_name.type) {
887 	case CEPH_ENTITY_TYPE_MON:
888 		proto = CEPH_MONC_PROTOCOL;
889 		break;
890 	case CEPH_ENTITY_TYPE_OSD:
891 		proto = CEPH_OSDC_PROTOCOL;
892 		break;
893 	case CEPH_ENTITY_TYPE_MDS:
894 		proto = CEPH_MDSC_PROTOCOL;
895 		break;
896 	default:
897 		BUG();
898 	}
899 
900 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
901 	     con->connect_seq, global_seq, proto);
902 
903 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
904 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
905 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
906 	con->out_connect.global_seq = cpu_to_le32(global_seq);
907 	con->out_connect.protocol_version = cpu_to_le32(proto);
908 	con->out_connect.flags = 0;
909 
910 	auth_proto = CEPH_AUTH_UNKNOWN;
911 	auth = get_connect_authorizer(con, &auth_proto);
912 	if (IS_ERR(auth))
913 		return PTR_ERR(auth);
914 
915 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
916 	con->out_connect.authorizer_len = auth ?
917 		cpu_to_le32(auth->authorizer_buf_len) : 0;
918 
919 	con_out_kvec_add(con, sizeof (con->out_connect),
920 					&con->out_connect);
921 	if (auth && auth->authorizer_buf_len)
922 		con_out_kvec_add(con, auth->authorizer_buf_len,
923 					auth->authorizer_buf);
924 
925 	con->out_more = 0;
926 	set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
927 
928 	return 0;
929 }
930 
931 /*
932  * write as much of pending kvecs to the socket as we can.
933  *  1 -> done
934  *  0 -> socket full, but more to do
935  * <0 -> error
936  */
937 static int write_partial_kvec(struct ceph_connection *con)
938 {
939 	int ret;
940 
941 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
942 	while (con->out_kvec_bytes > 0) {
943 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
944 				       con->out_kvec_left, con->out_kvec_bytes,
945 				       con->out_more);
946 		if (ret <= 0)
947 			goto out;
948 		con->out_kvec_bytes -= ret;
949 		if (con->out_kvec_bytes == 0)
950 			break;            /* done */
951 
952 		/* account for full iov entries consumed */
953 		while (ret >= con->out_kvec_cur->iov_len) {
954 			BUG_ON(!con->out_kvec_left);
955 			ret -= con->out_kvec_cur->iov_len;
956 			con->out_kvec_cur++;
957 			con->out_kvec_left--;
958 		}
959 		/* and for a partially-consumed entry */
960 		if (ret) {
961 			con->out_kvec_cur->iov_len -= ret;
962 			con->out_kvec_cur->iov_base += ret;
963 		}
964 	}
965 	con->out_kvec_left = 0;
966 	con->out_kvec_is_msg = false;
967 	ret = 1;
968 out:
969 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
970 	     con->out_kvec_bytes, con->out_kvec_left, ret);
971 	return ret;  /* done! */
972 }
973 
974 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
975 			size_t len, size_t sent, bool in_trail)
976 {
977 	struct ceph_msg *msg = con->out_msg;
978 
979 	BUG_ON(!msg);
980 	BUG_ON(!sent);
981 
982 	con->out_msg_pos.data_pos += sent;
983 	con->out_msg_pos.page_pos += sent;
984 	if (sent < len)
985 		return;
986 
987 	BUG_ON(sent != len);
988 	con->out_msg_pos.page_pos = 0;
989 	con->out_msg_pos.page++;
990 	con->out_msg_pos.did_page_crc = false;
991 	if (in_trail)
992 		list_move_tail(&page->lru,
993 			       &msg->trail->head);
994 	else if (msg->pagelist)
995 		list_move_tail(&page->lru,
996 			       &msg->pagelist->head);
997 #ifdef CONFIG_BLOCK
998 	else if (msg->bio)
999 		iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1000 #endif
1001 }
1002 
1003 /*
1004  * Write as much message data payload as we can.  If we finish, queue
1005  * up the footer.
1006  *  1 -> done, footer is now queued in out_kvec[].
1007  *  0 -> socket full, but more to do
1008  * <0 -> error
1009  */
1010 static int write_partial_msg_pages(struct ceph_connection *con)
1011 {
1012 	struct ceph_msg *msg = con->out_msg;
1013 	unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1014 	size_t len;
1015 	bool do_datacrc = !con->msgr->nocrc;
1016 	int ret;
1017 	int total_max_write;
1018 	bool in_trail = false;
1019 	const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1020 	const size_t trail_off = data_len - trail_len;
1021 
1022 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1023 	     con, msg, con->out_msg_pos.page, msg->nr_pages,
1024 	     con->out_msg_pos.page_pos);
1025 
1026 	/*
1027 	 * Iterate through each page that contains data to be
1028 	 * written, and send as much as possible for each.
1029 	 *
1030 	 * If we are calculating the data crc (the default), we will
1031 	 * need to map the page.  If we have no pages, they have
1032 	 * been revoked, so use the zero page.
1033 	 */
1034 	while (data_len > con->out_msg_pos.data_pos) {
1035 		struct page *page = NULL;
1036 		int max_write = PAGE_SIZE;
1037 		int bio_offset = 0;
1038 
1039 		in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1040 		if (!in_trail)
1041 			total_max_write = trail_off - con->out_msg_pos.data_pos;
1042 
1043 		if (in_trail) {
1044 			total_max_write = data_len - con->out_msg_pos.data_pos;
1045 
1046 			page = list_first_entry(&msg->trail->head,
1047 						struct page, lru);
1048 		} else if (msg->pages) {
1049 			page = msg->pages[con->out_msg_pos.page];
1050 		} else if (msg->pagelist) {
1051 			page = list_first_entry(&msg->pagelist->head,
1052 						struct page, lru);
1053 #ifdef CONFIG_BLOCK
1054 		} else if (msg->bio) {
1055 			struct bio_vec *bv;
1056 
1057 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1058 			page = bv->bv_page;
1059 			bio_offset = bv->bv_offset;
1060 			max_write = bv->bv_len;
1061 #endif
1062 		} else {
1063 			page = zero_page;
1064 		}
1065 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
1066 			    total_max_write);
1067 
1068 		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1069 			void *base;
1070 			u32 crc = le32_to_cpu(msg->footer.data_crc);
1071 			char *kaddr;
1072 
1073 			kaddr = kmap(page);
1074 			BUG_ON(kaddr == NULL);
1075 			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1076 			crc = crc32c(crc, base, len);
1077 			kunmap(page);
1078 			msg->footer.data_crc = cpu_to_le32(crc);
1079 			con->out_msg_pos.did_page_crc = true;
1080 		}
1081 		ret = ceph_tcp_sendpage(con->sock, page,
1082 				      con->out_msg_pos.page_pos + bio_offset,
1083 				      len, 1);
1084 		if (ret <= 0)
1085 			goto out;
1086 
1087 		out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1088 	}
1089 
1090 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1091 
1092 	/* prepare and queue up footer, too */
1093 	if (!do_datacrc)
1094 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1095 	con_out_kvec_reset(con);
1096 	prepare_write_message_footer(con);
1097 	ret = 1;
1098 out:
1099 	return ret;
1100 }
1101 
1102 /*
1103  * write some zeros
1104  */
1105 static int write_partial_skip(struct ceph_connection *con)
1106 {
1107 	int ret;
1108 
1109 	while (con->out_skip > 0) {
1110 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1111 
1112 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1113 		if (ret <= 0)
1114 			goto out;
1115 		con->out_skip -= ret;
1116 	}
1117 	ret = 1;
1118 out:
1119 	return ret;
1120 }
1121 
1122 /*
1123  * Prepare to read connection handshake, or an ack.
