xref: /openbmc/linux/net/ceph/messenger.c (revision 5b4cb650)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174 
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
180 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
183 
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186 
187 static struct page *zero_page;		/* used in certain error cases */
188 
189 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
190 {
191 	int i;
192 	char *s;
193 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
194 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
195 
196 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
197 	s = addr_str[i];
198 
199 	switch (ss->ss_family) {
200 	case AF_INET:
201 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
202 			 ntohs(in4->sin_port));
203 		break;
204 
205 	case AF_INET6:
206 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
207 			 ntohs(in6->sin6_port));
208 		break;
209 
210 	default:
211 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
212 			 ss->ss_family);
213 	}
214 
215 	return s;
216 }
217 EXPORT_SYMBOL(ceph_pr_addr);
218 
219 static void encode_my_addr(struct ceph_messenger *msgr)
220 {
221 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
222 	ceph_encode_addr(&msgr->my_enc_addr);
223 }
224 
225 /*
226  * work queue for all reading and writing to/from the socket.
227  */
228 static struct workqueue_struct *ceph_msgr_wq;
229 
230 static int ceph_msgr_slab_init(void)
231 {
232 	BUG_ON(ceph_msg_cache);
233 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
234 	if (!ceph_msg_cache)
235 		return -ENOMEM;
236 
237 	return 0;
238 }
239 
240 static void ceph_msgr_slab_exit(void)
241 {
242 	BUG_ON(!ceph_msg_cache);
243 	kmem_cache_destroy(ceph_msg_cache);
244 	ceph_msg_cache = NULL;
245 }
246 
247 static void _ceph_msgr_exit(void)
248 {
249 	if (ceph_msgr_wq) {
250 		destroy_workqueue(ceph_msgr_wq);
251 		ceph_msgr_wq = NULL;
252 	}
253 
254 	BUG_ON(zero_page == NULL);
255 	put_page(zero_page);
256 	zero_page = NULL;
257 
258 	ceph_msgr_slab_exit();
259 }
260 
261 int __init ceph_msgr_init(void)
262 {
263 	if (ceph_msgr_slab_init())
264 		return -ENOMEM;
265 
266 	BUG_ON(zero_page != NULL);
267 	zero_page = ZERO_PAGE(0);
268 	get_page(zero_page);
269 
270 	/*
271 	 * The number of active work items is limited by the number of
272 	 * connections, so leave @max_active at default.
273 	 */
274 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
275 	if (ceph_msgr_wq)
276 		return 0;
277 
278 	pr_err("msgr_init failed to create workqueue\n");
279 	_ceph_msgr_exit();
280 
281 	return -ENOMEM;
282 }
283 
284 void ceph_msgr_exit(void)
285 {
286 	BUG_ON(ceph_msgr_wq == NULL);
287 
288 	_ceph_msgr_exit();
289 }
290 
291 void ceph_msgr_flush(void)
292 {
293 	flush_workqueue(ceph_msgr_wq);
294 }
295 EXPORT_SYMBOL(ceph_msgr_flush);
296 
297 /* Connection socket state transition functions */
298 
299 static void con_sock_state_init(struct ceph_connection *con)
300 {
301 	int old_state;
302 
303 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
304 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
305 		printk("%s: unexpected old state %d\n", __func__, old_state);
306 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
307 	     CON_SOCK_STATE_CLOSED);
308 }
309 
310 static void con_sock_state_connecting(struct ceph_connection *con)
311 {
312 	int old_state;
313 
314 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
315 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
316 		printk("%s: unexpected old state %d\n", __func__, old_state);
317 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318 	     CON_SOCK_STATE_CONNECTING);
319 }
320 
321 static void con_sock_state_connected(struct ceph_connection *con)
322 {
323 	int old_state;
324 
