xref: /openbmc/linux/net/ceph/messenger.c (revision 63dc02bd)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36 
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40 
41 /*
42  * When skipping (ignoring) a block of input we read it into a "skip
43  * buffer," which is this many bytes in size.
44  */
45 #define SKIP_BUF_SIZE	1024
46 
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50 
51 /*
52  * Nicely render a sockaddr as a string.  An array of formatted
53  * strings is used, to approximate reentrancy.
54  */
55 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
56 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
59 
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62 
63 static struct page *zero_page;		/* used in certain error cases */
64 
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67 	int i;
68 	char *s;
69 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71 
72 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 	s = addr_str[i];
74 
75 	switch (ss->ss_family) {
76 	case AF_INET:
77 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 			 ntohs(in4->sin_port));
79 		break;
80 
81 	case AF_INET6:
82 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 			 ntohs(in6->sin6_port));
84 		break;
85 
86 	default:
87 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 			 ss->ss_family);
89 	}
90 
91 	return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94 
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 	ceph_encode_addr(&msgr->my_enc_addr);
99 }
100 
101 /*
102  * work queue for all reading and writing to/from the socket.
103  */
104 static struct workqueue_struct *ceph_msgr_wq;
105 
106 void _ceph_msgr_exit(void)
107 {
108 	if (ceph_msgr_wq) {
109 		destroy_workqueue(ceph_msgr_wq);
110 		ceph_msgr_wq = NULL;
111 	}
112 
113 	BUG_ON(zero_page == NULL);
114 	kunmap(zero_page);
115 	page_cache_release(zero_page);
116 	zero_page = NULL;
117 }
118 
119 int ceph_msgr_init(void)
120 {
121 	BUG_ON(zero_page != NULL);
122 	zero_page = ZERO_PAGE(0);
123 	page_cache_get(zero_page);
124 
125 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 	if (ceph_msgr_wq)
127 		return 0;
128 
129 	pr_err("msgr_init failed to create workqueue\n");
130 	_ceph_msgr_exit();
131 
132 	return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135 
136 void ceph_msgr_exit(void)
137 {
138 	BUG_ON(ceph_msgr_wq == NULL);
139 
140 	_ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143 
144 void ceph_msgr_flush(void)
145 {
146 	flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149 
150 
151 /*
152  * socket callback functions
153  */
154 
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158 	struct ceph_connection *con = sk->sk_user_data;
159 
160 	if (sk->sk_state != TCP_CLOSE_WAIT) {
161 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 		     con, con->state);
163 		queue_con(con);
164 	}
165 }
166 
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170 	struct ceph_connection *con = sk->sk_user_data;
171 
172 	/* only queue to workqueue if there is data we want to write,
173 	 * and there is sufficient space in the socket buffer to accept
174 	 * more data.  clear SOCK_NOSPACE so that ceph_write_space()
175 	 * doesn't get called again until try_write() fills the socket
176 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 	 * and net/core/stream.c:sk_stream_write_space().
178 	 */
179 	if (test_bit(WRITE_PENDING, &con->state)) {
180 		if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 			dout("ceph_write_space %p queueing write work\n", con);
182 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 			queue_con(con);
184 		}
185 	} else {
186 		dout("ceph_write_space %p nothing to write\n", con);
187 	}
188 }
189 
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193 	struct ceph_connection *con = sk->sk_user_data;
194 
195 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 	     con, con->state, sk->sk_state);
197 
198 	if (test_bit(CLOSED, &con->state))
199 		return;
200 
201 	switch (sk->sk_state) {
202 	case TCP_CLOSE:
203 		dout("ceph_state_change TCP_CLOSE\n");
204 	case TCP_CLOSE_WAIT:
205 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 			if (test_bit(CONNECTING, &con->state))
208 				con->error_msg = "connection failed";
209 			else
210 				con->error_msg = "socket closed";
211 			queue_con(con);
212 		}
213 		break;
214 	case TCP_ESTABLISHED:
215 		dout("ceph_state_change TCP_ESTABLISHED\n");
216 		queue_con(con);
217 		break;
218 	default:	/* Everything else is uninteresting */
219 		break;
220 	}
221 }
222 
223 /*
224  * set up socket callbacks
225  */
226 static void set_sock_callbacks(struct socket *sock,
227 			       struct ceph_connection *con)
228 {
229 	struct sock *sk = sock->sk;
230 	sk->sk_user_data = con;
231 	sk->sk_data_ready = ceph_data_ready;
232 	sk->sk_write_space = ceph_write_space;
233 	sk->sk_state_change = ceph_state_change;
234 }
235 
236 
237 /*
238  * socket helpers
239  */
240 
241 /*
242  * initiate connection to a remote socket.
243  */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 	struct socket *sock;
248 	int ret;
249 
250 	BUG_ON(con->sock);
251 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 			       IPPROTO_TCP, &sock);
253 	if (ret)
254 		return ret;
255 	sock->sk->sk_allocation = GFP_NOFS;
256 
257 #ifdef CONFIG_LOCKDEP
258 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260 
261 	set_sock_callbacks(sock, con);
262 
263 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264 
265 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 				 O_NONBLOCK);
267 	if (ret == -EINPROGRESS) {
268 		dout("connect %s EINPROGRESS sk_state = %u\n",
269 		     ceph_pr_addr(&con->peer_addr.in_addr),
270 		     sock->sk->sk_state);
271 	} else if (ret < 0) {
272 		pr_err("connect %s error %d\n",
273 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 		sock_release(sock);
275 		con->error_msg = "connect error";
276 
277 		return ret;
278 	}
279 	con->sock = sock;
280 
281 	return 0;
282 }
283 
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286 	struct kvec iov = {buf, len};
287 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 	int r;
289 
290 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 	if (r == -EAGAIN)
292 		r = 0;
293 	return r;
294 }
295 
296 /*
297  * write something.  @more is true if caller will be sending more data
298  * shortly.
299  */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 		     size_t kvlen, size_t len, int more)
302 {
303 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 	int r;
305 
306 	if (more)
307 		msg.msg_flags |= MSG_MORE;
308 	else
309 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
310 
311 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 	if (r == -EAGAIN)
313 		r = 0;
314 	return r;
315 }
316 
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 		     int offset, size_t size, int more)
319 {
320 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 	int ret;
322 
323 	ret = kernel_sendpage(sock, page, offset, size, flags);
324 	if (ret == -EAGAIN)
325 		ret = 0;
326 
327 	return ret;
328 }
329 
330 
331 /*
332  * Shutdown/close the socket for the given connection.
333  */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336 	int rc;
337 
338 	dout("con_close_socket on %p sock %p\n", con, con->sock);
339 	if (!con->sock)
340 		return 0;
341 	set_bit(SOCK_CLOSED, &con->state);
342 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 	sock_release(con->sock);
344 	con->sock = NULL;
345 	clear_bit(SOCK_CLOSED, &con->state);
346 	return rc;
347 }
348 
349 /*
350  * Reset a connection.  Discard all incoming and outgoing messages
351  * and clear *_seq state.
352  */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355 	list_del_init(&msg->list_head);
356 	ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360 	while (!list_empty(head)) {
361 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 							list_head);
363 		ceph_msg_remove(msg);
364 	}
365 }
366 
367 static void reset_connection(struct ceph_connection *con)
368 {
369 	/* reset connection, out_queue, msg_ and connect_seq */
370 	/* discard existing out_queue and msg_seq */
371 	ceph_msg_remove_list(&con->out_queue);
372 	ceph_msg_remove_list(&con->out_sent);
373 
374 	if (con->in_msg) {
375 		ceph_msg_put(con->in_msg);
376 		con->in_msg = NULL;
377 	}
378 
379 	con->connect_seq = 0;
380 	con->out_seq = 0;
381 	if (con->out_msg) {
382 		ceph_msg_put(con->out_msg);
383 		con->out_msg = NULL;
384 	}
385 	con->in_seq = 0;
386 	con->in_seq_acked = 0;
387 }
388 
389 /*
390  * mark a peer down.  drop any open connections.
391  */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394 	dout("con_close %p peer %s\n", con,
395 	     ceph_pr_addr(&con->peer_addr.in_addr));
396 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
397 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
398 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
399 	clear_bit(KEEPALIVE_PENDING, &con->state);
400 	clear_bit(WRITE_PENDING, &con->state);
401 	mutex_lock(&con->mutex);
402 	reset_connection(con);
403 	con->peer_global_seq = 0;
404 	cancel_delayed_work(&con->work);
405 	mutex_unlock(&con->mutex);
406 	queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409 
410 /*
411  * Reopen a closed connection, with a new peer address.
412  */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 	set_bit(OPENING, &con->state);
417 	clear_bit(CLOSED, &con->state);
418 	memcpy(&con->peer_addr, addr, sizeof(*addr));
419 	con->delay = 0;      /* reset backoff memory */
420 	queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423 
424 /*
425  * return true if this connection ever successfully opened
426  */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429 	return con->connect_seq > 0;
430 }
431 
432 /*
433  * generic get/put
434  */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437 	int nref = __atomic_add_unless(&con->nref, 1, 0);
438 
439 	dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440 
441 	return nref ? con : NULL;
442 }
443 
444 void ceph_con_put(struct ceph_connection *con)
445 {
446 	int nref = atomic_dec_return(&con->nref);
447 
448 	BUG_ON(nref < 0);
449 	if (nref == 0) {
450 		BUG_ON(con->sock);
451 		kfree(con);
452 	}
453 	dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455 
456 /*
457  * initialize a new connection.