1124  */
1125 static void prepare_read_banner(struct ceph_connection *con)
1126 {
1127 	dout("prepare_read_banner %p\n", con);
1128 	con->in_base_pos = 0;
1129 }
1130 
1131 static void prepare_read_connect(struct ceph_connection *con)
1132 {
1133 	dout("prepare_read_connect %p\n", con);
1134 	con->in_base_pos = 0;
1135 }
1136 
1137 static void prepare_read_ack(struct ceph_connection *con)
1138 {
1139 	dout("prepare_read_ack %p\n", con);
1140 	con->in_base_pos = 0;
1141 }
1142 
1143 static void prepare_read_tag(struct ceph_connection *con)
1144 {
1145 	dout("prepare_read_tag %p\n", con);
1146 	con->in_base_pos = 0;
1147 	con->in_tag = CEPH_MSGR_TAG_READY;
1148 }
1149 
1150 /*
1151  * Prepare to read a message.
1152  */
1153 static int prepare_read_message(struct ceph_connection *con)
1154 {
1155 	dout("prepare_read_message %p\n", con);
1156 	BUG_ON(con->in_msg != NULL);
1157 	con->in_base_pos = 0;
1158 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1159 	return 0;
1160 }
1161 
1162 
1163 static int read_partial(struct ceph_connection *con,
1164 			int end, int size, void *object)
1165 {
1166 	while (con->in_base_pos < end) {
1167 		int left = end - con->in_base_pos;
1168 		int have = size - left;
1169 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1170 		if (ret <= 0)
1171 			return ret;
1172 		con->in_base_pos += ret;
1173 	}
1174 	return 1;
1175 }
1176 
1177 
1178 /*
1179  * Read all or part of the connect-side handshake on a new connection
1180  */
1181 static int read_partial_banner(struct ceph_connection *con)
1182 {
1183 	int size;
1184 	int end;
1185 	int ret;
1186 
1187 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1188 
1189 	/* peer's banner */
1190 	size = strlen(CEPH_BANNER);
1191 	end = size;
1192 	ret = read_partial(con, end, size, con->in_banner);
1193 	if (ret <= 0)
1194 		goto out;
1195 
1196 	size = sizeof (con->actual_peer_addr);
1197 	end += size;
1198 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1199 	if (ret <= 0)
1200 		goto out;
1201 
1202 	size = sizeof (con->peer_addr_for_me);
1203 	end += size;
1204 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1205 	if (ret <= 0)
1206 		goto out;
1207 
1208 out:
1209 	return ret;
1210 }
1211 
1212 static int read_partial_connect(struct ceph_connection *con)
1213 {
1214 	int size;
1215 	int end;
1216 	int ret;
1217 
1218 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1219 
1220 	size = sizeof (con->in_reply);
1221 	end = size;
1222 	ret = read_partial(con, end, size, &con->in_reply);
1223 	if (ret <= 0)
1224 		goto out;
1225 
1226 	size = le32_to_cpu(con->in_reply.authorizer_len);
1227 	end += size;
1228 	ret = read_partial(con, end, size, con->auth_reply_buf);
1229 	if (ret <= 0)
1230 		goto out;
1231 
1232 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1233 	     con, (int)con->in_reply.tag,
1234 	     le32_to_cpu(con->in_reply.connect_seq),
1235 	     le32_to_cpu(con->in_reply.global_seq));
1236 out:
1237 	return ret;
1238 
1239 }
1240 
1241 /*
1242  * Verify the hello banner looks okay.
1243  */
1244 static int verify_hello(struct ceph_connection *con)
1245 {
1246 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1247 		pr_err("connect to %s got bad banner\n",
1248 		       ceph_pr_addr(&con->peer_addr.in_addr));
1249 		con->error_msg = "protocol error, bad banner";
1250 		return -1;
1251 	}
1252 	return 0;
1253 }
1254 
1255 static bool addr_is_blank(struct sockaddr_storage *ss)
1256 {
1257 	switch (ss->ss_family) {
1258 	case AF_INET:
1259 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1260 	case AF_INET6:
1261 		return
1262 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1263 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1264 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1265 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1266 	}
1267 	return false;
1268 }
1269 
1270 static int addr_port(struct sockaddr_storage *ss)
1271 {
1272 	switch (ss->ss_family) {
1273 	case AF_INET:
1274 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1275 	case AF_INET6:
1276 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1277 	}
1278 	return 0;
1279 }
1280 
1281 static void addr_set_port(struct sockaddr_storage *ss, int p)
1282 {
1283 	switch (ss->ss_family) {
1284 	case AF_INET:
1285 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1286 		break;
1287 	case AF_INET6:
1288 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1289 		break;
1290 	}
1291 }
1292 
1293 /*
1294  * Unlike other *_pton function semantics, zero indicates success.
1295  */
1296 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1297 		char delim, const char **ipend)
1298 {
1299 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1300 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1301 
1302 	memset(ss, 0, sizeof(*ss));
1303 
1304 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1305 		ss->ss_family = AF_INET;
1306 		return 0;
1307 	}
1308 
1309 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1310 		ss->ss_family = AF_INET6;
1311 		return 0;
1312 	}
1313 
1314 	return -EINVAL;
1315 }
1316 
1317 /*
1318  * Extract hostname string and resolve using kernel DNS facility.
1319  */
1320 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1321 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1322 		struct sockaddr_storage *ss, char delim, const char **ipend)
1323 {
1324 	const char *end, *delim_p;
1325 	char *colon_p, *ip_addr = NULL;
1326 	int ip_len, ret;
1327 
1328 	/*
1329 	 * The end of the hostname occurs immediately preceding the delimiter or
1330 	 * the port marker (':') where the delimiter takes precedence.
1331 	 */
1332 	delim_p = memchr(name, delim, namelen);
1333 	colon_p = memchr(name, ':', namelen);
1334 
1335 	if (delim_p && colon_p)
1336 		end = delim_p < colon_p ? delim_p : colon_p;
1337 	else if (!delim_p && colon_p)
1338 		end = colon_p;
1339 	else {
1340 		end = delim_p;
1341 		if (!end) /* case: hostname:/ */
1342 			end = name + namelen;
1343 	}
1344 
1345 	if (end <= name)
1346 		return -EINVAL;
1347 
1348 	/* do dns_resolve upcall */
1349 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1350 	if (ip_len > 0)
1351 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1352 	else
1353 		ret = -ESRCH;
1354 
1355 	kfree(ip_addr);
1356 
1357 	*ipend = end;
1358 
1359 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1360 			ret, ret ? "failed" : ceph_pr_addr(ss));
1361 
1362 	return ret;
1363 }
1364 #else
1365 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1366 		struct sockaddr_storage *ss, char delim, const char **ipend)
1367 {
1368 	return -EINVAL;
1369 }
1370 #endif
1371 
1372 /*
1373  * Parse a server name (IP or hostname). If a valid IP address is not found
1374  * then try to extract a hostname to resolve using userspace DNS upcall.
1375  */
1376 static int ceph_parse_server_name(const char *name, size_t namelen,
1377 			struct sockaddr_storage *ss, char delim, const char **ipend)
1378 {
1379 	int ret;
1380 
1381 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1382 	if (ret)
1383 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1384 
1385 	return ret;
1386 }
1387 
1388 /*
1389  * Parse an ip[:port] list into an addr array.  Use the default
1390  * monitor port if a port isn't specified.
