xref: /openbmc/linux/net/ceph/messenger.c (revision 75f25bd3)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15 
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 
21 /*
22  * Ceph uses the messenger to exchange ceph_msg messages with other
23  * hosts in the system.  The messenger provides ordered and reliable
24  * delivery.  We tolerate TCP disconnects by reconnecting (with
25  * exponential backoff) in the case of a fault (disconnection, bad
26  * crc, protocol error).  Acks allow sent messages to be discarded by
27  * the sender.
28  */
29 
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34 
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38 
39 
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43 
44 /*
45  * nicely render a sockaddr as a string.
46  */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52 
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55 	int i;
56 	char *s;
57 	struct sockaddr_in *in4 = (void *)ss;
58 	struct sockaddr_in6 *in6 = (void *)ss;
59 
60 	spin_lock(&addr_str_lock);
61 	i = last_addr_str++;
62 	if (last_addr_str == MAX_ADDR_STR)
63 		last_addr_str = 0;
64 	spin_unlock(&addr_str_lock);
65 	s = addr_str[i];
66 
67 	switch (ss->ss_family) {
68 	case AF_INET:
69 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 			 (unsigned int)ntohs(in4->sin_port));
71 		break;
72 
73 	case AF_INET6:
74 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 			 (unsigned int)ntohs(in6->sin6_port));
76 		break;
77 
78 	default:
79 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
80 			 (int)ss->ss_family);
81 	}
82 
83 	return s;
84 }
85 EXPORT_SYMBOL(ceph_pr_addr);
86 
87 static void encode_my_addr(struct ceph_messenger *msgr)
88 {
89 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
90 	ceph_encode_addr(&msgr->my_enc_addr);
91 }
92 
93 /*
94  * work queue for all reading and writing to/from the socket.
95  */
96 struct workqueue_struct *ceph_msgr_wq;
97 
98 int ceph_msgr_init(void)
99 {
100 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
101 	if (!ceph_msgr_wq) {
102 		pr_err("msgr_init failed to create workqueue\n");
103 		return -ENOMEM;
104 	}
105 	return 0;
106 }
107 EXPORT_SYMBOL(ceph_msgr_init);
108 
109 void ceph_msgr_exit(void)
110 {
111 	destroy_workqueue(ceph_msgr_wq);
112 }
113 EXPORT_SYMBOL(ceph_msgr_exit);
114 
115 void ceph_msgr_flush(void)
116 {
117 	flush_workqueue(ceph_msgr_wq);
118 }
119 EXPORT_SYMBOL(ceph_msgr_flush);
120 
121 
122 /*
123  * socket callback functions
124  */
125 
126 /* data available on socket, or listen socket received a connect */
127 static void ceph_data_ready(struct sock *sk, int count_unused)
128 {
129 	struct ceph_connection *con =
130 		(struct ceph_connection *)sk->sk_user_data;
131 	if (sk->sk_state != TCP_CLOSE_WAIT) {
132 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
133 		     con, con->state);
134 		queue_con(con);
135 	}
136 }
137 
138 /* socket has buffer space for writing */
139 static void ceph_write_space(struct sock *sk)
140 {
141 	struct ceph_connection *con =
142 		(struct ceph_connection *)sk->sk_user_data;
143 
144 	/* only queue to workqueue if there is data we want to write. */
145 	if (test_bit(WRITE_PENDING, &con->state)) {
146 		dout("ceph_write_space %p queueing write work\n", con);
147 		queue_con(con);
148 	} else {
149 		dout("ceph_write_space %p nothing to write\n", con);
150 	}
151 
152 	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
153 	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
154 }
155 
156 /* socket's state has changed */
157 static void ceph_state_change(struct sock *sk)
158 {
159 	struct ceph_connection *con =
160 		(struct ceph_connection *)sk->sk_user_data;
161 
162 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
163 	     con, con->state, sk->sk_state);
164 
165 	if (test_bit(CLOSED, &con->state))
166 		return;
167 
168 	switch (sk->sk_state) {
169 	case TCP_CLOSE:
170 		dout("ceph_state_change TCP_CLOSE\n");
171 	case TCP_CLOSE_WAIT:
172 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
173 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
174 			if (test_bit(CONNECTING, &con->state))
175 				con->error_msg = "connection failed";
176 			else
177 				con->error_msg = "socket closed";
178 			queue_con(con);
179 		}
180 		break;
181 	case TCP_ESTABLISHED:
182 		dout("ceph_state_change TCP_ESTABLISHED\n");
183 		queue_con(con);
184 		break;
185 	}
186 }
187 
188 /*
189  * set up socket callbacks
190  */
191 static void set_sock_callbacks(struct socket *sock,
192 			       struct ceph_connection *con)
193 {
194 	struct sock *sk = sock->sk;
195 	sk->sk_user_data = (void *)con;
196 	sk->sk_data_ready = ceph_data_ready;
197 	sk->sk_write_space = ceph_write_space;
198 	sk->sk_state_change = ceph_state_change;
199 }
200 
201 
202 /*
203  * socket helpers
204  */
205 
206 /*
207  * initiate connection to a remote socket.
208  */
209 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
210 {
211 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
212 	struct socket *sock;
213 	int ret;
214 
215 	BUG_ON(con->sock);
216 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
217 			       IPPROTO_TCP, &sock);
218 	if (ret)
219 		return ERR_PTR(ret);
220 	con->sock = sock;
221 	sock->sk->sk_allocation = GFP_NOFS;
222 
223 #ifdef CONFIG_LOCKDEP
224 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
225 #endif
226 
227 	set_sock_callbacks(sock, con);
228 
229 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
230 
231 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
232 				 O_NONBLOCK);
233 	if (ret == -EINPROGRESS) {
234 		dout("connect %s EINPROGRESS sk_state = %u\n",
235 		     ceph_pr_addr(&con->peer_addr.in_addr),
236 		     sock->sk->sk_state);
237 		ret = 0;
238 	}
239 	if (ret < 0) {
240 		pr_err("connect %s error %d\n",
241 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
242 		sock_release(sock);
243 		con->sock = NULL;
244 		con->error_msg = "connect error";
245 	}
246 
247 	if (ret < 0)
248 		return ERR_PTR(ret);
249 	return sock;
250 }
251 
252 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
253 {
254 	struct kvec iov = {buf, len};
255 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
256 	int r;
257 
258 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259 	if (r == -EAGAIN)
260 		r = 0;
261 	return r;
262 }
263 
264 /*
265  * write something.  @more is true if caller will be sending more data
266  * shortly.
267  */
268 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
269 		     size_t kvlen, size_t len, int more)
270 {
271 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
272 	int r;
273 
274 	if (more)
275 		msg.msg_flags |= MSG_MORE;
276 	else
277 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
278 
279 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
280 	if (r == -EAGAIN)
281 		r = 0;
282 	return r;
283 }
284 
285 
286 /*
287  * Shutdown/close the socket for the given connection.
288  */
289 static int con_close_socket(struct ceph_connection *con)
290 {
291 	int rc;
292 
293 	dout("con_close_socket on %p sock %p\n", con, con->sock);
294 	if (!con->sock)
295 		return 0;
296 	set_bit(SOCK_CLOSED, &con->state);
297 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
298 	sock_release(con->sock);
299 	con->sock = NULL;
300 	clear_bit(SOCK_CLOSED, &con->state);
301 	return rc;
302 }
303 
304 /*
305  * Reset a connection.  Discard all incoming and outgoing messages
306  * and clear *_seq state.
307  */
308 static void ceph_msg_remove(struct ceph_msg *msg)
309 {
310 	list_del_init(&msg->list_head);
311 	ceph_msg_put(msg);
312 }
313 static void ceph_msg_remove_list(struct list_head *head)
314 {
315 	while (!list_empty(head)) {
316 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
317 							list_head);
318 		ceph_msg_remove(msg);
319 	}
320 }
321 
322 static void reset_connection(struct ceph_connection *con)
323 {
324 	/* reset connection, out_queue, msg_ and connect_seq */
325 	/* discard existing out_queue and msg_seq */
326 	ceph_msg_remove_list(&con->out_queue);
327 	ceph_msg_remove_list(&con->out_sent);
328 
329 	if (con->in_msg) {
330 		ceph_msg_put(con->in_msg);
331 		con->in_msg = NULL;
332 	}
333 
334 	con->connect_seq = 0;
335 	con->out_seq = 0;
336 	if (con->out_msg) {
337 		ceph_msg_put(con->out_msg);
338 		con->out_msg = NULL;
339 	}
340 	con->in_seq = 0;
341 	con->in_seq_acked = 0;
342 }
343 
344 /*
345  * mark a peer down.  drop any open connections.
346  */
347 void ceph_con_close(struct ceph_connection *con)
348 {
349 	dout("con_close %p peer %s\n", con,
350 	     ceph_pr_addr(&con->peer_addr.in_addr));
351 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
352 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
353 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
354 	clear_bit(KEEPALIVE_PENDING, &con->state);
355 	clear_bit(WRITE_PENDING, &con->state);
356 	mutex_lock(&con->mutex);
357 	reset_connection(con);
358 	con->peer_global_seq = 0;
359 	cancel_delayed_work(&con->work);
360 	mutex_unlock(&con->mutex);
361 	queue_con(con);
362 }
363 EXPORT_SYMBOL(ceph_con_close);
364 
365 /*
366  * Reopen a closed connection, with a new peer address.
