1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 static bool con_flag_valid(unsigned long con_flag) 86 { 87 switch (con_flag) { 88 case CEPH_CON_F_LOSSYTX: 89 case CEPH_CON_F_KEEPALIVE_PENDING: 90 case CEPH_CON_F_WRITE_PENDING: 91 case CEPH_CON_F_SOCK_CLOSED: 92 case CEPH_CON_F_BACKOFF: 93 return true; 94 default: 95 return false; 96 } 97 } 98 99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 100 { 101 BUG_ON(!con_flag_valid(con_flag)); 102 103 clear_bit(con_flag, &con->flags); 104 } 105 106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag) 107 { 108 BUG_ON(!con_flag_valid(con_flag)); 109 110 set_bit(con_flag, &con->flags); 111 } 112 113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag) 114 { 115 BUG_ON(!con_flag_valid(con_flag)); 116 117 return test_bit(con_flag, &con->flags); 118 } 119 120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con, 121 unsigned long con_flag) 122 { 123 BUG_ON(!con_flag_valid(con_flag)); 124 125 return test_and_clear_bit(con_flag, &con->flags); 126 } 127 128 bool ceph_con_flag_test_and_set(struct ceph_connection *con, 129 unsigned long con_flag) 130 { 131 BUG_ON(!con_flag_valid(con_flag)); 132 133 return test_and_set_bit(con_flag, &con->flags); 134 } 135 136 /* Slab caches for frequently-allocated structures */ 137 138 static struct kmem_cache *ceph_msg_cache; 139 140 #ifdef CONFIG_LOCKDEP 141 static struct lock_class_key socket_class; 142 #endif 143 144 static void queue_con(struct ceph_connection *con); 145 static void cancel_con(struct ceph_connection *con); 146 static void ceph_con_workfn(struct work_struct *); 147 static void con_fault(struct ceph_connection *con); 148 149 /* 150 * Nicely render a sockaddr as a string. An array of formatted 151 * strings is used, to approximate reentrancy. 152 */ 153 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 154 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 155 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 156 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 157 158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 159 static atomic_t addr_str_seq = ATOMIC_INIT(0); 160 161 struct page *ceph_zero_page; /* used in certain error cases */ 162 163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr) 164 { 165 int i; 166 char *s; 167 struct sockaddr_storage ss = addr->in_addr; /* align */ 168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; 169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; 170 171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 172 s = addr_str[i]; 173 174 switch (ss.ss_family) { 175 case AF_INET: 176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu", 177 le32_to_cpu(addr->type), &in4->sin_addr, 178 ntohs(in4->sin_port)); 179 break; 180 181 case AF_INET6: 182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu", 183 le32_to_cpu(addr->type), &in6->sin6_addr, 184 ntohs(in6->sin6_port)); 185 break; 186 187 default: 188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 189 ss.ss_family); 190 } 191 192 return s; 193 } 194 EXPORT_SYMBOL(ceph_pr_addr); 195 196 void ceph_encode_my_addr(struct ceph_messenger *msgr) 197 { 198 if (!ceph_msgr2(from_msgr(msgr))) { 199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, 200 sizeof(msgr->my_enc_addr)); 201 ceph_encode_banner_addr(&msgr->my_enc_addr); 202 } 203 } 204 205 /* 206 * work queue for all reading and writing to/from the socket. 207 */ 208 static struct workqueue_struct *ceph_msgr_wq; 209 210 static int ceph_msgr_slab_init(void) 211 { 212 BUG_ON(ceph_msg_cache); 213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 214 if (!ceph_msg_cache) 215 return -ENOMEM; 216 217 return 0; 218 } 219 220 static void ceph_msgr_slab_exit(void) 221 { 222 BUG_ON(!ceph_msg_cache); 223 kmem_cache_destroy(ceph_msg_cache); 224 ceph_msg_cache = NULL; 225 } 226 227 static void _ceph_msgr_exit(void) 228 { 229 if (ceph_msgr_wq) { 230 destroy_workqueue(ceph_msgr_wq); 231 ceph_msgr_wq = NULL; 232 } 233 234 BUG_ON(!ceph_zero_page); 235 put_page(ceph_zero_page); 236 ceph_zero_page = NULL; 237 238 ceph_msgr_slab_exit(); 239 } 240 241 int __init ceph_msgr_init(void) 242 { 243 if (ceph_msgr_slab_init()) 244 return -ENOMEM; 245 246 BUG_ON(ceph_zero_page); 247 ceph_zero_page = ZERO_PAGE(0); 248 get_page(ceph_zero_page); 249 250 /* 251 * The number of active work items is limited by the number of 252 * connections, so leave @max_active at default. 253 */ 254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 255 if (ceph_msgr_wq) 256 return 0; 257 258 pr_err("msgr_init failed to create workqueue\n"); 259 _ceph_msgr_exit(); 260 261 return -ENOMEM; 262 } 263 264 void ceph_msgr_exit(void) 265 { 266 BUG_ON(ceph_msgr_wq == NULL); 267 268 _ceph_msgr_exit(); 269 } 270 271 void ceph_msgr_flush(void) 272 { 273 flush_workqueue(ceph_msgr_wq); 274 } 275 EXPORT_SYMBOL(ceph_msgr_flush); 276 277 /* Connection socket state transition functions */ 278 279 static void con_sock_state_init(struct ceph_connection *con) 280 { 281 int old_state; 282 283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 285 printk("%s: unexpected old state %d\n", __func__, old_state); 286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 287 CON_SOCK_STATE_CLOSED); 288 } 289 290 static void con_sock_state_connecting(struct ceph_connection *con) 291 { 292 int old_state; 293 294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 296 printk("%s: unexpected old state %d\n", __func__, old_state); 297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 298 CON_SOCK_STATE_CONNECTING); 299 } 300 301 static void con_sock_state_connected(struct ceph_connection *con) 302 { 303 int old_state; 304 305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 307 printk("%s: unexpected old state %d\n", __func__, old_state); 308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 309 CON_SOCK_STATE_CONNECTED); 310 } 311 312 static void con_sock_state_closing(struct ceph_connection *con) 313 { 314 int old_state; 315 316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 318 old_state != CON_SOCK_STATE_CONNECTED && 319 old_state != CON_SOCK_STATE_CLOSING)) 320 printk("%s: unexpected old state %d\n", __func__, old_state); 321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 322 CON_SOCK_STATE_CLOSING); 323 } 324 325 static void con_sock_state_closed(struct ceph_connection *con) 326 { 327 int old_state; 328 329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 331 old_state != CON_SOCK_STATE_CLOSING && 332 old_state != CON_SOCK_STATE_CONNECTING && 333 old_state != CON_SOCK_STATE_CLOSED)) 334 printk("%s: unexpected old state %d\n", __func__, old_state); 335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 336 CON_SOCK_STATE_CLOSED); 337 } 338 339 /* 340 * socket callback functions 341 */ 342 343 /* data available on socket, or listen socket received a connect */ 344 static void ceph_sock_data_ready(struct sock *sk) 345 { 346 struct ceph_connection *con = sk->sk_user_data; 347 if (atomic_read(&con->msgr->stopping)) { 348 return; 349 } 350 351 if (sk->sk_state != TCP_CLOSE_WAIT) { 352 dout("%s %p state = %d, queueing work\n", __func__, 353 con, con->state); 354 queue_con(con); 355 } 356 } 357 358 /* socket has buffer space for writing */ 359 static void ceph_sock_write_space(struct sock *sk) 360 { 361 struct ceph_connection *con = sk->sk_user_data; 362 363 /* only queue to workqueue if there is data we want to write, 364 * and there is sufficient space in the socket buffer to accept 365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 366 * doesn't get called again until try_write() fills the socket 367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 368 * and net/core/stream.c:sk_stream_write_space(). 