1391  */
1392 int ceph_parse_ips(const char *c, const char *end,
1393 		   struct ceph_entity_addr *addr,
1394 		   int max_count, int *count)
1395 {
1396 	int i, ret = -EINVAL;
1397 	const char *p = c;
1398 
1399 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1400 	for (i = 0; i < max_count; i++) {
1401 		const char *ipend;
1402 		struct sockaddr_storage *ss = &addr[i].in_addr;
1403 		int port;
1404 		char delim = ',';
1405 
1406 		if (*p == '[') {
1407 			delim = ']';
1408 			p++;
1409 		}
1410 
1411 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1412 		if (ret)
1413 			goto bad;
1414 		ret = -EINVAL;
1415 
1416 		p = ipend;
1417 
1418 		if (delim == ']') {
1419 			if (*p != ']') {
1420 				dout("missing matching ']'\n");
1421 				goto bad;
1422 			}
1423 			p++;
1424 		}
1425 
1426 		/* port? */
1427 		if (p < end && *p == ':') {
1428 			port = 0;
1429 			p++;
1430 			while (p < end && *p >= '0' && *p <= '9') {
1431 				port = (port * 10) + (*p - '0');
1432 				p++;
1433 			}
1434 			if (port > 65535 || port == 0)
1435 				goto bad;
1436 		} else {
1437 			port = CEPH_MON_PORT;
1438 		}
1439 
1440 		addr_set_port(ss, port);
1441 
1442 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1443 
1444 		if (p == end)
1445 			break;
1446 		if (*p != ',')
1447 			goto bad;
1448 		p++;
1449 	}
1450 
1451 	if (p != end)
1452 		goto bad;
1453 
1454 	if (count)
1455 		*count = i + 1;
1456 	return 0;
1457 
1458 bad:
1459 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(ceph_parse_ips);
1463 
1464 static int process_banner(struct ceph_connection *con)
1465 {
1466 	dout("process_banner on %p\n", con);
1467 
1468 	if (verify_hello(con) < 0)
1469 		return -1;
1470 
1471 	ceph_decode_addr(&con->actual_peer_addr);
1472 	ceph_decode_addr(&con->peer_addr_for_me);
1473 
1474 	/*
1475 	 * Make sure the other end is who we wanted.  note that the other
1476 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1477 	 * them the benefit of the doubt.
1478 	 */
1479 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1480 		   sizeof(con->peer_addr)) != 0 &&
1481 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1482 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1483 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1484 			   ceph_pr_addr(&con->peer_addr.in_addr),
1485 			   (int)le32_to_cpu(con->peer_addr.nonce),
1486 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1487 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1488 		con->error_msg = "wrong peer at address";
1489 		return -1;
1490 	}
1491 
1492 	/*
1493 	 * did we learn our address?
1494 	 */
1495 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1496 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1497 
1498 		memcpy(&con->msgr->inst.addr.in_addr,
1499 		       &con->peer_addr_for_me.in_addr,
1500 		       sizeof(con->peer_addr_for_me.in_addr));
1501 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1502 		encode_my_addr(con->msgr);
1503 		dout("process_banner learned my addr is %s\n",
1504 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 static int process_connect(struct ceph_connection *con)
1511 {
1512 	u64 sup_feat = con->msgr->supported_features;
1513 	u64 req_feat = con->msgr->required_features;
1514 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1515 	int ret;
1516 
1517 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1518 
1519 	switch (con->in_reply.tag) {
1520 	case CEPH_MSGR_TAG_FEATURES:
1521 		pr_err("%s%lld %s feature set mismatch,"
1522 		       " my %llx < server's %llx, missing %llx\n",
1523 		       ENTITY_NAME(con->peer_name),
1524 		       ceph_pr_addr(&con->peer_addr.in_addr),
1525 		       sup_feat, server_feat, server_feat & ~sup_feat);
1526 		con->error_msg = "missing required protocol features";
1527 		reset_connection(con);
1528 		return -1;
1529 
1530 	case CEPH_MSGR_TAG_BADPROTOVER:
1531 		pr_err("%s%lld %s protocol version mismatch,"
1532 		       " my %d != server's %d\n",
1533 		       ENTITY_NAME(con->peer_name),
1534 		       ceph_pr_addr(&con->peer_addr.in_addr),
1535 		       le32_to_cpu(con->out_connect.protocol_version),
1536 		       le32_to_cpu(con->in_reply.protocol_version));
1537 		con->error_msg = "protocol version mismatch";
1538 		reset_connection(con);
1539 		return -1;
1540 
1541 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1542 		con->auth_retry++;
1543 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1544 		     con->auth_retry);
1545 		if (con->auth_retry == 2) {
1546 			con->error_msg = "connect authorization failure";
1547 			return -1;
1548 		}
1549 		con->auth_retry = 1;
1550 		con_out_kvec_reset(con);
1551 		ret = prepare_write_connect(con);
1552 		if (ret < 0)
1553 			return ret;
1554 		prepare_read_connect(con);
1555 		break;
1556 
1557 	case CEPH_MSGR_TAG_RESETSESSION:
1558 		/*
1559 		 * If we connected with a large connect_seq but the peer
1560 		 * has no record of a session with us (no connection, or
1561 		 * connect_seq == 0), they will send RESETSESION to indicate
1562 		 * that they must have reset their session, and may have
1563 		 * dropped messages.
1564 		 */
1565 		dout("process_connect got RESET peer seq %u\n",
1566 		     le32_to_cpu(con->in_reply.connect_seq));
1567 		pr_err("%s%lld %s connection reset\n",
1568 		       ENTITY_NAME(con->peer_name),
1569 		       ceph_pr_addr(&con->peer_addr.in_addr));
1570 		reset_connection(con);
1571 		con_out_kvec_reset(con);
1572 		ret = prepare_write_connect(con);
1573 		if (ret < 0)
1574 			return ret;
1575 		prepare_read_connect(con);
1576 
1577 		/* Tell ceph about it. */
1578 		mutex_unlock(&con->mutex);
1579 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1580 		if (con->ops->peer_reset)
1581 			con->ops->peer_reset(con);
1582 		mutex_lock(&con->mutex);
1583 		if (con->state != CON_STATE_NEGOTIATING)
1584 			return -EAGAIN;
1585 		break;
1586 
1587 	case CEPH_MSGR_TAG_RETRY_SESSION:
1588 		/*
1589 		 * If we sent a smaller connect_seq than the peer has, try
1590 		 * again with a larger value.
1591 		 */
1592 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1593 		     le32_to_cpu(con->out_connect.connect_seq),
1594 		     le32_to_cpu(con->in_reply.connect_seq));
1595 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1596 		con_out_kvec_reset(con);
1597 		ret = prepare_write_connect(con);
1598 		if (ret < 0)
1599 			return ret;
1600 		prepare_read_connect(con);
1601 		break;
1602 
1603 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1604 		/*
1605 		 * If we sent a smaller global_seq than the peer has, try
1606 		 * again with a larger value.
1607 		 */
1608 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1609 		     con->peer_global_seq,
1610 		     le32_to_cpu(con->in_reply.global_seq));
1611 		get_global_seq(con->msgr,
1612 			       le32_to_cpu(con->in_reply.global_seq));
1613 		con_out_kvec_reset(con);
1614 		ret = prepare_write_connect(con);
1615 		if (ret < 0)
1616 			return ret;
1617 		prepare_read_connect(con);
1618 		break;
1619 
1620 	case CEPH_MSGR_TAG_READY:
1621 		if (req_feat & ~server_feat) {
1622 			pr_err("%s%lld %s protocol feature mismatch,"
1623 			       " my required %llx > server's %llx, need %llx\n",
1624 			       ENTITY_NAME(con->peer_name),
1625 			       ceph_pr_addr(&con->peer_addr.in_addr),
1626 			       req_feat, server_feat, req_feat & ~server_feat);
1627 			con->error_msg = "missing required protocol features";
1628 			reset_connection(con);
1629 			return -1;
1630 		}
1631 
1632 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
1633 		con->state = CON_STATE_OPEN;
1634 
1635 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1636 		con->connect_seq++;
1637 		con->peer_features = server_feat;
1638 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1639 		     con->peer_global_seq,
1640 		     le32_to_cpu(con->in_reply.connect_seq),
1641 		     con->connect_seq);
1642 		WARN_ON(con->connect_seq !=
1643 			le32_to_cpu(con->in_reply.connect_seq));
1644 
1645 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1646 			set_bit(CON_FLAG_LOSSYTX, &con->flags);
1647 
1648 		con->delay = 0;      /* reset backoff memory */
1649 
1650 		prepare_read_tag(con);
1651 		break;
1652 
1653 	case CEPH_MSGR_TAG_WAIT:
1654 		/*
1655 		 * If there is a connection race (we are opening
1656 		 * connections to each other), one of us may just have
1657 		 * to WAIT.  This shouldn't happen if we are the
1658 		 * client.