325 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
326 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
327 		printk("%s: unexpected old state %d\n", __func__, old_state);
328 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 	     CON_SOCK_STATE_CONNECTED);
330 }
331 
332 static void con_sock_state_closing(struct ceph_connection *con)
333 {
334 	int old_state;
335 
336 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
337 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
338 			old_state != CON_SOCK_STATE_CONNECTED &&
339 			old_state != CON_SOCK_STATE_CLOSING))
340 		printk("%s: unexpected old state %d\n", __func__, old_state);
341 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
342 	     CON_SOCK_STATE_CLOSING);
343 }
344 
345 static void con_sock_state_closed(struct ceph_connection *con)
346 {
347 	int old_state;
348 
349 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
350 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
351 		    old_state != CON_SOCK_STATE_CLOSING &&
352 		    old_state != CON_SOCK_STATE_CONNECTING &&
353 		    old_state != CON_SOCK_STATE_CLOSED))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CLOSED);
357 }
358 
359 /*
360  * socket callback functions
361  */
362 
363 /* data available on socket, or listen socket received a connect */
364 static void ceph_sock_data_ready(struct sock *sk)
365 {
366 	struct ceph_connection *con = sk->sk_user_data;
367 	if (atomic_read(&con->msgr->stopping)) {
368 		return;
369 	}
370 
371 	if (sk->sk_state != TCP_CLOSE_WAIT) {
372 		dout("%s on %p state = %lu, queueing work\n", __func__,
373 		     con, con->state);
374 		queue_con(con);
375 	}
376 }
377 
378 /* socket has buffer space for writing */
379 static void ceph_sock_write_space(struct sock *sk)
380 {
381 	struct ceph_connection *con = sk->sk_user_data;
382 
383 	/* only queue to workqueue if there is data we want to write,
384 	 * and there is sufficient space in the socket buffer to accept
385 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
386 	 * doesn't get called again until try_write() fills the socket
387 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
388 	 * and net/core/stream.c:sk_stream_write_space().
389 	 */
390 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
391 		if (sk_stream_is_writeable(sk)) {
392 			dout("%s %p queueing write work\n", __func__, con);
393 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
394 			queue_con(con);
395 		}
396 	} else {
397 		dout("%s %p nothing to write\n", __func__, con);
398 	}
399 }
400 
401 /* socket's state has changed */
402 static void ceph_sock_state_change(struct sock *sk)
403 {
404 	struct ceph_connection *con = sk->sk_user_data;
405 
406 	dout("%s %p state = %lu sk_state = %u\n", __func__,
407 	     con, con->state, sk->sk_state);
408 
409 	switch (sk->sk_state) {
410 	case TCP_CLOSE:
411 		dout("%s TCP_CLOSE\n", __func__);
412 		/* fall through */
413 	case TCP_CLOSE_WAIT:
414 		dout("%s TCP_CLOSE_WAIT\n", __func__);
415 		con_sock_state_closing(con);
416 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
417 		queue_con(con);
418 		break;
419 	case TCP_ESTABLISHED:
420 		dout("%s TCP_ESTABLISHED\n", __func__);
421 		con_sock_state_connected(con);
422 		queue_con(con);
423 		break;
424 	default:	/* Everything else is uninteresting */
425 		break;
426 	}
427 }
428 
429 /*
430  * set up socket callbacks
431  */
432 static void set_sock_callbacks(struct socket *sock,
433 			       struct ceph_connection *con)
434 {
435 	struct sock *sk = sock->sk;
436 	sk->sk_user_data = con;
437 	sk->sk_data_ready = ceph_sock_data_ready;
438 	sk->sk_write_space = ceph_sock_write_space;
439 	sk->sk_state_change = ceph_sock_state_change;
440 }
441 
442 
443 /*
444  * socket helpers
445  */
446 
447 /*
448  * initiate connection to a remote socket.
