1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 static bool con_flag_valid(unsigned long con_flag) 86 { 87 switch (con_flag) { 88 case CEPH_CON_F_LOSSYTX: 89 case CEPH_CON_F_KEEPALIVE_PENDING: 90 case CEPH_CON_F_WRITE_PENDING: 91 case CEPH_CON_F_SOCK_CLOSED: 92 case CEPH_CON_F_BACKOFF: 93 return true; 94 default: 95 return false; 96 } 97 } 98 99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 100 { 101 BUG_ON(!con_flag_valid(con_flag)); 102 103 clear_bit(con_flag, &con->flags); 104 } 105 106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag) 107 { 108 BUG_ON(!con_flag_valid(con_flag)); 109 110 set_bit(con_flag, &con->flags); 111 } 112 113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag) 114 { 115 BUG_ON(!con_flag_valid(con_flag)); 116 117 return test_bit(con_flag, &con->flags); 118 } 119 120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con, 121 unsigned long con_flag) 122 { 123 BUG_ON(!con_flag_valid(con_flag)); 124 125 return test_and_clear_bit(con_flag, &con->flags); 126 } 127 128 bool ceph_con_flag_test_and_set(struct ceph_connection *con, 129 unsigned long con_flag) 130 { 131 BUG_ON(!con_flag_valid(con_flag)); 132 133 return test_and_set_bit(con_flag, &con->flags); 134 } 135 136 /* Slab caches for frequently-allocated structures */ 137 138 static struct kmem_cache *ceph_msg_cache; 139 140 #ifdef CONFIG_LOCKDEP 141 static struct lock_class_key socket_class; 142 #endif 143 144 static void queue_con(struct ceph_connection *con); 145 static void cancel_con(struct ceph_connection *con); 146 static void ceph_con_workfn(struct work_struct *); 147 static void con_fault(struct ceph_connection *con); 148 149 /* 150 * Nicely render a sockaddr as a string. An array of formatted 151 * strings is used, to approximate reentrancy. 152 */ 153 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 154 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 155 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 156 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 157 158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 159 static atomic_t addr_str_seq = ATOMIC_INIT(0); 160 161 struct page *ceph_zero_page; /* used in certain error cases */ 162 163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr) 164 { 165 int i; 166 char *s; 167 struct sockaddr_storage ss = addr->in_addr; /* align */ 168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; 169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; 170 171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 172 s = addr_str[i]; 173 174 switch (ss.ss_family) { 175 case AF_INET: 176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu", 177 le32_to_cpu(addr->type), &in4->sin_addr, 178 ntohs(in4->sin_port)); 179 break; 180 181 case AF_INET6: 182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu", 183 le32_to_cpu(addr->type), &in6->sin6_addr, 184 ntohs(in6->sin6_port)); 185 break; 186 187 default: 188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 189 ss.ss_family); 190 } 191 192 return s; 193 } 194 EXPORT_SYMBOL(ceph_pr_addr); 195 196 void ceph_encode_my_addr(struct ceph_messenger *msgr) 197 { 198 if (!ceph_msgr2(from_msgr(msgr))) { 199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, 200 sizeof(msgr->my_enc_addr)); 201 ceph_encode_banner_addr(&msgr->my_enc_addr); 202 } 203 } 204 205 /* 206 * work queue for all reading and writing to/from the socket. 207 */ 208 static struct workqueue_struct *ceph_msgr_wq; 209 210 static int ceph_msgr_slab_init(void) 211 { 212 BUG_ON(ceph_msg_cache); 213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 214 if (!ceph_msg_cache) 215 return -ENOMEM; 216 217 return 0; 218 } 219 220 static void ceph_msgr_slab_exit(void) 221 { 222 BUG_ON(!ceph_msg_cache); 223 kmem_cache_destroy(ceph_msg_cache); 224 ceph_msg_cache = NULL; 225 } 226 227 static void _ceph_msgr_exit(void) 228 { 229 if (ceph_msgr_wq) { 230 destroy_workqueue(ceph_msgr_wq); 231 ceph_msgr_wq = NULL; 232 } 233 234 BUG_ON(!ceph_zero_page); 235 put_page(ceph_zero_page); 236 ceph_zero_page = NULL; 237 238 ceph_msgr_slab_exit(); 239 } 240 241 int __init ceph_msgr_init(void) 242 { 243 if (ceph_msgr_slab_init()) 244 return -ENOMEM; 245 246 BUG_ON(ceph_zero_page); 247 ceph_zero_page = ZERO_PAGE(0); 248 get_page(ceph_zero_page); 249 250 /* 251 * The number of active work items is limited by the number of 252 * connections, so leave @max_active at default. 253 */ 254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 255 if (ceph_msgr_wq) 256 return 0; 257 258 pr_err("msgr_init failed to create workqueue\n"); 259 _ceph_msgr_exit(); 260 261 return -ENOMEM; 262 } 263 264 void ceph_msgr_exit(void) 265 { 266 BUG_ON(ceph_msgr_wq == NULL); 267 268 _ceph_msgr_exit(); 269 } 270 271 void ceph_msgr_flush(void) 272 { 273 flush_workqueue(ceph_msgr_wq); 274 } 275 EXPORT_SYMBOL(ceph_msgr_flush); 276 277 /* Connection socket state transition functions */ 278 279 static void con_sock_state_init(struct ceph_connection *con) 280 { 281 int old_state; 282 283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 285 printk("%s: unexpected old state %d\n", __func__, old_state); 286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 287 CON_SOCK_STATE_CLOSED); 288 } 289 290 static void con_sock_state_connecting(struct ceph_connection *con) 291 { 292 int old_state; 293 294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 296 printk("%s: unexpected old state %d\n", __func__, old_state); 297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 298 CON_SOCK_STATE_CONNECTING); 299 } 300 301 static void con_sock_state_connected(struct ceph_connection *con) 302 { 303 int old_state; 304 305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 307 printk("%s: unexpected old state %d\n", __func__, old_state); 308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 309 CON_SOCK_STATE_CONNECTED); 310 } 311 312 static void con_sock_state_closing(struct ceph_connection *con) 313 { 314 int old_state; 315 316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 318 old_state != CON_SOCK_STATE_CONNECTED && 319 old_state != CON_SOCK_STATE_CLOSING)) 320 printk("%s: unexpected old state %d\n", __func__, old_state); 321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 322 CON_SOCK_STATE_CLOSING); 323 } 324 325 static void con_sock_state_closed(struct ceph_connection *con) 326 { 327 int old_state; 328 329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 331 old_state != CON_SOCK_STATE_CLOSING && 332 old_state != CON_SOCK_STATE_CONNECTING && 333 old_state != CON_SOCK_STATE_CLOSED)) 334 printk("%s: unexpected old state %d\n", __func__, old_state); 335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 336 CON_SOCK_STATE_CLOSED); 337 } 338 339 /* 340 * socket callback functions 341 */ 342 343 /* data available on socket, or listen socket received a connect */ 344 static void ceph_sock_data_ready(struct sock *sk) 345 { 346 struct ceph_connection *con = sk->sk_user_data; 347 if (atomic_read(&con->msgr->stopping)) { 348 return; 349 } 350 351 if (sk->sk_state != TCP_CLOSE_WAIT) { 352 dout("%s %p state = %d, queueing work\n", __func__, 353 con, con->state); 354 queue_con(con); 355 } 356 } 357 358 /* socket has buffer space for writing */ 359 static void ceph_sock_write_space(struct sock *sk) 360 { 361 struct ceph_connection *con = sk->sk_user_data; 362 363 /* only queue to workqueue if there is data we want to write, 364 * and there is sufficient space in the socket buffer to accept 365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 366 * doesn't get called again until try_write() fills the socket 367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 368 * and net/core/stream.c:sk_stream_write_space(). 