xref: /openbmc/linux/net/ceph/messenger.c (revision 5e29a910)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	kunmap(zero_page);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 }
285 
286 int ceph_msgr_init(void)
287 {
288 	BUG_ON(zero_page != NULL);
289 	zero_page = ZERO_PAGE(0);
290 	page_cache_get(zero_page);
291 
292 	if (ceph_msgr_slab_init())
293 		return -ENOMEM;
294 
295 	/*
296 	 * The number of active work items is limited by the number of
297 	 * connections, so leave @max_active at default.
298 	 */
299 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 	if (ceph_msgr_wq)
301 		return 0;
302 
303 	pr_err("msgr_init failed to create workqueue\n");
304 	_ceph_msgr_exit();
305 
306 	return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309 
310 void ceph_msgr_exit(void)
311 {
312 	BUG_ON(ceph_msgr_wq == NULL);
313 
314 	_ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317 
318 void ceph_msgr_flush(void)
319 {
320 	flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323 
324 /* Connection socket state transition functions */
325 
326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 	int old_state;
329 
330 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 		printk("%s: unexpected old state %d\n", __func__, old_state);
333 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 	     CON_SOCK_STATE_CLOSED);
335 }
336 
337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 	int old_state;
340 
341 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 		printk("%s: unexpected old state %d\n", __func__, old_state);
344 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 	     CON_SOCK_STATE_CONNECTING);
346 }
347 
348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 	int old_state;
351 
352 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CONNECTED);
357 }
358 
359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 	int old_state;
362 
363 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 			old_state != CON_SOCK_STATE_CONNECTED &&
366 			old_state != CON_SOCK_STATE_CLOSING))
367 		printk("%s: unexpected old state %d\n", __func__, old_state);
368 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 	     CON_SOCK_STATE_CLOSING);
370 }
371 
372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 	int old_state;
375 
376 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 		    old_state != CON_SOCK_STATE_CLOSING &&
379 		    old_state != CON_SOCK_STATE_CONNECTING &&
380 		    old_state != CON_SOCK_STATE_CLOSED))
381 		printk("%s: unexpected old state %d\n", __func__, old_state);
382 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 	     CON_SOCK_STATE_CLOSED);
384 }
385 
386 /*
387  * socket callback functions
388  */
389 
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 	struct ceph_connection *con = sk->sk_user_data;
394 	if (atomic_read(&con->msgr->stopping)) {
395 		return;
396 	}
397 
398 	if (sk->sk_state != TCP_CLOSE_WAIT) {
399 		dout("%s on %p state = %lu, queueing work\n", __func__,
400 		     con, con->state);
401 		queue_con(con);
402 	}
403 }
404 
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 	struct ceph_connection *con = sk->sk_user_data;
409 
410 	/* only queue to workqueue if there is data we want to write,
411 	 * and there is sufficient space in the socket buffer to accept
412 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
413 	 * doesn't get called again until try_write() fills the socket
414 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 	 * and net/core/stream.c:sk_stream_write_space().
416 	 */
417 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 		if (sk_stream_is_writeable(sk)) {
419 			dout("%s %p queueing write work\n", __func__, con);
420 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 			queue_con(con);
422 		}
423 	} else {
424 		dout("%s %p nothing to write\n", __func__, con);
425 	}
426 }
427 
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 	struct ceph_connection *con = sk->sk_user_data;
432 
433 	dout("%s %p state = %lu sk_state = %u\n", __func__,
434 	     con, con->state, sk->sk_state);
435 
436 	switch (sk->sk_state) {
437 	case TCP_CLOSE:
438 		dout("%s TCP_CLOSE\n", __func__);
439 	case TCP_CLOSE_WAIT:
440 		dout("%s TCP_CLOSE_WAIT\n", __func__);
441 		con_sock_state_closing(con);
442 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 		queue_con(con);
444 		break;
445 	case TCP_ESTABLISHED:
446 		dout("%s TCP_ESTABLISHED\n", __func__);
447 		con_sock_state_connected(con);
448 		queue_con(con);
449 		break;
450 	default:	/* Everything else is uninteresting */
451 		break;
452 	}
453 }
454 
455 /*
456  * set up socket callbacks
457  */
458 static void set_sock_callbacks(struct socket *sock,
459 			       struct ceph_connection *con)
460 {
461 	struct sock *sk = sock->sk;
462 	sk->sk_user_data = con;
463 	sk->sk_data_ready = ceph_sock_data_ready;
464 	sk->sk_write_space = ceph_sock_write_space;
465 	sk->sk_state_change = ceph_sock_state_change;
466 }
467 
468 
469 /*
470  * socket helpers
471  */
472 
473 /*
474  * initiate connection to a remote socket.
475  */
476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 	struct socket *sock;
480 	int ret;
481 
482 	BUG_ON(con->sock);
483 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 			       IPPROTO_TCP, &sock);
485 	if (ret)
486 		return ret;
487 	sock->sk->sk_allocation = GFP_NOFS | __GFP_MEMALLOC;
488 
489 #ifdef CONFIG_LOCKDEP
490 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492 
493 	set_sock_callbacks(sock, con);
494 
495 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496 
497 	con_sock_state_connecting(con);
498 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 				 O_NONBLOCK);
500 	if (ret == -EINPROGRESS) {
501 		dout("connect %s EINPROGRESS sk_state = %u\n",
502 		     ceph_pr_addr(&con->peer_addr.in_addr),
503 		     sock->sk->sk_state);
504 	} else if (ret < 0) {
505 		pr_err("connect %s error %d\n",
506 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 		sock_release(sock);
508 		con->error_msg = "connect error";
509 
510 		return ret;
511 	}
512 
513 	if (con->msgr->tcp_nodelay) {
514 		int optval = 1;
515 
516 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
517 					(char *)&optval, sizeof(optval));
518 		if (ret)
519 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
520 			       ret);
521 	}
522 
523 	sk_set_memalloc(sock->sk);
524 
525 	con->sock = sock;
526 	return 0;
527 }
528 
529 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
530 {
531 	struct kvec iov = {buf, len};
532 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
533 	int r;
534 
535 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
536 	if (r == -EAGAIN)
537 		r = 0;
538 	return r;
539 }
540 
541 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
542 		     int page_offset, size_t length)
543 {
544 	void *kaddr;
545 	int ret;
546 
547 	BUG_ON(page_offset + length > PAGE_SIZE);
548 
549 	kaddr = kmap(page);
550 	BUG_ON(!kaddr);
551 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
552 	kunmap(page);
553 
554 	return ret;
555 }
556 
557 /*
558  * write something.  @more is true if caller will be sending more data
559  * shortly.
560  */
561 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
562 		     size_t kvlen, size_t len, int more)
563 {
564 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
565 	int r;
566 
567 	if (more)
568 		msg.msg_flags |= MSG_MORE;
569 	else
570 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
571 
572 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
573 	if (r == -EAGAIN)
574 		r = 0;
575 	return r;
576 }
577 
578 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
579 		     int offset, size_t size, bool more)
580 {
581 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
582 	int ret;
583 
584 	ret = kernel_sendpage(sock, page, offset, size, flags);
585 	if (ret == -EAGAIN)
586 		ret = 0;
587 
588 	return ret;
589 }
590 
591 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
592 		     int offset, size_t size, bool more)
593 {
594 	int ret;
595 	struct kvec iov;
596 
597 	/* sendpage cannot properly handle pages with page_count == 0,
598 	 * we need to fallback to sendmsg if that's the case */
599 	if (page_count(page) >= 1)
600 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
601 
602 	iov.iov_base = kmap(page) + offset;
603 	iov.iov_len = size;
604 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
605 	kunmap(page);
606 
607 	return ret;
608 }
609 
610 /*
611  * Shutdown/close the socket for the given connection.
612  */
613 static int con_close_socket(struct ceph_connection *con)
614 {
615 	int rc = 0;
616 
617 	dout("con_close_socket on %p sock %p\n", con, con->sock);
618 	if (con->sock) {
619 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
620 		sock_release(con->sock);
621 		con->sock = NULL;
622 	}
623 
624 	/*
625 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
626 	 * independent of the connection mutex, and we could have
627 	 * received a socket close event before we had the chance to
628 	 * shut the socket down.
629 	 */
630 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
631 
632 	con_sock_state_closed(con);
633 	return rc;
634 }
635 
636 /*
637  * Reset a connection.  Discard all incoming and outgoing messages
638  * and clear *_seq state.
639  */
640 static void ceph_msg_remove(struct ceph_msg *msg)
641 {
642 	list_del_init(&msg->list_head);
643 	BUG_ON(msg->con == NULL);
644 	msg->con->ops->put(msg->con);
645 	msg->con = NULL;
646 
647 	ceph_msg_put(msg);
648 }
649 static void ceph_msg_remove_list(struct list_head *head)
650 {
651 	while (!list_empty(head)) {
652 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
653 							list_head);
654 		ceph_msg_remove(msg);
655 	}
656 }
657 
658 static void reset_connection(struct ceph_connection *con)
659 {
660 	/* reset connection, out_queue, msg_ and connect_seq */
661 	/* discard existing out_queue and msg_seq */
662 	dout("reset_connection %p\n", con);
663 	ceph_msg_remove_list(&con->out_queue);
664 	ceph_msg_remove_list(&con->out_sent);
665 
666 	if (con->in_msg) {
667 		BUG_ON(con->in_msg->con != con);
668 		con->in_msg->con = NULL;
669 		ceph_msg_put(con->in_msg);
670 		con->in_msg = NULL;
671 		con->ops->put(con);
672 	}
673 
674 	con->connect_seq = 0;
675 	con->out_seq = 0;
676 	if (con->out_msg) {
677 		ceph_msg_put(con->out_msg);
678 		con->out_msg = NULL;
679 	}
680 	con->in_seq = 0;
681 	con->in_seq_acked = 0;
682 }
683 
684 /*
685  * mark a peer down.  drop any open connections.
686  */
687 void ceph_con_close(struct ceph_connection *con)
688 {
689 	mutex_lock(&con->mutex);
690 	dout("con_close %p peer %s\n", con,
691 	     ceph_pr_addr(&con->peer_addr.in_addr));
692 	con->state = CON_STATE_CLOSED;
693 
694 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
695 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
696 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
697 	con_flag_clear(con, CON_FLAG_BACKOFF);
698 
699 	reset_connection(con);
700 	con->peer_global_seq = 0;
701 	cancel_con(con);
702 	con_close_socket(con);
703 	mutex_unlock(&con->mutex);
704 }
705 EXPORT_SYMBOL(ceph_con_close);
706 
707 /*
708  * Reopen a closed connection, with a new peer address.
709  */
710 void ceph_con_open(struct ceph_connection *con,
711 		   __u8 entity_type, __u64 entity_num,
712 		   struct ceph_entity_addr *addr)
713 {
714 	mutex_lock(&con->mutex);
715 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
716 
717 	WARN_ON(con->state != CON_STATE_CLOSED);
718 	con->state = CON_STATE_PREOPEN;
719 
720 	con->peer_name.type = (__u8) entity_type;
721 	con->peer_name.num = cpu_to_le64(entity_num);
722 
723 	memcpy(&con->peer_addr, addr, sizeof(*addr));
724 	con->delay = 0;      /* reset backoff memory */
725 	mutex_unlock(&con->mutex);
726 	queue_con(con);
727 }
728 EXPORT_SYMBOL(ceph_con_open);
729 
730 /*
731  * return true if this connection ever successfully opened
732  */
733 bool ceph_con_opened(struct ceph_connection *con)
734 {
735 	return con->connect_seq > 0;
736 }
737 
738 /*
739  * initialize a new connection.