458  */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461 	dout("con_init %p\n", con);
462 	memset(con, 0, sizeof(*con));
463 	atomic_set(&con->nref, 1);
464 	con->msgr = msgr;
465 	mutex_init(&con->mutex);
466 	INIT_LIST_HEAD(&con->out_queue);
467 	INIT_LIST_HEAD(&con->out_sent);
468 	INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471 
472 
473 /*
474  * We maintain a global counter to order connection attempts.  Get
475  * a unique seq greater than @gt.
476  */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479 	u32 ret;
480 
481 	spin_lock(&msgr->global_seq_lock);
482 	if (msgr->global_seq < gt)
483 		msgr->global_seq = gt;
484 	ret = ++msgr->global_seq;
485 	spin_unlock(&msgr->global_seq_lock);
486 	return ret;
487 }
488 
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491 	con->out_kvec_left = 0;
492 	con->out_kvec_bytes = 0;
493 	con->out_kvec_cur = &con->out_kvec[0];
494 }
495 
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 				size_t size, void *data)
498 {
499 	int index;
500 
501 	index = con->out_kvec_left;
502 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503 
504 	con->out_kvec[index].iov_len = size;
505 	con->out_kvec[index].iov_base = data;
506 	con->out_kvec_left++;
507 	con->out_kvec_bytes += size;
508 }
509 
510 /*
511  * Prepare footer for currently outgoing message, and finish things
512  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
513  */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516 	struct ceph_msg *m = con->out_msg;
517 	int v = con->out_kvec_left;
518 
519 	dout("prepare_write_message_footer %p\n", con);
520 	con->out_kvec_is_msg = true;
521 	con->out_kvec[v].iov_base = &m->footer;
522 	con->out_kvec[v].iov_len = sizeof(m->footer);
523 	con->out_kvec_bytes += sizeof(m->footer);
524 	con->out_kvec_left++;
525 	con->out_more = m->more_to_follow;
526 	con->out_msg_done = true;
527 }
528 
529 /*
530  * Prepare headers for the next outgoing message.
531  */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534 	struct ceph_msg *m;
535 	u32 crc;
536 
537 	ceph_con_out_kvec_reset(con);
538 	con->out_kvec_is_msg = true;
539 	con->out_msg_done = false;
540 
541 	/* Sneak an ack in there first?  If we can get it into the same
542 	 * TCP packet that's a good thing. */
543 	if (con->in_seq > con->in_seq_acked) {
544 		con->in_seq_acked = con->in_seq;
545 		ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 		ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 			&con->out_temp_ack);
549 	}
550 
551 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 	con->out_msg = m;
553 
554 	/* put message on sent list */
555 	ceph_msg_get(m);
556 	list_move_tail(&m->list_head, &con->out_sent);
557 
558 	/*
559 	 * only assign outgoing seq # if we haven't sent this message
560 	 * yet.  if it is requeued, resend with it's original seq.
561 	 */
562 	if (m->needs_out_seq) {
563 		m->hdr.seq = cpu_to_le64(++con->out_seq);
564 		m->needs_out_seq = false;
565 	}
566 
567 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
569 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
570 	     le32_to_cpu(m->hdr.data_len),
571 	     m->nr_pages);
572 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
573 
574 	/* tag + hdr + front + middle */
575 	ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
576 	ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
577 	ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
578 
579 	if (m->middle)
580 		ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
581 			m->middle->vec.iov_base);
582 
583 	/* fill in crc (except data pages), footer */
584 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
585 	con->out_msg->hdr.crc = cpu_to_le32(crc);
586 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
587 
588 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
589 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
590 	if (m->middle) {
591 		crc = crc32c(0, m->middle->vec.iov_base,
592 				m->middle->vec.iov_len);
593 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
594 	} else
595 		con->out_msg->footer.middle_crc = 0;
596 	con->out_msg->footer.data_crc = 0;
597 	dout("prepare_write_message front_crc %u data_crc %u\n",
598 	     le32_to_cpu(con->out_msg->footer.front_crc),
599 	     le32_to_cpu(con->out_msg->footer.middle_crc));
600 
601 	/* is there a data payload? */
602 	if (le32_to_cpu(m->hdr.data_len) > 0) {
603 		/* initialize page iterator */
604 		con->out_msg_pos.page = 0;
605 		if (m->pages)
606 			con->out_msg_pos.page_pos = m->page_alignment;
607 		else
608 			con->out_msg_pos.page_pos = 0;
609 		con->out_msg_pos.data_pos = 0;
610 		con->out_msg_pos.did_page_crc = false;
611 		con->out_more = 1;  /* data + footer will follow */
612 	} else {
613 		/* no, queue up footer too and be done */
614 		prepare_write_message_footer(con);
615 	}
616 
617 	set_bit(WRITE_PENDING, &con->state);
618 }
619 
620 /*
621  * Prepare an ack.
622  */
623 static void prepare_write_ack(struct ceph_connection *con)
624 {
625 	dout("prepare_write_ack %p %llu -> %llu\n", con,
626 	     con->in_seq_acked, con->in_seq);
627 	con->in_seq_acked = con->in_seq;
628 
629 	ceph_con_out_kvec_reset(con);
630 
631 	ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
632 
633 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
634 	ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
635 				&con->out_temp_ack);
636 
637 	con->out_more = 1;  /* more will follow.. eventually.. */
638 	set_bit(WRITE_PENDING, &con->state);
639 }
640 
641 /*
642  * Prepare to write keepalive byte.
643  */
644 static void prepare_write_keepalive(struct ceph_connection *con)
645 {
646 	dout("prepare_write_keepalive %p\n", con);
647 	ceph_con_out_kvec_reset(con);
648 	ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
649 	set_bit(WRITE_PENDING, &con->state);
650 }
651 
652 /*
653  * Connection negotiation.
654  */
655 
656 static int prepare_connect_authorizer(struct ceph_connection *con)
657 {
658 	void *auth_buf;
659 	int auth_len = 0;
660 	int auth_protocol = 0;
661 
662 	mutex_unlock(&con->mutex);
663 	if (con->ops->get_authorizer)
664 		con->ops->get_authorizer(con, &auth_buf, &auth_len,
665 					 &auth_protocol, &con->auth_reply_buf,
666 					 &con->auth_reply_buf_len,
667 					 con->auth_retry);
668 	mutex_lock(&con->mutex);
669 
670 	if (test_bit(CLOSED, &con->state) ||
671 	    test_bit(OPENING, &con->state))
672 		return -EAGAIN;
673 
674 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
675 	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
676 
677 	if (auth_len)
678 		ceph_con_out_kvec_add(con, auth_len, auth_buf);
679 
680 	return 0;
681 }
682 
683 /*
684  * We connected to a peer and are saying hello.
685  */
686 static void prepare_write_banner(struct ceph_messenger *msgr,
687 				 struct ceph_connection *con)
688 {
689 	ceph_con_out_kvec_reset(con);
690 	ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
691 	ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
692 					&msgr->my_enc_addr);
693 
694 	con->out_more = 0;
695 	set_bit(WRITE_PENDING, &con->state);
696 }
697 
698 static int prepare_write_connect(struct ceph_messenger *msgr,
699 				 struct ceph_connection *con,
700 				 int include_banner)
701 {
702 	unsigned global_seq = get_global_seq(con->msgr, 0);
703 	int proto;
704 
705 	switch (con->peer_name.type) {
706 	case CEPH_ENTITY_TYPE_MON:
707 		proto = CEPH_MONC_PROTOCOL;
708 		break;
709 	case CEPH_ENTITY_TYPE_OSD:
710 		proto = CEPH_OSDC_PROTOCOL;
711 		break;
712 	case CEPH_ENTITY_TYPE_MDS:
713 		proto = CEPH_MDSC_PROTOCOL;
714 		break;
715 	default:
716 		BUG();
717 	}
718 
719 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
720 	     con->connect_seq, global_seq, proto);
721 
722 	con->out_connect.features = cpu_to_le64(msgr->supported_features);
723 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
724 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
725 	con->out_connect.global_seq = cpu_to_le32(global_seq);
726 	con->out_connect.protocol_version = cpu_to_le32(proto);
727 	con->out_connect.flags = 0;
728 
729 	if (include_banner)
730 		prepare_write_banner(msgr, con);
731 	else
732 		ceph_con_out_kvec_reset(con);
733 	ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
734 
735 	con->out_more = 0;
736 	set_bit(WRITE_PENDING, &con->state);
737 
738 	return prepare_connect_authorizer(con);
739 }
740 
741 /*
742  * write as much of pending kvecs to the socket as we can.
743  *  1 -> done
744  *  0 -> socket full, but more to do
745  * <0 -> error
746  */
747 static int write_partial_kvec(struct ceph_connection *con)
748 {
749 	int ret;
750 
751 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
752 	while (con->out_kvec_bytes > 0) {
753 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
754 				       con->out_kvec_left, con->out_kvec_bytes,
755 				       con->out_more);
756 		if (ret <= 0)
757 			goto out;
758 		con->out_kvec_bytes -= ret;
759 		if (con->out_kvec_bytes == 0)
760 			break;            /* done */
761 
762 		/* account for full iov entries consumed */
763 		while (ret >= con->out_kvec_cur->iov_len) {
764 			BUG_ON(!con->out_kvec_left);
765 			ret -= con->out_kvec_cur->iov_len;
766 			con->out_kvec_cur++;
767 			con->out_kvec_left--;
768 		}
769 		/* and for a partially-consumed entry */
770 		if (ret) {
771 			con->out_kvec_cur->iov_len -= ret;
772 			con->out_kvec_cur->iov_base += ret;
773 		}
774 	}
775 	con->out_kvec_left = 0;
776 	con->out_kvec_is_msg = false;
777 	ret = 1;
778 out:
779 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
780 	     con->out_kvec_bytes, con->out_kvec_left, ret);
781 	return ret;  /* done! */
782 }
783 
784 #ifdef CONFIG_BLOCK
785 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
786 {
787 	if (!bio) {
788 		*iter = NULL;
789 		*seg = 0;
790 		return;
791 	}
792 	*iter = bio;
793 	*seg = bio->bi_idx;
794 }
795 
796 static void iter_bio_next(struct bio **bio_iter, int *seg)
797 {
798 	if (*bio_iter == NULL)
799 		return;
800 
801 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
802 
803 	(*seg)++;
804 	if (*seg == (*bio_iter)->bi_vcnt)
805 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
806 }
807 #endif
808 
809 /*
810  * Write as much message data payload as we can.  If we finish, queue
811  * up the footer.