369 */ 370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) { 371 if (sk_stream_is_writeable(sk)) { 372 dout("%s %p queueing write work\n", __func__, con); 373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 374 queue_con(con); 375 } 376 } else { 377 dout("%s %p nothing to write\n", __func__, con); 378 } 379 } 380 381 /* socket's state has changed */ 382 static void ceph_sock_state_change(struct sock *sk) 383 { 384 struct ceph_connection *con = sk->sk_user_data; 385 386 dout("%s %p state = %d sk_state = %u\n", __func__, 387 con, con->state, sk->sk_state); 388 389 switch (sk->sk_state) { 390 case TCP_CLOSE: 391 dout("%s TCP_CLOSE\n", __func__); 392 fallthrough; 393 case TCP_CLOSE_WAIT: 394 dout("%s TCP_CLOSE_WAIT\n", __func__); 395 con_sock_state_closing(con); 396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED); 397 queue_con(con); 398 break; 399 case TCP_ESTABLISHED: 400 dout("%s TCP_ESTABLISHED\n", __func__); 401 con_sock_state_connected(con); 402 queue_con(con); 403 break; 404 default: /* Everything else is uninteresting */ 405 break; 406 } 407 } 408 409 /* 410 * set up socket callbacks 411 */ 412 static void set_sock_callbacks(struct socket *sock, 413 struct ceph_connection *con) 414 { 415 struct sock *sk = sock->sk; 416 sk->sk_user_data = con; 417 sk->sk_data_ready = ceph_sock_data_ready; 418 sk->sk_write_space = ceph_sock_write_space; 419 sk->sk_state_change = ceph_sock_state_change; 420 } 421 422 423 /* 424 * socket helpers 425 */ 426 427 /* 428 * initiate connection to a remote socket. 429 */ 430 int ceph_tcp_connect(struct ceph_connection *con) 431 { 432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ 433 struct socket *sock; 434 unsigned int noio_flag; 435 int ret; 436 437 dout("%s con %p peer_addr %s\n", __func__, con, 438 ceph_pr_addr(&con->peer_addr)); 439 BUG_ON(con->sock); 440 441 /* sock_create_kern() allocates with GFP_KERNEL */ 442 noio_flag = memalloc_noio_save(); 443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, 444 SOCK_STREAM, IPPROTO_TCP, &sock); 445 memalloc_noio_restore(noio_flag); 446 if (ret) 447 return ret; 448 sock->sk->sk_allocation = GFP_NOFS; 449 450 #ifdef CONFIG_LOCKDEP 451 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 452 #endif 453 454 set_sock_callbacks(sock, con); 455 456 con_sock_state_connecting(con); 457 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss), 458 O_NONBLOCK); 459 if (ret == -EINPROGRESS) { 460 dout("connect %s EINPROGRESS sk_state = %u\n", 461 ceph_pr_addr(&con->peer_addr), 462 sock->sk->sk_state); 463 } else if (ret < 0) { 464 pr_err("connect %s error %d\n", 465 ceph_pr_addr(&con->peer_addr), ret); 466 sock_release(sock); 467 return ret; 468 } 469 470 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) 471 tcp_sock_set_nodelay(sock->sk); 472 473 con->sock = sock; 474 return 0; 475 } 476 477 /* 478 * Shutdown/close the socket for the given connection. 479 */ 480 int ceph_con_close_socket(struct ceph_connection *con) 481 { 482 int rc = 0; 483 484 dout("%s con %p sock %p\n", __func__, con, con->sock); 485 if (con->sock) { 486 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 487 sock_release(con->sock); 488 con->sock = NULL; 489 } 490 491 /* 492 * Forcibly clear the SOCK_CLOSED flag. It gets set 493 * independent of the connection mutex, and we could have 494 * received a socket close event before we had the chance to 495 * shut the socket down. 496 */ 497 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED); 498 499 con_sock_state_closed(con); 500 return rc; 501 } 502 503 static void ceph_con_reset_protocol(struct ceph_connection *con) 504 { 505 dout("%s con %p\n", __func__, con); 506 507 ceph_con_close_socket(con); 508 if (con->in_msg) { 509 WARN_ON(con->in_msg->con != con); 510 ceph_msg_put(con->in_msg); 511 con->in_msg = NULL; 512 } 513 if (con->out_msg) { 514 WARN_ON(con->out_msg->con != con); 515 ceph_msg_put(con->out_msg); 516 con->out_msg = NULL; 517 } 518 519 if (ceph_msgr2(from_msgr(con->msgr))) 520 ceph_con_v2_reset_protocol(con); 521 else 522 ceph_con_v1_reset_protocol(con); 523 } 524 525 /* 526 * Reset a connection. Discard all incoming and outgoing messages 527 * and clear *_seq state. 528 */ 529 static void ceph_msg_remove(struct ceph_msg *msg) 530 { 531 list_del_init(&msg->list_head); 532 533 ceph_msg_put(msg); 534 } 535 536 static void ceph_msg_remove_list(struct list_head *head) 537 { 538 while (!list_empty(head)) { 539 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 540 list_head); 541 ceph_msg_remove(msg); 542 } 543 } 544 545 void ceph_con_reset_session(struct ceph_connection *con) 546 { 547 dout("%s con %p\n", __func__, con); 548 549 WARN_ON(con->in_msg); 550 WARN_ON(con->out_msg); 551 ceph_msg_remove_list(&con->out_queue); 552 ceph_msg_remove_list(&con->out_sent); 553 con->out_seq = 0; 554 con->in_seq = 0; 555 con->in_seq_acked = 0; 556 557 if (ceph_msgr2(from_msgr(con->msgr))) 558 ceph_con_v2_reset_session(con); 559 else 560 ceph_con_v1_reset_session(con); 561 } 562 563 /* 564 * mark a peer down. drop any open connections. 565 */ 566 void ceph_con_close(struct ceph_connection *con) 567 { 568 mutex_lock(&con->mutex); 569 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); 570 con->state = CEPH_CON_S_CLOSED; 571 572 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next 573 connect */ 574 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING); 575 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 576 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF); 577 578 ceph_con_reset_protocol(con); 579 ceph_con_reset_session(con); 580 cancel_con(con); 581 mutex_unlock(&con->mutex); 582 } 583 EXPORT_SYMBOL(ceph_con_close); 584 585 /* 586 * Reopen a closed connection, with a new peer address. 587 */ 588 void ceph_con_open(struct ceph_connection *con, 589 __u8 entity_type, __u64 entity_num, 590 struct ceph_entity_addr *addr) 591 { 592 mutex_lock(&con->mutex); 593 dout("con_open %p %s\n", con, ceph_pr_addr(addr)); 594 595 WARN_ON(con->state != CEPH_CON_S_CLOSED); 596 con->state = CEPH_CON_S_PREOPEN; 597 598 con->peer_name.type = (__u8) entity_type; 599 con->peer_name.num = cpu_to_le64(entity_num); 600 601 memcpy(&con->peer_addr, addr, sizeof(*addr)); 602 con->delay = 0; /* reset backoff memory */ 603 mutex_unlock(&con->mutex); 604 queue_con(con); 605 } 606 EXPORT_SYMBOL(ceph_con_open); 607 608 /* 609 * return true if this connection ever successfully opened 610 */ 611 bool ceph_con_opened(struct ceph_connection *con) 612 { 613 if (ceph_msgr2(from_msgr(con->msgr))) 614 return ceph_con_v2_opened(con); 615 616 return ceph_con_v1_opened(con); 617 } 618 619 /* 620 * initialize a new connection. 