740  */
741 void ceph_con_init(struct ceph_connection *con, void *private,
742 	const struct ceph_connection_operations *ops,
743 	struct ceph_messenger *msgr)
744 {
745 	dout("con_init %p\n", con);
746 	memset(con, 0, sizeof(*con));
747 	con->private = private;
748 	con->ops = ops;
749 	con->msgr = msgr;
750 
751 	con_sock_state_init(con);
752 
753 	mutex_init(&con->mutex);
754 	INIT_LIST_HEAD(&con->out_queue);
755 	INIT_LIST_HEAD(&con->out_sent);
756 	INIT_DELAYED_WORK(&con->work, con_work);
757 
758 	con->state = CON_STATE_CLOSED;
759 }
760 EXPORT_SYMBOL(ceph_con_init);
761 
762 
763 /*
764  * We maintain a global counter to order connection attempts.  Get
765  * a unique seq greater than @gt.
766  */
767 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
768 {
769 	u32 ret;
770 
771 	spin_lock(&msgr->global_seq_lock);
772 	if (msgr->global_seq < gt)
773 		msgr->global_seq = gt;
774 	ret = ++msgr->global_seq;
775 	spin_unlock(&msgr->global_seq_lock);
776 	return ret;
777 }
778 
779 static void con_out_kvec_reset(struct ceph_connection *con)
780 {
781 	con->out_kvec_left = 0;
782 	con->out_kvec_bytes = 0;
783 	con->out_kvec_cur = &con->out_kvec[0];
784 }
785 
786 static void con_out_kvec_add(struct ceph_connection *con,
787 				size_t size, void *data)
788 {
789 	int index;
790 
791 	index = con->out_kvec_left;
792 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
793 
794 	con->out_kvec[index].iov_len = size;
795 	con->out_kvec[index].iov_base = data;
796 	con->out_kvec_left++;
797 	con->out_kvec_bytes += size;
798 }
799 
800 #ifdef CONFIG_BLOCK
801 
802 /*
803  * For a bio data item, a piece is whatever remains of the next
804  * entry in the current bio iovec, or the first entry in the next
805  * bio in the list.
806  */
807 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
808 					size_t length)
809 {
810 	struct ceph_msg_data *data = cursor->data;
811 	struct bio *bio;
812 
813 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
814 
815 	bio = data->bio;
816 	BUG_ON(!bio);
817 
818 	cursor->resid = min(length, data->bio_length);
819 	cursor->bio = bio;
820 	cursor->bvec_iter = bio->bi_iter;
821 	cursor->last_piece =
822 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
823 }
824 
825 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
826 						size_t *page_offset,
827 						size_t *length)
828 {
829 	struct ceph_msg_data *data = cursor->data;
830 	struct bio *bio;
831 	struct bio_vec bio_vec;
832 
833 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
834 
835 	bio = cursor->bio;
836 	BUG_ON(!bio);
837 
838 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
839 
840 	*page_offset = (size_t) bio_vec.bv_offset;
841 	BUG_ON(*page_offset >= PAGE_SIZE);
842 	if (cursor->last_piece) /* pagelist offset is always 0 */
843 		*length = cursor->resid;
844 	else
845 		*length = (size_t) bio_vec.bv_len;
846 	BUG_ON(*length > cursor->resid);
847 	BUG_ON(*page_offset + *length > PAGE_SIZE);
848 
849 	return bio_vec.bv_page;
850 }
851 
852 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
853 					size_t bytes)
854 {
855 	struct bio *bio;
856 	struct bio_vec bio_vec;
857 
858 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
859 
860 	bio = cursor->bio;
861 	BUG_ON(!bio);
862 
863 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
864 
865 	/* Advance the cursor offset */
866 
867 	BUG_ON(cursor->resid < bytes);
868 	cursor->resid -= bytes;
869 
870 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
871 
872 	if (bytes < bio_vec.bv_len)
873 		return false;	/* more bytes to process in this segment */
874 
875 	/* Move on to the next segment, and possibly the next bio */
876 
877 	if (!cursor->bvec_iter.bi_size) {
878 		bio = bio->bi_next;
879 		cursor->bio = bio;
880 		if (bio)
881 			cursor->bvec_iter = bio->bi_iter;
882 		else
883 			memset(&cursor->bvec_iter, 0,
884 			       sizeof(cursor->bvec_iter));
885 	}
886 
887 	if (!cursor->last_piece) {
888 		BUG_ON(!cursor->resid);
889 		BUG_ON(!bio);
890 		/* A short read is OK, so use <= rather than == */
891 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
892 			cursor->last_piece = true;
893 	}
894 
895 	return true;
896 }
897 #endif /* CONFIG_BLOCK */
898 
899 /*
900  * For a page array, a piece comes from the first page in the array
901  * that has not already been fully consumed.
902  */
903 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
904 					size_t length)
905 {
906 	struct ceph_msg_data *data = cursor->data;
907 	int page_count;
908 
909 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
910 
911 	BUG_ON(!data->pages);
912 	BUG_ON(!data->length);
913 
914 	cursor->resid = min(length, data->length);
915 	page_count = calc_pages_for(data->alignment, (u64)data->length);
916 	cursor->page_offset = data->alignment & ~PAGE_MASK;
917 	cursor->page_index = 0;
918 	BUG_ON(page_count > (int)USHRT_MAX);
919 	cursor->page_count = (unsigned short)page_count;
920 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
921 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
922 }
923 
924 static struct page *
925 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
926 					size_t *page_offset, size_t *length)
927 {
928 	struct ceph_msg_data *data = cursor->data;
929 
930 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
931 
932 	BUG_ON(cursor->page_index >= cursor->page_count);
933 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
934 
935 	*page_offset = cursor->page_offset;
936 	if (cursor->last_piece)
937 		*length = cursor->resid;
938 	else
939 		*length = PAGE_SIZE - *page_offset;
940 
941 	return data->pages[cursor->page_index];
942 }
943 
944 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
945 						size_t bytes)
946 {
947 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
948 
949 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
950 
951 	/* Advance the cursor page offset */
952 
953 	cursor->resid -= bytes;
954 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
955 	if (!bytes || cursor->page_offset)
956 		return false;	/* more bytes to process in the current page */
957 
958 	if (!cursor->resid)
959 		return false;   /* no more data */
960 
961 	/* Move on to the next page; offset is already at 0 */
962 
963 	BUG_ON(cursor->page_index >= cursor->page_count);
964 	cursor->page_index++;
965 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
966 
967 	return true;
968 }
969 
970 /*
971  * For a pagelist, a piece is whatever remains to be consumed in the
972  * first page in the list, or the front of the next page.
973  */
974 static void
975 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
976 					size_t length)
977 {
978 	struct ceph_msg_data *data = cursor->data;
979 	struct ceph_pagelist *pagelist;
980 	struct page *page;
981 
982 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
983 
984 	pagelist = data->pagelist;
985 	BUG_ON(!pagelist);
986 
987 	if (!length)
988 		return;		/* pagelist can be assigned but empty */
989 
990 	BUG_ON(list_empty(&pagelist->head));
991 	page = list_first_entry(&pagelist->head, struct page, lru);
992 
993 	cursor->resid = min(length, pagelist->length);
994 	cursor->page = page;
995 	cursor->offset = 0;
996 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
997 }
998 
999 static struct page *
1000 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1001 				size_t *page_offset, size_t *length)
1002 {
1003 	struct ceph_msg_data *data = cursor->data;
1004 	struct ceph_pagelist *pagelist;
1005 
1006 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1007 
1008 	pagelist = data->pagelist;
1009 	BUG_ON(!pagelist);
1010 
1011 	BUG_ON(!cursor->page);
1012 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1013 
1014 	/* offset of first page in pagelist is always 0 */
1015 	*page_offset = cursor->offset & ~PAGE_MASK;
1016 	if (cursor->last_piece)
1017 		*length = cursor->resid;
1018 	else
1019 		*length = PAGE_SIZE - *page_offset;
1020 
1021 	return cursor->page;
1022 }
1023 
1024 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1025 						size_t bytes)
1026 {
1027 	struct ceph_msg_data *data = cursor->data;
1028 	struct ceph_pagelist *pagelist;
1029 
1030 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031 
1032 	pagelist = data->pagelist;
1033 	BUG_ON(!pagelist);
1034 
1035 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1036 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1037 
1038 	/* Advance the cursor offset */
1039 
1040 	cursor->resid -= bytes;
1041 	cursor->offset += bytes;
1042 	/* offset of first page in pagelist is always 0 */
1043 	if (!bytes || cursor->offset & ~PAGE_MASK)
1044 		return false;	/* more bytes to process in the current page */
1045 
1046 	if (!cursor->resid)
1047 		return false;   /* no more data */
1048 
1049 	/* Move on to the next page */
1050 
1051 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1052 	cursor->page = list_entry_next(cursor->page, lru);
1053 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1054 
1055 	return true;
1056 }
1057 
1058 /*
1059  * Message data is handled (sent or received) in pieces, where each
1060  * piece resides on a single page.  The network layer might not
1061  * consume an entire piece at once.  A data item's cursor keeps
1062  * track of which piece is next to process and how much remains to
1063  * be processed in that piece.  It also tracks whether the current
1064  * piece is the last one in the data item.
1065  */
1066 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1067 {
1068 	size_t length = cursor->total_resid;
1069 
1070 	switch (cursor->data->type) {
1071 	case CEPH_MSG_DATA_PAGELIST:
1072 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1073 		break;
1074 	case CEPH_MSG_DATA_PAGES:
1075 		ceph_msg_data_pages_cursor_init(cursor, length);
1076 		break;
1077 #ifdef CONFIG_BLOCK
1078 	case CEPH_MSG_DATA_BIO:
1079 		ceph_msg_data_bio_cursor_init(cursor, length);
1080 		break;
1081 #endif /* CONFIG_BLOCK */
1082 	case CEPH_MSG_DATA_NONE:
1083 	default:
1084 		/* BUG(); */
1085 		break;
1086 	}
1087 	cursor->need_crc = true;
1088 }
1089 
1090 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1091 {
1092 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1093 	struct ceph_msg_data *data;
1094 
1095 	BUG_ON(!length);
1096 	BUG_ON(length > msg->data_length);
1097 	BUG_ON(list_empty(&msg->data));
1098 
1099 	cursor->data_head = &msg->data;
1100 	cursor->total_resid = length;
1101 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1102 	cursor->data = data;
1103 
1104 	__ceph_msg_data_cursor_init(cursor);
1105 }
1106 
1107 /*
1108  * Return the page containing the next piece to process for a given
1109  * data item, and supply the page offset and length of that piece.
1110  * Indicate whether this is the last piece in this data item.
1111  */
1112 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1113 					size_t *page_offset, size_t *length,
1114 					bool *last_piece)
1115 {
1116 	struct page *page;
1117 
1118 	switch (cursor->data->type) {
1119 	case CEPH_MSG_DATA_PAGELIST:
1120 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1121 		break;
1122 	case CEPH_MSG_DATA_PAGES:
1123 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1124 		break;
1125 #ifdef CONFIG_BLOCK
1126 	case CEPH_MSG_DATA_BIO:
1127 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1128 		break;
1129 #endif /* CONFIG_BLOCK */
1130 	case CEPH_MSG_DATA_NONE:
1131 	default:
1132 		page = NULL;
1133 		break;
1134 	}
1135 	BUG_ON(!page);
1136 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1137 	BUG_ON(!*length);
1138 	if (last_piece)
1139 		*last_piece = cursor->last_piece;
1140 
1141 	return page;
1142 }
1143 
1144 /*
1145  * Returns true if the result moves the cursor on to the next piece
1146  * of the data item.
