xref: /openbmc/linux/net/ceph/messenger.c (revision 6a613ac6)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef	CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif	/* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18 
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25 
26 #define list_entry_next(pos, member)					\
27 	list_entry(pos->member.next, typeof(*pos), member)
28 
29 /*
30  * Ceph uses the messenger to exchange ceph_msg messages with other
31  * hosts in the system.  The messenger provides ordered and reliable
32  * delivery.  We tolerate TCP disconnects by reconnecting (with
33  * exponential backoff) in the case of a fault (disconnection, bad
34  * crc, protocol error).  Acks allow sent messages to be discarded by
35  * the sender.
36  */
37 
38 /*
39  * We track the state of the socket on a given connection using
40  * values defined below.  The transition to a new socket state is
41  * handled by a function which verifies we aren't coming from an
42  * unexpected state.
43  *
44  *      --------
45  *      | NEW* |  transient initial state
46  *      --------
47  *          | con_sock_state_init()
48  *          v
49  *      ----------
50  *      | CLOSED |  initialized, but no socket (and no
51  *      ----------  TCP connection)
52  *       ^      \
53  *       |       \ con_sock_state_connecting()
54  *       |        ----------------------
55  *       |                              \
56  *       + con_sock_state_closed()       \
57  *       |+---------------------------    \
58  *       | \                          \    \
59  *       |  -----------                \    \
60  *       |  | CLOSING |  socket event;  \    \
61  *       |  -----------  await close     \    \
62  *       |       ^                        \   |
63  *       |       |                         \  |
64  *       |       + con_sock_state_closing() \ |
65  *       |      / \                         | |
66  *       |     /   ---------------          | |
67  *       |    /                   \         v v
68  *       |   /                    --------------
69  *       |  /    -----------------| CONNECTING |  socket created, TCP
70  *       |  |   /                 --------------  connect initiated
71  *       |  |   | con_sock_state_connected()
72  *       |  |   v
73  *      -------------
74  *      | CONNECTED |  TCP connection established
75  *      -------------
76  *
77  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78  */
79 
80 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
85 
86 /*
87  * connection states
88  */
89 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
90 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
95 
96 /*
97  * ceph_connection flag bits
98  */
99 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
100 				       * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
105 
106 static bool con_flag_valid(unsigned long con_flag)
107 {
108 	switch (con_flag) {
109 	case CON_FLAG_LOSSYTX:
110 	case CON_FLAG_KEEPALIVE_PENDING:
111 	case CON_FLAG_WRITE_PENDING:
112 	case CON_FLAG_SOCK_CLOSED:
113 	case CON_FLAG_BACKOFF:
114 		return true;
115 	default:
116 		return false;
117 	}
118 }
119 
120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 {
122 	BUG_ON(!con_flag_valid(con_flag));
123 
124 	clear_bit(con_flag, &con->flags);
125 }
126 
127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 {
129 	BUG_ON(!con_flag_valid(con_flag));
130 
131 	set_bit(con_flag, &con->flags);
132 }
133 
134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 {
136 	BUG_ON(!con_flag_valid(con_flag));
137 
138 	return test_bit(con_flag, &con->flags);
139 }
140 
141 static bool con_flag_test_and_clear(struct ceph_connection *con,
142 					unsigned long con_flag)
143 {
144 	BUG_ON(!con_flag_valid(con_flag));
145 
146 	return test_and_clear_bit(con_flag, &con->flags);
147 }
148 
149 static bool con_flag_test_and_set(struct ceph_connection *con,
150 					unsigned long con_flag)
151 {
152 	BUG_ON(!con_flag_valid(con_flag));
153 
154 	return test_and_set_bit(con_flag, &con->flags);
155 }
156 
157 /* Slab caches for frequently-allocated structures */
158 
159 static struct kmem_cache	*ceph_msg_cache;
160 static struct kmem_cache	*ceph_msg_data_cache;
161 
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg = CEPH_MSGR_TAG_MSG;
164 static char tag_ack = CEPH_MSGR_TAG_ACK;
165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
167 
168 #ifdef CONFIG_LOCKDEP
169 static struct lock_class_key socket_class;
170 #endif
171 
172 /*
173  * When skipping (ignoring) a block of input we read it into a "skip
174  * buffer," which is this many bytes in size.
175  */
176 #define SKIP_BUF_SIZE	1024
177 
178 static void queue_con(struct ceph_connection *con);
179 static void cancel_con(struct ceph_connection *con);
180 static void ceph_con_workfn(struct work_struct *);
181 static void con_fault(struct ceph_connection *con);
182 
183 /*
184  * Nicely render a sockaddr as a string.  An array of formatted
185  * strings is used, to approximate reentrancy.
186  */
187 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
188 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
189 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
190 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
191 
192 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
193 static atomic_t addr_str_seq = ATOMIC_INIT(0);
194 
195 static struct page *zero_page;		/* used in certain error cases */
196 
197 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
198 {
199 	int i;
200 	char *s;
201 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
202 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
203 
204 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
205 	s = addr_str[i];
206 
207 	switch (ss->ss_family) {
208 	case AF_INET:
209 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
210 			 ntohs(in4->sin_port));
211 		break;
212 
213 	case AF_INET6:
214 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
215 			 ntohs(in6->sin6_port));
216 		break;
217 
218 	default:
219 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
220 			 ss->ss_family);
221 	}
222 
223 	return s;
224 }
225 EXPORT_SYMBOL(ceph_pr_addr);
226 
227 static void encode_my_addr(struct ceph_messenger *msgr)
228 {
229 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
230 	ceph_encode_addr(&msgr->my_enc_addr);
231 }
232 
233 /*
234  * work queue for all reading and writing to/from the socket.
235  */
236 static struct workqueue_struct *ceph_msgr_wq;
237 
238 static int ceph_msgr_slab_init(void)
239 {
240 	BUG_ON(ceph_msg_cache);
241 	ceph_msg_cache = kmem_cache_create("ceph_msg",
242 					sizeof (struct ceph_msg),
243 					__alignof__(struct ceph_msg), 0, NULL);
244 
245 	if (!ceph_msg_cache)
246 		return -ENOMEM;
247 
248 	BUG_ON(ceph_msg_data_cache);
249 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
250 					sizeof (struct ceph_msg_data),
251 					__alignof__(struct ceph_msg_data),
252 					0, NULL);
253 	if (ceph_msg_data_cache)
254 		return 0;
255 
256 	kmem_cache_destroy(ceph_msg_cache);
257 	ceph_msg_cache = NULL;
258 
259 	return -ENOMEM;
260 }
261 
262 static void ceph_msgr_slab_exit(void)
263 {
264 	BUG_ON(!ceph_msg_data_cache);
265 	kmem_cache_destroy(ceph_msg_data_cache);
266 	ceph_msg_data_cache = NULL;
267 
268 	BUG_ON(!ceph_msg_cache);
269 	kmem_cache_destroy(ceph_msg_cache);
270 	ceph_msg_cache = NULL;
271 }
272 
273 static void _ceph_msgr_exit(void)
274 {
275 	if (ceph_msgr_wq) {
276 		destroy_workqueue(ceph_msgr_wq);
277 		ceph_msgr_wq = NULL;
278 	}
279 
280 	BUG_ON(zero_page == NULL);
281 	page_cache_release(zero_page);
282 	zero_page = NULL;
283 
284 	ceph_msgr_slab_exit();
285 }
286 
287 int ceph_msgr_init(void)
288 {
289 	if (ceph_msgr_slab_init())
290 		return -ENOMEM;
291 
292 	BUG_ON(zero_page != NULL);
293 	zero_page = ZERO_PAGE(0);
294 	page_cache_get(zero_page);
295 
296 	/*
297 	 * The number of active work items is limited by the number of
298 	 * connections, so leave @max_active at default.
299 	 */
300 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
301 	if (ceph_msgr_wq)
302 		return 0;
303 
304 	pr_err("msgr_init failed to create workqueue\n");
305 	_ceph_msgr_exit();
306 
307 	return -ENOMEM;
308 }
309 EXPORT_SYMBOL(ceph_msgr_init);
310 
311 void ceph_msgr_exit(void)
312 {
313 	BUG_ON(ceph_msgr_wq == NULL);
314 
315 	_ceph_msgr_exit();
316 }
317 EXPORT_SYMBOL(ceph_msgr_exit);
318 
319 void ceph_msgr_flush(void)
320 {
321 	flush_workqueue(ceph_msgr_wq);
322 }
323 EXPORT_SYMBOL(ceph_msgr_flush);
324 
325 /* Connection socket state transition functions */
326 
327 static void con_sock_state_init(struct ceph_connection *con)
328 {
329 	int old_state;
330 
331 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
332 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
333 		printk("%s: unexpected old state %d\n", __func__, old_state);
334 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
335 	     CON_SOCK_STATE_CLOSED);
336 }
337 
338 static void con_sock_state_connecting(struct ceph_connection *con)
339 {
340 	int old_state;
341 
342 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
343 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
344 		printk("%s: unexpected old state %d\n", __func__, old_state);
345 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
346 	     CON_SOCK_STATE_CONNECTING);
347 }
348 
349 static void con_sock_state_connected(struct ceph_connection *con)
350 {
351 	int old_state;
352 
353 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
354 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
355 		printk("%s: unexpected old state %d\n", __func__, old_state);
356 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
357 	     CON_SOCK_STATE_CONNECTED);
358 }
359 
360 static void con_sock_state_closing(struct ceph_connection *con)
361 {
362 	int old_state;
363 
364 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
365 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
366 			old_state != CON_SOCK_STATE_CONNECTED &&
367 			old_state != CON_SOCK_STATE_CLOSING))
368 		printk("%s: unexpected old state %d\n", __func__, old_state);
369 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
370 	     CON_SOCK_STATE_CLOSING);
371 }
372 
373 static void con_sock_state_closed(struct ceph_connection *con)
374 {
375 	int old_state;
376 
377 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
378 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
379 		    old_state != CON_SOCK_STATE_CLOSING &&
380 		    old_state != CON_SOCK_STATE_CONNECTING &&
381 		    old_state != CON_SOCK_STATE_CLOSED))
382 		printk("%s: unexpected old state %d\n", __func__, old_state);
383 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
384 	     CON_SOCK_STATE_CLOSED);
385 }
386 
387 /*
388  * socket callback functions
389  */
390 
391 /* data available on socket, or listen socket received a connect */
392 static void ceph_sock_data_ready(struct sock *sk)
393 {
394 	struct ceph_connection *con = sk->sk_user_data;
395 	if (atomic_read(&con->msgr->stopping)) {
396 		return;
397 	}
398 
399 	if (sk->sk_state != TCP_CLOSE_WAIT) {
400 		dout("%s on %p state = %lu, queueing work\n", __func__,
401 		     con, con->state);
402 		queue_con(con);
403 	}
404 }
405 
406 /* socket has buffer space for writing */
407 static void ceph_sock_write_space(struct sock *sk)
408 {
409 	struct ceph_connection *con = sk->sk_user_data;
410 
411 	/* only queue to workqueue if there is data we want to write,
412 	 * and there is sufficient space in the socket buffer to accept
413 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
414 	 * doesn't get called again until try_write() fills the socket
415 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
416 	 * and net/core/stream.c:sk_stream_write_space().
417 	 */
418 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
419 		if (sk_stream_is_writeable(sk)) {
420 			dout("%s %p queueing write work\n", __func__, con);
421 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
422 			queue_con(con);
423 		}
424 	} else {
425 		dout("%s %p nothing to write\n", __func__, con);
426 	}
427 }
428 
429 /* socket's state has changed */
430 static void ceph_sock_state_change(struct sock *sk)
431 {
432 	struct ceph_connection *con = sk->sk_user_data;
433 
434 	dout("%s %p state = %lu sk_state = %u\n", __func__,
435 	     con, con->state, sk->sk_state);
436 
437 	switch (sk->sk_state) {
438 	case TCP_CLOSE:
439 		dout("%s TCP_CLOSE\n", __func__);
440 	case TCP_CLOSE_WAIT:
441 		dout("%s TCP_CLOSE_WAIT\n", __func__);
442 		con_sock_state_closing(con);
443 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
444 		queue_con(con);
445 		break;
446 	case TCP_ESTABLISHED:
447 		dout("%s TCP_ESTABLISHED\n", __func__);
448 		con_sock_state_connected(con);
449 		queue_con(con);
450 		break;
451 	default:	/* Everything else is uninteresting */
452 		break;
453 	}
454 }
455 
456 /*
457  * set up socket callbacks
458  */
459 static void set_sock_callbacks(struct socket *sock,
460 			       struct ceph_connection *con)
461 {
462 	struct sock *sk = sock->sk;
463 	sk->sk_user_data = con;
464 	sk->sk_data_ready = ceph_sock_data_ready;
465 	sk->sk_write_space = ceph_sock_write_space;
466 	sk->sk_state_change = ceph_sock_state_change;
467 }
468 
469 
470 /*
471  * socket helpers
472  */
473 
474 /*
475  * initiate connection to a remote socket.