367  */
368 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
369 {
370 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
371 	set_bit(OPENING, &con->state);
372 	clear_bit(CLOSED, &con->state);
373 	memcpy(&con->peer_addr, addr, sizeof(*addr));
374 	con->delay = 0;      /* reset backoff memory */
375 	queue_con(con);
376 }
377 EXPORT_SYMBOL(ceph_con_open);
378 
379 /*
380  * return true if this connection ever successfully opened
381  */
382 bool ceph_con_opened(struct ceph_connection *con)
383 {
384 	return con->connect_seq > 0;
385 }
386 
387 /*
388  * generic get/put
389  */
390 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
391 {
392 	dout("con_get %p nref = %d -> %d\n", con,
393 	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
394 	if (atomic_inc_not_zero(&con->nref))
395 		return con;
396 	return NULL;
397 }
398 
399 void ceph_con_put(struct ceph_connection *con)
400 {
401 	dout("con_put %p nref = %d -> %d\n", con,
402 	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
403 	BUG_ON(atomic_read(&con->nref) == 0);
404 	if (atomic_dec_and_test(&con->nref)) {
405 		BUG_ON(con->sock);
406 		kfree(con);
407 	}
408 }
409 
410 /*
411  * initialize a new connection.
412  */
413 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
414 {
415 	dout("con_init %p\n", con);
416 	memset(con, 0, sizeof(*con));
417 	atomic_set(&con->nref, 1);
418 	con->msgr = msgr;
419 	mutex_init(&con->mutex);
420 	INIT_LIST_HEAD(&con->out_queue);
421 	INIT_LIST_HEAD(&con->out_sent);
422 	INIT_DELAYED_WORK(&con->work, con_work);
423 }
424 EXPORT_SYMBOL(ceph_con_init);
425 
426 
427 /*
428  * We maintain a global counter to order connection attempts.  Get
429  * a unique seq greater than @gt.
430  */
431 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
432 {
433 	u32 ret;
434 
435 	spin_lock(&msgr->global_seq_lock);
436 	if (msgr->global_seq < gt)
437 		msgr->global_seq = gt;
438 	ret = ++msgr->global_seq;
439 	spin_unlock(&msgr->global_seq_lock);
440 	return ret;
441 }
442 
443 
444 /*
445  * Prepare footer for currently outgoing message, and finish things
446  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
447  */
448 static void prepare_write_message_footer(struct ceph_connection *con, int v)
449 {
450 	struct ceph_msg *m = con->out_msg;
451 
452 	dout("prepare_write_message_footer %p\n", con);
453 	con->out_kvec_is_msg = true;
454 	con->out_kvec[v].iov_base = &m->footer;
455 	con->out_kvec[v].iov_len = sizeof(m->footer);
456 	con->out_kvec_bytes += sizeof(m->footer);
457 	con->out_kvec_left++;
458 	con->out_more = m->more_to_follow;
459 	con->out_msg_done = true;
460 }
461 
462 /*
463  * Prepare headers for the next outgoing message.
464  */
465 static void prepare_write_message(struct ceph_connection *con)
466 {
467 	struct ceph_msg *m;
468 	int v = 0;
469 
470 	con->out_kvec_bytes = 0;
471 	con->out_kvec_is_msg = true;
472 	con->out_msg_done = false;
473 
474 	/* Sneak an ack in there first?  If we can get it into the same
475 	 * TCP packet that's a good thing. */
476 	if (con->in_seq > con->in_seq_acked) {
477 		con->in_seq_acked = con->in_seq;
478 		con->out_kvec[v].iov_base = &tag_ack;
479 		con->out_kvec[v++].iov_len = 1;
480 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
481 		con->out_kvec[v].iov_base = &con->out_temp_ack;
482 		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
483 		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
484 	}
485 
486 	m = list_first_entry(&con->out_queue,
487 		       struct ceph_msg, list_head);
488 	con->out_msg = m;
489 
490 	/* put message on sent list */
491 	ceph_msg_get(m);
492 	list_move_tail(&m->list_head, &con->out_sent);
493 
494 	/*
495 	 * only assign outgoing seq # if we haven't sent this message
496 	 * yet.  if it is requeued, resend with it's original seq.
497 	 */
498 	if (m->needs_out_seq) {
499 		m->hdr.seq = cpu_to_le64(++con->out_seq);
500 		m->needs_out_seq = false;
501 	}
502 
503 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
504 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
505 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
506 	     le32_to_cpu(m->hdr.data_len),
507 	     m->nr_pages);
508 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
509 
510 	/* tag + hdr + front + middle */
511 	con->out_kvec[v].iov_base = &tag_msg;
512 	con->out_kvec[v++].iov_len = 1;
513 	con->out_kvec[v].iov_base = &m->hdr;
514 	con->out_kvec[v++].iov_len = sizeof(m->hdr);
515 	con->out_kvec[v++] = m->front;
516 	if (m->middle)
517 		con->out_kvec[v++] = m->middle->vec;
518 	con->out_kvec_left = v;
519 	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
520 		(m->middle ? m->middle->vec.iov_len : 0);
521 	con->out_kvec_cur = con->out_kvec;
522 
523 	/* fill in crc (except data pages), footer */
524 	con->out_msg->hdr.crc =
525 		cpu_to_le32(crc32c(0, (void *)&m->hdr,
526 				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
527 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
528 	con->out_msg->footer.front_crc =
529 		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
530 	if (m->middle)
531 		con->out_msg->footer.middle_crc =
532 			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
533 					   m->middle->vec.iov_len));
534 	else
535 		con->out_msg->footer.middle_crc = 0;
536 	con->out_msg->footer.data_crc = 0;
537 	dout("prepare_write_message front_crc %u data_crc %u\n",
538 	     le32_to_cpu(con->out_msg->footer.front_crc),
539 	     le32_to_cpu(con->out_msg->footer.middle_crc));
540 
541 	/* is there a data payload? */
542 	if (le32_to_cpu(m->hdr.data_len) > 0) {
543 		/* initialize page iterator */
544 		con->out_msg_pos.page = 0;
545 		if (m->pages)
546 			con->out_msg_pos.page_pos = m->page_alignment;
547 		else
548 			con->out_msg_pos.page_pos = 0;
549 		con->out_msg_pos.data_pos = 0;
550 		con->out_msg_pos.did_page_crc = 0;
551 		con->out_more = 1;  /* data + footer will follow */
552 	} else {
553 		/* no, queue up footer too and be done */
554 		prepare_write_message_footer(con, v);
555 	}
556 
557 	set_bit(WRITE_PENDING, &con->state);
558 }
559 
560 /*
561  * Prepare an ack.
562  */
563 static void prepare_write_ack(struct ceph_connection *con)
564 {
565 	dout("prepare_write_ack %p %llu -> %llu\n", con,
566 	     con->in_seq_acked, con->in_seq);
567 	con->in_seq_acked = con->in_seq;
568 
569 	con->out_kvec[0].iov_base = &tag_ack;
570 	con->out_kvec[0].iov_len = 1;
571 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
572 	con->out_kvec[1].iov_base = &con->out_temp_ack;
573 	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
574 	con->out_kvec_left = 2;
575 	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
576 	con->out_kvec_cur = con->out_kvec;
577 	con->out_more = 1;  /* more will follow.. eventually.. */
578 	set_bit(WRITE_PENDING, &con->state);
579 }
580 
581 /*
582  * Prepare to write keepalive byte.
583  */
584 static void prepare_write_keepalive(struct ceph_connection *con)
585 {
586 	dout("prepare_write_keepalive %p\n", con);
587 	con->out_kvec[0].iov_base = &tag_keepalive;
588 	con->out_kvec[0].iov_len = 1;
589 	con->out_kvec_left = 1;
590 	con->out_kvec_bytes = 1;
591 	con->out_kvec_cur = con->out_kvec;
592 	set_bit(WRITE_PENDING, &con->state);
593 }
594 
595 /*
596  * Connection negotiation.
597  */
598 
599 static int prepare_connect_authorizer(struct ceph_connection *con)
600 {
601 	void *auth_buf;
602 	int auth_len = 0;
603 	int auth_protocol = 0;
604 
605 	mutex_unlock(&con->mutex);
606 	if (con->ops->get_authorizer)
607 		con->ops->get_authorizer(con, &auth_buf, &auth_len,
608 					 &auth_protocol, &con->auth_reply_buf,
609 					 &con->auth_reply_buf_len,
610 					 con->auth_retry);
611 	mutex_lock(&con->mutex);
612 
613 	if (test_bit(CLOSED, &con->state) ||
614 	    test_bit(OPENING, &con->state))
615 		return -EAGAIN;
616 
617 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
618 	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
619 
620 	if (auth_len) {
621 		con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
622 		con->out_kvec[con->out_kvec_left].iov_len = auth_len;
623 		con->out_kvec_left++;
624 		con->out_kvec_bytes += auth_len;
625 	}
626 	return 0;
627 }
628 
629 /*
630  * We connected to a peer and are saying hello.