812  *  1 -> done, footer is now queued in out_kvec[].
813  *  0 -> socket full, but more to do
814  * <0 -> error
815  */
816 static int write_partial_msg_pages(struct ceph_connection *con)
817 {
818 	struct ceph_msg *msg = con->out_msg;
819 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
820 	size_t len;
821 	bool do_datacrc = !con->msgr->nocrc;
822 	int ret;
823 	int total_max_write;
824 	int in_trail = 0;
825 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
826 
827 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
828 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
829 	     con->out_msg_pos.page_pos);
830 
831 #ifdef CONFIG_BLOCK
832 	if (msg->bio && !msg->bio_iter)
833 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
834 #endif
835 
836 	while (data_len > con->out_msg_pos.data_pos) {
837 		struct page *page = NULL;
838 		int max_write = PAGE_SIZE;
839 		int bio_offset = 0;
840 
841 		total_max_write = data_len - trail_len -
842 			con->out_msg_pos.data_pos;
843 
844 		/*
845 		 * if we are calculating the data crc (the default), we need
846 		 * to map the page.  if our pages[] has been revoked, use the
847 		 * zero page.
848 		 */
849 
850 		/* have we reached the trail part of the data? */
851 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
852 			in_trail = 1;
853 
854 			total_max_write = data_len - con->out_msg_pos.data_pos;
855 
856 			page = list_first_entry(&msg->trail->head,
857 						struct page, lru);
858 			max_write = PAGE_SIZE;
859 		} else if (msg->pages) {
860 			page = msg->pages[con->out_msg_pos.page];
861 		} else if (msg->pagelist) {
862 			page = list_first_entry(&msg->pagelist->head,
863 						struct page, lru);
864 #ifdef CONFIG_BLOCK
865 		} else if (msg->bio) {
866 			struct bio_vec *bv;
867 
868 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
869 			page = bv->bv_page;
870 			bio_offset = bv->bv_offset;
871 			max_write = bv->bv_len;
872 #endif
873 		} else {
874 			page = zero_page;
875 		}
876 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
877 			    total_max_write);
878 
879 		if (do_datacrc && !con->out_msg_pos.did_page_crc) {
880 			void *base;
881 			u32 crc;
882 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
883 			char *kaddr;
884 
885 			kaddr = kmap(page);
886 			BUG_ON(kaddr == NULL);
887 			base = kaddr + con->out_msg_pos.page_pos + bio_offset;
888 			crc = crc32c(tmpcrc, base, len);
889 			con->out_msg->footer.data_crc = cpu_to_le32(crc);
890 			con->out_msg_pos.did_page_crc = true;
891 		}
892 		ret = ceph_tcp_sendpage(con->sock, page,
893 				      con->out_msg_pos.page_pos + bio_offset,
894 				      len, 1);
895 
896 		if (do_datacrc)
897 			kunmap(page);
898 
899 		if (ret <= 0)
900 			goto out;
901 
902 		con->out_msg_pos.data_pos += ret;
903 		con->out_msg_pos.page_pos += ret;
904 		if (ret == len) {
905 			con->out_msg_pos.page_pos = 0;
906 			con->out_msg_pos.page++;
907 			con->out_msg_pos.did_page_crc = false;
908 			if (in_trail)
909 				list_move_tail(&page->lru,
910 					       &msg->trail->head);
911 			else if (msg->pagelist)
912 				list_move_tail(&page->lru,
913 					       &msg->pagelist->head);
914 #ifdef CONFIG_BLOCK
915 			else if (msg->bio)
916 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
917 #endif
918 		}
919 	}
920 
921 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
922 
923 	/* prepare and queue up footer, too */
924 	if (!do_datacrc)
925 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
926 	ceph_con_out_kvec_reset(con);
927 	prepare_write_message_footer(con);
928 	ret = 1;
929 out:
930 	return ret;
931 }
932 
933 /*
934  * write some zeros
935  */
936 static int write_partial_skip(struct ceph_connection *con)
937 {
938 	int ret;
939 
940 	while (con->out_skip > 0) {
941 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
942 
943 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
944 		if (ret <= 0)
945 			goto out;
946 		con->out_skip -= ret;
947 	}
948 	ret = 1;
949 out:
950 	return ret;
951 }
952 
953 /*
954  * Prepare to read connection handshake, or an ack.
955  */
956 static void prepare_read_banner(struct ceph_connection *con)
957 {
958 	dout("prepare_read_banner %p\n", con);
959 	con->in_base_pos = 0;
960 }
961 
962 static void prepare_read_connect(struct ceph_connection *con)
963 {
964 	dout("prepare_read_connect %p\n", con);
965 	con->in_base_pos = 0;
966 }
967 
968 static void prepare_read_ack(struct ceph_connection *con)
969 {
970 	dout("prepare_read_ack %p\n", con);
971 	con->in_base_pos = 0;
972 }
973 
974 static void prepare_read_tag(struct ceph_connection *con)
975 {
976 	dout("prepare_read_tag %p\n", con);
977 	con->in_base_pos = 0;
978 	con->in_tag = CEPH_MSGR_TAG_READY;
979 }
980 
981 /*
982  * Prepare to read a message.
983  */
984 static int prepare_read_message(struct ceph_connection *con)
985 {
986 	dout("prepare_read_message %p\n", con);
987 	BUG_ON(con->in_msg != NULL);
988 	con->in_base_pos = 0;
989 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
990 	return 0;
991 }
992 
993 
994 static int read_partial(struct ceph_connection *con,
995 			int *to, int size, void *object)
996 {
997 	*to += size;
998 	while (con->in_base_pos < *to) {
999 		int left = *to - con->in_base_pos;
1000 		int have = size - left;
1001 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1002 		if (ret <= 0)
1003 			return ret;
1004 		con->in_base_pos += ret;
1005 	}
1006 	return 1;
1007 }
1008 
1009 
1010 /*
1011  * Read all or part of the connect-side handshake on a new connection
1012  */
1013 static int read_partial_banner(struct ceph_connection *con)
1014 {
1015 	int ret, to = 0;
1016 
1017 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1018 
1019 	/* peer's banner */
1020 	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1021 	if (ret <= 0)
1022 		goto out;
1023 	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1024 			   &con->actual_peer_addr);
1025 	if (ret <= 0)
1026 		goto out;
1027 	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1028 			   &con->peer_addr_for_me);
1029 	if (ret <= 0)
1030 		goto out;
1031 out:
1032 	return ret;
1033 }
1034 
1035 static int read_partial_connect(struct ceph_connection *con)
1036 {
1037 	int ret, to = 0;
1038 
1039 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1040 
1041 	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1042 	if (ret <= 0)
1043 		goto out;
1044 	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1045 			   con->auth_reply_buf);
1046 	if (ret <= 0)
1047 		goto out;
1048 
1049 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1050 	     con, (int)con->in_reply.tag,
1051 	     le32_to_cpu(con->in_reply.connect_seq),
1052 	     le32_to_cpu(con->in_reply.global_seq));
1053 out:
1054 	return ret;
1055 
1056 }
1057 
1058 /*
1059  * Verify the hello banner looks okay.
1060  */
1061 static int verify_hello(struct ceph_connection *con)
1062 {
1063 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1064 		pr_err("connect to %s got bad banner\n",
1065 		       ceph_pr_addr(&con->peer_addr.in_addr));
1066 		con->error_msg = "protocol error, bad banner";
1067 		return -1;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static bool addr_is_blank(struct sockaddr_storage *ss)
1073 {
1074 	switch (ss->ss_family) {
1075 	case AF_INET:
1076 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1077 	case AF_INET6:
1078 		return
1079 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1080 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1081 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1082 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1083 	}
1084 	return false;
1085 }
1086 
1087 static int addr_port(struct sockaddr_storage *ss)
1088 {
1089 	switch (ss->ss_family) {
1090 	case AF_INET:
1091 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1092 	case AF_INET6:
1093 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1094 	}
1095 	return 0;
1096 }
1097 
1098 static void addr_set_port(struct sockaddr_storage *ss, int p)
1099 {
1100 	switch (ss->ss_family) {
1101 	case AF_INET:
1102 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1103 		break;
1104 	case AF_INET6:
1105 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1106 		break;
1107 	}
1108 }
1109 
1110 /*
1111  * Unlike other *_pton function semantics, zero indicates success.
1112  */
1113 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1114 		char delim, const char **ipend)
1115 {
1116 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1117 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1118 
1119 	memset(ss, 0, sizeof(*ss));
1120 
1121 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1122 		ss->ss_family = AF_INET;
1123 		return 0;
1124 	}
1125 
1126 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1127 		ss->ss_family = AF_INET6;
1128 		return 0;
1129 	}
1130 
1131 	return -EINVAL;
1132 }
1133 
1134 /*
1135  * Extract hostname string and resolve using kernel DNS facility.