476  */
477 static int ceph_tcp_connect(struct ceph_connection *con)
478 {
479 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
480 	struct socket *sock;
481 	int ret;
482 
483 	BUG_ON(con->sock);
484 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
485 			       SOCK_STREAM, IPPROTO_TCP, &sock);
486 	if (ret)
487 		return ret;
488 	sock->sk->sk_allocation = GFP_NOFS;
489 
490 #ifdef CONFIG_LOCKDEP
491 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
492 #endif
493 
494 	set_sock_callbacks(sock, con);
495 
496 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497 
498 	con_sock_state_connecting(con);
499 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
500 				 O_NONBLOCK);
501 	if (ret == -EINPROGRESS) {
502 		dout("connect %s EINPROGRESS sk_state = %u\n",
503 		     ceph_pr_addr(&con->peer_addr.in_addr),
504 		     sock->sk->sk_state);
505 	} else if (ret < 0) {
506 		pr_err("connect %s error %d\n",
507 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
508 		sock_release(sock);
509 		return ret;
510 	}
511 
512 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
513 		int optval = 1;
514 
515 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
516 					(char *)&optval, sizeof(optval));
517 		if (ret)
518 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
519 			       ret);
520 	}
521 
522 	con->sock = sock;
523 	return 0;
524 }
525 
526 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
527 {
528 	struct kvec iov = {buf, len};
529 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
530 	int r;
531 
532 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
533 	if (r == -EAGAIN)
534 		r = 0;
535 	return r;
536 }
537 
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 		     int page_offset, size_t length)
540 {
541 	void *kaddr;
542 	int ret;
543 
544 	BUG_ON(page_offset + length > PAGE_SIZE);
545 
546 	kaddr = kmap(page);
547 	BUG_ON(!kaddr);
548 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
549 	kunmap(page);
550 
551 	return ret;
552 }
553 
554 /*
555  * write something.  @more is true if caller will be sending more data
556  * shortly.
557  */
558 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
559 		     size_t kvlen, size_t len, int more)
560 {
561 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
562 	int r;
563 
564 	if (more)
565 		msg.msg_flags |= MSG_MORE;
566 	else
567 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
568 
569 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
570 	if (r == -EAGAIN)
571 		r = 0;
572 	return r;
573 }
574 
575 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
576 		     int offset, size_t size, bool more)
577 {
578 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
579 	int ret;
580 
581 	ret = kernel_sendpage(sock, page, offset, size, flags);
582 	if (ret == -EAGAIN)
583 		ret = 0;
584 
585 	return ret;
586 }
587 
588 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
589 		     int offset, size_t size, bool more)
590 {
591 	int ret;
592 	struct kvec iov;
593 
594 	/* sendpage cannot properly handle pages with page_count == 0,
595 	 * we need to fallback to sendmsg if that's the case */
596 	if (page_count(page) >= 1)
597 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
598 
599 	iov.iov_base = kmap(page) + offset;
600 	iov.iov_len = size;
601 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
602 	kunmap(page);
603 
604 	return ret;
605 }
606 
607 /*
608  * Shutdown/close the socket for the given connection.
609  */
610 static int con_close_socket(struct ceph_connection *con)
611 {
612 	int rc = 0;
613 
614 	dout("con_close_socket on %p sock %p\n", con, con->sock);
615 	if (con->sock) {
616 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
617 		sock_release(con->sock);
618 		con->sock = NULL;
619 	}
620 
621 	/*
622 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
623 	 * independent of the connection mutex, and we could have
624 	 * received a socket close event before we had the chance to
625 	 * shut the socket down.
626 	 */
627 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
628 
629 	con_sock_state_closed(con);
630 	return rc;
631 }
632 
633 /*
634  * Reset a connection.  Discard all incoming and outgoing messages
635  * and clear *_seq state.
636  */
637 static void ceph_msg_remove(struct ceph_msg *msg)
638 {
639 	list_del_init(&msg->list_head);
640 
641 	ceph_msg_put(msg);
642 }
643 static void ceph_msg_remove_list(struct list_head *head)
644 {
645 	while (!list_empty(head)) {
646 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
647 							list_head);
648 		ceph_msg_remove(msg);
649 	}
650 }
651 
652 static void reset_connection(struct ceph_connection *con)
653 {
654 	/* reset connection, out_queue, msg_ and connect_seq */
655 	/* discard existing out_queue and msg_seq */
656 	dout("reset_connection %p\n", con);
657 	ceph_msg_remove_list(&con->out_queue);
658 	ceph_msg_remove_list(&con->out_sent);
659 
660 	if (con->in_msg) {
661 		BUG_ON(con->in_msg->con != con);
662 		ceph_msg_put(con->in_msg);
663 		con->in_msg = NULL;
664 	}
665 
666 	con->connect_seq = 0;
667 	con->out_seq = 0;
668 	if (con->out_msg) {
669 		BUG_ON(con->out_msg->con != con);
670 		ceph_msg_put(con->out_msg);
671 		con->out_msg = NULL;
672 	}
673 	con->in_seq = 0;
674 	con->in_seq_acked = 0;
675 }
676 
677 /*
678  * mark a peer down.  drop any open connections.
679  */
680 void ceph_con_close(struct ceph_connection *con)
681 {
682 	mutex_lock(&con->mutex);
683 	dout("con_close %p peer %s\n", con,
684 	     ceph_pr_addr(&con->peer_addr.in_addr));
685 	con->state = CON_STATE_CLOSED;
686 
687 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
688 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
689 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
690 	con_flag_clear(con, CON_FLAG_BACKOFF);
691 
692 	reset_connection(con);
693 	con->peer_global_seq = 0;
694 	cancel_con(con);
695 	con_close_socket(con);
696 	mutex_unlock(&con->mutex);
697 }
698 EXPORT_SYMBOL(ceph_con_close);
699 
700 /*
701  * Reopen a closed connection, with a new peer address.
702  */
703 void ceph_con_open(struct ceph_connection *con,
704 		   __u8 entity_type, __u64 entity_num,
705 		   struct ceph_entity_addr *addr)
706 {
707 	mutex_lock(&con->mutex);
708 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
709 
710 	WARN_ON(con->state != CON_STATE_CLOSED);
711 	con->state = CON_STATE_PREOPEN;
712 
713 	con->peer_name.type = (__u8) entity_type;
714 	con->peer_name.num = cpu_to_le64(entity_num);
715 
716 	memcpy(&con->peer_addr, addr, sizeof(*addr));
717 	con->delay = 0;      /* reset backoff memory */
718 	mutex_unlock(&con->mutex);
719 	queue_con(con);
720 }
721 EXPORT_SYMBOL(ceph_con_open);
722 
723 /*
724  * return true if this connection ever successfully opened
725  */
726 bool ceph_con_opened(struct ceph_connection *con)
727 {
728 	return con->connect_seq > 0;
729 }
730 
731 /*
732  * initialize a new connection.
733  */
734 void ceph_con_init(struct ceph_connection *con, void *private,
735 	const struct ceph_connection_operations *ops,
736 	struct ceph_messenger *msgr)
737 {
738 	dout("con_init %p\n", con);
739 	memset(con, 0, sizeof(*con));
740 	con->private = private;
741 	con->ops = ops;
742 	con->msgr = msgr;
743 
744 	con_sock_state_init(con);
745 
746 	mutex_init(&con->mutex);
747 	INIT_LIST_HEAD(&con->out_queue);
748 	INIT_LIST_HEAD(&con->out_sent);
749 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
750 
751 	con->state = CON_STATE_CLOSED;
752 }
753 EXPORT_SYMBOL(ceph_con_init);
754 
755 
756 /*
757  * We maintain a global counter to order connection attempts.  Get
758  * a unique seq greater than @gt.
759  */
760 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
761 {
762 	u32 ret;
763 
764 	spin_lock(&msgr->global_seq_lock);
765 	if (msgr->global_seq < gt)
766 		msgr->global_seq = gt;
767 	ret = ++msgr->global_seq;
768 	spin_unlock(&msgr->global_seq_lock);
769 	return ret;
770 }
771 
772 static void con_out_kvec_reset(struct ceph_connection *con)
773 {
774 	con->out_kvec_left = 0;
775 	con->out_kvec_bytes = 0;
776 	con->out_kvec_cur = &con->out_kvec[0];
777 }
778 
779 static void con_out_kvec_add(struct ceph_connection *con,
780 				size_t size, void *data)
781 {
782 	int index;
783 
784 	index = con->out_kvec_left;
785 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
786 
787 	con->out_kvec[index].iov_len = size;
788 	con->out_kvec[index].iov_base = data;
789 	con->out_kvec_left++;
790 	con->out_kvec_bytes += size;
791 }
792 
793 #ifdef CONFIG_BLOCK
794 
795 /*
796  * For a bio data item, a piece is whatever remains of the next
797  * entry in the current bio iovec, or the first entry in the next
798  * bio in the list.
799  */
800 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
801 					size_t length)
802 {
803 	struct ceph_msg_data *data = cursor->data;
804 	struct bio *bio;
805 
806 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
807 
808 	bio = data->bio;
809 	BUG_ON(!bio);
810 
811 	cursor->resid = min(length, data->bio_length);
812 	cursor->bio = bio;
813 	cursor->bvec_iter = bio->bi_iter;
814 	cursor->last_piece =
815 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
816 }
817 
818 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
819 						size_t *page_offset,
820 						size_t *length)
821 {
822 	struct ceph_msg_data *data = cursor->data;
823 	struct bio *bio;
824 	struct bio_vec bio_vec;
825 
826 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
827 
828 	bio = cursor->bio;
829 	BUG_ON(!bio);
830 
831 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
832 
833 	*page_offset = (size_t) bio_vec.bv_offset;
834 	BUG_ON(*page_offset >= PAGE_SIZE);
835 	if (cursor->last_piece) /* pagelist offset is always 0 */
836 		*length = cursor->resid;
837 	else
838 		*length = (size_t) bio_vec.bv_len;
839 	BUG_ON(*length > cursor->resid);
840 	BUG_ON(*page_offset + *length > PAGE_SIZE);
841 
842 	return bio_vec.bv_page;
843 }
844 
845 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
846 					size_t bytes)
847 {
848 	struct bio *bio;
849 	struct bio_vec bio_vec;
850 
851 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
852 
853 	bio = cursor->bio;
854 	BUG_ON(!bio);
855 
856 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
857 
858 	/* Advance the cursor offset */
859 
860 	BUG_ON(cursor->resid < bytes);
861 	cursor->resid -= bytes;
862 
863 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
864 
865 	if (bytes < bio_vec.bv_len)
866 		return false;	/* more bytes to process in this segment */
867 
868 	/* Move on to the next segment, and possibly the next bio */
869 
870 	if (!cursor->bvec_iter.bi_size) {
871 		bio = bio->bi_next;
872 		cursor->bio = bio;
873 		if (bio)
874 			cursor->bvec_iter = bio->bi_iter;
875 		else
876 			memset(&cursor->bvec_iter, 0,
877 			       sizeof(cursor->bvec_iter));
878 	}
879 
880 	if (!cursor->last_piece) {
881 		BUG_ON(!cursor->resid);
882 		BUG_ON(!bio);
883 		/* A short read is OK, so use <= rather than == */
884 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
885 			cursor->last_piece = true;
886 	}
887 
888 	return true;
889 }
890 #endif /* CONFIG_BLOCK */
891 
892 /*
893  * For a page array, a piece comes from the first page in the array
894  * that has not already been fully consumed.