1659 		 */
1660 		pr_err("process_connect got WAIT as client\n");
1661 		con->error_msg = "protocol error, got WAIT as client";
1662 		return -1;
1663 
1664 	default:
1665 		pr_err("connect protocol error, will retry\n");
1666 		con->error_msg = "protocol error, garbage tag during connect";
1667 		return -1;
1668 	}
1669 	return 0;
1670 }
1671 
1672 
1673 /*
1674  * read (part of) an ack
1675  */
1676 static int read_partial_ack(struct ceph_connection *con)
1677 {
1678 	int size = sizeof (con->in_temp_ack);
1679 	int end = size;
1680 
1681 	return read_partial(con, end, size, &con->in_temp_ack);
1682 }
1683 
1684 
1685 /*
1686  * We can finally discard anything that's been acked.
1687  */
1688 static void process_ack(struct ceph_connection *con)
1689 {
1690 	struct ceph_msg *m;
1691 	u64 ack = le64_to_cpu(con->in_temp_ack);
1692 	u64 seq;
1693 
1694 	while (!list_empty(&con->out_sent)) {
1695 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1696 				     list_head);
1697 		seq = le64_to_cpu(m->hdr.seq);
1698 		if (seq > ack)
1699 			break;
1700 		dout("got ack for seq %llu type %d at %p\n", seq,
1701 		     le16_to_cpu(m->hdr.type), m);
1702 		m->ack_stamp = jiffies;
1703 		ceph_msg_remove(m);
1704 	}
1705 	prepare_read_tag(con);
1706 }
1707 
1708 
1709 
1710 
1711 static int read_partial_message_section(struct ceph_connection *con,
1712 					struct kvec *section,
1713 					unsigned int sec_len, u32 *crc)
1714 {
1715 	int ret, left;
1716 
1717 	BUG_ON(!section);
1718 
1719 	while (section->iov_len < sec_len) {
1720 		BUG_ON(section->iov_base == NULL);
1721 		left = sec_len - section->iov_len;
1722 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1723 				       section->iov_len, left);
1724 		if (ret <= 0)
1725 			return ret;
1726 		section->iov_len += ret;
1727 	}
1728 	if (section->iov_len == sec_len)
1729 		*crc = crc32c(0, section->iov_base, section->iov_len);
1730 
1731 	return 1;
1732 }
1733 
1734 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1735 
1736 static int read_partial_message_pages(struct ceph_connection *con,
1737 				      struct page **pages,
1738 				      unsigned int data_len, bool do_datacrc)
1739 {
1740 	void *p;
1741 	int ret;
1742 	int left;
1743 
1744 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1745 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1746 	/* (page) data */
1747 	BUG_ON(pages == NULL);
1748 	p = kmap(pages[con->in_msg_pos.page]);
1749 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1750 			       left);
1751 	if (ret > 0 && do_datacrc)
1752 		con->in_data_crc =
1753 			crc32c(con->in_data_crc,
1754 				  p + con->in_msg_pos.page_pos, ret);
1755 	kunmap(pages[con->in_msg_pos.page]);
1756 	if (ret <= 0)
1757 		return ret;
1758 	con->in_msg_pos.data_pos += ret;
1759 	con->in_msg_pos.page_pos += ret;
1760 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1761 		con->in_msg_pos.page_pos = 0;
1762 		con->in_msg_pos.page++;
1763 	}
1764 
1765 	return ret;
1766 }
1767 
1768 #ifdef CONFIG_BLOCK
1769 static int read_partial_message_bio(struct ceph_connection *con,
1770 				    struct bio **bio_iter, int *bio_seg,
1771 				    unsigned int data_len, bool do_datacrc)
1772 {
1773 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1774 	void *p;
1775 	int ret, left;
1776 
1777 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1778 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1779 
1780 	p = kmap(bv->bv_page) + bv->bv_offset;
1781 
1782 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1783 			       left);
1784 	if (ret > 0 && do_datacrc)
1785 		con->in_data_crc =
1786 			crc32c(con->in_data_crc,
1787 				  p + con->in_msg_pos.page_pos, ret);
1788 	kunmap(bv->bv_page);
1789 	if (ret <= 0)
1790 		return ret;
1791 	con->in_msg_pos.data_pos += ret;
1792 	con->in_msg_pos.page_pos += ret;
1793 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1794 		con->in_msg_pos.page_pos = 0;
1795 		iter_bio_next(bio_iter, bio_seg);
1796 	}
1797 
1798 	return ret;
1799 }
1800 #endif
1801 
1802 /*
1803  * read (part of) a message.
1804  */
1805 static int read_partial_message(struct ceph_connection *con)
1806 {
1807 	struct ceph_msg *m = con->in_msg;
1808 	int size;
1809 	int end;
1810 	int ret;
1811 	unsigned int front_len, middle_len, data_len;
1812 	bool do_datacrc = !con->msgr->nocrc;
1813 	u64 seq;
1814 	u32 crc;
1815 
1816 	dout("read_partial_message con %p msg %p\n", con, m);
1817 
1818 	/* header */
1819 	size = sizeof (con->in_hdr);
1820 	end = size;
1821 	ret = read_partial(con, end, size, &con->in_hdr);
1822 	if (ret <= 0)
1823 		return ret;
1824 
1825 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1826 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1827 		pr_err("read_partial_message bad hdr "
1828 		       " crc %u != expected %u\n",
1829 		       crc, con->in_hdr.crc);
1830 		return -EBADMSG;
1831 	}
1832 
1833 	front_len = le32_to_cpu(con->in_hdr.front_len);
1834 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1835 		return -EIO;
1836 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1837 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1838 		return -EIO;
1839 	data_len = le32_to_cpu(con->in_hdr.data_len);
1840 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1841 		return -EIO;
1842 
1843 	/* verify seq# */
1844 	seq = le64_to_cpu(con->in_hdr.seq);
1845 	if ((s64)seq - (s64)con->in_seq < 1) {
1846 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1847 			ENTITY_NAME(con->peer_name),
1848 			ceph_pr_addr(&con->peer_addr.in_addr),
1849 			seq, con->in_seq + 1);
1850 		con->in_base_pos = -front_len - middle_len - data_len -
1851 			sizeof(m->footer);
1852 		con->in_tag = CEPH_MSGR_TAG_READY;
1853 		return 0;
1854 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1855 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1856 		       seq, con->in_seq + 1);
1857 		con->error_msg = "bad message sequence # for incoming message";
1858 		return -EBADMSG;
1859 	}
1860 
1861 	/* allocate message? */
1862 	if (!con->in_msg) {
1863 		int skip = 0;
1864 
1865 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1866 		     con->in_hdr.front_len, con->in_hdr.data_len);
1867 		ret = ceph_con_in_msg_alloc(con, &skip);
1868 		if (ret < 0)
1869 			return ret;
1870 		if (skip) {
1871 			/* skip this message */
1872 			dout("alloc_msg said skip message\n");
1873 			BUG_ON(con->in_msg);
1874 			con->in_base_pos = -front_len - middle_len - data_len -
1875 				sizeof(m->footer);
1876 			con->in_tag = CEPH_MSGR_TAG_READY;
1877 			con->in_seq++;
1878 			return 0;
1879 		}
1880 
1881 		BUG_ON(!con->in_msg);
1882 		BUG_ON(con->in_msg->con != con);
1883 		m = con->in_msg;
1884 		m->front.iov_len = 0;    /* haven't read it yet */
1885 		if (m->middle)
1886 			m->middle->vec.iov_len = 0;
1887 
1888 		con->in_msg_pos.page = 0;
1889 		if (m->pages)
1890 			con->in_msg_pos.page_pos = m->page_alignment;