1147  */
1148 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1149 				size_t bytes)
1150 {
1151 	bool new_piece;
1152 
1153 	BUG_ON(bytes > cursor->resid);
1154 	switch (cursor->data->type) {
1155 	case CEPH_MSG_DATA_PAGELIST:
1156 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1157 		break;
1158 	case CEPH_MSG_DATA_PAGES:
1159 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1160 		break;
1161 #ifdef CONFIG_BLOCK
1162 	case CEPH_MSG_DATA_BIO:
1163 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1164 		break;
1165 #endif /* CONFIG_BLOCK */
1166 	case CEPH_MSG_DATA_NONE:
1167 	default:
1168 		BUG();
1169 		break;
1170 	}
1171 	cursor->total_resid -= bytes;
1172 
1173 	if (!cursor->resid && cursor->total_resid) {
1174 		WARN_ON(!cursor->last_piece);
1175 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1176 		cursor->data = list_entry_next(cursor->data, links);
1177 		__ceph_msg_data_cursor_init(cursor);
1178 		new_piece = true;
1179 	}
1180 	cursor->need_crc = new_piece;
1181 
1182 	return new_piece;
1183 }
1184 
1185 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1186 {
1187 	BUG_ON(!msg);
1188 	BUG_ON(!data_len);
1189 
1190 	/* Initialize data cursor */
1191 
1192 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1193 }
1194 
1195 /*
1196  * Prepare footer for currently outgoing message, and finish things
1197  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1198  */
1199 static void prepare_write_message_footer(struct ceph_connection *con)
1200 {
1201 	struct ceph_msg *m = con->out_msg;
1202 	int v = con->out_kvec_left;
1203 
1204 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1205 
1206 	dout("prepare_write_message_footer %p\n", con);
1207 	con->out_kvec_is_msg = true;
1208 	con->out_kvec[v].iov_base = &m->footer;
1209 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1210 		if (con->ops->sign_message)
1211 			con->ops->sign_message(con, m);
1212 		else
1213 			m->footer.sig = 0;
1214 		con->out_kvec[v].iov_len = sizeof(m->footer);
1215 		con->out_kvec_bytes += sizeof(m->footer);
1216 	} else {
1217 		m->old_footer.flags = m->footer.flags;
1218 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1219 		con->out_kvec_bytes += sizeof(m->old_footer);
1220 	}
1221 	con->out_kvec_left++;
1222 	con->out_more = m->more_to_follow;
1223 	con->out_msg_done = true;
1224 }
1225 
1226 /*
1227  * Prepare headers for the next outgoing message.
1228  */
1229 static void prepare_write_message(struct ceph_connection *con)
1230 {
1231 	struct ceph_msg *m;
1232 	u32 crc;
1233 
1234 	con_out_kvec_reset(con);
1235 	con->out_kvec_is_msg = true;
1236 	con->out_msg_done = false;
1237 
1238 	/* Sneak an ack in there first?  If we can get it into the same
1239 	 * TCP packet that's a good thing. */
1240 	if (con->in_seq > con->in_seq_acked) {
1241 		con->in_seq_acked = con->in_seq;
1242 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1243 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1244 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1245 			&con->out_temp_ack);
1246 	}
1247 
1248 	BUG_ON(list_empty(&con->out_queue));
1249 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1250 	con->out_msg = m;
1251 	BUG_ON(m->con != con);
1252 
1253 	/* put message on sent list */
1254 	ceph_msg_get(m);
1255 	list_move_tail(&m->list_head, &con->out_sent);
1256 
1257 	/*
1258 	 * only assign outgoing seq # if we haven't sent this message
1259 	 * yet.  if it is requeued, resend with it's original seq.
1260 	 */
1261 	if (m->needs_out_seq) {
1262 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1263 		m->needs_out_seq = false;
1264 	}
1265 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1266 
1267 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1268 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1269 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1270 	     m->data_length);
1271 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1272 
1273 	/* tag + hdr + front + middle */
1274 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1275 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1276 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1277 
1278 	if (m->middle)
1279 		con_out_kvec_add(con, m->middle->vec.iov_len,
1280 			m->middle->vec.iov_base);
1281 
1282 	/* fill in crc (except data pages), footer */
1283 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1284 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1285 	con->out_msg->footer.flags = 0;
1286 
1287 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1288 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1289 	if (m->middle) {
1290 		crc = crc32c(0, m->middle->vec.iov_base,
1291 				m->middle->vec.iov_len);
1292 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1293 	} else
1294 		con->out_msg->footer.middle_crc = 0;
1295 	dout("%s front_crc %u middle_crc %u\n", __func__,
1296 	     le32_to_cpu(con->out_msg->footer.front_crc),
1297 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1298 
1299 	/* is there a data payload? */
1300 	con->out_msg->footer.data_crc = 0;
1301 	if (m->data_length) {
1302 		prepare_message_data(con->out_msg, m->data_length);
1303 		con->out_more = 1;  /* data + footer will follow */
1304 	} else {
1305 		/* no, queue up footer too and be done */
1306 		prepare_write_message_footer(con);
1307 	}
1308 
1309 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1310 }
1311 
1312 /*
1313  * Prepare an ack.
1314  */
1315 static void prepare_write_ack(struct ceph_connection *con)
1316 {
1317 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1318 	     con->in_seq_acked, con->in_seq);
1319 	con->in_seq_acked = con->in_seq;
1320 
1321 	con_out_kvec_reset(con);
1322 
1323 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1324 
1325 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1326 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1327 				&con->out_temp_ack);
1328 
1329 	con->out_more = 1;  /* more will follow.. eventually.. */
1330 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1331 }
1332 
1333 /*
1334  * Prepare to share the seq during handshake
1335  */
1336 static void prepare_write_seq(struct ceph_connection *con)
1337 {
1338 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1339 	     con->in_seq_acked, con->in_seq);
1340 	con->in_seq_acked = con->in_seq;
1341 
1342 	con_out_kvec_reset(con);
1343 
1344 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1345 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1346 			 &con->out_temp_ack);
1347 
1348 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1349 }
1350 
1351 /*
1352  * Prepare to write keepalive byte.
1353  */
1354 static void prepare_write_keepalive(struct ceph_connection *con)
1355 {
1356 	dout("prepare_write_keepalive %p\n", con);
1357 	con_out_kvec_reset(con);
1358 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1359 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1360 }
1361 
1362 /*
1363  * Connection negotiation.
1364  */
1365 
1366 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1367 						int *auth_proto)
1368 {
1369 	struct ceph_auth_handshake *auth;
1370 
1371 	if (!con->ops->get_authorizer) {
1372 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1373 		con->out_connect.authorizer_len = 0;
1374 		return NULL;
1375 	}
1376 
1377 	/* Can't hold the mutex while getting authorizer */
1378 	mutex_unlock(&con->mutex);
1379 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1380 	mutex_lock(&con->mutex);
1381 
1382 	if (IS_ERR(auth))
1383 		return auth;
1384 	if (con->state != CON_STATE_NEGOTIATING)
1385 		return ERR_PTR(-EAGAIN);
1386 
1387 	con->auth_reply_buf = auth->authorizer_reply_buf;
1388 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1389 	return auth;
1390 }
1391 
1392 /*
1393  * We connected to a peer and are saying hello.
1394  */
1395 static void prepare_write_banner(struct ceph_connection *con)
1396 {
1397 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1398 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1399 					&con->msgr->my_enc_addr);
1400 
1401 	con->out_more = 0;
1402 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1403 }
1404 
1405 static int prepare_write_connect(struct ceph_connection *con)
1406 {
1407 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1408 	int proto;
1409 	int auth_proto;
1410 	struct ceph_auth_handshake *auth;
1411 
1412 	switch (con->peer_name.type) {
1413 	case CEPH_ENTITY_TYPE_MON:
1414 		proto = CEPH_MONC_PROTOCOL;
1415 		break;
1416 	case CEPH_ENTITY_TYPE_OSD:
1417 		proto = CEPH_OSDC_PROTOCOL;
1418 		break;
1419 	case CEPH_ENTITY_TYPE_MDS:
1420 		proto = CEPH_MDSC_PROTOCOL;
1421 		break;
1422 	default:
1423 		BUG();
1424 	}
1425 
1426 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1427 	     con->connect_seq, global_seq, proto);
1428 
1429 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1430 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1431 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1432 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1433 	con->out_connect.protocol_version = cpu_to_le32(proto);
1434 	con->out_connect.flags = 0;
1435 
1436 	auth_proto = CEPH_AUTH_UNKNOWN;
1437 	auth = get_connect_authorizer(con, &auth_proto);
1438 	if (IS_ERR(auth))
1439 		return PTR_ERR(auth);
1440 
1441 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1442 	con->out_connect.authorizer_len = auth ?
1443 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1444 
1445 	con_out_kvec_add(con, sizeof (con->out_connect),
1446 					&con->out_connect);
1447 	if (auth && auth->authorizer_buf_len)
1448 		con_out_kvec_add(con, auth->authorizer_buf_len,
1449 					auth->authorizer_buf);
1450 
1451 	con->out_more = 0;
1452 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1453 
1454 	return 0;
1455 }
1456 
1457 /*
1458  * write as much of pending kvecs to the socket as we can.
1459  *  1 -> done
1460  *  0 -> socket full, but more to do
1461  * <0 -> error
1462  */
1463 static int write_partial_kvec(struct ceph_connection *con)
1464 {
1465 	int ret;
1466 
1467 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1468 	while (con->out_kvec_bytes > 0) {
1469 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1470 				       con->out_kvec_left, con->out_kvec_bytes,
1471 				       con->out_more);
1472 		if (ret <= 0)
1473 			goto out;
1474 		con->out_kvec_bytes -= ret;
1475 		if (con->out_kvec_bytes == 0)
1476 			break;            /* done */
1477 
1478 		/* account for full iov entries consumed */
1479 		while (ret >= con->out_kvec_cur->iov_len) {
1480 			BUG_ON(!con->out_kvec_left);
1481 			ret -= con->out_kvec_cur->iov_len;
1482 			con->out_kvec_cur++;
1483 			con->out_kvec_left--;
1484 		}
1485 		/* and for a partially-consumed entry */
1486 		if (ret) {
1487 			con->out_kvec_cur->iov_len -= ret;
1488 			con->out_kvec_cur->iov_base += ret;
1489 		}
1490 	}
1491 	con->out_kvec_left = 0;
1492 	con->out_kvec_is_msg = false;
1493 	ret = 1;
1494 out:
1495 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1496 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1497 	return ret;  /* done! */
1498 }
1499 
1500 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1501 				unsigned int page_offset,
1502 				unsigned int length)
1503 {
1504 	char *kaddr;
1505 
1506 	kaddr = kmap(page);
1507 	BUG_ON(kaddr == NULL);
1508 	crc = crc32c(crc, kaddr + page_offset, length);
1509 	kunmap(page);
1510 
1511 	return crc;
1512 }
1513 /*
1514  * Write as much message data payload as we can.  If we finish, queue
1515  * up the footer.
1516  *  1 -> done, footer is now queued in out_kvec[].
1517  *  0 -> socket full, but more to do
1518  * <0 -> error
1519  */
1520 static int write_partial_message_data(struct ceph_connection *con)
1521 {
1522 	struct ceph_msg *msg = con->out_msg;
1523 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1524 	bool do_datacrc = !con->msgr->nocrc;
1525 	u32 crc;
1526 
1527 	dout("%s %p msg %p\n", __func__, con, msg);
1528 
1529 	if (list_empty(&msg->data))
1530 		return -EINVAL;
1531 
1532 	/*
1533 	 * Iterate through each page that contains data to be
1534 	 * written, and send as much as possible for each.