631  */
632 static void prepare_write_banner(struct ceph_messenger *msgr,
633 				 struct ceph_connection *con)
634 {
635 	int len = strlen(CEPH_BANNER);
636 
637 	con->out_kvec[0].iov_base = CEPH_BANNER;
638 	con->out_kvec[0].iov_len = len;
639 	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
640 	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
641 	con->out_kvec_left = 2;
642 	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
643 	con->out_kvec_cur = con->out_kvec;
644 	con->out_more = 0;
645 	set_bit(WRITE_PENDING, &con->state);
646 }
647 
648 static int prepare_write_connect(struct ceph_messenger *msgr,
649 				 struct ceph_connection *con,
650 				 int after_banner)
651 {
652 	unsigned global_seq = get_global_seq(con->msgr, 0);
653 	int proto;
654 
655 	switch (con->peer_name.type) {
656 	case CEPH_ENTITY_TYPE_MON:
657 		proto = CEPH_MONC_PROTOCOL;
658 		break;
659 	case CEPH_ENTITY_TYPE_OSD:
660 		proto = CEPH_OSDC_PROTOCOL;
661 		break;
662 	case CEPH_ENTITY_TYPE_MDS:
663 		proto = CEPH_MDSC_PROTOCOL;
664 		break;
665 	default:
666 		BUG();
667 	}
668 
669 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
670 	     con->connect_seq, global_seq, proto);
671 
672 	con->out_connect.features = cpu_to_le64(msgr->supported_features);
673 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
674 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
675 	con->out_connect.global_seq = cpu_to_le32(global_seq);
676 	con->out_connect.protocol_version = cpu_to_le32(proto);
677 	con->out_connect.flags = 0;
678 
679 	if (!after_banner) {
680 		con->out_kvec_left = 0;
681 		con->out_kvec_bytes = 0;
682 	}
683 	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
684 	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
685 	con->out_kvec_left++;
686 	con->out_kvec_bytes += sizeof(con->out_connect);
687 	con->out_kvec_cur = con->out_kvec;
688 	con->out_more = 0;
689 	set_bit(WRITE_PENDING, &con->state);
690 
691 	return prepare_connect_authorizer(con);
692 }
693 
694 
695 /*
696  * write as much of pending kvecs to the socket as we can.
697  *  1 -> done
698  *  0 -> socket full, but more to do
699  * <0 -> error
700  */
701 static int write_partial_kvec(struct ceph_connection *con)
702 {
703 	int ret;
704 
705 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
706 	while (con->out_kvec_bytes > 0) {
707 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
708 				       con->out_kvec_left, con->out_kvec_bytes,
709 				       con->out_more);
710 		if (ret <= 0)
711 			goto out;
712 		con->out_kvec_bytes -= ret;
713 		if (con->out_kvec_bytes == 0)
714 			break;            /* done */
715 		while (ret > 0) {
716 			if (ret >= con->out_kvec_cur->iov_len) {
717 				ret -= con->out_kvec_cur->iov_len;
718 				con->out_kvec_cur++;
719 				con->out_kvec_left--;
720 			} else {
721 				con->out_kvec_cur->iov_len -= ret;
722 				con->out_kvec_cur->iov_base += ret;
723 				ret = 0;
724 				break;
725 			}
726 		}
727 	}
728 	con->out_kvec_left = 0;
729 	con->out_kvec_is_msg = false;
730 	ret = 1;
731 out:
732 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
733 	     con->out_kvec_bytes, con->out_kvec_left, ret);
734 	return ret;  /* done! */
735 }
736 
737 #ifdef CONFIG_BLOCK
738 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
739 {
740 	if (!bio) {
741 		*iter = NULL;
742 		*seg = 0;
743 		return;
744 	}
745 	*iter = bio;
746 	*seg = bio->bi_idx;
747 }
748 
749 static void iter_bio_next(struct bio **bio_iter, int *seg)
750 {
751 	if (*bio_iter == NULL)
752 		return;
753 
754 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
755 
756 	(*seg)++;
757 	if (*seg == (*bio_iter)->bi_vcnt)
758 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
759 }
760 #endif
761 
762 /*
763  * Write as much message data payload as we can.  If we finish, queue
764  * up the footer.
765  *  1 -> done, footer is now queued in out_kvec[].
766  *  0 -> socket full, but more to do
767  * <0 -> error
768  */
769 static int write_partial_msg_pages(struct ceph_connection *con)
770 {
771 	struct ceph_msg *msg = con->out_msg;
772 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
773 	size_t len;
774 	int crc = con->msgr->nocrc;
775 	int ret;
776 	int total_max_write;
777 	int in_trail = 0;
778 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
779 
780 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
781 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
782 	     con->out_msg_pos.page_pos);
783 
784 #ifdef CONFIG_BLOCK
785 	if (msg->bio && !msg->bio_iter)
786 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
787 #endif
788 
789 	while (data_len > con->out_msg_pos.data_pos) {
790 		struct page *page = NULL;
791 		void *kaddr = NULL;
792 		int max_write = PAGE_SIZE;
793 		int page_shift = 0;
794 
795 		total_max_write = data_len - trail_len -
796 			con->out_msg_pos.data_pos;
797 
798 		/*
799 		 * if we are calculating the data crc (the default), we need
800 		 * to map the page.  if our pages[] has been revoked, use the
801 		 * zero page.
802 		 */
803 
804 		/* have we reached the trail part of the data? */
805 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
806 			in_trail = 1;
807 
808 			total_max_write = data_len - con->out_msg_pos.data_pos;
809 
810 			page = list_first_entry(&msg->trail->head,
811 						struct page, lru);
812 			if (crc)
813 				kaddr = kmap(page);
814 			max_write = PAGE_SIZE;
815 		} else if (msg->pages) {
816 			page = msg->pages[con->out_msg_pos.page];
817 			if (crc)
818 				kaddr = kmap(page);
819 		} else if (msg->pagelist) {
820 			page = list_first_entry(&msg->pagelist->head,
821 						struct page, lru);
822 			if (crc)
823 				kaddr = kmap(page);
824 #ifdef CONFIG_BLOCK
825 		} else if (msg->bio) {
826 			struct bio_vec *bv;
827 
828 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
829 			page = bv->bv_page;
830 			page_shift = bv->bv_offset;
831 			if (crc)
832 				kaddr = kmap(page) + page_shift;
833 			max_write = bv->bv_len;
834 #endif
835 		} else {
836 			page = con->msgr->zero_page;
837 			if (crc)
838 				kaddr = page_address(con->msgr->zero_page);
839 		}
840 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
841 			    total_max_write);
842 
843 		if (crc && !con->out_msg_pos.did_page_crc) {
844 			void *base = kaddr + con->out_msg_pos.page_pos;
845 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
846 
847 			BUG_ON(kaddr == NULL);
848 			con->out_msg->footer.data_crc =
849 				cpu_to_le32(crc32c(tmpcrc, base, len));
850 			con->out_msg_pos.did_page_crc = 1;
851 		}
852 		ret = kernel_sendpage(con->sock, page,
853 				      con->out_msg_pos.page_pos + page_shift,
854 				      len,
855 				      MSG_DONTWAIT | MSG_NOSIGNAL |
856 				      MSG_MORE);
857 
858 		if (crc &&
859 		    (msg->pages || msg->pagelist || msg->bio || in_trail))
860 			kunmap(page);
861 
862 		if (ret == -EAGAIN)
863 			ret = 0;
864 		if (ret <= 0)
865 			goto out;
866 
867 		con->out_msg_pos.data_pos += ret;
868 		con->out_msg_pos.page_pos += ret;
869 		if (ret == len) {
870 			con->out_msg_pos.page_pos = 0;
871 			con->out_msg_pos.page++;
872 			con->out_msg_pos.did_page_crc = 0;
873 			if (in_trail)
874 				list_move_tail(&page->lru,
875 					       &msg->trail->head);
876 			else if (msg->pagelist)
877 				list_move_tail(&page->lru,
878 					       &msg->pagelist->head);
879 #ifdef CONFIG_BLOCK
880 			else if (msg->bio)
881 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
882 #endif
883 		}
884 	}
885 
886 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
887 
888 	/* prepare and queue up footer, too */
889 	if (!crc)
890 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
891 	con->out_kvec_bytes = 0;
892 	con->out_kvec_left = 0;
893 	con->out_kvec_cur = con->out_kvec;
894 	prepare_write_message_footer(con, 0);
895 	ret = 1;
896 out:
897 	return ret;
898 }
899 
900 /*
901  * write some zeros
902  */
903 static int write_partial_skip(struct ceph_connection *con)
904 {
905 	int ret;
906 
907 	while (con->out_skip > 0) {
908 		struct kvec iov = {
909 			.iov_base = page_address(con->msgr->zero_page),
910 			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
911 		};
912 
913 		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
914 		if (ret <= 0)
915 			goto out;
916 		con->out_skip -= ret;
917 	}
918 	ret = 1;
919 out:
920 	return ret;
921 }
922 
923 /*
924  * Prepare to read connection handshake, or an ack.
925  */
926 static void prepare_read_banner(struct ceph_connection *con)
927 {
928 	dout("prepare_read_banner %p\n", con);
929 	con->in_base_pos = 0;
930 }
931 
932 static void prepare_read_connect(struct ceph_connection *con)
933 {
934 	dout("prepare_read_connect %p\n", con);
935 	con->in_base_pos = 0;
936 }
937 
938 static void prepare_read_ack(struct ceph_connection *con)
939 {
940 	dout("prepare_read_ack %p\n", con);
941 	con->in_base_pos = 0;
942 }
943 
944 static void prepare_read_tag(struct ceph_connection *con)
945 {
946 	dout("prepare_read_tag %p\n", con);
947 	con->in_base_pos = 0;
948 	con->in_tag = CEPH_MSGR_TAG_READY;
949 }
950 
951 /*
952  * Prepare to read a message.