621 */ 622 void ceph_con_init(struct ceph_connection *con, void *private, 623 const struct ceph_connection_operations *ops, 624 struct ceph_messenger *msgr) 625 { 626 dout("con_init %p\n", con); 627 memset(con, 0, sizeof(*con)); 628 con->private = private; 629 con->ops = ops; 630 con->msgr = msgr; 631 632 con_sock_state_init(con); 633 634 mutex_init(&con->mutex); 635 INIT_LIST_HEAD(&con->out_queue); 636 INIT_LIST_HEAD(&con->out_sent); 637 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 638 639 con->state = CEPH_CON_S_CLOSED; 640 } 641 EXPORT_SYMBOL(ceph_con_init); 642 643 /* 644 * We maintain a global counter to order connection attempts. Get 645 * a unique seq greater than @gt. 646 */ 647 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt) 648 { 649 u32 ret; 650 651 spin_lock(&msgr->global_seq_lock); 652 if (msgr->global_seq < gt) 653 msgr->global_seq = gt; 654 ret = ++msgr->global_seq; 655 spin_unlock(&msgr->global_seq_lock); 656 return ret; 657 } 658 659 /* 660 * Discard messages that have been acked by the server. 661 */ 662 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq) 663 { 664 struct ceph_msg *msg; 665 u64 seq; 666 667 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq); 668 while (!list_empty(&con->out_sent)) { 669 msg = list_first_entry(&con->out_sent, struct ceph_msg, 670 list_head); 671 WARN_ON(msg->needs_out_seq); 672 seq = le64_to_cpu(msg->hdr.seq); 673 if (seq > ack_seq) 674 break; 675 676 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 677 msg, seq); 678 ceph_msg_remove(msg); 679 } 680 } 681 682 /* 683 * Discard messages that have been requeued in con_fault(), up to 684 * reconnect_seq. This avoids gratuitously resending messages that 685 * the server had received and handled prior to reconnect. 686 */ 687 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq) 688 { 689 struct ceph_msg *msg; 690 u64 seq; 691 692 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq); 693 while (!list_empty(&con->out_queue)) { 694 msg = list_first_entry(&con->out_queue, struct ceph_msg, 695 list_head); 696 if (msg->needs_out_seq) 697 break; 698 seq = le64_to_cpu(msg->hdr.seq); 699 if (seq > reconnect_seq) 700 break; 701 702 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 703 msg, seq); 704 ceph_msg_remove(msg); 705 } 706 } 707 708 #ifdef CONFIG_BLOCK 709 710 /* 711 * For a bio data item, a piece is whatever remains of the next 712 * entry in the current bio iovec, or the first entry in the next 713 * bio in the list. 714 */ 715 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 716 size_t length) 717 { 718 struct ceph_msg_data *data = cursor->data; 719 struct ceph_bio_iter *it = &cursor->bio_iter; 720 721 cursor->resid = min_t(size_t, length, data->bio_length); 722 *it = data->bio_pos; 723 if (cursor->resid < it->iter.bi_size) 724 it->iter.bi_size = cursor->resid; 725 726 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 727 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 728 } 729 730 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 731 size_t *page_offset, 732 size_t *length) 733 { 734 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 735 cursor->bio_iter.iter); 736 737 *page_offset = bv.bv_offset; 738 *length = bv.bv_len; 739 return bv.bv_page; 740 } 741 742 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 743 size_t bytes) 744 { 745 struct ceph_bio_iter *it = &cursor->bio_iter; 746 struct page *page = bio_iter_page(it->bio, it->iter); 747 748 BUG_ON(bytes > cursor->resid); 749 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 750 cursor->resid -= bytes; 751 bio_advance_iter(it->bio, &it->iter, bytes); 752 753 if (!cursor->resid) { 754 BUG_ON(!cursor->last_piece); 755 return false; /* no more data */ 756 } 757 758 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && 759 page == bio_iter_page(it->bio, it->iter))) 760 return false; /* more bytes to process in this segment */ 761 762 if (!it->iter.bi_size) { 763 it->bio = it->bio->bi_next; 764 it->iter = it->bio->bi_iter; 765 if (cursor->resid < it->iter.bi_size) 766 it->iter.bi_size = cursor->resid; 767 } 768 769 BUG_ON(cursor->last_piece); 770 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 771 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 772 return true; 773 } 774 #endif /* CONFIG_BLOCK */ 775 776 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 777 size_t length) 778 { 779 struct ceph_msg_data *data = cursor->data; 780 struct bio_vec *bvecs = data->bvec_pos.bvecs; 781 782 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 783 cursor->bvec_iter = data->bvec_pos.iter; 784 cursor->bvec_iter.bi_size = cursor->resid; 785 786 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 787 cursor->last_piece = 788 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 789 } 790 791 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 792 size_t *page_offset, 793 size_t *length) 794 { 795 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 796 cursor->bvec_iter); 797 798 *page_offset = bv.bv_offset; 799 *length = bv.bv_len; 800 return bv.bv_page; 801 } 802 803 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 804 size_t bytes) 805 { 806 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 807 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); 808 809 BUG_ON(bytes > cursor->resid); 810 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 811 cursor->resid -= bytes; 812 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 813 814 if (!cursor->resid) { 815 BUG_ON(!cursor->last_piece); 816 return false; /* no more data */ 817 } 818 819 if (!bytes || (cursor->bvec_iter.bi_bvec_done && 820 page == bvec_iter_page(bvecs, cursor->bvec_iter))) 821 return false; /* more bytes to process in this segment */ 822 823 BUG_ON(cursor->last_piece); 824 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 825 cursor->last_piece = 826 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 827 return true; 828 } 829 830 /* 831 * For a page array, a piece comes from the first page in the array 832 * that has not already been fully consumed. 