1535 	 *
1536 	 * If we are calculating the data crc (the default), we will
1537 	 * need to map the page.  If we have no pages, they have
1538 	 * been revoked, so use the zero page.
1539 	 */
1540 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1541 	while (cursor->resid) {
1542 		struct page *page;
1543 		size_t page_offset;
1544 		size_t length;
1545 		bool last_piece;
1546 		bool need_crc;
1547 		int ret;
1548 
1549 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1550 							&last_piece);
1551 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1552 				      length, last_piece);
1553 		if (ret <= 0) {
1554 			if (do_datacrc)
1555 				msg->footer.data_crc = cpu_to_le32(crc);
1556 
1557 			return ret;
1558 		}
1559 		if (do_datacrc && cursor->need_crc)
1560 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1561 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1562 	}
1563 
1564 	dout("%s %p msg %p done\n", __func__, con, msg);
1565 
1566 	/* prepare and queue up footer, too */
1567 	if (do_datacrc)
1568 		msg->footer.data_crc = cpu_to_le32(crc);
1569 	else
1570 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1571 	con_out_kvec_reset(con);
1572 	prepare_write_message_footer(con);
1573 
1574 	return 1;	/* must return > 0 to indicate success */
1575 }
1576 
1577 /*
1578  * write some zeros
1579  */
1580 static int write_partial_skip(struct ceph_connection *con)
1581 {
1582 	int ret;
1583 
1584 	while (con->out_skip > 0) {
1585 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1586 
1587 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1588 		if (ret <= 0)
1589 			goto out;
1590 		con->out_skip -= ret;
1591 	}
1592 	ret = 1;
1593 out:
1594 	return ret;
1595 }
1596 
1597 /*
1598  * Prepare to read connection handshake, or an ack.
1599  */
1600 static void prepare_read_banner(struct ceph_connection *con)
1601 {
1602 	dout("prepare_read_banner %p\n", con);
1603 	con->in_base_pos = 0;
1604 }
1605 
1606 static void prepare_read_connect(struct ceph_connection *con)
1607 {
1608 	dout("prepare_read_connect %p\n", con);
1609 	con->in_base_pos = 0;
1610 }
1611 
1612 static void prepare_read_ack(struct ceph_connection *con)
1613 {
1614 	dout("prepare_read_ack %p\n", con);
1615 	con->in_base_pos = 0;
1616 }
1617 
1618 static void prepare_read_seq(struct ceph_connection *con)
1619 {
1620 	dout("prepare_read_seq %p\n", con);
1621 	con->in_base_pos = 0;
1622 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1623 }
1624 
1625 static void prepare_read_tag(struct ceph_connection *con)
1626 {
1627 	dout("prepare_read_tag %p\n", con);
1628 	con->in_base_pos = 0;
1629 	con->in_tag = CEPH_MSGR_TAG_READY;
1630 }
1631 
1632 /*
1633  * Prepare to read a message.
1634  */
1635 static int prepare_read_message(struct ceph_connection *con)
1636 {
1637 	dout("prepare_read_message %p\n", con);
1638 	BUG_ON(con->in_msg != NULL);
1639 	con->in_base_pos = 0;
1640 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1641 	return 0;
1642 }
1643 
1644 
1645 static int read_partial(struct ceph_connection *con,
1646 			int end, int size, void *object)
1647 {
1648 	while (con->in_base_pos < end) {
1649 		int left = end - con->in_base_pos;
1650 		int have = size - left;
1651 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1652 		if (ret <= 0)
1653 			return ret;
1654 		con->in_base_pos += ret;
1655 	}
1656 	return 1;
1657 }
1658 
1659 
1660 /*
1661  * Read all or part of the connect-side handshake on a new connection
1662  */
1663 static int read_partial_banner(struct ceph_connection *con)
1664 {
1665 	int size;
1666 	int end;
1667 	int ret;
1668 
1669 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1670 
1671 	/* peer's banner */
1672 	size = strlen(CEPH_BANNER);
1673 	end = size;
1674 	ret = read_partial(con, end, size, con->in_banner);
1675 	if (ret <= 0)
1676 		goto out;
1677 
1678 	size = sizeof (con->actual_peer_addr);
1679 	end += size;
1680 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1681 	if (ret <= 0)
1682 		goto out;
1683 
1684 	size = sizeof (con->peer_addr_for_me);
1685 	end += size;
1686 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1687 	if (ret <= 0)
1688 		goto out;
1689 
1690 out:
1691 	return ret;
1692 }
1693 
1694 static int read_partial_connect(struct ceph_connection *con)
1695 {
1696 	int size;
1697 	int end;
1698 	int ret;
1699 
1700 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1701 
1702 	size = sizeof (con->in_reply);
1703 	end = size;
1704 	ret = read_partial(con, end, size, &con->in_reply);
1705 	if (ret <= 0)
1706 		goto out;
1707 
1708 	size = le32_to_cpu(con->in_reply.authorizer_len);
1709 	end += size;
1710 	ret = read_partial(con, end, size, con->auth_reply_buf);
1711 	if (ret <= 0)
1712 		goto out;
1713 
1714 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1715 	     con, (int)con->in_reply.tag,
1716 	     le32_to_cpu(con->in_reply.connect_seq),
1717 	     le32_to_cpu(con->in_reply.global_seq));
1718 out:
1719 	return ret;
1720 
1721 }
1722 
1723 /*
1724  * Verify the hello banner looks okay.
1725  */
1726 static int verify_hello(struct ceph_connection *con)
1727 {
1728 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1729 		pr_err("connect to %s got bad banner\n",
1730 		       ceph_pr_addr(&con->peer_addr.in_addr));
1731 		con->error_msg = "protocol error, bad banner";
1732 		return -1;
1733 	}
1734 	return 0;
1735 }
1736 
1737 static bool addr_is_blank(struct sockaddr_storage *ss)
1738 {
1739 	switch (ss->ss_family) {
1740 	case AF_INET:
1741 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1742 	case AF_INET6:
1743 		return
1744 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1745 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1746 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1747 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1748 	}
1749 	return false;
1750 }
1751 
1752 static int addr_port(struct sockaddr_storage *ss)
1753 {
1754 	switch (ss->ss_family) {
1755 	case AF_INET:
1756 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1757 	case AF_INET6:
1758 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1759 	}
1760 	return 0;
1761 }
1762 
1763 static void addr_set_port(struct sockaddr_storage *ss, int p)
1764 {
1765 	switch (ss->ss_family) {
1766 	case AF_INET:
1767 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1768 		break;
1769 	case AF_INET6:
1770 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1771 		break;
1772 	}
1773 }
1774 
1775 /*
1776  * Unlike other *_pton function semantics, zero indicates success.
1777  */
1778 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1779 		char delim, const char **ipend)
1780 {
1781 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1782 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1783 
1784 	memset(ss, 0, sizeof(*ss));
1785 
1786 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1787 		ss->ss_family = AF_INET;
1788 		return 0;
1789 	}
1790 
1791 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1792 		ss->ss_family = AF_INET6;
1793 		return 0;
1794 	}
1795 
1796 	return -EINVAL;
1797 }
1798 
1799 /*
1800  * Extract hostname string and resolve using kernel DNS facility.
1801  */
1802 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1803 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1804 		struct sockaddr_storage *ss, char delim, const char **ipend)
1805 {
1806 	const char *end, *delim_p;
1807 	char *colon_p, *ip_addr = NULL;
1808 	int ip_len, ret;
1809 
1810 	/*
1811 	 * The end of the hostname occurs immediately preceding the delimiter or
1812 	 * the port marker (':') where the delimiter takes precedence.
1813 	 */
1814 	delim_p = memchr(name, delim, namelen);
1815 	colon_p = memchr(name, ':', namelen);
1816 
1817 	if (delim_p && colon_p)
1818 		end = delim_p < colon_p ? delim_p : colon_p;
1819 	else if (!delim_p && colon_p)
1820 		end = colon_p;
1821 	else {
1822 		end = delim_p;
1823 		if (!end) /* case: hostname:/ */
1824 			end = name + namelen;
1825 	}
1826 
1827 	if (end <= name)
1828 		return -EINVAL;
1829 
1830 	/* do dns_resolve upcall */
1831 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1832 	if (ip_len > 0)
1833 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1834 	else
1835 		ret = -ESRCH;
1836 
1837 	kfree(ip_addr);
1838 
1839 	*ipend = end;
1840 
1841 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1842 			ret, ret ? "failed" : ceph_pr_addr(ss));
1843 
1844 	return ret;
1845 }
1846 #else
1847 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1848 		struct sockaddr_storage *ss, char delim, const char **ipend)
1849 {
1850 	return -EINVAL;
1851 }
1852 #endif
1853 
1854 /*
1855  * Parse a server name (IP or hostname). If a valid IP address is not found
1856  * then try to extract a hostname to resolve using userspace DNS upcall.
1857  */
1858 static int ceph_parse_server_name(const char *name, size_t namelen,
1859 			struct sockaddr_storage *ss, char delim, const char **ipend)
1860 {
1861 	int ret;
1862 
1863 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1864 	if (ret)
1865 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1866 
1867 	return ret;
1868 }
1869 
1870 /*
1871  * Parse an ip[:port] list into an addr array.  Use the default
1872  * monitor port if a port isn't specified.
1873  */
1874 int ceph_parse_ips(const char *c, const char *end,
1875 		   struct ceph_entity_addr *addr,
1876 		   int max_count, int *count)
1877 {
1878 	int i, ret = -EINVAL;
1879 	const char *p = c;
1880 
1881 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1882 	for (i = 0; i < max_count; i++) {
1883 		const char *ipend;
1884 		struct sockaddr_storage *ss = &addr[i].in_addr;
1885 		int port;
1886 		char delim = ',';
1887 
1888 		if (*p == '[') {
1889 			delim = ']';
1890 			p++;
1891 		}
1892 
1893 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1894 		if (ret)
1895 			goto bad;
1896 		ret = -EINVAL;
1897 
1898 		p = ipend;
1899 
1900 		if (delim == ']') {
1901 			if (*p != ']') {
1902 				dout("missing matching ']'\n");
1903 				goto bad;
1904 			}
1905 			p++;
1906 		}
1907 
1908 		/* port? */
1909 		if (p < end && *p == ':') {
1910 			port = 0;
1911 			p++;
1912 			while (p < end && *p >= '0' && *p <= '9') {
1913 				port = (port * 10) + (*p - '0');
1914 				p++;
1915 			}
1916 			if (port == 0)
1917 				port = CEPH_MON_PORT;
1918 			else if (port > 65535)
1919 				goto bad;
1920 		} else {
1921 			port = CEPH_MON_PORT;
1922 		}
1923 
1924 		addr_set_port(ss, port);
1925 
1926 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1927 
1928 		if (p == end)
1929 			break;
1930 		if (*p != ',')
1931 			goto bad;
1932 		p++;
1933 	}
1934 
1935 	if (p != end)
1936 		goto bad;
1937 
1938 	if (count)
1939 		*count = i + 1;
1940 	return 0;
1941 
1942 bad:
1943 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1944 	return ret;
1945 }
1946 EXPORT_SYMBOL(ceph_parse_ips);
1947 
1948 static int process_banner(struct ceph_connection *con)
1949 {
1950 	dout("process_banner on %p\n", con);
1951 
1952 	if (verify_hello(con) < 0)
1953 		return -1;
1954 
1955 	ceph_decode_addr(&con->actual_peer_addr);
1956 	ceph_decode_addr(&con->peer_addr_for_me);
1957 
1958 	/*
1959 	 * Make sure the other end is who we wanted.  note that the other
1960 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1961 	 * them the benefit of the doubt.