1136  */
1137 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1138 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1139 		struct sockaddr_storage *ss, char delim, const char **ipend)
1140 {
1141 	const char *end, *delim_p;
1142 	char *colon_p, *ip_addr = NULL;
1143 	int ip_len, ret;
1144 
1145 	/*
1146 	 * The end of the hostname occurs immediately preceding the delimiter or
1147 	 * the port marker (':') where the delimiter takes precedence.
1148 	 */
1149 	delim_p = memchr(name, delim, namelen);
1150 	colon_p = memchr(name, ':', namelen);
1151 
1152 	if (delim_p && colon_p)
1153 		end = delim_p < colon_p ? delim_p : colon_p;
1154 	else if (!delim_p && colon_p)
1155 		end = colon_p;
1156 	else {
1157 		end = delim_p;
1158 		if (!end) /* case: hostname:/ */
1159 			end = name + namelen;
1160 	}
1161 
1162 	if (end <= name)
1163 		return -EINVAL;
1164 
1165 	/* do dns_resolve upcall */
1166 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1167 	if (ip_len > 0)
1168 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1169 	else
1170 		ret = -ESRCH;
1171 
1172 	kfree(ip_addr);
1173 
1174 	*ipend = end;
1175 
1176 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1177 			ret, ret ? "failed" : ceph_pr_addr(ss));
1178 
1179 	return ret;
1180 }
1181 #else
1182 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1183 		struct sockaddr_storage *ss, char delim, const char **ipend)
1184 {
1185 	return -EINVAL;
1186 }
1187 #endif
1188 
1189 /*
1190  * Parse a server name (IP or hostname). If a valid IP address is not found
1191  * then try to extract a hostname to resolve using userspace DNS upcall.
1192  */
1193 static int ceph_parse_server_name(const char *name, size_t namelen,
1194 			struct sockaddr_storage *ss, char delim, const char **ipend)
1195 {
1196 	int ret;
1197 
1198 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1199 	if (ret)
1200 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1201 
1202 	return ret;
1203 }
1204 
1205 /*
1206  * Parse an ip[:port] list into an addr array.  Use the default
1207  * monitor port if a port isn't specified.
1208  */
1209 int ceph_parse_ips(const char *c, const char *end,
1210 		   struct ceph_entity_addr *addr,
1211 		   int max_count, int *count)
1212 {
1213 	int i, ret = -EINVAL;
1214 	const char *p = c;
1215 
1216 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1217 	for (i = 0; i < max_count; i++) {
1218 		const char *ipend;
1219 		struct sockaddr_storage *ss = &addr[i].in_addr;
1220 		int port;
1221 		char delim = ',';
1222 
1223 		if (*p == '[') {
1224 			delim = ']';
1225 			p++;
1226 		}
1227 
1228 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1229 		if (ret)
1230 			goto bad;
1231 		ret = -EINVAL;
1232 
1233 		p = ipend;
1234 
1235 		if (delim == ']') {
1236 			if (*p != ']') {
1237 				dout("missing matching ']'\n");
1238 				goto bad;
1239 			}
1240 			p++;
1241 		}
1242 
1243 		/* port? */
1244 		if (p < end && *p == ':') {
1245 			port = 0;
1246 			p++;
1247 			while (p < end && *p >= '0' && *p <= '9') {
1248 				port = (port * 10) + (*p - '0');
1249 				p++;
1250 			}
1251 			if (port > 65535 || port == 0)
1252 				goto bad;
1253 		} else {
1254 			port = CEPH_MON_PORT;
1255 		}
1256 
1257 		addr_set_port(ss, port);
1258 
1259 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1260 
1261 		if (p == end)
1262 			break;
1263 		if (*p != ',')
1264 			goto bad;
1265 		p++;
1266 	}
1267 
1268 	if (p != end)
1269 		goto bad;
1270 
1271 	if (count)
1272 		*count = i + 1;
1273 	return 0;
1274 
1275 bad:
1276 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1277 	return ret;
1278 }
1279 EXPORT_SYMBOL(ceph_parse_ips);
1280 
1281 static int process_banner(struct ceph_connection *con)
1282 {
1283 	dout("process_banner on %p\n", con);
1284 
1285 	if (verify_hello(con) < 0)
1286 		return -1;
1287 
1288 	ceph_decode_addr(&con->actual_peer_addr);
1289 	ceph_decode_addr(&con->peer_addr_for_me);
1290 
1291 	/*
1292 	 * Make sure the other end is who we wanted.  note that the other
1293 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1294 	 * them the benefit of the doubt.
1295 	 */
1296 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1297 		   sizeof(con->peer_addr)) != 0 &&
1298 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1299 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1300 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1301 			   ceph_pr_addr(&con->peer_addr.in_addr),
1302 			   (int)le32_to_cpu(con->peer_addr.nonce),
1303 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1304 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1305 		con->error_msg = "wrong peer at address";
1306 		return -1;
1307 	}
1308 
1309 	/*
1310 	 * did we learn our address?
1311 	 */
1312 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1313 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1314 
1315 		memcpy(&con->msgr->inst.addr.in_addr,
1316 		       &con->peer_addr_for_me.in_addr,
1317 		       sizeof(con->peer_addr_for_me.in_addr));
1318 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1319 		encode_my_addr(con->msgr);
1320 		dout("process_banner learned my addr is %s\n",
1321 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1322 	}
1323 
1324 	set_bit(NEGOTIATING, &con->state);
1325 	prepare_read_connect(con);
1326 	return 0;
1327 }
1328 
1329 static void fail_protocol(struct ceph_connection *con)
1330 {
1331 	reset_connection(con);
1332 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1333 
1334 	mutex_unlock(&con->mutex);
1335 	if (con->ops->bad_proto)
1336 		con->ops->bad_proto(con);
1337 	mutex_lock(&con->mutex);
1338 }
1339 
1340 static int process_connect(struct ceph_connection *con)
1341 {
1342 	u64 sup_feat = con->msgr->supported_features;
1343 	u64 req_feat = con->msgr->required_features;
1344 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1345 	int ret;
1346 
1347 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1348 
1349 	switch (con->in_reply.tag) {
1350 	case CEPH_MSGR_TAG_FEATURES:
1351 		pr_err("%s%lld %s feature set mismatch,"
1352 		       " my %llx < server's %llx, missing %llx\n",
1353 		       ENTITY_NAME(con->peer_name),
1354 		       ceph_pr_addr(&con->peer_addr.in_addr),
1355 		       sup_feat, server_feat, server_feat & ~sup_feat);
1356 		con->error_msg = "missing required protocol features";
1357 		fail_protocol(con);
1358 		return -1;
1359 
1360 	case CEPH_MSGR_TAG_BADPROTOVER:
1361 		pr_err("%s%lld %s protocol version mismatch,"
1362 		       " my %d != server's %d\n",
1363 		       ENTITY_NAME(con->peer_name),
1364 		       ceph_pr_addr(&con->peer_addr.in_addr),
1365 		       le32_to_cpu(con->out_connect.protocol_version),
1366 		       le32_to_cpu(con->in_reply.protocol_version));
1367 		con->error_msg = "protocol version mismatch";
1368 		fail_protocol(con);
1369 		return -1;
1370 
1371 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1372 		con->auth_retry++;
1373 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1374 		     con->auth_retry);
1375 		if (con->auth_retry == 2) {
1376 			con->error_msg = "connect authorization failure";
1377 			return -1;
1378 		}
1379 		con->auth_retry = 1;
1380 		ret = prepare_write_connect(con->msgr, con, 0);
1381 		if (ret < 0)
1382 			return ret;
1383 		prepare_read_connect(con);
1384 		break;
1385 
1386 	case CEPH_MSGR_TAG_RESETSESSION:
1387 		/*
1388 		 * If we connected with a large connect_seq but the peer
1389 		 * has no record of a session with us (no connection, or
1390 		 * connect_seq == 0), they will send RESETSESION to indicate
1391 		 * that they must have reset their session, and may have
1392 		 * dropped messages.
1393 		 */
1394 		dout("process_connect got RESET peer seq %u\n",
1395 		     le32_to_cpu(con->in_connect.connect_seq));
1396 		pr_err("%s%lld %s connection reset\n",
1397 		       ENTITY_NAME(con->peer_name),
1398 		       ceph_pr_addr(&con->peer_addr.in_addr));
1399 		reset_connection(con);
1400 		prepare_write_connect(con->msgr, con, 0);
1401 		prepare_read_connect(con);
1402 
1403 		/* Tell ceph about it. */
1404 		mutex_unlock(&con->mutex);
1405 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1406 		if (con->ops->peer_reset)
1407 			con->ops->peer_reset(con);
1408 		mutex_lock(&con->mutex);
1409 		if (test_bit(CLOSED, &con->state) ||
1410 		    test_bit(OPENING, &con->state))
1411 			return -EAGAIN;
1412 		break;
1413 
1414 	case CEPH_MSGR_TAG_RETRY_SESSION:
1415 		/*
1416 		 * If we sent a smaller connect_seq than the peer has, try
1417 		 * again with a larger value.
1418 		 */
1419 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1420 		     le32_to_cpu(con->out_connect.connect_seq),
1421 		     le32_to_cpu(con->in_connect.connect_seq));
1422 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1423 		prepare_write_connect(con->msgr, con, 0);
1424 		prepare_read_connect(con);
1425 		break;
1426 
1427 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1428 		/*
1429 		 * If we sent a smaller global_seq than the peer has, try
1430 		 * again with a larger value.