449  */
450 static int ceph_tcp_connect(struct ceph_connection *con)
451 {
452 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
453 	struct socket *sock;
454 	unsigned int noio_flag;
455 	int ret;
456 
457 	BUG_ON(con->sock);
458 
459 	/* sock_create_kern() allocates with GFP_KERNEL */
460 	noio_flag = memalloc_noio_save();
461 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
462 			       SOCK_STREAM, IPPROTO_TCP, &sock);
463 	memalloc_noio_restore(noio_flag);
464 	if (ret)
465 		return ret;
466 	sock->sk->sk_allocation = GFP_NOFS;
467 
468 #ifdef CONFIG_LOCKDEP
469 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
470 #endif
471 
472 	set_sock_callbacks(sock, con);
473 
474 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
475 
476 	con_sock_state_connecting(con);
477 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
478 				 O_NONBLOCK);
479 	if (ret == -EINPROGRESS) {
480 		dout("connect %s EINPROGRESS sk_state = %u\n",
481 		     ceph_pr_addr(&con->peer_addr.in_addr),
482 		     sock->sk->sk_state);
483 	} else if (ret < 0) {
484 		pr_err("connect %s error %d\n",
485 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
486 		sock_release(sock);
487 		return ret;
488 	}
489 
490 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
491 		int optval = 1;
492 
493 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
494 					(char *)&optval, sizeof(optval));
495 		if (ret)
496 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
497 			       ret);
498 	}
499 
500 	con->sock = sock;
501 	return 0;
502 }
503 
504 /*
505  * If @buf is NULL, discard up to @len bytes.
506  */
507 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
508 {
509 	struct kvec iov = {buf, len};
510 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
511 	int r;
512 
513 	if (!buf)
514 		msg.msg_flags |= MSG_TRUNC;
515 
516 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
517 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
518 	if (r == -EAGAIN)
519 		r = 0;
520 	return r;
521 }
522 
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 		     int page_offset, size_t length)
525 {
526 	struct bio_vec bvec = {
527 		.bv_page = page,
528 		.bv_offset = page_offset,
529 		.bv_len = length
530 	};
531 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
532 	int r;
533 
534 	BUG_ON(page_offset + length > PAGE_SIZE);
535 	iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
536 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
537 	if (r == -EAGAIN)
538 		r = 0;
539 	return r;
540 }
541 
542 /*
543  * write something.  @more is true if caller will be sending more data
544  * shortly.
545  */
546 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
547 		     size_t kvlen, size_t len, int more)
548 {
549 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
550 	int r;
551 
552 	if (more)
553 		msg.msg_flags |= MSG_MORE;
554 	else
555 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
556 
557 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
558 	if (r == -EAGAIN)
559 		r = 0;
560 	return r;
561 }
562 
563 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
564 		     int offset, size_t size, bool more)
565 {
566 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
567 	int ret;
568 
569 	ret = kernel_sendpage(sock, page, offset, size, flags);
570 	if (ret == -EAGAIN)
571 		ret = 0;
572 
573 	return ret;
574 }
575 
576 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 		     int offset, size_t size, bool more)
578 {
579 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
580 	struct bio_vec bvec;
581 	int ret;
582 
583 	/*
584 	 * sendpage cannot properly handle pages with page_count == 0,
585 	 * we need to fall back to sendmsg if that's the case.
586 	 *
587 	 * Same goes for slab pages: skb_can_coalesce() allows
588 	 * coalescing neighboring slab objects into a single frag which
589 	 * triggers one of hardened usercopy checks.
590 	 */
591 	if (page_count(page) >= 1 && !PageSlab(page))
592 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
593 
594 	bvec.bv_page = page;
595 	bvec.bv_offset = offset;
596 	bvec.bv_len = size;
597 
598 	if (more)
599 		msg.msg_flags |= MSG_MORE;
600 	else
601 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
602 
603 	iov_iter_bvec(&msg.msg_iter, WRITE, &bvec, 1, size);
604 	ret = sock_sendmsg(sock, &msg);
605 	if (ret == -EAGAIN)
606 		ret = 0;
607 
608 	return ret;
609 }
610 
611 /*
612  * Shutdown/close the socket for the given connection.
613  */
614 static int con_close_socket(struct ceph_connection *con)
615 {
616 	int rc = 0;
617 
618 	dout("con_close_socket on %p sock %p\n", con, con->sock);
619 	if (con->sock) {
620 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
621 		sock_release(con->sock);
622 		con->sock = NULL;
623 	}
624 
625 	/*
626 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
627 	 * independent of the connection mutex, and we could have
628 	 * received a socket close event before we had the chance to
629 	 * shut the socket down.