1891 		else
1892 			con->in_msg_pos.page_pos = 0;
1893 		con->in_msg_pos.data_pos = 0;
1894 
1895 #ifdef CONFIG_BLOCK
1896 		if (m->bio)
1897 			init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1898 #endif
1899 	}
1900 
1901 	/* front */
1902 	ret = read_partial_message_section(con, &m->front, front_len,
1903 					   &con->in_front_crc);
1904 	if (ret <= 0)
1905 		return ret;
1906 
1907 	/* middle */
1908 	if (m->middle) {
1909 		ret = read_partial_message_section(con, &m->middle->vec,
1910 						   middle_len,
1911 						   &con->in_middle_crc);
1912 		if (ret <= 0)
1913 			return ret;
1914 	}
1915 
1916 	/* (page) data */
1917 	while (con->in_msg_pos.data_pos < data_len) {
1918 		if (m->pages) {
1919 			ret = read_partial_message_pages(con, m->pages,
1920 						 data_len, do_datacrc);
1921 			if (ret <= 0)
1922 				return ret;
1923 #ifdef CONFIG_BLOCK
1924 		} else if (m->bio) {
1925 			BUG_ON(!m->bio_iter);
1926 			ret = read_partial_message_bio(con,
1927 						 &m->bio_iter, &m->bio_seg,
1928 						 data_len, do_datacrc);
1929 			if (ret <= 0)
1930 				return ret;
1931 #endif
1932 		} else {
1933 			BUG_ON(1);
1934 		}
1935 	}
1936 
1937 	/* footer */
1938 	size = sizeof (m->footer);
1939 	end += size;
1940 	ret = read_partial(con, end, size, &m->footer);
1941 	if (ret <= 0)
1942 		return ret;
1943 
1944 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1945 	     m, front_len, m->footer.front_crc, middle_len,
1946 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1947 
1948 	/* crc ok? */
1949 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1950 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1951 		       m, con->in_front_crc, m->footer.front_crc);
1952 		return -EBADMSG;
1953 	}
1954 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1955 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1956 		       m, con->in_middle_crc, m->footer.middle_crc);
1957 		return -EBADMSG;
1958 	}
1959 	if (do_datacrc &&
1960 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1961 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1962 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1963 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1964 		return -EBADMSG;
1965 	}
1966 
1967 	return 1; /* done! */
1968 }
1969 
1970 /*
1971  * Process message.  This happens in the worker thread.  The callback should
1972  * be careful not to do anything that waits on other incoming messages or it
1973  * may deadlock.
1974  */
1975 static void process_message(struct ceph_connection *con)
1976 {
1977 	struct ceph_msg *msg;
1978 
1979 	BUG_ON(con->in_msg->con != con);
1980 	con->in_msg->con = NULL;
1981 	msg = con->in_msg;
1982 	con->in_msg = NULL;
1983 	con->ops->put(con);
1984 
1985 	/* if first message, set peer_name */
1986 	if (con->peer_name.type == 0)
1987 		con->peer_name = msg->hdr.src;
1988 
1989 	con->in_seq++;
1990 	mutex_unlock(&con->mutex);
1991 
1992 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1993 	     msg, le64_to_cpu(msg->hdr.seq),
1994 	     ENTITY_NAME(msg->hdr.src),
1995 	     le16_to_cpu(msg->hdr.type),
1996 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1997 	     le32_to_cpu(msg->hdr.front_len),
1998 	     le32_to_cpu(msg->hdr.data_len),
1999 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2000 	con->ops->dispatch(con, msg);
2001 
2002 	mutex_lock(&con->mutex);
2003 }
2004 
2005 
2006 /*
2007  * Write something to the socket.  Called in a worker thread when the
2008  * socket appears to be writeable and we have something ready to send.
2009  */
2010 static int try_write(struct ceph_connection *con)
2011 {
2012 	int ret = 1;
2013 
2014 	dout("try_write start %p state %lu\n", con, con->state);
2015 
2016 more:
2017 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2018 
2019 	/* open the socket first? */
2020 	if (con->state == CON_STATE_PREOPEN) {
2021 		BUG_ON(con->sock);
2022 		con->state = CON_STATE_CONNECTING;
2023 
2024 		con_out_kvec_reset(con);
2025 		prepare_write_banner(con);
2026 		prepare_read_banner(con);
2027 
2028 		BUG_ON(con->in_msg);
2029 		con->in_tag = CEPH_MSGR_TAG_READY;
2030 		dout("try_write initiating connect on %p new state %lu\n",
2031 		     con, con->state);
2032 		ret = ceph_tcp_connect(con);
2033 		if (ret < 0) {
2034 			con->error_msg = "connect error";
2035 			goto out;
2036 		}
2037 	}
2038 
2039 more_kvec:
2040 	/* kvec data queued? */
2041 	if (con->out_skip) {
2042 		ret = write_partial_skip(con);
2043 		if (ret <= 0)
2044 			goto out;
2045 	}
2046 	if (con->out_kvec_left) {
2047 		ret = write_partial_kvec(con);
2048 		if (ret <= 0)
2049 			goto out;
2050 	}
2051 
2052 	/* msg pages? */
2053 	if (con->out_msg) {
2054 		if (con->out_msg_done) {
2055 			ceph_msg_put(con->out_msg);
2056 			con->out_msg = NULL;   /* we're done with this one */
2057 			goto do_next;
2058 		}
2059 
2060 		ret = write_partial_msg_pages(con);
2061 		if (ret == 1)
2062 			goto more_kvec;  /* we need to send the footer, too! */
2063 		if (ret == 0)
2064 			goto out;
2065 		if (ret < 0) {
2066 			dout("try_write write_partial_msg_pages err %d\n",
2067 			     ret);
2068 			goto out;
2069 		}
2070 	}
2071 
2072 do_next:
2073 	if (con->state == CON_STATE_OPEN) {
2074 		/* is anything else pending? */
2075 		if (!list_empty(&con->out_queue)) {
2076 			prepare_write_message(con);
2077 			goto more;
2078 		}
2079 		if (con->in_seq > con->in_seq_acked) {
2080 			prepare_write_ack(con);
2081 			goto more;
2082 		}
2083 		if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2084 				       &con->flags)) {
2085 			prepare_write_keepalive(con);
2086 			goto more;
2087 		}
2088 	}
2089 
2090 	/* Nothing to do! */
2091 	clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2092 	dout("try_write nothing else to write.\n");
2093 	ret = 0;
2094 out:
2095 	dout("try_write done on %p ret %d\n", con, ret);
2096 	return ret;
2097 }
2098 
2099 
2100 
2101 /*
2102  * Read what we can from the socket.
2103  */
2104 static int try_read(struct ceph_connection *con)
2105 {
2106 	int ret = -1;
2107 
2108 more:
2109 	dout("try_read start on %p state %lu\n", con, con->state);
2110 	if (con->state != CON_STATE_CONNECTING &&
2111 	    con->state != CON_STATE_NEGOTIATING &&
2112 	    con->state != CON_STATE_OPEN)
2113 		return 0;
2114 
2115 	BUG_ON(!con->sock);
2116 
2117 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2118 	     con->in_base_pos);
2119 
2120 	if (con->state == CON_STATE_CONNECTING) {
2121 		dout("try_read connecting\n");
2122 		ret = read_partial_banner(con);
2123 		if (ret <= 0)
2124 			goto out;
2125 		ret = process_banner(con);
2126 		if (ret < 0)
2127 			goto out;
2128 
2129 		con->state = CON_STATE_NEGOTIATING;
2130 
2131 		/*
2132 		 * Received banner is good, exchange connection info.
2133 		 * Do not reset out_kvec, as sending our banner raced
2134 		 * with receiving peer banner after connect completed.