1431 		 */
1432 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1433 		     con->peer_global_seq,
1434 		     le32_to_cpu(con->in_connect.global_seq));
1435 		get_global_seq(con->msgr,
1436 			       le32_to_cpu(con->in_connect.global_seq));
1437 		prepare_write_connect(con->msgr, con, 0);
1438 		prepare_read_connect(con);
1439 		break;
1440 
1441 	case CEPH_MSGR_TAG_READY:
1442 		if (req_feat & ~server_feat) {
1443 			pr_err("%s%lld %s protocol feature mismatch,"
1444 			       " my required %llx > server's %llx, need %llx\n",
1445 			       ENTITY_NAME(con->peer_name),
1446 			       ceph_pr_addr(&con->peer_addr.in_addr),
1447 			       req_feat, server_feat, req_feat & ~server_feat);
1448 			con->error_msg = "missing required protocol features";
1449 			fail_protocol(con);
1450 			return -1;
1451 		}
1452 		clear_bit(CONNECTING, &con->state);
1453 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1454 		con->connect_seq++;
1455 		con->peer_features = server_feat;
1456 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1457 		     con->peer_global_seq,
1458 		     le32_to_cpu(con->in_reply.connect_seq),
1459 		     con->connect_seq);
1460 		WARN_ON(con->connect_seq !=
1461 			le32_to_cpu(con->in_reply.connect_seq));
1462 
1463 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1464 			set_bit(LOSSYTX, &con->state);
1465 
1466 		prepare_read_tag(con);
1467 		break;
1468 
1469 	case CEPH_MSGR_TAG_WAIT:
1470 		/*
1471 		 * If there is a connection race (we are opening
1472 		 * connections to each other), one of us may just have
1473 		 * to WAIT.  This shouldn't happen if we are the
1474 		 * client.
1475 		 */
1476 		pr_err("process_connect got WAIT as client\n");
1477 		con->error_msg = "protocol error, got WAIT as client";
1478 		return -1;
1479 
1480 	default:
1481 		pr_err("connect protocol error, will retry\n");
1482 		con->error_msg = "protocol error, garbage tag during connect";
1483 		return -1;
1484 	}
1485 	return 0;
1486 }
1487 
1488 
1489 /*
1490  * read (part of) an ack
1491  */
1492 static int read_partial_ack(struct ceph_connection *con)
1493 {
1494 	int to = 0;
1495 
1496 	return read_partial(con, &to, sizeof(con->in_temp_ack),
1497 			    &con->in_temp_ack);
1498 }
1499 
1500 
1501 /*
1502  * We can finally discard anything that's been acked.
1503  */
1504 static void process_ack(struct ceph_connection *con)
1505 {
1506 	struct ceph_msg *m;
1507 	u64 ack = le64_to_cpu(con->in_temp_ack);
1508 	u64 seq;
1509 
1510 	while (!list_empty(&con->out_sent)) {
1511 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1512 				     list_head);
1513 		seq = le64_to_cpu(m->hdr.seq);
1514 		if (seq > ack)
1515 			break;
1516 		dout("got ack for seq %llu type %d at %p\n", seq,
1517 		     le16_to_cpu(m->hdr.type), m);
1518 		m->ack_stamp = jiffies;
1519 		ceph_msg_remove(m);
1520 	}
1521 	prepare_read_tag(con);
1522 }
1523 
1524 
1525 
1526 
1527 static int read_partial_message_section(struct ceph_connection *con,
1528 					struct kvec *section,
1529 					unsigned int sec_len, u32 *crc)
1530 {
1531 	int ret, left;
1532 
1533 	BUG_ON(!section);
1534 
1535 	while (section->iov_len < sec_len) {
1536 		BUG_ON(section->iov_base == NULL);
1537 		left = sec_len - section->iov_len;
1538 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1539 				       section->iov_len, left);
1540 		if (ret <= 0)
1541 			return ret;
1542 		section->iov_len += ret;
1543 	}
1544 	if (section->iov_len == sec_len)
1545 		*crc = crc32c(0, section->iov_base, section->iov_len);
1546 
1547 	return 1;
1548 }
1549 
1550 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1551 				struct ceph_msg_header *hdr,
1552 				int *skip);
1553 
1554 
1555 static int read_partial_message_pages(struct ceph_connection *con,
1556 				      struct page **pages,
1557 				      unsigned data_len, bool do_datacrc)
1558 {
1559 	void *p;
1560 	int ret;
1561 	int left;
1562 
1563 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1564 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1565 	/* (page) data */
1566 	BUG_ON(pages == NULL);
1567 	p = kmap(pages[con->in_msg_pos.page]);
1568 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1569 			       left);
1570 	if (ret > 0 && do_datacrc)
1571 		con->in_data_crc =
1572 			crc32c(con->in_data_crc,
1573 				  p + con->in_msg_pos.page_pos, ret);
1574 	kunmap(pages[con->in_msg_pos.page]);
1575 	if (ret <= 0)
1576 		return ret;
1577 	con->in_msg_pos.data_pos += ret;
1578 	con->in_msg_pos.page_pos += ret;
1579 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1580 		con->in_msg_pos.page_pos = 0;
1581 		con->in_msg_pos.page++;
1582 	}
1583 
1584 	return ret;
1585 }
1586 
1587 #ifdef CONFIG_BLOCK
1588 static int read_partial_message_bio(struct ceph_connection *con,
1589 				    struct bio **bio_iter, int *bio_seg,
1590 				    unsigned data_len, bool do_datacrc)
1591 {
1592 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1593 	void *p;
1594 	int ret, left;
1595 
1596 	if (IS_ERR(bv))
1597 		return PTR_ERR(bv);
1598 
1599 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1600 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1601 
1602 	p = kmap(bv->bv_page) + bv->bv_offset;
1603 
1604 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1605 			       left);
1606 	if (ret > 0 && do_datacrc)
1607 		con->in_data_crc =
1608 			crc32c(con->in_data_crc,
1609 				  p + con->in_msg_pos.page_pos, ret);
1610 	kunmap(bv->bv_page);
1611 	if (ret <= 0)
1612 		return ret;
1613 	con->in_msg_pos.data_pos += ret;
1614 	con->in_msg_pos.page_pos += ret;
1615 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1616 		con->in_msg_pos.page_pos = 0;
1617 		iter_bio_next(bio_iter, bio_seg);
1618 	}
1619 
1620 	return ret;
1621 }
1622 #endif
1623 
1624 /*
1625  * read (part of) a message.
1626  */
1627 static int read_partial_message(struct ceph_connection *con)
1628 {
1629 	struct ceph_msg *m = con->in_msg;
1630 	int ret;
1631 	int to, left;
1632 	unsigned front_len, middle_len, data_len;
1633 	bool do_datacrc = !con->msgr->nocrc;
1634 	int skip;
1635 	u64 seq;
1636 	u32 crc;
1637 
1638 	dout("read_partial_message con %p msg %p\n", con, m);
1639 
1640 	/* header */
1641 	while (con->in_base_pos < sizeof(con->in_hdr)) {
1642 		left = sizeof(con->in_hdr) - con->in_base_pos;
1643 		ret = ceph_tcp_recvmsg(con->sock,
1644 				       (char *)&con->in_hdr + con->in_base_pos,
1645 				       left);
1646 		if (ret <= 0)
1647 			return ret;
1648 		con->in_base_pos += ret;
1649 	}
1650 
1651 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1652 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
1653 		pr_err("read_partial_message bad hdr "
1654 		       " crc %u != expected %u\n",
1655 		       crc, con->in_hdr.crc);
1656 		return -EBADMSG;
1657 	}
1658 
1659 	front_len = le32_to_cpu(con->in_hdr.front_len);
1660 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1661 		return -EIO;
1662 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1663 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1664 		return -EIO;
1665 	data_len = le32_to_cpu(con->in_hdr.data_len);
1666 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1667 		return -EIO;
1668 
1669 	/* verify seq# */
1670 	seq = le64_to_cpu(con->in_hdr.seq);
1671 	if ((s64)seq - (s64)con->in_seq < 1) {
1672 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1673 			ENTITY_NAME(con->peer_name),
1674 			ceph_pr_addr(&con->peer_addr.in_addr),
1675 			seq, con->in_seq + 1);
1676 		con->in_base_pos = -front_len - middle_len - data_len -
1677 			sizeof(m->footer);
1678 		con->in_tag = CEPH_MSGR_TAG_READY;
1679 		return 0;
1680 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1681 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1682 		       seq, con->in_seq + 1);
1683 		con->error_msg = "bad message sequence # for incoming message";
1684 		return -EBADMSG;
1685 	}
1686 
1687 	/* allocate message? */
1688 	if (!con->in_msg) {
1689 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1690 		     con->in_hdr.front_len, con->in_hdr.data_len);
1691 		skip = 0;
1692 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1693 		if (skip) {
1694 			/* skip this message */
1695 			dout("alloc_msg said skip message\n");
1696 			BUG_ON(con->in_msg);
1697 			con->in_base_pos = -front_len - middle_len - data_len -