953  */
954 static int prepare_read_message(struct ceph_connection *con)
955 {
956 	dout("prepare_read_message %p\n", con);
957 	BUG_ON(con->in_msg != NULL);
958 	con->in_base_pos = 0;
959 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
960 	return 0;
961 }
962 
963 
964 static int read_partial(struct ceph_connection *con,
965 			int *to, int size, void *object)
966 {
967 	*to += size;
968 	while (con->in_base_pos < *to) {
969 		int left = *to - con->in_base_pos;
970 		int have = size - left;
971 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
972 		if (ret <= 0)
973 			return ret;
974 		con->in_base_pos += ret;
975 	}
976 	return 1;
977 }
978 
979 
980 /*
981  * Read all or part of the connect-side handshake on a new connection
982  */
983 static int read_partial_banner(struct ceph_connection *con)
984 {
985 	int ret, to = 0;
986 
987 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
988 
989 	/* peer's banner */
990 	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
991 	if (ret <= 0)
992 		goto out;
993 	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
994 			   &con->actual_peer_addr);
995 	if (ret <= 0)
996 		goto out;
997 	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
998 			   &con->peer_addr_for_me);
999 	if (ret <= 0)
1000 		goto out;
1001 out:
1002 	return ret;
1003 }
1004 
1005 static int read_partial_connect(struct ceph_connection *con)
1006 {
1007 	int ret, to = 0;
1008 
1009 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1010 
1011 	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1012 	if (ret <= 0)
1013 		goto out;
1014 	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1015 			   con->auth_reply_buf);
1016 	if (ret <= 0)
1017 		goto out;
1018 
1019 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1020 	     con, (int)con->in_reply.tag,
1021 	     le32_to_cpu(con->in_reply.connect_seq),
1022 	     le32_to_cpu(con->in_reply.global_seq));
1023 out:
1024 	return ret;
1025 
1026 }
1027 
1028 /*
1029  * Verify the hello banner looks okay.
1030  */
1031 static int verify_hello(struct ceph_connection *con)
1032 {
1033 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1034 		pr_err("connect to %s got bad banner\n",
1035 		       ceph_pr_addr(&con->peer_addr.in_addr));
1036 		con->error_msg = "protocol error, bad banner";
1037 		return -1;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static bool addr_is_blank(struct sockaddr_storage *ss)
1043 {
1044 	switch (ss->ss_family) {
1045 	case AF_INET:
1046 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1047 	case AF_INET6:
1048 		return
1049 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1050 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1051 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1052 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1053 	}
1054 	return false;
1055 }
1056 
1057 static int addr_port(struct sockaddr_storage *ss)
1058 {
1059 	switch (ss->ss_family) {
1060 	case AF_INET:
1061 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1062 	case AF_INET6:
1063 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1064 	}
1065 	return 0;
1066 }
1067 
1068 static void addr_set_port(struct sockaddr_storage *ss, int p)
1069 {
1070 	switch (ss->ss_family) {
1071 	case AF_INET:
1072 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1073 		break;
1074 	case AF_INET6:
1075 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1076 		break;
1077 	}
1078 }
1079 
1080 /*
1081  * Parse an ip[:port] list into an addr array.  Use the default
1082  * monitor port if a port isn't specified.
1083  */
1084 int ceph_parse_ips(const char *c, const char *end,
1085 		   struct ceph_entity_addr *addr,
1086 		   int max_count, int *count)
1087 {
1088 	int i;
1089 	const char *p = c;
1090 
1091 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1092 	for (i = 0; i < max_count; i++) {
1093 		const char *ipend;
1094 		struct sockaddr_storage *ss = &addr[i].in_addr;
1095 		struct sockaddr_in *in4 = (void *)ss;
1096 		struct sockaddr_in6 *in6 = (void *)ss;
1097 		int port;
1098 		char delim = ',';
1099 
1100 		if (*p == '[') {
1101 			delim = ']';
1102 			p++;
1103 		}
1104 
1105 		memset(ss, 0, sizeof(*ss));
1106 		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1107 			     delim, &ipend))
1108 			ss->ss_family = AF_INET;
1109 		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1110 				  delim, &ipend))
1111 			ss->ss_family = AF_INET6;
1112 		else
1113 			goto bad;
1114 		p = ipend;
1115 
1116 		if (delim == ']') {
1117 			if (*p != ']') {
1118 				dout("missing matching ']'\n");
1119 				goto bad;
1120 			}
1121 			p++;
1122 		}
1123 
1124 		/* port? */
1125 		if (p < end && *p == ':') {
1126 			port = 0;
1127 			p++;
1128 			while (p < end && *p >= '0' && *p <= '9') {
1129 				port = (port * 10) + (*p - '0');
1130 				p++;
1131 			}
1132 			if (port > 65535 || port == 0)
1133 				goto bad;
1134 		} else {
1135 			port = CEPH_MON_PORT;
1136 		}
1137 
1138 		addr_set_port(ss, port);
1139 
1140 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1141 
1142 		if (p == end)
1143 			break;
1144 		if (*p != ',')
1145 			goto bad;
1146 		p++;
1147 	}
1148 
1149 	if (p != end)
1150 		goto bad;
1151 
1152 	if (count)
1153 		*count = i + 1;
1154 	return 0;
1155 
1156 bad:
1157 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1158 	return -EINVAL;
1159 }
1160 EXPORT_SYMBOL(ceph_parse_ips);
1161 
1162 static int process_banner(struct ceph_connection *con)
1163 {
1164 	dout("process_banner on %p\n", con);
1165 
1166 	if (verify_hello(con) < 0)
1167 		return -1;
1168 
1169 	ceph_decode_addr(&con->actual_peer_addr);
1170 	ceph_decode_addr(&con->peer_addr_for_me);
1171 
1172 	/*
1173 	 * Make sure the other end is who we wanted.  note that the other
1174 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1175 	 * them the benefit of the doubt.
1176 	 */
1177 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1178 		   sizeof(con->peer_addr)) != 0 &&
1179 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1180 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1181 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1182 			   ceph_pr_addr(&con->peer_addr.in_addr),
1183 			   (int)le32_to_cpu(con->peer_addr.nonce),
1184 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1185 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1186 		con->error_msg = "wrong peer at address";
1187 		return -1;
1188 	}
1189 
1190 	/*
1191 	 * did we learn our address?
1192 	 */
1193 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1194 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1195 
1196 		memcpy(&con->msgr->inst.addr.in_addr,
1197 		       &con->peer_addr_for_me.in_addr,
1198 		       sizeof(con->peer_addr_for_me.in_addr));
1199 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1200 		encode_my_addr(con->msgr);
1201 		dout("process_banner learned my addr is %s\n",
1202 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1203 	}
1204 
1205 	set_bit(NEGOTIATING, &con->state);
1206 	prepare_read_connect(con);
1207 	return 0;
1208 }
1209 
1210 static void fail_protocol(struct ceph_connection *con)
1211 {
1212 	reset_connection(con);
1213 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1214 
1215 	mutex_unlock(&con->mutex);
1216 	if (con->ops->bad_proto)
1217 		con->ops->bad_proto(con);
1218 	mutex_lock(&con->mutex);
1219 }
1220 
1221 static int process_connect(struct ceph_connection *con)
1222 {
1223 	u64 sup_feat = con->msgr->supported_features;
1224 	u64 req_feat = con->msgr->required_features;
1225 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1226 	int ret;
1227 
1228 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1229 
1230 	switch (con->in_reply.tag) {
1231 	case CEPH_MSGR_TAG_FEATURES:
1232 		pr_err("%s%lld %s feature set mismatch,"
1233 		       " my %llx < server's %llx, missing %llx\n",
1234 		       ENTITY_NAME(con->peer_name),
1235 		       ceph_pr_addr(&con->peer_addr.in_addr),
1236 		       sup_feat, server_feat, server_feat & ~sup_feat);
1237 		con->error_msg = "missing required protocol features";
1238 		fail_protocol(con);
1239 		return -1;
1240 
1241 	case CEPH_MSGR_TAG_BADPROTOVER:
1242 		pr_err("%s%lld %s protocol version mismatch,"
1243 		       " my %d != server's %d\n",
1244 		       ENTITY_NAME(con->peer_name),
1245 		       ceph_pr_addr(&con->peer_addr.in_addr),
1246 		       le32_to_cpu(con->out_connect.protocol_version),
1247 		       le32_to_cpu(con->in_reply.protocol_version));
1248 		con->error_msg = "protocol version mismatch";
1249 		fail_protocol(con);
1250 		return -1;
1251 
1252 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1253 		con->auth_retry++;
1254 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1255 		     con->auth_retry);
1256 		if (con->auth_retry == 2) {
1257 			con->error_msg = "connect authorization failure";
1258 			return -1;
1259 		}
1260 		con->auth_retry = 1;
1261 		ret = prepare_write_connect(con->msgr, con, 0);
1262 		if (ret < 0)
1263 			return ret;
1264 		prepare_read_connect(con);
1265 		break;
1266 
1267 	case CEPH_MSGR_TAG_RESETSESSION:
1268 		/*
1269 		 * If we connected with a large connect_seq but the peer
1270 		 * has no record of a session with us (no connection, or
1271 		 * connect_seq == 0), they will send RESETSESION to indicate
1272 		 * that they must have reset their session, and may have
1273 		 * dropped messages.
1274 		 */
1275 		dout("process_connect got RESET peer seq %u\n",
1276 		     le32_to_cpu(con->in_connect.connect_seq));
1277 		pr_err("%s%lld %s connection reset\n",
1278 		       ENTITY_NAME(con->peer_name),
1279 		       ceph_pr_addr(&con->peer_addr.in_addr));
1280 		reset_connection(con);
1281 		prepare_write_connect(con->msgr, con, 0);
1282 		prepare_read_connect(con);
1283 
1284 		/* Tell ceph about it. */
1285 		mutex_unlock(&con->mutex);
1286 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1287 		if (con->ops->peer_reset)
1288 			con->ops->peer_reset(con);
1289 		mutex_lock(&con->mutex);
1290 		if (test_bit(CLOSED, &con->state) ||
1291 		    test_bit(OPENING, &con->state))
1292 			return -EAGAIN;
1293 		break;
1294 
1295 	case CEPH_MSGR_TAG_RETRY_SESSION:
1296 		/*
1297 		 * If we sent a smaller connect_seq than the peer has, try
1298 		 * again with a larger value.