895  */
896 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
897 					size_t length)
898 {
899 	struct ceph_msg_data *data = cursor->data;
900 	int page_count;
901 
902 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
903 
904 	BUG_ON(!data->pages);
905 	BUG_ON(!data->length);
906 
907 	cursor->resid = min(length, data->length);
908 	page_count = calc_pages_for(data->alignment, (u64)data->length);
909 	cursor->page_offset = data->alignment & ~PAGE_MASK;
910 	cursor->page_index = 0;
911 	BUG_ON(page_count > (int)USHRT_MAX);
912 	cursor->page_count = (unsigned short)page_count;
913 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
914 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
915 }
916 
917 static struct page *
918 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
919 					size_t *page_offset, size_t *length)
920 {
921 	struct ceph_msg_data *data = cursor->data;
922 
923 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
924 
925 	BUG_ON(cursor->page_index >= cursor->page_count);
926 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
927 
928 	*page_offset = cursor->page_offset;
929 	if (cursor->last_piece)
930 		*length = cursor->resid;
931 	else
932 		*length = PAGE_SIZE - *page_offset;
933 
934 	return data->pages[cursor->page_index];
935 }
936 
937 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
938 						size_t bytes)
939 {
940 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
941 
942 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
943 
944 	/* Advance the cursor page offset */
945 
946 	cursor->resid -= bytes;
947 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
948 	if (!bytes || cursor->page_offset)
949 		return false;	/* more bytes to process in the current page */
950 
951 	if (!cursor->resid)
952 		return false;   /* no more data */
953 
954 	/* Move on to the next page; offset is already at 0 */
955 
956 	BUG_ON(cursor->page_index >= cursor->page_count);
957 	cursor->page_index++;
958 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
959 
960 	return true;
961 }
962 
963 /*
964  * For a pagelist, a piece is whatever remains to be consumed in the
965  * first page in the list, or the front of the next page.
966  */
967 static void
968 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
969 					size_t length)
970 {
971 	struct ceph_msg_data *data = cursor->data;
972 	struct ceph_pagelist *pagelist;
973 	struct page *page;
974 
975 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
976 
977 	pagelist = data->pagelist;
978 	BUG_ON(!pagelist);
979 
980 	if (!length)
981 		return;		/* pagelist can be assigned but empty */
982 
983 	BUG_ON(list_empty(&pagelist->head));
984 	page = list_first_entry(&pagelist->head, struct page, lru);
985 
986 	cursor->resid = min(length, pagelist->length);
987 	cursor->page = page;
988 	cursor->offset = 0;
989 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
990 }
991 
992 static struct page *
993 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
994 				size_t *page_offset, size_t *length)
995 {
996 	struct ceph_msg_data *data = cursor->data;
997 	struct ceph_pagelist *pagelist;
998 
999 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1000 
1001 	pagelist = data->pagelist;
1002 	BUG_ON(!pagelist);
1003 
1004 	BUG_ON(!cursor->page);
1005 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1006 
1007 	/* offset of first page in pagelist is always 0 */
1008 	*page_offset = cursor->offset & ~PAGE_MASK;
1009 	if (cursor->last_piece)
1010 		*length = cursor->resid;
1011 	else
1012 		*length = PAGE_SIZE - *page_offset;
1013 
1014 	return cursor->page;
1015 }
1016 
1017 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1018 						size_t bytes)
1019 {
1020 	struct ceph_msg_data *data = cursor->data;
1021 	struct ceph_pagelist *pagelist;
1022 
1023 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1024 
1025 	pagelist = data->pagelist;
1026 	BUG_ON(!pagelist);
1027 
1028 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1029 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1030 
1031 	/* Advance the cursor offset */
1032 
1033 	cursor->resid -= bytes;
1034 	cursor->offset += bytes;
1035 	/* offset of first page in pagelist is always 0 */
1036 	if (!bytes || cursor->offset & ~PAGE_MASK)
1037 		return false;	/* more bytes to process in the current page */
1038 
1039 	if (!cursor->resid)
1040 		return false;   /* no more data */
1041 
1042 	/* Move on to the next page */
1043 
1044 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1045 	cursor->page = list_entry_next(cursor->page, lru);
1046 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1047 
1048 	return true;
1049 }
1050 
1051 /*
1052  * Message data is handled (sent or received) in pieces, where each
1053  * piece resides on a single page.  The network layer might not
1054  * consume an entire piece at once.  A data item's cursor keeps
1055  * track of which piece is next to process and how much remains to
1056  * be processed in that piece.  It also tracks whether the current
1057  * piece is the last one in the data item.
1058  */
1059 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1060 {
1061 	size_t length = cursor->total_resid;
1062 
1063 	switch (cursor->data->type) {
1064 	case CEPH_MSG_DATA_PAGELIST:
1065 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1066 		break;
1067 	case CEPH_MSG_DATA_PAGES:
1068 		ceph_msg_data_pages_cursor_init(cursor, length);
1069 		break;
1070 #ifdef CONFIG_BLOCK
1071 	case CEPH_MSG_DATA_BIO:
1072 		ceph_msg_data_bio_cursor_init(cursor, length);
1073 		break;
1074 #endif /* CONFIG_BLOCK */
1075 	case CEPH_MSG_DATA_NONE:
1076 	default:
1077 		/* BUG(); */
1078 		break;
1079 	}
1080 	cursor->need_crc = true;
1081 }
1082 
1083 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1084 {
1085 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1086 	struct ceph_msg_data *data;
1087 
1088 	BUG_ON(!length);
1089 	BUG_ON(length > msg->data_length);
1090 	BUG_ON(list_empty(&msg->data));
1091 
1092 	cursor->data_head = &msg->data;
1093 	cursor->total_resid = length;
1094 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1095 	cursor->data = data;
1096 
1097 	__ceph_msg_data_cursor_init(cursor);
1098 }
1099 
1100 /*
1101  * Return the page containing the next piece to process for a given
1102  * data item, and supply the page offset and length of that piece.
1103  * Indicate whether this is the last piece in this data item.
1104  */
1105 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1106 					size_t *page_offset, size_t *length,
1107 					bool *last_piece)
1108 {
1109 	struct page *page;
1110 
1111 	switch (cursor->data->type) {
1112 	case CEPH_MSG_DATA_PAGELIST:
1113 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1114 		break;
1115 	case CEPH_MSG_DATA_PAGES:
1116 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1117 		break;
1118 #ifdef CONFIG_BLOCK
1119 	case CEPH_MSG_DATA_BIO:
1120 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1121 		break;
1122 #endif /* CONFIG_BLOCK */
1123 	case CEPH_MSG_DATA_NONE:
1124 	default:
1125 		page = NULL;
1126 		break;
1127 	}
1128 	BUG_ON(!page);
1129 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1130 	BUG_ON(!*length);
1131 	if (last_piece)
1132 		*last_piece = cursor->last_piece;
1133 
1134 	return page;
1135 }
1136 
1137 /*
1138  * Returns true if the result moves the cursor on to the next piece
1139  * of the data item.
1140  */
1141 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1142 				size_t bytes)
1143 {
1144 	bool new_piece;
1145 
1146 	BUG_ON(bytes > cursor->resid);
1147 	switch (cursor->data->type) {
1148 	case CEPH_MSG_DATA_PAGELIST:
1149 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1150 		break;
1151 	case CEPH_MSG_DATA_PAGES:
1152 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1153 		break;
1154 #ifdef CONFIG_BLOCK
1155 	case CEPH_MSG_DATA_BIO:
1156 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1157 		break;
1158 #endif /* CONFIG_BLOCK */
1159 	case CEPH_MSG_DATA_NONE:
1160 	default:
1161 		BUG();
1162 		break;
1163 	}
1164 	cursor->total_resid -= bytes;
1165 
1166 	if (!cursor->resid && cursor->total_resid) {
1167 		WARN_ON(!cursor->last_piece);
1168 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1169 		cursor->data = list_entry_next(cursor->data, links);
1170 		__ceph_msg_data_cursor_init(cursor);
1171 		new_piece = true;
1172 	}
1173 	cursor->need_crc = new_piece;
1174 
1175 	return new_piece;
1176 }
1177 
1178 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1179 {
1180 	BUG_ON(!msg);
1181 	BUG_ON(!data_len);
1182 
1183 	/* Initialize data cursor */
1184 
1185 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1186 }
1187 
1188 /*
1189  * Prepare footer for currently outgoing message, and finish things
1190  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1191  */
1192 static void prepare_write_message_footer(struct ceph_connection *con)
1193 {
1194 	struct ceph_msg *m = con->out_msg;
1195 	int v = con->out_kvec_left;
1196 
1197 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1198 
1199 	dout("prepare_write_message_footer %p\n", con);
1200 	con->out_kvec_is_msg = true;
1201 	con->out_kvec[v].iov_base = &m->footer;
1202 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1203 		if (con->ops->sign_message)
1204 			con->ops->sign_message(m);
1205 		else
1206 			m->footer.sig = 0;
1207 		con->out_kvec[v].iov_len = sizeof(m->footer);
1208 		con->out_kvec_bytes += sizeof(m->footer);
1209 	} else {
1210 		m->old_footer.flags = m->footer.flags;
1211 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1212 		con->out_kvec_bytes += sizeof(m->old_footer);
1213 	}
1214 	con->out_kvec_left++;
1215 	con->out_more = m->more_to_follow;
1216 	con->out_msg_done = true;
1217 }
1218 
1219 /*
1220  * Prepare headers for the next outgoing message.
1221  */
1222 static void prepare_write_message(struct ceph_connection *con)
1223 {
1224 	struct ceph_msg *m;
1225 	u32 crc;
1226 
1227 	con_out_kvec_reset(con);
1228 	con->out_kvec_is_msg = true;
1229 	con->out_msg_done = false;
1230 
1231 	/* Sneak an ack in there first?  If we can get it into the same
1232 	 * TCP packet that's a good thing. */
1233 	if (con->in_seq > con->in_seq_acked) {
1234 		con->in_seq_acked = con->in_seq;
1235 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1236 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1237 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1238 			&con->out_temp_ack);
1239 	}
1240 
1241 	BUG_ON(list_empty(&con->out_queue));
1242 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1243 	con->out_msg = m;
1244 	BUG_ON(m->con != con);
1245 
1246 	/* put message on sent list */
1247 	ceph_msg_get(m);
1248 	list_move_tail(&m->list_head, &con->out_sent);
1249 
1250 	/*
1251 	 * only assign outgoing seq # if we haven't sent this message
1252 	 * yet.  if it is requeued, resend with it's original seq.
1253 	 */
1254 	if (m->needs_out_seq) {
1255 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1256 		m->needs_out_seq = false;
1257 	}
1258 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1259 
1260 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1261 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1262 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1263 	     m->data_length);
1264 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1265 
1266 	/* tag + hdr + front + middle */
1267 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1268 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1269 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1270 
1271 	if (m->middle)
1272 		con_out_kvec_add(con, m->middle->vec.iov_len,
1273 			m->middle->vec.iov_base);
1274 
1275 	/* fill in crc (except data pages), footer */
1276 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1277 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1278 	con->out_msg->footer.flags = 0;
1279 
1280 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1281 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1282 	if (m->middle) {
1283 		crc = crc32c(0, m->middle->vec.iov_base,
1284 				m->middle->vec.iov_len);
1285 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1286 	} else
1287 		con->out_msg->footer.middle_crc = 0;
1288 	dout("%s front_crc %u middle_crc %u\n", __func__,
1289 	     le32_to_cpu(con->out_msg->footer.front_crc),
1290 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1291 
1292 	/* is there a data payload? */
1293 	con->out_msg->footer.data_crc = 0;
1294 	if (m->data_length) {
1295 		prepare_message_data(con->out_msg, m->data_length);
1296 		con->out_more = 1;  /* data + footer will follow */
1297 	} else {
1298 		/* no, queue up footer too and be done */
1299 		prepare_write_message_footer(con);
1300 	}
1301 
1302 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303 }
1304 
1305 /*
1306  * Prepare an ack.
1307  */
1308 static void prepare_write_ack(struct ceph_connection *con)
1309 {
1310 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1311 	     con->in_seq_acked, con->in_seq);
1312 	con->in_seq_acked = con->in_seq;
1313 
1314 	con_out_kvec_reset(con);
1315 
1316 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1317 
1318 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1319 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1320 				&con->out_temp_ack);
1321 
1322 	con->out_more = 1;  /* more will follow.. eventually.. */
1323 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1324 }
1325 
1326 /*
1327  * Prepare to share the seq during handshake
1328  */
1329 static void prepare_write_seq(struct ceph_connection *con)
1330 {
1331 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1332 	     con->in_seq_acked, con->in_seq);
1333 	con->in_seq_acked = con->in_seq;
1334 
1335 	con_out_kvec_reset(con);
1336 
1337 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1338 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1339 			 &con->out_temp_ack);
1340 
1341 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1342 }
1343 
1344 /*
1345  * Prepare to write keepalive byte.
1346  */
1347 static void prepare_write_keepalive(struct ceph_connection *con)
1348 {
1349 	dout("prepare_write_keepalive %p\n", con);
1350 	con_out_kvec_reset(con);
1351 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1352 		struct timespec now = CURRENT_TIME;
1353 
1354 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1355 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1356 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1357 				 &con->out_temp_keepalive2);
1358 	} else {
1359 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1360 	}
1361 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1362 }
1363 
1364 /*
1365  * Connection negotiation.