1698 				sizeof(m->footer);
1699 			con->in_tag = CEPH_MSGR_TAG_READY;
1700 			con->in_seq++;
1701 			return 0;
1702 		}
1703 		if (!con->in_msg) {
1704 			con->error_msg =
1705 				"error allocating memory for incoming message";
1706 			return -ENOMEM;
1707 		}
1708 		m = con->in_msg;
1709 		m->front.iov_len = 0;    /* haven't read it yet */
1710 		if (m->middle)
1711 			m->middle->vec.iov_len = 0;
1712 
1713 		con->in_msg_pos.page = 0;
1714 		if (m->pages)
1715 			con->in_msg_pos.page_pos = m->page_alignment;
1716 		else
1717 			con->in_msg_pos.page_pos = 0;
1718 		con->in_msg_pos.data_pos = 0;
1719 	}
1720 
1721 	/* front */
1722 	ret = read_partial_message_section(con, &m->front, front_len,
1723 					   &con->in_front_crc);
1724 	if (ret <= 0)
1725 		return ret;
1726 
1727 	/* middle */
1728 	if (m->middle) {
1729 		ret = read_partial_message_section(con, &m->middle->vec,
1730 						   middle_len,
1731 						   &con->in_middle_crc);
1732 		if (ret <= 0)
1733 			return ret;
1734 	}
1735 #ifdef CONFIG_BLOCK
1736 	if (m->bio && !m->bio_iter)
1737 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1738 #endif
1739 
1740 	/* (page) data */
1741 	while (con->in_msg_pos.data_pos < data_len) {
1742 		if (m->pages) {
1743 			ret = read_partial_message_pages(con, m->pages,
1744 						 data_len, do_datacrc);
1745 			if (ret <= 0)
1746 				return ret;
1747 #ifdef CONFIG_BLOCK
1748 		} else if (m->bio) {
1749 
1750 			ret = read_partial_message_bio(con,
1751 						 &m->bio_iter, &m->bio_seg,
1752 						 data_len, do_datacrc);
1753 			if (ret <= 0)
1754 				return ret;
1755 #endif
1756 		} else {
1757 			BUG_ON(1);
1758 		}
1759 	}
1760 
1761 	/* footer */
1762 	to = sizeof(m->hdr) + sizeof(m->footer);
1763 	while (con->in_base_pos < to) {
1764 		left = to - con->in_base_pos;
1765 		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1766 				       (con->in_base_pos - sizeof(m->hdr)),
1767 				       left);
1768 		if (ret <= 0)
1769 			return ret;
1770 		con->in_base_pos += ret;
1771 	}
1772 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1773 	     m, front_len, m->footer.front_crc, middle_len,
1774 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1775 
1776 	/* crc ok? */
1777 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1778 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1779 		       m, con->in_front_crc, m->footer.front_crc);
1780 		return -EBADMSG;
1781 	}
1782 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1783 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1784 		       m, con->in_middle_crc, m->footer.middle_crc);
1785 		return -EBADMSG;
1786 	}
1787 	if (do_datacrc &&
1788 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1789 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1790 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1791 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1792 		return -EBADMSG;
1793 	}
1794 
1795 	return 1; /* done! */
1796 }
1797 
1798 /*
1799  * Process message.  This happens in the worker thread.  The callback should
1800  * be careful not to do anything that waits on other incoming messages or it
1801  * may deadlock.
1802  */
1803 static void process_message(struct ceph_connection *con)
1804 {
1805 	struct ceph_msg *msg;
1806 
1807 	msg = con->in_msg;
1808 	con->in_msg = NULL;
1809 
1810 	/* if first message, set peer_name */
1811 	if (con->peer_name.type == 0)
1812 		con->peer_name = msg->hdr.src;
1813 
1814 	con->in_seq++;
1815 	mutex_unlock(&con->mutex);
1816 
1817 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1818 	     msg, le64_to_cpu(msg->hdr.seq),
1819 	     ENTITY_NAME(msg->hdr.src),
1820 	     le16_to_cpu(msg->hdr.type),
1821 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1822 	     le32_to_cpu(msg->hdr.front_len),
1823 	     le32_to_cpu(msg->hdr.data_len),
1824 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1825 	con->ops->dispatch(con, msg);
1826 
1827 	mutex_lock(&con->mutex);
1828 	prepare_read_tag(con);
1829 }
1830 
1831 
1832 /*
1833  * Write something to the socket.  Called in a worker thread when the
1834  * socket appears to be writeable and we have something ready to send.
1835  */
1836 static int try_write(struct ceph_connection *con)
1837 {
1838 	struct ceph_messenger *msgr = con->msgr;
1839 	int ret = 1;
1840 
1841 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1842 	     atomic_read(&con->nref));
1843 
1844 more:
1845 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1846 
1847 	/* open the socket first? */
1848 	if (con->sock == NULL) {
1849 		prepare_write_connect(msgr, con, 1);
1850 		prepare_read_banner(con);
1851 		set_bit(CONNECTING, &con->state);
1852 		clear_bit(NEGOTIATING, &con->state);
1853 
1854 		BUG_ON(con->in_msg);
1855 		con->in_tag = CEPH_MSGR_TAG_READY;
1856 		dout("try_write initiating connect on %p new state %lu\n",
1857 		     con, con->state);
1858 		ret = ceph_tcp_connect(con);
1859 		if (ret < 0) {
1860 			con->error_msg = "connect error";
1861 			goto out;
1862 		}
1863 	}
1864 
1865 more_kvec:
1866 	/* kvec data queued? */
1867 	if (con->out_skip) {
1868 		ret = write_partial_skip(con);
1869 		if (ret <= 0)
1870 			goto out;
1871 	}
1872 	if (con->out_kvec_left) {
1873 		ret = write_partial_kvec(con);
1874 		if (ret <= 0)
1875 			goto out;
1876 	}
1877 
1878 	/* msg pages? */
1879 	if (con->out_msg) {
1880 		if (con->out_msg_done) {
1881 			ceph_msg_put(con->out_msg);
1882 			con->out_msg = NULL;   /* we're done with this one */
1883 			goto do_next;
1884 		}
1885 
1886 		ret = write_partial_msg_pages(con);
1887 		if (ret == 1)
1888 			goto more_kvec;  /* we need to send the footer, too! */
1889 		if (ret == 0)
1890 			goto out;
1891 		if (ret < 0) {
1892 			dout("try_write write_partial_msg_pages err %d\n",
1893 			     ret);
1894 			goto out;
1895 		}
1896 	}
1897 
1898 do_next:
1899 	if (!test_bit(CONNECTING, &con->state)) {
1900 		/* is anything else pending? */
1901 		if (!list_empty(&con->out_queue)) {
1902 			prepare_write_message(con);
1903 			goto more;
1904 		}
1905 		if (con->in_seq > con->in_seq_acked) {
1906 			prepare_write_ack(con);
1907 			goto more;
1908 		}
1909 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1910 			prepare_write_keepalive(con);
1911 			goto more;
1912 		}
1913 	}
1914 
1915 	/* Nothing to do! */
1916 	clear_bit(WRITE_PENDING, &con->state);
1917 	dout("try_write nothing else to write.\n");
1918 	ret = 0;
1919 out:
1920 	dout("try_write done on %p ret %d\n", con, ret);
1921 	return ret;
1922 }
1923 
1924 
1925 
1926 /*
1927  * Read what we can from the socket.
1928  */
1929 static int try_read(struct ceph_connection *con)
1930 {
1931 	int ret = -1;
1932 
1933 	if (!con->sock)
1934 		return 0;
1935 
1936 	if (test_bit(STANDBY, &con->state))
1937 		return 0;
1938 
1939 	dout("try_read start on %p\n", con);
1940 
1941 more:
1942 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1943 	     con->in_base_pos);
1944 
1945 	/*
1946 	 * process_connect and process_message drop and re-take
1947 	 * con->mutex.  make sure we handle a racing close or reopen.
1948 	 */
1949 	if (test_bit(CLOSED, &con->state) ||
1950 	    test_bit(OPENING, &con->state)) {
1951 		ret = -EAGAIN;
1952 		goto out;
1953 	}
1954 
1955 	if (test_bit(CONNECTING, &con->state)) {
1956 		if (!test_bit(NEGOTIATING, &con->state)) {
1957 			dout("try_read connecting\n");
1958 			ret = read_partial_banner(con);
1959 			if (ret <= 0)
1960 				goto out;
1961 			ret = process_banner(con);
1962 			if (ret < 0)
1963 				goto out;
1964 		}
1965 		ret = read_partial_connect(con);
1966 		if (ret <= 0)
1967 			goto out;
1968 		ret = process_connect(con);
1969 		if (ret < 0)
1970 			goto out;
1971 		goto more;
1972 	}
1973 
1974 	if (con->in_base_pos < 0) {
1975 		/*
1976 		 * skipping + discarding content.
1977 		 *
1978 		 * FIXME: there must be a better way to do this!
1979 		 */
1980 		static char buf[SKIP_BUF_SIZE];
1981 		int skip = min((int) sizeof (buf), -con->in_base_pos);
1982 
1983 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1984 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1985 		if (ret <= 0)
1986 			goto out;
1987 		con->in_base_pos += ret;
1988 		if (con->in_base_pos)
1989 			goto more;
1990 	}
1991 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1992 		/*
1993 		 * what's next?