833 */ 834 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 835 size_t length) 836 { 837 struct ceph_msg_data *data = cursor->data; 838 int page_count; 839 840 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 841 842 BUG_ON(!data->pages); 843 BUG_ON(!data->length); 844 845 cursor->resid = min(length, data->length); 846 page_count = calc_pages_for(data->alignment, (u64)data->length); 847 cursor->page_offset = data->alignment & ~PAGE_MASK; 848 cursor->page_index = 0; 849 BUG_ON(page_count > (int)USHRT_MAX); 850 cursor->page_count = (unsigned short)page_count; 851 BUG_ON(length > SIZE_MAX - cursor->page_offset); 852 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 853 } 854 855 static struct page * 856 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 857 size_t *page_offset, size_t *length) 858 { 859 struct ceph_msg_data *data = cursor->data; 860 861 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 862 863 BUG_ON(cursor->page_index >= cursor->page_count); 864 BUG_ON(cursor->page_offset >= PAGE_SIZE); 865 866 *page_offset = cursor->page_offset; 867 if (cursor->last_piece) 868 *length = cursor->resid; 869 else 870 *length = PAGE_SIZE - *page_offset; 871 872 return data->pages[cursor->page_index]; 873 } 874 875 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 876 size_t bytes) 877 { 878 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 879 880 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 881 882 /* Advance the cursor page offset */ 883 884 cursor->resid -= bytes; 885 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 886 if (!bytes || cursor->page_offset) 887 return false; /* more bytes to process in the current page */ 888 889 if (!cursor->resid) 890 return false; /* no more data */ 891 892 /* Move on to the next page; offset is already at 0 */ 893 894 BUG_ON(cursor->page_index >= cursor->page_count); 895 cursor->page_index++; 896 cursor->last_piece = cursor->resid <= PAGE_SIZE; 897 898 return true; 899 } 900 901 /* 902 * For a pagelist, a piece is whatever remains to be consumed in the 903 * first page in the list, or the front of the next page. 904 */ 905 static void 906 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 907 size_t length) 908 { 909 struct ceph_msg_data *data = cursor->data; 910 struct ceph_pagelist *pagelist; 911 struct page *page; 912 913 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 914 915 pagelist = data->pagelist; 916 BUG_ON(!pagelist); 917 918 if (!length) 919 return; /* pagelist can be assigned but empty */ 920 921 BUG_ON(list_empty(&pagelist->head)); 922 page = list_first_entry(&pagelist->head, struct page, lru); 923 924 cursor->resid = min(length, pagelist->length); 925 cursor->page = page; 926 cursor->offset = 0; 927 cursor->last_piece = cursor->resid <= PAGE_SIZE; 928 } 929 930 static struct page * 931 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 932 size_t *page_offset, size_t *length) 933 { 934 struct ceph_msg_data *data = cursor->data; 935 struct ceph_pagelist *pagelist; 936 937 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 938 939 pagelist = data->pagelist; 940 BUG_ON(!pagelist); 941 942 BUG_ON(!cursor->page); 943 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 944 945 /* offset of first page in pagelist is always 0 */ 946 *page_offset = cursor->offset & ~PAGE_MASK; 947 if (cursor->last_piece) 948 *length = cursor->resid; 949 else 950 *length = PAGE_SIZE - *page_offset; 951 952 return cursor->page; 953 } 954 955 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 956 size_t bytes) 957 { 958 struct ceph_msg_data *data = cursor->data; 959 struct ceph_pagelist *pagelist; 960 961 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 962 963 pagelist = data->pagelist; 964 BUG_ON(!pagelist); 965 966 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 967 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 968 969 /* Advance the cursor offset */ 970 971 cursor->resid -= bytes; 972 cursor->offset += bytes; 973 /* offset of first page in pagelist is always 0 */ 974 if (!bytes || cursor->offset & ~PAGE_MASK) 975 return false; /* more bytes to process in the current page */ 976 977 if (!cursor->resid) 978 return false; /* no more data */ 979 980 /* Move on to the next page */ 981 982 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 983 cursor->page = list_next_entry(cursor->page, lru); 984 cursor->last_piece = cursor->resid <= PAGE_SIZE; 985 986 return true; 987 } 988 989 /* 990 * Message data is handled (sent or received) in pieces, where each 991 * piece resides on a single page. The network layer might not 992 * consume an entire piece at once. A data item's cursor keeps 993 * track of which piece is next to process and how much remains to 994 * be processed in that piece. It also tracks whether the current 995 * piece is the last one in the data item. 996 */ 997 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 998 { 999 size_t length = cursor->total_resid; 1000 1001 switch (cursor->data->type) { 1002 case CEPH_MSG_DATA_PAGELIST: 1003 ceph_msg_data_pagelist_cursor_init(cursor, length); 1004 break; 1005 case CEPH_MSG_DATA_PAGES: 1006 ceph_msg_data_pages_cursor_init(cursor, length); 1007 break; 1008 #ifdef CONFIG_BLOCK 1009 case CEPH_MSG_DATA_BIO: 1010 ceph_msg_data_bio_cursor_init(cursor, length); 1011 break; 1012 #endif /* CONFIG_BLOCK */ 1013 case CEPH_MSG_DATA_BVECS: 1014 ceph_msg_data_bvecs_cursor_init(cursor, length); 1015 break; 1016 case CEPH_MSG_DATA_NONE: 1017 default: 1018 /* BUG(); */ 1019 break; 1020 } 1021 cursor->need_crc = true; 1022 } 1023 1024 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor, 1025 struct ceph_msg *msg, size_t length) 1026 { 1027 BUG_ON(!length); 1028 BUG_ON(length > msg->data_length); 1029 BUG_ON(!msg->num_data_items); 1030 1031 cursor->total_resid = length; 1032 cursor->data = msg->data; 1033 1034 __ceph_msg_data_cursor_init(cursor); 1035 } 1036 1037 /* 1038 * Return the page containing the next piece to process for a given 1039 * data item, and supply the page offset and length of that piece. 1040 * Indicate whether this is the last piece in this data item. 1041 */ 1042 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1043 size_t *page_offset, size_t *length, 1044 bool *last_piece) 1045 { 1046 struct page *page; 1047 1048 switch (cursor->data->type) { 1049 case CEPH_MSG_DATA_PAGELIST: 1050 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1051 break; 1052 case CEPH_MSG_DATA_PAGES: 1053 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1054 break; 1055 #ifdef CONFIG_BLOCK 1056 case CEPH_MSG_DATA_BIO: 1057 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1058 break; 1059 #endif /* CONFIG_BLOCK */ 1060 case CEPH_MSG_DATA_BVECS: 1061 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1062 break; 1063 case CEPH_MSG_DATA_NONE: 1064 default: 1065 page = NULL; 1066 break; 1067 } 1068 1069 BUG_ON(!page); 1070 BUG_ON(*page_offset + *length > PAGE_SIZE); 1071 BUG_ON(!*length); 1072 BUG_ON(*length > cursor->resid); 1073 if (last_piece) 1074 *last_piece = cursor->last_piece; 1075 1076 return page; 1077 } 1078 1079 /* 1080 * Returns true if the result moves the cursor on to the next piece 1081 * of the data item. 1082 */ 1083 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) 1084 { 1085 bool new_piece; 1086 1087 BUG_ON(bytes > cursor->resid); 1088 switch (cursor->data->type) { 1089 case CEPH_MSG_DATA_PAGELIST: 1090 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1091 break; 1092 case CEPH_MSG_DATA_PAGES: 1093 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1094 break; 1095 #ifdef CONFIG_BLOCK 1096 case CEPH_MSG_DATA_BIO: 1097 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1098 break; 1099 #endif /* CONFIG_BLOCK */ 1100 case CEPH_MSG_DATA_BVECS: 1101 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1102 break; 1103 case CEPH_MSG_DATA_NONE: 1104 default: 1105 BUG(); 1106 break; 1107 } 1108 cursor->total_resid -= bytes; 1109 1110 if (!cursor->resid && cursor->total_resid) { 1111 WARN_ON(!cursor->last_piece); 1112 cursor->data++; 1113 __ceph_msg_data_cursor_init(cursor); 1114 new_piece = true; 1115 } 1116 cursor->need_crc = new_piece; 1117 } 1118 1119 