630 	 */
631 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
632 
633 	con_sock_state_closed(con);
634 	return rc;
635 }
636 
637 /*
638  * Reset a connection.  Discard all incoming and outgoing messages
639  * and clear *_seq state.
640  */
641 static void ceph_msg_remove(struct ceph_msg *msg)
642 {
643 	list_del_init(&msg->list_head);
644 
645 	ceph_msg_put(msg);
646 }
647 static void ceph_msg_remove_list(struct list_head *head)
648 {
649 	while (!list_empty(head)) {
650 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
651 							list_head);
652 		ceph_msg_remove(msg);
653 	}
654 }
655 
656 static void reset_connection(struct ceph_connection *con)
657 {
658 	/* reset connection, out_queue, msg_ and connect_seq */
659 	/* discard existing out_queue and msg_seq */
660 	dout("reset_connection %p\n", con);
661 	ceph_msg_remove_list(&con->out_queue);
662 	ceph_msg_remove_list(&con->out_sent);
663 
664 	if (con->in_msg) {
665 		BUG_ON(con->in_msg->con != con);
666 		ceph_msg_put(con->in_msg);
667 		con->in_msg = NULL;
668 	}
669 
670 	con->connect_seq = 0;
671 	con->out_seq = 0;
672 	if (con->out_msg) {
673 		BUG_ON(con->out_msg->con != con);
674 		ceph_msg_put(con->out_msg);
675 		con->out_msg = NULL;
676 	}
677 	con->in_seq = 0;
678 	con->in_seq_acked = 0;
679 
680 	con->out_skip = 0;
681 }
682 
683 /*
684  * mark a peer down.  drop any open connections.
685  */
686 void ceph_con_close(struct ceph_connection *con)
687 {
688 	mutex_lock(&con->mutex);
689 	dout("con_close %p peer %s\n", con,
690 	     ceph_pr_addr(&con->peer_addr.in_addr));
691 	con->state = CON_STATE_CLOSED;
692 
693 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
694 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
695 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
696 	con_flag_clear(con, CON_FLAG_BACKOFF);
697 
698 	reset_connection(con);
699 	con->peer_global_seq = 0;
700 	cancel_con(con);
701 	con_close_socket(con);
702 	mutex_unlock(&con->mutex);
703 }
704 EXPORT_SYMBOL(ceph_con_close);
705 
706 /*
707  * Reopen a closed connection, with a new peer address.
708  */
709 void ceph_con_open(struct ceph_connection *con,
710 		   __u8 entity_type, __u64 entity_num,
711 		   struct ceph_entity_addr *addr)
712 {
713 	mutex_lock(&con->mutex);
714 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
715 
716 	WARN_ON(con->state != CON_STATE_CLOSED);
717 	con->state = CON_STATE_PREOPEN;
718 
719 	con->peer_name.type = (__u8) entity_type;
720 	con->peer_name.num = cpu_to_le64(entity_num);
721 
722 	memcpy(&con->peer_addr, addr, sizeof(*addr));
723 	con->delay = 0;      /* reset backoff memory */
724 	mutex_unlock(&con->mutex);
725 	queue_con(con);
726 }
727 EXPORT_SYMBOL(ceph_con_open);
728 
729 /*
730  * return true if this connection ever successfully opened
731  */
732 bool ceph_con_opened(struct ceph_connection *con)
733 {
734 	return con->connect_seq > 0;
735 }
736 
737 /*
738  * initialize a new connection.
739  */
740 void ceph_con_init(struct ceph_connection *con, void *private,
741 	const struct ceph_connection_operations *ops,
742 	struct ceph_messenger *msgr)
743 {
744 	dout("con_init %p\n", con);
745 	memset(con, 0, sizeof(*con));
746 	con->private = private;
747 	con->ops = ops;
748 	con->msgr = msgr;
749 
750 	con_sock_state_init(con);
751 
752 	mutex_init(&con->mutex);
753 	INIT_LIST_HEAD(&con->out_queue);
754 	INIT_LIST_HEAD(&con->out_sent);
755 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
756 
757 	con->state = CON_STATE_CLOSED;
758 }
759 EXPORT_SYMBOL(ceph_con_init);
760 
761 
762 /*
763  * We maintain a global counter to order connection attempts.  Get
764  * a unique seq greater than @gt.