2135 		 */
2136 		ret = prepare_write_connect(con);
2137 		if (ret < 0)
2138 			goto out;
2139 		prepare_read_connect(con);
2140 
2141 		/* Send connection info before awaiting response */
2142 		goto out;
2143 	}
2144 
2145 	if (con->state == CON_STATE_NEGOTIATING) {
2146 		dout("try_read negotiating\n");
2147 		ret = read_partial_connect(con);
2148 		if (ret <= 0)
2149 			goto out;
2150 		ret = process_connect(con);
2151 		if (ret < 0)
2152 			goto out;
2153 		goto more;
2154 	}
2155 
2156 	WARN_ON(con->state != CON_STATE_OPEN);
2157 
2158 	if (con->in_base_pos < 0) {
2159 		/*
2160 		 * skipping + discarding content.
2161 		 *
2162 		 * FIXME: there must be a better way to do this!
2163 		 */
2164 		static char buf[SKIP_BUF_SIZE];
2165 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2166 
2167 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2168 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2169 		if (ret <= 0)
2170 			goto out;
2171 		con->in_base_pos += ret;
2172 		if (con->in_base_pos)
2173 			goto more;
2174 	}
2175 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2176 		/*
2177 		 * what's next?
2178 		 */
2179 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2180 		if (ret <= 0)
2181 			goto out;
2182 		dout("try_read got tag %d\n", (int)con->in_tag);
2183 		switch (con->in_tag) {
2184 		case CEPH_MSGR_TAG_MSG:
2185 			prepare_read_message(con);
2186 			break;
2187 		case CEPH_MSGR_TAG_ACK:
2188 			prepare_read_ack(con);
2189 			break;
2190 		case CEPH_MSGR_TAG_CLOSE:
2191 			con_close_socket(con);
2192 			con->state = CON_STATE_CLOSED;
2193 			goto out;
2194 		default:
2195 			goto bad_tag;
2196 		}
2197 	}
2198 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2199 		ret = read_partial_message(con);
2200 		if (ret <= 0) {
2201 			switch (ret) {
2202 			case -EBADMSG:
2203 				con->error_msg = "bad crc";
2204 				ret = -EIO;
2205 				break;
2206 			case -EIO:
2207 				con->error_msg = "io error";
2208 				break;
2209 			}
2210 			goto out;
2211 		}
2212 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2213 			goto more;
2214 		process_message(con);
2215 		if (con->state == CON_STATE_OPEN)
2216 			prepare_read_tag(con);
2217 		goto more;
2218 	}
2219 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2220 		ret = read_partial_ack(con);
2221 		if (ret <= 0)
2222 			goto out;
2223 		process_ack(con);
2224 		goto more;
2225 	}
2226 
2227 out:
2228 	dout("try_read done on %p ret %d\n", con, ret);
2229 	return ret;
2230 
2231 bad_tag:
2232 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2233 	con->error_msg = "protocol error, garbage tag";
2234 	ret = -1;
2235 	goto out;
2236 }
2237 
2238 
2239 /*
2240  * Atomically queue work on a connection after the specified delay.
2241  * Bump @con reference to avoid races with connection teardown.
2242  * Returns 0 if work was queued, or an error code otherwise.
2243  */
2244 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2245 {
2246 	if (!con->ops->get(con)) {
2247 		dout("%s %p ref count 0\n", __func__, con);
2248 
2249 		return -ENOENT;
2250 	}
2251 
2252 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2253 		dout("%s %p - already queued\n", __func__, con);
2254 		con->ops->put(con);
2255 
2256 		return -EBUSY;
2257 	}
2258 
2259 	dout("%s %p %lu\n", __func__, con, delay);
2260 
2261 	return 0;
2262 }
2263 
2264 static void queue_con(struct ceph_connection *con)
2265 {
2266 	(void) queue_con_delay(con, 0);
2267 }
2268 
2269 static bool con_sock_closed(struct ceph_connection *con)
2270 {
2271 	if (!test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags))
2272 		return false;
2273 
2274 #define CASE(x)								\
2275 	case CON_STATE_ ## x:						\
2276 		con->error_msg = "socket closed (con state " #x ")";	\
2277 		break;
2278 
2279 	switch (con->state) {
2280 	CASE(CLOSED);
2281 	CASE(PREOPEN);
2282 	CASE(CONNECTING);
2283 	CASE(NEGOTIATING);
2284 	CASE(OPEN);
2285 	CASE(STANDBY);
2286 	default:
2287 		pr_warning("%s con %p unrecognized state %lu\n",
2288 			__func__, con, con->state);
2289 		con->error_msg = "unrecognized con state";
2290 		BUG();
2291 		break;
2292 	}
2293 #undef CASE
2294 
2295 	return true;
2296 }
2297 
2298 /*
2299  * Do some work on a connection.  Drop a connection ref when we're done.
2300  */
2301 static void con_work(struct work_struct *work)
2302 {
2303 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2304 						   work.work);
2305 	int ret;
2306 
2307 	mutex_lock(&con->mutex);
2308 restart:
2309 	if (con_sock_closed(con))
2310 		goto fault;
2311 
2312 	if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2313 		dout("con_work %p backing off\n", con);
2314 		ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2315 		if (ret) {
2316 			dout("con_work %p FAILED to back off %lu\n", con,
2317 			     con->delay);
2318 			BUG_ON(ret == -ENOENT);
2319 			set_bit(CON_FLAG_BACKOFF, &con->flags);
2320 		}
2321 		goto done;
2322 	}
2323 
2324 	if (con->state == CON_STATE_STANDBY) {
2325 		dout("con_work %p STANDBY\n", con);
2326 		goto done;
2327 	}
2328 	if (con->state == CON_STATE_CLOSED) {
2329 		dout("con_work %p CLOSED\n", con);
2330 		BUG_ON(con->sock);
2331 		goto done;
2332 	}
2333 	if (con->state == CON_STATE_PREOPEN) {
2334 		dout("con_work OPENING\n");
2335 		BUG_ON(con->sock);
2336 	}
2337 
2338 	ret = try_read(con);
2339 	if (ret == -EAGAIN)
2340 		goto restart;
2341 	if (ret < 0) {
2342 		con->error_msg = "socket error on read";
2343 		goto fault;
2344 	}
2345 
2346 	ret = try_write(con);
2347 	if (ret == -EAGAIN)
2348 		goto restart;
2349 	if (ret < 0) {
2350 		con->error_msg = "socket error on write";
2351 		goto fault;
2352 	}
2353 
2354 done:
2355 	mutex_unlock(&con->mutex);
2356 done_unlocked:
2357 	con->ops->put(con);
2358 	return;
2359 
2360 fault:
2361 	ceph_fault(con);     /* error/fault path */
2362 	goto done_unlocked;
2363 }
2364 
2365 
2366 /*
2367  * Generic error/fault handler.  A retry mechanism is used with
2368  * exponential backoff
2369  */
2370 static void ceph_fault(struct ceph_connection *con)
2371 	__releases(con->mutex)
2372 {
2373 	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2374 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2375 	dout("fault %p state %lu to peer %s\n",
2376 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2377 
2378 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2379 	       con->state != CON_STATE_NEGOTIATING &&
2380 	       con->state != CON_STATE_OPEN);
2381 
2382 	con_close_socket(con);
2383 
2384 	if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2385 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2386 		con->state = CON_STATE_CLOSED;
2387 		goto out_unlock;
2388 	}
2389 
2390 	if (con->in_msg) {
2391 		BUG_ON(con->in_msg->con != con);
2392 		con->in_msg->con = NULL;
2393 		ceph_msg_put(con->in_msg);
2394 		con->in_msg = NULL;
2395 		con->ops->put(con);
2396 	}
2397 
2398 	/* Requeue anything that hasn't been acked */
2399 	list_splice_init(&con->out_sent, &con->out_queue);
2400 
2401 	/* If there are no messages queued or keepalive pending, place
2402 	 * the connection in a STANDBY state */
2403 	if (list_empty(&con->out_queue) &&
2404 	    !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2405 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2406 		clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2407 		con->state = CON_STATE_STANDBY;
2408 	} else {
2409 		/* retry after a delay. */
2410 		con->state = CON_STATE_PREOPEN;
2411 		if (con->delay == 0)
2412 			con->delay = BASE_DELAY_INTERVAL;
2413 		else if (con->delay < MAX_DELAY_INTERVAL)
2414 			con->delay *= 2;
2415 		set_bit(CON_FLAG_BACKOFF, &con->flags);
2416 		queue_con(con);
2417 	}
2418 
2419 out_unlock:
2420 	mutex_unlock(&con->mutex);
2421 	/*
2422 	 * in case we faulted due to authentication, invalidate our
2423 	 * current tickets so that we can get new ones.