1299 		 */
1300 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1301 		     le32_to_cpu(con->out_connect.connect_seq),
1302 		     le32_to_cpu(con->in_connect.connect_seq));
1303 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1304 		prepare_write_connect(con->msgr, con, 0);
1305 		prepare_read_connect(con);
1306 		break;
1307 
1308 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1309 		/*
1310 		 * If we sent a smaller global_seq than the peer has, try
1311 		 * again with a larger value.
1312 		 */
1313 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1314 		     con->peer_global_seq,
1315 		     le32_to_cpu(con->in_connect.global_seq));
1316 		get_global_seq(con->msgr,
1317 			       le32_to_cpu(con->in_connect.global_seq));
1318 		prepare_write_connect(con->msgr, con, 0);
1319 		prepare_read_connect(con);
1320 		break;
1321 
1322 	case CEPH_MSGR_TAG_READY:
1323 		if (req_feat & ~server_feat) {
1324 			pr_err("%s%lld %s protocol feature mismatch,"
1325 			       " my required %llx > server's %llx, need %llx\n",
1326 			       ENTITY_NAME(con->peer_name),
1327 			       ceph_pr_addr(&con->peer_addr.in_addr),
1328 			       req_feat, server_feat, req_feat & ~server_feat);
1329 			con->error_msg = "missing required protocol features";
1330 			fail_protocol(con);
1331 			return -1;
1332 		}
1333 		clear_bit(CONNECTING, &con->state);
1334 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1335 		con->connect_seq++;
1336 		con->peer_features = server_feat;
1337 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1338 		     con->peer_global_seq,
1339 		     le32_to_cpu(con->in_reply.connect_seq),
1340 		     con->connect_seq);
1341 		WARN_ON(con->connect_seq !=
1342 			le32_to_cpu(con->in_reply.connect_seq));
1343 
1344 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1345 			set_bit(LOSSYTX, &con->state);
1346 
1347 		prepare_read_tag(con);
1348 		break;
1349 
1350 	case CEPH_MSGR_TAG_WAIT:
1351 		/*
1352 		 * If there is a connection race (we are opening
1353 		 * connections to each other), one of us may just have
1354 		 * to WAIT.  This shouldn't happen if we are the
1355 		 * client.
1356 		 */
1357 		pr_err("process_connect got WAIT as client\n");
1358 		con->error_msg = "protocol error, got WAIT as client";
1359 		return -1;
1360 
1361 	default:
1362 		pr_err("connect protocol error, will retry\n");
1363 		con->error_msg = "protocol error, garbage tag during connect";
1364 		return -1;
1365 	}
1366 	return 0;
1367 }
1368 
1369 
1370 /*
1371  * read (part of) an ack
1372  */
1373 static int read_partial_ack(struct ceph_connection *con)
1374 {
1375 	int to = 0;
1376 
1377 	return read_partial(con, &to, sizeof(con->in_temp_ack),
1378 			    &con->in_temp_ack);
1379 }
1380 
1381 
1382 /*
1383  * We can finally discard anything that's been acked.
1384  */
1385 static void process_ack(struct ceph_connection *con)
1386 {
1387 	struct ceph_msg *m;
1388 	u64 ack = le64_to_cpu(con->in_temp_ack);
1389 	u64 seq;
1390 
1391 	while (!list_empty(&con->out_sent)) {
1392 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1393 				     list_head);
1394 		seq = le64_to_cpu(m->hdr.seq);
1395 		if (seq > ack)
1396 			break;
1397 		dout("got ack for seq %llu type %d at %p\n", seq,
1398 		     le16_to_cpu(m->hdr.type), m);
1399 		m->ack_stamp = jiffies;
1400 		ceph_msg_remove(m);
1401 	}
1402 	prepare_read_tag(con);
1403 }
1404 
1405 
1406 
1407 
1408 static int read_partial_message_section(struct ceph_connection *con,
1409 					struct kvec *section,
1410 					unsigned int sec_len, u32 *crc)
1411 {
1412 	int ret, left;
1413 
1414 	BUG_ON(!section);
1415 
1416 	while (section->iov_len < sec_len) {
1417 		BUG_ON(section->iov_base == NULL);
1418 		left = sec_len - section->iov_len;
1419 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1420 				       section->iov_len, left);
1421 		if (ret <= 0)
1422 			return ret;
1423 		section->iov_len += ret;
1424 		if (section->iov_len == sec_len)
1425 			*crc = crc32c(0, section->iov_base,
1426 				      section->iov_len);
1427 	}
1428 
1429 	return 1;
1430 }
1431 
1432 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1433 				struct ceph_msg_header *hdr,
1434 				int *skip);
1435 
1436 
1437 static int read_partial_message_pages(struct ceph_connection *con,
1438 				      struct page **pages,
1439 				      unsigned data_len, int datacrc)
1440 {
1441 	void *p;
1442 	int ret;
1443 	int left;
1444 
1445 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1446 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1447 	/* (page) data */
1448 	BUG_ON(pages == NULL);
1449 	p = kmap(pages[con->in_msg_pos.page]);
1450 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1451 			       left);
1452 	if (ret > 0 && datacrc)
1453 		con->in_data_crc =
1454 			crc32c(con->in_data_crc,
1455 				  p + con->in_msg_pos.page_pos, ret);
1456 	kunmap(pages[con->in_msg_pos.page]);
1457 	if (ret <= 0)
1458 		return ret;
1459 	con->in_msg_pos.data_pos += ret;
1460 	con->in_msg_pos.page_pos += ret;
1461 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1462 		con->in_msg_pos.page_pos = 0;
1463 		con->in_msg_pos.page++;
1464 	}
1465 
1466 	return ret;
1467 }
1468 
1469 #ifdef CONFIG_BLOCK
1470 static int read_partial_message_bio(struct ceph_connection *con,
1471 				    struct bio **bio_iter, int *bio_seg,
1472 				    unsigned data_len, int datacrc)
1473 {
1474 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1475 	void *p;
1476 	int ret, left;
1477 
1478 	if (IS_ERR(bv))
1479 		return PTR_ERR(bv);
1480 
1481 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1482 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1483 
1484 	p = kmap(bv->bv_page) + bv->bv_offset;
1485 
1486 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1487 			       left);
1488 	if (ret > 0 && datacrc)
1489 		con->in_data_crc =
1490 			crc32c(con->in_data_crc,
1491 				  p + con->in_msg_pos.page_pos, ret);
1492 	kunmap(bv->bv_page);
1493 	if (ret <= 0)
1494 		return ret;
1495 	con->in_msg_pos.data_pos += ret;
1496 	con->in_msg_pos.page_pos += ret;
1497 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1498 		con->in_msg_pos.page_pos = 0;
1499 		iter_bio_next(bio_iter, bio_seg);
1500 	}
1501 
1502 	return ret;
1503 }
1504 #endif
1505 
1506 /*
1507  * read (part of) a message.
1508  */
1509 static int read_partial_message(struct ceph_connection *con)
1510 {
1511 	struct ceph_msg *m = con->in_msg;
1512 	int ret;
1513 	int to, left;
1514 	unsigned front_len, middle_len, data_len;
1515 	int datacrc = con->msgr->nocrc;
1516 	int skip;
1517 	u64 seq;
1518 
1519 	dout("read_partial_message con %p msg %p\n", con, m);
1520 
1521 	/* header */
1522 	while (con->in_base_pos < sizeof(con->in_hdr)) {
1523 		left = sizeof(con->in_hdr) - con->in_base_pos;
1524 		ret = ceph_tcp_recvmsg(con->sock,
1525 				       (char *)&con->in_hdr + con->in_base_pos,
1526 				       left);
1527 		if (ret <= 0)
1528 			return ret;
1529 		con->in_base_pos += ret;
1530 		if (con->in_base_pos == sizeof(con->in_hdr)) {
1531 			u32 crc = crc32c(0, (void *)&con->in_hdr,
1532 				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1533 			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1534 				pr_err("read_partial_message bad hdr "
1535 				       " crc %u != expected %u\n",
1536 				       crc, con->in_hdr.crc);
1537 				return -EBADMSG;
1538 			}
1539 		}
1540 	}
1541 	front_len = le32_to_cpu(con->in_hdr.front_len);
1542 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1543 		return -EIO;
1544 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1545 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1546 		return -EIO;
1547 	data_len = le32_to_cpu(con->in_hdr.data_len);
1548 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1549 		return -EIO;
1550 
1551 	/* verify seq# */
1552 	seq = le64_to_cpu(con->in_hdr.seq);
1553 	if ((s64)seq - (s64)con->in_seq < 1) {
1554 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1555 			ENTITY_NAME(con->peer_name),
1556 			ceph_pr_addr(&con->peer_addr.in_addr),
1557 			seq, con->in_seq + 1);
1558 		con->in_base_pos = -front_len - middle_len - data_len -
1559 			sizeof(m->footer);
1560 		con->in_tag = CEPH_MSGR_TAG_READY;
1561 		return 0;
1562 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1563 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1564 		       seq, con->in_seq + 1);
1565 		con->error_msg = "bad message sequence # for incoming message";
1566 		return -EBADMSG;
1567 	}
1568 
1569 	/* allocate message? */
1570 	if (!con->in_msg) {
1571 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1572 		     con->in_hdr.front_len, con->in_hdr.data_len);
