xref: /openbmc/linux/net/ceph/messenger.c (revision 5e2421ce)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 static bool con_flag_valid(unsigned long con_flag)
86 {
87 	switch (con_flag) {
88 	case CEPH_CON_F_LOSSYTX:
89 	case CEPH_CON_F_KEEPALIVE_PENDING:
90 	case CEPH_CON_F_WRITE_PENDING:
91 	case CEPH_CON_F_SOCK_CLOSED:
92 	case CEPH_CON_F_BACKOFF:
93 		return true;
94 	default:
95 		return false;
96 	}
97 }
98 
99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100 {
101 	BUG_ON(!con_flag_valid(con_flag));
102 
103 	clear_bit(con_flag, &con->flags);
104 }
105 
106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107 {
108 	BUG_ON(!con_flag_valid(con_flag));
109 
110 	set_bit(con_flag, &con->flags);
111 }
112 
113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114 {
115 	BUG_ON(!con_flag_valid(con_flag));
116 
117 	return test_bit(con_flag, &con->flags);
118 }
119 
120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 				  unsigned long con_flag)
122 {
123 	BUG_ON(!con_flag_valid(con_flag));
124 
125 	return test_and_clear_bit(con_flag, &con->flags);
126 }
127 
128 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 				unsigned long con_flag)
130 {
131 	BUG_ON(!con_flag_valid(con_flag));
132 
133 	return test_and_set_bit(con_flag, &con->flags);
134 }
135 
136 /* Slab caches for frequently-allocated structures */
137 
138 static struct kmem_cache	*ceph_msg_cache;
139 
140 #ifdef CONFIG_LOCKDEP
141 static struct lock_class_key socket_class;
142 #endif
143 
144 static void queue_con(struct ceph_connection *con);
145 static void cancel_con(struct ceph_connection *con);
146 static void ceph_con_workfn(struct work_struct *);
147 static void con_fault(struct ceph_connection *con);
148 
149 /*
150  * Nicely render a sockaddr as a string.  An array of formatted
151  * strings is used, to approximate reentrancy.
152  */
153 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
154 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
155 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
156 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
157 
158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159 static atomic_t addr_str_seq = ATOMIC_INIT(0);
160 
161 struct page *ceph_zero_page;		/* used in certain error cases */
162 
163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164 {
165 	int i;
166 	char *s;
167 	struct sockaddr_storage ss = addr->in_addr; /* align */
168 	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170 
171 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 	s = addr_str[i];
173 
174 	switch (ss.ss_family) {
175 	case AF_INET:
176 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 			 le32_to_cpu(addr->type), &in4->sin_addr,
178 			 ntohs(in4->sin_port));
179 		break;
180 
181 	case AF_INET6:
182 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 			 le32_to_cpu(addr->type), &in6->sin6_addr,
184 			 ntohs(in6->sin6_port));
185 		break;
186 
187 	default:
188 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 			 ss.ss_family);
190 	}
191 
192 	return s;
193 }
194 EXPORT_SYMBOL(ceph_pr_addr);
195 
196 void ceph_encode_my_addr(struct ceph_messenger *msgr)
197 {
198 	if (!ceph_msgr2(from_msgr(msgr))) {
199 		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 		       sizeof(msgr->my_enc_addr));
201 		ceph_encode_banner_addr(&msgr->my_enc_addr);
202 	}
203 }
204 
205 /*
206  * work queue for all reading and writing to/from the socket.
207  */
208 static struct workqueue_struct *ceph_msgr_wq;
209 
210 static int ceph_msgr_slab_init(void)
211 {
212 	BUG_ON(ceph_msg_cache);
213 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 	if (!ceph_msg_cache)
215 		return -ENOMEM;
216 
217 	return 0;
218 }
219 
220 static void ceph_msgr_slab_exit(void)
221 {
222 	BUG_ON(!ceph_msg_cache);
223 	kmem_cache_destroy(ceph_msg_cache);
224 	ceph_msg_cache = NULL;
225 }
226 
227 static void _ceph_msgr_exit(void)
228 {
229 	if (ceph_msgr_wq) {
230 		destroy_workqueue(ceph_msgr_wq);
231 		ceph_msgr_wq = NULL;
232 	}
233 
234 	BUG_ON(!ceph_zero_page);
235 	put_page(ceph_zero_page);
236 	ceph_zero_page = NULL;
237 
238 	ceph_msgr_slab_exit();
239 }
240 
241 int __init ceph_msgr_init(void)
242 {
243 	if (ceph_msgr_slab_init())
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_zero_page);
247 	ceph_zero_page = ZERO_PAGE(0);
248 	get_page(ceph_zero_page);
249 
250 	/*
251 	 * The number of active work items is limited by the number of
252 	 * connections, so leave @max_active at default.
253 	 */
254 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 	if (ceph_msgr_wq)
256 		return 0;
257 
258 	pr_err("msgr_init failed to create workqueue\n");
259 	_ceph_msgr_exit();
260 
261 	return -ENOMEM;
262 }
263 
264 void ceph_msgr_exit(void)
265 {
266 	BUG_ON(ceph_msgr_wq == NULL);
267 
268 	_ceph_msgr_exit();
269 }
270 
271 void ceph_msgr_flush(void)
272 {
273 	flush_workqueue(ceph_msgr_wq);
274 }
275 EXPORT_SYMBOL(ceph_msgr_flush);
276 
277 /* Connection socket state transition functions */
278 
279 static void con_sock_state_init(struct ceph_connection *con)
280 {
281 	int old_state;
282 
283 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 		printk("%s: unexpected old state %d\n", __func__, old_state);
286 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 	     CON_SOCK_STATE_CLOSED);
288 }
289 
290 static void con_sock_state_connecting(struct ceph_connection *con)
291 {
292 	int old_state;
293 
294 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 		printk("%s: unexpected old state %d\n", __func__, old_state);
297 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 	     CON_SOCK_STATE_CONNECTING);
299 }
300 
301 static void con_sock_state_connected(struct ceph_connection *con)
302 {
303 	int old_state;
304 
305 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 		printk("%s: unexpected old state %d\n", __func__, old_state);
308 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 	     CON_SOCK_STATE_CONNECTED);
310 }
311 
312 static void con_sock_state_closing(struct ceph_connection *con)
313 {
314 	int old_state;
315 
316 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 			old_state != CON_SOCK_STATE_CONNECTED &&
319 			old_state != CON_SOCK_STATE_CLOSING))
320 		printk("%s: unexpected old state %d\n", __func__, old_state);
321 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 	     CON_SOCK_STATE_CLOSING);
323 }
324 
325 static void con_sock_state_closed(struct ceph_connection *con)
326 {
327 	int old_state;
328 
329 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 		    old_state != CON_SOCK_STATE_CLOSING &&
332 		    old_state != CON_SOCK_STATE_CONNECTING &&
333 		    old_state != CON_SOCK_STATE_CLOSED))
334 		printk("%s: unexpected old state %d\n", __func__, old_state);
335 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 	     CON_SOCK_STATE_CLOSED);
337 }
338 
339 /*
340  * socket callback functions
341  */
342 
343 /* data available on socket, or listen socket received a connect */
344 static void ceph_sock_data_ready(struct sock *sk)
345 {
346 	struct ceph_connection *con = sk->sk_user_data;
347 	if (atomic_read(&con->msgr->stopping)) {
348 		return;
349 	}
350 
351 	if (sk->sk_state != TCP_CLOSE_WAIT) {
352 		dout("%s %p state = %d, queueing work\n", __func__,
353 		     con, con->state);
354 		queue_con(con);
355 	}
356 }
357 
358 /* socket has buffer space for writing */
359 static void ceph_sock_write_space(struct sock *sk)
360 {
361 	struct ceph_connection *con = sk->sk_user_data;
362 
363 	/* only queue to workqueue if there is data we want to write,
364 	 * and there is sufficient space in the socket buffer to accept
365 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
366 	 * doesn't get called again until try_write() fills the socket
367 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 	 * and net/core/stream.c:sk_stream_write_space().