1962 	 */
1963 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1964 		   sizeof(con->peer_addr)) != 0 &&
1965 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1966 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1967 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1968 			ceph_pr_addr(&con->peer_addr.in_addr),
1969 			(int)le32_to_cpu(con->peer_addr.nonce),
1970 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1971 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1972 		con->error_msg = "wrong peer at address";
1973 		return -1;
1974 	}
1975 
1976 	/*
1977 	 * did we learn our address?
1978 	 */
1979 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1980 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1981 
1982 		memcpy(&con->msgr->inst.addr.in_addr,
1983 		       &con->peer_addr_for_me.in_addr,
1984 		       sizeof(con->peer_addr_for_me.in_addr));
1985 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1986 		encode_my_addr(con->msgr);
1987 		dout("process_banner learned my addr is %s\n",
1988 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static int process_connect(struct ceph_connection *con)
1995 {
1996 	u64 sup_feat = con->msgr->supported_features;
1997 	u64 req_feat = con->msgr->required_features;
1998 	u64 server_feat = ceph_sanitize_features(
1999 				le64_to_cpu(con->in_reply.features));
2000 	int ret;
2001 
2002 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2003 
2004 	switch (con->in_reply.tag) {
2005 	case CEPH_MSGR_TAG_FEATURES:
2006 		pr_err("%s%lld %s feature set mismatch,"
2007 		       " my %llx < server's %llx, missing %llx\n",
2008 		       ENTITY_NAME(con->peer_name),
2009 		       ceph_pr_addr(&con->peer_addr.in_addr),
2010 		       sup_feat, server_feat, server_feat & ~sup_feat);
2011 		con->error_msg = "missing required protocol features";
2012 		reset_connection(con);
2013 		return -1;
2014 
2015 	case CEPH_MSGR_TAG_BADPROTOVER:
2016 		pr_err("%s%lld %s protocol version mismatch,"
2017 		       " my %d != server's %d\n",
2018 		       ENTITY_NAME(con->peer_name),
2019 		       ceph_pr_addr(&con->peer_addr.in_addr),
2020 		       le32_to_cpu(con->out_connect.protocol_version),
2021 		       le32_to_cpu(con->in_reply.protocol_version));
2022 		con->error_msg = "protocol version mismatch";
2023 		reset_connection(con);
2024 		return -1;
2025 
2026 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2027 		con->auth_retry++;
2028 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2029 		     con->auth_retry);
2030 		if (con->auth_retry == 2) {
2031 			con->error_msg = "connect authorization failure";
2032 			return -1;
2033 		}
2034 		con_out_kvec_reset(con);
2035 		ret = prepare_write_connect(con);
2036 		if (ret < 0)
2037 			return ret;
2038 		prepare_read_connect(con);
2039 		break;
2040 
2041 	case CEPH_MSGR_TAG_RESETSESSION:
2042 		/*
2043 		 * If we connected with a large connect_seq but the peer
2044 		 * has no record of a session with us (no connection, or
2045 		 * connect_seq == 0), they will send RESETSESION to indicate
2046 		 * that they must have reset their session, and may have
2047 		 * dropped messages.
2048 		 */
2049 		dout("process_connect got RESET peer seq %u\n",
2050 		     le32_to_cpu(con->in_reply.connect_seq));
2051 		pr_err("%s%lld %s connection reset\n",
2052 		       ENTITY_NAME(con->peer_name),
2053 		       ceph_pr_addr(&con->peer_addr.in_addr));
2054 		reset_connection(con);
2055 		con_out_kvec_reset(con);
2056 		ret = prepare_write_connect(con);
2057 		if (ret < 0)
2058 			return ret;
2059 		prepare_read_connect(con);
2060 
2061 		/* Tell ceph about it. */
2062 		mutex_unlock(&con->mutex);
2063 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2064 		if (con->ops->peer_reset)
2065 			con->ops->peer_reset(con);
2066 		mutex_lock(&con->mutex);
2067 		if (con->state != CON_STATE_NEGOTIATING)
2068 			return -EAGAIN;
2069 		break;
2070 
2071 	case CEPH_MSGR_TAG_RETRY_SESSION:
2072 		/*
2073 		 * If we sent a smaller connect_seq than the peer has, try
2074 		 * again with a larger value.
2075 		 */
2076 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2077 		     le32_to_cpu(con->out_connect.connect_seq),
2078 		     le32_to_cpu(con->in_reply.connect_seq));
2079 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2080 		con_out_kvec_reset(con);
2081 		ret = prepare_write_connect(con);
2082 		if (ret < 0)
2083 			return ret;
2084 		prepare_read_connect(con);
2085 		break;
2086 
2087 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2088 		/*
2089 		 * If we sent a smaller global_seq than the peer has, try
2090 		 * again with a larger value.
2091 		 */
2092 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2093 		     con->peer_global_seq,
2094 		     le32_to_cpu(con->in_reply.global_seq));
2095 		get_global_seq(con->msgr,
2096 			       le32_to_cpu(con->in_reply.global_seq));
2097 		con_out_kvec_reset(con);
2098 		ret = prepare_write_connect(con);
2099 		if (ret < 0)
2100 			return ret;
2101 		prepare_read_connect(con);
2102 		break;
2103 
2104 	case CEPH_MSGR_TAG_SEQ:
2105 	case CEPH_MSGR_TAG_READY:
2106 		if (req_feat & ~server_feat) {
2107 			pr_err("%s%lld %s protocol feature mismatch,"
2108 			       " my required %llx > server's %llx, need %llx\n",
2109 			       ENTITY_NAME(con->peer_name),
2110 			       ceph_pr_addr(&con->peer_addr.in_addr),
2111 			       req_feat, server_feat, req_feat & ~server_feat);
2112 			con->error_msg = "missing required protocol features";
2113 			reset_connection(con);
2114 			return -1;
2115 		}
2116 
2117 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2118 		con->state = CON_STATE_OPEN;
2119 		con->auth_retry = 0;    /* we authenticated; clear flag */
2120 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2121 		con->connect_seq++;
2122 		con->peer_features = server_feat;
2123 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2124 		     con->peer_global_seq,
2125 		     le32_to_cpu(con->in_reply.connect_seq),
2126 		     con->connect_seq);
2127 		WARN_ON(con->connect_seq !=
2128 			le32_to_cpu(con->in_reply.connect_seq));
2129 
2130 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2131 			con_flag_set(con, CON_FLAG_LOSSYTX);
2132 
2133 		con->delay = 0;      /* reset backoff memory */
2134 
2135 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2136 			prepare_write_seq(con);
2137 			prepare_read_seq(con);
2138 		} else {
2139 			prepare_read_tag(con);
2140 		}
2141 		break;
2142 
2143 	case CEPH_MSGR_TAG_WAIT:
2144 		/*
2145 		 * If there is a connection race (we are opening
2146 		 * connections to each other), one of us may just have
2147 		 * to WAIT.  This shouldn't happen if we are the
2148 		 * client.
2149 		 */
2150 		pr_err("process_connect got WAIT as client\n");
2151 		con->error_msg = "protocol error, got WAIT as client";
2152 		return -1;
2153 
2154 	default:
2155 		pr_err("connect protocol error, will retry\n");
2156 		con->error_msg = "protocol error, garbage tag during connect";
2157 		return -1;
2158 	}
2159 	return 0;
2160 }
2161 
2162 
2163 /*
2164  * read (part of) an ack
2165  */
2166 static int read_partial_ack(struct ceph_connection *con)
2167 {
2168 	int size = sizeof (con->in_temp_ack);
2169 	int end = size;
2170 
2171 	return read_partial(con, end, size, &con->in_temp_ack);
2172 }
2173 
2174 /*
2175  * We can finally discard anything that's been acked.
2176  */
2177 static void process_ack(struct ceph_connection *con)
2178 {
2179 	struct ceph_msg *m;
2180 	u64 ack = le64_to_cpu(con->in_temp_ack);
2181 	u64 seq;
2182 
2183 	while (!list_empty(&con->out_sent)) {
2184 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2185 				     list_head);
2186 		seq = le64_to_cpu(m->hdr.seq);
2187 		if (seq > ack)
2188 			break;
2189 		dout("got ack for seq %llu type %d at %p\n", seq,
2190 		     le16_to_cpu(m->hdr.type), m);
2191 		m->ack_stamp = jiffies;
2192 		ceph_msg_remove(m);
2193 	}
2194 	prepare_read_tag(con);
2195 }
2196 
2197 
2198 static int read_partial_message_section(struct ceph_connection *con,
2199 					struct kvec *section,
2200 					unsigned int sec_len, u32 *crc)
2201 {
2202 	int ret, left;
2203 
2204 	BUG_ON(!section);
2205 
2206 	while (section->iov_len < sec_len) {
2207 		BUG_ON(section->iov_base == NULL);
2208 		left = sec_len - section->iov_len;
2209 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2210 				       section->iov_len, left);
2211 		if (ret <= 0)
2212 			return ret;
2213 		section->iov_len += ret;
2214 	}
2215 	if (section->iov_len == sec_len)
2216 		*crc = crc32c(0, section->iov_base, section->iov_len);
2217 
2218 	return 1;
2219 }
2220 
2221 static int read_partial_msg_data(struct ceph_connection *con)
2222 {
2223 	struct ceph_msg *msg = con->in_msg;
2224 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2225 	const bool do_datacrc = !con->msgr->nocrc;
2226 	struct page *page;
2227 	size_t page_offset;
2228 	size_t length;
2229 	u32 crc = 0;
2230 	int ret;
2231 
2232 	BUG_ON(!msg);
2233 	if (list_empty(&msg->data))
2234 		return -EIO;
2235 
2236 	if (do_datacrc)
2237 		crc = con->in_data_crc;
2238 	while (cursor->resid) {
2239 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2240 							NULL);
2241 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2242 		if (ret <= 0) {
2243 			if (do_datacrc)
2244 				con->in_data_crc = crc;
2245 
2246 			return ret;
2247 		}
2248 
2249 		if (do_datacrc)
2250 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2251 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2252 	}
2253 	if (do_datacrc)
2254 		con->in_data_crc = crc;
2255 
2256 	return 1;	/* must return > 0 to indicate success */
2257 }
2258 
2259 /*
2260  * read (part of) a message.