1366  */
1367 
1368 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1369 						int *auth_proto)
1370 {
1371 	struct ceph_auth_handshake *auth;
1372 
1373 	if (!con->ops->get_authorizer) {
1374 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1375 		con->out_connect.authorizer_len = 0;
1376 		return NULL;
1377 	}
1378 
1379 	/* Can't hold the mutex while getting authorizer */
1380 	mutex_unlock(&con->mutex);
1381 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1382 	mutex_lock(&con->mutex);
1383 
1384 	if (IS_ERR(auth))
1385 		return auth;
1386 	if (con->state != CON_STATE_NEGOTIATING)
1387 		return ERR_PTR(-EAGAIN);
1388 
1389 	con->auth_reply_buf = auth->authorizer_reply_buf;
1390 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1391 	return auth;
1392 }
1393 
1394 /*
1395  * We connected to a peer and are saying hello.
1396  */
1397 static void prepare_write_banner(struct ceph_connection *con)
1398 {
1399 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1400 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1401 					&con->msgr->my_enc_addr);
1402 
1403 	con->out_more = 0;
1404 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1405 }
1406 
1407 static int prepare_write_connect(struct ceph_connection *con)
1408 {
1409 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1410 	int proto;
1411 	int auth_proto;
1412 	struct ceph_auth_handshake *auth;
1413 
1414 	switch (con->peer_name.type) {
1415 	case CEPH_ENTITY_TYPE_MON:
1416 		proto = CEPH_MONC_PROTOCOL;
1417 		break;
1418 	case CEPH_ENTITY_TYPE_OSD:
1419 		proto = CEPH_OSDC_PROTOCOL;
1420 		break;
1421 	case CEPH_ENTITY_TYPE_MDS:
1422 		proto = CEPH_MDSC_PROTOCOL;
1423 		break;
1424 	default:
1425 		BUG();
1426 	}
1427 
1428 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1429 	     con->connect_seq, global_seq, proto);
1430 
1431 	con->out_connect.features =
1432 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1433 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1434 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1435 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1436 	con->out_connect.protocol_version = cpu_to_le32(proto);
1437 	con->out_connect.flags = 0;
1438 
1439 	auth_proto = CEPH_AUTH_UNKNOWN;
1440 	auth = get_connect_authorizer(con, &auth_proto);
1441 	if (IS_ERR(auth))
1442 		return PTR_ERR(auth);
1443 
1444 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1445 	con->out_connect.authorizer_len = auth ?
1446 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1447 
1448 	con_out_kvec_add(con, sizeof (con->out_connect),
1449 					&con->out_connect);
1450 	if (auth && auth->authorizer_buf_len)
1451 		con_out_kvec_add(con, auth->authorizer_buf_len,
1452 					auth->authorizer_buf);
1453 
1454 	con->out_more = 0;
1455 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1456 
1457 	return 0;
1458 }
1459 
1460 /*
1461  * write as much of pending kvecs to the socket as we can.
1462  *  1 -> done
1463  *  0 -> socket full, but more to do
1464  * <0 -> error
1465  */
1466 static int write_partial_kvec(struct ceph_connection *con)
1467 {
1468 	int ret;
1469 
1470 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1471 	while (con->out_kvec_bytes > 0) {
1472 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1473 				       con->out_kvec_left, con->out_kvec_bytes,
1474 				       con->out_more);
1475 		if (ret <= 0)
1476 			goto out;
1477 		con->out_kvec_bytes -= ret;
1478 		if (con->out_kvec_bytes == 0)
1479 			break;            /* done */
1480 
1481 		/* account for full iov entries consumed */
1482 		while (ret >= con->out_kvec_cur->iov_len) {
1483 			BUG_ON(!con->out_kvec_left);
1484 			ret -= con->out_kvec_cur->iov_len;
1485 			con->out_kvec_cur++;
1486 			con->out_kvec_left--;
1487 		}
1488 		/* and for a partially-consumed entry */
1489 		if (ret) {
1490 			con->out_kvec_cur->iov_len -= ret;
1491 			con->out_kvec_cur->iov_base += ret;
1492 		}
1493 	}
1494 	con->out_kvec_left = 0;
1495 	con->out_kvec_is_msg = false;
1496 	ret = 1;
1497 out:
1498 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1499 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1500 	return ret;  /* done! */
1501 }
1502 
1503 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1504 				unsigned int page_offset,
1505 				unsigned int length)
1506 {
1507 	char *kaddr;
1508 
1509 	kaddr = kmap(page);
1510 	BUG_ON(kaddr == NULL);
1511 	crc = crc32c(crc, kaddr + page_offset, length);
1512 	kunmap(page);
1513 
1514 	return crc;
1515 }
1516 /*
1517  * Write as much message data payload as we can.  If we finish, queue
1518  * up the footer.
1519  *  1 -> done, footer is now queued in out_kvec[].
1520  *  0 -> socket full, but more to do
1521  * <0 -> error
1522  */
1523 static int write_partial_message_data(struct ceph_connection *con)
1524 {
1525 	struct ceph_msg *msg = con->out_msg;
1526 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1527 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1528 	u32 crc;
1529 
1530 	dout("%s %p msg %p\n", __func__, con, msg);
1531 
1532 	if (list_empty(&msg->data))
1533 		return -EINVAL;
1534 
1535 	/*
1536 	 * Iterate through each page that contains data to be
1537 	 * written, and send as much as possible for each.
1538 	 *
1539 	 * If we are calculating the data crc (the default), we will
1540 	 * need to map the page.  If we have no pages, they have
1541 	 * been revoked, so use the zero page.
1542 	 */
1543 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1544 	while (cursor->resid) {
1545 		struct page *page;
1546 		size_t page_offset;
1547 		size_t length;
1548 		bool last_piece;
1549 		bool need_crc;
1550 		int ret;
1551 
1552 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1553 					  &last_piece);
1554 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1555 					length, !last_piece);
1556 		if (ret <= 0) {
1557 			if (do_datacrc)
1558 				msg->footer.data_crc = cpu_to_le32(crc);
1559 
1560 			return ret;
1561 		}
1562 		if (do_datacrc && cursor->need_crc)
1563 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1564 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1565 	}
1566 
1567 	dout("%s %p msg %p done\n", __func__, con, msg);
1568 
1569 	/* prepare and queue up footer, too */
1570 	if (do_datacrc)
1571 		msg->footer.data_crc = cpu_to_le32(crc);
1572 	else
1573 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1574 	con_out_kvec_reset(con);
1575 	prepare_write_message_footer(con);
1576 
1577 	return 1;	/* must return > 0 to indicate success */
1578 }
1579 
1580 /*
1581  * write some zeros
1582  */
1583 static int write_partial_skip(struct ceph_connection *con)
1584 {
1585 	int ret;
1586 
1587 	while (con->out_skip > 0) {
1588 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1589 
1590 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1591 		if (ret <= 0)
1592 			goto out;
1593 		con->out_skip -= ret;
1594 	}
1595 	ret = 1;
1596 out:
1597 	return ret;
1598 }
1599 
1600 /*
1601  * Prepare to read connection handshake, or an ack.
1602  */
1603 static void prepare_read_banner(struct ceph_connection *con)
1604 {
1605 	dout("prepare_read_banner %p\n", con);
1606 	con->in_base_pos = 0;
1607 }
1608 
1609 static void prepare_read_connect(struct ceph_connection *con)
1610 {
1611 	dout("prepare_read_connect %p\n", con);
1612 	con->in_base_pos = 0;
1613 }
1614 
1615 static void prepare_read_ack(struct ceph_connection *con)
1616 {
1617 	dout("prepare_read_ack %p\n", con);
1618 	con->in_base_pos = 0;
1619 }
1620 
1621 static void prepare_read_seq(struct ceph_connection *con)
1622 {
1623 	dout("prepare_read_seq %p\n", con);
1624 	con->in_base_pos = 0;
1625 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1626 }
1627 
1628 static void prepare_read_tag(struct ceph_connection *con)
1629 {
1630 	dout("prepare_read_tag %p\n", con);
1631 	con->in_base_pos = 0;
1632 	con->in_tag = CEPH_MSGR_TAG_READY;
1633 }
1634 
1635 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1636 {
1637 	dout("prepare_read_keepalive_ack %p\n", con);
1638 	con->in_base_pos = 0;
1639 }
1640 
1641 /*
1642  * Prepare to read a message.
1643  */
1644 static int prepare_read_message(struct ceph_connection *con)
1645 {
1646 	dout("prepare_read_message %p\n", con);
1647 	BUG_ON(con->in_msg != NULL);
1648 	con->in_base_pos = 0;
1649 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1650 	return 0;
1651 }
1652 
1653 
1654 static int read_partial(struct ceph_connection *con,
1655 			int end, int size, void *object)
1656 {
1657 	while (con->in_base_pos < end) {
1658 		int left = end - con->in_base_pos;
1659 		int have = size - left;
1660 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1661 		if (ret <= 0)
1662 			return ret;
1663 		con->in_base_pos += ret;
1664 	}
1665 	return 1;
1666 }
1667 
1668 
1669 /*
1670  * Read all or part of the connect-side handshake on a new connection
1671  */
1672 static int read_partial_banner(struct ceph_connection *con)
1673 {
1674 	int size;
1675 	int end;
1676 	int ret;
1677 
1678 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1679 
1680 	/* peer's banner */
1681 	size = strlen(CEPH_BANNER);
1682 	end = size;
1683 	ret = read_partial(con, end, size, con->in_banner);
1684 	if (ret <= 0)
1685 		goto out;
1686 
1687 	size = sizeof (con->actual_peer_addr);
1688 	end += size;
1689 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1690 	if (ret <= 0)
1691 		goto out;
1692 
1693 	size = sizeof (con->peer_addr_for_me);
1694 	end += size;
1695 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1696 	if (ret <= 0)
1697 		goto out;
1698 
1699 out:
1700 	return ret;
1701 }
1702 
1703 static int read_partial_connect(struct ceph_connection *con)
1704 {
1705 	int size;
1706 	int end;
1707 	int ret;
1708 
1709 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1710 
1711 	size = sizeof (con->in_reply);
1712 	end = size;
1713 	ret = read_partial(con, end, size, &con->in_reply);
1714 	if (ret <= 0)
1715 		goto out;
1716 
1717 	size = le32_to_cpu(con->in_reply.authorizer_len);
1718 	end += size;
1719 	ret = read_partial(con, end, size, con->auth_reply_buf);
1720 	if (ret <= 0)
1721 		goto out;
1722 
1723 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1724 	     con, (int)con->in_reply.tag,
1725 	     le32_to_cpu(con->in_reply.connect_seq),
1726 	     le32_to_cpu(con->in_reply.global_seq));
1727 out:
1728 	return ret;
1729 
1730 }
1731 
1732 /*
1733  * Verify the hello banner looks okay.
1734  */
1735 static int verify_hello(struct ceph_connection *con)
1736 {
1737 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1738 		pr_err("connect to %s got bad banner\n",
1739 		       ceph_pr_addr(&con->peer_addr.in_addr));
1740 		con->error_msg = "protocol error, bad banner";
1741 		return -1;
1742 	}
1743 	return 0;
1744 }
1745 
1746 static bool addr_is_blank(struct sockaddr_storage *ss)
1747 {
1748 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1749 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1750 
1751 	switch (ss->ss_family) {
1752 	case AF_INET:
1753 		return addr->s_addr == htonl(INADDR_ANY);
1754 	case AF_INET6:
1755 		return ipv6_addr_any(addr6);
1756 	default:
1757 		return true;
1758 	}
1759 }
1760 
1761 static int addr_port(struct sockaddr_storage *ss)
1762 {
1763 	switch (ss->ss_family) {
1764 	case AF_INET:
1765 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1766 	case AF_INET6:
1767 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1768 	}
1769 	return 0;
1770 }
1771 
1772 static void addr_set_port(struct sockaddr_storage *ss, int p)
1773 {
1774 	switch (ss->ss_family) {
1775 	case AF_INET:
1776 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1777 		break;
1778 	case AF_INET6:
1779 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1780 		break;
1781 	}
1782 }
1783 
1784 /*
1785  * Unlike other *_pton function semantics, zero indicates success.
1786  */
1787 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1788 		char delim, const char **ipend)
1789 {
1790 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1791 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1792 
1793 	memset(ss, 0, sizeof(*ss));
1794 
1795 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1796 		ss->ss_family = AF_INET;
1797 		return 0;
1798 	}
1799 
1800 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1801 		ss->ss_family = AF_INET6;
1802 		return 0;
1803 	}
1804 
1805 	return -EINVAL;
1806 }
1807 
1808 /*
1809  * Extract hostname string and resolve using kernel DNS facility.