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset, 1120 unsigned int length) 1121 { 1122 char *kaddr; 1123 1124 kaddr = kmap(page); 1125 BUG_ON(kaddr == NULL); 1126 crc = crc32c(crc, kaddr + page_offset, length); 1127 kunmap(page); 1128 1129 return crc; 1130 } 1131 1132 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr) 1133 { 1134 struct sockaddr_storage ss = addr->in_addr; /* align */ 1135 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; 1136 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; 1137 1138 switch (ss.ss_family) { 1139 case AF_INET: 1140 return addr4->s_addr == htonl(INADDR_ANY); 1141 case AF_INET6: 1142 return ipv6_addr_any(addr6); 1143 default: 1144 return true; 1145 } 1146 } 1147 1148 int ceph_addr_port(const struct ceph_entity_addr *addr) 1149 { 1150 switch (get_unaligned(&addr->in_addr.ss_family)) { 1151 case AF_INET: 1152 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); 1153 case AF_INET6: 1154 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); 1155 } 1156 return 0; 1157 } 1158 1159 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p) 1160 { 1161 switch (get_unaligned(&addr->in_addr.ss_family)) { 1162 case AF_INET: 1163 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); 1164 break; 1165 case AF_INET6: 1166 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); 1167 break; 1168 } 1169 } 1170 1171 /* 1172 * Unlike other *_pton function semantics, zero indicates success. 1173 */ 1174 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, 1175 char delim, const char **ipend) 1176 { 1177 memset(&addr->in_addr, 0, sizeof(addr->in_addr)); 1178 1179 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { 1180 put_unaligned(AF_INET, &addr->in_addr.ss_family); 1181 return 0; 1182 } 1183 1184 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { 1185 put_unaligned(AF_INET6, &addr->in_addr.ss_family); 1186 return 0; 1187 } 1188 1189 return -EINVAL; 1190 } 1191 1192 /* 1193 * Extract hostname string and resolve using kernel DNS facility. 1194 */ 1195 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1196 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1197 struct ceph_entity_addr *addr, char delim, const char **ipend) 1198 { 1199 const char *end, *delim_p; 1200 char *colon_p, *ip_addr = NULL; 1201 int ip_len, ret; 1202 1203 /* 1204 * The end of the hostname occurs immediately preceding the delimiter or 1205 * the port marker (':') where the delimiter takes precedence. 1206 */ 1207 delim_p = memchr(name, delim, namelen); 1208 colon_p = memchr(name, ':', namelen); 1209 1210 if (delim_p && colon_p) 1211 end = delim_p < colon_p ? delim_p : colon_p; 1212 else if (!delim_p && colon_p) 1213 end = colon_p; 1214 else { 1215 end = delim_p; 1216 if (!end) /* case: hostname:/ */ 1217 end = name + namelen; 1218 } 1219 1220 if (end <= name) 1221 return -EINVAL; 1222 1223 /* do dns_resolve upcall */ 1224 ip_len = dns_query(current->nsproxy->net_ns, 1225 NULL, name, end - name, NULL, &ip_addr, NULL, false); 1226 if (ip_len > 0) 1227 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); 1228 else 1229 ret = -ESRCH; 1230 1231 kfree(ip_addr); 1232 1233 *ipend = end; 1234 1235 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1236 ret, ret ? "failed" : ceph_pr_addr(addr)); 1237 1238 return ret; 1239 } 1240 #else 1241 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1242 struct ceph_entity_addr *addr, char delim, const char **ipend) 1243 { 1244 return -EINVAL; 1245 } 1246 #endif 1247 1248 /* 1249 * Parse a server name (IP or hostname). If a valid IP address is not found 1250 * then try to extract a hostname to resolve using userspace DNS upcall. 1251 */ 1252 static int ceph_parse_server_name(const char *name, size_t namelen, 1253 struct ceph_entity_addr *addr, char delim, const char **ipend) 1254 { 1255 int ret; 1256 1257 ret = ceph_pton(name, namelen, addr, delim, ipend); 1258 if (ret) 1259 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); 1260 1261 return ret; 1262 } 1263 1264 /* 1265 * Parse an ip[:port] list into an addr array. Use the default 1266 * monitor port if a port isn't specified. 1267 */ 1268 int ceph_parse_ips(const char *c, const char *end, 1269 struct ceph_entity_addr *addr, 1270 int max_count, int *count) 1271 { 1272 int i, ret = -EINVAL; 1273 const char *p = c; 1274 1275 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1276 for (i = 0; i < max_count; i++) { 1277 const char *ipend; 1278 int port; 1279 char delim = ','; 1280 1281 if (*p == '[') { 1282 delim = ']'; 1283 p++; 1284 } 1285 1286 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend); 1287 if (ret) 1288 goto bad; 1289 ret = -EINVAL; 1290 1291 p = ipend; 1292 1293 if (delim == ']') { 1294 if (*p != ']') { 1295 dout("missing matching ']'\n"); 1296 goto bad; 1297 } 1298 p++; 1299 } 1300 1301 /* port? */ 1302 if (p < end && *p == ':') { 1303 port = 0; 1304 p++; 1305 while (p < end && *p >= '0' && *p <= '9') { 1306 port = (port * 10) + (*p - '0'); 1307 p++; 1308 } 1309 if (port == 0) 1310 port = CEPH_MON_PORT; 1311 else if (port > 65535) 1312 goto bad; 1313 } else { 1314 port = CEPH_MON_PORT; 1315 } 1316 1317 ceph_addr_set_port(&addr[i], port); 1318 /* 1319 * We want the type to be set according to ms_mode 1320 * option, but options are normally parsed after mon 1321 * addresses. Rather than complicating parsing, set 1322 * to LEGACY and override in build_initial_monmap() 1323 * for mon addresses and ceph_messenger_init() for 1324 * ip option. 1325 */ 1326 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY; 1327 addr[i].nonce = 0; 1328 1329 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i])); 1330 1331 if (p == end) 1332 break; 1333 if (*p != ',') 1334 goto bad; 1335 p++; 1336 } 1337 1338 if (p != end) 1339 goto bad; 1340 1341 if (count) 1342 *count = i + 1; 1343 return 0; 1344 1345 bad: 1346 return ret; 1347 } 1348 1349 /* 1350 * Process message. This happens in the worker thread. The callback should 1351 * be careful not to do anything that waits on other incoming messages or it 1352 * may deadlock. 1353 */ 1354 void ceph_con_process_message(struct ceph_connection *con) 1355 { 1356 struct ceph_msg *msg = con->in_msg; 1357 1358 BUG_ON(con->in_msg->con != con); 1359 con->in_msg = NULL; 1360 1361 /* if first message, set peer_name */ 1362 if (con->peer_name.type == 0) 1363 con->peer_name = msg->hdr.src; 1364 1365 con->in_seq++; 1366 mutex_unlock(&con->mutex); 1367 1368 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n", 1369 msg, le64_to_cpu(msg->hdr.seq), 1370 ENTITY_NAME(msg->hdr.src), 1371 le16_to_cpu(msg->hdr.type), 1372 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1373 le32_to_cpu(msg->hdr.front_len), 1374 le32_to_cpu(msg->hdr.middle_len), 1375 le32_to_cpu(msg->hdr.data_len), 1376 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 1377 con->ops->dispatch(con, msg); 1378 1379 mutex_lock(&con->mutex); 1380 } 1381 1382 /* 1383 * Atomically queue work on a connection after the specified delay. 1384 * Bump @con reference to avoid races with connection teardown. 1385 * Returns 0 if work was queued, or an error code otherwise. 