2261  */
2262 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2263 
2264 static int read_partial_message(struct ceph_connection *con)
2265 {
2266 	struct ceph_msg *m = con->in_msg;
2267 	int size;
2268 	int end;
2269 	int ret;
2270 	unsigned int front_len, middle_len, data_len;
2271 	bool do_datacrc = !con->msgr->nocrc;
2272 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2273 	u64 seq;
2274 	u32 crc;
2275 
2276 	dout("read_partial_message con %p msg %p\n", con, m);
2277 
2278 	/* header */
2279 	size = sizeof (con->in_hdr);
2280 	end = size;
2281 	ret = read_partial(con, end, size, &con->in_hdr);
2282 	if (ret <= 0)
2283 		return ret;
2284 
2285 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2286 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2287 		pr_err("read_partial_message bad hdr "
2288 		       " crc %u != expected %u\n",
2289 		       crc, con->in_hdr.crc);
2290 		return -EBADMSG;
2291 	}
2292 
2293 	front_len = le32_to_cpu(con->in_hdr.front_len);
2294 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2295 		return -EIO;
2296 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2297 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2298 		return -EIO;
2299 	data_len = le32_to_cpu(con->in_hdr.data_len);
2300 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2301 		return -EIO;
2302 
2303 	/* verify seq# */
2304 	seq = le64_to_cpu(con->in_hdr.seq);
2305 	if ((s64)seq - (s64)con->in_seq < 1) {
2306 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2307 			ENTITY_NAME(con->peer_name),
2308 			ceph_pr_addr(&con->peer_addr.in_addr),
2309 			seq, con->in_seq + 1);
2310 		con->in_base_pos = -front_len - middle_len - data_len -
2311 			sizeof(m->footer);
2312 		con->in_tag = CEPH_MSGR_TAG_READY;
2313 		return 0;
2314 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2315 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2316 		       seq, con->in_seq + 1);
2317 		con->error_msg = "bad message sequence # for incoming message";
2318 		return -EBADMSG;
2319 	}
2320 
2321 	/* allocate message? */
2322 	if (!con->in_msg) {
2323 		int skip = 0;
2324 
2325 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2326 		     front_len, data_len);
2327 		ret = ceph_con_in_msg_alloc(con, &skip);
2328 		if (ret < 0)
2329 			return ret;
2330 
2331 		BUG_ON(!con->in_msg ^ skip);
2332 		if (con->in_msg && data_len > con->in_msg->data_length) {
2333 			pr_warn("%s skipping long message (%u > %zd)\n",
2334 				__func__, data_len, con->in_msg->data_length);
2335 			ceph_msg_put(con->in_msg);
2336 			con->in_msg = NULL;
2337 			skip = 1;
2338 		}
2339 		if (skip) {
2340 			/* skip this message */
2341 			dout("alloc_msg said skip message\n");
2342 			con->in_base_pos = -front_len - middle_len - data_len -
2343 				sizeof(m->footer);
2344 			con->in_tag = CEPH_MSGR_TAG_READY;
2345 			con->in_seq++;
2346 			return 0;
2347 		}
2348 
2349 		BUG_ON(!con->in_msg);
2350 		BUG_ON(con->in_msg->con != con);
2351 		m = con->in_msg;
2352 		m->front.iov_len = 0;    /* haven't read it yet */
2353 		if (m->middle)
2354 			m->middle->vec.iov_len = 0;
2355 
2356 		/* prepare for data payload, if any */
2357 
2358 		if (data_len)
2359 			prepare_message_data(con->in_msg, data_len);
2360 	}
2361 
2362 	/* front */
2363 	ret = read_partial_message_section(con, &m->front, front_len,
2364 					   &con->in_front_crc);
2365 	if (ret <= 0)
2366 		return ret;
2367 
2368 	/* middle */
2369 	if (m->middle) {
2370 		ret = read_partial_message_section(con, &m->middle->vec,
2371 						   middle_len,
2372 						   &con->in_middle_crc);
2373 		if (ret <= 0)
2374 			return ret;
2375 	}
2376 
2377 	/* (page) data */
2378 	if (data_len) {
2379 		ret = read_partial_msg_data(con);
2380 		if (ret <= 0)
2381 			return ret;
2382 	}
2383 
2384 	/* footer */
2385 	if (need_sign)
2386 		size = sizeof(m->footer);
2387 	else
2388 		size = sizeof(m->old_footer);
2389 
2390 	end += size;
2391 	ret = read_partial(con, end, size, &m->footer);
2392 	if (ret <= 0)
2393 		return ret;
2394 
2395 	if (!need_sign) {
2396 		m->footer.flags = m->old_footer.flags;
2397 		m->footer.sig = 0;
2398 	}
2399 
2400 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2401 	     m, front_len, m->footer.front_crc, middle_len,
2402 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2403 
2404 	/* crc ok? */
2405 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2406 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2407 		       m, con->in_front_crc, m->footer.front_crc);
2408 		return -EBADMSG;
2409 	}
2410 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2411 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2412 		       m, con->in_middle_crc, m->footer.middle_crc);
2413 		return -EBADMSG;
2414 	}
2415 	if (do_datacrc &&
2416 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2417 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2418 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2419 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2420 		return -EBADMSG;
2421 	}
2422 
2423 	if (need_sign && con->ops->check_message_signature &&
2424 	    con->ops->check_message_signature(con, m)) {
2425 		pr_err("read_partial_message %p signature check failed\n", m);
2426 		return -EBADMSG;
2427 	}
2428 
2429 	return 1; /* done! */
2430 }
2431 
2432 /*
2433  * Process message.  This happens in the worker thread.  The callback should
2434  * be careful not to do anything that waits on other incoming messages or it
2435  * may deadlock.
2436  */
2437 static void process_message(struct ceph_connection *con)
2438 {
2439 	struct ceph_msg *msg;
2440 
2441 	BUG_ON(con->in_msg->con != con);
2442 	con->in_msg->con = NULL;
2443 	msg = con->in_msg;
2444 	con->in_msg = NULL;
2445 	con->ops->put(con);
2446 
2447 	/* if first message, set peer_name */
2448 	if (con->peer_name.type == 0)
2449 		con->peer_name = msg->hdr.src;
2450 
2451 	con->in_seq++;
2452 	mutex_unlock(&con->mutex);
2453 
2454 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2455 	     msg, le64_to_cpu(msg->hdr.seq),
2456 	     ENTITY_NAME(msg->hdr.src),
2457 	     le16_to_cpu(msg->hdr.type),
2458 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2459 	     le32_to_cpu(msg->hdr.front_len),
2460 	     le32_to_cpu(msg->hdr.data_len),
2461 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2462 	con->ops->dispatch(con, msg);
2463 
2464 	mutex_lock(&con->mutex);
2465 }
2466 
2467 
2468 /*
2469  * Write something to the socket.  Called in a worker thread when the
2470  * socket appears to be writeable and we have something ready to send.
2471  */
2472 static int try_write(struct ceph_connection *con)
2473 {
2474 	int ret = 1;
2475 
2476 	dout("try_write start %p state %lu\n", con, con->state);
2477 
2478 more:
2479 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2480 
2481 	/* open the socket first? */
2482 	if (con->state == CON_STATE_PREOPEN) {
2483 		BUG_ON(con->sock);
2484 		con->state = CON_STATE_CONNECTING;
2485 
2486 		con_out_kvec_reset(con);
2487 		prepare_write_banner(con);
2488 		prepare_read_banner(con);
2489 
2490 		BUG_ON(con->in_msg);
2491 		con->in_tag = CEPH_MSGR_TAG_READY;
2492 		dout("try_write initiating connect on %p new state %lu\n",
2493 		     con, con->state);
2494 		ret = ceph_tcp_connect(con);
2495 		if (ret < 0) {
2496 			con->error_msg = "connect error";
2497 			goto out;
2498 		}
2499 	}
2500 
2501 more_kvec:
2502 	/* kvec data queued? */
2503 	if (con->out_skip) {
2504 		ret = write_partial_skip(con);
2505 		if (ret <= 0)
2506 			goto out;
2507 	}
2508 	if (con->out_kvec_left) {
2509 		ret = write_partial_kvec(con);
2510 		if (ret <= 0)
2511 			goto out;
2512 	}
2513 
2514 	/* msg pages? */
2515 	if (con->out_msg) {
2516 		if (con->out_msg_done) {
2517 			ceph_msg_put(con->out_msg);
2518 			con->out_msg = NULL;   /* we're done with this one */
2519 			goto do_next;
2520 		}
2521 
2522 		ret = write_partial_message_data(con);
2523 		if (ret == 1)
2524 			goto more_kvec;  /* we need to send the footer, too! */
2525 		if (ret == 0)
2526 			goto out;
2527 		if (ret < 0) {
2528 			dout("try_write write_partial_message_data err %d\n",
2529 			     ret);
2530 			goto out;
2531 		}
2532 	}
2533 
2534 do_next:
2535 	if (con->state == CON_STATE_OPEN) {
2536 		/* is anything else pending? */
2537 		if (!list_empty(&con->out_queue)) {
2538 			prepare_write_message(con);
2539 			goto more;
2540 		}
2541 		if (con->in_seq > con->in_seq_acked) {
2542 			prepare_write_ack(con);
2543 			goto more;
2544 		}
2545 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2546 			prepare_write_keepalive(con);
2547 			goto more;
2548 		}
2549 	}
2550 
2551 	/* Nothing to do! */
2552 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2553 	dout("try_write nothing else to write.\n");
2554 	ret = 0;
2555 out:
2556 	dout("try_write done on %p ret %d\n", con, ret);
2557 	return ret;
2558 }
2559 
2560 
2561 
2562 /*
2563  * Read what we can from the socket.
2564  */
2565 static int try_read(struct ceph_connection *con)
2566 {
2567 	int ret = -1;
2568 
2569 more:
2570 	dout("try_read start on %p state %lu\n", con, con->state);
2571 	if (con->state != CON_STATE_CONNECTING &&
2572 	    con->state != CON_STATE_NEGOTIATING &&
2573 	    con->state != CON_STATE_OPEN)
2574 		return 0;
2575 
2576 	BUG_ON(!con->sock);
2577 
2578 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2579 	     con->in_base_pos);
2580 
2581 	if (con->state == CON_STATE_CONNECTING) {
2582 		dout("try_read connecting\n");
2583 		ret = read_partial_banner(con);
2584 		if (ret <= 0)
2585 			goto out;
2586 		ret = process_banner(con);
2587 		if (ret < 0)
2588 			goto out;
2589 
2590 		con->state = CON_STATE_NEGOTIATING;
2591 
2592 		/*
2593 		 * Received banner is good, exchange connection info.
2594 		 * Do not reset out_kvec, as sending our banner raced
2595 		 * with receiving peer banner after connect completed.
2596 		 */
2597 		ret = prepare_write_connect(con);
2598 		if (ret < 0)
2599 			goto out;
2600 		prepare_read_connect(con);
2601 
2602 		/* Send connection info before awaiting response */
2603 		goto out;
2604 	}
2605 
2606 	if (con->state == CON_STATE_NEGOTIATING) {
2607 		dout("try_read negotiating\n");
2608 		ret = read_partial_connect(con);
2609 		if (ret <= 0)
2610 			goto out;
2611 		ret = process_connect(con);
2612 		if (ret < 0)
2613 			goto out;
2614 		goto more;
2615 	}
2616 
2617 	WARN_ON(con->state != CON_STATE_OPEN);
2618 
2619 	if (con->in_base_pos < 0) {
2620 		/*
2621 		 * skipping + discarding content.
2622 		 *
2623 		 * FIXME: there must be a better way to do this!
2624 		 */
2625 		static char buf[SKIP_BUF_SIZE];
2626 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2627 
2628 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2629 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2630 		if (ret <= 0)
2631 			goto out;
2632 		con->in_base_pos += ret;
2633 		if (con->in_base_pos)
2634 			goto more;
2635 	}
2636 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2637 		/*
2638 		 * what's next?