369 */ 370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) { 371 if (sk_stream_is_writeable(sk)) { 372 dout("%s %p queueing write work\n", __func__, con); 373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 374 queue_con(con); 375 } 376 } else { 377 dout("%s %p nothing to write\n", __func__, con); 378 } 379 } 380 381 /* socket's state has changed */ 382 static void ceph_sock_state_change(struct sock *sk) 383 { 384 struct ceph_connection *con = sk->sk_user_data; 385 386 dout("%s %p state = %d sk_state = %u\n", __func__, 387 con, con->state, sk->sk_state); 388 389 switch (sk->sk_state) { 390 case TCP_CLOSE: 391 dout("%s TCP_CLOSE\n", __func__); 392 fallthrough; 393 case TCP_CLOSE_WAIT: 394 dout("%s TCP_CLOSE_WAIT\n", __func__); 395 con_sock_state_closing(con); 396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED); 397 queue_con(con); 398 break; 399 case TCP_ESTABLISHED: 400 dout("%s TCP_ESTABLISHED\n", __func__); 401 con_sock_state_connected(con); 402 queue_con(con); 403 break; 404 default: /* Everything else is uninteresting */ 405 break; 406 } 407 } 408 409 /* 410 * set up socket callbacks 411 */ 412 static void set_sock_callbacks(struct socket *sock, 413 struct ceph_connection *con) 414 { 415 struct sock *sk = sock->sk; 416 sk->sk_user_data = con; 417 sk->sk_data_ready = ceph_sock_data_ready; 418 sk->sk_write_space = ceph_sock_write_space; 419 sk->sk_state_change = ceph_sock_state_change; 420 } 421 422 423 /* 424 * socket helpers 425 */ 426 427 /* 428 * initiate connection to a remote socket. 429 */ 430 int ceph_tcp_connect(struct ceph_connection *con) 431 { 432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ 433 struct socket *sock; 434 unsigned int noio_flag; 435 int ret; 436 437 dout("%s con %p peer_addr %s\n", __func__, con, 438 ceph_pr_addr(&con->peer_addr)); 439 BUG_ON(con->sock); 440 441 /* sock_create_kern() allocates with GFP_KERNEL */ 442 noio_flag = memalloc_noio_save(); 443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, 444 SOCK_STREAM, IPPROTO_TCP, &sock); 445 memalloc_noio_restore(noio_flag); 446 if (ret) 447 return ret; 448 sock->sk->sk_allocation = GFP_NOFS; 449 450 #ifdef CONFIG_LOCKDEP 451 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 452 #endif 453 454 set_sock_callbacks(sock, con); 455 456 con_sock_state_connecting(con); 457 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss), 458 O_NONBLOCK); 459 if (ret == -EINPROGRESS) { 460 dout("connect %s EINPROGRESS sk_state = %u\n", 461 ceph_pr_addr(&con->peer_addr), 462 sock->sk->sk_state); 463 } else if (ret < 0) { 464 pr_err("connect %s error %d\n", 465 ceph_pr_addr(&con->peer_addr), ret); 466 sock_release(sock); 467 return ret; 468 } 469 470 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) 471 tcp_sock_set_nodelay(sock->sk); 472 473 con->sock = sock; 474 return 0; 475 } 476 477 /* 478 * Shutdown/close the socket for the given connection. 479 */ 480 int ceph_con_close_socket(struct ceph_connection *con) 481 { 482 int rc = 0; 483 484 dout("%s con %p sock %p\n", __func__, con, con->sock); 485 if (con->sock) { 486 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 487 sock_release(con->sock); 488 con->sock = NULL; 489 } 490 491 /* 492 * Forcibly clear the SOCK_CLOSED flag. It gets set 493 * independent of the connection mutex, and we could have 494 * received a socket close event before we had the chance to 495 * shut the socket down. 496 */ 497 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED); 498 499 con_sock_state_closed(con); 500 return rc; 501 } 502 503 static void ceph_con_reset_protocol(struct ceph_connection *con) 504 { 505 dout("%s con %p\n", __func__, con); 506 507 ceph_con_close_socket(con); 508 if (con->in_msg) { 509 WARN_ON(con->in_msg->con != con); 510 ceph_msg_put(con->in_msg); 511 con->in_msg = NULL; 512 } 513 if (con->out_msg) { 514 WARN_ON(con->out_msg->con != con); 515 ceph_msg_put(con->out_msg); 516 con->out_msg = NULL; 517 } 518 if (con->bounce_page) { 519 __free_page(con->bounce_page); 520 con->bounce_page = NULL; 521 } 522 523 if (ceph_msgr2(from_msgr(con->msgr))) 524 ceph_con_v2_reset_protocol(con); 525 else 526 ceph_con_v1_reset_protocol(con); 527 } 528 529 /* 530 * Reset a connection. Discard all incoming and outgoing messages 531 * and clear *_seq state. 532 */ 533 static void ceph_msg_remove(struct ceph_msg *msg) 534 { 535 list_del_init(&msg->list_head); 536 537 ceph_msg_put(msg); 538 } 539 540 static void ceph_msg_remove_list(struct list_head *head) 541 { 542 while (!list_empty(head)) { 543 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 544 list_head); 545 ceph_msg_remove(msg); 546 } 547 } 548 549 void ceph_con_reset_session(struct ceph_connection *con) 550 { 551 dout("%s con %p\n", __func__, con); 552 553 WARN_ON(con->in_msg); 554 WARN_ON(con->out_msg); 555 ceph_msg_remove_list(&con->out_queue); 556 ceph_msg_remove_list(&con->out_sent); 557 con->out_seq = 0; 558 con->in_seq = 0; 559 con->in_seq_acked = 0; 560 561 if (ceph_msgr2(from_msgr(con->msgr))) 562 ceph_con_v2_reset_session(con); 563 else 564 ceph_con_v1_reset_session(con); 565 } 566 567 /* 568 * mark a peer down. drop any open connections. 569 */ 570 void ceph_con_close(struct ceph_connection *con) 571 { 572 mutex_lock(&con->mutex); 573 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); 574 con->state = CEPH_CON_S_CLOSED; 575 576 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next 577 connect */ 578 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING); 579 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 580 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF); 581 582 ceph_con_reset_protocol(con); 583 ceph_con_reset_session(con); 584 cancel_con(con); 585 mutex_unlock(&con->mutex); 586 } 587 EXPORT_SYMBOL(ceph_con_close); 588 589 /* 590 * Reopen a closed connection, with a new peer address. 591 */ 592 void ceph_con_open(struct ceph_connection *con, 593 __u8 entity_type, __u64 entity_num, 594 struct ceph_entity_addr *addr) 595 { 596 mutex_lock(&con->mutex); 597 dout("con_open %p %s\n", con, ceph_pr_addr(addr)); 598 599 WARN_ON(con->state != CEPH_CON_S_CLOSED); 600 con->state = CEPH_CON_S_PREOPEN; 601 602 con->peer_name.type = (__u8) entity_type; 603 con->peer_name.num = cpu_to_le64(entity_num); 604 605 memcpy(&con->peer_addr, addr, sizeof(*addr)); 606 con->delay = 0; /* reset backoff memory */ 607 mutex_unlock(&con->mutex); 608 queue_con(con); 609 } 610 EXPORT_SYMBOL(ceph_con_open); 611 612 /* 613 * return true if this connection ever successfully opened 614 */ 615 bool ceph_con_opened(struct ceph_connection *con) 616 { 617 if (ceph_msgr2(from_msgr(con->msgr))) 618 return ceph_con_v2_opened(con); 619 620 return ceph_con_v1_opened(con); 621 } 622 623 /* 624 * initialize a new connection. 