1810  */
1811 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1812 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1813 		struct sockaddr_storage *ss, char delim, const char **ipend)
1814 {
1815 	const char *end, *delim_p;
1816 	char *colon_p, *ip_addr = NULL;
1817 	int ip_len, ret;
1818 
1819 	/*
1820 	 * The end of the hostname occurs immediately preceding the delimiter or
1821 	 * the port marker (':') where the delimiter takes precedence.
1822 	 */
1823 	delim_p = memchr(name, delim, namelen);
1824 	colon_p = memchr(name, ':', namelen);
1825 
1826 	if (delim_p && colon_p)
1827 		end = delim_p < colon_p ? delim_p : colon_p;
1828 	else if (!delim_p && colon_p)
1829 		end = colon_p;
1830 	else {
1831 		end = delim_p;
1832 		if (!end) /* case: hostname:/ */
1833 			end = name + namelen;
1834 	}
1835 
1836 	if (end <= name)
1837 		return -EINVAL;
1838 
1839 	/* do dns_resolve upcall */
1840 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1841 	if (ip_len > 0)
1842 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1843 	else
1844 		ret = -ESRCH;
1845 
1846 	kfree(ip_addr);
1847 
1848 	*ipend = end;
1849 
1850 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1851 			ret, ret ? "failed" : ceph_pr_addr(ss));
1852 
1853 	return ret;
1854 }
1855 #else
1856 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1857 		struct sockaddr_storage *ss, char delim, const char **ipend)
1858 {
1859 	return -EINVAL;
1860 }
1861 #endif
1862 
1863 /*
1864  * Parse a server name (IP or hostname). If a valid IP address is not found
1865  * then try to extract a hostname to resolve using userspace DNS upcall.
1866  */
1867 static int ceph_parse_server_name(const char *name, size_t namelen,
1868 			struct sockaddr_storage *ss, char delim, const char **ipend)
1869 {
1870 	int ret;
1871 
1872 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1873 	if (ret)
1874 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1875 
1876 	return ret;
1877 }
1878 
1879 /*
1880  * Parse an ip[:port] list into an addr array.  Use the default
1881  * monitor port if a port isn't specified.
1882  */
1883 int ceph_parse_ips(const char *c, const char *end,
1884 		   struct ceph_entity_addr *addr,
1885 		   int max_count, int *count)
1886 {
1887 	int i, ret = -EINVAL;
1888 	const char *p = c;
1889 
1890 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1891 	for (i = 0; i < max_count; i++) {
1892 		const char *ipend;
1893 		struct sockaddr_storage *ss = &addr[i].in_addr;
1894 		int port;
1895 		char delim = ',';
1896 
1897 		if (*p == '[') {
1898 			delim = ']';
1899 			p++;
1900 		}
1901 
1902 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1903 		if (ret)
1904 			goto bad;
1905 		ret = -EINVAL;
1906 
1907 		p = ipend;
1908 
1909 		if (delim == ']') {
1910 			if (*p != ']') {
1911 				dout("missing matching ']'\n");
1912 				goto bad;
1913 			}
1914 			p++;
1915 		}
1916 
1917 		/* port? */
1918 		if (p < end && *p == ':') {
1919 			port = 0;
1920 			p++;
1921 			while (p < end && *p >= '0' && *p <= '9') {
1922 				port = (port * 10) + (*p - '0');
1923 				p++;
1924 			}
1925 			if (port == 0)
1926 				port = CEPH_MON_PORT;
1927 			else if (port > 65535)
1928 				goto bad;
1929 		} else {
1930 			port = CEPH_MON_PORT;
1931 		}
1932 
1933 		addr_set_port(ss, port);
1934 
1935 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1936 
1937 		if (p == end)
1938 			break;
1939 		if (*p != ',')
1940 			goto bad;
1941 		p++;
1942 	}
1943 
1944 	if (p != end)
1945 		goto bad;
1946 
1947 	if (count)
1948 		*count = i + 1;
1949 	return 0;
1950 
1951 bad:
1952 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1953 	return ret;
1954 }
1955 EXPORT_SYMBOL(ceph_parse_ips);
1956 
1957 static int process_banner(struct ceph_connection *con)
1958 {
1959 	dout("process_banner on %p\n", con);
1960 
1961 	if (verify_hello(con) < 0)
1962 		return -1;
1963 
1964 	ceph_decode_addr(&con->actual_peer_addr);
1965 	ceph_decode_addr(&con->peer_addr_for_me);
1966 
1967 	/*
1968 	 * Make sure the other end is who we wanted.  note that the other
1969 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1970 	 * them the benefit of the doubt.
1971 	 */
1972 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1973 		   sizeof(con->peer_addr)) != 0 &&
1974 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1975 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1976 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1977 			ceph_pr_addr(&con->peer_addr.in_addr),
1978 			(int)le32_to_cpu(con->peer_addr.nonce),
1979 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1980 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1981 		con->error_msg = "wrong peer at address";
1982 		return -1;
1983 	}
1984 
1985 	/*
1986 	 * did we learn our address?
1987 	 */
1988 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1989 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1990 
1991 		memcpy(&con->msgr->inst.addr.in_addr,
1992 		       &con->peer_addr_for_me.in_addr,
1993 		       sizeof(con->peer_addr_for_me.in_addr));
1994 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1995 		encode_my_addr(con->msgr);
1996 		dout("process_banner learned my addr is %s\n",
1997 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static int process_connect(struct ceph_connection *con)
2004 {
2005 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2006 	u64 req_feat = from_msgr(con->msgr)->required_features;
2007 	u64 server_feat = ceph_sanitize_features(
2008 				le64_to_cpu(con->in_reply.features));
2009 	int ret;
2010 
2011 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2012 
2013 	switch (con->in_reply.tag) {
2014 	case CEPH_MSGR_TAG_FEATURES:
2015 		pr_err("%s%lld %s feature set mismatch,"
2016 		       " my %llx < server's %llx, missing %llx\n",
2017 		       ENTITY_NAME(con->peer_name),
2018 		       ceph_pr_addr(&con->peer_addr.in_addr),
2019 		       sup_feat, server_feat, server_feat & ~sup_feat);
2020 		con->error_msg = "missing required protocol features";
2021 		reset_connection(con);
2022 		return -1;
2023 
2024 	case CEPH_MSGR_TAG_BADPROTOVER:
2025 		pr_err("%s%lld %s protocol version mismatch,"
2026 		       " my %d != server's %d\n",
2027 		       ENTITY_NAME(con->peer_name),
2028 		       ceph_pr_addr(&con->peer_addr.in_addr),
2029 		       le32_to_cpu(con->out_connect.protocol_version),
2030 		       le32_to_cpu(con->in_reply.protocol_version));
2031 		con->error_msg = "protocol version mismatch";
2032 		reset_connection(con);
2033 		return -1;
2034 
2035 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2036 		con->auth_retry++;
2037 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2038 		     con->auth_retry);
2039 		if (con->auth_retry == 2) {
2040 			con->error_msg = "connect authorization failure";
2041 			return -1;
2042 		}
2043 		con_out_kvec_reset(con);
2044 		ret = prepare_write_connect(con);
2045 		if (ret < 0)
2046 			return ret;
2047 		prepare_read_connect(con);
2048 		break;
2049 
2050 	case CEPH_MSGR_TAG_RESETSESSION:
2051 		/*
2052 		 * If we connected with a large connect_seq but the peer
2053 		 * has no record of a session with us (no connection, or
2054 		 * connect_seq == 0), they will send RESETSESION to indicate
2055 		 * that they must have reset their session, and may have
2056 		 * dropped messages.
2057 		 */
2058 		dout("process_connect got RESET peer seq %u\n",
2059 		     le32_to_cpu(con->in_reply.connect_seq));
2060 		pr_err("%s%lld %s connection reset\n",
2061 		       ENTITY_NAME(con->peer_name),
2062 		       ceph_pr_addr(&con->peer_addr.in_addr));
2063 		reset_connection(con);
2064 		con_out_kvec_reset(con);
2065 		ret = prepare_write_connect(con);
2066 		if (ret < 0)
2067 			return ret;
2068 		prepare_read_connect(con);
2069 
2070 		/* Tell ceph about it. */
2071 		mutex_unlock(&con->mutex);
2072 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2073 		if (con->ops->peer_reset)
2074 			con->ops->peer_reset(con);
2075 		mutex_lock(&con->mutex);
2076 		if (con->state != CON_STATE_NEGOTIATING)
2077 			return -EAGAIN;
2078 		break;
2079 
2080 	case CEPH_MSGR_TAG_RETRY_SESSION:
2081 		/*
2082 		 * If we sent a smaller connect_seq than the peer has, try
2083 		 * again with a larger value.
2084 		 */
2085 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2086 		     le32_to_cpu(con->out_connect.connect_seq),
2087 		     le32_to_cpu(con->in_reply.connect_seq));
2088 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2089 		con_out_kvec_reset(con);
2090 		ret = prepare_write_connect(con);
2091 		if (ret < 0)
2092 			return ret;
2093 		prepare_read_connect(con);
2094 		break;
2095 
2096 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2097 		/*
2098 		 * If we sent a smaller global_seq than the peer has, try
2099 		 * again with a larger value.
2100 		 */
2101 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2102 		     con->peer_global_seq,
2103 		     le32_to_cpu(con->in_reply.global_seq));
2104 		get_global_seq(con->msgr,
2105 			       le32_to_cpu(con->in_reply.global_seq));
2106 		con_out_kvec_reset(con);
2107 		ret = prepare_write_connect(con);
2108 		if (ret < 0)
2109 			return ret;
2110 		prepare_read_connect(con);
2111 		break;
2112 
2113 	case CEPH_MSGR_TAG_SEQ:
2114 	case CEPH_MSGR_TAG_READY:
2115 		if (req_feat & ~server_feat) {
2116 			pr_err("%s%lld %s protocol feature mismatch,"
2117 			       " my required %llx > server's %llx, need %llx\n",
2118 			       ENTITY_NAME(con->peer_name),
2119 			       ceph_pr_addr(&con->peer_addr.in_addr),
2120 			       req_feat, server_feat, req_feat & ~server_feat);
2121 			con->error_msg = "missing required protocol features";
2122 			reset_connection(con);
2123 			return -1;
2124 		}
2125 
2126 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2127 		con->state = CON_STATE_OPEN;
2128 		con->auth_retry = 0;    /* we authenticated; clear flag */
2129 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2130 		con->connect_seq++;
2131 		con->peer_features = server_feat;
2132 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2133 		     con->peer_global_seq,
2134 		     le32_to_cpu(con->in_reply.connect_seq),
2135 		     con->connect_seq);
2136 		WARN_ON(con->connect_seq !=
2137 			le32_to_cpu(con->in_reply.connect_seq));
2138 
2139 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2140 			con_flag_set(con, CON_FLAG_LOSSYTX);
2141 
2142 		con->delay = 0;      /* reset backoff memory */
2143 
2144 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2145 			prepare_write_seq(con);
2146 			prepare_read_seq(con);
2147 		} else {
2148 			prepare_read_tag(con);
2149 		}
2150 		break;
2151 
2152 	case CEPH_MSGR_TAG_WAIT:
2153 		/*
2154 		 * If there is a connection race (we are opening
2155 		 * connections to each other), one of us may just have
2156 		 * to WAIT.  This shouldn't happen if we are the
2157 		 * client.
2158 		 */
2159 		con->error_msg = "protocol error, got WAIT as client";
2160 		return -1;
2161 
2162 	default:
2163 		con->error_msg = "protocol error, garbage tag during connect";
2164 		return -1;
2165 	}
2166 	return 0;
2167 }
2168 
2169 
2170 /*
2171  * read (part of) an ack
2172  */
2173 static int read_partial_ack(struct ceph_connection *con)
2174 {
2175 	int size = sizeof (con->in_temp_ack);
2176 	int end = size;
2177 
2178 	return read_partial(con, end, size, &con->in_temp_ack);
2179 }
2180 
2181 /*
2182  * We can finally discard anything that's been acked.