765  */
766 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
767 {
768 	u32 ret;
769 
770 	spin_lock(&msgr->global_seq_lock);
771 	if (msgr->global_seq < gt)
772 		msgr->global_seq = gt;
773 	ret = ++msgr->global_seq;
774 	spin_unlock(&msgr->global_seq_lock);
775 	return ret;
776 }
777 
778 static void con_out_kvec_reset(struct ceph_connection *con)
779 {
780 	BUG_ON(con->out_skip);
781 
782 	con->out_kvec_left = 0;
783 	con->out_kvec_bytes = 0;
784 	con->out_kvec_cur = &con->out_kvec[0];
785 }
786 
787 static void con_out_kvec_add(struct ceph_connection *con,
788 				size_t size, void *data)
789 {
790 	int index = con->out_kvec_left;
791 
792 	BUG_ON(con->out_skip);
793 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
794 
795 	con->out_kvec[index].iov_len = size;
796 	con->out_kvec[index].iov_base = data;
797 	con->out_kvec_left++;
798 	con->out_kvec_bytes += size;
799 }
800 
801 /*
802  * Chop off a kvec from the end.  Return residual number of bytes for
803  * that kvec, i.e. how many bytes would have been written if the kvec
804  * hadn't been nuked.
805  */
806 static int con_out_kvec_skip(struct ceph_connection *con)
807 {
808 	int off = con->out_kvec_cur - con->out_kvec;
809 	int skip = 0;
810 
811 	if (con->out_kvec_bytes > 0) {
812 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
813 		BUG_ON(con->out_kvec_bytes < skip);
814 		BUG_ON(!con->out_kvec_left);
815 		con->out_kvec_bytes -= skip;
816 		con->out_kvec_left--;
817 	}
818 
819 	return skip;
820 }
821 
822 #ifdef CONFIG_BLOCK
823 
824 /*
825  * For a bio data item, a piece is whatever remains of the next
826  * entry in the current bio iovec, or the first entry in the next
827  * bio in the list.
828  */
829 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
830 					size_t length)
831 {
832 	struct ceph_msg_data *data = cursor->data;
833 	struct ceph_bio_iter *it = &cursor->bio_iter;
834 
835 	cursor->resid = min_t(size_t, length, data->bio_length);
836 	*it = data->bio_pos;
837 	if (cursor->resid < it->iter.bi_size)
838 		it->iter.bi_size = cursor->resid;
839 
840 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
841 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
842 }
843 
844 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
845 						size_t *page_offset,
846 						size_t *length)
847 {
848 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
849 					   cursor->bio_iter.iter);
850 
851 	*page_offset = bv.bv_offset;
852 	*length = bv.bv_len;
853 	return bv.bv_page;
854 }
855 
856 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
857 					size_t bytes)
858 {
859 	struct ceph_bio_iter *it = &cursor->bio_iter;
860 
861 	BUG_ON(bytes > cursor->resid);
862 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
863 	cursor->resid -= bytes;
864 	bio_advance_iter(it->bio, &it->iter, bytes);
865 
866 	if (!cursor->resid) {
867 		BUG_ON(!cursor->last_piece);
868 		return false;   /* no more data */
869 	}
870 
871 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
872 		return false;	/* more bytes to process in this segment */
873 
874 	if (!it->iter.bi_size) {
875 		it->bio = it->bio->bi_next;
876 		it->iter = it->bio->bi_iter;
877 		if (cursor->resid < it->iter.bi_size)
878 			it->iter.bi_size = cursor->resid;
879 	}
880 
881 	BUG_ON(cursor->last_piece);
882 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
883 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
884 	return true;
885 }
886 #endif /* CONFIG_BLOCK */
887 
888 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
889 					size_t length)
890 {
891 	struct ceph_msg_data *data = cursor->data;
892 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
893 
894 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
895 	cursor->bvec_iter = data->bvec_pos.iter;
896 	cursor->bvec_iter.bi_size = cursor->resid;
897 
898 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
899 	cursor->last_piece =
900 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
901 }
902 
903 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
904 						size_t *page_offset,
905 						size_t *length)
906 {
907 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
908 					   cursor->bvec_iter);
909 
910 	*page_offset = bv.bv_offset;
911 	*length = bv.bv_len;
912 	return bv.bv_page;
913 }
914 
915 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
916 					size_t bytes)
917 {
918 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
919 
920 	BUG_ON(bytes > cursor->resid);
921 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
922 	cursor->resid -= bytes;
923 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
924 
925 	if (!cursor->resid) {
926 		BUG_ON(!cursor->last_piece);
927 		return false;   /* no more data */
928 	}
929 
930 	if (!bytes || cursor->bvec_iter.bi_bvec_done)
931 		return false;	/* more bytes to process in this segment */
932 
933 	BUG_ON(cursor->last_piece);
934 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
935 	cursor->last_piece =
936 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
937 	return true;
938 }
939 
940 /*
941  * For a page array, a piece comes from the first page in the array
942  * that has not already been fully consumed.