625 */ 626 void ceph_con_init(struct ceph_connection *con, void *private, 627 const struct ceph_connection_operations *ops, 628 struct ceph_messenger *msgr) 629 { 630 dout("con_init %p\n", con); 631 memset(con, 0, sizeof(*con)); 632 con->private = private; 633 con->ops = ops; 634 con->msgr = msgr; 635 636 con_sock_state_init(con); 637 638 mutex_init(&con->mutex); 639 INIT_LIST_HEAD(&con->out_queue); 640 INIT_LIST_HEAD(&con->out_sent); 641 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 642 643 con->state = CEPH_CON_S_CLOSED; 644 } 645 EXPORT_SYMBOL(ceph_con_init); 646 647 /* 648 * We maintain a global counter to order connection attempts. Get 649 * a unique seq greater than @gt. 650 */ 651 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt) 652 { 653 u32 ret; 654 655 spin_lock(&msgr->global_seq_lock); 656 if (msgr->global_seq < gt) 657 msgr->global_seq = gt; 658 ret = ++msgr->global_seq; 659 spin_unlock(&msgr->global_seq_lock); 660 return ret; 661 } 662 663 /* 664 * Discard messages that have been acked by the server. 665 */ 666 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq) 667 { 668 struct ceph_msg *msg; 669 u64 seq; 670 671 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq); 672 while (!list_empty(&con->out_sent)) { 673 msg = list_first_entry(&con->out_sent, struct ceph_msg, 674 list_head); 675 WARN_ON(msg->needs_out_seq); 676 seq = le64_to_cpu(msg->hdr.seq); 677 if (seq > ack_seq) 678 break; 679 680 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 681 msg, seq); 682 ceph_msg_remove(msg); 683 } 684 } 685 686 /* 687 * Discard messages that have been requeued in con_fault(), up to 688 * reconnect_seq. This avoids gratuitously resending messages that 689 * the server had received and handled prior to reconnect. 690 */ 691 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq) 692 { 693 struct ceph_msg *msg; 694 u64 seq; 695 696 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq); 697 while (!list_empty(&con->out_queue)) { 698 msg = list_first_entry(&con->out_queue, struct ceph_msg, 699 list_head); 700 if (msg->needs_out_seq) 701 break; 702 seq = le64_to_cpu(msg->hdr.seq); 703 if (seq > reconnect_seq) 704 break; 705 706 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 707 msg, seq); 708 ceph_msg_remove(msg); 709 } 710 } 711 712 #ifdef CONFIG_BLOCK 713 714 /* 715 * For a bio data item, a piece is whatever remains of the next 716 * entry in the current bio iovec, or the first entry in the next 717 * bio in the list. 718 */ 719 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 720 size_t length) 721 { 722 struct ceph_msg_data *data = cursor->data; 723 struct ceph_bio_iter *it = &cursor->bio_iter; 724 725 cursor->resid = min_t(size_t, length, data->bio_length); 726 *it = data->bio_pos; 727 if (cursor->resid < it->iter.bi_size) 728 it->iter.bi_size = cursor->resid; 729 730 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 731 } 732 733 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 734 size_t *page_offset, 735 size_t *length) 736 { 737 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 738 cursor->bio_iter.iter); 739 740 *page_offset = bv.bv_offset; 741 *length = bv.bv_len; 742 return bv.bv_page; 743 } 744 745 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 746 size_t bytes) 747 { 748 struct ceph_bio_iter *it = &cursor->bio_iter; 749 struct page *page = bio_iter_page(it->bio, it->iter); 750 751 BUG_ON(bytes > cursor->resid); 752 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 753 cursor->resid -= bytes; 754 bio_advance_iter(it->bio, &it->iter, bytes); 755 756 if (!cursor->resid) 757 return false; /* no more data */ 758 759 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && 760 page == bio_iter_page(it->bio, it->iter))) 761 return false; /* more bytes to process in this segment */ 762 763 if (!it->iter.bi_size) { 764 it->bio = it->bio->bi_next; 765 it->iter = it->bio->bi_iter; 766 if (cursor->resid < it->iter.bi_size) 767 it->iter.bi_size = cursor->resid; 768 } 769 770 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 771 return true; 772 } 773 #endif /* CONFIG_BLOCK */ 774 775 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 776 size_t length) 777 { 778 struct ceph_msg_data *data = cursor->data; 779 struct bio_vec *bvecs = data->bvec_pos.bvecs; 780 781 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 782 cursor->bvec_iter = data->bvec_pos.iter; 783 cursor->bvec_iter.bi_size = cursor->resid; 784 785 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 786 } 787 788 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 789 size_t *page_offset, 790 size_t *length) 791 { 792 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 793 cursor->bvec_iter); 794 795 *page_offset = bv.bv_offset; 796 *length = bv.bv_len; 797 return bv.bv_page; 798 } 799 800 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 801 size_t bytes) 802 { 803 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 804 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); 805 806 BUG_ON(bytes > cursor->resid); 807 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 808 cursor->resid -= bytes; 809 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 810 811 if (!cursor->resid) 812 return false; /* no more data */ 813 814 if (!bytes || (cursor->bvec_iter.bi_bvec_done && 815 page == bvec_iter_page(bvecs, cursor->bvec_iter))) 816 return false; /* more bytes to process in this segment */ 817 818 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 819 return true; 820 } 821 822 /* 823 * For a page array, a piece comes from the first page in the array 824 * that has not already been fully consumed. 825 */ 826 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 827 size_t length) 828 { 829 struct ceph_msg_data *data = cursor->data; 830 int page_count; 831 832 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 833 834 BUG_ON(!data->pages); 835 BUG_ON(!data->length); 836 837 cursor->resid = min(length, data->length); 838 page_count = calc_pages_for(data->alignment, (u64)data->length); 839 cursor->page_offset = data->alignment & ~PAGE_MASK; 840 cursor->page_index = 0; 841 BUG_ON(page_count > (int)USHRT_MAX); 842 cursor->page_count = (unsigned short)page_count; 843 BUG_ON(length > SIZE_MAX - cursor->page_offset); 844 } 845 846 static struct page * 847 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 848 size_t *page_offset, size_t *length) 849 { 850 struct ceph_msg_data *data = cursor->data; 851 852 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 853 854 BUG_ON(cursor->page_index >= cursor->page_count); 855 BUG_ON(cursor->page_offset >= PAGE_SIZE); 856 857 *page_offset = cursor->page_offset; 858 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); 859 