2183  */
2184 static void process_ack(struct ceph_connection *con)
2185 {
2186 	struct ceph_msg *m;
2187 	u64 ack = le64_to_cpu(con->in_temp_ack);
2188 	u64 seq;
2189 
2190 	while (!list_empty(&con->out_sent)) {
2191 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2192 				     list_head);
2193 		seq = le64_to_cpu(m->hdr.seq);
2194 		if (seq > ack)
2195 			break;
2196 		dout("got ack for seq %llu type %d at %p\n", seq,
2197 		     le16_to_cpu(m->hdr.type), m);
2198 		m->ack_stamp = jiffies;
2199 		ceph_msg_remove(m);
2200 	}
2201 	prepare_read_tag(con);
2202 }
2203 
2204 
2205 static int read_partial_message_section(struct ceph_connection *con,
2206 					struct kvec *section,
2207 					unsigned int sec_len, u32 *crc)
2208 {
2209 	int ret, left;
2210 
2211 	BUG_ON(!section);
2212 
2213 	while (section->iov_len < sec_len) {
2214 		BUG_ON(section->iov_base == NULL);
2215 		left = sec_len - section->iov_len;
2216 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2217 				       section->iov_len, left);
2218 		if (ret <= 0)
2219 			return ret;
2220 		section->iov_len += ret;
2221 	}
2222 	if (section->iov_len == sec_len)
2223 		*crc = crc32c(0, section->iov_base, section->iov_len);
2224 
2225 	return 1;
2226 }
2227 
2228 static int read_partial_msg_data(struct ceph_connection *con)
2229 {
2230 	struct ceph_msg *msg = con->in_msg;
2231 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2232 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2233 	struct page *page;
2234 	size_t page_offset;
2235 	size_t length;
2236 	u32 crc = 0;
2237 	int ret;
2238 
2239 	BUG_ON(!msg);
2240 	if (list_empty(&msg->data))
2241 		return -EIO;
2242 
2243 	if (do_datacrc)
2244 		crc = con->in_data_crc;
2245 	while (cursor->resid) {
2246 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2247 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2248 		if (ret <= 0) {
2249 			if (do_datacrc)
2250 				con->in_data_crc = crc;
2251 
2252 			return ret;
2253 		}
2254 
2255 		if (do_datacrc)
2256 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2257 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2258 	}
2259 	if (do_datacrc)
2260 		con->in_data_crc = crc;
2261 
2262 	return 1;	/* must return > 0 to indicate success */
2263 }
2264 
2265 /*
2266  * read (part of) a message.
2267  */
2268 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2269 
2270 static int read_partial_message(struct ceph_connection *con)
2271 {
2272 	struct ceph_msg *m = con->in_msg;
2273 	int size;
2274 	int end;
2275 	int ret;
2276 	unsigned int front_len, middle_len, data_len;
2277 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2278 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2279 	u64 seq;
2280 	u32 crc;
2281 
2282 	dout("read_partial_message con %p msg %p\n", con, m);
2283 
2284 	/* header */
2285 	size = sizeof (con->in_hdr);
2286 	end = size;
2287 	ret = read_partial(con, end, size, &con->in_hdr);
2288 	if (ret <= 0)
2289 		return ret;
2290 
2291 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2292 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2293 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2294 		       crc, con->in_hdr.crc);
2295 		return -EBADMSG;
2296 	}
2297 
2298 	front_len = le32_to_cpu(con->in_hdr.front_len);
2299 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2300 		return -EIO;
2301 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2302 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2303 		return -EIO;
2304 	data_len = le32_to_cpu(con->in_hdr.data_len);
2305 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2306 		return -EIO;
2307 
2308 	/* verify seq# */
2309 	seq = le64_to_cpu(con->in_hdr.seq);
2310 	if ((s64)seq - (s64)con->in_seq < 1) {
2311 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2312 			ENTITY_NAME(con->peer_name),
2313 			ceph_pr_addr(&con->peer_addr.in_addr),
2314 			seq, con->in_seq + 1);
2315 		con->in_base_pos = -front_len - middle_len - data_len -
2316 			sizeof(m->footer);
2317 		con->in_tag = CEPH_MSGR_TAG_READY;
2318 		return 0;
2319 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2320 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2321 		       seq, con->in_seq + 1);
2322 		con->error_msg = "bad message sequence # for incoming message";
2323 		return -EBADE;
2324 	}
2325 
2326 	/* allocate message? */
2327 	if (!con->in_msg) {
2328 		int skip = 0;
2329 
2330 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2331 		     front_len, data_len);
2332 		ret = ceph_con_in_msg_alloc(con, &skip);
2333 		if (ret < 0)
2334 			return ret;
2335 
2336 		BUG_ON(!con->in_msg ^ skip);
2337 		if (skip) {
2338 			/* skip this message */
2339 			dout("alloc_msg said skip message\n");
2340 			con->in_base_pos = -front_len - middle_len - data_len -
2341 				sizeof(m->footer);
2342 			con->in_tag = CEPH_MSGR_TAG_READY;
2343 			con->in_seq++;
2344 			return 0;
2345 		}
2346 
2347 		BUG_ON(!con->in_msg);
2348 		BUG_ON(con->in_msg->con != con);
2349 		m = con->in_msg;
2350 		m->front.iov_len = 0;    /* haven't read it yet */
2351 		if (m->middle)
2352 			m->middle->vec.iov_len = 0;
2353 
2354 		/* prepare for data payload, if any */
2355 
2356 		if (data_len)
2357 			prepare_message_data(con->in_msg, data_len);
2358 	}
2359 
2360 	/* front */
2361 	ret = read_partial_message_section(con, &m->front, front_len,
2362 					   &con->in_front_crc);
2363 	if (ret <= 0)
2364 		return ret;
2365 
2366 	/* middle */
2367 	if (m->middle) {
2368 		ret = read_partial_message_section(con, &m->middle->vec,
2369 						   middle_len,
2370 						   &con->in_middle_crc);
2371 		if (ret <= 0)
2372 			return ret;
2373 	}
2374 
2375 	/* (page) data */
2376 	if (data_len) {
2377 		ret = read_partial_msg_data(con);
2378 		if (ret <= 0)
2379 			return ret;
2380 	}
2381 
2382 	/* footer */
2383 	if (need_sign)
2384 		size = sizeof(m->footer);
2385 	else
2386 		size = sizeof(m->old_footer);
2387 
2388 	end += size;
2389 	ret = read_partial(con, end, size, &m->footer);
2390 	if (ret <= 0)
2391 		return ret;
2392 
2393 	if (!need_sign) {
2394 		m->footer.flags = m->old_footer.flags;
2395 		m->footer.sig = 0;
2396 	}
2397 
2398 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2399 	     m, front_len, m->footer.front_crc, middle_len,
2400 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2401 
2402 	/* crc ok? */
2403 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2404 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2405 		       m, con->in_front_crc, m->footer.front_crc);
2406 		return -EBADMSG;
2407 	}
2408 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2409 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2410 		       m, con->in_middle_crc, m->footer.middle_crc);
2411 		return -EBADMSG;
2412 	}
2413 	if (do_datacrc &&
2414 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2415 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2416 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2417 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2418 		return -EBADMSG;
2419 	}
2420 
2421 	if (need_sign && con->ops->check_message_signature &&
2422 	    con->ops->check_message_signature(m)) {
2423 		pr_err("read_partial_message %p signature check failed\n", m);
2424 		return -EBADMSG;
2425 	}
2426 
2427 	return 1; /* done! */
2428 }
2429 
2430 /*
2431  * Process message.  This happens in the worker thread.  The callback should
2432  * be careful not to do anything that waits on other incoming messages or it
2433  * may deadlock.
2434  */
2435 static void process_message(struct ceph_connection *con)
2436 {
2437 	struct ceph_msg *msg = con->in_msg;
2438 
2439 	BUG_ON(con->in_msg->con != con);
2440 	con->in_msg = NULL;
2441 
2442 	/* if first message, set peer_name */
2443 	if (con->peer_name.type == 0)
2444 		con->peer_name = msg->hdr.src;
2445 
2446 	con->in_seq++;
2447 	mutex_unlock(&con->mutex);
2448 
2449 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2450 	     msg, le64_to_cpu(msg->hdr.seq),
2451 	     ENTITY_NAME(msg->hdr.src),
2452 	     le16_to_cpu(msg->hdr.type),
2453 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2454 	     le32_to_cpu(msg->hdr.front_len),
2455 	     le32_to_cpu(msg->hdr.data_len),
2456 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2457 	con->ops->dispatch(con, msg);
2458 
2459 	mutex_lock(&con->mutex);
2460 }
2461 
2462 static int read_keepalive_ack(struct ceph_connection *con)
2463 {
2464 	struct ceph_timespec ceph_ts;
2465 	size_t size = sizeof(ceph_ts);
2466 	int ret = read_partial(con, size, size, &ceph_ts);
2467 	if (ret <= 0)
2468 		return ret;
2469 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2470 	prepare_read_tag(con);
2471 	return 1;
2472 }
2473 
2474 /*
2475  * Write something to the socket.  Called in a worker thread when the
2476  * socket appears to be writeable and we have something ready to send.
2477  */
2478 static int try_write(struct ceph_connection *con)
2479 {
2480 	int ret = 1;
2481 
2482 	dout("try_write start %p state %lu\n", con, con->state);
2483 
2484 more:
2485 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2486 
2487 	/* open the socket first? */
2488 	if (con->state == CON_STATE_PREOPEN) {
2489 		BUG_ON(con->sock);
2490 		con->state = CON_STATE_CONNECTING;
2491 
2492 		con_out_kvec_reset(con);
2493 		prepare_write_banner(con);
2494 		prepare_read_banner(con);
2495 
2496 		BUG_ON(con->in_msg);
2497 		con->in_tag = CEPH_MSGR_TAG_READY;
2498 		dout("try_write initiating connect on %p new state %lu\n",
2499 		     con, con->state);
2500 		ret = ceph_tcp_connect(con);
2501 		if (ret < 0) {
2502 			con->error_msg = "connect error";
2503 			goto out;
2504 		}
2505 	}
2506 
2507 more_kvec:
2508 	/* kvec data queued? */
2509 	if (con->out_skip) {
2510 		ret = write_partial_skip(con);
2511 		if (ret <= 0)
2512 			goto out;
2513 	}
2514 	if (con->out_kvec_left) {
2515 		ret = write_partial_kvec(con);
2516 		if (ret <= 0)
2517 			goto out;
2518 	}
2519 
2520 	/* msg pages? */
2521 	if (con->out_msg) {
2522 		if (con->out_msg_done) {
2523 			ceph_msg_put(con->out_msg);
2524 			con->out_msg = NULL;   /* we're done with this one */
2525 			goto do_next;
2526 		}
2527 
2528 		ret = write_partial_message_data(con);
2529 		if (ret == 1)
2530 			goto more_kvec;  /* we need to send the footer, too! */
2531 		if (ret == 0)
2532 			goto out;
2533 		if (ret < 0) {
2534 			dout("try_write write_partial_message_data err %d\n",
2535 			     ret);
2536 			goto out;
2537 		}
2538 	}
2539 
2540 do_next:
2541 	if (con->state == CON_STATE_OPEN) {
2542 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2543 			prepare_write_keepalive(con);
2544 			goto more;
2545 		}
2546 		/* is anything else pending? */
2547 		if (!list_empty(&con->out_queue)) {
2548 			prepare_write_message(con);
2549 			goto more;
2550 		}
2551 		if (con->in_seq > con->in_seq_acked) {
2552 			prepare_write_ack(con);
2553 			goto more;
2554 		}
2555 	}
2556 
2557 	/* Nothing to do! */
2558 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2559 	dout("try_write nothing else to write.\n");
2560 	ret = 0;
2561 out:
2562 	dout("try_write done on %p ret %d\n", con, ret);
2563 	return ret;
2564 }
2565 
2566 
2567 
2568 /*
2569  * Read what we can from the socket.
2570  */
2571 static int try_read(struct ceph_connection *con)
2572 {
2573 	int ret = -1;
2574 
2575 more:
2576 	dout("try_read start on %p state %lu\n", con, con->state);
2577 	if (con->state != CON_STATE_CONNECTING &&
2578 	    con->state != CON_STATE_NEGOTIATING &&
2579 	    con->state != CON_STATE_OPEN)
2580 		return 0;
2581 
2582 	BUG_ON(!con->sock);
2583 
2584 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2585 	     con->in_base_pos);
2586 
2587 	if (con->state == CON_STATE_CONNECTING) {
2588 		dout("try_read connecting\n");
2589 		ret = read_partial_banner(con);
2590 		if (ret <= 0)
2591 			goto out;
2592 		ret = process_banner(con);
2593 		if (ret < 0)
2594 			goto out;
2595 
2596 		con->state = CON_STATE_NEGOTIATING;
2597 
2598 		/*
2599 		 * Received banner is good, exchange connection info.
2600 		 * Do not reset out_kvec, as sending our banner raced
2601 		 * with receiving peer banner after connect completed.