2639 		 */
2640 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2641 		if (ret <= 0)
2642 			goto out;
2643 		dout("try_read got tag %d\n", (int)con->in_tag);
2644 		switch (con->in_tag) {
2645 		case CEPH_MSGR_TAG_MSG:
2646 			prepare_read_message(con);
2647 			break;
2648 		case CEPH_MSGR_TAG_ACK:
2649 			prepare_read_ack(con);
2650 			break;
2651 		case CEPH_MSGR_TAG_CLOSE:
2652 			con_close_socket(con);
2653 			con->state = CON_STATE_CLOSED;
2654 			goto out;
2655 		default:
2656 			goto bad_tag;
2657 		}
2658 	}
2659 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2660 		ret = read_partial_message(con);
2661 		if (ret <= 0) {
2662 			switch (ret) {
2663 			case -EBADMSG:
2664 				con->error_msg = "bad crc";
2665 				ret = -EIO;
2666 				break;
2667 			case -EIO:
2668 				con->error_msg = "io error";
2669 				break;
2670 			}
2671 			goto out;
2672 		}
2673 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2674 			goto more;
2675 		process_message(con);
2676 		if (con->state == CON_STATE_OPEN)
2677 			prepare_read_tag(con);
2678 		goto more;
2679 	}
2680 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2681 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2682 		/*
2683 		 * the final handshake seq exchange is semantically
2684 		 * equivalent to an ACK
2685 		 */
2686 		ret = read_partial_ack(con);
2687 		if (ret <= 0)
2688 			goto out;
2689 		process_ack(con);
2690 		goto more;
2691 	}
2692 
2693 out:
2694 	dout("try_read done on %p ret %d\n", con, ret);
2695 	return ret;
2696 
2697 bad_tag:
2698 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2699 	con->error_msg = "protocol error, garbage tag";
2700 	ret = -1;
2701 	goto out;
2702 }
2703 
2704 
2705 /*
2706  * Atomically queue work on a connection after the specified delay.
2707  * Bump @con reference to avoid races with connection teardown.
2708  * Returns 0 if work was queued, or an error code otherwise.
2709  */
2710 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2711 {
2712 	if (!con->ops->get(con)) {
2713 		dout("%s %p ref count 0\n", __func__, con);
2714 		return -ENOENT;
2715 	}
2716 
2717 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2718 		dout("%s %p - already queued\n", __func__, con);
2719 		con->ops->put(con);
2720 		return -EBUSY;
2721 	}
2722 
2723 	dout("%s %p %lu\n", __func__, con, delay);
2724 	return 0;
2725 }
2726 
2727 static void queue_con(struct ceph_connection *con)
2728 {
2729 	(void) queue_con_delay(con, 0);
2730 }
2731 
2732 static void cancel_con(struct ceph_connection *con)
2733 {
2734 	if (cancel_delayed_work(&con->work)) {
2735 		dout("%s %p\n", __func__, con);
2736 		con->ops->put(con);
2737 	}
2738 }
2739 
2740 static bool con_sock_closed(struct ceph_connection *con)
2741 {
2742 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2743 		return false;
2744 
2745 #define CASE(x)								\
2746 	case CON_STATE_ ## x:						\
2747 		con->error_msg = "socket closed (con state " #x ")";	\
2748 		break;
2749 
2750 	switch (con->state) {
2751 	CASE(CLOSED);
2752 	CASE(PREOPEN);
2753 	CASE(CONNECTING);
2754 	CASE(NEGOTIATING);
2755 	CASE(OPEN);
2756 	CASE(STANDBY);
2757 	default:
2758 		pr_warn("%s con %p unrecognized state %lu\n",
2759 			__func__, con, con->state);
2760 		con->error_msg = "unrecognized con state";
2761 		BUG();
2762 		break;
2763 	}
2764 #undef CASE
2765 
2766 	return true;
2767 }
2768 
2769 static bool con_backoff(struct ceph_connection *con)
2770 {
2771 	int ret;
2772 
2773 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2774 		return false;
2775 
2776 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2777 	if (ret) {
2778 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2779 			con, con->delay);
2780 		BUG_ON(ret == -ENOENT);
2781 		con_flag_set(con, CON_FLAG_BACKOFF);
2782 	}
2783 
2784 	return true;
2785 }
2786 
2787 /* Finish fault handling; con->mutex must *not* be held here */
2788 
2789 static void con_fault_finish(struct ceph_connection *con)
2790 {
2791 	/*
2792 	 * in case we faulted due to authentication, invalidate our
2793 	 * current tickets so that we can get new ones.
2794 	 */
2795 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2796 		dout("calling invalidate_authorizer()\n");
2797 		con->ops->invalidate_authorizer(con);
2798 	}
2799 
2800 	if (con->ops->fault)
2801 		con->ops->fault(con);
2802 }
2803 
2804 /*
2805  * Do some work on a connection.  Drop a connection ref when we're done.
2806  */
2807 static void con_work(struct work_struct *work)
2808 {
2809 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2810 						   work.work);
2811 	unsigned long pflags = current->flags;
2812 	bool fault;
2813 
2814 	current->flags |= PF_MEMALLOC;
2815 
2816 	mutex_lock(&con->mutex);
2817 	while (true) {
2818 		int ret;
2819 
2820 		if ((fault = con_sock_closed(con))) {
2821 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2822 			break;
2823 		}
2824 		if (con_backoff(con)) {
2825 			dout("%s: con %p BACKOFF\n", __func__, con);
2826 			break;
2827 		}
2828 		if (con->state == CON_STATE_STANDBY) {
2829 			dout("%s: con %p STANDBY\n", __func__, con);
2830 			break;
2831 		}
2832 		if (con->state == CON_STATE_CLOSED) {
2833 			dout("%s: con %p CLOSED\n", __func__, con);
2834 			BUG_ON(con->sock);
2835 			break;
2836 		}
2837 		if (con->state == CON_STATE_PREOPEN) {
2838 			dout("%s: con %p PREOPEN\n", __func__, con);
2839 			BUG_ON(con->sock);
2840 		}
2841 
2842 		ret = try_read(con);
2843 		if (ret < 0) {
2844 			if (ret == -EAGAIN)
2845 				continue;
2846 			con->error_msg = "socket error on read";
2847 			fault = true;
2848 			break;
2849 		}
2850 
2851 		ret = try_write(con);
2852 		if (ret < 0) {
2853 			if (ret == -EAGAIN)
2854 				continue;
2855 			con->error_msg = "socket error on write";
2856 			fault = true;
2857 		}
2858 
2859 		break;	/* If we make it to here, we're done */
2860 	}
2861 	if (fault)
2862 		con_fault(con);
2863 	mutex_unlock(&con->mutex);
2864 
2865 	if (fault)
2866 		con_fault_finish(con);
2867 
2868 	con->ops->put(con);
2869 
2870 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
2871 }
2872 
2873 /*
2874  * Generic error/fault handler.  A retry mechanism is used with
2875  * exponential backoff
2876  */
2877 static void con_fault(struct ceph_connection *con)
2878 {
2879 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2880 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2881 	dout("fault %p state %lu to peer %s\n",
2882 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2883 
2884 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2885 	       con->state != CON_STATE_NEGOTIATING &&
2886 	       con->state != CON_STATE_OPEN);
2887 
2888 	con_close_socket(con);
2889 
2890 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2891 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2892 		con->state = CON_STATE_CLOSED;
2893 		return;
2894 	}
2895 
2896 	if (con->in_msg) {
2897 		BUG_ON(con->in_msg->con != con);
2898 		con->in_msg->con = NULL;
2899 		ceph_msg_put(con->in_msg);
2900 		con->in_msg = NULL;
2901 		con->ops->put(con);
2902 	}
2903 
2904 	/* Requeue anything that hasn't been acked */
2905 	list_splice_init(&con->out_sent, &con->out_queue);
2906 
2907 	/* If there are no messages queued or keepalive pending, place
2908 	 * the connection in a STANDBY state */
2909 	if (list_empty(&con->out_queue) &&
2910 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2911 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2912 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2913 		con->state = CON_STATE_STANDBY;
2914 	} else {
2915 		/* retry after a delay. */
2916 		con->state = CON_STATE_PREOPEN;
2917 		if (con->delay == 0)
2918 			con->delay = BASE_DELAY_INTERVAL;
2919 		else if (con->delay < MAX_DELAY_INTERVAL)
2920 			con->delay *= 2;
2921 		con_flag_set(con, CON_FLAG_BACKOFF);
2922 		queue_con(con);
2923 	}
2924 }
2925 
2926 
2927 
2928 /*
2929  * initialize a new messenger instance
2930  */
2931 void ceph_messenger_init(struct ceph_messenger *msgr,
2932 			struct ceph_entity_addr *myaddr,
2933 			u64 supported_features,
2934 			u64 required_features,
2935 			bool nocrc,
2936 			bool tcp_nodelay)
2937 {
2938 	msgr->supported_features = supported_features;
2939 	msgr->required_features = required_features;
2940 
2941 	spin_lock_init(&msgr->global_seq_lock);
2942 
2943 	if (myaddr)
2944 		msgr->inst.addr = *myaddr;
2945 
2946 	/* select a random nonce */
2947 	msgr->inst.addr.type = 0;
2948 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2949 	encode_my_addr(msgr);
2950 	msgr->nocrc = nocrc;
2951 	msgr->tcp_nodelay = tcp_nodelay;
2952 
2953 	atomic_set(&msgr->stopping, 0);
2954 
2955 	dout("%s %p\n", __func__, msgr);
2956 }
2957 EXPORT_SYMBOL(ceph_messenger_init);
2958 
2959 static void clear_standby(struct ceph_connection *con)
2960 {
2961 	/* come back from STANDBY? */
2962 	if (con->state == CON_STATE_STANDBY) {
2963 		dout("clear_standby %p and ++connect_seq\n", con);
2964 		con->state = CON_STATE_PREOPEN;
2965 		con->connect_seq++;
2966 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2967 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2968 	}
2969 }
2970 
2971 /*
2972  * Queue up an outgoing message on the given connection.
2973  */
2974 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2975 {
2976 	/* set src+dst */
2977 	msg->hdr.src = con->msgr->inst.name;
2978 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2979 	msg->needs_out_seq = true;
2980 
2981 	mutex_lock(&con->mutex);
2982 
2983 	if (con->state == CON_STATE_CLOSED) {
2984 		dout("con_send %p closed, dropping %p\n", con, msg);
2985 		ceph_msg_put(msg);
2986 		mutex_unlock(&con->mutex);
2987 		return;
2988 	}
2989 
2990 	BUG_ON(msg->con != NULL);
2991 	msg->con = con->ops->get(con);
2992 	BUG_ON(msg->con == NULL);
2993 
2994 	BUG_ON(!list_empty(&msg->list_head));
2995 	list_add_tail(&msg->list_head, &con->out_queue);
2996 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2997 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2998 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2999 	     le32_to_cpu(msg->hdr.front_len),
3000 	     le32_to_cpu(msg->hdr.middle_len),
3001 	     le32_to_cpu(msg->hdr.data_len));
3002 
3003 	clear_standby(con);
3004 	mutex_unlock(&con->mutex);
3005 
3006 	/* if there wasn't anything waiting to send before, queue
3007 	 * new work */
3008 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3009 		queue_con(con);
3010 }
3011 EXPORT_SYMBOL(ceph_con_send);
3012 
3013 /*
3014  * Revoke a message that was previously queued for send
3015  */
3016 void ceph_msg_revoke(struct ceph_msg *msg)
3017 {
3018 	struct ceph_connection *con = msg->con;
3019 
3020 	if (!con)
3021 		return;		/* Message not in our possession */
3022 
3023 	mutex_lock(&con->mutex);
3024 	if (!list_empty(&msg->list_head)) {
3025 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3026 		list_del_init(&msg->list_head);
3027 		BUG_ON(msg->con == NULL);
3028 		msg->con->ops->put(msg->con);
3029 		msg->con = NULL;
3030 		msg->hdr.seq = 0;
3031 
3032 		ceph_msg_put(msg);
3033 	}
3034 	if (con->out_msg == msg) {
3035 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3036 		con->out_msg = NULL;
3037 		if (con->out_kvec_is_msg) {
3038 			con->out_skip = con->out_kvec_bytes;
3039 			con->out_kvec_is_msg = false;
3040 		}
3041 		msg->hdr.seq = 0;
3042 
3043 		ceph_msg_put(msg);
3044 	}
3045 	mutex_unlock(&con->mutex);
3046 }
3047 
3048 /*
3049  * Revoke a message that we may be reading data into
3050  */
3051 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3052 {
3053 	struct ceph_connection *con;
3054 
3055 	BUG_ON(msg == NULL);
3056 	if (!msg->con) {
3057 		dout("%s msg %p null con\n", __func__, msg);
3058 
3059 		return;		/* Message not in our possession */
3060 	}
3061 
3062 	con = msg->con;
3063 	mutex_lock(&con->mutex);
3064 	if (con->in_msg == msg) {
3065 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3066 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3067 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3068 
3069 		/* skip rest of message */
3070 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3071 		con->in_base_pos = con->in_base_pos -
3072 				sizeof(struct ceph_msg_header) -
3073 				front_len -
3074 				middle_len -
3075 				data_len -
3076 				sizeof(struct ceph_msg_footer);
3077 		ceph_msg_put(con->in_msg);
3078 		con->in_msg = NULL;
3079 		con->in_tag = CEPH_MSGR_TAG_READY;
3080 		con->in_seq++;
3081 	} else {
3082 		dout("%s %p in_msg %p msg %p no-op\n",
3083 		     __func__, con, con->in_msg, msg);
3084 	}
3085 	mutex_unlock(&con->mutex);
3086 }
3087 
3088 /*
3089  * Queue a keepalive byte to ensure the tcp connection is alive.
