1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 static void queue_con(struct ceph_connection *con); 171 static void cancel_con(struct ceph_connection *con); 172 static void ceph_con_workfn(struct work_struct *); 173 static void con_fault(struct ceph_connection *con); 174 175 /* 176 * Nicely render a sockaddr as a string. An array of formatted 177 * strings is used, to approximate reentrancy. 178 */ 179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 183 184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 185 static atomic_t addr_str_seq = ATOMIC_INIT(0); 186 187 static struct page *zero_page; /* used in certain error cases */ 188 189 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 190 { 191 int i; 192 char *s; 193 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 194 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 195 196 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 197 s = addr_str[i]; 198 199 switch (ss->ss_family) { 200 case AF_INET: 201 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 202 ntohs(in4->sin_port)); 203 break; 204 205 case AF_INET6: 206 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 207 ntohs(in6->sin6_port)); 208 break; 209 210 default: 211 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 212 ss->ss_family); 213 } 214 215 return s; 216 } 217 EXPORT_SYMBOL(ceph_pr_addr); 218 219 static void encode_my_addr(struct ceph_messenger *msgr) 220 { 221 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 222 ceph_encode_addr(&msgr->my_enc_addr); 223 } 224 225 /* 226 * work queue for all reading and writing to/from the socket. 227 */ 228 static struct workqueue_struct *ceph_msgr_wq; 229 230 static int ceph_msgr_slab_init(void) 231 { 232 BUG_ON(ceph_msg_cache); 233 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 234 if (!ceph_msg_cache) 235 return -ENOMEM; 236 237 return 0; 238 } 239 240 static void ceph_msgr_slab_exit(void) 241 { 242 BUG_ON(!ceph_msg_cache); 243 kmem_cache_destroy(ceph_msg_cache); 244 ceph_msg_cache = NULL; 245 } 246 247 static void _ceph_msgr_exit(void) 248 { 249 if (ceph_msgr_wq) { 250 destroy_workqueue(ceph_msgr_wq); 251 ceph_msgr_wq = NULL; 252 } 253 254 BUG_ON(zero_page == NULL); 255 put_page(zero_page); 256 zero_page = NULL; 257 258 ceph_msgr_slab_exit(); 259 } 260 261 int __init ceph_msgr_init(void) 262 { 263 if (ceph_msgr_slab_init()) 264 return -ENOMEM; 265 266 BUG_ON(zero_page != NULL); 267 zero_page = ZERO_PAGE(0); 268 get_page(zero_page); 269 270 /* 271 * The number of active work items is limited by the number of 272 * connections, so leave @max_active at default. 273 */ 274 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 275 if (ceph_msgr_wq) 276 return 0; 277 278 pr_err("msgr_init failed to create workqueue\n"); 279 _ceph_msgr_exit(); 280 281 return -ENOMEM; 282 } 283 284 void ceph_msgr_exit(void) 285 { 286 BUG_ON(ceph_msgr_wq == NULL); 287 288 _ceph_msgr_exit(); 289 } 290 291 void ceph_msgr_flush(void) 292 { 293 flush_workqueue(ceph_msgr_wq); 294 } 295 EXPORT_SYMBOL(ceph_msgr_flush); 296 297 /* Connection socket state transition functions */ 298 299 static void con_sock_state_init(struct ceph_connection *con) 300 { 301 int old_state; 302 303 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 304 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 305 printk("%s: unexpected old state %d\n", __func__, old_state); 306 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 307 CON_SOCK_STATE_CLOSED); 308 } 309 310 static void con_sock_state_connecting(struct ceph_connection *con) 311 { 312 int old_state; 313 314 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 315 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 316 printk("%s: unexpected old state %d\n", __func__, old_state); 317 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 318 CON_SOCK_STATE_CONNECTING); 319 } 320 321 static void con_sock_state_connected(struct ceph_connection *con) 322 { 323 int old_state; 324 325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 326 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 327 printk("%s: unexpected old state %d\n", __func__, old_state); 328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 329 CON_SOCK_STATE_CONNECTED); 330 } 331 332 static void con_sock_state_closing(struct ceph_connection *con) 333 { 334 int old_state; 335 336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 337 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 338 old_state != CON_SOCK_STATE_CONNECTED && 339 old_state != CON_SOCK_STATE_CLOSING)) 340 printk("%s: unexpected old state %d\n", __func__, old_state); 341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 342 CON_SOCK_STATE_CLOSING); 343 } 344 345 static void con_sock_state_closed(struct ceph_connection *con) 346 { 347 int old_state; 348 349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 351 old_state != CON_SOCK_STATE_CLOSING && 352 old_state != CON_SOCK_STATE_CONNECTING && 353 old_state != CON_SOCK_STATE_CLOSED)) 354 printk("%s: unexpected old state %d\n", __func__, old_state); 355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 356 CON_SOCK_STATE_CLOSED); 357 } 358 359 /* 360 * socket callback functions 361 */ 362 363 /* data available on socket, or listen socket received a connect */ 364 static void ceph_sock_data_ready(struct sock *sk) 365 { 366 struct ceph_connection *con = sk->sk_user_data; 367 if (atomic_read(&con->msgr->stopping)) { 368 return; 369 } 370 371 if (sk->sk_state != TCP_CLOSE_WAIT) { 372 dout("%s on %p state = %lu, queueing work\n", __func__, 373 con, con->state); 374 queue_con(con); 375 } 376 } 377 378 /* socket has buffer space for writing */ 379 static void ceph_sock_write_space(struct sock *sk) 380 { 381 struct ceph_connection *con = sk->sk_user_data; 382 383 /* only queue to workqueue if there is data we want to write, 384 * and there is sufficient space in the socket buffer to accept 385 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 386 * doesn't get called again until try_write() fills the socket 387 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 388 * and net/core/stream.c:sk_stream_write_space(). 389 */ 390 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 391 if (sk_stream_is_writeable(sk)) { 392 dout("%s %p queueing write work\n", __func__, con); 393 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 394 queue_con(con); 395 } 396 } else { 397 dout("%s %p nothing to write\n", __func__, con); 398 } 399 } 400 401 /* socket's state has changed */ 402 static void ceph_sock_state_change(struct sock *sk) 403 { 404 struct ceph_connection *con = sk->sk_user_data; 405 406 dout("%s %p state = %lu sk_state = %u\n", __func__, 407 con, con->state, sk->sk_state); 408 409 switch (sk->sk_state) { 410 case TCP_CLOSE: 411 dout("%s TCP_CLOSE\n", __func__); 412 /* fall through */ 413 case TCP_CLOSE_WAIT: 414 dout("%s TCP_CLOSE_WAIT\n", __func__); 415 con_sock_state_closing(con); 416 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 417 queue_con(con); 418 break; 419 case TCP_ESTABLISHED: 420 dout("%s TCP_ESTABLISHED\n", __func__); 421 con_sock_state_connected(con); 422 queue_con(con); 423 break; 424 default: /* Everything else is uninteresting */ 425 break; 426 } 427 } 428 429 /* 430 * set up socket callbacks 431 */ 432 static void set_sock_callbacks(struct socket *sock, 433 struct ceph_connection *con) 434 { 435 struct sock *sk = sock->sk; 436 sk->sk_user_data = con; 437 sk->sk_data_ready = ceph_sock_data_ready; 438 sk->sk_write_space = ceph_sock_write_space; 439 sk->sk_state_change = ceph_sock_state_change; 440 } 441 442 443 /* 444 * socket helpers 445 */ 446 447 /* 448 * initiate connection to a remote socket. 449 */ 450 static int ceph_tcp_connect(struct ceph_connection *con) 451 { 452 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 453 struct socket *sock; 454 unsigned int noio_flag; 455 int ret; 456 457 BUG_ON(con->sock); 458 459 /* sock_create_kern() allocates with GFP_KERNEL */ 460 noio_flag = memalloc_noio_save(); 461 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 462 SOCK_STREAM, IPPROTO_TCP, &sock); 463 memalloc_noio_restore(noio_flag); 464 if (ret) 465 return ret; 466 sock->sk->sk_allocation = GFP_NOFS; 467 468 #ifdef CONFIG_LOCKDEP 469 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 470 #endif 471 472 set_sock_callbacks(sock, con); 473 474 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 475 476 con_sock_state_connecting(con); 477 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 478 O_NONBLOCK); 479 if (ret == -EINPROGRESS) { 480 dout("connect %s EINPROGRESS sk_state = %u\n", 481 ceph_pr_addr(&con->peer_addr.in_addr), 482 sock->sk->sk_state); 483 } else if (ret < 0) { 484 pr_err("connect %s error %d\n", 485 ceph_pr_addr(&con->peer_addr.in_addr), ret); 486 sock_release(sock); 487 return ret; 488 } 489 490 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 491 int optval = 1; 492 493 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 494 (char *)&optval, sizeof(optval)); 495 if (ret) 496 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 497 ret); 498 } 499 500 con->sock = sock; 501 return 0; 502 } 503 504 /* 505 * If @buf is NULL, discard up to @len bytes. 506 */ 507 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 508 { 509 struct kvec iov = {buf, len}; 510 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 511 int r; 512 513 if (!buf) 514 msg.msg_flags |= MSG_TRUNC; 515 516 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len); 517 r = sock_recvmsg(sock, &msg, msg.msg_flags); 518 if (r == -EAGAIN) 519 r = 0; 520 return r; 521 } 522 523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 524 int page_offset, size_t length) 525 { 526 struct bio_vec bvec = { 527 .bv_page = page, 528 .bv_offset = page_offset, 529 .bv_len = length 530 }; 531 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 532 int r; 533 534 BUG_ON(page_offset + length > PAGE_SIZE); 535 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length); 536 r = sock_recvmsg(sock, &msg, msg.msg_flags); 537 if (r == -EAGAIN) 538 r = 0; 539 return r; 540 } 541 542 /* 543 * write something. @more is true if caller will be sending more data 544 * shortly. 545 */ 546 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 547 size_t kvlen, size_t len, bool more) 548 { 549 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 550 int r; 551 552 if (more) 553 msg.msg_flags |= MSG_MORE; 554 else 555 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 556 557 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 558 if (r == -EAGAIN) 559 r = 0; 560 return r; 561 } 562 563 /* 564 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST 565 */ 566 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 567 int offset, size_t size, int more) 568 { 569 ssize_t (*sendpage)(struct socket *sock, struct page *page, 570 int offset, size_t size, int flags); 571 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more; 572 int ret; 573 574 /* 575 * sendpage cannot properly handle pages with page_count == 0, 576 * we need to fall back to sendmsg if that's the case. 577 * 578 * Same goes for slab pages: skb_can_coalesce() allows 579 * coalescing neighboring slab objects into a single frag which 580 * triggers one of hardened usercopy checks. 581 */ 582 if (page_count(page) >= 1 && !PageSlab(page)) 583 sendpage = sock->ops->sendpage; 584 else 585 sendpage = sock_no_sendpage; 586 587 ret = sendpage(sock, page, offset, size, flags); 588 if (ret == -EAGAIN) 589 ret = 0; 590 591 return ret; 592 } 593 594 /* 595 * Shutdown/close the socket for the given connection. 