1573 		skip = 0;
1574 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1575 		if (skip) {
1576 			/* skip this message */
1577 			dout("alloc_msg said skip message\n");
1578 			BUG_ON(con->in_msg);
1579 			con->in_base_pos = -front_len - middle_len - data_len -
1580 				sizeof(m->footer);
1581 			con->in_tag = CEPH_MSGR_TAG_READY;
1582 			con->in_seq++;
1583 			return 0;
1584 		}
1585 		if (!con->in_msg) {
1586 			con->error_msg =
1587 				"error allocating memory for incoming message";
1588 			return -ENOMEM;
1589 		}
1590 		m = con->in_msg;
1591 		m->front.iov_len = 0;    /* haven't read it yet */
1592 		if (m->middle)
1593 			m->middle->vec.iov_len = 0;
1594 
1595 		con->in_msg_pos.page = 0;
1596 		if (m->pages)
1597 			con->in_msg_pos.page_pos = m->page_alignment;
1598 		else
1599 			con->in_msg_pos.page_pos = 0;
1600 		con->in_msg_pos.data_pos = 0;
1601 	}
1602 
1603 	/* front */
1604 	ret = read_partial_message_section(con, &m->front, front_len,
1605 					   &con->in_front_crc);
1606 	if (ret <= 0)
1607 		return ret;
1608 
1609 	/* middle */
1610 	if (m->middle) {
1611 		ret = read_partial_message_section(con, &m->middle->vec,
1612 						   middle_len,
1613 						   &con->in_middle_crc);
1614 		if (ret <= 0)
1615 			return ret;
1616 	}
1617 #ifdef CONFIG_BLOCK
1618 	if (m->bio && !m->bio_iter)
1619 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1620 #endif
1621 
1622 	/* (page) data */
1623 	while (con->in_msg_pos.data_pos < data_len) {
1624 		if (m->pages) {
1625 			ret = read_partial_message_pages(con, m->pages,
1626 						 data_len, datacrc);
1627 			if (ret <= 0)
1628 				return ret;
1629 #ifdef CONFIG_BLOCK
1630 		} else if (m->bio) {
1631 
1632 			ret = read_partial_message_bio(con,
1633 						 &m->bio_iter, &m->bio_seg,
1634 						 data_len, datacrc);
1635 			if (ret <= 0)
1636 				return ret;
1637 #endif
1638 		} else {
1639 			BUG_ON(1);
1640 		}
1641 	}
1642 
1643 	/* footer */
1644 	to = sizeof(m->hdr) + sizeof(m->footer);
1645 	while (con->in_base_pos < to) {
1646 		left = to - con->in_base_pos;
1647 		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1648 				       (con->in_base_pos - sizeof(m->hdr)),
1649 				       left);
1650 		if (ret <= 0)
1651 			return ret;
1652 		con->in_base_pos += ret;
1653 	}
1654 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1655 	     m, front_len, m->footer.front_crc, middle_len,
1656 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1657 
1658 	/* crc ok? */
1659 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1660 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1661 		       m, con->in_front_crc, m->footer.front_crc);
1662 		return -EBADMSG;
1663 	}
1664 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1665 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1666 		       m, con->in_middle_crc, m->footer.middle_crc);
1667 		return -EBADMSG;
1668 	}
1669 	if (datacrc &&
1670 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1671 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1672 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1673 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1674 		return -EBADMSG;
1675 	}
1676 
1677 	return 1; /* done! */
1678 }
1679 
1680 /*
1681  * Process message.  This happens in the worker thread.  The callback should
1682  * be careful not to do anything that waits on other incoming messages or it
1683  * may deadlock.
1684  */
1685 static void process_message(struct ceph_connection *con)
1686 {
1687 	struct ceph_msg *msg;
1688 
1689 	msg = con->in_msg;
1690 	con->in_msg = NULL;
1691 
1692 	/* if first message, set peer_name */
1693 	if (con->peer_name.type == 0)
1694 		con->peer_name = msg->hdr.src;
1695 
1696 	con->in_seq++;
1697 	mutex_unlock(&con->mutex);
1698 
1699 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1700 	     msg, le64_to_cpu(msg->hdr.seq),
1701 	     ENTITY_NAME(msg->hdr.src),
1702 	     le16_to_cpu(msg->hdr.type),
1703 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1704 	     le32_to_cpu(msg->hdr.front_len),
1705 	     le32_to_cpu(msg->hdr.data_len),
1706 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1707 	con->ops->dispatch(con, msg);
1708 
1709 	mutex_lock(&con->mutex);
1710 	prepare_read_tag(con);
1711 }
1712 
1713 
1714 /*
1715  * Write something to the socket.  Called in a worker thread when the
1716  * socket appears to be writeable and we have something ready to send.
1717  */
1718 static int try_write(struct ceph_connection *con)
1719 {
1720 	struct ceph_messenger *msgr = con->msgr;
1721 	int ret = 1;
1722 
1723 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1724 	     atomic_read(&con->nref));
1725 
1726 more:
1727 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1728 
1729 	/* open the socket first? */
1730 	if (con->sock == NULL) {
1731 		prepare_write_banner(msgr, con);
1732 		prepare_write_connect(msgr, con, 1);
1733 		prepare_read_banner(con);
1734 		set_bit(CONNECTING, &con->state);
1735 		clear_bit(NEGOTIATING, &con->state);
1736 
1737 		BUG_ON(con->in_msg);
1738 		con->in_tag = CEPH_MSGR_TAG_READY;
1739 		dout("try_write initiating connect on %p new state %lu\n",
1740 		     con, con->state);
1741 		con->sock = ceph_tcp_connect(con);
1742 		if (IS_ERR(con->sock)) {
1743 			con->sock = NULL;
1744 			con->error_msg = "connect error";
1745 			ret = -1;
1746 			goto out;
1747 		}
1748 	}
1749 
1750 more_kvec:
1751 	/* kvec data queued? */
1752 	if (con->out_skip) {
1753 		ret = write_partial_skip(con);
1754 		if (ret <= 0)
1755 			goto out;
1756 	}
1757 	if (con->out_kvec_left) {
1758 		ret = write_partial_kvec(con);
1759 		if (ret <= 0)
1760 			goto out;
1761 	}
1762 
1763 	/* msg pages? */
1764 	if (con->out_msg) {
1765 		if (con->out_msg_done) {
1766 			ceph_msg_put(con->out_msg);
1767 			con->out_msg = NULL;   /* we're done with this one */
1768 			goto do_next;
1769 		}
1770 
1771 		ret = write_partial_msg_pages(con);
1772 		if (ret == 1)
1773 			goto more_kvec;  /* we need to send the footer, too! */
1774 		if (ret == 0)
1775 			goto out;
1776 		if (ret < 0) {
1777 			dout("try_write write_partial_msg_pages err %d\n",
1778 			     ret);
1779 			goto out;
1780 		}
1781 	}
1782 
1783 do_next:
1784 	if (!test_bit(CONNECTING, &con->state)) {
1785 		/* is anything else pending? */
1786 		if (!list_empty(&con->out_queue)) {
1787 			prepare_write_message(con);
1788 			goto more;
1789 		}
1790 		if (con->in_seq > con->in_seq_acked) {
1791 			prepare_write_ack(con);
1792 			goto more;
1793 		}
1794 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1795 			prepare_write_keepalive(con);
1796 			goto more;
1797 		}
1798 	}
1799 
1800 	/* Nothing to do! */
1801 	clear_bit(WRITE_PENDING, &con->state);
1802 	dout("try_write nothing else to write.\n");
1803 	ret = 0;
1804 out:
1805 	dout("try_write done on %p ret %d\n", con, ret);
1806 	return ret;
1807 }
1808 
1809 
1810 
1811 /*
1812  * Read what we can from the socket.
1813  */
1814 static int try_read(struct ceph_connection *con)
1815 {
1816 	int ret = -1;
1817 
1818 	if (!con->sock)
1819 		return 0;
1820 
1821 	if (test_bit(STANDBY, &con->state))
1822 		return 0;
1823 
1824 	dout("try_read start on %p\n", con);
1825 
1826 more:
1827 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1828 	     con->in_base_pos);
1829 
1830 	/*
1831 	 * process_connect and process_message drop and re-take
1832 	 * con->mutex.  make sure we handle a racing close or reopen.
1833 	 */
1834 	if (test_bit(CLOSED, &con->state) ||
1835 	    test_bit(OPENING, &con->state)) {
1836 		ret = -EAGAIN;
1837 		goto out;
1838 	}
1839 
1840 	if (test_bit(CONNECTING, &con->state)) {
1841 		if (!test_bit(NEGOTIATING, &con->state)) {
1842 			dout("try_read connecting\n");
1843 			ret = read_partial_banner(con);
1844 			if (ret <= 0)
1845 				goto out;
1846 			ret = process_banner(con);
1847 			if (ret < 0)
1848 				goto out;
1849 		}
1850 		ret = read_partial_connect(con);
1851 		if (ret <= 0)
1852 			goto out;
1853 		ret = process_connect(con);
1854 		if (ret < 0)
1855 			goto out;
1856 		goto more;
1857 	}
1858 
1859 	if (con->in_base_pos < 0) {
1860 		/*
1861 		 * skipping + discarding content.
1862 		 *
1863 		 * FIXME: there must be a better way to do this!
1864 		 */
1865 		static char buf[1024];
1866 		int skip = min(1024, -con->in_base_pos);
1867 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1868 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1869 		if (ret <= 0)
1870 			goto out;
1871 		con->in_base_pos += ret;
1872 		if (con->in_base_pos)
1873 			goto more;
1874 	}
1875 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1876 		/*
1877 		 * what's next?