return data->pages[cursor->page_index]; 860 } 861 862 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 863 size_t bytes) 864 { 865 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 866 867 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 868 869 /* Advance the cursor page offset */ 870 871 cursor->resid -= bytes; 872 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 873 if (!bytes || cursor->page_offset) 874 return false; /* more bytes to process in the current page */ 875 876 if (!cursor->resid) 877 return false; /* no more data */ 878 879 /* Move on to the next page; offset is already at 0 */ 880 881 BUG_ON(cursor->page_index >= cursor->page_count); 882 cursor->page_index++; 883 return true; 884 } 885 886 /* 887 * For a pagelist, a piece is whatever remains to be consumed in the 888 * first page in the list, or the front of the next page. 889 */ 890 static void 891 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 892 size_t length) 893 { 894 struct ceph_msg_data *data = cursor->data; 895 struct ceph_pagelist *pagelist; 896 struct page *page; 897 898 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 899 900 pagelist = data->pagelist; 901 BUG_ON(!pagelist); 902 903 if (!length) 904 return; /* pagelist can be assigned but empty */ 905 906 BUG_ON(list_empty(&pagelist->head)); 907 page = list_first_entry(&pagelist->head, struct page, lru); 908 909 cursor->resid = min(length, pagelist->length); 910 cursor->page = page; 911 cursor->offset = 0; 912 } 913 914 static struct page * 915 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 916 size_t *page_offset, size_t *length) 917 { 918 struct ceph_msg_data *data = cursor->data; 919 struct ceph_pagelist *pagelist; 920 921 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 922 923 pagelist = data->pagelist; 924 BUG_ON(!pagelist); 925 926 BUG_ON(!cursor->page); 927 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 928 929 /* offset of first page in pagelist is always 0 */ 930 *page_offset = cursor->offset & ~PAGE_MASK; 931 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); 932 return cursor->page; 933 } 934 935 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 936 size_t bytes) 937 { 938 struct ceph_msg_data *data = cursor->data; 939 struct ceph_pagelist *pagelist; 940 941 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 942 943 pagelist = data->pagelist; 944 BUG_ON(!pagelist); 945 946 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 947 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 948 949 /* Advance the cursor offset */ 950 951 cursor->resid -= bytes; 952 cursor->offset += bytes; 953 /* offset of first page in pagelist is always 0 */ 954 if (!bytes || cursor->offset & ~PAGE_MASK) 955 return false; /* more bytes to process in the current page */ 956 957 if (!cursor->resid) 958 return false; /* no more data */ 959 960 /* Move on to the next page */ 961 962 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 963 cursor->page = list_next_entry(cursor->page, lru); 964 return true; 965 } 966 967 /* 968 * Message data is handled (sent or received) in pieces, where each 969 * piece resides on a single page. The network layer might not 970 * consume an entire piece at once. A data item's cursor keeps 971 * track of which piece is next to process and how much remains to 972 * be processed in that piece. It also tracks whether the current 973 * piece is the last one in the data item. 974 */ 975 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 976 { 977 size_t length = cursor->total_resid; 978 979 switch (cursor->data->type) { 980 case CEPH_MSG_DATA_PAGELIST: 981 ceph_msg_data_pagelist_cursor_init(cursor, length); 982 break; 983 case CEPH_MSG_DATA_PAGES: 984 ceph_msg_data_pages_cursor_init(cursor, length); 985 break; 986 #ifdef CONFIG_BLOCK 987 case CEPH_MSG_DATA_BIO: 988 ceph_msg_data_bio_cursor_init(cursor, length); 989 break; 990 #endif /* CONFIG_BLOCK */ 991 case CEPH_MSG_DATA_BVECS: 992 ceph_msg_data_bvecs_cursor_init(cursor, length); 993 break; 994 case CEPH_MSG_DATA_NONE: 995 default: 996 /* BUG(); */ 997 break; 998 } 999 cursor->need_crc = true; 1000 } 1001 1002 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor, 1003 struct ceph_msg *msg, size_t length) 1004 { 1005 BUG_ON(!length); 1006 BUG_ON(length > msg->data_length); 1007 BUG_ON(!msg->num_data_items); 1008 1009 cursor->total_resid = length; 1010 cursor->data = msg->data; 1011 1012 __ceph_msg_data_cursor_init(cursor); 1013 } 1014 1015 /* 1016 * Return the page containing the next piece to process for a given 1017 * data item, and supply the page offset and length of that piece. 1018 * Indicate whether this is the last piece in this data item. 1019 */ 1020 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1021 size_t *page_offset, size_t *length) 1022 { 1023 struct page *page; 1024 1025 switch (cursor->data->type) { 1026 case CEPH_MSG_DATA_PAGELIST: 1027 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1028 break; 1029 case CEPH_MSG_DATA_PAGES: 1030 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1031 break; 1032 #ifdef CONFIG_BLOCK 1033 case CEPH_MSG_DATA_BIO: 1034 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1035 break; 1036 #endif /* CONFIG_BLOCK */ 1037 case CEPH_MSG_DATA_BVECS: 1038 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1039 break; 1040 case CEPH_MSG_DATA_NONE: 1041 default: 1042 page = NULL; 1043 break; 1044 } 1045 1046 BUG_ON(!page); 1047 BUG_ON(*page_offset + *length > PAGE_SIZE); 1048 BUG_ON(!*length); 1049 BUG_ON(*length > cursor->resid); 1050 1051 return page; 1052 } 1053 1054 /* 1055 * Returns true if the result moves the cursor on to the next piece 1056 * of the data item. 1057 */ 1058 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) 1059 { 1060 bool new_piece; 1061 1062 BUG_ON(bytes > cursor->resid); 1063 switch (cursor->data->type) { 1064 case CEPH_MSG_DATA_PAGELIST: 1065 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1066 break; 1067 case CEPH_MSG_DATA_PAGES: 1068 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1069 break; 1070 #ifdef CONFIG_BLOCK 1071 case CEPH_MSG_DATA_BIO: 1072 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1073 break; 1074 #endif /* CONFIG_BLOCK */ 1075 case CEPH_MSG_DATA_BVECS: 1076 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1077 break; 1078 case CEPH_MSG_DATA_NONE: 1079 default: 1080 BUG(); 1081 break; 1082 } 1083 cursor->total_resid -= bytes; 1084 1085 if (!cursor->resid && cursor->total_resid) { 1086 cursor->data++; 1087 __ceph_msg_data_cursor_init(cursor); 1088 new_piece = true; 1089 } 1090 cursor->need_crc = new_piece; 1091 } 1092 1093 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset, 1094 unsigned int length) 1095 { 1096 char *kaddr; 1097 1098 kaddr = kmap(page); 1099 BUG_ON(kaddr == NULL); 1100 crc = crc32c(crc, kaddr + page_offset, length); 1101 kunmap(page); 1102 1103 return crc; 1104 } 1105 1106 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr) 1107 { 1108 struct sockaddr_storage ss = addr->in_addr; /* align */ 1109 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; 1110 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; 1111 1112 switch (ss.ss_family) { 1113 case AF_INET: 1114 return addr4->s_addr == htonl(INADDR_ANY); 1115 case AF_INET6: 1116 return ipv6_addr_any(addr6); 1117 default: 1118 return true; 1119 } 1120 } 1121 1122 int ceph_addr_port(const struct ceph_entity_addr *addr) 1123 { 1124 switch (get_unaligned(&addr->in_addr.ss_family)) { 1125 case AF_INET: 1126 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); 1127 case AF_INET6: 1128 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); 1129 } 1130 return 0; 1131 } 1132 1133 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p) 1134 { 1135 switch (get_unaligned(&addr->in_addr.ss_family)) { 1136 case AF_INET: 1137 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); 1138 break; 1139 case AF_INET6: 1140 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); 1141 break; 1142 } 1143 } 1144 1145 /* 1146 * Unlike other *_pton function semantics, zero indicates success. 