596 */ 597 static int con_close_socket(struct ceph_connection *con) 598 { 599 int rc = 0; 600 601 dout("con_close_socket on %p sock %p\n", con, con->sock); 602 if (con->sock) { 603 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 604 sock_release(con->sock); 605 con->sock = NULL; 606 } 607 608 /* 609 * Forcibly clear the SOCK_CLOSED flag. It gets set 610 * independent of the connection mutex, and we could have 611 * received a socket close event before we had the chance to 612 * shut the socket down. 613 */ 614 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 615 616 con_sock_state_closed(con); 617 return rc; 618 } 619 620 /* 621 * Reset a connection. Discard all incoming and outgoing messages 622 * and clear *_seq state. 623 */ 624 static void ceph_msg_remove(struct ceph_msg *msg) 625 { 626 list_del_init(&msg->list_head); 627 628 ceph_msg_put(msg); 629 } 630 static void ceph_msg_remove_list(struct list_head *head) 631 { 632 while (!list_empty(head)) { 633 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 634 list_head); 635 ceph_msg_remove(msg); 636 } 637 } 638 639 static void reset_connection(struct ceph_connection *con) 640 { 641 /* reset connection, out_queue, msg_ and connect_seq */ 642 /* discard existing out_queue and msg_seq */ 643 dout("reset_connection %p\n", con); 644 ceph_msg_remove_list(&con->out_queue); 645 ceph_msg_remove_list(&con->out_sent); 646 647 if (con->in_msg) { 648 BUG_ON(con->in_msg->con != con); 649 ceph_msg_put(con->in_msg); 650 con->in_msg = NULL; 651 } 652 653 con->connect_seq = 0; 654 con->out_seq = 0; 655 if (con->out_msg) { 656 BUG_ON(con->out_msg->con != con); 657 ceph_msg_put(con->out_msg); 658 con->out_msg = NULL; 659 } 660 con->in_seq = 0; 661 con->in_seq_acked = 0; 662 663 con->out_skip = 0; 664 } 665 666 /* 667 * mark a peer down. drop any open connections. 668 */ 669 void ceph_con_close(struct ceph_connection *con) 670 { 671 mutex_lock(&con->mutex); 672 dout("con_close %p peer %s\n", con, 673 ceph_pr_addr(&con->peer_addr.in_addr)); 674 con->state = CON_STATE_CLOSED; 675 676 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 677 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 678 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 679 con_flag_clear(con, CON_FLAG_BACKOFF); 680 681 reset_connection(con); 682 con->peer_global_seq = 0; 683 cancel_con(con); 684 con_close_socket(con); 685 mutex_unlock(&con->mutex); 686 } 687 EXPORT_SYMBOL(ceph_con_close); 688 689 /* 690 * Reopen a closed connection, with a new peer address. 691 */ 692 void ceph_con_open(struct ceph_connection *con, 693 __u8 entity_type, __u64 entity_num, 694 struct ceph_entity_addr *addr) 695 { 696 mutex_lock(&con->mutex); 697 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 698 699 WARN_ON(con->state != CON_STATE_CLOSED); 700 con->state = CON_STATE_PREOPEN; 701 702 con->peer_name.type = (__u8) entity_type; 703 con->peer_name.num = cpu_to_le64(entity_num); 704 705 memcpy(&con->peer_addr, addr, sizeof(*addr)); 706 con->delay = 0; /* reset backoff memory */ 707 mutex_unlock(&con->mutex); 708 queue_con(con); 709 } 710 EXPORT_SYMBOL(ceph_con_open); 711 712 /* 713 * return true if this connection ever successfully opened 714 */ 715 bool ceph_con_opened(struct ceph_connection *con) 716 { 717 return con->connect_seq > 0; 718 } 719 720 /* 721 * initialize a new connection. 722 */ 723 void ceph_con_init(struct ceph_connection *con, void *private, 724 const struct ceph_connection_operations *ops, 725 struct ceph_messenger *msgr) 726 { 727 dout("con_init %p\n", con); 728 memset(con, 0, sizeof(*con)); 729 con->private = private; 730 con->ops = ops; 731 con->msgr = msgr; 732 733 con_sock_state_init(con); 734 735 mutex_init(&con->mutex); 736 INIT_LIST_HEAD(&con->out_queue); 737 INIT_LIST_HEAD(&con->out_sent); 738 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 739 740 con->state = CON_STATE_CLOSED; 741 } 742 EXPORT_SYMBOL(ceph_con_init); 743 744 745 /* 746 * We maintain a global counter to order connection attempts. Get 747 * a unique seq greater than @gt. 748 */ 749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 750 { 751 u32 ret; 752 753 spin_lock(&msgr->global_seq_lock); 754 if (msgr->global_seq < gt) 755 msgr->global_seq = gt; 756 ret = ++msgr->global_seq; 757 spin_unlock(&msgr->global_seq_lock); 758 return ret; 759 } 760 761 static void con_out_kvec_reset(struct ceph_connection *con) 762 { 763 BUG_ON(con->out_skip); 764 765 con->out_kvec_left = 0; 766 con->out_kvec_bytes = 0; 767 con->out_kvec_cur = &con->out_kvec[0]; 768 } 769 770 static void con_out_kvec_add(struct ceph_connection *con, 771 size_t size, void *data) 772 { 773 int index = con->out_kvec_left; 774 775 BUG_ON(con->out_skip); 776 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 777 778 con->out_kvec[index].iov_len = size; 779 con->out_kvec[index].iov_base = data; 780 con->out_kvec_left++; 781 con->out_kvec_bytes += size; 782 } 783 784 /* 785 * Chop off a kvec from the end. Return residual number of bytes for 786 * that kvec, i.e. how many bytes would have been written if the kvec 787 * hadn't been nuked. 788 */ 789 static int con_out_kvec_skip(struct ceph_connection *con) 790 { 791 int off = con->out_kvec_cur - con->out_kvec; 792 int skip = 0; 793 794 if (con->out_kvec_bytes > 0) { 795 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 796 BUG_ON(con->out_kvec_bytes < skip); 797 BUG_ON(!con->out_kvec_left); 798 con->out_kvec_bytes -= skip; 799 con->out_kvec_left--; 800 } 801 802 return skip; 803 } 804 805 #ifdef CONFIG_BLOCK 806 807 /* 808 * For a bio data item, a piece is whatever remains of the next 809 * entry in the current bio iovec, or the first entry in the next 810 * bio in the list. 811 */ 812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 813 size_t length) 814 { 815 struct ceph_msg_data *data = cursor->data; 816 struct ceph_bio_iter *it = &cursor->bio_iter; 817 818 cursor->resid = min_t(size_t, length, data->bio_length); 819 *it = data->bio_pos; 820 if (cursor->resid < it->iter.bi_size) 821 it->iter.bi_size = cursor->resid; 822 823 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 824 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 825 } 826 827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 828 size_t *page_offset, 829 size_t *length) 830 { 831 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 832 cursor->bio_iter.iter); 833 834 *page_offset = bv.bv_offset; 835 *length = bv.bv_len; 836 return bv.bv_page; 837 } 838 839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 840 size_t bytes) 841 { 842 struct ceph_bio_iter *it = &cursor->bio_iter; 843 844 BUG_ON(bytes > cursor->resid); 845 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 846 cursor->resid -= bytes; 847 bio_advance_iter(it->bio, &it->iter, bytes); 848 849 if (!cursor->resid) { 850 BUG_ON(!cursor->last_piece); 851 return false; /* no more data */ 852 } 853 854 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done)) 855 return false; /* more bytes to process in this segment */ 856 857 if (!it->iter.bi_size) { 858 it->bio = it->bio->bi_next; 859 it->iter = it->bio->bi_iter; 860 if (cursor->resid < it->iter.bi_size) 861 it->iter.bi_size = cursor->resid; 862 } 863 864 BUG_ON(cursor->last_piece); 865 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 866 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 867 return true; 868 } 869 #endif /* CONFIG_BLOCK */ 870 871 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 872 size_t length) 873 { 874 struct ceph_msg_data *data = cursor->data; 875 struct bio_vec *bvecs = data->bvec_pos.bvecs; 876 877 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 878 cursor->bvec_iter = data->bvec_pos.iter; 879 cursor->bvec_iter.bi_size = cursor->resid; 880 881 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 882 cursor->last_piece = 883 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 884 } 885 886 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 887 size_t *page_offset, 888 size_t *length) 889 { 890 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 891 cursor->bvec_iter); 892 893 *page_offset = bv.bv_offset; 894 *length = bv.bv_len; 895 return bv.bv_page; 896 } 897 898 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 899 size_t bytes) 900 { 901 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 902 903 BUG_ON(bytes > cursor->resid); 904 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 905 cursor->resid -= bytes; 906 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 907 908 if (!cursor->resid) { 909 BUG_ON(!cursor->last_piece); 910 return false; /* no more data */ 911 } 912 913 if (!bytes || cursor->bvec_iter.bi_bvec_done) 914 return false; /* more bytes to process in this segment */ 915 916 BUG_ON(cursor->last_piece); 917 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 918 cursor->last_piece = 919 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 920 return true; 921 } 922 923 /* 924 * For a page array, a piece comes from the first page in the array 925 * that has not already been fully consumed. 926 */ 927 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 928 size_t length) 929 { 930 struct ceph_msg_data *data = cursor->data; 931 int page_count; 932 933 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 934 935 BUG_ON(!data->pages); 936 BUG_ON(!data->length); 937 938 cursor->resid = min(length, data->length); 939 page_count = calc_pages_for(data->alignment, (u64)data->length); 940 cursor->page_offset = data->alignment & ~PAGE_MASK; 941 cursor->page_index = 0; 942 BUG_ON(page_count > (int)USHRT_MAX); 943 cursor->page_count = (unsigned short)page_count; 944 BUG_ON(length > SIZE_MAX - cursor->page_offset); 945 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 946 } 947 948 static struct page * 949 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 950 size_t *page_offset, size_t *length) 951 { 952 struct ceph_msg_data *data = cursor->data; 953 954 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 955 956 BUG_ON(cursor->page_index >= cursor->page_count); 957 BUG_ON(cursor->page_offset >= PAGE_SIZE); 958 959 *page_offset = cursor->page_offset; 960 if (cursor->last_piece) 961 *length = cursor->resid; 962 else 963 *length = PAGE_SIZE - *page_offset; 964 965 return data->pages[cursor->page_index]; 966 } 967 968 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 969 size_t bytes) 970 { 971 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 972 973 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 974 975 /* Advance the cursor page offset */ 976 977 cursor->resid -= bytes; 978 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 979 if (!bytes || cursor->page_offset) 980 return false; /* more bytes to process in the current page */ 981 982 if (!cursor->resid) 983 return false; /* no more data */ 984 985 /* Move on to the next page; offset is already at 0 */ 986 987 BUG_ON(cursor->page_index >= cursor->page_count); 988 cursor->page_index++; 989 cursor->last_piece = cursor->resid <= PAGE_SIZE; 990 991 return true; 992 } 993 994 /* 995 * For a pagelist, a piece is whatever remains to be consumed in the 996 * first page in the list, or the front of the next page. 997 */ 998 static void 999 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1000 size_t length) 1001 { 1002 struct ceph_msg_data *data = cursor->data; 1003 struct ceph_pagelist *pagelist; 1004 struct page *page; 1005 1006 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1007 1008 pagelist = data->pagelist; 1009 BUG_ON(!pagelist); 1010 1011 if (!length) 1012 return; /* pagelist can be assigned but empty */ 1013 1014 BUG_ON(list_empty(&pagelist->head)); 1015 page = list_first_entry(&pagelist->head, struct page, lru); 1016 1017 cursor->resid = min(length, pagelist->length); 1018 cursor->page = page; 1019 cursor->offset = 0; 1020 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1021 } 1022 1023 static struct page * 1024 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1025 size_t *page_offset, size_t *length) 1026 { 1027 struct ceph_msg_data *data = cursor->data; 1028 struct ceph_pagelist *pagelist; 1029 1030 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1031 1032 pagelist = data->pagelist; 1033 BUG_ON(!pagelist); 1034 1035 BUG_ON(!cursor->page); 1036 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1037 1038 /* offset of first page in pagelist is always 0 */ 1039 *page_offset = cursor->offset & ~PAGE_MASK; 1040 if (cursor->last_piece) 1041 *length = cursor->resid; 1042 else 1043 *length = PAGE_SIZE - *page_offset; 1044 1045 return cursor->page; 1046 } 1047 1048 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1049 size_t bytes) 1050 { 1051 struct ceph_msg_data *data = cursor->data; 1052 struct ceph_pagelist *pagelist; 1053 1054 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1055 1056 pagelist = data->pagelist; 1057 BUG_ON(!pagelist); 1058 1059 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1060 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1061 1062 /* Advance the cursor offset */ 1063 1064 cursor->resid -= bytes; 1065 cursor->offset += bytes; 1066 /* offset of first page in pagelist is always 0 */ 1067 if (!bytes || cursor->offset & ~PAGE_MASK) 1068 return false; /* more bytes to process in the current page */ 1069 1070 if (!cursor->resid) 1071 return false; /* no more data */ 1072 1073 /* Move on to the next page */ 1074 1075 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1076 cursor->page = list_next_entry(cursor->page, lru); 1077 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1078 1079 return true; 1080 } 1081 1082 /* 1083 * Message data is handled (sent or received) in pieces, where each 1084 * piece resides on a single page. The network layer might not 1085 * consume an entire piece at once. A data item's cursor keeps 1086 * track of which piece is next to process and how much remains to 1087 * be processed in that piece. It also tracks whether the current 1088 * piece is the last one in the data item. 1089 */ 1090 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1091 { 1092 size_t length = cursor->total_resid; 1093 1094 switch (cursor->data->type) { 1095 case CEPH_MSG_DATA_PAGELIST: 1096 ceph_msg_data_pagelist_cursor_init(cursor, length); 1097 break; 1098 case CEPH_MSG_DATA_PAGES: 1099 ceph_msg_data_pages_cursor_init(cursor, length); 1100 break; 1101 #ifdef CONFIG_BLOCK 1102 case CEPH_MSG_DATA_BIO: 1103 ceph_msg_data_bio_cursor_init(cursor, length); 1104 break; 1105 #endif /* CONFIG_BLOCK */ 1106 case CEPH_MSG_DATA_BVECS: 1107 ceph_msg_data_bvecs_cursor_init(cursor, length); 1108 break; 1109 case CEPH_MSG_DATA_NONE: 1110 default: 1111 /* BUG(); */ 1112 break; 1113 } 1114 cursor->need_crc = true; 1115 } 1116 1117 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1118 { 1119 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1120 1121 BUG_ON(!length); 1122 BUG_ON(length > msg->data_length); 1123 BUG_ON(!msg->num_data_items); 1124 1125 cursor->total_resid = length; 1126 cursor->data = msg->data; 1127 1128 __ceph_msg_data_cursor_init(cursor); 1129 } 1130 1131 /* 1132 * Return the page containing the next piece to process for a given 1133 * data item, and supply the page offset and length of that piece. 1134 * Indicate whether this is the last piece in this data item. 1135 */ 1136 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1137 size_t *page_offset, size_t *length, 1138 bool *last_piece) 1139 { 1140 struct page *page; 1141 1142 switch (cursor->data->type) { 1143 case CEPH_MSG_DATA_PAGELIST: 1144 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1145 break; 1146 case CEPH_MSG_DATA_PAGES: 1147 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1148 break; 1149 #ifdef CONFIG_BLOCK 1150 case CEPH_MSG_DATA_BIO: 1151 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1152 break; 1153 #endif /* CONFIG_BLOCK */ 1154 case CEPH_MSG_DATA_BVECS: 1155 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1156 break; 1157 case CEPH_MSG_DATA_NONE: 1158 default: 1159 page = NULL; 1160 break; 1161 } 1162 1163 BUG_ON(!page); 1164 BUG_ON(*page_offset + *length > PAGE_SIZE); 1165 BUG_ON(!*length); 1166 BUG_ON(*length > cursor->resid); 1167 if (last_piece) 1168 *last_piece = cursor->last_piece; 1169 1170 return page; 1171 } 1172 1173 /* 1174 * Returns true if the result moves the cursor on to the next piece 1175 * of the data item. 1176 */ 1177 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1178 size_t bytes) 1179 { 1180 bool new_piece; 1181 1182 BUG_ON(bytes > cursor->resid); 1183 switch (cursor->data->type) { 1184 case CEPH_MSG_DATA_PAGELIST: 1185 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1186 break; 1187 case CEPH_MSG_DATA_PAGES: 1188 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1189 break; 1190 #ifdef CONFIG_BLOCK 1191 case CEPH_MSG_DATA_BIO: 1192 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1193 break; 1194 #endif /* CONFIG_BLOCK */ 1195 case CEPH_MSG_DATA_BVECS: 1196 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1197 break; 1198 case CEPH_MSG_DATA_NONE: 1199 default: 1200 BUG(); 1201 break; 1202 } 1203 cursor->total_resid -= bytes; 1204 1205 if (!cursor->resid && cursor->total_resid) { 1206 WARN_ON(!cursor->last_piece); 1207 cursor->data++; 1208 __ceph_msg_data_cursor_init(cursor); 1209 new_piece = true; 1210 } 1211 cursor->need_crc = new_piece; 1212 } 1213 1214 static size_t sizeof_footer(struct ceph_connection *con) 1215 { 1216 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1217 sizeof(struct ceph_msg_footer) : 1218 sizeof(struct ceph_msg_footer_old); 1219 } 1220 1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1222 { 1223 /* Initialize data cursor */ 1224 1225 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1226 } 1227 1228 /* 1229 * Prepare footer for currently outgoing message, and finish things 1230 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1231 */ 1232 static void prepare_write_message_footer(struct ceph_connection *con) 1233 { 1234 struct ceph_msg *m = con->out_msg; 1235 1236 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1237 1238 dout("prepare_write_message_footer %p\n", con); 1239 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1240 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1241 if (con->ops->sign_message) 1242 con->ops->sign_message(m); 1243 else 1244 m->footer.sig = 0; 1245 } else { 1246 m->old_footer.flags = m->footer.flags; 1247 } 1248 con->out_more = m->more_to_follow; 1249 con->out_msg_done = true; 1250 } 1251 1252 /* 1253 * Prepare headers for the next outgoing message. 1254 */ 1255 static void prepare_write_message(struct ceph_connection *con) 1256 { 1257 struct ceph_msg *m; 1258 u32 crc; 1259 1260 con_out_kvec_reset(con); 1261 con->out_msg_done = false; 1262 1263 /* Sneak an ack in there first? If we can get it into the same 1264 * TCP packet that's a good thing. */ 1265 if (con->in_seq > con->in_seq_acked) { 1266 con->in_seq_acked = con->in_seq; 1267 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1268 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1269 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1270 &con->out_temp_ack); 1271 } 1272 1273 BUG_ON(list_empty(&con->out_queue)); 1274 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1275 con->out_msg = m; 1276 BUG_ON(m->con != con); 1277 1278 /* put message on sent list */ 1279 ceph_msg_get(m); 1280 list_move_tail(&m->list_head, &con->out_sent); 1281 1282 /* 1283 * only assign outgoing seq # if we haven't sent this message 1284 * yet. if it is requeued, resend with it's original seq. 1285 */ 1286 if (m->needs_out_seq) { 1287 m->hdr.seq = cpu_to_le64(++con->out_seq); 1288 m->needs_out_seq = false; 1289 1290 if (con->ops->reencode_message) 1291 con->ops->reencode_message(m); 1292 } 1293 1294 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1295 m, con->out_seq, le16_to_cpu(m->hdr.type), 1296 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1297 m->data_length); 1298 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1299 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1300 1301 /* tag + hdr + front + middle */ 1302 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1303 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1304 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1305 1306 if (m->middle) 1307 con_out_kvec_add(con, m->middle->vec.iov_len, 1308 m->middle->vec.iov_base); 1309 1310 /* fill in hdr crc and finalize hdr */ 1311 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1312 con->out_msg->hdr.crc = cpu_to_le32(crc); 1313 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1314 1315 /* fill in front and middle crc, footer */ 1316 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1317 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1318 if (m->middle) { 1319 crc = crc32c(0, m->middle->vec.iov_base, 1320 m->middle->vec.iov_len); 1321 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1322 } else 1323 con->out_msg->footer.middle_crc = 0; 1324 dout("%s front_crc %u middle_crc %u\n", __func__, 1325 le32_to_cpu(con->out_msg->footer.front_crc), 1326 le32_to_cpu(con->out_msg->footer.middle_crc)); 1327 con->out_msg->footer.flags = 0; 1328 1329 /* is there a data payload? */ 1330 con->out_msg->footer.data_crc = 0; 1331 if (m->data_length) { 1332 prepare_message_data(con->out_msg, m->data_length); 1333 con->out_more = 1; /* data + footer will follow */ 1334 } else { 1335 /* no, queue up footer too and be done */ 1336 prepare_write_message_footer(con); 1337 } 1338 1339 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1340 } 1341 1342 /* 1343 * Prepare an ack. 1344 */ 1345 static void prepare_write_ack(struct ceph_connection *con) 1346 { 1347 dout("prepare_write_ack %p %llu -> %llu\n", con, 1348 con->in_seq_acked, con->in_seq); 1349 con->in_seq_acked = con->in_seq; 1350 1351 con_out_kvec_reset(con); 1352 1353 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1354 1355 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1356 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1357 &con->out_temp_ack); 1358 1359 con->out_more = 1; /* more will follow.. eventually.. */ 1360 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1361 } 1362 1363 /* 1364 * Prepare to share the seq during handshake 1365 */ 1366 static void prepare_write_seq(struct ceph_connection *con) 1367 { 1368 dout("prepare_write_seq %p %llu -> %llu\n", con, 1369 con->in_seq_acked, con->in_seq); 1370 con->in_seq_acked = con->in_seq; 1371 1372 con_out_kvec_reset(con); 1373 1374 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1375 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1376 &con->out_temp_ack); 1377 1378 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1379 } 1380 1381 /* 1382 * Prepare to write keepalive byte. 1383 */ 1384 static void prepare_write_keepalive(struct ceph_connection *con) 1385 { 1386 dout("prepare_write_keepalive %p\n", con); 1387 con_out_kvec_reset(con); 1388 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1389 struct timespec64 now; 1390 1391 ktime_get_real_ts64(&now); 1392 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1393 ceph_encode_timespec64(&con->out_temp_keepalive2, &now); 1394 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1395 &con->out_temp_keepalive2); 1396 } else { 1397 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1398 } 1399 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1400 } 1401 1402 /* 1403 * Connection negotiation. 