943  */
944 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
945 					size_t length)
946 {
947 	struct ceph_msg_data *data = cursor->data;
948 	int page_count;
949 
950 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
951 
952 	BUG_ON(!data->pages);
953 	BUG_ON(!data->length);
954 
955 	cursor->resid = min(length, data->length);
956 	page_count = calc_pages_for(data->alignment, (u64)data->length);
957 	cursor->page_offset = data->alignment & ~PAGE_MASK;
958 	cursor->page_index = 0;
959 	BUG_ON(page_count > (int)USHRT_MAX);
960 	cursor->page_count = (unsigned short)page_count;
961 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
962 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
963 }
964 
965 static struct page *
966 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
967 					size_t *page_offset, size_t *length)
968 {
969 	struct ceph_msg_data *data = cursor->data;
970 
971 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
972 
973 	BUG_ON(cursor->page_index >= cursor->page_count);
974 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
975 
976 	*page_offset = cursor->page_offset;
977 	if (cursor->last_piece)
978 		*length = cursor->resid;
979 	else
980 		*length = PAGE_SIZE - *page_offset;
981 
982 	return data->pages[cursor->page_index];
983 }
984 
985 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
986 						size_t bytes)
987 {
988 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
989 
990 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
991 
992 	/* Advance the cursor page offset */
993 
994 	cursor->resid -= bytes;
995 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
996 	if (!bytes || cursor->page_offset)
997 		return false;	/* more bytes to process in the current page */
998 
999 	if (!cursor->resid)
1000 		return false;   /* no more data */
1001 
1002 	/* Move on to the next page; offset is already at 0 */
1003 
1004 	BUG_ON(cursor->page_index >= cursor->page_count);
1005 	cursor->page_index++;
1006 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1007 
1008 	return true;
1009 }
1010 
1011 /*
1012  * For a pagelist, a piece is whatever remains to be consumed in the
1013  * first page in the list, or the front of the next page.