1386 */ 1387 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 1388 { 1389 if (!con->ops->get(con)) { 1390 dout("%s %p ref count 0\n", __func__, con); 1391 return -ENOENT; 1392 } 1393 1394 if (delay >= HZ) 1395 delay = round_jiffies_relative(delay); 1396 1397 dout("%s %p %lu\n", __func__, con, delay); 1398 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 1399 dout("%s %p - already queued\n", __func__, con); 1400 con->ops->put(con); 1401 return -EBUSY; 1402 } 1403 1404 return 0; 1405 } 1406 1407 static void queue_con(struct ceph_connection *con) 1408 { 1409 (void) queue_con_delay(con, 0); 1410 } 1411 1412 static void cancel_con(struct ceph_connection *con) 1413 { 1414 if (cancel_delayed_work(&con->work)) { 1415 dout("%s %p\n", __func__, con); 1416 con->ops->put(con); 1417 } 1418 } 1419 1420 static bool con_sock_closed(struct ceph_connection *con) 1421 { 1422 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED)) 1423 return false; 1424 1425 #define CASE(x) \ 1426 case CEPH_CON_S_ ## x: \ 1427 con->error_msg = "socket closed (con state " #x ")"; \ 1428 break; 1429 1430 switch (con->state) { 1431 CASE(CLOSED); 1432 CASE(PREOPEN); 1433 CASE(V1_BANNER); 1434 CASE(V1_CONNECT_MSG); 1435 CASE(V2_BANNER_PREFIX); 1436 CASE(V2_BANNER_PAYLOAD); 1437 CASE(V2_HELLO); 1438 CASE(V2_AUTH); 1439 CASE(V2_AUTH_SIGNATURE); 1440 CASE(V2_SESSION_CONNECT); 1441 CASE(V2_SESSION_RECONNECT); 1442 CASE(OPEN); 1443 CASE(STANDBY); 1444 default: 1445 BUG(); 1446 } 1447 #undef CASE 1448 1449 return true; 1450 } 1451 1452 static bool con_backoff(struct ceph_connection *con) 1453 { 1454 int ret; 1455 1456 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF)) 1457 return false; 1458 1459 ret = queue_con_delay(con, con->delay); 1460 if (ret) { 1461 dout("%s: con %p FAILED to back off %lu\n", __func__, 1462 con, con->delay); 1463 BUG_ON(ret == -ENOENT); 1464 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1465 } 1466 1467 return true; 1468 } 1469 1470 /* Finish fault handling; con->mutex must *not* be held here */ 1471 1472 static void con_fault_finish(struct ceph_connection *con) 1473 { 1474 dout("%s %p\n", __func__, con); 1475 1476 /* 1477 * in case we faulted due to authentication, invalidate our 1478 * current tickets so that we can get new ones. 1479 */ 1480 if (con->v1.auth_retry) { 1481 dout("auth_retry %d, invalidating\n", con->v1.auth_retry); 1482 if (con->ops->invalidate_authorizer) 1483 con->ops->invalidate_authorizer(con); 1484 con->v1.auth_retry = 0; 1485 } 1486 1487 if (con->ops->fault) 1488 con->ops->fault(con); 1489 } 1490 1491 /* 1492 * Do some work on a connection. Drop a connection ref when we're done. 1493 */ 1494 static void ceph_con_workfn(struct work_struct *work) 1495 { 1496 struct ceph_connection *con = container_of(work, struct ceph_connection, 1497 work.work); 1498 bool fault; 1499 1500 mutex_lock(&con->mutex); 1501 while (true) { 1502 int ret; 1503 1504 if ((fault = con_sock_closed(con))) { 1505 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 1506 break; 1507 } 1508 if (con_backoff(con)) { 1509 dout("%s: con %p BACKOFF\n", __func__, con); 1510 break; 1511 } 1512 if (con->state == CEPH_CON_S_STANDBY) { 1513 dout("%s: con %p STANDBY\n", __func__, con); 1514 break; 1515 } 1516 if (con->state == CEPH_CON_S_CLOSED) { 1517 dout("%s: con %p CLOSED\n", __func__, con); 1518 BUG_ON(con->sock); 1519 break; 1520 } 1521 if (con->state == CEPH_CON_S_PREOPEN) { 1522 dout("%s: con %p PREOPEN\n", __func__, con); 1523 BUG_ON(con->sock); 1524 } 1525 1526 if (ceph_msgr2(from_msgr(con->msgr))) 1527 ret = ceph_con_v2_try_read(con); 1528 else 1529 ret = ceph_con_v1_try_read(con); 1530 if (ret < 0) { 1531 if (ret == -EAGAIN) 1532 continue; 1533 if (!con->error_msg) 1534 con->error_msg = "socket error on read"; 1535 fault = true; 1536 break; 1537 } 1538 1539 if (ceph_msgr2(from_msgr(con->msgr))) 1540 ret = ceph_con_v2_try_write(con); 1541 else 1542 ret = ceph_con_v1_try_write(con); 1543 if (ret < 0) { 1544 if (ret == -EAGAIN) 1545 continue; 1546 if (!con->error_msg) 1547 con->error_msg = "socket error on write"; 1548 fault = true; 1549 } 1550 1551 break; /* If we make it to here, we're done */ 1552 } 1553 if (fault) 1554 con_fault(con); 1555 mutex_unlock(&con->mutex); 1556 1557 if (fault) 1558 con_fault_finish(con); 1559 1560 con->ops->put(con); 1561 } 1562 1563 /* 1564 * Generic error/fault handler. A retry mechanism is used with 1565 * exponential backoff 1566 */ 1567 static void con_fault(struct ceph_connection *con) 1568 { 1569 dout("fault %p state %d to peer %s\n", 1570 con, con->state, ceph_pr_addr(&con->peer_addr)); 1571 1572 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 1573 ceph_pr_addr(&con->peer_addr), con->error_msg); 1574 con->error_msg = NULL; 1575 1576 WARN_ON(con->state == CEPH_CON_S_STANDBY || 1577 con->state == CEPH_CON_S_CLOSED); 1578 1579 ceph_con_reset_protocol(con); 1580 1581 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) { 1582 dout("fault on LOSSYTX channel, marking CLOSED\n"); 1583 con->state = CEPH_CON_S_CLOSED; 1584 return; 1585 } 1586 1587 /* Requeue anything that hasn't been acked */ 1588 list_splice_init(&con->out_sent, &con->out_queue); 1589 1590 /* If there are no messages queued or keepalive pending, place 1591 * the connection in a STANDBY state */ 1592 if (list_empty(&con->out_queue) && 1593 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) { 1594 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 1595 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 1596 con->state = CEPH_CON_S_STANDBY; 1597 } else { 1598 /* retry after a delay. */ 1599 con->state = CEPH_CON_S_PREOPEN; 1600 if (!con->delay) { 1601 con->delay = BASE_DELAY_INTERVAL; 1602 } else if (con->delay < MAX_DELAY_INTERVAL) { 1603 con->delay *= 2; 1604 if (con->delay > MAX_DELAY_INTERVAL) 1605 con->delay = MAX_DELAY_INTERVAL; 1606 } 1607 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1608 queue_con(con); 1609 } 1610 } 1611 1612 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr) 1613 { 1614 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000; 1615 msgr->inst.addr.nonce = cpu_to_le32(nonce); 1616 ceph_encode_my_addr(msgr); 1617 } 1618 1619 /* 1620 * initialize a new messenger instance 1621 */ 1622 void ceph_messenger_init(struct ceph_messenger *msgr, 1623 struct ceph_entity_addr *myaddr) 1624 { 1625 spin_lock_init(&msgr->global_seq_lock); 1626 1627 if (myaddr) { 1628 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr, 1629 sizeof(msgr->inst.addr.in_addr)); 1630 ceph_addr_set_port(&msgr->inst.addr, 0); 1631 } 1632 1633 /* 1634 * Since nautilus, clients are identified using type ANY. 1635 * For msgr1, ceph_encode_banner_addr() munges it to NONE. 1636 */ 1637 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY; 1638 1639 /* generate a random non-zero nonce */ 1640 do { 1641 get_random_bytes(&msgr->inst.addr.nonce, 1642 sizeof(msgr->inst.addr.nonce)); 1643 } while (!msgr->inst.addr.nonce); 1644 ceph_encode_my_addr(msgr); 1645 1646 atomic_set(&msgr->stopping, 0); 1647 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 1648 1649 dout("%s %p\n", __func__, msgr); 1650 } 1651 1652 void ceph_messenger_fini(struct ceph_messenger *msgr) 1653 { 1654 put_net(read_pnet(&msgr->net)); 1655 } 1656 1657 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 1658 { 1659 if (msg->con) 1660 msg->con->ops->put(msg->con); 1661 1662 msg->con = con ? con->ops->get(con) : NULL; 1663 BUG_ON(msg->con != con); 1664 } 1665 1666 static void clear_standby(struct ceph_connection *con) 1667 { 1668 /* come back from STANDBY? */ 1669 if (con->state == CEPH_CON_S_STANDBY) { 1670 dout("clear_standby %p and ++connect_seq\n", con); 1671 con->state = CEPH_CON_S_PREOPEN; 1672 con->v1.connect_seq++; 1673 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)); 1674 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)); 1675 } 1676 } 1677 1678 /* 1679 * Queue up an outgoing message on the given connection. 