2602 		 */
2603 		ret = prepare_write_connect(con);
2604 		if (ret < 0)
2605 			goto out;
2606 		prepare_read_connect(con);
2607 
2608 		/* Send connection info before awaiting response */
2609 		goto out;
2610 	}
2611 
2612 	if (con->state == CON_STATE_NEGOTIATING) {
2613 		dout("try_read negotiating\n");
2614 		ret = read_partial_connect(con);
2615 		if (ret <= 0)
2616 			goto out;
2617 		ret = process_connect(con);
2618 		if (ret < 0)
2619 			goto out;
2620 		goto more;
2621 	}
2622 
2623 	WARN_ON(con->state != CON_STATE_OPEN);
2624 
2625 	if (con->in_base_pos < 0) {
2626 		/*
2627 		 * skipping + discarding content.
2628 		 *
2629 		 * FIXME: there must be a better way to do this!
2630 		 */
2631 		static char buf[SKIP_BUF_SIZE];
2632 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2633 
2634 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2635 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2636 		if (ret <= 0)
2637 			goto out;
2638 		con->in_base_pos += ret;
2639 		if (con->in_base_pos)
2640 			goto more;
2641 	}
2642 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2643 		/*
2644 		 * what's next?
2645 		 */
2646 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2647 		if (ret <= 0)
2648 			goto out;
2649 		dout("try_read got tag %d\n", (int)con->in_tag);
2650 		switch (con->in_tag) {
2651 		case CEPH_MSGR_TAG_MSG:
2652 			prepare_read_message(con);
2653 			break;
2654 		case CEPH_MSGR_TAG_ACK:
2655 			prepare_read_ack(con);
2656 			break;
2657 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2658 			prepare_read_keepalive_ack(con);
2659 			break;
2660 		case CEPH_MSGR_TAG_CLOSE:
2661 			con_close_socket(con);
2662 			con->state = CON_STATE_CLOSED;
2663 			goto out;
2664 		default:
2665 			goto bad_tag;
2666 		}
2667 	}
2668 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2669 		ret = read_partial_message(con);
2670 		if (ret <= 0) {
2671 			switch (ret) {
2672 			case -EBADMSG:
2673 				con->error_msg = "bad crc/signature";
2674 				/* fall through */
2675 			case -EBADE:
2676 				ret = -EIO;
2677 				break;
2678 			case -EIO:
2679 				con->error_msg = "io error";
2680 				break;
2681 			}
2682 			goto out;
2683 		}
2684 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2685 			goto more;
2686 		process_message(con);
2687 		if (con->state == CON_STATE_OPEN)
2688 			prepare_read_tag(con);
2689 		goto more;
2690 	}
2691 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2692 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2693 		/*
2694 		 * the final handshake seq exchange is semantically
2695 		 * equivalent to an ACK
2696 		 */
2697 		ret = read_partial_ack(con);
2698 		if (ret <= 0)
2699 			goto out;
2700 		process_ack(con);
2701 		goto more;
2702 	}
2703 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2704 		ret = read_keepalive_ack(con);
2705 		if (ret <= 0)
2706 			goto out;
2707 		goto more;
2708 	}
2709 
2710 out:
2711 	dout("try_read done on %p ret %d\n", con, ret);
2712 	return ret;
2713 
2714 bad_tag:
2715 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2716 	con->error_msg = "protocol error, garbage tag";
2717 	ret = -1;
2718 	goto out;
2719 }
2720 
2721 
2722 /*
2723  * Atomically queue work on a connection after the specified delay.
2724  * Bump @con reference to avoid races with connection teardown.
2725  * Returns 0 if work was queued, or an error code otherwise.
2726  */
2727 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2728 {
2729 	if (!con->ops->get(con)) {
2730 		dout("%s %p ref count 0\n", __func__, con);
2731 		return -ENOENT;
2732 	}
2733 
2734 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2735 		dout("%s %p - already queued\n", __func__, con);
2736 		con->ops->put(con);
2737 		return -EBUSY;
2738 	}
2739 
2740 	dout("%s %p %lu\n", __func__, con, delay);
2741 	return 0;
2742 }
2743 
2744 static void queue_con(struct ceph_connection *con)
2745 {
2746 	(void) queue_con_delay(con, 0);
2747 }
2748 
2749 static void cancel_con(struct ceph_connection *con)
2750 {
2751 	if (cancel_delayed_work(&con->work)) {
2752 		dout("%s %p\n", __func__, con);
2753 		con->ops->put(con);
2754 	}
2755 }
2756 
2757 static bool con_sock_closed(struct ceph_connection *con)
2758 {
2759 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2760 		return false;
2761 
2762 #define CASE(x)								\
2763 	case CON_STATE_ ## x:						\
2764 		con->error_msg = "socket closed (con state " #x ")";	\
2765 		break;
2766 
2767 	switch (con->state) {
2768 	CASE(CLOSED);
2769 	CASE(PREOPEN);
2770 	CASE(CONNECTING);
2771 	CASE(NEGOTIATING);
2772 	CASE(OPEN);
2773 	CASE(STANDBY);
2774 	default:
2775 		pr_warn("%s con %p unrecognized state %lu\n",
2776 			__func__, con, con->state);
2777 		con->error_msg = "unrecognized con state";
2778 		BUG();
2779 		break;
2780 	}
2781 #undef CASE
2782 
2783 	return true;
2784 }
2785 
2786 static bool con_backoff(struct ceph_connection *con)
2787 {
2788 	int ret;
2789 
2790 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2791 		return false;
2792 
2793 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2794 	if (ret) {
2795 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2796 			con, con->delay);
2797 		BUG_ON(ret == -ENOENT);
2798 		con_flag_set(con, CON_FLAG_BACKOFF);
2799 	}
2800 
2801 	return true;
2802 }
2803 
2804 /* Finish fault handling; con->mutex must *not* be held here */
2805 
2806 static void con_fault_finish(struct ceph_connection *con)
2807 {
2808 	/*
2809 	 * in case we faulted due to authentication, invalidate our
2810 	 * current tickets so that we can get new ones.
2811 	 */
2812 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2813 		dout("calling invalidate_authorizer()\n");
2814 		con->ops->invalidate_authorizer(con);
2815 	}
2816 
2817 	if (con->ops->fault)
2818 		con->ops->fault(con);
2819 }
2820 
2821 /*
2822  * Do some work on a connection.  Drop a connection ref when we're done.
2823  */
2824 static void ceph_con_workfn(struct work_struct *work)
2825 {
2826 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2827 						   work.work);
2828 	bool fault;
2829 
2830 	mutex_lock(&con->mutex);
2831 	while (true) {
2832 		int ret;
2833 
2834 		if ((fault = con_sock_closed(con))) {
2835 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2836 			break;
2837 		}
2838 		if (con_backoff(con)) {
2839 			dout("%s: con %p BACKOFF\n", __func__, con);
2840 			break;
2841 		}
2842 		if (con->state == CON_STATE_STANDBY) {
2843 			dout("%s: con %p STANDBY\n", __func__, con);
2844 			break;
2845 		}
2846 		if (con->state == CON_STATE_CLOSED) {
2847 			dout("%s: con %p CLOSED\n", __func__, con);
2848 			BUG_ON(con->sock);
2849 			break;
2850 		}
2851 		if (con->state == CON_STATE_PREOPEN) {
2852 			dout("%s: con %p PREOPEN\n", __func__, con);
2853 			BUG_ON(con->sock);
2854 		}
2855 
2856 		ret = try_read(con);
2857 		if (ret < 0) {
2858 			if (ret == -EAGAIN)
2859 				continue;
2860 			if (!con->error_msg)
2861 				con->error_msg = "socket error on read";
2862 			fault = true;
2863 			break;
2864 		}
2865 
2866 		ret = try_write(con);
2867 		if (ret < 0) {
2868 			if (ret == -EAGAIN)
2869 				continue;
2870 			if (!con->error_msg)
2871 				con->error_msg = "socket error on write";
2872 			fault = true;
2873 		}
2874 
2875 		break;	/* If we make it to here, we're done */
2876 	}
2877 	if (fault)
2878 		con_fault(con);
2879 	mutex_unlock(&con->mutex);
2880 
2881 	if (fault)
2882 		con_fault_finish(con);
2883 
2884 	con->ops->put(con);
2885 }
2886 
2887 /*
2888  * Generic error/fault handler.  A retry mechanism is used with
2889  * exponential backoff
2890  */
2891 static void con_fault(struct ceph_connection *con)
2892 {
2893 	dout("fault %p state %lu to peer %s\n",
2894 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2895 
2896 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2897 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2898 	con->error_msg = NULL;
2899 
2900 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2901 	       con->state != CON_STATE_NEGOTIATING &&
2902 	       con->state != CON_STATE_OPEN);
2903 
2904 	con_close_socket(con);
2905 
2906 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2907 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2908 		con->state = CON_STATE_CLOSED;
2909 		return;
2910 	}
2911 
2912 	if (con->in_msg) {
2913 		BUG_ON(con->in_msg->con != con);
2914 		ceph_msg_put(con->in_msg);
2915 		con->in_msg = NULL;
2916 	}
2917 
2918 	/* Requeue anything that hasn't been acked */
2919 	list_splice_init(&con->out_sent, &con->out_queue);
2920 
2921 	/* If there are no messages queued or keepalive pending, place
2922 	 * the connection in a STANDBY state */
2923 	if (list_empty(&con->out_queue) &&
2924 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2925 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2926 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2927 		con->state = CON_STATE_STANDBY;
2928 	} else {
2929 		/* retry after a delay. */
2930 		con->state = CON_STATE_PREOPEN;
2931 		if (con->delay == 0)
2932 			con->delay = BASE_DELAY_INTERVAL;
2933 		else if (con->delay < MAX_DELAY_INTERVAL)
2934 			con->delay *= 2;
2935 		con_flag_set(con, CON_FLAG_BACKOFF);
2936 		queue_con(con);
2937 	}
2938 }
2939 
2940 
2941 
2942 /*
2943  * initialize a new messenger instance
2944  */
2945 void ceph_messenger_init(struct ceph_messenger *msgr,
2946 			 struct ceph_entity_addr *myaddr)
2947 {
2948 	spin_lock_init(&msgr->global_seq_lock);
2949 
2950 	if (myaddr)
2951 		msgr->inst.addr = *myaddr;
2952 
2953 	/* select a random nonce */
2954 	msgr->inst.addr.type = 0;
2955 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2956 	encode_my_addr(msgr);
2957 
2958 	atomic_set(&msgr->stopping, 0);
2959 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2960 
2961 	dout("%s %p\n", __func__, msgr);
2962 }
2963 EXPORT_SYMBOL(ceph_messenger_init);
2964 
2965 void ceph_messenger_fini(struct ceph_messenger *msgr)
2966 {
2967 	put_net(read_pnet(&msgr->net));
2968 }
2969 EXPORT_SYMBOL(ceph_messenger_fini);
2970 
2971 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2972 {
2973 	if (msg->con)
2974 		msg->con->ops->put(msg->con);
2975 
2976 	msg->con = con ? con->ops->get(con) : NULL;
2977 	BUG_ON(msg->con != con);
2978 }
2979 
2980 static void clear_standby(struct ceph_connection *con)
2981 {
2982 	/* come back from STANDBY? */
2983 	if (con->state == CON_STATE_STANDBY) {
2984 		dout("clear_standby %p and ++connect_seq\n", con);
2985 		con->state = CON_STATE_PREOPEN;
2986 		con->connect_seq++;
2987 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2988 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2989 	}
2990 }
2991 
2992 /*
2993  * Queue up an outgoing message on the given connection.