1147 */ 1148 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, 1149 char delim, const char **ipend) 1150 { 1151 memset(&addr->in_addr, 0, sizeof(addr->in_addr)); 1152 1153 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { 1154 put_unaligned(AF_INET, &addr->in_addr.ss_family); 1155 return 0; 1156 } 1157 1158 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { 1159 put_unaligned(AF_INET6, &addr->in_addr.ss_family); 1160 return 0; 1161 } 1162 1163 return -EINVAL; 1164 } 1165 1166 /* 1167 * Extract hostname string and resolve using kernel DNS facility. 1168 */ 1169 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1170 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1171 struct ceph_entity_addr *addr, char delim, const char **ipend) 1172 { 1173 const char *end, *delim_p; 1174 char *colon_p, *ip_addr = NULL; 1175 int ip_len, ret; 1176 1177 /* 1178 * The end of the hostname occurs immediately preceding the delimiter or 1179 * the port marker (':') where the delimiter takes precedence. 1180 */ 1181 delim_p = memchr(name, delim, namelen); 1182 colon_p = memchr(name, ':', namelen); 1183 1184 if (delim_p && colon_p) 1185 end = delim_p < colon_p ? delim_p : colon_p; 1186 else if (!delim_p && colon_p) 1187 end = colon_p; 1188 else { 1189 end = delim_p; 1190 if (!end) /* case: hostname:/ */ 1191 end = name + namelen; 1192 } 1193 1194 if (end <= name) 1195 return -EINVAL; 1196 1197 /* do dns_resolve upcall */ 1198 ip_len = dns_query(current->nsproxy->net_ns, 1199 NULL, name, end - name, NULL, &ip_addr, NULL, false); 1200 if (ip_len > 0) 1201 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); 1202 else 1203 ret = -ESRCH; 1204 1205 kfree(ip_addr); 1206 1207 *ipend = end; 1208 1209 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1210 ret, ret ? "failed" : ceph_pr_addr(addr)); 1211 1212 return ret; 1213 } 1214 #else 1215 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1216 struct ceph_entity_addr *addr, char delim, const char **ipend) 1217 { 1218 return -EINVAL; 1219 } 1220 #endif 1221 1222 /* 1223 * Parse a server name (IP or hostname). If a valid IP address is not found 1224 * then try to extract a hostname to resolve using userspace DNS upcall. 1225 */ 1226 static int ceph_parse_server_name(const char *name, size_t namelen, 1227 struct ceph_entity_addr *addr, char delim, const char **ipend) 1228 { 1229 int ret; 1230 1231 ret = ceph_pton(name, namelen, addr, delim, ipend); 1232 if (ret) 1233 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); 1234 1235 return ret; 1236 } 1237 1238 /* 1239 * Parse an ip[:port] list into an addr array. Use the default 1240 * monitor port if a port isn't specified. 1241 */ 1242 int ceph_parse_ips(const char *c, const char *end, 1243 struct ceph_entity_addr *addr, 1244 int max_count, int *count, char delim) 1245 { 1246 int i, ret = -EINVAL; 1247 const char *p = c; 1248 1249 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1250 for (i = 0; i < max_count; i++) { 1251 char cur_delim = delim; 1252 const char *ipend; 1253 int port; 1254 1255 if (*p == '[') { 1256 cur_delim = ']'; 1257 p++; 1258 } 1259 1260 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim, 1261 &ipend); 1262 if (ret) 1263 goto bad; 1264 ret = -EINVAL; 1265 1266 p = ipend; 1267 1268 if (cur_delim == ']') { 1269 if (*p != ']') { 1270 dout("missing matching ']'\n"); 1271 goto bad; 1272 } 1273 p++; 1274 } 1275 1276 /* port? */ 1277 if (p < end && *p == ':') { 1278 port = 0; 1279 p++; 1280 while (p < end && *p >= '0' && *p <= '9') { 1281 port = (port * 10) + (*p - '0'); 1282 p++; 1283 } 1284 if (port == 0) 1285 port = CEPH_MON_PORT; 1286 else if (port > 65535) 1287 goto bad; 1288 } else { 1289 port = CEPH_MON_PORT; 1290 } 1291 1292 ceph_addr_set_port(&addr[i], port); 1293 /* 1294 * We want the type to be set according to ms_mode 1295 * option, but options are normally parsed after mon 1296 * addresses. Rather than complicating parsing, set 1297 * to LEGACY and override in build_initial_monmap() 1298 * for mon addresses and ceph_messenger_init() for 1299 * ip option. 1300 */ 1301 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY; 1302 addr[i].nonce = 0; 1303 1304 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i])); 1305 1306 if (p == end) 1307 break; 1308 if (*p != delim) 1309 goto bad; 1310 p++; 1311 } 1312 1313 if (p != end) 1314 goto bad; 1315 1316 if (count) 1317 *count = i + 1; 1318 return 0; 1319 1320 bad: 1321 return ret; 1322 } 1323 1324 /* 1325 * Process message. This happens in the worker thread. The callback should 1326 * be careful not to do anything that waits on other incoming messages or it 1327 * may deadlock. 1328 */ 1329 void ceph_con_process_message(struct ceph_connection *con) 1330 { 1331 struct ceph_msg *msg = con->in_msg; 1332 1333 BUG_ON(con->in_msg->con != con); 1334 con->in_msg = NULL; 1335 1336 /* if first message, set peer_name */ 1337 if (con->peer_name.type == 0) 1338 con->peer_name = msg->hdr.src; 1339 1340 con->in_seq++; 1341 mutex_unlock(&con->mutex); 1342 1343 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n", 1344 msg, le64_to_cpu(msg->hdr.seq), 1345 ENTITY_NAME(msg->hdr.src), 1346 le16_to_cpu(msg->hdr.type), 1347 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1348 le32_to_cpu(msg->hdr.front_len), 1349 le32_to_cpu(msg->hdr.middle_len), 1350 le32_to_cpu(msg->hdr.data_len), 1351 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 1352 con->ops->dispatch(con, msg); 1353 1354 mutex_lock(&con->mutex); 1355 } 1356 1357 /* 1358 * Atomically queue work on a connection after the specified delay. 1359 * Bump @con reference to avoid races with connection teardown. 1360 * Returns 0 if work was queued, or an error code otherwise. 