369 	 */
370 	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 		if (sk_stream_is_writeable(sk)) {
372 			dout("%s %p queueing write work\n", __func__, con);
373 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 			queue_con(con);
375 		}
376 	} else {
377 		dout("%s %p nothing to write\n", __func__, con);
378 	}
379 }
380 
381 /* socket's state has changed */
382 static void ceph_sock_state_change(struct sock *sk)
383 {
384 	struct ceph_connection *con = sk->sk_user_data;
385 
386 	dout("%s %p state = %d sk_state = %u\n", __func__,
387 	     con, con->state, sk->sk_state);
388 
389 	switch (sk->sk_state) {
390 	case TCP_CLOSE:
391 		dout("%s TCP_CLOSE\n", __func__);
392 		fallthrough;
393 	case TCP_CLOSE_WAIT:
394 		dout("%s TCP_CLOSE_WAIT\n", __func__);
395 		con_sock_state_closing(con);
396 		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 		queue_con(con);
398 		break;
399 	case TCP_ESTABLISHED:
400 		dout("%s TCP_ESTABLISHED\n", __func__);
401 		con_sock_state_connected(con);
402 		queue_con(con);
403 		break;
404 	default:	/* Everything else is uninteresting */
405 		break;
406 	}
407 }
408 
409 /*
410  * set up socket callbacks
411  */
412 static void set_sock_callbacks(struct socket *sock,
413 			       struct ceph_connection *con)
414 {
415 	struct sock *sk = sock->sk;
416 	sk->sk_user_data = con;
417 	sk->sk_data_ready = ceph_sock_data_ready;
418 	sk->sk_write_space = ceph_sock_write_space;
419 	sk->sk_state_change = ceph_sock_state_change;
420 }
421 
422 
423 /*
424  * socket helpers
425  */
426 
427 /*
428  * initiate connection to a remote socket.
429  */
430 int ceph_tcp_connect(struct ceph_connection *con)
431 {
432 	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 	struct socket *sock;
434 	unsigned int noio_flag;
435 	int ret;
436 
437 	dout("%s con %p peer_addr %s\n", __func__, con,
438 	     ceph_pr_addr(&con->peer_addr));
439 	BUG_ON(con->sock);
440 
441 	/* sock_create_kern() allocates with GFP_KERNEL */
442 	noio_flag = memalloc_noio_save();
443 	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 			       SOCK_STREAM, IPPROTO_TCP, &sock);
445 	memalloc_noio_restore(noio_flag);
446 	if (ret)
447 		return ret;
448 	sock->sk->sk_allocation = GFP_NOFS;
449 
450 #ifdef CONFIG_LOCKDEP
451 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
452 #endif
453 
454 	set_sock_callbacks(sock, con);
455 
456 	con_sock_state_connecting(con);
457 	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
458 				 O_NONBLOCK);
459 	if (ret == -EINPROGRESS) {
460 		dout("connect %s EINPROGRESS sk_state = %u\n",
461 		     ceph_pr_addr(&con->peer_addr),
462 		     sock->sk->sk_state);
463 	} else if (ret < 0) {
464 		pr_err("connect %s error %d\n",
465 		       ceph_pr_addr(&con->peer_addr), ret);
466 		sock_release(sock);
467 		return ret;
468 	}
469 
470 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
471 		tcp_sock_set_nodelay(sock->sk);
472 
473 	con->sock = sock;
474 	return 0;
475 }
476 
477 /*
478  * Shutdown/close the socket for the given connection.
479  */
480 int ceph_con_close_socket(struct ceph_connection *con)
481 {
482 	int rc = 0;
483 
484 	dout("%s con %p sock %p\n", __func__, con, con->sock);
485 	if (con->sock) {
486 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
487 		sock_release(con->sock);
488 		con->sock = NULL;
489 	}
490 
491 	/*
492 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
493 	 * independent of the connection mutex, and we could have
494 	 * received a socket close event before we had the chance to
495 	 * shut the socket down.
496 	 */
497 	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
498 
499 	con_sock_state_closed(con);
500 	return rc;
501 }
502 
503 static void ceph_con_reset_protocol(struct ceph_connection *con)
504 {
505 	dout("%s con %p\n", __func__, con);
506 
507 	ceph_con_close_socket(con);
508 	if (con->in_msg) {
509 		WARN_ON(con->in_msg->con != con);
510 		ceph_msg_put(con->in_msg);
511 		con->in_msg = NULL;
512 	}
513 	if (con->out_msg) {
514 		WARN_ON(con->out_msg->con != con);
515 		ceph_msg_put(con->out_msg);
516 		con->out_msg = NULL;
517 	}
518 
519 	if (ceph_msgr2(from_msgr(con->msgr)))
520 		ceph_con_v2_reset_protocol(con);
521 	else
522 		ceph_con_v1_reset_protocol(con);
523 }
524 
525 /*
526  * Reset a connection.  Discard all incoming and outgoing messages
527  * and clear *_seq state.
528  */
529 static void ceph_msg_remove(struct ceph_msg *msg)
530 {
531 	list_del_init(&msg->list_head);
532 
533 	ceph_msg_put(msg);
534 }
535 
536 static void ceph_msg_remove_list(struct list_head *head)
537 {
538 	while (!list_empty(head)) {
539 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
540 							list_head);
541 		ceph_msg_remove(msg);
542 	}
543 }
544 
545 void ceph_con_reset_session(struct ceph_connection *con)
546 {
547 	dout("%s con %p\n", __func__, con);
548 
549 	WARN_ON(con->in_msg);
550 	WARN_ON(con->out_msg);
551 	ceph_msg_remove_list(&con->out_queue);
552 	ceph_msg_remove_list(&con->out_sent);
553 	con->out_seq = 0;
554 	con->in_seq = 0;
555 	con->in_seq_acked = 0;
556 
557 	if (ceph_msgr2(from_msgr(con->msgr)))
558 		ceph_con_v2_reset_session(con);
559 	else
560 		ceph_con_v1_reset_session(con);
561 }
562 
563 /*
564  * mark a peer down.  drop any open connections.
565  */
566 void ceph_con_close(struct ceph_connection *con)
567 {
568 	mutex_lock(&con->mutex);
569 	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
570 	con->state = CEPH_CON_S_CLOSED;
571 
572 	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
573 							  connect */
574 	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
575 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
576 	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
577 
578 	ceph_con_reset_protocol(con);
579 	ceph_con_reset_session(con);
580 	cancel_con(con);
581 	mutex_unlock(&con->mutex);
582 }
583 EXPORT_SYMBOL(ceph_con_close);
584 
585 /*
586  * Reopen a closed connection, with a new peer address.
587  */
588 void ceph_con_open(struct ceph_connection *con,
589 		   __u8 entity_type, __u64 entity_num,
590 		   struct ceph_entity_addr *addr)
591 {
592 	mutex_lock(&con->mutex);
593 	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
594 
595 	WARN_ON(con->state != CEPH_CON_S_CLOSED);
596 	con->state = CEPH_CON_S_PREOPEN;
597 
598 	con->peer_name.type = (__u8) entity_type;
599 	con->peer_name.num = cpu_to_le64(entity_num);
600 
601 	memcpy(&con->peer_addr, addr, sizeof(*addr));
602 	con->delay = 0;      /* reset backoff memory */
603 	mutex_unlock(&con->mutex);
604 	queue_con(con);
605 }
606 EXPORT_SYMBOL(ceph_con_open);
607 
608 /*
609  * return true if this connection ever successfully opened
610  */
611 bool ceph_con_opened(struct ceph_connection *con)
612 {
613 	if (ceph_msgr2(from_msgr(con->msgr)))
614 		return ceph_con_v2_opened(con);
615 
616 	return ceph_con_v1_opened(con);
617 }
618 
619 /*
620  * initialize a new connection.