1994 		 */
1995 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1996 		if (ret <= 0)
1997 			goto out;
1998 		dout("try_read got tag %d\n", (int)con->in_tag);
1999 		switch (con->in_tag) {
2000 		case CEPH_MSGR_TAG_MSG:
2001 			prepare_read_message(con);
2002 			break;
2003 		case CEPH_MSGR_TAG_ACK:
2004 			prepare_read_ack(con);
2005 			break;
2006 		case CEPH_MSGR_TAG_CLOSE:
2007 			set_bit(CLOSED, &con->state);   /* fixme */
2008 			goto out;
2009 		default:
2010 			goto bad_tag;
2011 		}
2012 	}
2013 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2014 		ret = read_partial_message(con);
2015 		if (ret <= 0) {
2016 			switch (ret) {
2017 			case -EBADMSG:
2018 				con->error_msg = "bad crc";
2019 				ret = -EIO;
2020 				break;
2021 			case -EIO:
2022 				con->error_msg = "io error";
2023 				break;
2024 			}
2025 			goto out;
2026 		}
2027 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2028 			goto more;
2029 		process_message(con);
2030 		goto more;
2031 	}
2032 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2033 		ret = read_partial_ack(con);
2034 		if (ret <= 0)
2035 			goto out;
2036 		process_ack(con);
2037 		goto more;
2038 	}
2039 
2040 out:
2041 	dout("try_read done on %p ret %d\n", con, ret);
2042 	return ret;
2043 
2044 bad_tag:
2045 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2046 	con->error_msg = "protocol error, garbage tag";
2047 	ret = -1;
2048 	goto out;
2049 }
2050 
2051 
2052 /*
2053  * Atomically queue work on a connection.  Bump @con reference to
2054  * avoid races with connection teardown.
2055  */
2056 static void queue_con(struct ceph_connection *con)
2057 {
2058 	if (test_bit(DEAD, &con->state)) {
2059 		dout("queue_con %p ignoring: DEAD\n",
2060 		     con);
2061 		return;
2062 	}
2063 
2064 	if (!con->ops->get(con)) {
2065 		dout("queue_con %p ref count 0\n", con);
2066 		return;
2067 	}
2068 
2069 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2070 		dout("queue_con %p - already queued\n", con);
2071 		con->ops->put(con);
2072 	} else {
2073 		dout("queue_con %p\n", con);
2074 	}
2075 }
2076 
2077 /*
2078  * Do some work on a connection.  Drop a connection ref when we're done.
2079  */
2080 static void con_work(struct work_struct *work)
2081 {
2082 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2083 						   work.work);
2084 	int ret;
2085 
2086 	mutex_lock(&con->mutex);
2087 restart:
2088 	if (test_and_clear_bit(BACKOFF, &con->state)) {
2089 		dout("con_work %p backing off\n", con);
2090 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2091 				       round_jiffies_relative(con->delay))) {
2092 			dout("con_work %p backoff %lu\n", con, con->delay);
2093 			mutex_unlock(&con->mutex);
2094 			return;
2095 		} else {
2096 			con->ops->put(con);
2097 			dout("con_work %p FAILED to back off %lu\n", con,
2098 			     con->delay);
2099 		}
2100 	}
2101 
2102 	if (test_bit(STANDBY, &con->state)) {
2103 		dout("con_work %p STANDBY\n", con);
2104 		goto done;
2105 	}
2106 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2107 		dout("con_work CLOSED\n");
2108 		con_close_socket(con);
2109 		goto done;
2110 	}
2111 	if (test_and_clear_bit(OPENING, &con->state)) {
2112 		/* reopen w/ new peer */
2113 		dout("con_work OPENING\n");
2114 		con_close_socket(con);
2115 	}
2116 
2117 	if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2118 		goto fault;
2119 
2120 	ret = try_read(con);
2121 	if (ret == -EAGAIN)
2122 		goto restart;
2123 	if (ret < 0)
2124 		goto fault;
2125 
2126 	ret = try_write(con);
2127 	if (ret == -EAGAIN)
2128 		goto restart;
2129 	if (ret < 0)
2130 		goto fault;
2131 
2132 done:
2133 	mutex_unlock(&con->mutex);
2134 done_unlocked:
2135 	con->ops->put(con);
2136 	return;
2137 
2138 fault:
2139 	mutex_unlock(&con->mutex);
2140 	ceph_fault(con);     /* error/fault path */
2141 	goto done_unlocked;
2142 }
2143 
2144 
2145 /*
2146  * Generic error/fault handler.  A retry mechanism is used with
2147  * exponential backoff
2148  */
2149 static void ceph_fault(struct ceph_connection *con)
2150 {
2151 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2152 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2153 	dout("fault %p state %lu to peer %s\n",
2154 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2155 
2156 	if (test_bit(LOSSYTX, &con->state)) {
2157 		dout("fault on LOSSYTX channel\n");
2158 		goto out;
2159 	}
2160 
2161 	mutex_lock(&con->mutex);
2162 	if (test_bit(CLOSED, &con->state))
2163 		goto out_unlock;
2164 
2165 	con_close_socket(con);
2166 
2167 	if (con->in_msg) {
2168 		ceph_msg_put(con->in_msg);
2169 		con->in_msg = NULL;
2170 	}
2171 
2172 	/* Requeue anything that hasn't been acked */
2173 	list_splice_init(&con->out_sent, &con->out_queue);
2174 
2175 	/* If there are no messages queued or keepalive pending, place
2176 	 * the connection in a STANDBY state */
2177 	if (list_empty(&con->out_queue) &&
2178 	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2179 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2180 		clear_bit(WRITE_PENDING, &con->state);
2181 		set_bit(STANDBY, &con->state);
2182 	} else {
2183 		/* retry after a delay. */
2184 		if (con->delay == 0)
2185 			con->delay = BASE_DELAY_INTERVAL;
2186 		else if (con->delay < MAX_DELAY_INTERVAL)
2187 			con->delay *= 2;
2188 		con->ops->get(con);
2189 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2190 				       round_jiffies_relative(con->delay))) {
2191 			dout("fault queued %p delay %lu\n", con, con->delay);
2192 		} else {
2193 			con->ops->put(con);
2194 			dout("fault failed to queue %p delay %lu, backoff\n",
2195 			     con, con->delay);
2196 			/*
2197 			 * In many cases we see a socket state change
2198 			 * while con_work is running and end up
2199 			 * queuing (non-delayed) work, such that we
2200 			 * can't backoff with a delay.  Set a flag so
2201 			 * that when con_work restarts we schedule the
2202 			 * delay then.
2203 			 */
2204 			set_bit(BACKOFF, &con->state);
2205 		}
2206 	}
2207 
2208 out_unlock:
2209 	mutex_unlock(&con->mutex);
2210 out:
2211 	/*
2212 	 * in case we faulted due to authentication, invalidate our
2213 	 * current tickets so that we can get new ones.
2214 	 */
2215 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2216 		dout("calling invalidate_authorizer()\n");
2217 		con->ops->invalidate_authorizer(con);
2218 	}
2219 
2220 	if (con->ops->fault)
2221 		con->ops->fault(con);
2222 }
2223 
2224 
2225 
2226 /*
2227  * create a new messenger instance
2228  */
2229 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2230 					     u32 supported_features,
2231 					     u32 required_features)
2232 {
2233 	struct ceph_messenger *msgr;
2234 
2235 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2236 	if (msgr == NULL)
2237 		return ERR_PTR(-ENOMEM);
2238 
2239 	msgr->supported_features = supported_features;
2240 	msgr->required_features = required_features;
2241 
2242 	spin_lock_init(&msgr->global_seq_lock);
2243 
2244 	if (myaddr)
2245 		msgr->inst.addr = *myaddr;
2246 
2247 	/* select a random nonce */
2248 	msgr->inst.addr.type = 0;
2249 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2250 	encode_my_addr(msgr);
2251 
2252 	dout("messenger_create %p\n", msgr);
2253 	return msgr;
2254 }
2255 EXPORT_SYMBOL(ceph_messenger_create);
2256 
2257 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2258 {
2259 	dout("destroy %p\n", msgr);
2260 	kfree(msgr);
2261 	dout("destroyed messenger %p\n", msgr);
2262 }
2263 EXPORT_SYMBOL(ceph_messenger_destroy);
2264 
2265 static void clear_standby(struct ceph_connection *con)
2266 {
2267 	/* come back from STANDBY? */
2268 	if (test_and_clear_bit(STANDBY, &con->state)) {
2269 		mutex_lock(&con->mutex);
2270 		dout("clear_standby %p and ++connect_seq\n", con);
2271 		con->connect_seq++;
2272 		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2273 		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2274 		mutex_unlock(&con->mutex);
2275 	}
2276 }
2277 
2278 /*
2279  * Queue up an outgoing message on the given connection.