1361 */ 1362 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 1363 { 1364 if (!con->ops->get(con)) { 1365 dout("%s %p ref count 0\n", __func__, con); 1366 return -ENOENT; 1367 } 1368 1369 if (delay >= HZ) 1370 delay = round_jiffies_relative(delay); 1371 1372 dout("%s %p %lu\n", __func__, con, delay); 1373 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 1374 dout("%s %p - already queued\n", __func__, con); 1375 con->ops->put(con); 1376 return -EBUSY; 1377 } 1378 1379 return 0; 1380 } 1381 1382 static void queue_con(struct ceph_connection *con) 1383 { 1384 (void) queue_con_delay(con, 0); 1385 } 1386 1387 static void cancel_con(struct ceph_connection *con) 1388 { 1389 if (cancel_delayed_work(&con->work)) { 1390 dout("%s %p\n", __func__, con); 1391 con->ops->put(con); 1392 } 1393 } 1394 1395 static bool con_sock_closed(struct ceph_connection *con) 1396 { 1397 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED)) 1398 return false; 1399 1400 #define CASE(x) \ 1401 case CEPH_CON_S_ ## x: \ 1402 con->error_msg = "socket closed (con state " #x ")"; \ 1403 break; 1404 1405 switch (con->state) { 1406 CASE(CLOSED); 1407 CASE(PREOPEN); 1408 CASE(V1_BANNER); 1409 CASE(V1_CONNECT_MSG); 1410 CASE(V2_BANNER_PREFIX); 1411 CASE(V2_BANNER_PAYLOAD); 1412 CASE(V2_HELLO); 1413 CASE(V2_AUTH); 1414 CASE(V2_AUTH_SIGNATURE); 1415 CASE(V2_SESSION_CONNECT); 1416 CASE(V2_SESSION_RECONNECT); 1417 CASE(OPEN); 1418 CASE(STANDBY); 1419 default: 1420 BUG(); 1421 } 1422 #undef CASE 1423 1424 return true; 1425 } 1426 1427 static bool con_backoff(struct ceph_connection *con) 1428 { 1429 int ret; 1430 1431 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF)) 1432 return false; 1433 1434 ret = queue_con_delay(con, con->delay); 1435 if (ret) { 1436 dout("%s: con %p FAILED to back off %lu\n", __func__, 1437 con, con->delay); 1438 BUG_ON(ret == -ENOENT); 1439 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1440 } 1441 1442 return true; 1443 } 1444 1445 /* Finish fault handling; con->mutex must *not* be held here */ 1446 1447 static void con_fault_finish(struct ceph_connection *con) 1448 { 1449 dout("%s %p\n", __func__, con); 1450 1451 /* 1452 * in case we faulted due to authentication, invalidate our 1453 * current tickets so that we can get new ones. 1454 */ 1455 if (con->v1.auth_retry) { 1456 dout("auth_retry %d, invalidating\n", con->v1.auth_retry); 1457 if (con->ops->invalidate_authorizer) 1458 con->ops->invalidate_authorizer(con); 1459 con->v1.auth_retry = 0; 1460 } 1461 1462 if (con->ops->fault) 1463 con->ops->fault(con); 1464 } 1465 1466 /* 1467 * Do some work on a connection. Drop a connection ref when we're done. 1468 */ 1469 static void ceph_con_workfn(struct work_struct *work) 1470 { 1471 struct ceph_connection *con = container_of(work, struct ceph_connection, 1472 work.work); 1473 bool fault; 1474 1475 mutex_lock(&con->mutex); 1476 while (true) { 1477 int ret; 1478 1479 if ((fault = con_sock_closed(con))) { 1480 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 1481 break; 1482 } 1483 if (con_backoff(con)) { 1484 dout("%s: con %p BACKOFF\n", __func__, con); 1485 break; 1486 } 1487 if (con->state == CEPH_CON_S_STANDBY) { 1488 dout("%s: con %p STANDBY\n", __func__, con); 1489 break; 1490 } 1491 if (con->state == CEPH_CON_S_CLOSED) { 1492 dout("%s: con %p CLOSED\n", __func__, con); 1493 BUG_ON(con->sock); 1494 break; 1495 } 1496 if (con->state == CEPH_CON_S_PREOPEN) { 1497 dout("%s: con %p PREOPEN\n", __func__, con); 1498 BUG_ON(con->sock); 1499 } 1500 1501 if (ceph_msgr2(from_msgr(con->msgr))) 1502 ret = ceph_con_v2_try_read(con); 1503 else 1504 ret = ceph_con_v1_try_read(con); 1505 if (ret < 0) { 1506 if (ret == -EAGAIN) 1507 continue; 1508 if (!con->error_msg) 1509 con->error_msg = "socket error on read"; 1510 fault = true; 1511 break; 1512 } 1513 1514 if (ceph_msgr2(from_msgr(con->msgr))) 1515 ret = ceph_con_v2_try_write(con); 1516 else 1517 ret = ceph_con_v1_try_write(con); 1518 if (ret < 0) { 1519 if (ret == -EAGAIN) 1520 continue; 1521 if (!con->error_msg) 1522 con->error_msg = "socket error on write"; 1523 fault = true; 1524 } 1525 1526 break; /* If we make it to here, we're done */ 1527 } 1528 if (fault) 1529 con_fault(con); 1530 mutex_unlock(&con->mutex); 1531 1532 if (fault) 1533 con_fault_finish(con); 1534 1535 con->ops->put(con); 1536 } 1537 1538 /* 1539 * Generic error/fault handler. A retry mechanism is used with 1540 * exponential backoff 1541 */ 1542 static void con_fault(struct ceph_connection *con) 1543 { 1544 dout("fault %p state %d to peer %s\n", 1545 con, con->state, ceph_pr_addr(&con->peer_addr)); 1546 1547 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 1548 ceph_pr_addr(&con->peer_addr), con->error_msg); 1549 con->error_msg = NULL; 1550 1551 WARN_ON(con->state == CEPH_CON_S_STANDBY || 1552 con->state == CEPH_CON_S_CLOSED); 1553 1554 ceph_con_reset_protocol(con); 1555 1556 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) { 1557 dout("fault on LOSSYTX channel, marking CLOSED\n"); 1558 con->state = CEPH_CON_S_CLOSED; 1559 return; 1560 } 1561 1562 /* Requeue anything that hasn't been acked */ 1563 list_splice_init(&con->out_sent, &con->out_queue); 1564 1565 /* If there are no messages queued or keepalive pending, place 1566 * the connection in a STANDBY state */ 1567 if (list_empty(&con->out_queue) && 1568 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) { 1569 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 1570 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 1571 con->state = CEPH_CON_S_STANDBY; 1572 } else { 1573 /* retry after a delay. */ 1574 con->state = CEPH_CON_S_PREOPEN; 1575 if (!con->delay) { 1576 con->delay = BASE_DELAY_INTERVAL; 1577 } else if (con->delay < MAX_DELAY_INTERVAL) { 1578 con->delay *= 2; 1579 if (con->delay > MAX_DELAY_INTERVAL) 1580 con->delay = MAX_DELAY_INTERVAL; 1581 } 1582 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1583 queue_con(con); 1584 } 1585 } 1586 1587 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr) 1588 { 1589 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000; 1590 msgr->inst.addr.nonce = cpu_to_le32(nonce); 1591 ceph_encode_my_addr(msgr); 1592 } 1593 1594 /* 1595 * initialize a new messenger instance 1596 */ 1597 void ceph_messenger_init(struct ceph_messenger *msgr, 1598 struct ceph_entity_addr *myaddr) 1599 { 1600 spin_lock_init(&msgr->global_seq_lock); 1601 1602 if (myaddr) { 1603 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr, 1604 sizeof(msgr->inst.addr.in_addr)); 1605 ceph_addr_set_port(&msgr->inst.addr, 0); 1606 } 1607 1608 /* 1609 * Since nautilus, clients are identified using type ANY. 1610 * For msgr1, ceph_encode_banner_addr() munges it to NONE. 1611 */ 1612 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY; 1613 1614 /* generate a random non-zero nonce */ 1615 do { 1616 get_random_bytes(&msgr->inst.addr.nonce, 1617 sizeof(msgr->inst.addr.nonce)); 1618 } while (!msgr->inst.addr.nonce); 1619 ceph_encode_my_addr(msgr); 1620 1621 atomic_set(&msgr->stopping, 0); 1622 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 1623 1624 dout("%s %p\n", __func__, msgr); 1625 } 1626 1627 void ceph_messenger_fini(struct ceph_messenger *msgr) 1628 { 1629 put_net(read_pnet(&msgr->net)); 1630 } 1631 1632 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 1633 { 1634 if (msg->con) 1635 msg->con->ops->put(msg->con); 1636 1637 msg->con = con ? con->ops->get(con) : NULL; 1638 BUG_ON(msg->con != con); 1639 } 1640 1641 static void clear_standby(struct ceph_connection *con) 1642 { 1643 /* come back from STANDBY? */ 1644 if (con->state == CEPH_CON_S_STANDBY) { 1645 dout("clear_standby %p and ++connect_seq\n", con); 1646 con->state = CEPH_CON_S_PREOPEN; 1647 con->v1.connect_seq++; 1648 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)); 1649 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)); 1650 } 1651 } 1652 1653 /* 1654 * Queue up an outgoing message on the given connection. 