621  */
622 void ceph_con_init(struct ceph_connection *con, void *private,
623 	const struct ceph_connection_operations *ops,
624 	struct ceph_messenger *msgr)
625 {
626 	dout("con_init %p\n", con);
627 	memset(con, 0, sizeof(*con));
628 	con->private = private;
629 	con->ops = ops;
630 	con->msgr = msgr;
631 
632 	con_sock_state_init(con);
633 
634 	mutex_init(&con->mutex);
635 	INIT_LIST_HEAD(&con->out_queue);
636 	INIT_LIST_HEAD(&con->out_sent);
637 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
638 
639 	con->state = CEPH_CON_S_CLOSED;
640 }
641 EXPORT_SYMBOL(ceph_con_init);
642 
643 /*
644  * We maintain a global counter to order connection attempts.  Get
645  * a unique seq greater than @gt.
646  */
647 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
648 {
649 	u32 ret;
650 
651 	spin_lock(&msgr->global_seq_lock);
652 	if (msgr->global_seq < gt)
653 		msgr->global_seq = gt;
654 	ret = ++msgr->global_seq;
655 	spin_unlock(&msgr->global_seq_lock);
656 	return ret;
657 }
658 
659 /*
660  * Discard messages that have been acked by the server.
661  */
662 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
663 {
664 	struct ceph_msg *msg;
665 	u64 seq;
666 
667 	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
668 	while (!list_empty(&con->out_sent)) {
669 		msg = list_first_entry(&con->out_sent, struct ceph_msg,
670 				       list_head);
671 		WARN_ON(msg->needs_out_seq);
672 		seq = le64_to_cpu(msg->hdr.seq);
673 		if (seq > ack_seq)
674 			break;
675 
676 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
677 		     msg, seq);
678 		ceph_msg_remove(msg);
679 	}
680 }
681 
682 /*
683  * Discard messages that have been requeued in con_fault(), up to
684  * reconnect_seq.  This avoids gratuitously resending messages that
685  * the server had received and handled prior to reconnect.
686  */
687 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
688 {
689 	struct ceph_msg *msg;
690 	u64 seq;
691 
692 	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
693 	while (!list_empty(&con->out_queue)) {
694 		msg = list_first_entry(&con->out_queue, struct ceph_msg,
695 				       list_head);
696 		if (msg->needs_out_seq)
697 			break;
698 		seq = le64_to_cpu(msg->hdr.seq);
699 		if (seq > reconnect_seq)
700 			break;
701 
702 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
703 		     msg, seq);
704 		ceph_msg_remove(msg);
705 	}
706 }
707 
708 #ifdef CONFIG_BLOCK
709 
710 /*
711  * For a bio data item, a piece is whatever remains of the next
712  * entry in the current bio iovec, or the first entry in the next
713  * bio in the list.
714  */
715 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
716 					size_t length)
717 {
718 	struct ceph_msg_data *data = cursor->data;
719 	struct ceph_bio_iter *it = &cursor->bio_iter;
720 
721 	cursor->resid = min_t(size_t, length, data->bio_length);
722 	*it = data->bio_pos;
723 	if (cursor->resid < it->iter.bi_size)
724 		it->iter.bi_size = cursor->resid;
725 
726 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
727 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
728 }
729 
730 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
731 						size_t *page_offset,
732 						size_t *length)
733 {
734 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
735 					   cursor->bio_iter.iter);
736 
737 	*page_offset = bv.bv_offset;
738 	*length = bv.bv_len;
739 	return bv.bv_page;
740 }
741 
742 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
743 					size_t bytes)
744 {
745 	struct ceph_bio_iter *it = &cursor->bio_iter;
746 	struct page *page = bio_iter_page(it->bio, it->iter);
747 
748 	BUG_ON(bytes > cursor->resid);
749 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
750 	cursor->resid -= bytes;
751 	bio_advance_iter(it->bio, &it->iter, bytes);
752 
753 	if (!cursor->resid) {
754 		BUG_ON(!cursor->last_piece);
755 		return false;   /* no more data */
756 	}
757 
758 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
759 		       page == bio_iter_page(it->bio, it->iter)))
760 		return false;	/* more bytes to process in this segment */
761 
762 	if (!it->iter.bi_size) {
763 		it->bio = it->bio->bi_next;
764 		it->iter = it->bio->bi_iter;
765 		if (cursor->resid < it->iter.bi_size)
766 			it->iter.bi_size = cursor->resid;
767 	}
768 
769 	BUG_ON(cursor->last_piece);
770 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
771 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
772 	return true;
773 }
774 #endif /* CONFIG_BLOCK */
775 
776 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 					size_t length)
778 {
779 	struct ceph_msg_data *data = cursor->data;
780 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
781 
782 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 	cursor->bvec_iter = data->bvec_pos.iter;
784 	cursor->bvec_iter.bi_size = cursor->resid;
785 
786 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787 	cursor->last_piece =
788 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
789 }
790 
791 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
792 						size_t *page_offset,
793 						size_t *length)
794 {
795 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
796 					   cursor->bvec_iter);
797 
798 	*page_offset = bv.bv_offset;
799 	*length = bv.bv_len;
800 	return bv.bv_page;
801 }
802 
803 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
804 					size_t bytes)
805 {
806 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
807 	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
808 
809 	BUG_ON(bytes > cursor->resid);
810 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
811 	cursor->resid -= bytes;
812 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
813 
814 	if (!cursor->resid) {
815 		BUG_ON(!cursor->last_piece);
816 		return false;   /* no more data */
817 	}
818 
819 	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 		return false;	/* more bytes to process in this segment */
822 
823 	BUG_ON(cursor->last_piece);
824 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
825 	cursor->last_piece =
826 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
827 	return true;
828 }
829 
830 /*
831  * For a page array, a piece comes from the first page in the array
832  * that has not already been fully consumed.
833  */
834 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
835 					size_t length)
836 {
837 	struct ceph_msg_data *data = cursor->data;
838 	int page_count;
839 
840 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
841 
842 	BUG_ON(!data->pages);
843 	BUG_ON(!data->length);
844 
845 	cursor->resid = min(length, data->length);
846 	page_count = calc_pages_for(data->alignment, (u64)data->length);
847 	cursor->page_offset = data->alignment & ~PAGE_MASK;
848 	cursor->page_index = 0;
849 	BUG_ON(page_count > (int)USHRT_MAX);
850 	cursor->page_count = (unsigned short)page_count;
851 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
852 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
853 }
854 
855 static struct page *
856 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
857 					size_t *page_offset, size_t *length)
858 {
859 	struct ceph_msg_data *data = cursor->data;
860 
861 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
862 
863 	BUG_ON(cursor->page_index >= cursor->page_count);
864 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
865 
866 	*page_offset = cursor->page_offset;
867 	if (cursor->last_piece)
868 		*length = cursor->resid;
869 	else
870 		*length = PAGE_SIZE - *page_offset;
871 
872 	return data->pages[cursor->page_index];
873 }
874 
875 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
876 						size_t bytes)
877 {
878 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
879 
880 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
881 
882 	/* Advance the cursor page offset */
883 
884 	cursor->resid -= bytes;
885 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
886 	if (!bytes || cursor->page_offset)
887 		return false;	/* more bytes to process in the current page */
888 
889 	if (!cursor->resid)
890 		return false;   /* no more data */
891 
892 	/* Move on to the next page; offset is already at 0 */
893 
894 	BUG_ON(cursor->page_index >= cursor->page_count);
895 	cursor->page_index++;
896 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
897 
898 	return true;
899 }
900 
901 /*
902  * For a pagelist, a piece is whatever remains to be consumed in the
903  * first page in the list, or the front of the next page.