2994  */
2995 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2996 {
2997 	/* set src+dst */
2998 	msg->hdr.src = con->msgr->inst.name;
2999 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3000 	msg->needs_out_seq = true;
3001 
3002 	mutex_lock(&con->mutex);
3003 
3004 	if (con->state == CON_STATE_CLOSED) {
3005 		dout("con_send %p closed, dropping %p\n", con, msg);
3006 		ceph_msg_put(msg);
3007 		mutex_unlock(&con->mutex);
3008 		return;
3009 	}
3010 
3011 	msg_con_set(msg, con);
3012 
3013 	BUG_ON(!list_empty(&msg->list_head));
3014 	list_add_tail(&msg->list_head, &con->out_queue);
3015 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3016 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3017 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3018 	     le32_to_cpu(msg->hdr.front_len),
3019 	     le32_to_cpu(msg->hdr.middle_len),
3020 	     le32_to_cpu(msg->hdr.data_len));
3021 
3022 	clear_standby(con);
3023 	mutex_unlock(&con->mutex);
3024 
3025 	/* if there wasn't anything waiting to send before, queue
3026 	 * new work */
3027 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3028 		queue_con(con);
3029 }
3030 EXPORT_SYMBOL(ceph_con_send);
3031 
3032 /*
3033  * Revoke a message that was previously queued for send
3034  */
3035 void ceph_msg_revoke(struct ceph_msg *msg)
3036 {
3037 	struct ceph_connection *con = msg->con;
3038 
3039 	if (!con) {
3040 		dout("%s msg %p null con\n", __func__, msg);
3041 		return;		/* Message not in our possession */
3042 	}
3043 
3044 	mutex_lock(&con->mutex);
3045 	if (!list_empty(&msg->list_head)) {
3046 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3047 		list_del_init(&msg->list_head);
3048 		msg->hdr.seq = 0;
3049 
3050 		ceph_msg_put(msg);
3051 	}
3052 	if (con->out_msg == msg) {
3053 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3054 		con->out_msg = NULL;
3055 		if (con->out_kvec_is_msg) {
3056 			con->out_skip = con->out_kvec_bytes;
3057 			con->out_kvec_is_msg = false;
3058 		}
3059 		msg->hdr.seq = 0;
3060 
3061 		ceph_msg_put(msg);
3062 	}
3063 	mutex_unlock(&con->mutex);
3064 }
3065 
3066 /*
3067  * Revoke a message that we may be reading data into
3068  */
3069 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3070 {
3071 	struct ceph_connection *con = msg->con;
3072 
3073 	if (!con) {
3074 		dout("%s msg %p null con\n", __func__, msg);
3075 		return;		/* Message not in our possession */
3076 	}
3077 
3078 	mutex_lock(&con->mutex);
3079 	if (con->in_msg == msg) {
3080 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3081 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3082 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3083 
3084 		/* skip rest of message */
3085 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3086 		con->in_base_pos = con->in_base_pos -
3087 				sizeof(struct ceph_msg_header) -
3088 				front_len -
3089 				middle_len -
3090 				data_len -
3091 				sizeof(struct ceph_msg_footer);
3092 		ceph_msg_put(con->in_msg);
3093 		con->in_msg = NULL;
3094 		con->in_tag = CEPH_MSGR_TAG_READY;
3095 		con->in_seq++;
3096 	} else {
3097 		dout("%s %p in_msg %p msg %p no-op\n",
3098 		     __func__, con, con->in_msg, msg);
3099 	}
3100 	mutex_unlock(&con->mutex);
3101 }
3102 
3103 /*
3104  * Queue a keepalive byte to ensure the tcp connection is alive.
3105  */
3106 void ceph_con_keepalive(struct ceph_connection *con)
3107 {
3108 	dout("con_keepalive %p\n", con);
3109 	mutex_lock(&con->mutex);
3110 	clear_standby(con);
3111 	mutex_unlock(&con->mutex);
3112 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3113 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3114 		queue_con(con);
3115 }
3116 EXPORT_SYMBOL(ceph_con_keepalive);
3117 
3118 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3119 			       unsigned long interval)
3120 {
3121 	if (interval > 0 &&
3122 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3123 		struct timespec now = CURRENT_TIME;
3124 		struct timespec ts;
3125 		jiffies_to_timespec(interval, &ts);
3126 		ts = timespec_add(con->last_keepalive_ack, ts);
3127 		return timespec_compare(&now, &ts) >= 0;
3128 	}
3129 	return false;
3130 }
3131 
3132 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3133 {
3134 	struct ceph_msg_data *data;
3135 
3136 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3137 		return NULL;
3138 
3139 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3140 	if (data)
3141 		data->type = type;
3142 	INIT_LIST_HEAD(&data->links);
3143 
3144 	return data;
3145 }
3146 
3147 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3148 {
3149 	if (!data)
3150 		return;
3151 
3152 	WARN_ON(!list_empty(&data->links));
3153 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3154 		ceph_pagelist_release(data->pagelist);
3155 	kmem_cache_free(ceph_msg_data_cache, data);
3156 }
3157 
3158 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3159 		size_t length, size_t alignment)
3160 {
3161 	struct ceph_msg_data *data;
3162 
3163 	BUG_ON(!pages);
3164 	BUG_ON(!length);
3165 
3166 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3167 	BUG_ON(!data);
3168 	data->pages = pages;
3169 	data->length = length;
3170 	data->alignment = alignment & ~PAGE_MASK;
3171 
3172 	list_add_tail(&data->links, &msg->data);
3173 	msg->data_length += length;
3174 }
3175 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3176 
3177 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3178 				struct ceph_pagelist *pagelist)
3179 {
3180 	struct ceph_msg_data *data;
3181 
3182 	BUG_ON(!pagelist);
3183 	BUG_ON(!pagelist->length);
3184 
3185 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3186 	BUG_ON(!data);
3187 	data->pagelist = pagelist;
3188 
3189 	list_add_tail(&data->links, &msg->data);
3190 	msg->data_length += pagelist->length;
3191 }
3192 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3193 
3194 #ifdef	CONFIG_BLOCK
3195 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3196 		size_t length)
3197 {
3198 	struct ceph_msg_data *data;
3199 
3200 	BUG_ON(!bio);
3201 
3202 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3203 	BUG_ON(!data);
3204 	data->bio = bio;
3205 	data->bio_length = length;
3206 
3207 	list_add_tail(&data->links, &msg->data);
3208 	msg->data_length += length;
3209 }
3210 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3211 #endif	/* CONFIG_BLOCK */
3212 
3213 /*
3214  * construct a new message with given type, size
3215  * the new msg has a ref count of 1.
3216  */
3217 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3218 			      bool can_fail)
3219 {
3220 	struct ceph_msg *m;
3221 
3222 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3223 	if (m == NULL)
3224 		goto out;
3225 
3226 	m->hdr.type = cpu_to_le16(type);
3227 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3228 	m->hdr.front_len = cpu_to_le32(front_len);
3229 
3230 	INIT_LIST_HEAD(&m->list_head);
3231 	kref_init(&m->kref);
3232 	INIT_LIST_HEAD(&m->data);
3233 
3234 	/* front */
3235 	if (front_len) {
3236 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3237 		if (m->front.iov_base == NULL) {
3238 			dout("ceph_msg_new can't allocate %d bytes\n",
3239 			     front_len);
3240 			goto out2;
3241 		}
3242 	} else {
3243 		m->front.iov_base = NULL;
3244 	}
3245 	m->front_alloc_len = m->front.iov_len = front_len;
3246 
3247 	dout("ceph_msg_new %p front %d\n", m, front_len);
3248 	return m;
3249 
3250 out2:
3251 	ceph_msg_put(m);
3252 out:
3253 	if (!can_fail) {
3254 		pr_err("msg_new can't create type %d front %d\n", type,
3255 		       front_len);
3256 		WARN_ON(1);
3257 	} else {
3258 		dout("msg_new can't create type %d front %d\n", type,
3259 		     front_len);
3260 	}
3261 	return NULL;
3262 }
3263 EXPORT_SYMBOL(ceph_msg_new);
3264 
3265 /*
3266  * Allocate "middle" portion of a message, if it is needed and wasn't
3267  * allocated by alloc_msg.  This allows us to read a small fixed-size
3268  * per-type header in the front and then gracefully fail (i.e.,
3269  * propagate the error to the caller based on info in the front) when
3270  * the middle is too large.
3271  */
3272 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3273 {
3274 	int type = le16_to_cpu(msg->hdr.type);
3275 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3276 
3277 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3278 	     ceph_msg_type_name(type), middle_len);
3279 	BUG_ON(!middle_len);
3280 	BUG_ON(msg->middle);
3281 
3282 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3283 	if (!msg->middle)
3284 		return -ENOMEM;
3285 	return 0;
3286 }
3287 
3288 /*
3289  * Allocate a message for receiving an incoming message on a
3290  * connection, and save the result in con->in_msg.  Uses the
3291  * connection's private alloc_msg op if available.
3292  *
3293  * Returns 0 on success, or a negative error code.
3294  *
3295  * On success, if we set *skip = 1:
3296  *  - the next message should be skipped and ignored.
3297  *  - con->in_msg == NULL
3298  * or if we set *skip = 0:
3299  *  - con->in_msg is non-null.
3300  * On error (ENOMEM, EAGAIN, ...),
3301  *  - con->in_msg == NULL
3302  */
3303 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3304 {
3305 	struct ceph_msg_header *hdr = &con->in_hdr;
3306 	int middle_len = le32_to_cpu(hdr->middle_len);
3307 	struct ceph_msg *msg;
3308 	int ret = 0;
3309 
3310 	BUG_ON(con->in_msg != NULL);
3311 	BUG_ON(!con->ops->alloc_msg);
3312 
3313 	mutex_unlock(&con->mutex);
3314 	msg = con->ops->alloc_msg(con, hdr, skip);
3315 	mutex_lock(&con->mutex);
3316 	if (con->state != CON_STATE_OPEN) {
3317 		if (msg)
3318 			ceph_msg_put(msg);
3319 		return -EAGAIN;
3320 	}
3321 	if (msg) {
3322 		BUG_ON(*skip);
3323 		msg_con_set(msg, con);
3324 		con->in_msg = msg;
3325 	} else {
3326 		/*
3327 		 * Null message pointer means either we should skip
3328 		 * this message or we couldn't allocate memory.  The
3329 		 * former is not an error.
3330 		 */
3331 		if (*skip)
3332 			return 0;
3333 
3334 		con->error_msg = "error allocating memory for incoming message";
3335 		return -ENOMEM;
3336 	}
3337 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3338 
3339 	if (middle_len && !con->in_msg->middle) {
3340 		ret = ceph_alloc_middle(con, con->in_msg);
3341 		if (ret < 0) {
3342 			ceph_msg_put(con->in_msg);
3343 			con->in_msg = NULL;
3344 		}
3345 	}
3346 
3347 	return ret;
3348 }
3349 
3350 
3351 /*
3352  * Free a generically kmalloc'd message.
3353  */
3354 static void ceph_msg_free(struct ceph_msg *m)
3355 {
3356 	dout("%s %p\n", __func__, m);
3357 	kvfree(m->front.iov_base);
3358 	kmem_cache_free(ceph_msg_cache, m);
3359 }
3360 
3361 static void ceph_msg_release(struct kref *kref)
3362 {
3363 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3364 	LIST_HEAD(data);
3365 	struct list_head *links;
3366 	struct list_head *next;
3367 
3368 	dout("%s %p\n", __func__, m);
3369 	WARN_ON(!list_empty(&m->list_head));
3370 
3371 	msg_con_set(m, NULL);
3372 
3373 	/* drop middle, data, if any */
3374 	if (m->middle) {
3375 		ceph_buffer_put(m->middle);
3376 		m->middle = NULL;
3377 	}
3378 
3379 	list_splice_init(&m->data, &data);
3380 	list_for_each_safe(links, next, &data) {
3381 		struct ceph_msg_data *data;
3382 
3383 		data = list_entry(links, struct ceph_msg_data, links);
3384 		list_del_init(links);
3385 		ceph_msg_data_destroy(data);
3386 	}
3387 	m->data_length = 0;
3388 
3389 	if (m->pool)
3390 		ceph_msgpool_put(m->pool, m);
3391 	else
3392 		ceph_msg_free(m);
3393 }
3394 
3395 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3396 {
3397 	dout("%s %p (was %d)\n", __func__, msg,
3398 	     atomic_read(&msg->kref.refcount));
3399 	kref_get(&msg->kref);
3400 	return msg;
3401 }
3402 EXPORT_SYMBOL(ceph_msg_get);
3403 
3404 void ceph_msg_put(struct ceph_msg *msg)
3405 {
3406 	dout("%s %p (was %d)\n", __func__, msg,
3407 	     atomic_read(&msg->kref.refcount));
3408 	kref_put(&msg->kref, ceph_msg_release);
3409 }
3410 EXPORT_SYMBOL(ceph_msg_put);
3411 
3412 void ceph_msg_dump(struct ceph_msg *msg)
3413 {
3414 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3415 		 msg->front_alloc_len, msg->data_length);
3416 	print_hex_dump(KERN_DEBUG, "header: ",
3417 		       DUMP_PREFIX_OFFSET, 16, 1,
3418 		       &msg->hdr, sizeof(msg->hdr), true);
3419 	print_hex_dump(KERN_DEBUG, " front: ",
3420 		       DUMP_PREFIX_OFFSET, 16, 1,
3421 		       msg->front.iov_base, msg->front.iov_len, true);
3422 	if (msg->middle)
3423 		print_hex_dump(KERN_DEBUG, "middle: ",
3424 			       DUMP_PREFIX_OFFSET, 16, 1,
3425 			       msg->middle->vec.iov_base,
3426 			       msg->middle->vec.iov_len, true);
3427 	print_hex_dump(KERN_DEBUG, "footer: ",
3428 		       DUMP_PREFIX_OFFSET, 16, 1,
3429 		       &msg->footer, sizeof(msg->footer), true);
3430 }
3431 EXPORT_SYMBOL(ceph_msg_dump);
3432