2424 	 */
2425 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2426 		dout("calling invalidate_authorizer()\n");
2427 		con->ops->invalidate_authorizer(con);
2428 	}
2429 
2430 	if (con->ops->fault)
2431 		con->ops->fault(con);
2432 }
2433 
2434 
2435 
2436 /*
2437  * initialize a new messenger instance
2438  */
2439 void ceph_messenger_init(struct ceph_messenger *msgr,
2440 			struct ceph_entity_addr *myaddr,
2441 			u32 supported_features,
2442 			u32 required_features,
2443 			bool nocrc)
2444 {
2445 	msgr->supported_features = supported_features;
2446 	msgr->required_features = required_features;
2447 
2448 	spin_lock_init(&msgr->global_seq_lock);
2449 
2450 	if (myaddr)
2451 		msgr->inst.addr = *myaddr;
2452 
2453 	/* select a random nonce */
2454 	msgr->inst.addr.type = 0;
2455 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2456 	encode_my_addr(msgr);
2457 	msgr->nocrc = nocrc;
2458 
2459 	atomic_set(&msgr->stopping, 0);
2460 
2461 	dout("%s %p\n", __func__, msgr);
2462 }
2463 EXPORT_SYMBOL(ceph_messenger_init);
2464 
2465 static void clear_standby(struct ceph_connection *con)
2466 {
2467 	/* come back from STANDBY? */
2468 	if (con->state == CON_STATE_STANDBY) {
2469 		dout("clear_standby %p and ++connect_seq\n", con);
2470 		con->state = CON_STATE_PREOPEN;
2471 		con->connect_seq++;
2472 		WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2473 		WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2474 	}
2475 }
2476 
2477 /*
2478  * Queue up an outgoing message on the given connection.
2479  */
2480 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2481 {
2482 	/* set src+dst */
2483 	msg->hdr.src = con->msgr->inst.name;
2484 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2485 	msg->needs_out_seq = true;
2486 
2487 	mutex_lock(&con->mutex);
2488 
2489 	if (con->state == CON_STATE_CLOSED) {
2490 		dout("con_send %p closed, dropping %p\n", con, msg);
2491 		ceph_msg_put(msg);
2492 		mutex_unlock(&con->mutex);
2493 		return;
2494 	}
2495 
2496 	BUG_ON(msg->con != NULL);
2497 	msg->con = con->ops->get(con);
2498 	BUG_ON(msg->con == NULL);
2499 
2500 	BUG_ON(!list_empty(&msg->list_head));
2501 	list_add_tail(&msg->list_head, &con->out_queue);
2502 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2503 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2504 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2505 	     le32_to_cpu(msg->hdr.front_len),
2506 	     le32_to_cpu(msg->hdr.middle_len),
2507 	     le32_to_cpu(msg->hdr.data_len));
2508 
2509 	clear_standby(con);
2510 	mutex_unlock(&con->mutex);
2511 
2512 	/* if there wasn't anything waiting to send before, queue
2513 	 * new work */
2514 	if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2515 		queue_con(con);
2516 }
2517 EXPORT_SYMBOL(ceph_con_send);
2518 
2519 /*
2520  * Revoke a message that was previously queued for send
2521  */
2522 void ceph_msg_revoke(struct ceph_msg *msg)
2523 {
2524 	struct ceph_connection *con = msg->con;
2525 
2526 	if (!con)
2527 		return;		/* Message not in our possession */
2528 
2529 	mutex_lock(&con->mutex);
2530 	if (!list_empty(&msg->list_head)) {
2531 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2532 		list_del_init(&msg->list_head);
2533 		BUG_ON(msg->con == NULL);
2534 		msg->con->ops->put(msg->con);
2535 		msg->con = NULL;
2536 		msg->hdr.seq = 0;
2537 
2538 		ceph_msg_put(msg);
2539 	}
2540 	if (con->out_msg == msg) {
2541 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2542 		con->out_msg = NULL;
2543 		if (con->out_kvec_is_msg) {
2544 			con->out_skip = con->out_kvec_bytes;
2545 			con->out_kvec_is_msg = false;
2546 		}
2547 		msg->hdr.seq = 0;
2548 
2549 		ceph_msg_put(msg);
2550 	}
2551 	mutex_unlock(&con->mutex);
2552 }
2553 
2554 /*
2555  * Revoke a message that we may be reading data into
2556  */
2557 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2558 {
2559 	struct ceph_connection *con;
2560 
2561 	BUG_ON(msg == NULL);
2562 	if (!msg->con) {
2563 		dout("%s msg %p null con\n", __func__, msg);
2564 
2565 		return;		/* Message not in our possession */
2566 	}
2567 
2568 	con = msg->con;
2569 	mutex_lock(&con->mutex);
2570 	if (con->in_msg == msg) {
2571 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2572 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2573 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2574 
2575 		/* skip rest of message */
2576 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2577 		con->in_base_pos = con->in_base_pos -
2578 				sizeof(struct ceph_msg_header) -
2579 				front_len -
2580 				middle_len -
2581 				data_len -
2582 				sizeof(struct ceph_msg_footer);
2583 		ceph_msg_put(con->in_msg);
2584 		con->in_msg = NULL;
2585 		con->in_tag = CEPH_MSGR_TAG_READY;
2586 		con->in_seq++;
2587 	} else {
2588 		dout("%s %p in_msg %p msg %p no-op\n",
2589 		     __func__, con, con->in_msg, msg);
2590 	}
2591 	mutex_unlock(&con->mutex);
2592 }
2593 
2594 /*
2595  * Queue a keepalive byte to ensure the tcp connection is alive.
2596  */
2597 void ceph_con_keepalive(struct ceph_connection *con)
2598 {
2599 	dout("con_keepalive %p\n", con);
2600 	mutex_lock(&con->mutex);
2601 	clear_standby(con);
2602 	mutex_unlock(&con->mutex);
2603 	if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2604 	    test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2605 		queue_con(con);
2606 }
2607 EXPORT_SYMBOL(ceph_con_keepalive);
2608 
2609 
2610 /*
2611  * construct a new message with given type, size
2612  * the new msg has a ref count of 1.