904  */
905 static void
906 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
907 					size_t length)
908 {
909 	struct ceph_msg_data *data = cursor->data;
910 	struct ceph_pagelist *pagelist;
911 	struct page *page;
912 
913 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
914 
915 	pagelist = data->pagelist;
916 	BUG_ON(!pagelist);
917 
918 	if (!length)
919 		return;		/* pagelist can be assigned but empty */
920 
921 	BUG_ON(list_empty(&pagelist->head));
922 	page = list_first_entry(&pagelist->head, struct page, lru);
923 
924 	cursor->resid = min(length, pagelist->length);
925 	cursor->page = page;
926 	cursor->offset = 0;
927 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
928 }
929 
930 static struct page *
931 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
932 				size_t *page_offset, size_t *length)
933 {
934 	struct ceph_msg_data *data = cursor->data;
935 	struct ceph_pagelist *pagelist;
936 
937 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
938 
939 	pagelist = data->pagelist;
940 	BUG_ON(!pagelist);
941 
942 	BUG_ON(!cursor->page);
943 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
944 
945 	/* offset of first page in pagelist is always 0 */
946 	*page_offset = cursor->offset & ~PAGE_MASK;
947 	if (cursor->last_piece)
948 		*length = cursor->resid;
949 	else
950 		*length = PAGE_SIZE - *page_offset;
951 
952 	return cursor->page;
953 }
954 
955 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
956 						size_t bytes)
957 {
958 	struct ceph_msg_data *data = cursor->data;
959 	struct ceph_pagelist *pagelist;
960 
961 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
962 
963 	pagelist = data->pagelist;
964 	BUG_ON(!pagelist);
965 
966 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
967 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
968 
969 	/* Advance the cursor offset */
970 
971 	cursor->resid -= bytes;
972 	cursor->offset += bytes;
973 	/* offset of first page in pagelist is always 0 */
974 	if (!bytes || cursor->offset & ~PAGE_MASK)
975 		return false;	/* more bytes to process in the current page */
976 
977 	if (!cursor->resid)
978 		return false;   /* no more data */
979 
980 	/* Move on to the next page */
981 
982 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
983 	cursor->page = list_next_entry(cursor->page, lru);
984 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
985 
986 	return true;
987 }
988 
989 /*
990  * Message data is handled (sent or received) in pieces, where each
991  * piece resides on a single page.  The network layer might not
992  * consume an entire piece at once.  A data item's cursor keeps
993  * track of which piece is next to process and how much remains to
994  * be processed in that piece.  It also tracks whether the current
995  * piece is the last one in the data item.
996  */
997 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
998 {
999 	size_t length = cursor->total_resid;
1000 
1001 	switch (cursor->data->type) {
1002 	case CEPH_MSG_DATA_PAGELIST:
1003 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1004 		break;
1005 	case CEPH_MSG_DATA_PAGES:
1006 		ceph_msg_data_pages_cursor_init(cursor, length);
1007 		break;
1008 #ifdef CONFIG_BLOCK
1009 	case CEPH_MSG_DATA_BIO:
1010 		ceph_msg_data_bio_cursor_init(cursor, length);
1011 		break;
1012 #endif /* CONFIG_BLOCK */
1013 	case CEPH_MSG_DATA_BVECS:
1014 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1015 		break;
1016 	case CEPH_MSG_DATA_NONE:
1017 	default:
1018 		/* BUG(); */
1019 		break;
1020 	}
1021 	cursor->need_crc = true;
1022 }
1023 
1024 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1025 			       struct ceph_msg *msg, size_t length)
1026 {
1027 	BUG_ON(!length);
1028 	BUG_ON(length > msg->data_length);
1029 	BUG_ON(!msg->num_data_items);
1030 
1031 	cursor->total_resid = length;
1032 	cursor->data = msg->data;
1033 
1034 	__ceph_msg_data_cursor_init(cursor);
1035 }
1036 
1037 /*
1038  * Return the page containing the next piece to process for a given
1039  * data item, and supply the page offset and length of that piece.
1040  * Indicate whether this is the last piece in this data item.
1041  */
1042 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1043 				size_t *page_offset, size_t *length,
1044 				bool *last_piece)
1045 {
1046 	struct page *page;
1047 
1048 	switch (cursor->data->type) {
1049 	case CEPH_MSG_DATA_PAGELIST:
1050 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1051 		break;
1052 	case CEPH_MSG_DATA_PAGES:
1053 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1054 		break;
1055 #ifdef CONFIG_BLOCK
1056 	case CEPH_MSG_DATA_BIO:
1057 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1058 		break;
1059 #endif /* CONFIG_BLOCK */
1060 	case CEPH_MSG_DATA_BVECS:
1061 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1062 		break;
1063 	case CEPH_MSG_DATA_NONE:
1064 	default:
1065 		page = NULL;
1066 		break;
1067 	}
1068 
1069 	BUG_ON(!page);
1070 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1071 	BUG_ON(!*length);
1072 	BUG_ON(*length > cursor->resid);
1073 	if (last_piece)
1074 		*last_piece = cursor->last_piece;
1075 
1076 	return page;
1077 }
1078 
1079 /*
1080  * Returns true if the result moves the cursor on to the next piece
1081  * of the data item.
1082  */
1083 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1084 {
1085 	bool new_piece;
1086 
1087 	BUG_ON(bytes > cursor->resid);
1088 	switch (cursor->data->type) {
1089 	case CEPH_MSG_DATA_PAGELIST:
1090 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1091 		break;
1092 	case CEPH_MSG_DATA_PAGES:
1093 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1094 		break;
1095 #ifdef CONFIG_BLOCK
1096 	case CEPH_MSG_DATA_BIO:
1097 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1098 		break;
1099 #endif /* CONFIG_BLOCK */
1100 	case CEPH_MSG_DATA_BVECS:
1101 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1102 		break;
1103 	case CEPH_MSG_DATA_NONE:
1104 	default:
1105 		BUG();
1106 		break;
1107 	}
1108 	cursor->total_resid -= bytes;
1109 
1110 	if (!cursor->resid && cursor->total_resid) {
1111 		WARN_ON(!cursor->last_piece);
1112 		cursor->data++;
1113 		__ceph_msg_data_cursor_init(cursor);
1114 		new_piece = true;
1115 	}
1116 	cursor->need_crc = new_piece;
1117 }
1118 
1119 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1120 		     unsigned int length)
1121 {
1122 	char *kaddr;
1123 
1124 	kaddr = kmap(page);
1125 	BUG_ON(kaddr == NULL);
1126 	crc = crc32c(crc, kaddr + page_offset, length);
1127 	kunmap(page);
1128 
1129 	return crc;
1130 }
1131 
1132 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1133 {
1134 	struct sockaddr_storage ss = addr->in_addr; /* align */
1135 	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1136 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1137 
1138 	switch (ss.ss_family) {
1139 	case AF_INET:
1140 		return addr4->s_addr == htonl(INADDR_ANY);
1141 	case AF_INET6:
1142 		return ipv6_addr_any(addr6);
1143 	default:
1144 		return true;
1145 	}
1146 }
1147 
1148 int ceph_addr_port(const struct ceph_entity_addr *addr)
1149 {
1150 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1151 	case AF_INET:
1152 		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1153 	case AF_INET6:
1154 		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1155 	}
1156 	return 0;
1157 }
1158 
1159 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1160 {
1161 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1162 	case AF_INET:
1163 		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1164 		break;
1165 	case AF_INET6:
1166 		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1167 		break;
1168 	}
1169 }
1170 
1171 /*
1172  * Unlike other *_pton function semantics, zero indicates success.
1173  */
1174 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1175 		char delim, const char **ipend)
1176 {
1177 	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1178 
1179 	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1180 		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1181 		return 0;
1182 	}
1183 
1184 	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1185 		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1186 		return 0;
1187 	}
1188 
1189 	return -EINVAL;
1190 }
1191 
1192 /*
1193  * Extract hostname string and resolve using kernel DNS facility.