1014  */
1015 static void
1016 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1017 					size_t length)
1018 {
1019 	struct ceph_msg_data *data = cursor->data;
1020 	struct ceph_pagelist *pagelist;
1021 	struct page *page;
1022 
1023 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1024 
1025 	pagelist = data->pagelist;
1026 	BUG_ON(!pagelist);
1027 
1028 	if (!length)
1029 		return;		/* pagelist can be assigned but empty */
1030 
1031 	BUG_ON(list_empty(&pagelist->head));
1032 	page = list_first_entry(&pagelist->head, struct page, lru);
1033 
1034 	cursor->resid = min(length, pagelist->length);
1035 	cursor->page = page;
1036 	cursor->offset = 0;
1037 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1038 }
1039 
1040 static struct page *
1041 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1042 				size_t *page_offset, size_t *length)
1043 {
1044 	struct ceph_msg_data *data = cursor->data;
1045 	struct ceph_pagelist *pagelist;
1046 
1047 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1048 
1049 	pagelist = data->pagelist;
1050 	BUG_ON(!pagelist);
1051 
1052 	BUG_ON(!cursor->page);
1053 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1054 
1055 	/* offset of first page in pagelist is always 0 */
1056 	*page_offset = cursor->offset & ~PAGE_MASK;
1057 	if (cursor->last_piece)
1058 		*length = cursor->resid;
1059 	else
1060 		*length = PAGE_SIZE - *page_offset;
1061 
1062 	return cursor->page;
1063 }
1064 
1065 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1066 						size_t bytes)
1067 {
1068 	struct ceph_msg_data *data = cursor->data;
1069 	struct ceph_pagelist *pagelist;
1070 
1071 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1072 
1073 	pagelist = data->pagelist;
1074 	BUG_ON(!pagelist);
1075 
1076 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1077 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1078 
1079 	/* Advance the cursor offset */
1080 
1081 	cursor->resid -= bytes;
1082 	cursor->offset += bytes;
1083 	/* offset of first page in pagelist is always 0 */
1084 	if (!bytes || cursor->offset & ~PAGE_MASK)
1085 		return false;	/* more bytes to process in the current page */
1086 
1087 	if (!cursor->resid)
1088 		return false;   /* no more data */
1089 
1090 	/* Move on to the next page */
1091 
1092 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1093 	cursor->page = list_next_entry(cursor->page, lru);
1094 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1095 
1096 	return true;
1097 }
1098 
1099 /*
1100  * Message data is handled (sent or received) in pieces, where each
1101  * piece resides on a single page.  The network layer might not
1102  * consume an entire piece at once.  A data item's cursor keeps
1103  * track of which piece is next to process and how much remains to
1104  * be processed in that piece.  It also tracks whether the current
1105  * piece is the last one in the data item.
1106  */
1107 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1108 {
1109 	size_t length = cursor->total_resid;
1110 
1111 	switch (cursor->data->type) {
1112 	case CEPH_MSG_DATA_PAGELIST:
1113 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1114 		break;
1115 	case CEPH_MSG_DATA_PAGES:
1116 		ceph_msg_data_pages_cursor_init(cursor, length);
1117 		break;
1118 #ifdef CONFIG_BLOCK
1119 	case CEPH_MSG_DATA_BIO:
1120 		ceph_msg_data_bio_cursor_init(cursor, length);
1121 		break;
1122 #endif /* CONFIG_BLOCK */
1123 	case CEPH_MSG_DATA_BVECS:
1124 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1125 		break;
1126 	case CEPH_MSG_DATA_NONE:
1127 	default:
1128 		/* BUG(); */
1129 		break;
1130 	}
1131 	cursor->need_crc = true;
1132 }
1133 
1134 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1135 {
1136 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1137 
1138 	BUG_ON(!length);
1139 	BUG_ON(length > msg->data_length);
1140 	BUG_ON(!msg->num_data_items);
1141 
1142 	cursor->total_resid = length;
1143 	cursor->data = msg->data;
1144 
1145 	__ceph_msg_data_cursor_init(cursor);
1146 }
1147 
1148 /*
1149  * Return the page containing the next piece to process for a given
1150  * data item, and supply the page offset and length of that piece.
1151  * Indicate whether this is the last piece in this data item.
1152  */
1153 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1154 					size_t *page_offset, size_t *length,
1155 					bool *last_piece)
1156 {
1157 	struct page *page;
1158 
1159 	switch (cursor->data->type) {
1160 	case CEPH_MSG_DATA_PAGELIST:
1161 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1162 		break;
1163 	case CEPH_MSG_DATA_PAGES:
1164 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1165 		break;
1166 #ifdef CONFIG_BLOCK
1167 	case CEPH_MSG_DATA_BIO:
1168 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1169 		break;
1170 #endif /* CONFIG_BLOCK */
1171 	case CEPH_MSG_DATA_BVECS:
1172 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1173 		break;
1174 	case CEPH_MSG_DATA_NONE:
1175 	default:
1176 		page = NULL;
1177 		break;
1178 	}
1179 
1180 	BUG_ON(!page);
1181 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1182 	BUG_ON(!*length);
1183 	BUG_ON(*length > cursor->resid);
1184 	if (last_piece)
1185 		*last_piece = cursor->last_piece;
1186 
1187 	return page;
1188 }
1189 
1190 /*
1191  * Returns true if the result moves the cursor on to the next piece
1192  * of the data item.