1878 		 */
1879 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1880 		if (ret <= 0)
1881 			goto out;
1882 		dout("try_read got tag %d\n", (int)con->in_tag);
1883 		switch (con->in_tag) {
1884 		case CEPH_MSGR_TAG_MSG:
1885 			prepare_read_message(con);
1886 			break;
1887 		case CEPH_MSGR_TAG_ACK:
1888 			prepare_read_ack(con);
1889 			break;
1890 		case CEPH_MSGR_TAG_CLOSE:
1891 			set_bit(CLOSED, &con->state);   /* fixme */
1892 			goto out;
1893 		default:
1894 			goto bad_tag;
1895 		}
1896 	}
1897 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1898 		ret = read_partial_message(con);
1899 		if (ret <= 0) {
1900 			switch (ret) {
1901 			case -EBADMSG:
1902 				con->error_msg = "bad crc";
1903 				ret = -EIO;
1904 				break;
1905 			case -EIO:
1906 				con->error_msg = "io error";
1907 				break;
1908 			}
1909 			goto out;
1910 		}
1911 		if (con->in_tag == CEPH_MSGR_TAG_READY)
1912 			goto more;
1913 		process_message(con);
1914 		goto more;
1915 	}
1916 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1917 		ret = read_partial_ack(con);
1918 		if (ret <= 0)
1919 			goto out;
1920 		process_ack(con);
1921 		goto more;
1922 	}
1923 
1924 out:
1925 	dout("try_read done on %p ret %d\n", con, ret);
1926 	return ret;
1927 
1928 bad_tag:
1929 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1930 	con->error_msg = "protocol error, garbage tag";
1931 	ret = -1;
1932 	goto out;
1933 }
1934 
1935 
1936 /*
1937  * Atomically queue work on a connection.  Bump @con reference to
1938  * avoid races with connection teardown.
1939  */
1940 static void queue_con(struct ceph_connection *con)
1941 {
1942 	if (test_bit(DEAD, &con->state)) {
1943 		dout("queue_con %p ignoring: DEAD\n",
1944 		     con);
1945 		return;
1946 	}
1947 
1948 	if (!con->ops->get(con)) {
1949 		dout("queue_con %p ref count 0\n", con);
1950 		return;
1951 	}
1952 
1953 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1954 		dout("queue_con %p - already queued\n", con);
1955 		con->ops->put(con);
1956 	} else {
1957 		dout("queue_con %p\n", con);
1958 	}
1959 }
1960 
1961 /*
1962  * Do some work on a connection.  Drop a connection ref when we're done.
1963  */
1964 static void con_work(struct work_struct *work)
1965 {
1966 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1967 						   work.work);
1968 	int ret;
1969 
1970 	mutex_lock(&con->mutex);
1971 restart:
1972 	if (test_and_clear_bit(BACKOFF, &con->state)) {
1973 		dout("con_work %p backing off\n", con);
1974 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
1975 				       round_jiffies_relative(con->delay))) {
1976 			dout("con_work %p backoff %lu\n", con, con->delay);
1977 			mutex_unlock(&con->mutex);
1978 			return;
1979 		} else {
1980 			con->ops->put(con);
1981 			dout("con_work %p FAILED to back off %lu\n", con,
1982 			     con->delay);
1983 		}
1984 	}
1985 
1986 	if (test_bit(STANDBY, &con->state)) {
1987 		dout("con_work %p STANDBY\n", con);
1988 		goto done;
1989 	}
1990 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1991 		dout("con_work CLOSED\n");
1992 		con_close_socket(con);
1993 		goto done;
1994 	}
1995 	if (test_and_clear_bit(OPENING, &con->state)) {
1996 		/* reopen w/ new peer */
1997 		dout("con_work OPENING\n");
1998 		con_close_socket(con);
1999 	}
2000 
2001 	if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2002 		goto fault;
2003 
2004 	ret = try_read(con);
2005 	if (ret == -EAGAIN)
2006 		goto restart;
2007 	if (ret < 0)
2008 		goto fault;
2009 
2010 	ret = try_write(con);
2011 	if (ret == -EAGAIN)
2012 		goto restart;
2013 	if (ret < 0)
2014 		goto fault;
2015 
2016 done:
2017 	mutex_unlock(&con->mutex);
2018 done_unlocked:
2019 	con->ops->put(con);
2020 	return;
2021 
2022 fault:
2023 	mutex_unlock(&con->mutex);
2024 	ceph_fault(con);     /* error/fault path */
2025 	goto done_unlocked;
2026 }
2027 
2028 
2029 /*
2030  * Generic error/fault handler.  A retry mechanism is used with
2031  * exponential backoff
2032  */
2033 static void ceph_fault(struct ceph_connection *con)
2034 {
2035 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2036 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2037 	dout("fault %p state %lu to peer %s\n",
2038 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2039 
2040 	if (test_bit(LOSSYTX, &con->state)) {
2041 		dout("fault on LOSSYTX channel\n");
2042 		goto out;
2043 	}
2044 
2045 	mutex_lock(&con->mutex);
2046 	if (test_bit(CLOSED, &con->state))
2047 		goto out_unlock;
2048 
2049 	con_close_socket(con);
2050 
2051 	if (con->in_msg) {
2052 		ceph_msg_put(con->in_msg);
2053 		con->in_msg = NULL;
2054 	}
2055 
2056 	/* Requeue anything that hasn't been acked */
2057 	list_splice_init(&con->out_sent, &con->out_queue);
2058 
2059 	/* If there are no messages queued or keepalive pending, place
2060 	 * the connection in a STANDBY state */
2061 	if (list_empty(&con->out_queue) &&
2062 	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2063 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2064 		clear_bit(WRITE_PENDING, &con->state);
2065 		set_bit(STANDBY, &con->state);
2066 	} else {
2067 		/* retry after a delay. */
2068 		if (con->delay == 0)
2069 			con->delay = BASE_DELAY_INTERVAL;
2070 		else if (con->delay < MAX_DELAY_INTERVAL)
2071 			con->delay *= 2;
2072 		con->ops->get(con);
2073 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2074 				       round_jiffies_relative(con->delay))) {
2075 			dout("fault queued %p delay %lu\n", con, con->delay);
2076 		} else {
2077 			con->ops->put(con);
2078 			dout("fault failed to queue %p delay %lu, backoff\n",
2079 			     con, con->delay);
2080 			/*
2081 			 * In many cases we see a socket state change
2082 			 * while con_work is running and end up
2083 			 * queuing (non-delayed) work, such that we
2084 			 * can't backoff with a delay.  Set a flag so
2085 			 * that when con_work restarts we schedule the
2086 			 * delay then.
2087 			 */
2088 			set_bit(BACKOFF, &con->state);
2089 		}
2090 	}
2091 
2092 out_unlock:
2093 	mutex_unlock(&con->mutex);
2094 out:
2095 	/*
2096 	 * in case we faulted due to authentication, invalidate our
2097 	 * current tickets so that we can get new ones.
2098 	 */
2099 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2100 		dout("calling invalidate_authorizer()\n");
2101 		con->ops->invalidate_authorizer(con);
2102 	}
2103 
2104 	if (con->ops->fault)
2105 		con->ops->fault(con);
2106 }
2107 
2108 
2109 
2110 /*
2111  * create a new messenger instance
2112  */
2113 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2114 					     u32 supported_features,
2115 					     u32 required_features)
2116 {
2117 	struct ceph_messenger *msgr;
2118 
2119 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2120 	if (msgr == NULL)
2121 		return ERR_PTR(-ENOMEM);
2122 
2123 	msgr->supported_features = supported_features;
2124 	msgr->required_features = required_features;
2125 
2126 	spin_lock_init(&msgr->global_seq_lock);
2127 
2128 	/* the zero page is needed if a request is "canceled" while the message
2129 	 * is being written over the socket */
2130 	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2131 	if (!msgr->zero_page) {
2132 		kfree(msgr);
2133 		return ERR_PTR(-ENOMEM);
2134 	}
2135 	kmap(msgr->zero_page);
2136 
2137 	if (myaddr)
2138 		msgr->inst.addr = *myaddr;
2139 
2140 	/* select a random nonce */
2141 	msgr->inst.addr.type = 0;
2142 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2143 	encode_my_addr(msgr);
2144 
2145 	dout("messenger_create %p\n", msgr);
2146 	return msgr;
2147 }
2148 EXPORT_SYMBOL(ceph_messenger_create);
2149 
2150 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2151 {
2152 	dout("destroy %p\n", msgr);
2153 	kunmap(msgr->zero_page);
2154 	__free_page(msgr->zero_page);
2155 	kfree(msgr);
2156 	dout("destroyed messenger %p\n", msgr);
2157 }
2158 EXPORT_SYMBOL(ceph_messenger_destroy);
2159 
2160 static void clear_standby(struct ceph_connection *con)
2161 {
2162 	/* come back from STANDBY? */
2163 	if (test_and_clear_bit(STANDBY, &con->state)) {
2164 		mutex_lock(&con->mutex);
2165 		dout("clear_standby %p and ++connect_seq\n", con);
2166 		con->connect_seq++;
2167 		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2168 		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2169 		mutex_unlock(&con->mutex);
2170 	}
2171 }
2172 
2173 /*
2174  * Queue up an outgoing message on the given connection.