1194  */
1195 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1196 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1197 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1198 {
1199 	const char *end, *delim_p;
1200 	char *colon_p, *ip_addr = NULL;
1201 	int ip_len, ret;
1202 
1203 	/*
1204 	 * The end of the hostname occurs immediately preceding the delimiter or
1205 	 * the port marker (':') where the delimiter takes precedence.
1206 	 */
1207 	delim_p = memchr(name, delim, namelen);
1208 	colon_p = memchr(name, ':', namelen);
1209 
1210 	if (delim_p && colon_p)
1211 		end = delim_p < colon_p ? delim_p : colon_p;
1212 	else if (!delim_p && colon_p)
1213 		end = colon_p;
1214 	else {
1215 		end = delim_p;
1216 		if (!end) /* case: hostname:/ */
1217 			end = name + namelen;
1218 	}
1219 
1220 	if (end <= name)
1221 		return -EINVAL;
1222 
1223 	/* do dns_resolve upcall */
1224 	ip_len = dns_query(current->nsproxy->net_ns,
1225 			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1226 	if (ip_len > 0)
1227 		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1228 	else
1229 		ret = -ESRCH;
1230 
1231 	kfree(ip_addr);
1232 
1233 	*ipend = end;
1234 
1235 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1236 			ret, ret ? "failed" : ceph_pr_addr(addr));
1237 
1238 	return ret;
1239 }
1240 #else
1241 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1242 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1243 {
1244 	return -EINVAL;
1245 }
1246 #endif
1247 
1248 /*
1249  * Parse a server name (IP or hostname). If a valid IP address is not found
1250  * then try to extract a hostname to resolve using userspace DNS upcall.
1251  */
1252 static int ceph_parse_server_name(const char *name, size_t namelen,
1253 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1254 {
1255 	int ret;
1256 
1257 	ret = ceph_pton(name, namelen, addr, delim, ipend);
1258 	if (ret)
1259 		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1260 
1261 	return ret;
1262 }
1263 
1264 /*
1265  * Parse an ip[:port] list into an addr array.  Use the default
1266  * monitor port if a port isn't specified.
1267  */
1268 int ceph_parse_ips(const char *c, const char *end,
1269 		   struct ceph_entity_addr *addr,
1270 		   int max_count, int *count, char delim)
1271 {
1272 	int i, ret = -EINVAL;
1273 	const char *p = c;
1274 
1275 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1276 	for (i = 0; i < max_count; i++) {
1277 		char cur_delim = delim;
1278 		const char *ipend;
1279 		int port;
1280 
1281 		if (*p == '[') {
1282 			cur_delim = ']';
1283 			p++;
1284 		}
1285 
1286 		ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1287 					     &ipend);
1288 		if (ret)
1289 			goto bad;
1290 		ret = -EINVAL;
1291 
1292 		p = ipend;
1293 
1294 		if (cur_delim == ']') {
1295 			if (*p != ']') {
1296 				dout("missing matching ']'\n");
1297 				goto bad;
1298 			}
1299 			p++;
1300 		}
1301 
1302 		/* port? */
1303 		if (p < end && *p == ':') {
1304 			port = 0;
1305 			p++;
1306 			while (p < end && *p >= '0' && *p <= '9') {
1307 				port = (port * 10) + (*p - '0');
1308 				p++;
1309 			}
1310 			if (port == 0)
1311 				port = CEPH_MON_PORT;
1312 			else if (port > 65535)
1313 				goto bad;
1314 		} else {
1315 			port = CEPH_MON_PORT;
1316 		}
1317 
1318 		ceph_addr_set_port(&addr[i], port);
1319 		/*
1320 		 * We want the type to be set according to ms_mode
1321 		 * option, but options are normally parsed after mon
1322 		 * addresses.  Rather than complicating parsing, set
1323 		 * to LEGACY and override in build_initial_monmap()
1324 		 * for mon addresses and ceph_messenger_init() for
1325 		 * ip option.
1326 		 */
1327 		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1328 		addr[i].nonce = 0;
1329 
1330 		dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1331 
1332 		if (p == end)
1333 			break;
1334 		if (*p != delim)
1335 			goto bad;
1336 		p++;
1337 	}
1338 
1339 	if (p != end)
1340 		goto bad;
1341 
1342 	if (count)
1343 		*count = i + 1;
1344 	return 0;
1345 
1346 bad:
1347 	return ret;
1348 }
1349 
1350 /*
1351  * Process message.  This happens in the worker thread.  The callback should
1352  * be careful not to do anything that waits on other incoming messages or it
1353  * may deadlock.
1354  */
1355 void ceph_con_process_message(struct ceph_connection *con)
1356 {
1357 	struct ceph_msg *msg = con->in_msg;
1358 
1359 	BUG_ON(con->in_msg->con != con);
1360 	con->in_msg = NULL;
1361 
1362 	/* if first message, set peer_name */
1363 	if (con->peer_name.type == 0)
1364 		con->peer_name = msg->hdr.src;
1365 
1366 	con->in_seq++;
1367 	mutex_unlock(&con->mutex);
1368 
1369 	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1370 	     msg, le64_to_cpu(msg->hdr.seq),
1371 	     ENTITY_NAME(msg->hdr.src),
1372 	     le16_to_cpu(msg->hdr.type),
1373 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1374 	     le32_to_cpu(msg->hdr.front_len),
1375 	     le32_to_cpu(msg->hdr.middle_len),
1376 	     le32_to_cpu(msg->hdr.data_len),
1377 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1378 	con->ops->dispatch(con, msg);
1379 
1380 	mutex_lock(&con->mutex);
1381 }
1382 
1383 /*
1384  * Atomically queue work on a connection after the specified delay.
1385  * Bump @con reference to avoid races with connection teardown.
1386  * Returns 0 if work was queued, or an error code otherwise.
1387  */
1388 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1389 {
1390 	if (!con->ops->get(con)) {
1391 		dout("%s %p ref count 0\n", __func__, con);
1392 		return -ENOENT;
1393 	}
1394 
1395 	if (delay >= HZ)
1396 		delay = round_jiffies_relative(delay);
1397 
1398 	dout("%s %p %lu\n", __func__, con, delay);
1399 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1400 		dout("%s %p - already queued\n", __func__, con);
1401 		con->ops->put(con);
1402 		return -EBUSY;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static void queue_con(struct ceph_connection *con)
1409 {
1410 	(void) queue_con_delay(con, 0);
1411 }
1412 
1413 static void cancel_con(struct ceph_connection *con)
1414 {
1415 	if (cancel_delayed_work(&con->work)) {
1416 		dout("%s %p\n", __func__, con);
1417 		con->ops->put(con);
1418 	}
1419 }
1420 
1421 static bool con_sock_closed(struct ceph_connection *con)
1422 {
1423 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1424 		return false;
1425 
1426 #define CASE(x)								\
1427 	case CEPH_CON_S_ ## x:						\
1428 		con->error_msg = "socket closed (con state " #x ")";	\
1429 		break;
1430 
1431 	switch (con->state) {
1432 	CASE(CLOSED);
1433 	CASE(PREOPEN);
1434 	CASE(V1_BANNER);
1435 	CASE(V1_CONNECT_MSG);
1436 	CASE(V2_BANNER_PREFIX);
1437 	CASE(V2_BANNER_PAYLOAD);
1438 	CASE(V2_HELLO);
1439 	CASE(V2_AUTH);
1440 	CASE(V2_AUTH_SIGNATURE);
1441 	CASE(V2_SESSION_CONNECT);
1442 	CASE(V2_SESSION_RECONNECT);
1443 	CASE(OPEN);
1444 	CASE(STANDBY);
1445 	default:
1446 		BUG();
1447 	}
1448 #undef CASE
1449 
1450 	return true;
1451 }
1452 
1453 static bool con_backoff(struct ceph_connection *con)
1454 {
1455 	int ret;
1456 
1457 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1458 		return false;
1459 
1460 	ret = queue_con_delay(con, con->delay);
1461 	if (ret) {
1462 		dout("%s: con %p FAILED to back off %lu\n", __func__,
1463 			con, con->delay);
1464 		BUG_ON(ret == -ENOENT);
1465 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1466 	}
1467 
1468 	return true;
1469 }
1470 
1471 /* Finish fault handling; con->mutex must *not* be held here */
1472 
1473 static void con_fault_finish(struct ceph_connection *con)
1474 {
1475 	dout("%s %p\n", __func__, con);
1476 
1477 	/*
1478 	 * in case we faulted due to authentication, invalidate our
1479 	 * current tickets so that we can get new ones.