2280  */
2281 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2282 {
2283 	if (test_bit(CLOSED, &con->state)) {
2284 		dout("con_send %p closed, dropping %p\n", con, msg);
2285 		ceph_msg_put(msg);
2286 		return;
2287 	}
2288 
2289 	/* set src+dst */
2290 	msg->hdr.src = con->msgr->inst.name;
2291 
2292 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2293 
2294 	msg->needs_out_seq = true;
2295 
2296 	/* queue */
2297 	mutex_lock(&con->mutex);
2298 	BUG_ON(!list_empty(&msg->list_head));
2299 	list_add_tail(&msg->list_head, &con->out_queue);
2300 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2301 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2302 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2303 	     le32_to_cpu(msg->hdr.front_len),
2304 	     le32_to_cpu(msg->hdr.middle_len),
2305 	     le32_to_cpu(msg->hdr.data_len));
2306 	mutex_unlock(&con->mutex);
2307 
2308 	/* if there wasn't anything waiting to send before, queue
2309 	 * new work */
2310 	clear_standby(con);
2311 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2312 		queue_con(con);
2313 }
2314 EXPORT_SYMBOL(ceph_con_send);
2315 
2316 /*
2317  * Revoke a message that was previously queued for send
2318  */
2319 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2320 {
2321 	mutex_lock(&con->mutex);
2322 	if (!list_empty(&msg->list_head)) {
2323 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2324 		list_del_init(&msg->list_head);
2325 		ceph_msg_put(msg);
2326 		msg->hdr.seq = 0;
2327 	}
2328 	if (con->out_msg == msg) {
2329 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2330 		con->out_msg = NULL;
2331 		if (con->out_kvec_is_msg) {
2332 			con->out_skip = con->out_kvec_bytes;
2333 			con->out_kvec_is_msg = false;
2334 		}
2335 		ceph_msg_put(msg);
2336 		msg->hdr.seq = 0;
2337 	}
2338 	mutex_unlock(&con->mutex);
2339 }
2340 
2341 /*
2342  * Revoke a message that we may be reading data into
2343  */
2344 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2345 {
2346 	mutex_lock(&con->mutex);
2347 	if (con->in_msg && con->in_msg == msg) {
2348 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2349 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2350 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2351 
2352 		/* skip rest of message */
2353 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2354 			con->in_base_pos = con->in_base_pos -
2355 				sizeof(struct ceph_msg_header) -
2356 				front_len -
2357 				middle_len -
2358 				data_len -
2359 				sizeof(struct ceph_msg_footer);
2360 		ceph_msg_put(con->in_msg);
2361 		con->in_msg = NULL;
2362 		con->in_tag = CEPH_MSGR_TAG_READY;
2363 		con->in_seq++;
2364 	} else {
2365 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2366 		     con, con->in_msg, msg);
2367 	}
2368 	mutex_unlock(&con->mutex);
2369 }
2370 
2371 /*
2372  * Queue a keepalive byte to ensure the tcp connection is alive.
2373  */
2374 void ceph_con_keepalive(struct ceph_connection *con)
2375 {
2376 	dout("con_keepalive %p\n", con);
2377 	clear_standby(con);
2378 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2379 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2380 		queue_con(con);
2381 }
2382 EXPORT_SYMBOL(ceph_con_keepalive);
2383 
2384 
2385 /*
2386  * construct a new message with given type, size
2387  * the new msg has a ref count of 1.
2388  */
2389 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2390 			      bool can_fail)
2391 {
2392 	struct ceph_msg *m;
2393 
2394 	m = kmalloc(sizeof(*m), flags);
2395 	if (m == NULL)
2396 		goto out;
2397 	kref_init(&m->kref);
2398 	INIT_LIST_HEAD(&m->list_head);
2399 
2400 	m->hdr.tid = 0;
2401 	m->hdr.type = cpu_to_le16(type);
2402 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2403 	m->hdr.version = 0;
2404 	m->hdr.front_len = cpu_to_le32(front_len);
2405 	m->hdr.middle_len = 0;
2406 	m->hdr.data_len = 0;
2407 	m->hdr.data_off = 0;
2408 	m->hdr.reserved = 0;
2409 	m->footer.front_crc = 0;
2410 	m->footer.middle_crc = 0;
2411 	m->footer.data_crc = 0;
2412 	m->footer.flags = 0;
2413 	m->front_max = front_len;
2414 	m->front_is_vmalloc = false;
2415 	m->more_to_follow = false;
2416 	m->ack_stamp = 0;
2417 	m->pool = NULL;
2418 
2419 	/* middle */
2420 	m->middle = NULL;
2421 
2422 	/* data */
2423 	m->nr_pages = 0;
2424 	m->page_alignment = 0;
2425 	m->pages = NULL;
2426 	m->pagelist = NULL;
2427 	m->bio = NULL;
2428 	m->bio_iter = NULL;
2429 	m->bio_seg = 0;
2430 	m->trail = NULL;
2431 
2432 	/* front */
2433 	if (front_len) {
2434 		if (front_len > PAGE_CACHE_SIZE) {
2435 			m->front.iov_base = __vmalloc(front_len, flags,
2436 						      PAGE_KERNEL);
2437 			m->front_is_vmalloc = true;
2438 		} else {
2439 			m->front.iov_base = kmalloc(front_len, flags);
2440 		}
2441 		if (m->front.iov_base == NULL) {
2442 			dout("ceph_msg_new can't allocate %d bytes\n",
2443 			     front_len);
2444 			goto out2;
2445 		}
2446 	} else {
2447 		m->front.iov_base = NULL;
2448 	}
2449 	m->front.iov_len = front_len;
2450 
2451 	dout("ceph_msg_new %p front %d\n", m, front_len);
2452 	return m;
2453 
2454 out2:
2455 	ceph_msg_put(m);
2456 out:
2457 	if (!can_fail) {
2458 		pr_err("msg_new can't create type %d front %d\n", type,
2459 		       front_len);
2460 		WARN_ON(1);
2461 	} else {
2462 		dout("msg_new can't create type %d front %d\n", type,
2463 		     front_len);
2464 	}
2465 	return NULL;
2466 }
2467 EXPORT_SYMBOL(ceph_msg_new);
2468 
2469 /*
2470  * Allocate "middle" portion of a message, if it is needed and wasn't
2471  * allocated by alloc_msg.  This allows us to read a small fixed-size
2472  * per-type header in the front and then gracefully fail (i.e.,
2473  * propagate the error to the caller based on info in the front) when
2474  * the middle is too large.
2475  */
2476 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2477 {
2478 	int type = le16_to_cpu(msg->hdr.type);
2479 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2480 
2481 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2482 	     ceph_msg_type_name(type), middle_len);
2483 	BUG_ON(!middle_len);
2484 	BUG_ON(msg->middle);
2485 
2486 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2487 	if (!msg->middle)
2488 		return -ENOMEM;
2489 	return 0;
2490 }
2491 
2492 /*
2493  * Generic message allocator, for incoming messages.
2494  */
2495 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2496 				struct ceph_msg_header *hdr,
2497 				int *skip)
2498 {
2499 	int type = le16_to_cpu(hdr->type);
2500 	int front_len = le32_to_cpu(hdr->front_len);
2501 	int middle_len = le32_to_cpu(hdr->middle_len);
2502 	struct ceph_msg *msg = NULL;
2503 	int ret;
2504 
2505 	if (con->ops->alloc_msg) {
2506 		mutex_unlock(&con->mutex);
2507 		msg = con->ops->alloc_msg(con, hdr, skip);
2508 		mutex_lock(&con->mutex);
2509 		if (!msg || *skip)
2510 			return NULL;
2511 	}
2512 	if (!msg) {
2513 		*skip = 0;
2514 		msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2515 		if (!msg) {
2516 			pr_err("unable to allocate msg type %d len %d\n",
2517 			       type, front_len);
2518 			return NULL;
2519 		}
2520 		msg->page_alignment = le16_to_cpu(hdr->data_off);
2521 	}
2522 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2523 
2524 	if (middle_len && !msg->middle) {
2525 		ret = ceph_alloc_middle(con, msg);
2526 		if (ret < 0) {
2527 			ceph_msg_put(msg);
2528 			return NULL;
2529 		}
2530 	}
2531 
2532 	return msg;
2533 }
2534 
2535 
2536 /*
2537  * Free a generically kmalloc'd message.
2538  */
2539 void ceph_msg_kfree(struct ceph_msg *m)
2540 {
2541 	dout("msg_kfree %p\n", m);
2542 	if (m->front_is_vmalloc)
2543 		vfree(m->front.iov_base);
2544 	else
2545 		kfree(m->front.iov_base);
2546 	kfree(m);
2547 }
2548 
2549 /*
2550  * Drop a msg ref.  Destroy as needed.
2551  */
2552 void ceph_msg_last_put(struct kref *kref)
2553 {
2554 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2555 
2556 	dout("ceph_msg_put last one on %p\n", m);
2557 	WARN_ON(!list_empty(&m->list_head));
2558 
2559 	/* drop middle, data, if any */
2560 	if (m->middle) {
2561 		ceph_buffer_put(m->middle);
2562 		m->middle = NULL;
2563 	}
2564 	m->nr_pages = 0;
2565 	m->pages = NULL;
2566 
2567 	if (m->pagelist) {
2568 		ceph_pagelist_release(m->pagelist);
2569 		kfree(m->pagelist);
2570 		m->pagelist = NULL;
2571 	}
2572 
2573 	m->trail = NULL;
2574 
2575 	if (m->pool)
2576 		ceph_msgpool_put(m->pool, m);
2577 	else
2578 		ceph_msg_kfree(m);
2579 }
2580 EXPORT_SYMBOL(ceph_msg_last_put);
2581 
2582 void ceph_msg_dump(struct ceph_msg *msg)
2583 {
2584 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2585 		 msg->front_max, msg->nr_pages);
2586 	print_hex_dump(KERN_DEBUG, "header: ",
2587 		       DUMP_PREFIX_OFFSET, 16, 1,
2588 		       &msg->hdr, sizeof(msg->hdr), true);
2589 	print_hex_dump(KERN_DEBUG, " front: ",
2590 		       DUMP_PREFIX_OFFSET, 16, 1,
2591 		       msg->front.iov_base, msg->front.iov_len, true);
2592 	if (msg->middle)
2593 		print_hex_dump(KERN_DEBUG, "middle: ",
2594 			       DUMP_PREFIX_OFFSET, 16, 1,
2595 			       msg->middle->vec.iov_base,
2596 			       msg->middle->vec.iov_len, true);
2597 	print_hex_dump(KERN_DEBUG, "footer: ",
2598 		       DUMP_PREFIX_OFFSET, 16, 1,
2599 		       &msg->footer, sizeof(msg->footer), true);
2600 }
2601 EXPORT_SYMBOL(ceph_msg_dump);
2602