1404 */ 1405 1406 static int get_connect_authorizer(struct ceph_connection *con) 1407 { 1408 struct ceph_auth_handshake *auth; 1409 int auth_proto; 1410 1411 if (!con->ops->get_authorizer) { 1412 con->auth = NULL; 1413 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1414 con->out_connect.authorizer_len = 0; 1415 return 0; 1416 } 1417 1418 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry); 1419 if (IS_ERR(auth)) 1420 return PTR_ERR(auth); 1421 1422 con->auth = auth; 1423 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1424 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len); 1425 return 0; 1426 } 1427 1428 /* 1429 * We connected to a peer and are saying hello. 1430 */ 1431 static void prepare_write_banner(struct ceph_connection *con) 1432 { 1433 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1434 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1435 &con->msgr->my_enc_addr); 1436 1437 con->out_more = 0; 1438 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1439 } 1440 1441 static void __prepare_write_connect(struct ceph_connection *con) 1442 { 1443 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect); 1444 if (con->auth) 1445 con_out_kvec_add(con, con->auth->authorizer_buf_len, 1446 con->auth->authorizer_buf); 1447 1448 con->out_more = 0; 1449 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1450 } 1451 1452 static int prepare_write_connect(struct ceph_connection *con) 1453 { 1454 unsigned int global_seq = get_global_seq(con->msgr, 0); 1455 int proto; 1456 int ret; 1457 1458 switch (con->peer_name.type) { 1459 case CEPH_ENTITY_TYPE_MON: 1460 proto = CEPH_MONC_PROTOCOL; 1461 break; 1462 case CEPH_ENTITY_TYPE_OSD: 1463 proto = CEPH_OSDC_PROTOCOL; 1464 break; 1465 case CEPH_ENTITY_TYPE_MDS: 1466 proto = CEPH_MDSC_PROTOCOL; 1467 break; 1468 default: 1469 BUG(); 1470 } 1471 1472 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1473 con->connect_seq, global_seq, proto); 1474 1475 con->out_connect.features = 1476 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1477 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1478 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1479 con->out_connect.global_seq = cpu_to_le32(global_seq); 1480 con->out_connect.protocol_version = cpu_to_le32(proto); 1481 con->out_connect.flags = 0; 1482 1483 ret = get_connect_authorizer(con); 1484 if (ret) 1485 return ret; 1486 1487 __prepare_write_connect(con); 1488 return 0; 1489 } 1490 1491 /* 1492 * write as much of pending kvecs to the socket as we can. 1493 * 1 -> done 1494 * 0 -> socket full, but more to do 1495 * <0 -> error 1496 */ 1497 static int write_partial_kvec(struct ceph_connection *con) 1498 { 1499 int ret; 1500 1501 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1502 while (con->out_kvec_bytes > 0) { 1503 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1504 con->out_kvec_left, con->out_kvec_bytes, 1505 con->out_more); 1506 if (ret <= 0) 1507 goto out; 1508 con->out_kvec_bytes -= ret; 1509 if (con->out_kvec_bytes == 0) 1510 break; /* done */ 1511 1512 /* account for full iov entries consumed */ 1513 while (ret >= con->out_kvec_cur->iov_len) { 1514 BUG_ON(!con->out_kvec_left); 1515 ret -= con->out_kvec_cur->iov_len; 1516 con->out_kvec_cur++; 1517 con->out_kvec_left--; 1518 } 1519 /* and for a partially-consumed entry */ 1520 if (ret) { 1521 con->out_kvec_cur->iov_len -= ret; 1522 con->out_kvec_cur->iov_base += ret; 1523 } 1524 } 1525 con->out_kvec_left = 0; 1526 ret = 1; 1527 out: 1528 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1529 con->out_kvec_bytes, con->out_kvec_left, ret); 1530 return ret; /* done! */ 1531 } 1532 1533 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1534 unsigned int page_offset, 1535 unsigned int length) 1536 { 1537 char *kaddr; 1538 1539 kaddr = kmap(page); 1540 BUG_ON(kaddr == NULL); 1541 crc = crc32c(crc, kaddr + page_offset, length); 1542 kunmap(page); 1543 1544 return crc; 1545 } 1546 /* 1547 * Write as much message data payload as we can. If we finish, queue 1548 * up the footer. 1549 * 1 -> done, footer is now queued in out_kvec[]. 1550 * 0 -> socket full, but more to do 1551 * <0 -> error 1552 */ 1553 static int write_partial_message_data(struct ceph_connection *con) 1554 { 1555 struct ceph_msg *msg = con->out_msg; 1556 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1557 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1558 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1559 u32 crc; 1560 1561 dout("%s %p msg %p\n", __func__, con, msg); 1562 1563 if (!msg->num_data_items) 1564 return -EINVAL; 1565 1566 /* 1567 * Iterate through each page that contains data to be 1568 * written, and send as much as possible for each. 1569 * 1570 * If we are calculating the data crc (the default), we will 1571 * need to map the page. If we have no pages, they have 1572 * been revoked, so use the zero page. 1573 */ 1574 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1575 while (cursor->total_resid) { 1576 struct page *page; 1577 size_t page_offset; 1578 size_t length; 1579 int ret; 1580 1581 if (!cursor->resid) { 1582 ceph_msg_data_advance(cursor, 0); 1583 continue; 1584 } 1585 1586 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 1587 if (length == cursor->total_resid) 1588 more = MSG_MORE; 1589 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length, 1590 more); 1591 if (ret <= 0) { 1592 if (do_datacrc) 1593 msg->footer.data_crc = cpu_to_le32(crc); 1594 1595 return ret; 1596 } 1597 if (do_datacrc && cursor->need_crc) 1598 crc = ceph_crc32c_page(crc, page, page_offset, length); 1599 ceph_msg_data_advance(cursor, (size_t)ret); 1600 } 1601 1602 dout("%s %p msg %p done\n", __func__, con, msg); 1603 1604 /* prepare and queue up footer, too */ 1605 if (do_datacrc) 1606 msg->footer.data_crc = cpu_to_le32(crc); 1607 else 1608 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1609 con_out_kvec_reset(con); 1610 prepare_write_message_footer(con); 1611 1612 return 1; /* must return > 0 to indicate success */ 1613 } 1614 1615 /* 1616 * write some zeros 1617 */ 1618 static int write_partial_skip(struct ceph_connection *con) 1619 { 1620 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1621 int ret; 1622 1623 dout("%s %p %d left\n", __func__, con, con->out_skip); 1624 while (con->out_skip > 0) { 1625 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1626 1627 if (size == con->out_skip) 1628 more = MSG_MORE; 1629 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more); 1630 if (ret <= 0) 1631 goto out; 1632 con->out_skip -= ret; 1633 } 1634 ret = 1; 1635 out: 1636 return ret; 1637 } 1638 1639 /* 1640 * Prepare to read connection handshake, or an ack. 1641 */ 1642 static void prepare_read_banner(struct ceph_connection *con) 1643 { 1644 dout("prepare_read_banner %p\n", con); 1645 con->in_base_pos = 0; 1646 } 1647 1648 static void prepare_read_connect(struct ceph_connection *con) 1649 { 1650 dout("prepare_read_connect %p\n", con); 1651 con->in_base_pos = 0; 1652 } 1653 1654 static void prepare_read_ack(struct ceph_connection *con) 1655 { 1656 dout("prepare_read_ack %p\n", con); 1657 con->in_base_pos = 0; 1658 } 1659 1660 static void prepare_read_seq(struct ceph_connection *con) 1661 { 1662 dout("prepare_read_seq %p\n", con); 1663 con->in_base_pos = 0; 1664 con->in_tag = CEPH_MSGR_TAG_SEQ; 1665 } 1666 1667 static void prepare_read_tag(struct ceph_connection *con) 1668 { 1669 dout("prepare_read_tag %p\n", con); 1670 con->in_base_pos = 0; 1671 con->in_tag = CEPH_MSGR_TAG_READY; 1672 } 1673 1674 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1675 { 1676 dout("prepare_read_keepalive_ack %p\n", con); 1677 con->in_base_pos = 0; 1678 } 1679 1680 /* 1681 * Prepare to read a message. 1682 */ 1683 static int prepare_read_message(struct ceph_connection *con) 1684 { 1685 dout("prepare_read_message %p\n", con); 1686 BUG_ON(con->in_msg != NULL); 1687 con->in_base_pos = 0; 1688 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1689 return 0; 1690 } 1691 1692 1693 static int read_partial(struct ceph_connection *con, 1694 int end, int size, void *object) 1695 { 1696 while (con->in_base_pos < end) { 1697 int left = end - con->in_base_pos; 1698 int have = size - left; 1699 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1700 if (ret <= 0) 1701 return ret; 1702 con->in_base_pos += ret; 1703 } 1704 return 1; 1705 } 1706 1707 1708 /* 1709 * Read all or part of the connect-side handshake on a new connection 1710 */ 1711 static int read_partial_banner(struct ceph_connection *con) 1712 { 1713 int size; 1714 int end; 1715 int ret; 1716 1717 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1718 1719 /* peer's banner */ 1720 size = strlen(CEPH_BANNER); 1721 end = size; 1722 ret = read_partial(con, end, size, con->in_banner); 1723 if (ret <= 0) 1724 goto out; 1725 1726 size = sizeof (con->actual_peer_addr); 1727 end += size; 1728 ret = read_partial(con, end, size, &con->actual_peer_addr); 1729 if (ret <= 0) 1730 goto out; 1731 1732 size = sizeof (con->peer_addr_for_me); 1733 end += size; 1734 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1735 if (ret <= 0) 1736 goto out; 1737 1738 out: 1739 return ret; 1740 } 1741 1742 static int read_partial_connect(struct ceph_connection *con) 1743 { 1744 int size; 1745 int end; 1746 int ret; 1747 1748 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1749 1750 size = sizeof (con->in_reply); 1751 end = size; 1752 ret = read_partial(con, end, size, &con->in_reply); 1753 if (ret <= 0) 1754 goto out; 1755 1756 if (con->auth) { 1757 size = le32_to_cpu(con->in_reply.authorizer_len); 1758 if (size > con->auth->authorizer_reply_buf_len) { 1759 pr_err("authorizer reply too big: %d > %zu\n", size, 1760 con->auth->authorizer_reply_buf_len); 1761 ret = -EINVAL; 1762 goto out; 1763 } 1764 1765 end += size; 1766 ret = read_partial(con, end, size, 1767 con->auth->authorizer_reply_buf); 1768 if (ret <= 0) 1769 goto out; 1770 } 1771 1772 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1773 con, (int)con->in_reply.tag, 1774 le32_to_cpu(con->in_reply.connect_seq), 1775 le32_to_cpu(con->in_reply.global_seq)); 1776 out: 1777 return ret; 1778 } 1779 1780 /* 1781 * Verify the hello banner looks okay. 1782 */ 1783 static int verify_hello(struct ceph_connection *con) 1784 { 1785 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1786 pr_err("connect to %s got bad banner\n", 1787 ceph_pr_addr(&con->peer_addr.in_addr)); 1788 con->error_msg = "protocol error, bad banner"; 1789 return -1; 1790 } 1791 return 0; 1792 } 1793 1794 static bool addr_is_blank(struct sockaddr_storage *ss) 1795 { 1796 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1797 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1798 1799 switch (ss->ss_family) { 1800 case AF_INET: 1801 return addr->s_addr == htonl(INADDR_ANY); 1802 case AF_INET6: 1803 return ipv6_addr_any(addr6); 1804 default: 1805 return true; 1806 } 1807 } 1808 1809 static int addr_port(struct sockaddr_storage *ss) 1810 { 1811 switch (ss->ss_family) { 1812 case AF_INET: 1813 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1814 case AF_INET6: 1815 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1816 } 1817 return 0; 1818 } 1819 1820 static void addr_set_port(struct sockaddr_storage *ss, int p) 1821 { 1822 switch (ss->ss_family) { 1823 case AF_INET: 1824 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1825 break; 1826 case AF_INET6: 1827 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1828 break; 1829 } 1830 } 1831 1832 /* 1833 * Unlike other *_pton function semantics, zero indicates success. 