1480 	 */
1481 	if (con->v1.auth_retry) {
1482 		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1483 		if (con->ops->invalidate_authorizer)
1484 			con->ops->invalidate_authorizer(con);
1485 		con->v1.auth_retry = 0;
1486 	}
1487 
1488 	if (con->ops->fault)
1489 		con->ops->fault(con);
1490 }
1491 
1492 /*
1493  * Do some work on a connection.  Drop a connection ref when we're done.
1494  */
1495 static void ceph_con_workfn(struct work_struct *work)
1496 {
1497 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1498 						   work.work);
1499 	bool fault;
1500 
1501 	mutex_lock(&con->mutex);
1502 	while (true) {
1503 		int ret;
1504 
1505 		if ((fault = con_sock_closed(con))) {
1506 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1507 			break;
1508 		}
1509 		if (con_backoff(con)) {
1510 			dout("%s: con %p BACKOFF\n", __func__, con);
1511 			break;
1512 		}
1513 		if (con->state == CEPH_CON_S_STANDBY) {
1514 			dout("%s: con %p STANDBY\n", __func__, con);
1515 			break;
1516 		}
1517 		if (con->state == CEPH_CON_S_CLOSED) {
1518 			dout("%s: con %p CLOSED\n", __func__, con);
1519 			BUG_ON(con->sock);
1520 			break;
1521 		}
1522 		if (con->state == CEPH_CON_S_PREOPEN) {
1523 			dout("%s: con %p PREOPEN\n", __func__, con);
1524 			BUG_ON(con->sock);
1525 		}
1526 
1527 		if (ceph_msgr2(from_msgr(con->msgr)))
1528 			ret = ceph_con_v2_try_read(con);
1529 		else
1530 			ret = ceph_con_v1_try_read(con);
1531 		if (ret < 0) {
1532 			if (ret == -EAGAIN)
1533 				continue;
1534 			if (!con->error_msg)
1535 				con->error_msg = "socket error on read";
1536 			fault = true;
1537 			break;
1538 		}
1539 
1540 		if (ceph_msgr2(from_msgr(con->msgr)))
1541 			ret = ceph_con_v2_try_write(con);
1542 		else
1543 			ret = ceph_con_v1_try_write(con);
1544 		if (ret < 0) {
1545 			if (ret == -EAGAIN)
1546 				continue;
1547 			if (!con->error_msg)
1548 				con->error_msg = "socket error on write";
1549 			fault = true;
1550 		}
1551 
1552 		break;	/* If we make it to here, we're done */
1553 	}
1554 	if (fault)
1555 		con_fault(con);
1556 	mutex_unlock(&con->mutex);
1557 
1558 	if (fault)
1559 		con_fault_finish(con);
1560 
1561 	con->ops->put(con);
1562 }
1563 
1564 /*
1565  * Generic error/fault handler.  A retry mechanism is used with
1566  * exponential backoff
1567  */
1568 static void con_fault(struct ceph_connection *con)
1569 {
1570 	dout("fault %p state %d to peer %s\n",
1571 	     con, con->state, ceph_pr_addr(&con->peer_addr));
1572 
1573 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1574 		ceph_pr_addr(&con->peer_addr), con->error_msg);
1575 	con->error_msg = NULL;
1576 
1577 	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1578 		con->state == CEPH_CON_S_CLOSED);
1579 
1580 	ceph_con_reset_protocol(con);
1581 
1582 	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1583 		dout("fault on LOSSYTX channel, marking CLOSED\n");
1584 		con->state = CEPH_CON_S_CLOSED;
1585 		return;
1586 	}
1587 
1588 	/* Requeue anything that hasn't been acked */
1589 	list_splice_init(&con->out_sent, &con->out_queue);
1590 
1591 	/* If there are no messages queued or keepalive pending, place
1592 	 * the connection in a STANDBY state */
1593 	if (list_empty(&con->out_queue) &&
1594 	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1595 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1596 		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1597 		con->state = CEPH_CON_S_STANDBY;
1598 	} else {
1599 		/* retry after a delay. */
1600 		con->state = CEPH_CON_S_PREOPEN;
1601 		if (!con->delay) {
1602 			con->delay = BASE_DELAY_INTERVAL;
1603 		} else if (con->delay < MAX_DELAY_INTERVAL) {
1604 			con->delay *= 2;
1605 			if (con->delay > MAX_DELAY_INTERVAL)
1606 				con->delay = MAX_DELAY_INTERVAL;
1607 		}
1608 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1609 		queue_con(con);
1610 	}
1611 }
1612 
1613 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1614 {
1615 	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1616 	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1617 	ceph_encode_my_addr(msgr);
1618 }
1619 
1620 /*
1621  * initialize a new messenger instance
1622  */
1623 void ceph_messenger_init(struct ceph_messenger *msgr,
1624 			 struct ceph_entity_addr *myaddr)
1625 {
1626 	spin_lock_init(&msgr->global_seq_lock);
1627 
1628 	if (myaddr) {
1629 		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1630 		       sizeof(msgr->inst.addr.in_addr));
1631 		ceph_addr_set_port(&msgr->inst.addr, 0);
1632 	}
1633 
1634 	/*
1635 	 * Since nautilus, clients are identified using type ANY.
1636 	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1637 	 */
1638 	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1639 
1640 	/* generate a random non-zero nonce */
1641 	do {
1642 		get_random_bytes(&msgr->inst.addr.nonce,
1643 				 sizeof(msgr->inst.addr.nonce));
1644 	} while (!msgr->inst.addr.nonce);
1645 	ceph_encode_my_addr(msgr);
1646 
1647 	atomic_set(&msgr->stopping, 0);
1648 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1649 
1650 	dout("%s %p\n", __func__, msgr);
1651 }
1652 
1653 void ceph_messenger_fini(struct ceph_messenger *msgr)
1654 {
1655 	put_net(read_pnet(&msgr->net));
1656 }
1657 
1658 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1659 {
1660 	if (msg->con)
1661 		msg->con->ops->put(msg->con);
1662 
1663 	msg->con = con ? con->ops->get(con) : NULL;
1664 	BUG_ON(msg->con != con);
1665 }
1666 
1667 static void clear_standby(struct ceph_connection *con)
1668 {
1669 	/* come back from STANDBY? */
1670 	if (con->state == CEPH_CON_S_STANDBY) {
1671 		dout("clear_standby %p and ++connect_seq\n", con);
1672 		con->state = CEPH_CON_S_PREOPEN;
1673 		con->v1.connect_seq++;
1674 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1675 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1676 	}
1677 }
1678 
1679 /*
1680  * Queue up an outgoing message on the given connection.
1681  *
1682  * Consumes a ref on @msg.