2175  */
2176 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2177 {
2178 	if (test_bit(CLOSED, &con->state)) {
2179 		dout("con_send %p closed, dropping %p\n", con, msg);
2180 		ceph_msg_put(msg);
2181 		return;
2182 	}
2183 
2184 	/* set src+dst */
2185 	msg->hdr.src = con->msgr->inst.name;
2186 
2187 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2188 
2189 	msg->needs_out_seq = true;
2190 
2191 	/* queue */
2192 	mutex_lock(&con->mutex);
2193 	BUG_ON(!list_empty(&msg->list_head));
2194 	list_add_tail(&msg->list_head, &con->out_queue);
2195 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2196 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2197 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2198 	     le32_to_cpu(msg->hdr.front_len),
2199 	     le32_to_cpu(msg->hdr.middle_len),
2200 	     le32_to_cpu(msg->hdr.data_len));
2201 	mutex_unlock(&con->mutex);
2202 
2203 	/* if there wasn't anything waiting to send before, queue
2204 	 * new work */
2205 	clear_standby(con);
2206 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2207 		queue_con(con);
2208 }
2209 EXPORT_SYMBOL(ceph_con_send);
2210 
2211 /*
2212  * Revoke a message that was previously queued for send
2213  */
2214 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2215 {
2216 	mutex_lock(&con->mutex);
2217 	if (!list_empty(&msg->list_head)) {
2218 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2219 		list_del_init(&msg->list_head);
2220 		ceph_msg_put(msg);
2221 		msg->hdr.seq = 0;
2222 	}
2223 	if (con->out_msg == msg) {
2224 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2225 		con->out_msg = NULL;
2226 		if (con->out_kvec_is_msg) {
2227 			con->out_skip = con->out_kvec_bytes;
2228 			con->out_kvec_is_msg = false;
2229 		}
2230 		ceph_msg_put(msg);
2231 		msg->hdr.seq = 0;
2232 	}
2233 	mutex_unlock(&con->mutex);
2234 }
2235 
2236 /*
2237  * Revoke a message that we may be reading data into
2238  */
2239 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2240 {
2241 	mutex_lock(&con->mutex);
2242 	if (con->in_msg && con->in_msg == msg) {
2243 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2244 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2245 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2246 
2247 		/* skip rest of message */
2248 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2249 			con->in_base_pos = con->in_base_pos -
2250 				sizeof(struct ceph_msg_header) -
2251 				front_len -
2252 				middle_len -
2253 				data_len -
2254 				sizeof(struct ceph_msg_footer);
2255 		ceph_msg_put(con->in_msg);
2256 		con->in_msg = NULL;
2257 		con->in_tag = CEPH_MSGR_TAG_READY;
2258 		con->in_seq++;
2259 	} else {
2260 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2261 		     con, con->in_msg, msg);
2262 	}
2263 	mutex_unlock(&con->mutex);
2264 }
2265 
2266 /*
2267  * Queue a keepalive byte to ensure the tcp connection is alive.
2268  */
2269 void ceph_con_keepalive(struct ceph_connection *con)
2270 {
2271 	dout("con_keepalive %p\n", con);
2272 	clear_standby(con);
2273 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2274 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2275 		queue_con(con);
2276 }
2277 EXPORT_SYMBOL(ceph_con_keepalive);
2278 
2279 
2280 /*
2281  * construct a new message with given type, size
2282  * the new msg has a ref count of 1.
2283  */
2284 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2285 {
2286 	struct ceph_msg *m;
2287 
2288 	m = kmalloc(sizeof(*m), flags);
2289 	if (m == NULL)
2290 		goto out;
2291 	kref_init(&m->kref);
2292 	INIT_LIST_HEAD(&m->list_head);
2293 
2294 	m->hdr.tid = 0;
2295 	m->hdr.type = cpu_to_le16(type);
2296 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2297 	m->hdr.version = 0;
2298 	m->hdr.front_len = cpu_to_le32(front_len);
2299 	m->hdr.middle_len = 0;
2300 	m->hdr.data_len = 0;
2301 	m->hdr.data_off = 0;
2302 	m->hdr.reserved = 0;
2303 	m->footer.front_crc = 0;
2304 	m->footer.middle_crc = 0;
2305 	m->footer.data_crc = 0;
2306 	m->footer.flags = 0;
2307 	m->front_max = front_len;
2308 	m->front_is_vmalloc = false;
2309 	m->more_to_follow = false;
2310 	m->pool = NULL;
2311 
2312 	/* middle */
2313 	m->middle = NULL;
2314 
2315 	/* data */
2316 	m->nr_pages = 0;
2317 	m->page_alignment = 0;
2318 	m->pages = NULL;
2319 	m->pagelist = NULL;
2320 	m->bio = NULL;
2321 	m->bio_iter = NULL;
2322 	m->bio_seg = 0;
2323 	m->trail = NULL;
2324 
2325 	/* front */
2326 	if (front_len) {
2327 		if (front_len > PAGE_CACHE_SIZE) {
2328 			m->front.iov_base = __vmalloc(front_len, flags,
2329 						      PAGE_KERNEL);
2330 			m->front_is_vmalloc = true;
2331 		} else {
2332 			m->front.iov_base = kmalloc(front_len, flags);
2333 		}
2334 		if (m->front.iov_base == NULL) {
2335 			pr_err("msg_new can't allocate %d bytes\n",
2336 			     front_len);
2337 			goto out2;
2338 		}
2339 	} else {
2340 		m->front.iov_base = NULL;
2341 	}
2342 	m->front.iov_len = front_len;
2343 
2344 	dout("ceph_msg_new %p front %d\n", m, front_len);
2345 	return m;
2346 
2347 out2:
2348 	ceph_msg_put(m);
2349 out:
2350 	pr_err("msg_new can't create type %d front %d\n", type, front_len);
2351 	return NULL;
2352 }
2353 EXPORT_SYMBOL(ceph_msg_new);
2354 
2355 /*
2356  * Allocate "middle" portion of a message, if it is needed and wasn't
2357  * allocated by alloc_msg.  This allows us to read a small fixed-size
2358  * per-type header in the front and then gracefully fail (i.e.,
2359  * propagate the error to the caller based on info in the front) when
2360  * the middle is too large.
2361  */
2362 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2363 {
2364 	int type = le16_to_cpu(msg->hdr.type);
2365 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2366 
2367 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2368 	     ceph_msg_type_name(type), middle_len);
2369 	BUG_ON(!middle_len);
2370 	BUG_ON(msg->middle);
2371 
2372 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2373 	if (!msg->middle)
2374 		return -ENOMEM;
2375 	return 0;
2376 }
2377 
2378 /*
2379  * Generic message allocator, for incoming messages.
2380  */
2381 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2382 				struct ceph_msg_header *hdr,
2383 				int *skip)
2384 {
2385 	int type = le16_to_cpu(hdr->type);
2386 	int front_len = le32_to_cpu(hdr->front_len);
2387 	int middle_len = le32_to_cpu(hdr->middle_len);
2388 	struct ceph_msg *msg = NULL;
2389 	int ret;
2390 
2391 	if (con->ops->alloc_msg) {
2392 		mutex_unlock(&con->mutex);
2393 		msg = con->ops->alloc_msg(con, hdr, skip);
2394 		mutex_lock(&con->mutex);
2395 		if (!msg || *skip)
2396 			return NULL;
2397 	}
2398 	if (!msg) {
2399 		*skip = 0;
2400 		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2401 		if (!msg) {
2402 			pr_err("unable to allocate msg type %d len %d\n",
2403 			       type, front_len);
2404 			return NULL;
2405 		}
2406 		msg->page_alignment = le16_to_cpu(hdr->data_off);
2407 	}
2408 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2409 
2410 	if (middle_len && !msg->middle) {
2411 		ret = ceph_alloc_middle(con, msg);
2412 		if (ret < 0) {
2413 			ceph_msg_put(msg);
2414 			return NULL;
2415 		}
2416 	}
2417 
2418 	return msg;
2419 }
2420 
2421 
2422 /*
2423  * Free a generically kmalloc'd message.
2424  */
2425 void ceph_msg_kfree(struct ceph_msg *m)
2426 {
2427 	dout("msg_kfree %p\n", m);
2428 	if (m->front_is_vmalloc)
2429 		vfree(m->front.iov_base);
2430 	else
2431 		kfree(m->front.iov_base);
2432 	kfree(m);
2433 }
2434 
2435 /*
2436  * Drop a msg ref.  Destroy as needed.
2437  */
2438 void ceph_msg_last_put(struct kref *kref)
2439 {
2440 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2441 
2442 	dout("ceph_msg_put last one on %p\n", m);
2443 	WARN_ON(!list_empty(&m->list_head));
2444 
2445 	/* drop middle, data, if any */
2446 	if (m->middle) {
2447 		ceph_buffer_put(m->middle);
2448 		m->middle = NULL;
2449 	}
2450 	m->nr_pages = 0;
2451 	m->pages = NULL;
2452 
2453 	if (m->pagelist) {
2454 		ceph_pagelist_release(m->pagelist);
2455 		kfree(m->pagelist);
2456 		m->pagelist = NULL;
2457 	}
2458 
2459 	m->trail = NULL;
2460 
2461 	if (m->pool)
2462 		ceph_msgpool_put(m->pool, m);
2463 	else
2464 		ceph_msg_kfree(m);
2465 }
2466 EXPORT_SYMBOL(ceph_msg_last_put);
2467 
2468 void ceph_msg_dump(struct ceph_msg *msg)
2469 {
2470 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2471 		 msg->front_max, msg->nr_pages);
2472 	print_hex_dump(KERN_DEBUG, "header: ",
2473 		       DUMP_PREFIX_OFFSET, 16, 1,
2474 		       &msg->hdr, sizeof(msg->hdr), true);
2475 	print_hex_dump(KERN_DEBUG, " front: ",
2476 		       DUMP_PREFIX_OFFSET, 16, 1,
2477 		       msg->front.iov_base, msg->front.iov_len, true);
2478 	if (msg->middle)
2479 		print_hex_dump(KERN_DEBUG, "middle: ",
2480 			       DUMP_PREFIX_OFFSET, 16, 1,
2481 			       msg->middle->vec.iov_base,
2482 			       msg->middle->vec.iov_len, true);
2483 	print_hex_dump(KERN_DEBUG, "footer: ",
2484 		       DUMP_PREFIX_OFFSET, 16, 1,
2485 		       &msg->footer, sizeof(msg->footer), true);
2486 }
2487 EXPORT_SYMBOL(ceph_msg_dump);
2488