1834 */ 1835 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1836 char delim, const char **ipend) 1837 { 1838 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1839 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1840 1841 memset(ss, 0, sizeof(*ss)); 1842 1843 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1844 ss->ss_family = AF_INET; 1845 return 0; 1846 } 1847 1848 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1849 ss->ss_family = AF_INET6; 1850 return 0; 1851 } 1852 1853 return -EINVAL; 1854 } 1855 1856 /* 1857 * Extract hostname string and resolve using kernel DNS facility. 1858 */ 1859 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1860 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1861 struct sockaddr_storage *ss, char delim, const char **ipend) 1862 { 1863 const char *end, *delim_p; 1864 char *colon_p, *ip_addr = NULL; 1865 int ip_len, ret; 1866 1867 /* 1868 * The end of the hostname occurs immediately preceding the delimiter or 1869 * the port marker (':') where the delimiter takes precedence. 1870 */ 1871 delim_p = memchr(name, delim, namelen); 1872 colon_p = memchr(name, ':', namelen); 1873 1874 if (delim_p && colon_p) 1875 end = delim_p < colon_p ? delim_p : colon_p; 1876 else if (!delim_p && colon_p) 1877 end = colon_p; 1878 else { 1879 end = delim_p; 1880 if (!end) /* case: hostname:/ */ 1881 end = name + namelen; 1882 } 1883 1884 if (end <= name) 1885 return -EINVAL; 1886 1887 /* do dns_resolve upcall */ 1888 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1889 if (ip_len > 0) 1890 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1891 else 1892 ret = -ESRCH; 1893 1894 kfree(ip_addr); 1895 1896 *ipend = end; 1897 1898 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1899 ret, ret ? "failed" : ceph_pr_addr(ss)); 1900 1901 return ret; 1902 } 1903 #else 1904 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1905 struct sockaddr_storage *ss, char delim, const char **ipend) 1906 { 1907 return -EINVAL; 1908 } 1909 #endif 1910 1911 /* 1912 * Parse a server name (IP or hostname). If a valid IP address is not found 1913 * then try to extract a hostname to resolve using userspace DNS upcall. 1914 */ 1915 static int ceph_parse_server_name(const char *name, size_t namelen, 1916 struct sockaddr_storage *ss, char delim, const char **ipend) 1917 { 1918 int ret; 1919 1920 ret = ceph_pton(name, namelen, ss, delim, ipend); 1921 if (ret) 1922 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1923 1924 return ret; 1925 } 1926 1927 /* 1928 * Parse an ip[:port] list into an addr array. Use the default 1929 * monitor port if a port isn't specified. 1930 */ 1931 int ceph_parse_ips(const char *c, const char *end, 1932 struct ceph_entity_addr *addr, 1933 int max_count, int *count) 1934 { 1935 int i, ret = -EINVAL; 1936 const char *p = c; 1937 1938 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1939 for (i = 0; i < max_count; i++) { 1940 const char *ipend; 1941 struct sockaddr_storage *ss = &addr[i].in_addr; 1942 int port; 1943 char delim = ','; 1944 1945 if (*p == '[') { 1946 delim = ']'; 1947 p++; 1948 } 1949 1950 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1951 if (ret) 1952 goto bad; 1953 ret = -EINVAL; 1954 1955 p = ipend; 1956 1957 if (delim == ']') { 1958 if (*p != ']') { 1959 dout("missing matching ']'\n"); 1960 goto bad; 1961 } 1962 p++; 1963 } 1964 1965 /* port? */ 1966 if (p < end && *p == ':') { 1967 port = 0; 1968 p++; 1969 while (p < end && *p >= '0' && *p <= '9') { 1970 port = (port * 10) + (*p - '0'); 1971 p++; 1972 } 1973 if (port == 0) 1974 port = CEPH_MON_PORT; 1975 else if (port > 65535) 1976 goto bad; 1977 } else { 1978 port = CEPH_MON_PORT; 1979 } 1980 1981 addr_set_port(ss, port); 1982 1983 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1984 1985 if (p == end) 1986 break; 1987 if (*p != ',') 1988 goto bad; 1989 p++; 1990 } 1991 1992 if (p != end) 1993 goto bad; 1994 1995 if (count) 1996 *count = i + 1; 1997 return 0; 1998 1999 bad: 2000 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 2001 return ret; 2002 } 2003 EXPORT_SYMBOL(ceph_parse_ips); 2004 2005 static int process_banner(struct ceph_connection *con) 2006 { 2007 dout("process_banner on %p\n", con); 2008 2009 if (verify_hello(con) < 0) 2010 return -1; 2011 2012 ceph_decode_addr(&con->actual_peer_addr); 2013 ceph_decode_addr(&con->peer_addr_for_me); 2014 2015 /* 2016 * Make sure the other end is who we wanted. note that the other 2017 * end may not yet know their ip address, so if it's 0.0.0.0, give 2018 * them the benefit of the doubt. 2019 */ 2020 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2021 sizeof(con->peer_addr)) != 0 && 2022 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 2023 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2024 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2025 ceph_pr_addr(&con->peer_addr.in_addr), 2026 (int)le32_to_cpu(con->peer_addr.nonce), 2027 ceph_pr_addr(&con->actual_peer_addr.in_addr), 2028 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2029 con->error_msg = "wrong peer at address"; 2030 return -1; 2031 } 2032 2033 /* 2034 * did we learn our address? 2035 */ 2036 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 2037 int port = addr_port(&con->msgr->inst.addr.in_addr); 2038 2039 memcpy(&con->msgr->inst.addr.in_addr, 2040 &con->peer_addr_for_me.in_addr, 2041 sizeof(con->peer_addr_for_me.in_addr)); 2042 addr_set_port(&con->msgr->inst.addr.in_addr, port); 2043 encode_my_addr(con->msgr); 2044 dout("process_banner learned my addr is %s\n", 2045 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 2046 } 2047 2048 return 0; 2049 } 2050 2051 static int process_connect(struct ceph_connection *con) 2052 { 2053 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2054 u64 req_feat = from_msgr(con->msgr)->required_features; 2055 u64 server_feat = le64_to_cpu(con->in_reply.features); 2056 int ret; 2057 2058 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2059 2060 if (con->auth) { 2061 /* 2062 * Any connection that defines ->get_authorizer() 2063 * should also define ->add_authorizer_challenge() and 2064 * ->verify_authorizer_reply(). 2065 * 2066 * See get_connect_authorizer(). 2067 */ 2068 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) { 2069 ret = con->ops->add_authorizer_challenge( 2070 con, con->auth->authorizer_reply_buf, 2071 le32_to_cpu(con->in_reply.authorizer_len)); 2072 if (ret < 0) 2073 return ret; 2074 2075 con_out_kvec_reset(con); 2076 __prepare_write_connect(con); 2077 prepare_read_connect(con); 2078 return 0; 2079 } 2080 2081 ret = con->ops->verify_authorizer_reply(con); 2082 if (ret < 0) { 2083 con->error_msg = "bad authorize reply"; 2084 return ret; 2085 } 2086 } 2087 2088 switch (con->in_reply.tag) { 2089 case CEPH_MSGR_TAG_FEATURES: 2090 pr_err("%s%lld %s feature set mismatch," 2091 " my %llx < server's %llx, missing %llx\n", 2092 ENTITY_NAME(con->peer_name), 2093 ceph_pr_addr(&con->peer_addr.in_addr), 2094 sup_feat, server_feat, server_feat & ~sup_feat); 2095 con->error_msg = "missing required protocol features"; 2096 reset_connection(con); 2097 return -1; 2098 2099 case CEPH_MSGR_TAG_BADPROTOVER: 2100 pr_err("%s%lld %s protocol version mismatch," 2101 " my %d != server's %d\n", 2102 ENTITY_NAME(con->peer_name), 2103 ceph_pr_addr(&con->peer_addr.in_addr), 2104 le32_to_cpu(con->out_connect.protocol_version), 2105 le32_to_cpu(con->in_reply.protocol_version)); 2106 con->error_msg = "protocol version mismatch"; 2107 reset_connection(con); 2108 return -1; 2109 2110 case CEPH_MSGR_TAG_BADAUTHORIZER: 2111 con->auth_retry++; 2112 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2113 con->auth_retry); 2114 if (con->auth_retry == 2) { 2115 con->error_msg = "connect authorization failure"; 2116 return -1; 2117 } 2118 con_out_kvec_reset(con); 2119 ret = prepare_write_connect(con); 2120 if (ret < 0) 2121 return ret; 2122 prepare_read_connect(con); 2123 break; 2124 2125 case CEPH_MSGR_TAG_RESETSESSION: 2126 /* 2127 * If we connected with a large connect_seq but the peer 2128 * has no record of a session with us (no connection, or 2129 * connect_seq == 0), they will send RESETSESION to indicate 2130 * that they must have reset their session, and may have 2131 * dropped messages. 2132 */ 2133 dout("process_connect got RESET peer seq %u\n", 2134 le32_to_cpu(con->in_reply.connect_seq)); 2135 pr_err("%s%lld %s connection reset\n", 2136 ENTITY_NAME(con->peer_name), 2137 ceph_pr_addr(&con->peer_addr.in_addr)); 2138 reset_connection(con); 2139 con_out_kvec_reset(con); 2140 ret = prepare_write_connect(con); 2141 if (ret < 0) 2142 return ret; 2143 prepare_read_connect(con); 2144 2145 /* Tell ceph about it. */ 2146 mutex_unlock(&con->mutex); 2147 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2148 if (con->ops->peer_reset) 2149 con->ops->peer_reset(con); 2150 mutex_lock(&con->mutex); 2151 if (con->state != CON_STATE_NEGOTIATING) 2152 return -EAGAIN; 2153 break; 2154 2155 case CEPH_MSGR_TAG_RETRY_SESSION: 2156 /* 2157 * If we sent a smaller connect_seq than the peer has, try 2158 * again with a larger value. 2159 */ 2160 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2161 le32_to_cpu(con->out_connect.connect_seq), 2162 le32_to_cpu(con->in_reply.connect_seq)); 2163 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2164 con_out_kvec_reset(con); 2165 ret = prepare_write_connect(con); 2166 if (ret < 0) 2167 return ret; 2168 prepare_read_connect(con); 2169 break; 2170 2171 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2172 /* 2173 * If we sent a smaller global_seq than the peer has, try 2174 * again with a larger value. 2175 */ 2176 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2177 con->peer_global_seq, 2178 le32_to_cpu(con->in_reply.global_seq)); 2179 get_global_seq(con->msgr, 2180 le32_to_cpu(con->in_reply.global_seq)); 2181 con_out_kvec_reset(con); 2182 ret = prepare_write_connect(con); 2183 if (ret < 0) 2184 return ret; 2185 prepare_read_connect(con); 2186 break; 2187 2188 case CEPH_MSGR_TAG_SEQ: 2189 case CEPH_MSGR_TAG_READY: 2190 if (req_feat & ~server_feat) { 2191 pr_err("%s%lld %s protocol feature mismatch," 2192 " my required %llx > server's %llx, need %llx\n", 2193 ENTITY_NAME(con->peer_name), 2194 ceph_pr_addr(&con->peer_addr.in_addr), 2195 req_feat, server_feat, req_feat & ~server_feat); 2196 con->error_msg = "missing required protocol features"; 2197 reset_connection(con); 2198 return -1; 2199 } 2200 2201 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2202 con->state = CON_STATE_OPEN; 2203 con->auth_retry = 0; /* we authenticated; clear flag */ 2204 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2205 con->connect_seq++; 2206 con->peer_features = server_feat; 2207 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2208 con->peer_global_seq, 2209 le32_to_cpu(con->in_reply.connect_seq), 2210 con->connect_seq); 2211 WARN_ON(con->connect_seq != 2212 le32_to_cpu(con->in_reply.connect_seq)); 2213 2214 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2215 con_flag_set(con, CON_FLAG_LOSSYTX); 2216 2217 con->delay = 0; /* reset backoff memory */ 2218 2219 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2220 prepare_write_seq(con); 2221 prepare_read_seq(con); 2222 } else { 2223 prepare_read_tag(con); 2224 } 2225 break; 2226 2227 case CEPH_MSGR_TAG_WAIT: 2228 /* 2229 * If there is a connection race (we are opening 2230 * connections to each other), one of us may just have 2231 * to WAIT. This shouldn't happen if we are the 2232 * client. 2233 */ 2234 con->error_msg = "protocol error, got WAIT as client"; 2235 return -1; 2236 2237 default: 2238 con->error_msg = "protocol error, garbage tag during connect"; 2239 return -1; 2240 } 2241 return 0; 2242 } 2243 2244 2245 /* 2246 * read (part of) an ack 2247 */ 2248 static int read_partial_ack(struct ceph_connection *con) 2249 { 2250 int size = sizeof (con->in_temp_ack); 2251 int end = size; 2252 2253 return read_partial(con, end, size, &con->in_temp_ack); 2254 } 2255 2256 /* 2257 * We can finally discard anything that's been acked. 