1683  */
1684 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1685 {
1686 	/* set src+dst */
1687 	msg->hdr.src = con->msgr->inst.name;
1688 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1689 	msg->needs_out_seq = true;
1690 
1691 	mutex_lock(&con->mutex);
1692 
1693 	if (con->state == CEPH_CON_S_CLOSED) {
1694 		dout("con_send %p closed, dropping %p\n", con, msg);
1695 		ceph_msg_put(msg);
1696 		mutex_unlock(&con->mutex);
1697 		return;
1698 	}
1699 
1700 	msg_con_set(msg, con);
1701 
1702 	BUG_ON(!list_empty(&msg->list_head));
1703 	list_add_tail(&msg->list_head, &con->out_queue);
1704 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1705 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1706 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1707 	     le32_to_cpu(msg->hdr.front_len),
1708 	     le32_to_cpu(msg->hdr.middle_len),
1709 	     le32_to_cpu(msg->hdr.data_len));
1710 
1711 	clear_standby(con);
1712 	mutex_unlock(&con->mutex);
1713 
1714 	/* if there wasn't anything waiting to send before, queue
1715 	 * new work */
1716 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1717 		queue_con(con);
1718 }
1719 EXPORT_SYMBOL(ceph_con_send);
1720 
1721 /*
1722  * Revoke a message that was previously queued for send
1723  */
1724 void ceph_msg_revoke(struct ceph_msg *msg)
1725 {
1726 	struct ceph_connection *con = msg->con;
1727 
1728 	if (!con) {
1729 		dout("%s msg %p null con\n", __func__, msg);
1730 		return;		/* Message not in our possession */
1731 	}
1732 
1733 	mutex_lock(&con->mutex);
1734 	if (list_empty(&msg->list_head)) {
1735 		WARN_ON(con->out_msg == msg);
1736 		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1737 		mutex_unlock(&con->mutex);
1738 		return;
1739 	}
1740 
1741 	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1742 	msg->hdr.seq = 0;
1743 	ceph_msg_remove(msg);
1744 
1745 	if (con->out_msg == msg) {
1746 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1747 		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1748 		if (ceph_msgr2(from_msgr(con->msgr)))
1749 			ceph_con_v2_revoke(con);
1750 		else
1751 			ceph_con_v1_revoke(con);
1752 		ceph_msg_put(con->out_msg);
1753 		con->out_msg = NULL;
1754 	} else {
1755 		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1756 		     con, msg, con->out_msg);
1757 	}
1758 	mutex_unlock(&con->mutex);
1759 }
1760 
1761 /*
1762  * Revoke a message that we may be reading data into
1763  */
1764 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1765 {
1766 	struct ceph_connection *con = msg->con;
1767 
1768 	if (!con) {
1769 		dout("%s msg %p null con\n", __func__, msg);
1770 		return;		/* Message not in our possession */
1771 	}
1772 
1773 	mutex_lock(&con->mutex);
1774 	if (con->in_msg == msg) {
1775 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1776 		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1777 		if (ceph_msgr2(from_msgr(con->msgr)))
1778 			ceph_con_v2_revoke_incoming(con);
1779 		else
1780 			ceph_con_v1_revoke_incoming(con);
1781 		ceph_msg_put(con->in_msg);
1782 		con->in_msg = NULL;
1783 	} else {
1784 		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1785 		     con, msg, con->in_msg);
1786 	}
1787 	mutex_unlock(&con->mutex);
1788 }
1789 
1790 /*
1791  * Queue a keepalive byte to ensure the tcp connection is alive.
1792  */
1793 void ceph_con_keepalive(struct ceph_connection *con)
1794 {
1795 	dout("con_keepalive %p\n", con);
1796 	mutex_lock(&con->mutex);
1797 	clear_standby(con);
1798 	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1799 	mutex_unlock(&con->mutex);
1800 
1801 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1802 		queue_con(con);
1803 }
1804 EXPORT_SYMBOL(ceph_con_keepalive);
1805 
1806 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1807 			       unsigned long interval)
1808 {
1809 	if (interval > 0 &&
1810 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1811 		struct timespec64 now;
1812 		struct timespec64 ts;
1813 		ktime_get_real_ts64(&now);
1814 		jiffies_to_timespec64(interval, &ts);
1815 		ts = timespec64_add(con->last_keepalive_ack, ts);
1816 		return timespec64_compare(&now, &ts) >= 0;
1817 	}
1818 	return false;
1819 }
1820 
1821 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1822 {
1823 	BUG_ON(msg->num_data_items >= msg->max_data_items);
1824 	return &msg->data[msg->num_data_items++];
1825 }
1826 
1827 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1828 {
1829 	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1830 		int num_pages = calc_pages_for(data->alignment, data->length);
1831 		ceph_release_page_vector(data->pages, num_pages);
1832 	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1833 		ceph_pagelist_release(data->pagelist);
1834 	}
1835 }
1836 
1837 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1838 			     size_t length, size_t alignment, bool own_pages)
1839 {
1840 	struct ceph_msg_data *data;
1841 
1842 	BUG_ON(!pages);
1843 	BUG_ON(!length);
1844 
1845 	data = ceph_msg_data_add(msg);
1846 	data->type = CEPH_MSG_DATA_PAGES;
1847 	data->pages = pages;
1848 	data->length = length;
1849 	data->alignment = alignment & ~PAGE_MASK;
1850 	data->own_pages = own_pages;
1851 
1852 	msg->data_length += length;
1853 }
1854 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1855 
1856 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1857 				struct ceph_pagelist *pagelist)
1858 {
1859 	struct ceph_msg_data *data;
1860 
1861 	BUG_ON(!pagelist);
1862 	BUG_ON(!pagelist->length);
1863 
1864 	data = ceph_msg_data_add(msg);
1865 	data->type = CEPH_MSG_DATA_PAGELIST;
1866 	refcount_inc(&pagelist->refcnt);
1867 	data->pagelist = pagelist;
1868 
1869 	msg->data_length += pagelist->length;
1870 }
1871 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1872 
1873 #ifdef	CONFIG_BLOCK
1874 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1875 			   u32 length)
1876 {
1877 	struct ceph_msg_data *data;
1878 
1879 	data = ceph_msg_data_add(msg);
1880 	data->type = CEPH_MSG_DATA_BIO;
1881 	data->bio_pos = *bio_pos;
1882 	data->bio_length = length;
1883 
1884 	msg->data_length += length;
1885 }
1886 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1887 #endif	/* CONFIG_BLOCK */
1888 
1889 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1890 			     struct ceph_bvec_iter *bvec_pos)
1891 {
1892 	struct ceph_msg_data *data;
1893 
1894 	data = ceph_msg_data_add(msg);
1895 	data->type = CEPH_MSG_DATA_BVECS;
1896 	data->bvec_pos = *bvec_pos;
1897 
1898 	msg->data_length += bvec_pos->iter.bi_size;
1899 }
1900 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1901 
1902 /*
1903  * construct a new message with given type, size
1904  * the new msg has a ref count of 1.