3090  */
3091 void ceph_con_keepalive(struct ceph_connection *con)
3092 {
3093 	dout("con_keepalive %p\n", con);
3094 	mutex_lock(&con->mutex);
3095 	clear_standby(con);
3096 	mutex_unlock(&con->mutex);
3097 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3098 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3099 		queue_con(con);
3100 }
3101 EXPORT_SYMBOL(ceph_con_keepalive);
3102 
3103 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3104 {
3105 	struct ceph_msg_data *data;
3106 
3107 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3108 		return NULL;
3109 
3110 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3111 	if (data)
3112 		data->type = type;
3113 	INIT_LIST_HEAD(&data->links);
3114 
3115 	return data;
3116 }
3117 
3118 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3119 {
3120 	if (!data)
3121 		return;
3122 
3123 	WARN_ON(!list_empty(&data->links));
3124 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3125 		ceph_pagelist_release(data->pagelist);
3126 	kmem_cache_free(ceph_msg_data_cache, data);
3127 }
3128 
3129 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3130 		size_t length, size_t alignment)
3131 {
3132 	struct ceph_msg_data *data;
3133 
3134 	BUG_ON(!pages);
3135 	BUG_ON(!length);
3136 
3137 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3138 	BUG_ON(!data);
3139 	data->pages = pages;
3140 	data->length = length;
3141 	data->alignment = alignment & ~PAGE_MASK;
3142 
3143 	list_add_tail(&data->links, &msg->data);
3144 	msg->data_length += length;
3145 }
3146 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3147 
3148 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3149 				struct ceph_pagelist *pagelist)
3150 {
3151 	struct ceph_msg_data *data;
3152 
3153 	BUG_ON(!pagelist);
3154 	BUG_ON(!pagelist->length);
3155 
3156 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3157 	BUG_ON(!data);
3158 	data->pagelist = pagelist;
3159 
3160 	list_add_tail(&data->links, &msg->data);
3161 	msg->data_length += pagelist->length;
3162 }
3163 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3164 
3165 #ifdef	CONFIG_BLOCK
3166 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3167 		size_t length)
3168 {
3169 	struct ceph_msg_data *data;
3170 
3171 	BUG_ON(!bio);
3172 
3173 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3174 	BUG_ON(!data);
3175 	data->bio = bio;
3176 	data->bio_length = length;
3177 
3178 	list_add_tail(&data->links, &msg->data);
3179 	msg->data_length += length;
3180 }
3181 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3182 #endif	/* CONFIG_BLOCK */
3183 
3184 /*
3185  * construct a new message with given type, size
3186  * the new msg has a ref count of 1.
3187  */
3188 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3189 			      bool can_fail)
3190 {
3191 	struct ceph_msg *m;
3192 
3193 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3194 	if (m == NULL)
3195 		goto out;
3196 
3197 	m->hdr.type = cpu_to_le16(type);
3198 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3199 	m->hdr.front_len = cpu_to_le32(front_len);
3200 
3201 	INIT_LIST_HEAD(&m->list_head);
3202 	kref_init(&m->kref);
3203 	INIT_LIST_HEAD(&m->data);
3204 
3205 	/* front */
3206 	if (front_len) {
3207 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3208 		if (m->front.iov_base == NULL) {
3209 			dout("ceph_msg_new can't allocate %d bytes\n",
3210 			     front_len);
3211 			goto out2;
3212 		}
3213 	} else {
3214 		m->front.iov_base = NULL;
3215 	}
3216 	m->front_alloc_len = m->front.iov_len = front_len;
3217 
3218 	dout("ceph_msg_new %p front %d\n", m, front_len);
3219 	return m;
3220 
3221 out2:
3222 	ceph_msg_put(m);
3223 out:
3224 	if (!can_fail) {
3225 		pr_err("msg_new can't create type %d front %d\n", type,
3226 		       front_len);
3227 		WARN_ON(1);
3228 	} else {
3229 		dout("msg_new can't create type %d front %d\n", type,
3230 		     front_len);
3231 	}
3232 	return NULL;
3233 }
3234 EXPORT_SYMBOL(ceph_msg_new);
3235 
3236 /*
3237  * Allocate "middle" portion of a message, if it is needed and wasn't
3238  * allocated by alloc_msg.  This allows us to read a small fixed-size
3239  * per-type header in the front and then gracefully fail (i.e.,
3240  * propagate the error to the caller based on info in the front) when
3241  * the middle is too large.
3242  */
3243 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3244 {
3245 	int type = le16_to_cpu(msg->hdr.type);
3246 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3247 
3248 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3249 	     ceph_msg_type_name(type), middle_len);
3250 	BUG_ON(!middle_len);
3251 	BUG_ON(msg->middle);
3252 
3253 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3254 	if (!msg->middle)
3255 		return -ENOMEM;
3256 	return 0;
3257 }
3258 
3259 /*
3260  * Allocate a message for receiving an incoming message on a
3261  * connection, and save the result in con->in_msg.  Uses the
3262  * connection's private alloc_msg op if available.
3263  *
3264  * Returns 0 on success, or a negative error code.
3265  *
3266  * On success, if we set *skip = 1:
3267  *  - the next message should be skipped and ignored.
3268  *  - con->in_msg == NULL
3269  * or if we set *skip = 0:
3270  *  - con->in_msg is non-null.
3271  * On error (ENOMEM, EAGAIN, ...),
3272  *  - con->in_msg == NULL
3273  */
3274 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3275 {
3276 	struct ceph_msg_header *hdr = &con->in_hdr;
3277 	int middle_len = le32_to_cpu(hdr->middle_len);
3278 	struct ceph_msg *msg;
3279 	int ret = 0;
3280 
3281 	BUG_ON(con->in_msg != NULL);
3282 	BUG_ON(!con->ops->alloc_msg);
3283 
3284 	mutex_unlock(&con->mutex);
3285 	msg = con->ops->alloc_msg(con, hdr, skip);
3286 	mutex_lock(&con->mutex);
3287 	if (con->state != CON_STATE_OPEN) {
3288 		if (msg)
3289 			ceph_msg_put(msg);
3290 		return -EAGAIN;
3291 	}
3292 	if (msg) {
3293 		BUG_ON(*skip);
3294 		con->in_msg = msg;
3295 		con->in_msg->con = con->ops->get(con);
3296 		BUG_ON(con->in_msg->con == NULL);
3297 	} else {
3298 		/*
3299 		 * Null message pointer means either we should skip
3300 		 * this message or we couldn't allocate memory.  The
3301 		 * former is not an error.
3302 		 */
3303 		if (*skip)
3304 			return 0;
3305 		con->error_msg = "error allocating memory for incoming message";
3306 
3307 		return -ENOMEM;
3308 	}
3309 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3310 
3311 	if (middle_len && !con->in_msg->middle) {
3312 		ret = ceph_alloc_middle(con, con->in_msg);
3313 		if (ret < 0) {
3314 			ceph_msg_put(con->in_msg);
3315 			con->in_msg = NULL;
3316 		}
3317 	}
3318 
3319 	return ret;
3320 }
3321 
3322 
3323 /*
3324  * Free a generically kmalloc'd message.
3325  */
3326 static void ceph_msg_free(struct ceph_msg *m)
3327 {
3328 	dout("%s %p\n", __func__, m);
3329 	kvfree(m->front.iov_base);
3330 	kmem_cache_free(ceph_msg_cache, m);
3331 }
3332 
3333 static void ceph_msg_release(struct kref *kref)
3334 {
3335 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3336 	LIST_HEAD(data);
3337 	struct list_head *links;
3338 	struct list_head *next;
3339 
3340 	dout("%s %p\n", __func__, m);
3341 	WARN_ON(!list_empty(&m->list_head));
3342 
3343 	/* drop middle, data, if any */
3344 	if (m->middle) {
3345 		ceph_buffer_put(m->middle);
3346 		m->middle = NULL;
3347 	}
3348 
3349 	list_splice_init(&m->data, &data);
3350 	list_for_each_safe(links, next, &data) {
3351 		struct ceph_msg_data *data;
3352 
3353 		data = list_entry(links, struct ceph_msg_data, links);
3354 		list_del_init(links);
3355 		ceph_msg_data_destroy(data);
3356 	}
3357 	m->data_length = 0;
3358 
3359 	if (m->pool)
3360 		ceph_msgpool_put(m->pool, m);
3361 	else
3362 		ceph_msg_free(m);
3363 }
3364 
3365 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3366 {
3367 	dout("%s %p (was %d)\n", __func__, msg,
3368 	     atomic_read(&msg->kref.refcount));
3369 	kref_get(&msg->kref);
3370 	return msg;
3371 }
3372 EXPORT_SYMBOL(ceph_msg_get);
3373 
3374 void ceph_msg_put(struct ceph_msg *msg)
3375 {
3376 	dout("%s %p (was %d)\n", __func__, msg,
3377 	     atomic_read(&msg->kref.refcount));
3378 	kref_put(&msg->kref, ceph_msg_release);
3379 }
3380 EXPORT_SYMBOL(ceph_msg_put);
3381 
3382 void ceph_msg_dump(struct ceph_msg *msg)
3383 {
3384 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3385 		 msg->front_alloc_len, msg->data_length);
3386 	print_hex_dump(KERN_DEBUG, "header: ",
3387 		       DUMP_PREFIX_OFFSET, 16, 1,
3388 		       &msg->hdr, sizeof(msg->hdr), true);
3389 	print_hex_dump(KERN_DEBUG, " front: ",
3390 		       DUMP_PREFIX_OFFSET, 16, 1,
3391 		       msg->front.iov_base, msg->front.iov_len, true);
3392 	if (msg->middle)
3393 		print_hex_dump(KERN_DEBUG, "middle: ",
3394 			       DUMP_PREFIX_OFFSET, 16, 1,
3395 			       msg->middle->vec.iov_base,
3396 			       msg->middle->vec.iov_len, true);
3397 	print_hex_dump(KERN_DEBUG, "footer: ",
3398 		       DUMP_PREFIX_OFFSET, 16, 1,
3399 		       &msg->footer, sizeof(msg->footer), true);
3400 }
3401 EXPORT_SYMBOL(ceph_msg_dump);
3402