2258 */ 2259 static void process_ack(struct ceph_connection *con) 2260 { 2261 struct ceph_msg *m; 2262 u64 ack = le64_to_cpu(con->in_temp_ack); 2263 u64 seq; 2264 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2265 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2266 2267 /* 2268 * In the reconnect case, con_fault() has requeued messages 2269 * in out_sent. We should cleanup old messages according to 2270 * the reconnect seq. 2271 */ 2272 while (!list_empty(list)) { 2273 m = list_first_entry(list, struct ceph_msg, list_head); 2274 if (reconnect && m->needs_out_seq) 2275 break; 2276 seq = le64_to_cpu(m->hdr.seq); 2277 if (seq > ack) 2278 break; 2279 dout("got ack for seq %llu type %d at %p\n", seq, 2280 le16_to_cpu(m->hdr.type), m); 2281 m->ack_stamp = jiffies; 2282 ceph_msg_remove(m); 2283 } 2284 2285 prepare_read_tag(con); 2286 } 2287 2288 2289 static int read_partial_message_section(struct ceph_connection *con, 2290 struct kvec *section, 2291 unsigned int sec_len, u32 *crc) 2292 { 2293 int ret, left; 2294 2295 BUG_ON(!section); 2296 2297 while (section->iov_len < sec_len) { 2298 BUG_ON(section->iov_base == NULL); 2299 left = sec_len - section->iov_len; 2300 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2301 section->iov_len, left); 2302 if (ret <= 0) 2303 return ret; 2304 section->iov_len += ret; 2305 } 2306 if (section->iov_len == sec_len) 2307 *crc = crc32c(0, section->iov_base, section->iov_len); 2308 2309 return 1; 2310 } 2311 2312 static int read_partial_msg_data(struct ceph_connection *con) 2313 { 2314 struct ceph_msg *msg = con->in_msg; 2315 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2316 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2317 struct page *page; 2318 size_t page_offset; 2319 size_t length; 2320 u32 crc = 0; 2321 int ret; 2322 2323 if (!msg->num_data_items) 2324 return -EIO; 2325 2326 if (do_datacrc) 2327 crc = con->in_data_crc; 2328 while (cursor->total_resid) { 2329 if (!cursor->resid) { 2330 ceph_msg_data_advance(cursor, 0); 2331 continue; 2332 } 2333 2334 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2335 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2336 if (ret <= 0) { 2337 if (do_datacrc) 2338 con->in_data_crc = crc; 2339 2340 return ret; 2341 } 2342 2343 if (do_datacrc) 2344 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2345 ceph_msg_data_advance(cursor, (size_t)ret); 2346 } 2347 if (do_datacrc) 2348 con->in_data_crc = crc; 2349 2350 return 1; /* must return > 0 to indicate success */ 2351 } 2352 2353 /* 2354 * read (part of) a message. 2355 */ 2356 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2357 2358 static int read_partial_message(struct ceph_connection *con) 2359 { 2360 struct ceph_msg *m = con->in_msg; 2361 int size; 2362 int end; 2363 int ret; 2364 unsigned int front_len, middle_len, data_len; 2365 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2366 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2367 u64 seq; 2368 u32 crc; 2369 2370 dout("read_partial_message con %p msg %p\n", con, m); 2371 2372 /* header */ 2373 size = sizeof (con->in_hdr); 2374 end = size; 2375 ret = read_partial(con, end, size, &con->in_hdr); 2376 if (ret <= 0) 2377 return ret; 2378 2379 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2380 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2381 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2382 crc, con->in_hdr.crc); 2383 return -EBADMSG; 2384 } 2385 2386 front_len = le32_to_cpu(con->in_hdr.front_len); 2387 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2388 return -EIO; 2389 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2390 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2391 return -EIO; 2392 data_len = le32_to_cpu(con->in_hdr.data_len); 2393 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2394 return -EIO; 2395 2396 /* verify seq# */ 2397 seq = le64_to_cpu(con->in_hdr.seq); 2398 if ((s64)seq - (s64)con->in_seq < 1) { 2399 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2400 ENTITY_NAME(con->peer_name), 2401 ceph_pr_addr(&con->peer_addr.in_addr), 2402 seq, con->in_seq + 1); 2403 con->in_base_pos = -front_len - middle_len - data_len - 2404 sizeof_footer(con); 2405 con->in_tag = CEPH_MSGR_TAG_READY; 2406 return 1; 2407 } else if ((s64)seq - (s64)con->in_seq > 1) { 2408 pr_err("read_partial_message bad seq %lld expected %lld\n", 2409 seq, con->in_seq + 1); 2410 con->error_msg = "bad message sequence # for incoming message"; 2411 return -EBADE; 2412 } 2413 2414 /* allocate message? */ 2415 if (!con->in_msg) { 2416 int skip = 0; 2417 2418 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2419 front_len, data_len); 2420 ret = ceph_con_in_msg_alloc(con, &skip); 2421 if (ret < 0) 2422 return ret; 2423 2424 BUG_ON(!con->in_msg ^ skip); 2425 if (skip) { 2426 /* skip this message */ 2427 dout("alloc_msg said skip message\n"); 2428 con->in_base_pos = -front_len - middle_len - data_len - 2429 sizeof_footer(con); 2430 con->in_tag = CEPH_MSGR_TAG_READY; 2431 con->in_seq++; 2432 return 1; 2433 } 2434 2435 BUG_ON(!con->in_msg); 2436 BUG_ON(con->in_msg->con != con); 2437 m = con->in_msg; 2438 m->front.iov_len = 0; /* haven't read it yet */ 2439 if (m->middle) 2440 m->middle->vec.iov_len = 0; 2441 2442 /* prepare for data payload, if any */ 2443 2444 if (data_len) 2445 prepare_message_data(con->in_msg, data_len); 2446 } 2447 2448 /* front */ 2449 ret = read_partial_message_section(con, &m->front, front_len, 2450 &con->in_front_crc); 2451 if (ret <= 0) 2452 return ret; 2453 2454 /* middle */ 2455 if (m->middle) { 2456 ret = read_partial_message_section(con, &m->middle->vec, 2457 middle_len, 2458 &con->in_middle_crc); 2459 if (ret <= 0) 2460 return ret; 2461 } 2462 2463 /* (page) data */ 2464 if (data_len) { 2465 ret = read_partial_msg_data(con); 2466 if (ret <= 0) 2467 return ret; 2468 } 2469 2470 /* footer */ 2471 size = sizeof_footer(con); 2472 end += size; 2473 ret = read_partial(con, end, size, &m->footer); 2474 if (ret <= 0) 2475 return ret; 2476 2477 if (!need_sign) { 2478 m->footer.flags = m->old_footer.flags; 2479 m->footer.sig = 0; 2480 } 2481 2482 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2483 m, front_len, m->footer.front_crc, middle_len, 2484 m->footer.middle_crc, data_len, m->footer.data_crc); 2485 2486 /* crc ok? */ 2487 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2488 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2489 m, con->in_front_crc, m->footer.front_crc); 2490 return -EBADMSG; 2491 } 2492 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2493 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2494 m, con->in_middle_crc, m->footer.middle_crc); 2495 return -EBADMSG; 2496 } 2497 if (do_datacrc && 2498 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2499 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2500 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2501 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2502 return -EBADMSG; 2503 } 2504 2505 if (need_sign && con->ops->check_message_signature && 2506 con->ops->check_message_signature(m)) { 2507 pr_err("read_partial_message %p signature check failed\n", m); 2508 return -EBADMSG; 2509 } 2510 2511 return 1; /* done! */ 2512 } 2513 2514 /* 2515 * Process message. This happens in the worker thread. The callback should 2516 * be careful not to do anything that waits on other incoming messages or it 2517 * may deadlock. 2518 */ 2519 static void process_message(struct ceph_connection *con) 2520 { 2521 struct ceph_msg *msg = con->in_msg; 2522 2523 BUG_ON(con->in_msg->con != con); 2524 con->in_msg = NULL; 2525 2526 /* if first message, set peer_name */ 2527 if (con->peer_name.type == 0) 2528 con->peer_name = msg->hdr.src; 2529 2530 con->in_seq++; 2531 mutex_unlock(&con->mutex); 2532 2533 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2534 msg, le64_to_cpu(msg->hdr.seq), 2535 ENTITY_NAME(msg->hdr.src), 2536 le16_to_cpu(msg->hdr.type), 2537 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2538 le32_to_cpu(msg->hdr.front_len), 2539 le32_to_cpu(msg->hdr.data_len), 2540 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2541 con->ops->dispatch(con, msg); 2542 2543 mutex_lock(&con->mutex); 2544 } 2545 2546 static int read_keepalive_ack(struct ceph_connection *con) 2547 { 2548 struct ceph_timespec ceph_ts; 2549 size_t size = sizeof(ceph_ts); 2550 int ret = read_partial(con, size, size, &ceph_ts); 2551 if (ret <= 0) 2552 return ret; 2553 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts); 2554 prepare_read_tag(con); 2555 return 1; 2556 } 2557 2558 /* 2559 * Write something to the socket. Called in a worker thread when the 2560 * socket appears to be writeable and we have something ready to send. 2561 */ 2562 static int try_write(struct ceph_connection *con) 2563 { 2564 int ret = 1; 2565 2566 dout("try_write start %p state %lu\n", con, con->state); 2567 if (con->state != CON_STATE_PREOPEN && 2568 con->state != CON_STATE_CONNECTING && 2569 con->state != CON_STATE_NEGOTIATING && 2570 con->state != CON_STATE_OPEN) 2571 return 0; 2572 2573 /* open the socket first? */ 2574 if (con->state == CON_STATE_PREOPEN) { 2575 BUG_ON(con->sock); 2576 con->state = CON_STATE_CONNECTING; 2577 2578 con_out_kvec_reset(con); 2579 prepare_write_banner(con); 2580 prepare_read_banner(con); 2581 2582 BUG_ON(con->in_msg); 2583 con->in_tag = CEPH_MSGR_TAG_READY; 2584 dout("try_write initiating connect on %p new state %lu\n", 2585 con, con->state); 2586 ret = ceph_tcp_connect(con); 2587 if (ret < 0) { 2588 con->error_msg = "connect error"; 2589 goto out; 2590 } 2591 } 2592 2593 more: 2594 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2595 BUG_ON(!con->sock); 2596 2597 /* kvec data queued? */ 2598 if (con->out_kvec_left) { 2599 ret = write_partial_kvec(con); 2600 if (ret <= 0) 2601 goto out; 2602 } 2603 if (con->out_skip) { 2604 ret = write_partial_skip(con); 2605 if (ret <= 0) 2606 goto out; 2607 } 2608 2609 /* msg pages? */ 2610 if (con->out_msg) { 2611 if (con->out_msg_done) { 2612 ceph_msg_put(con->out_msg); 2613 con->out_msg = NULL; /* we're done with this one */ 2614 goto do_next; 2615 } 2616 2617 ret = write_partial_message_data(con); 2618 if (ret == 1) 2619 goto more; /* we need to send the footer, too! */ 2620 if (ret == 0) 2621 goto out; 2622 if (ret < 0) { 2623 dout("try_write write_partial_message_data err %d\n", 2624 ret); 2625 goto out; 2626 } 2627 } 2628 2629 do_next: 2630 if (con->state == CON_STATE_OPEN) { 2631 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2632 prepare_write_keepalive(con); 2633 goto more; 2634 } 2635 /* is anything else pending? */ 2636 if (!list_empty(&con->out_queue)) { 2637 prepare_write_message(con); 2638 goto more; 2639 } 2640 if (con->in_seq > con->in_seq_acked) { 2641 prepare_write_ack(con); 2642 goto more; 2643 } 2644 } 2645 2646 /* Nothing to do! */ 2647 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2648 dout("try_write nothing else to write.\n"); 2649 ret = 0; 2650 out: 2651 dout("try_write done on %p ret %d\n", con, ret); 2652 return ret; 2653 } 2654 2655 /* 2656 * Read what we can from the socket. 