1905  */
1906 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1907 			       gfp_t flags, bool can_fail)
1908 {
1909 	struct ceph_msg *m;
1910 
1911 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1912 	if (m == NULL)
1913 		goto out;
1914 
1915 	m->hdr.type = cpu_to_le16(type);
1916 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1917 	m->hdr.front_len = cpu_to_le32(front_len);
1918 
1919 	INIT_LIST_HEAD(&m->list_head);
1920 	kref_init(&m->kref);
1921 
1922 	/* front */
1923 	if (front_len) {
1924 		m->front.iov_base = kvmalloc(front_len, flags);
1925 		if (m->front.iov_base == NULL) {
1926 			dout("ceph_msg_new can't allocate %d bytes\n",
1927 			     front_len);
1928 			goto out2;
1929 		}
1930 	} else {
1931 		m->front.iov_base = NULL;
1932 	}
1933 	m->front_alloc_len = m->front.iov_len = front_len;
1934 
1935 	if (max_data_items) {
1936 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1937 					flags);
1938 		if (!m->data)
1939 			goto out2;
1940 
1941 		m->max_data_items = max_data_items;
1942 	}
1943 
1944 	dout("ceph_msg_new %p front %d\n", m, front_len);
1945 	return m;
1946 
1947 out2:
1948 	ceph_msg_put(m);
1949 out:
1950 	if (!can_fail) {
1951 		pr_err("msg_new can't create type %d front %d\n", type,
1952 		       front_len);
1953 		WARN_ON(1);
1954 	} else {
1955 		dout("msg_new can't create type %d front %d\n", type,
1956 		     front_len);
1957 	}
1958 	return NULL;
1959 }
1960 EXPORT_SYMBOL(ceph_msg_new2);
1961 
1962 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1963 			      bool can_fail)
1964 {
1965 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1966 }
1967 EXPORT_SYMBOL(ceph_msg_new);
1968 
1969 /*
1970  * Allocate "middle" portion of a message, if it is needed and wasn't
1971  * allocated by alloc_msg.  This allows us to read a small fixed-size
1972  * per-type header in the front and then gracefully fail (i.e.,
1973  * propagate the error to the caller based on info in the front) when
1974  * the middle is too large.
1975  */
1976 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1977 {
1978 	int type = le16_to_cpu(msg->hdr.type);
1979 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
1980 
1981 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1982 	     ceph_msg_type_name(type), middle_len);
1983 	BUG_ON(!middle_len);
1984 	BUG_ON(msg->middle);
1985 
1986 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1987 	if (!msg->middle)
1988 		return -ENOMEM;
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Allocate a message for receiving an incoming message on a
1994  * connection, and save the result in con->in_msg.  Uses the
1995  * connection's private alloc_msg op if available.
1996  *
1997  * Returns 0 on success, or a negative error code.
1998  *
1999  * On success, if we set *skip = 1:
2000  *  - the next message should be skipped and ignored.
2001  *  - con->in_msg == NULL
2002  * or if we set *skip = 0:
2003  *  - con->in_msg is non-null.
2004  * On error (ENOMEM, EAGAIN, ...),
2005  *  - con->in_msg == NULL
2006  */
2007 int ceph_con_in_msg_alloc(struct ceph_connection *con,
2008 			  struct ceph_msg_header *hdr, int *skip)
2009 {
2010 	int middle_len = le32_to_cpu(hdr->middle_len);
2011 	struct ceph_msg *msg;
2012 	int ret = 0;
2013 
2014 	BUG_ON(con->in_msg != NULL);
2015 	BUG_ON(!con->ops->alloc_msg);
2016 
2017 	mutex_unlock(&con->mutex);
2018 	msg = con->ops->alloc_msg(con, hdr, skip);
2019 	mutex_lock(&con->mutex);
2020 	if (con->state != CEPH_CON_S_OPEN) {
2021 		if (msg)
2022 			ceph_msg_put(msg);
2023 		return -EAGAIN;
2024 	}
2025 	if (msg) {
2026 		BUG_ON(*skip);
2027 		msg_con_set(msg, con);
2028 		con->in_msg = msg;
2029 	} else {
2030 		/*
2031 		 * Null message pointer means either we should skip
2032 		 * this message or we couldn't allocate memory.  The
2033 		 * former is not an error.
2034 		 */
2035 		if (*skip)
2036 			return 0;
2037 
2038 		con->error_msg = "error allocating memory for incoming message";
2039 		return -ENOMEM;
2040 	}
2041 	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2042 
2043 	if (middle_len && !con->in_msg->middle) {
2044 		ret = ceph_alloc_middle(con, con->in_msg);
2045 		if (ret < 0) {
2046 			ceph_msg_put(con->in_msg);
2047 			con->in_msg = NULL;
2048 		}
2049 	}
2050 
2051 	return ret;
2052 }
2053 
2054 void ceph_con_get_out_msg(struct ceph_connection *con)
2055 {
2056 	struct ceph_msg *msg;
2057 
2058 	BUG_ON(list_empty(&con->out_queue));
2059 	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2060 	WARN_ON(msg->con != con);
2061 
2062 	/*
2063 	 * Put the message on "sent" list using a ref from ceph_con_send().
2064 	 * It is put when the message is acked or revoked.
2065 	 */
2066 	list_move_tail(&msg->list_head, &con->out_sent);
2067 
2068 	/*
2069 	 * Only assign outgoing seq # if we haven't sent this message
2070 	 * yet.  If it is requeued, resend with it's original seq.
2071 	 */
2072 	if (msg->needs_out_seq) {
2073 		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2074 		msg->needs_out_seq = false;
2075 
2076 		if (con->ops->reencode_message)
2077 			con->ops->reencode_message(msg);
2078 	}
2079 
2080 	/*
2081 	 * Get a ref for out_msg.  It is put when we are done sending the
2082 	 * message or in case of a fault.
2083 	 */
2084 	WARN_ON(con->out_msg);
2085 	con->out_msg = ceph_msg_get(msg);
2086 }
2087 
2088 /*
2089  * Free a generically kmalloc'd message.
2090  */
2091 static void ceph_msg_free(struct ceph_msg *m)
2092 {
2093 	dout("%s %p\n", __func__, m);
2094 	kvfree(m->front.iov_base);
2095 	kfree(m->data);
2096 	kmem_cache_free(ceph_msg_cache, m);
2097 }
2098 
2099 static void ceph_msg_release(struct kref *kref)
2100 {
2101 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2102 	int i;
2103 
2104 	dout("%s %p\n", __func__, m);
2105 	WARN_ON(!list_empty(&m->list_head));
2106 
2107 	msg_con_set(m, NULL);
2108 
2109 	/* drop middle, data, if any */
2110 	if (m->middle) {
2111 		ceph_buffer_put(m->middle);
2112 		m->middle = NULL;
2113 	}
2114 
2115 	for (i = 0; i < m->num_data_items; i++)
2116 		ceph_msg_data_destroy(&m->data[i]);
2117 
2118 	if (m->pool)
2119 		ceph_msgpool_put(m->pool, m);
2120 	else
2121 		ceph_msg_free(m);
2122 }
2123 
2124 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2125 {
2126 	dout("%s %p (was %d)\n", __func__, msg,
2127 	     kref_read(&msg->kref));
2128 	kref_get(&msg->kref);
2129 	return msg;
2130 }
2131 EXPORT_SYMBOL(ceph_msg_get);
2132 
2133 void ceph_msg_put(struct ceph_msg *msg)
2134 {
2135 	dout("%s %p (was %d)\n", __func__, msg,
2136 	     kref_read(&msg->kref));
2137 	kref_put(&msg->kref, ceph_msg_release);
2138 }
2139 EXPORT_SYMBOL(ceph_msg_put);
2140 
2141 void ceph_msg_dump(struct ceph_msg *msg)
2142 {
2143 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2144 		 msg->front_alloc_len, msg->data_length);
2145 	print_hex_dump(KERN_DEBUG, "header: ",
2146 		       DUMP_PREFIX_OFFSET, 16, 1,
2147 		       &msg->hdr, sizeof(msg->hdr), true);
2148 	print_hex_dump(KERN_DEBUG, " front: ",
2149 		       DUMP_PREFIX_OFFSET, 16, 1,
2150 		       msg->front.iov_base, msg->front.iov_len, true);
2151 	if (msg->middle)
2152 		print_hex_dump(KERN_DEBUG, "middle: ",
2153 			       DUMP_PREFIX_OFFSET, 16, 1,
2154 			       msg->middle->vec.iov_base,
2155 			       msg->middle->vec.iov_len, true);
2156 	print_hex_dump(KERN_DEBUG, "footer: ",
2157 		       DUMP_PREFIX_OFFSET, 16, 1,
2158 		       &msg->footer, sizeof(msg->footer), true);
2159 }
2160 EXPORT_SYMBOL(ceph_msg_dump);
2161