1655 * 1656 * Consumes a ref on @msg. 1657 */ 1658 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 1659 { 1660 /* set src+dst */ 1661 msg->hdr.src = con->msgr->inst.name; 1662 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 1663 msg->needs_out_seq = true; 1664 1665 mutex_lock(&con->mutex); 1666 1667 if (con->state == CEPH_CON_S_CLOSED) { 1668 dout("con_send %p closed, dropping %p\n", con, msg); 1669 ceph_msg_put(msg); 1670 mutex_unlock(&con->mutex); 1671 return; 1672 } 1673 1674 msg_con_set(msg, con); 1675 1676 BUG_ON(!list_empty(&msg->list_head)); 1677 list_add_tail(&msg->list_head, &con->out_queue); 1678 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 1679 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 1680 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1681 le32_to_cpu(msg->hdr.front_len), 1682 le32_to_cpu(msg->hdr.middle_len), 1683 le32_to_cpu(msg->hdr.data_len)); 1684 1685 clear_standby(con); 1686 mutex_unlock(&con->mutex); 1687 1688 /* if there wasn't anything waiting to send before, queue 1689 * new work */ 1690 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1691 queue_con(con); 1692 } 1693 EXPORT_SYMBOL(ceph_con_send); 1694 1695 /* 1696 * Revoke a message that was previously queued for send 1697 */ 1698 void ceph_msg_revoke(struct ceph_msg *msg) 1699 { 1700 struct ceph_connection *con = msg->con; 1701 1702 if (!con) { 1703 dout("%s msg %p null con\n", __func__, msg); 1704 return; /* Message not in our possession */ 1705 } 1706 1707 mutex_lock(&con->mutex); 1708 if (list_empty(&msg->list_head)) { 1709 WARN_ON(con->out_msg == msg); 1710 dout("%s con %p msg %p not linked\n", __func__, con, msg); 1711 mutex_unlock(&con->mutex); 1712 return; 1713 } 1714 1715 dout("%s con %p msg %p was linked\n", __func__, con, msg); 1716 msg->hdr.seq = 0; 1717 ceph_msg_remove(msg); 1718 1719 if (con->out_msg == msg) { 1720 WARN_ON(con->state != CEPH_CON_S_OPEN); 1721 dout("%s con %p msg %p was sending\n", __func__, con, msg); 1722 if (ceph_msgr2(from_msgr(con->msgr))) 1723 ceph_con_v2_revoke(con); 1724 else 1725 ceph_con_v1_revoke(con); 1726 ceph_msg_put(con->out_msg); 1727 con->out_msg = NULL; 1728 } else { 1729 dout("%s con %p msg %p not current, out_msg %p\n", __func__, 1730 con, msg, con->out_msg); 1731 } 1732 mutex_unlock(&con->mutex); 1733 } 1734 1735 /* 1736 * Revoke a message that we may be reading data into 1737 */ 1738 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 1739 { 1740 struct ceph_connection *con = msg->con; 1741 1742 if (!con) { 1743 dout("%s msg %p null con\n", __func__, msg); 1744 return; /* Message not in our possession */ 1745 } 1746 1747 mutex_lock(&con->mutex); 1748 if (con->in_msg == msg) { 1749 WARN_ON(con->state != CEPH_CON_S_OPEN); 1750 dout("%s con %p msg %p was recving\n", __func__, con, msg); 1751 if (ceph_msgr2(from_msgr(con->msgr))) 1752 ceph_con_v2_revoke_incoming(con); 1753 else 1754 ceph_con_v1_revoke_incoming(con); 1755 ceph_msg_put(con->in_msg); 1756 con->in_msg = NULL; 1757 } else { 1758 dout("%s con %p msg %p not current, in_msg %p\n", __func__, 1759 con, msg, con->in_msg); 1760 } 1761 mutex_unlock(&con->mutex); 1762 } 1763 1764 /* 1765 * Queue a keepalive byte to ensure the tcp connection is alive. 1766 */ 1767 void ceph_con_keepalive(struct ceph_connection *con) 1768 { 1769 dout("con_keepalive %p\n", con); 1770 mutex_lock(&con->mutex); 1771 clear_standby(con); 1772 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING); 1773 mutex_unlock(&con->mutex); 1774 1775 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1776 queue_con(con); 1777 } 1778 EXPORT_SYMBOL(ceph_con_keepalive); 1779 1780 bool ceph_con_keepalive_expired(struct ceph_connection *con, 1781 unsigned long interval) 1782 { 1783 if (interval > 0 && 1784 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 1785 struct timespec64 now; 1786 struct timespec64 ts; 1787 ktime_get_real_ts64(&now); 1788 jiffies_to_timespec64(interval, &ts); 1789 ts = timespec64_add(con->last_keepalive_ack, ts); 1790 return timespec64_compare(&now, &ts) >= 0; 1791 } 1792 return false; 1793 } 1794 1795 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 1796 { 1797 BUG_ON(msg->num_data_items >= msg->max_data_items); 1798 return &msg->data[msg->num_data_items++]; 1799 } 1800 1801 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 1802 { 1803 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) { 1804 int num_pages = calc_pages_for(data->alignment, data->length); 1805 ceph_release_page_vector(data->pages, num_pages); 1806 } else if (data->type == CEPH_MSG_DATA_PAGELIST) { 1807 ceph_pagelist_release(data->pagelist); 1808 } 1809 } 1810 1811 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 1812 size_t length, size_t alignment, bool own_pages) 1813 { 1814 struct ceph_msg_data *data; 1815 1816 BUG_ON(!pages); 1817 BUG_ON(!length); 1818 1819 data = ceph_msg_data_add(msg); 1820 data->type = CEPH_MSG_DATA_PAGES; 1821 data->pages = pages; 1822 data->length = length; 1823 data->alignment = alignment & ~PAGE_MASK; 1824 data->own_pages = own_pages; 1825 1826 msg->data_length += length; 1827 } 1828 EXPORT_SYMBOL(ceph_msg_data_add_pages); 1829 1830 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 1831 struct ceph_pagelist *pagelist) 1832 { 1833 struct ceph_msg_data *data; 1834 1835 BUG_ON(!pagelist); 1836 BUG_ON(!pagelist->length); 1837 1838 data = ceph_msg_data_add(msg); 1839 data->type = CEPH_MSG_DATA_PAGELIST; 1840 refcount_inc(&pagelist->refcnt); 1841 data->pagelist = pagelist; 1842 1843 msg->data_length += pagelist->length; 1844 } 1845 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 1846 1847 #ifdef CONFIG_BLOCK 1848 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 1849 u32 length) 1850 { 1851 struct ceph_msg_data *data; 1852 1853 data = ceph_msg_data_add(msg); 1854 data->type = CEPH_MSG_DATA_BIO; 1855 data->bio_pos = *bio_pos; 1856 data->bio_length = length; 1857 1858 msg->data_length += length; 1859 } 1860 EXPORT_SYMBOL(ceph_msg_data_add_bio); 1861 #endif /* CONFIG_BLOCK */ 1862 1863 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 1864 struct ceph_bvec_iter *bvec_pos) 1865 { 1866 struct ceph_msg_data *data; 1867 1868 data = ceph_msg_data_add(msg); 1869 data->type = CEPH_MSG_DATA_BVECS; 1870 data->bvec_pos = *bvec_pos; 1871 1872 msg->data_length += bvec_pos->iter.bi_size; 1873 } 1874 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 1875 1876 /* 1877 * construct a new message with given type, size 1878 * the new msg has a ref count of 1. 