1680 * 1681 * Consumes a ref on @msg. 1682 */ 1683 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 1684 { 1685 /* set src+dst */ 1686 msg->hdr.src = con->msgr->inst.name; 1687 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 1688 msg->needs_out_seq = true; 1689 1690 mutex_lock(&con->mutex); 1691 1692 if (con->state == CEPH_CON_S_CLOSED) { 1693 dout("con_send %p closed, dropping %p\n", con, msg); 1694 ceph_msg_put(msg); 1695 mutex_unlock(&con->mutex); 1696 return; 1697 } 1698 1699 msg_con_set(msg, con); 1700 1701 BUG_ON(!list_empty(&msg->list_head)); 1702 list_add_tail(&msg->list_head, &con->out_queue); 1703 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 1704 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 1705 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1706 le32_to_cpu(msg->hdr.front_len), 1707 le32_to_cpu(msg->hdr.middle_len), 1708 le32_to_cpu(msg->hdr.data_len)); 1709 1710 clear_standby(con); 1711 mutex_unlock(&con->mutex); 1712 1713 /* if there wasn't anything waiting to send before, queue 1714 * new work */ 1715 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1716 queue_con(con); 1717 } 1718 EXPORT_SYMBOL(ceph_con_send); 1719 1720 /* 1721 * Revoke a message that was previously queued for send 1722 */ 1723 void ceph_msg_revoke(struct ceph_msg *msg) 1724 { 1725 struct ceph_connection *con = msg->con; 1726 1727 if (!con) { 1728 dout("%s msg %p null con\n", __func__, msg); 1729 return; /* Message not in our possession */ 1730 } 1731 1732 mutex_lock(&con->mutex); 1733 if (list_empty(&msg->list_head)) { 1734 WARN_ON(con->out_msg == msg); 1735 dout("%s con %p msg %p not linked\n", __func__, con, msg); 1736 mutex_unlock(&con->mutex); 1737 return; 1738 } 1739 1740 dout("%s con %p msg %p was linked\n", __func__, con, msg); 1741 msg->hdr.seq = 0; 1742 ceph_msg_remove(msg); 1743 1744 if (con->out_msg == msg) { 1745 WARN_ON(con->state != CEPH_CON_S_OPEN); 1746 dout("%s con %p msg %p was sending\n", __func__, con, msg); 1747 if (ceph_msgr2(from_msgr(con->msgr))) 1748 ceph_con_v2_revoke(con); 1749 else 1750 ceph_con_v1_revoke(con); 1751 ceph_msg_put(con->out_msg); 1752 con->out_msg = NULL; 1753 } else { 1754 dout("%s con %p msg %p not current, out_msg %p\n", __func__, 1755 con, msg, con->out_msg); 1756 } 1757 mutex_unlock(&con->mutex); 1758 } 1759 1760 /* 1761 * Revoke a message that we may be reading data into 1762 */ 1763 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 1764 { 1765 struct ceph_connection *con = msg->con; 1766 1767 if (!con) { 1768 dout("%s msg %p null con\n", __func__, msg); 1769 return; /* Message not in our possession */ 1770 } 1771 1772 mutex_lock(&con->mutex); 1773 if (con->in_msg == msg) { 1774 WARN_ON(con->state != CEPH_CON_S_OPEN); 1775 dout("%s con %p msg %p was recving\n", __func__, con, msg); 1776 if (ceph_msgr2(from_msgr(con->msgr))) 1777 ceph_con_v2_revoke_incoming(con); 1778 else 1779 ceph_con_v1_revoke_incoming(con); 1780 ceph_msg_put(con->in_msg); 1781 con->in_msg = NULL; 1782 } else { 1783 dout("%s con %p msg %p not current, in_msg %p\n", __func__, 1784 con, msg, con->in_msg); 1785 } 1786 mutex_unlock(&con->mutex); 1787 } 1788 1789 /* 1790 * Queue a keepalive byte to ensure the tcp connection is alive. 1791 */ 1792 void ceph_con_keepalive(struct ceph_connection *con) 1793 { 1794 dout("con_keepalive %p\n", con); 1795 mutex_lock(&con->mutex); 1796 clear_standby(con); 1797 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING); 1798 mutex_unlock(&con->mutex); 1799 1800 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1801 queue_con(con); 1802 } 1803 EXPORT_SYMBOL(ceph_con_keepalive); 1804 1805 bool ceph_con_keepalive_expired(struct ceph_connection *con, 1806 unsigned long interval) 1807 { 1808 if (interval > 0 && 1809 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 1810 struct timespec64 now; 1811 struct timespec64 ts; 1812 ktime_get_real_ts64(&now); 1813 jiffies_to_timespec64(interval, &ts); 1814 ts = timespec64_add(con->last_keepalive_ack, ts); 1815 return timespec64_compare(&now, &ts) >= 0; 1816 } 1817 return false; 1818 } 1819 1820 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 1821 { 1822 BUG_ON(msg->num_data_items >= msg->max_data_items); 1823 return &msg->data[msg->num_data_items++]; 1824 } 1825 1826 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 1827 { 1828 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) { 1829 int num_pages = calc_pages_for(data->alignment, data->length); 1830 ceph_release_page_vector(data->pages, num_pages); 1831 } else if (data->type == CEPH_MSG_DATA_PAGELIST) { 1832 ceph_pagelist_release(data->pagelist); 1833 } 1834 } 1835 1836 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 1837 size_t length, size_t alignment, bool own_pages) 1838 { 1839 struct ceph_msg_data *data; 1840 1841 BUG_ON(!pages); 1842 BUG_ON(!length); 1843 1844 data = ceph_msg_data_add(msg); 1845 data->type = CEPH_MSG_DATA_PAGES; 1846 data->pages = pages; 1847 data->length = length; 1848 data->alignment = alignment & ~PAGE_MASK; 1849 data->own_pages = own_pages; 1850 1851 msg->data_length += length; 1852 } 1853 EXPORT_SYMBOL(ceph_msg_data_add_pages); 1854 1855 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 1856 struct ceph_pagelist *pagelist) 1857 { 1858 struct ceph_msg_data *data; 1859 1860 BUG_ON(!pagelist); 1861 BUG_ON(!pagelist->length); 1862 1863 data = ceph_msg_data_add(msg); 1864 data->type = CEPH_MSG_DATA_PAGELIST; 1865 refcount_inc(&pagelist->refcnt); 1866 data->pagelist = pagelist; 1867 1868 msg->data_length += pagelist->length; 1869 } 1870 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 1871 1872 #ifdef CONFIG_BLOCK 1873 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 1874 u32 length) 1875 { 1876 struct ceph_msg_data *data; 1877 1878 data = ceph_msg_data_add(msg); 1879 data->type = CEPH_MSG_DATA_BIO; 1880 data->bio_pos = *bio_pos; 1881 data->bio_length = length; 1882 1883 msg->data_length += length; 1884 } 1885 EXPORT_SYMBOL(ceph_msg_data_add_bio); 1886 #endif /* CONFIG_BLOCK */ 1887 1888 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 1889 struct ceph_bvec_iter *bvec_pos) 1890 { 1891 struct ceph_msg_data *data; 1892 1893 data = ceph_msg_data_add(msg); 1894 data->type = CEPH_MSG_DATA_BVECS; 1895 data->bvec_pos = *bvec_pos; 1896 1897 msg->data_length += bvec_pos->iter.bi_size; 1898 } 1899 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 1900 1901 /* 1902 * construct a new message with given type, size 1903 * the new msg has a ref count of 1. 