2613  */
2614 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2615 			      bool can_fail)
2616 {
2617 	struct ceph_msg *m;
2618 
2619 	m = kmalloc(sizeof(*m), flags);
2620 	if (m == NULL)
2621 		goto out;
2622 	kref_init(&m->kref);
2623 
2624 	m->con = NULL;
2625 	INIT_LIST_HEAD(&m->list_head);
2626 
2627 	m->hdr.tid = 0;
2628 	m->hdr.type = cpu_to_le16(type);
2629 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2630 	m->hdr.version = 0;
2631 	m->hdr.front_len = cpu_to_le32(front_len);
2632 	m->hdr.middle_len = 0;
2633 	m->hdr.data_len = 0;
2634 	m->hdr.data_off = 0;
2635 	m->hdr.reserved = 0;
2636 	m->footer.front_crc = 0;
2637 	m->footer.middle_crc = 0;
2638 	m->footer.data_crc = 0;
2639 	m->footer.flags = 0;
2640 	m->front_max = front_len;
2641 	m->front_is_vmalloc = false;
2642 	m->more_to_follow = false;
2643 	m->ack_stamp = 0;
2644 	m->pool = NULL;
2645 
2646 	/* middle */
2647 	m->middle = NULL;
2648 
2649 	/* data */
2650 	m->nr_pages = 0;
2651 	m->page_alignment = 0;
2652 	m->pages = NULL;
2653 	m->pagelist = NULL;
2654 	m->bio = NULL;
2655 	m->bio_iter = NULL;
2656 	m->bio_seg = 0;
2657 	m->trail = NULL;
2658 
2659 	/* front */
2660 	if (front_len) {
2661 		if (front_len > PAGE_CACHE_SIZE) {
2662 			m->front.iov_base = __vmalloc(front_len, flags,
2663 						      PAGE_KERNEL);
2664 			m->front_is_vmalloc = true;
2665 		} else {
2666 			m->front.iov_base = kmalloc(front_len, flags);
2667 		}
2668 		if (m->front.iov_base == NULL) {
2669 			dout("ceph_msg_new can't allocate %d bytes\n",
2670 			     front_len);
2671 			goto out2;
2672 		}
2673 	} else {
2674 		m->front.iov_base = NULL;
2675 	}
2676 	m->front.iov_len = front_len;
2677 
2678 	dout("ceph_msg_new %p front %d\n", m, front_len);
2679 	return m;
2680 
2681 out2:
2682 	ceph_msg_put(m);
2683 out:
2684 	if (!can_fail) {
2685 		pr_err("msg_new can't create type %d front %d\n", type,
2686 		       front_len);
2687 		WARN_ON(1);
2688 	} else {
2689 		dout("msg_new can't create type %d front %d\n", type,
2690 		     front_len);
2691 	}
2692 	return NULL;
2693 }
2694 EXPORT_SYMBOL(ceph_msg_new);
2695 
2696 /*
2697  * Allocate "middle" portion of a message, if it is needed and wasn't
2698  * allocated by alloc_msg.  This allows us to read a small fixed-size
2699  * per-type header in the front and then gracefully fail (i.e.,
2700  * propagate the error to the caller based on info in the front) when
2701  * the middle is too large.
2702  */
2703 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2704 {
2705 	int type = le16_to_cpu(msg->hdr.type);
2706 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2707 
2708 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2709 	     ceph_msg_type_name(type), middle_len);
2710 	BUG_ON(!middle_len);
2711 	BUG_ON(msg->middle);
2712 
2713 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2714 	if (!msg->middle)
2715 		return -ENOMEM;
2716 	return 0;
2717 }
2718 
2719 /*
2720  * Allocate a message for receiving an incoming message on a
2721  * connection, and save the result in con->in_msg.  Uses the
2722  * connection's private alloc_msg op if available.
2723  *
2724  * Returns 0 on success, or a negative error code.
2725  *
2726  * On success, if we set *skip = 1:
2727  *  - the next message should be skipped and ignored.
2728  *  - con->in_msg == NULL
2729  * or if we set *skip = 0:
2730  *  - con->in_msg is non-null.
2731  * On error (ENOMEM, EAGAIN, ...),
2732  *  - con->in_msg == NULL
2733  */
2734 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2735 {
2736 	struct ceph_msg_header *hdr = &con->in_hdr;
2737 	int type = le16_to_cpu(hdr->type);
2738 	int front_len = le32_to_cpu(hdr->front_len);
2739 	int middle_len = le32_to_cpu(hdr->middle_len);
2740 	int ret = 0;
2741 
2742 	BUG_ON(con->in_msg != NULL);
2743 
2744 	if (con->ops->alloc_msg) {
2745 		struct ceph_msg *msg;
2746 
2747 		mutex_unlock(&con->mutex);
2748 		msg = con->ops->alloc_msg(con, hdr, skip);
2749 		mutex_lock(&con->mutex);
2750 		if (con->state != CON_STATE_OPEN) {
2751 			if (msg)
2752 				ceph_msg_put(msg);
2753 			return -EAGAIN;
2754 		}
2755 		con->in_msg = msg;
2756 		if (con->in_msg) {
2757 			con->in_msg->con = con->ops->get(con);
2758 			BUG_ON(con->in_msg->con == NULL);
2759 		}
2760 		if (*skip) {
2761 			con->in_msg = NULL;
2762 			return 0;
2763 		}
2764 		if (!con->in_msg) {
2765 			con->error_msg =
2766 				"error allocating memory for incoming message";
2767 			return -ENOMEM;
2768 		}
2769 	}
2770 	if (!con->in_msg) {
2771 		con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2772 		if (!con->in_msg) {
2773 			pr_err("unable to allocate msg type %d len %d\n",
2774 			       type, front_len);
2775 			return -ENOMEM;
2776 		}
2777 		con->in_msg->con = con->ops->get(con);
2778 		BUG_ON(con->in_msg->con == NULL);
2779 		con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2780 	}
2781 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2782 
2783 	if (middle_len && !con->in_msg->middle) {
2784 		ret = ceph_alloc_middle(con, con->in_msg);
2785 		if (ret < 0) {
2786 			ceph_msg_put(con->in_msg);
2787 			con->in_msg = NULL;
2788 		}
2789 	}
2790 
2791 	return ret;
2792 }
2793 
2794 
2795 /*
2796  * Free a generically kmalloc'd message.
2797  */
2798 void ceph_msg_kfree(struct ceph_msg *m)
2799 {
2800 	dout("msg_kfree %p\n", m);
2801 	if (m->front_is_vmalloc)
2802 		vfree(m->front.iov_base);
2803 	else
2804 		kfree(m->front.iov_base);
2805 	kfree(m);
2806 }
2807 
2808 /*
2809  * Drop a msg ref.  Destroy as needed.
2810  */
2811 void ceph_msg_last_put(struct kref *kref)
2812 {
2813 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2814 
2815 	dout("ceph_msg_put last one on %p\n", m);
2816 	WARN_ON(!list_empty(&m->list_head));
2817 
2818 	/* drop middle, data, if any */
2819 	if (m->middle) {
2820 		ceph_buffer_put(m->middle);
2821 		m->middle = NULL;
2822 	}
2823 	m->nr_pages = 0;
2824 	m->pages = NULL;
2825 
2826 	if (m->pagelist) {
2827 		ceph_pagelist_release(m->pagelist);
2828 		kfree(m->pagelist);
2829 		m->pagelist = NULL;
2830 	}
2831 
2832 	m->trail = NULL;
2833 
2834 	if (m->pool)
2835 		ceph_msgpool_put(m->pool, m);
2836 	else
2837 		ceph_msg_kfree(m);
2838 }
2839 EXPORT_SYMBOL(ceph_msg_last_put);
2840 
2841 void ceph_msg_dump(struct ceph_msg *msg)
2842 {
2843 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2844 		 msg->front_max, msg->nr_pages);
2845 	print_hex_dump(KERN_DEBUG, "header: ",
2846 		       DUMP_PREFIX_OFFSET, 16, 1,
2847 		       &msg->hdr, sizeof(msg->hdr), true);
2848 	print_hex_dump(KERN_DEBUG, " front: ",
2849 		       DUMP_PREFIX_OFFSET, 16, 1,
2850 		       msg->front.iov_base, msg->front.iov_len, true);
2851 	if (msg->middle)
2852 		print_hex_dump(KERN_DEBUG, "middle: ",
2853 			       DUMP_PREFIX_OFFSET, 16, 1,
2854 			       msg->middle->vec.iov_base,
2855 			       msg->middle->vec.iov_len, true);
2856 	print_hex_dump(KERN_DEBUG, "footer: ",
2857 		       DUMP_PREFIX_OFFSET, 16, 1,
2858 		       &msg->footer, sizeof(msg->footer), true);
2859 }
2860 EXPORT_SYMBOL(ceph_msg_dump);
2861