2657 */ 2658 static int try_read(struct ceph_connection *con) 2659 { 2660 int ret = -1; 2661 2662 more: 2663 dout("try_read start on %p state %lu\n", con, con->state); 2664 if (con->state != CON_STATE_CONNECTING && 2665 con->state != CON_STATE_NEGOTIATING && 2666 con->state != CON_STATE_OPEN) 2667 return 0; 2668 2669 BUG_ON(!con->sock); 2670 2671 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2672 con->in_base_pos); 2673 2674 if (con->state == CON_STATE_CONNECTING) { 2675 dout("try_read connecting\n"); 2676 ret = read_partial_banner(con); 2677 if (ret <= 0) 2678 goto out; 2679 ret = process_banner(con); 2680 if (ret < 0) 2681 goto out; 2682 2683 con->state = CON_STATE_NEGOTIATING; 2684 2685 /* 2686 * Received banner is good, exchange connection info. 2687 * Do not reset out_kvec, as sending our banner raced 2688 * with receiving peer banner after connect completed. 2689 */ 2690 ret = prepare_write_connect(con); 2691 if (ret < 0) 2692 goto out; 2693 prepare_read_connect(con); 2694 2695 /* Send connection info before awaiting response */ 2696 goto out; 2697 } 2698 2699 if (con->state == CON_STATE_NEGOTIATING) { 2700 dout("try_read negotiating\n"); 2701 ret = read_partial_connect(con); 2702 if (ret <= 0) 2703 goto out; 2704 ret = process_connect(con); 2705 if (ret < 0) 2706 goto out; 2707 goto more; 2708 } 2709 2710 WARN_ON(con->state != CON_STATE_OPEN); 2711 2712 if (con->in_base_pos < 0) { 2713 /* 2714 * skipping + discarding content. 2715 */ 2716 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos); 2717 if (ret <= 0) 2718 goto out; 2719 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos); 2720 con->in_base_pos += ret; 2721 if (con->in_base_pos) 2722 goto more; 2723 } 2724 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2725 /* 2726 * what's next? 2727 */ 2728 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2729 if (ret <= 0) 2730 goto out; 2731 dout("try_read got tag %d\n", (int)con->in_tag); 2732 switch (con->in_tag) { 2733 case CEPH_MSGR_TAG_MSG: 2734 prepare_read_message(con); 2735 break; 2736 case CEPH_MSGR_TAG_ACK: 2737 prepare_read_ack(con); 2738 break; 2739 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2740 prepare_read_keepalive_ack(con); 2741 break; 2742 case CEPH_MSGR_TAG_CLOSE: 2743 con_close_socket(con); 2744 con->state = CON_STATE_CLOSED; 2745 goto out; 2746 default: 2747 goto bad_tag; 2748 } 2749 } 2750 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2751 ret = read_partial_message(con); 2752 if (ret <= 0) { 2753 switch (ret) { 2754 case -EBADMSG: 2755 con->error_msg = "bad crc/signature"; 2756 /* fall through */ 2757 case -EBADE: 2758 ret = -EIO; 2759 break; 2760 case -EIO: 2761 con->error_msg = "io error"; 2762 break; 2763 } 2764 goto out; 2765 } 2766 if (con->in_tag == CEPH_MSGR_TAG_READY) 2767 goto more; 2768 process_message(con); 2769 if (con->state == CON_STATE_OPEN) 2770 prepare_read_tag(con); 2771 goto more; 2772 } 2773 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2774 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2775 /* 2776 * the final handshake seq exchange is semantically 2777 * equivalent to an ACK 2778 */ 2779 ret = read_partial_ack(con); 2780 if (ret <= 0) 2781 goto out; 2782 process_ack(con); 2783 goto more; 2784 } 2785 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2786 ret = read_keepalive_ack(con); 2787 if (ret <= 0) 2788 goto out; 2789 goto more; 2790 } 2791 2792 out: 2793 dout("try_read done on %p ret %d\n", con, ret); 2794 return ret; 2795 2796 bad_tag: 2797 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2798 con->error_msg = "protocol error, garbage tag"; 2799 ret = -1; 2800 goto out; 2801 } 2802 2803 2804 /* 2805 * Atomically queue work on a connection after the specified delay. 2806 * Bump @con reference to avoid races with connection teardown. 2807 * Returns 0 if work was queued, or an error code otherwise. 2808 */ 2809 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2810 { 2811 if (!con->ops->get(con)) { 2812 dout("%s %p ref count 0\n", __func__, con); 2813 return -ENOENT; 2814 } 2815 2816 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2817 dout("%s %p - already queued\n", __func__, con); 2818 con->ops->put(con); 2819 return -EBUSY; 2820 } 2821 2822 dout("%s %p %lu\n", __func__, con, delay); 2823 return 0; 2824 } 2825 2826 static void queue_con(struct ceph_connection *con) 2827 { 2828 (void) queue_con_delay(con, 0); 2829 } 2830 2831 static void cancel_con(struct ceph_connection *con) 2832 { 2833 if (cancel_delayed_work(&con->work)) { 2834 dout("%s %p\n", __func__, con); 2835 con->ops->put(con); 2836 } 2837 } 2838 2839 static bool con_sock_closed(struct ceph_connection *con) 2840 { 2841 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2842 return false; 2843 2844 #define CASE(x) \ 2845 case CON_STATE_ ## x: \ 2846 con->error_msg = "socket closed (con state " #x ")"; \ 2847 break; 2848 2849 switch (con->state) { 2850 CASE(CLOSED); 2851 CASE(PREOPEN); 2852 CASE(CONNECTING); 2853 CASE(NEGOTIATING); 2854 CASE(OPEN); 2855 CASE(STANDBY); 2856 default: 2857 pr_warn("%s con %p unrecognized state %lu\n", 2858 __func__, con, con->state); 2859 con->error_msg = "unrecognized con state"; 2860 BUG(); 2861 break; 2862 } 2863 #undef CASE 2864 2865 return true; 2866 } 2867 2868 static bool con_backoff(struct ceph_connection *con) 2869 { 2870 int ret; 2871 2872 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2873 return false; 2874 2875 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2876 if (ret) { 2877 dout("%s: con %p FAILED to back off %lu\n", __func__, 2878 con, con->delay); 2879 BUG_ON(ret == -ENOENT); 2880 con_flag_set(con, CON_FLAG_BACKOFF); 2881 } 2882 2883 return true; 2884 } 2885 2886 /* Finish fault handling; con->mutex must *not* be held here */ 2887 2888 static void con_fault_finish(struct ceph_connection *con) 2889 { 2890 dout("%s %p\n", __func__, con); 2891 2892 /* 2893 * in case we faulted due to authentication, invalidate our 2894 * current tickets so that we can get new ones. 2895 */ 2896 if (con->auth_retry) { 2897 dout("auth_retry %d, invalidating\n", con->auth_retry); 2898 if (con->ops->invalidate_authorizer) 2899 con->ops->invalidate_authorizer(con); 2900 con->auth_retry = 0; 2901 } 2902 2903 if (con->ops->fault) 2904 con->ops->fault(con); 2905 } 2906 2907 /* 2908 * Do some work on a connection. Drop a connection ref when we're done. 2909 */ 2910 static void ceph_con_workfn(struct work_struct *work) 2911 { 2912 struct ceph_connection *con = container_of(work, struct ceph_connection, 2913 work.work); 2914 bool fault; 2915 2916 mutex_lock(&con->mutex); 2917 while (true) { 2918 int ret; 2919 2920 if ((fault = con_sock_closed(con))) { 2921 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2922 break; 2923 } 2924 if (con_backoff(con)) { 2925 dout("%s: con %p BACKOFF\n", __func__, con); 2926 break; 2927 } 2928 if (con->state == CON_STATE_STANDBY) { 2929 dout("%s: con %p STANDBY\n", __func__, con); 2930 break; 2931 } 2932 if (con->state == CON_STATE_CLOSED) { 2933 dout("%s: con %p CLOSED\n", __func__, con); 2934 BUG_ON(con->sock); 2935 break; 2936 } 2937 if (con->state == CON_STATE_PREOPEN) { 2938 dout("%s: con %p PREOPEN\n", __func__, con); 2939 BUG_ON(con->sock); 2940 } 2941 2942 ret = try_read(con); 2943 if (ret < 0) { 2944 if (ret == -EAGAIN) 2945 continue; 2946 if (!con->error_msg) 2947 con->error_msg = "socket error on read"; 2948 fault = true; 2949 break; 2950 } 2951 2952 ret = try_write(con); 2953 if (ret < 0) { 2954 if (ret == -EAGAIN) 2955 continue; 2956 if (!con->error_msg) 2957 con->error_msg = "socket error on write"; 2958 fault = true; 2959 } 2960 2961 break; /* If we make it to here, we're done */ 2962 } 2963 if (fault) 2964 con_fault(con); 2965 mutex_unlock(&con->mutex); 2966 2967 if (fault) 2968 con_fault_finish(con); 2969 2970 con->ops->put(con); 2971 } 2972 2973 /* 2974 * Generic error/fault handler. A retry mechanism is used with 2975 * exponential backoff 2976 */ 2977 static void con_fault(struct ceph_connection *con) 2978 { 2979 dout("fault %p state %lu to peer %s\n", 2980 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2981 2982 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2983 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2984 con->error_msg = NULL; 2985 2986 WARN_ON(con->state != CON_STATE_CONNECTING && 2987 con->state != CON_STATE_NEGOTIATING && 2988 con->state != CON_STATE_OPEN); 2989 2990 con_close_socket(con); 2991 2992 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2993 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2994 con->state = CON_STATE_CLOSED; 2995 return; 2996 } 2997 2998 if (con->in_msg) { 2999 BUG_ON(con->in_msg->con != con); 3000 ceph_msg_put(con->in_msg); 3001 con->in_msg = NULL; 3002 } 3003 3004 /* Requeue anything that hasn't been acked */ 3005 list_splice_init(&con->out_sent, &con->out_queue); 3006 3007 /* If there are no messages queued or keepalive pending, place 3008 * the connection in a STANDBY state */ 3009 if (list_empty(&con->out_queue) && 3010 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 3011 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 3012 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 3013 con->state = CON_STATE_STANDBY; 3014 } else { 3015 /* retry after a delay. */ 3016 con->state = CON_STATE_PREOPEN; 3017 if (con->delay == 0) 3018 con->delay = BASE_DELAY_INTERVAL; 3019 else if (con->delay < MAX_DELAY_INTERVAL) 3020 con->delay *= 2; 3021 con_flag_set(con, CON_FLAG_BACKOFF); 3022 queue_con(con); 3023 } 3024 } 3025 3026 3027 3028 /* 3029 * initialize a new messenger instance 3030 */ 3031 void ceph_messenger_init(struct ceph_messenger *msgr, 3032 struct ceph_entity_addr *myaddr) 3033 { 3034 spin_lock_init(&msgr->global_seq_lock); 3035 3036 if (myaddr) 3037 msgr->inst.addr = *myaddr; 3038 3039 /* select a random nonce */ 3040 msgr->inst.addr.type = 0; 3041 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3042 encode_my_addr(msgr); 3043 3044 atomic_set(&msgr->stopping, 0); 3045 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3046 3047 dout("%s %p\n", __func__, msgr); 3048 } 3049 EXPORT_SYMBOL(ceph_messenger_init); 3050 3051 void ceph_messenger_fini(struct ceph_messenger *msgr) 3052 { 3053 put_net(read_pnet(&msgr->net)); 3054 } 3055 EXPORT_SYMBOL(ceph_messenger_fini); 3056 3057 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3058 { 3059 if (msg->con) 3060 msg->con->ops->put(msg->con); 3061 3062 msg->con = con ? con->ops->get(con) : NULL; 3063 BUG_ON(msg->con != con); 3064 } 3065 3066 static void clear_standby(struct ceph_connection *con) 3067 { 3068 /* come back from STANDBY? */ 3069 if (con->state == CON_STATE_STANDBY) { 3070 dout("clear_standby %p and ++connect_seq\n", con); 3071 con->state = CON_STATE_PREOPEN; 3072 con->connect_seq++; 3073 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3074 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3075 } 3076 } 3077 3078 /* 3079 * Queue up an outgoing message on the given connection. 