1904 */ 1905 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 1906 gfp_t flags, bool can_fail) 1907 { 1908 struct ceph_msg *m; 1909 1910 m = kmem_cache_zalloc(ceph_msg_cache, flags); 1911 if (m == NULL) 1912 goto out; 1913 1914 m->hdr.type = cpu_to_le16(type); 1915 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 1916 m->hdr.front_len = cpu_to_le32(front_len); 1917 1918 INIT_LIST_HEAD(&m->list_head); 1919 kref_init(&m->kref); 1920 1921 /* front */ 1922 if (front_len) { 1923 m->front.iov_base = ceph_kvmalloc(front_len, flags); 1924 if (m->front.iov_base == NULL) { 1925 dout("ceph_msg_new can't allocate %d bytes\n", 1926 front_len); 1927 goto out2; 1928 } 1929 } else { 1930 m->front.iov_base = NULL; 1931 } 1932 m->front_alloc_len = m->front.iov_len = front_len; 1933 1934 if (max_data_items) { 1935 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 1936 flags); 1937 if (!m->data) 1938 goto out2; 1939 1940 m->max_data_items = max_data_items; 1941 } 1942 1943 dout("ceph_msg_new %p front %d\n", m, front_len); 1944 return m; 1945 1946 out2: 1947 ceph_msg_put(m); 1948 out: 1949 if (!can_fail) { 1950 pr_err("msg_new can't create type %d front %d\n", type, 1951 front_len); 1952 WARN_ON(1); 1953 } else { 1954 dout("msg_new can't create type %d front %d\n", type, 1955 front_len); 1956 } 1957 return NULL; 1958 } 1959 EXPORT_SYMBOL(ceph_msg_new2); 1960 1961 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 1962 bool can_fail) 1963 { 1964 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 1965 } 1966 EXPORT_SYMBOL(ceph_msg_new); 1967 1968 /* 1969 * Allocate "middle" portion of a message, if it is needed and wasn't 1970 * allocated by alloc_msg. This allows us to read a small fixed-size 1971 * per-type header in the front and then gracefully fail (i.e., 1972 * propagate the error to the caller based on info in the front) when 1973 * the middle is too large. 1974 */ 1975 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 1976 { 1977 int type = le16_to_cpu(msg->hdr.type); 1978 int middle_len = le32_to_cpu(msg->hdr.middle_len); 1979 1980 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 1981 ceph_msg_type_name(type), middle_len); 1982 BUG_ON(!middle_len); 1983 BUG_ON(msg->middle); 1984 1985 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 1986 if (!msg->middle) 1987 return -ENOMEM; 1988 return 0; 1989 } 1990 1991 /* 1992 * Allocate a message for receiving an incoming message on a 1993 * connection, and save the result in con->in_msg. Uses the 1994 * connection's private alloc_msg op if available. 1995 * 1996 * Returns 0 on success, or a negative error code. 1997 * 1998 * On success, if we set *skip = 1: 1999 * - the next message should be skipped and ignored. 2000 * - con->in_msg == NULL 2001 * or if we set *skip = 0: 2002 * - con->in_msg is non-null. 2003 * On error (ENOMEM, EAGAIN, ...), 2004 * - con->in_msg == NULL 2005 */ 2006 int ceph_con_in_msg_alloc(struct ceph_connection *con, 2007 struct ceph_msg_header *hdr, int *skip) 2008 { 2009 int middle_len = le32_to_cpu(hdr->middle_len); 2010 struct ceph_msg *msg; 2011 int ret = 0; 2012 2013 BUG_ON(con->in_msg != NULL); 2014 BUG_ON(!con->ops->alloc_msg); 2015 2016 mutex_unlock(&con->mutex); 2017 msg = con->ops->alloc_msg(con, hdr, skip); 2018 mutex_lock(&con->mutex); 2019 if (con->state != CEPH_CON_S_OPEN) { 2020 if (msg) 2021 ceph_msg_put(msg); 2022 return -EAGAIN; 2023 } 2024 if (msg) { 2025 BUG_ON(*skip); 2026 msg_con_set(msg, con); 2027 con->in_msg = msg; 2028 } else { 2029 /* 2030 * Null message pointer means either we should skip 2031 * this message or we couldn't allocate memory. The 2032 * former is not an error. 2033 */ 2034 if (*skip) 2035 return 0; 2036 2037 con->error_msg = "error allocating memory for incoming message"; 2038 return -ENOMEM; 2039 } 2040 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr)); 2041 2042 if (middle_len && !con->in_msg->middle) { 2043 ret = ceph_alloc_middle(con, con->in_msg); 2044 if (ret < 0) { 2045 ceph_msg_put(con->in_msg); 2046 con->in_msg = NULL; 2047 } 2048 } 2049 2050 return ret; 2051 } 2052 2053 void ceph_con_get_out_msg(struct ceph_connection *con) 2054 { 2055 struct ceph_msg *msg; 2056 2057 BUG_ON(list_empty(&con->out_queue)); 2058 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 2059 WARN_ON(msg->con != con); 2060 2061 /* 2062 * Put the message on "sent" list using a ref from ceph_con_send(). 2063 * It is put when the message is acked or revoked. 2064 */ 2065 list_move_tail(&msg->list_head, &con->out_sent); 2066 2067 /* 2068 * Only assign outgoing seq # if we haven't sent this message 2069 * yet. If it is requeued, resend with it's original seq. 2070 */ 2071 if (msg->needs_out_seq) { 2072 msg->hdr.seq = cpu_to_le64(++con->out_seq); 2073 msg->needs_out_seq = false; 2074 2075 if (con->ops->reencode_message) 2076 con->ops->reencode_message(msg); 2077 } 2078 2079 /* 2080 * Get a ref for out_msg. It is put when we are done sending the 2081 * message or in case of a fault. 2082 */ 2083 WARN_ON(con->out_msg); 2084 con->out_msg = ceph_msg_get(msg); 2085 } 2086 2087 /* 2088 * Free a generically kmalloc'd message. 2089 */ 2090 static void ceph_msg_free(struct ceph_msg *m) 2091 { 2092 dout("%s %p\n", __func__, m); 2093 kvfree(m->front.iov_base); 2094 kfree(m->data); 2095 kmem_cache_free(ceph_msg_cache, m); 2096 } 2097 2098 static void ceph_msg_release(struct kref *kref) 2099 { 2100 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2101 int i; 2102 2103 dout("%s %p\n", __func__, m); 2104 WARN_ON(!list_empty(&m->list_head)); 2105 2106 msg_con_set(m, NULL); 2107 2108 /* drop middle, data, if any */ 2109 if (m->middle) { 2110 ceph_buffer_put(m->middle); 2111 m->middle = NULL; 2112 } 2113 2114 for (i = 0; i < m->num_data_items; i++) 2115 ceph_msg_data_destroy(&m->data[i]); 2116 2117 if (m->pool) 2118 ceph_msgpool_put(m->pool, m); 2119 else 2120 ceph_msg_free(m); 2121 } 2122 2123 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 2124 { 2125 dout("%s %p (was %d)\n", __func__, msg, 2126 kref_read(&msg->kref)); 2127 kref_get(&msg->kref); 2128 return msg; 2129 } 2130 EXPORT_SYMBOL(ceph_msg_get); 2131 2132 void ceph_msg_put(struct ceph_msg *msg) 2133 { 2134 dout("%s %p (was %d)\n", __func__, msg, 2135 kref_read(&msg->kref)); 2136 kref_put(&msg->kref, ceph_msg_release); 2137 } 2138 EXPORT_SYMBOL(ceph_msg_put); 2139 2140 void ceph_msg_dump(struct ceph_msg *msg) 2141 { 2142 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 2143 msg->front_alloc_len, msg->data_length); 2144 print_hex_dump(KERN_DEBUG, "header: ", 2145 DUMP_PREFIX_OFFSET, 16, 1, 2146 &msg->hdr, sizeof(msg->hdr), true); 2147 print_hex_dump(KERN_DEBUG, " front: ", 2148 DUMP_PREFIX_OFFSET, 16, 1, 2149 msg->front.iov_base, msg->front.iov_len, true); 2150 if (msg->middle) 2151 print_hex_dump(KERN_DEBUG, "middle: ", 2152 DUMP_PREFIX_OFFSET, 16, 1, 2153 msg->middle->vec.iov_base, 2154 msg->middle->vec.iov_len, true); 2155 print_hex_dump(KERN_DEBUG, "footer: ", 2156 DUMP_PREFIX_OFFSET, 16, 1, 2157 &msg->footer, sizeof(msg->footer), true); 2158 } 2159 EXPORT_SYMBOL(ceph_msg_dump); 2160