1879 */ 1880 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 1881 gfp_t flags, bool can_fail) 1882 { 1883 struct ceph_msg *m; 1884 1885 m = kmem_cache_zalloc(ceph_msg_cache, flags); 1886 if (m == NULL) 1887 goto out; 1888 1889 m->hdr.type = cpu_to_le16(type); 1890 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 1891 m->hdr.front_len = cpu_to_le32(front_len); 1892 1893 INIT_LIST_HEAD(&m->list_head); 1894 kref_init(&m->kref); 1895 1896 /* front */ 1897 if (front_len) { 1898 m->front.iov_base = kvmalloc(front_len, flags); 1899 if (m->front.iov_base == NULL) { 1900 dout("ceph_msg_new can't allocate %d bytes\n", 1901 front_len); 1902 goto out2; 1903 } 1904 } else { 1905 m->front.iov_base = NULL; 1906 } 1907 m->front_alloc_len = m->front.iov_len = front_len; 1908 1909 if (max_data_items) { 1910 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 1911 flags); 1912 if (!m->data) 1913 goto out2; 1914 1915 m->max_data_items = max_data_items; 1916 } 1917 1918 dout("ceph_msg_new %p front %d\n", m, front_len); 1919 return m; 1920 1921 out2: 1922 ceph_msg_put(m); 1923 out: 1924 if (!can_fail) { 1925 pr_err("msg_new can't create type %d front %d\n", type, 1926 front_len); 1927 WARN_ON(1); 1928 } else { 1929 dout("msg_new can't create type %d front %d\n", type, 1930 front_len); 1931 } 1932 return NULL; 1933 } 1934 EXPORT_SYMBOL(ceph_msg_new2); 1935 1936 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 1937 bool can_fail) 1938 { 1939 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 1940 } 1941 EXPORT_SYMBOL(ceph_msg_new); 1942 1943 /* 1944 * Allocate "middle" portion of a message, if it is needed and wasn't 1945 * allocated by alloc_msg. This allows us to read a small fixed-size 1946 * per-type header in the front and then gracefully fail (i.e., 1947 * propagate the error to the caller based on info in the front) when 1948 * the middle is too large. 1949 */ 1950 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 1951 { 1952 int type = le16_to_cpu(msg->hdr.type); 1953 int middle_len = le32_to_cpu(msg->hdr.middle_len); 1954 1955 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 1956 ceph_msg_type_name(type), middle_len); 1957 BUG_ON(!middle_len); 1958 BUG_ON(msg->middle); 1959 1960 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 1961 if (!msg->middle) 1962 return -ENOMEM; 1963 return 0; 1964 } 1965 1966 /* 1967 * Allocate a message for receiving an incoming message on a 1968 * connection, and save the result in con->in_msg. Uses the 1969 * connection's private alloc_msg op if available. 1970 * 1971 * Returns 0 on success, or a negative error code. 1972 * 1973 * On success, if we set *skip = 1: 1974 * - the next message should be skipped and ignored. 1975 * - con->in_msg == NULL 1976 * or if we set *skip = 0: 1977 * - con->in_msg is non-null. 1978 * On error (ENOMEM, EAGAIN, ...), 1979 * - con->in_msg == NULL 1980 */ 1981 int ceph_con_in_msg_alloc(struct ceph_connection *con, 1982 struct ceph_msg_header *hdr, int *skip) 1983 { 1984 int middle_len = le32_to_cpu(hdr->middle_len); 1985 struct ceph_msg *msg; 1986 int ret = 0; 1987 1988 BUG_ON(con->in_msg != NULL); 1989 BUG_ON(!con->ops->alloc_msg); 1990 1991 mutex_unlock(&con->mutex); 1992 msg = con->ops->alloc_msg(con, hdr, skip); 1993 mutex_lock(&con->mutex); 1994 if (con->state != CEPH_CON_S_OPEN) { 1995 if (msg) 1996 ceph_msg_put(msg); 1997 return -EAGAIN; 1998 } 1999 if (msg) { 2000 BUG_ON(*skip); 2001 msg_con_set(msg, con); 2002 con->in_msg = msg; 2003 } else { 2004 /* 2005 * Null message pointer means either we should skip 2006 * this message or we couldn't allocate memory. The 2007 * former is not an error. 2008 */ 2009 if (*skip) 2010 return 0; 2011 2012 con->error_msg = "error allocating memory for incoming message"; 2013 return -ENOMEM; 2014 } 2015 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr)); 2016 2017 if (middle_len && !con->in_msg->middle) { 2018 ret = ceph_alloc_middle(con, con->in_msg); 2019 if (ret < 0) { 2020 ceph_msg_put(con->in_msg); 2021 con->in_msg = NULL; 2022 } 2023 } 2024 2025 return ret; 2026 } 2027 2028 void ceph_con_get_out_msg(struct ceph_connection *con) 2029 { 2030 struct ceph_msg *msg; 2031 2032 BUG_ON(list_empty(&con->out_queue)); 2033 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 2034 WARN_ON(msg->con != con); 2035 2036 /* 2037 * Put the message on "sent" list using a ref from ceph_con_send(). 2038 * It is put when the message is acked or revoked. 2039 */ 2040 list_move_tail(&msg->list_head, &con->out_sent); 2041 2042 /* 2043 * Only assign outgoing seq # if we haven't sent this message 2044 * yet. If it is requeued, resend with it's original seq. 2045 */ 2046 if (msg->needs_out_seq) { 2047 msg->hdr.seq = cpu_to_le64(++con->out_seq); 2048 msg->needs_out_seq = false; 2049 2050 if (con->ops->reencode_message) 2051 con->ops->reencode_message(msg); 2052 } 2053 2054 /* 2055 * Get a ref for out_msg. It is put when we are done sending the 2056 * message or in case of a fault. 2057 */ 2058 WARN_ON(con->out_msg); 2059 con->out_msg = ceph_msg_get(msg); 2060 } 2061 2062 /* 2063 * Free a generically kmalloc'd message. 2064 */ 2065 static void ceph_msg_free(struct ceph_msg *m) 2066 { 2067 dout("%s %p\n", __func__, m); 2068 kvfree(m->front.iov_base); 2069 kfree(m->data); 2070 kmem_cache_free(ceph_msg_cache, m); 2071 } 2072 2073 static void ceph_msg_release(struct kref *kref) 2074 { 2075 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2076 int i; 2077 2078 dout("%s %p\n", __func__, m); 2079 WARN_ON(!list_empty(&m->list_head)); 2080 2081 msg_con_set(m, NULL); 2082 2083 /* drop middle, data, if any */ 2084 if (m->middle) { 2085 ceph_buffer_put(m->middle); 2086 m->middle = NULL; 2087 } 2088 2089 for (i = 0; i < m->num_data_items; i++) 2090 ceph_msg_data_destroy(&m->data[i]); 2091 2092 if (m->pool) 2093 ceph_msgpool_put(m->pool, m); 2094 else 2095 ceph_msg_free(m); 2096 } 2097 2098 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 2099 { 2100 dout("%s %p (was %d)\n", __func__, msg, 2101 kref_read(&msg->kref)); 2102 kref_get(&msg->kref); 2103 return msg; 2104 } 2105 EXPORT_SYMBOL(ceph_msg_get); 2106 2107 void ceph_msg_put(struct ceph_msg *msg) 2108 { 2109 dout("%s %p (was %d)\n", __func__, msg, 2110 kref_read(&msg->kref)); 2111 kref_put(&msg->kref, ceph_msg_release); 2112 } 2113 EXPORT_SYMBOL(ceph_msg_put); 2114 2115 void ceph_msg_dump(struct ceph_msg *msg) 2116 { 2117 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 2118 msg->front_alloc_len, msg->data_length); 2119 print_hex_dump(KERN_DEBUG, "header: ", 2120 DUMP_PREFIX_OFFSET, 16, 1, 2121 &msg->hdr, sizeof(msg->hdr), true); 2122 print_hex_dump(KERN_DEBUG, " front: ", 2123 DUMP_PREFIX_OFFSET, 16, 1, 2124 msg->front.iov_base, msg->front.iov_len, true); 2125 if (msg->middle) 2126 print_hex_dump(KERN_DEBUG, "middle: ", 2127 DUMP_PREFIX_OFFSET, 16, 1, 2128 msg->middle->vec.iov_base, 2129 msg->middle->vec.iov_len, true); 2130 print_hex_dump(KERN_DEBUG, "footer: ", 2131 DUMP_PREFIX_OFFSET, 16, 1, 2132 &msg->footer, sizeof(msg->footer), true); 2133 } 2134 EXPORT_SYMBOL(ceph_msg_dump); 2135