3080 */ 3081 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3082 { 3083 /* set src+dst */ 3084 msg->hdr.src = con->msgr->inst.name; 3085 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3086 msg->needs_out_seq = true; 3087 3088 mutex_lock(&con->mutex); 3089 3090 if (con->state == CON_STATE_CLOSED) { 3091 dout("con_send %p closed, dropping %p\n", con, msg); 3092 ceph_msg_put(msg); 3093 mutex_unlock(&con->mutex); 3094 return; 3095 } 3096 3097 msg_con_set(msg, con); 3098 3099 BUG_ON(!list_empty(&msg->list_head)); 3100 list_add_tail(&msg->list_head, &con->out_queue); 3101 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3102 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3103 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3104 le32_to_cpu(msg->hdr.front_len), 3105 le32_to_cpu(msg->hdr.middle_len), 3106 le32_to_cpu(msg->hdr.data_len)); 3107 3108 clear_standby(con); 3109 mutex_unlock(&con->mutex); 3110 3111 /* if there wasn't anything waiting to send before, queue 3112 * new work */ 3113 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3114 queue_con(con); 3115 } 3116 EXPORT_SYMBOL(ceph_con_send); 3117 3118 /* 3119 * Revoke a message that was previously queued for send 3120 */ 3121 void ceph_msg_revoke(struct ceph_msg *msg) 3122 { 3123 struct ceph_connection *con = msg->con; 3124 3125 if (!con) { 3126 dout("%s msg %p null con\n", __func__, msg); 3127 return; /* Message not in our possession */ 3128 } 3129 3130 mutex_lock(&con->mutex); 3131 if (!list_empty(&msg->list_head)) { 3132 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3133 list_del_init(&msg->list_head); 3134 msg->hdr.seq = 0; 3135 3136 ceph_msg_put(msg); 3137 } 3138 if (con->out_msg == msg) { 3139 BUG_ON(con->out_skip); 3140 /* footer */ 3141 if (con->out_msg_done) { 3142 con->out_skip += con_out_kvec_skip(con); 3143 } else { 3144 BUG_ON(!msg->data_length); 3145 con->out_skip += sizeof_footer(con); 3146 } 3147 /* data, middle, front */ 3148 if (msg->data_length) 3149 con->out_skip += msg->cursor.total_resid; 3150 if (msg->middle) 3151 con->out_skip += con_out_kvec_skip(con); 3152 con->out_skip += con_out_kvec_skip(con); 3153 3154 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3155 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3156 msg->hdr.seq = 0; 3157 con->out_msg = NULL; 3158 ceph_msg_put(msg); 3159 } 3160 3161 mutex_unlock(&con->mutex); 3162 } 3163 3164 /* 3165 * Revoke a message that we may be reading data into 3166 */ 3167 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3168 { 3169 struct ceph_connection *con = msg->con; 3170 3171 if (!con) { 3172 dout("%s msg %p null con\n", __func__, msg); 3173 return; /* Message not in our possession */ 3174 } 3175 3176 mutex_lock(&con->mutex); 3177 if (con->in_msg == msg) { 3178 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3179 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3180 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3181 3182 /* skip rest of message */ 3183 dout("%s %p msg %p revoked\n", __func__, con, msg); 3184 con->in_base_pos = con->in_base_pos - 3185 sizeof(struct ceph_msg_header) - 3186 front_len - 3187 middle_len - 3188 data_len - 3189 sizeof(struct ceph_msg_footer); 3190 ceph_msg_put(con->in_msg); 3191 con->in_msg = NULL; 3192 con->in_tag = CEPH_MSGR_TAG_READY; 3193 con->in_seq++; 3194 } else { 3195 dout("%s %p in_msg %p msg %p no-op\n", 3196 __func__, con, con->in_msg, msg); 3197 } 3198 mutex_unlock(&con->mutex); 3199 } 3200 3201 /* 3202 * Queue a keepalive byte to ensure the tcp connection is alive. 3203 */ 3204 void ceph_con_keepalive(struct ceph_connection *con) 3205 { 3206 dout("con_keepalive %p\n", con); 3207 mutex_lock(&con->mutex); 3208 clear_standby(con); 3209 con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING); 3210 mutex_unlock(&con->mutex); 3211 3212 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3213 queue_con(con); 3214 } 3215 EXPORT_SYMBOL(ceph_con_keepalive); 3216 3217 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3218 unsigned long interval) 3219 { 3220 if (interval > 0 && 3221 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3222 struct timespec64 now; 3223 struct timespec64 ts; 3224 ktime_get_real_ts64(&now); 3225 jiffies_to_timespec64(interval, &ts); 3226 ts = timespec64_add(con->last_keepalive_ack, ts); 3227 return timespec64_compare(&now, &ts) >= 0; 3228 } 3229 return false; 3230 } 3231 3232 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 3233 { 3234 BUG_ON(msg->num_data_items >= msg->max_data_items); 3235 return &msg->data[msg->num_data_items++]; 3236 } 3237 3238 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3239 { 3240 if (data->type == CEPH_MSG_DATA_PAGELIST) 3241 ceph_pagelist_release(data->pagelist); 3242 } 3243 3244 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3245 size_t length, size_t alignment) 3246 { 3247 struct ceph_msg_data *data; 3248 3249 BUG_ON(!pages); 3250 BUG_ON(!length); 3251 3252 data = ceph_msg_data_add(msg); 3253 data->type = CEPH_MSG_DATA_PAGES; 3254 data->pages = pages; 3255 data->length = length; 3256 data->alignment = alignment & ~PAGE_MASK; 3257 3258 msg->data_length += length; 3259 } 3260 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3261 3262 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3263 struct ceph_pagelist *pagelist) 3264 { 3265 struct ceph_msg_data *data; 3266 3267 BUG_ON(!pagelist); 3268 BUG_ON(!pagelist->length); 3269 3270 data = ceph_msg_data_add(msg); 3271 data->type = CEPH_MSG_DATA_PAGELIST; 3272 refcount_inc(&pagelist->refcnt); 3273 data->pagelist = pagelist; 3274 3275 msg->data_length += pagelist->length; 3276 } 3277 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3278 3279 #ifdef CONFIG_BLOCK 3280 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 3281 u32 length) 3282 { 3283 struct ceph_msg_data *data; 3284 3285 data = ceph_msg_data_add(msg); 3286 data->type = CEPH_MSG_DATA_BIO; 3287 data->bio_pos = *bio_pos; 3288 data->bio_length = length; 3289 3290 msg->data_length += length; 3291 } 3292 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3293 #endif /* CONFIG_BLOCK */ 3294 3295 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 3296 struct ceph_bvec_iter *bvec_pos) 3297 { 3298 struct ceph_msg_data *data; 3299 3300 data = ceph_msg_data_add(msg); 3301 data->type = CEPH_MSG_DATA_BVECS; 3302 data->bvec_pos = *bvec_pos; 3303 3304 msg->data_length += bvec_pos->iter.bi_size; 3305 } 3306 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 3307 3308 /* 3309 * construct a new message with given type, size 3310 * the new msg has a ref count of 1. 3311 */ 3312 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 3313 gfp_t flags, bool can_fail) 3314 { 3315 struct ceph_msg *m; 3316 3317 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3318 if (m == NULL) 3319 goto out; 3320 3321 m->hdr.type = cpu_to_le16(type); 3322 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3323 m->hdr.front_len = cpu_to_le32(front_len); 3324 3325 INIT_LIST_HEAD(&m->list_head); 3326 kref_init(&m->kref); 3327 3328 /* front */ 3329 if (front_len) { 3330 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3331 if (m->front.iov_base == NULL) { 3332 dout("ceph_msg_new can't allocate %d bytes\n", 3333 front_len); 3334 goto out2; 3335 } 3336 } else { 3337 m->front.iov_base = NULL; 3338 } 3339 m->front_alloc_len = m->front.iov_len = front_len; 3340 3341 if (max_data_items) { 3342 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 3343 flags); 3344 if (!m->data) 3345 goto out2; 3346 3347 m->max_data_items = max_data_items; 3348 } 3349 3350 dout("ceph_msg_new %p front %d\n", m, front_len); 3351 return m; 3352 3353 out2: 3354 ceph_msg_put(m); 3355 out: 3356 if (!can_fail) { 3357 pr_err("msg_new can't create type %d front %d\n", type, 3358 front_len); 3359 WARN_ON(1); 3360 } else { 3361 dout("msg_new can't create type %d front %d\n", type, 3362 front_len); 3363 } 3364 return NULL; 3365 } 3366 EXPORT_SYMBOL(ceph_msg_new2); 3367 3368 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3369 bool can_fail) 3370 { 3371 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 3372 } 3373 EXPORT_SYMBOL(ceph_msg_new); 3374 3375 /* 3376 * Allocate "middle" portion of a message, if it is needed and wasn't 3377 * allocated by alloc_msg. This allows us to read a small fixed-size 3378 * per-type header in the front and then gracefully fail (i.e., 3379 * propagate the error to the caller based on info in the front) when 3380 * the middle is too large. 3381 */ 3382 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3383 { 3384 int type = le16_to_cpu(msg->hdr.type); 3385 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3386 3387 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3388 ceph_msg_type_name(type), middle_len); 3389 BUG_ON(!middle_len); 3390 BUG_ON(msg->middle); 3391 3392 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3393 if (!msg->middle) 3394 return -ENOMEM; 3395 return 0; 3396 } 3397 3398 /* 3399 * Allocate a message for receiving an incoming message on a 3400 * connection, and save the result in con->in_msg. Uses the 3401 * connection's private alloc_msg op if available. 3402 * 3403 * Returns 0 on success, or a negative error code. 3404 * 3405 * On success, if we set *skip = 1: 3406 * - the next message should be skipped and ignored. 3407 * - con->in_msg == NULL 3408 * or if we set *skip = 0: 3409 * - con->in_msg is non-null. 3410 * On error (ENOMEM, EAGAIN, ...), 3411 * - con->in_msg == NULL 3412 */ 3413 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3414 { 3415 struct ceph_msg_header *hdr = &con->in_hdr; 3416 int middle_len = le32_to_cpu(hdr->middle_len); 3417 struct ceph_msg *msg; 3418 int ret = 0; 3419 3420 BUG_ON(con->in_msg != NULL); 3421 BUG_ON(!con->ops->alloc_msg); 3422 3423 mutex_unlock(&con->mutex); 3424 msg = con->ops->alloc_msg(con, hdr, skip); 3425 mutex_lock(&con->mutex); 3426 if (con->state != CON_STATE_OPEN) { 3427 if (msg) 3428 ceph_msg_put(msg); 3429 return -EAGAIN; 3430 } 3431 if (msg) { 3432 BUG_ON(*skip); 3433 msg_con_set(msg, con); 3434 con->in_msg = msg; 3435 } else { 3436 /* 3437 * Null message pointer means either we should skip 3438 * this message or we couldn't allocate memory. The 3439 * former is not an error. 3440 */ 3441 if (*skip) 3442 return 0; 3443 3444 con->error_msg = "error allocating memory for incoming message"; 3445 return -ENOMEM; 3446 } 3447 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3448 3449 if (middle_len && !con->in_msg->middle) { 3450 ret = ceph_alloc_middle(con, con->in_msg); 3451 if (ret < 0) { 3452 ceph_msg_put(con->in_msg); 3453 con->in_msg = NULL; 3454 } 3455 } 3456 3457 return ret; 3458 } 3459 3460 3461 /* 3462 * Free a generically kmalloc'd message. 3463 */ 3464 static void ceph_msg_free(struct ceph_msg *m) 3465 { 3466 dout("%s %p\n", __func__, m); 3467 kvfree(m->front.iov_base); 3468 kfree(m->data); 3469 kmem_cache_free(ceph_msg_cache, m); 3470 } 3471 3472 static void ceph_msg_release(struct kref *kref) 3473 { 3474 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3475 int i; 3476 3477 dout("%s %p\n", __func__, m); 3478 WARN_ON(!list_empty(&m->list_head)); 3479 3480 msg_con_set(m, NULL); 3481 3482 /* drop middle, data, if any */ 3483 if (m->middle) { 3484 ceph_buffer_put(m->middle); 3485 m->middle = NULL; 3486 } 3487 3488 for (i = 0; i < m->num_data_items; i++) 3489 ceph_msg_data_destroy(&m->data[i]); 3490 3491 if (m->pool) 3492 ceph_msgpool_put(m->pool, m); 3493 else 3494 ceph_msg_free(m); 3495 } 3496 3497 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3498 { 3499 dout("%s %p (was %d)\n", __func__, msg, 3500 kref_read(&msg->kref)); 3501 kref_get(&msg->kref); 3502 return msg; 3503 } 3504 EXPORT_SYMBOL(ceph_msg_get); 3505 3506 void ceph_msg_put(struct ceph_msg *msg) 3507 { 3508 dout("%s %p (was %d)\n", __func__, msg, 3509 kref_read(&msg->kref)); 3510 kref_put(&msg->kref, ceph_msg_release); 3511 } 3512 EXPORT_SYMBOL(ceph_msg_put); 3513 3514 void ceph_msg_dump(struct ceph_msg *msg) 3515 { 3516 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3517 msg->front_alloc_len, msg->data_length); 3518 print_hex_dump(KERN_DEBUG, "header: ", 3519 DUMP_PREFIX_OFFSET, 16, 1, 3520 &msg->hdr, sizeof(msg->hdr), true); 3521 print_hex_dump(KERN_DEBUG, " front: ", 3522 DUMP_PREFIX_OFFSET, 16, 1, 3523 msg->front.iov_base, msg->front.iov_len, true); 3524 if (msg->middle) 3525 print_hex_dump(KERN_DEBUG, "middle: ", 3526 DUMP_PREFIX_OFFSET, 16, 1, 3527 msg->middle->vec.iov_base, 3528 msg->middle->vec.iov_len, true); 3529 print_hex_dump(KERN_DEBUG, "footer: ", 3530 DUMP_PREFIX_OFFSET, 16, 1, 3531 &msg->footer, sizeof(msg->footer), true); 3532 } 3533 EXPORT_SYMBOL(ceph_msg_dump); 3534