1193  */
1194 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1195 				  size_t bytes)
1196 {
1197 	bool new_piece;
1198 
1199 	BUG_ON(bytes > cursor->resid);
1200 	switch (cursor->data->type) {
1201 	case CEPH_MSG_DATA_PAGELIST:
1202 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1203 		break;
1204 	case CEPH_MSG_DATA_PAGES:
1205 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1206 		break;
1207 #ifdef CONFIG_BLOCK
1208 	case CEPH_MSG_DATA_BIO:
1209 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1210 		break;
1211 #endif /* CONFIG_BLOCK */
1212 	case CEPH_MSG_DATA_BVECS:
1213 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1214 		break;
1215 	case CEPH_MSG_DATA_NONE:
1216 	default:
1217 		BUG();
1218 		break;
1219 	}
1220 	cursor->total_resid -= bytes;
1221 
1222 	if (!cursor->resid && cursor->total_resid) {
1223 		WARN_ON(!cursor->last_piece);
1224 		cursor->data++;
1225 		__ceph_msg_data_cursor_init(cursor);
1226 		new_piece = true;
1227 	}
1228 	cursor->need_crc = new_piece;
1229 }
1230 
1231 static size_t sizeof_footer(struct ceph_connection *con)
1232 {
1233 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1234 	    sizeof(struct ceph_msg_footer) :
1235 	    sizeof(struct ceph_msg_footer_old);
1236 }
1237 
1238 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1239 {
1240 	/* Initialize data cursor */
1241 
1242 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1243 }
1244 
1245 /*
1246  * Prepare footer for currently outgoing message, and finish things
1247  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1248  */
1249 static void prepare_write_message_footer(struct ceph_connection *con)
1250 {
1251 	struct ceph_msg *m = con->out_msg;
1252 
1253 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1254 
1255 	dout("prepare_write_message_footer %p\n", con);
1256 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1257 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1258 		if (con->ops->sign_message)
1259 			con->ops->sign_message(m);
1260 		else
1261 			m->footer.sig = 0;
1262 	} else {
1263 		m->old_footer.flags = m->footer.flags;
1264 	}
1265 	con->out_more = m->more_to_follow;
1266 	con->out_msg_done = true;
1267 }
1268 
1269 /*
1270  * Prepare headers for the next outgoing message.
1271  */
1272 static void prepare_write_message(struct ceph_connection *con)
1273 {
1274 	struct ceph_msg *m;
1275 	u32 crc;
1276 
1277 	con_out_kvec_reset(con);
1278 	con->out_msg_done = false;
1279 
1280 	/* Sneak an ack in there first?  If we can get it into the same
1281 	 * TCP packet that's a good thing. */
1282 	if (con->in_seq > con->in_seq_acked) {
1283 		con->in_seq_acked = con->in_seq;
1284 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1285 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1286 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1287 			&con->out_temp_ack);
1288 	}
1289 
1290 	BUG_ON(list_empty(&con->out_queue));
1291 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1292 	con->out_msg = m;
1293 	BUG_ON(m->con != con);
1294 
1295 	/* put message on sent list */
1296 	ceph_msg_get(m);
1297 	list_move_tail(&m->list_head, &con->out_sent);
1298 
1299 	/*
1300 	 * only assign outgoing seq # if we haven't sent this message
1301 	 * yet.  if it is requeued, resend with it's original seq.
1302 	 */
1303 	if (m->needs_out_seq) {
1304 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1305 		m->needs_out_seq = false;
1306 
1307 		if (con->ops->reencode_message)
1308 			con->ops->reencode_message(m);
1309 	}
1310 
1311 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1312 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1313 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1314 	     m->data_length);
1315 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1316 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1317 
1318 	/* tag + hdr + front + middle */
1319 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1320 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1321 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1322 
1323 	if (m->middle)
1324 		con_out_kvec_add(con, m->middle->vec.iov_len,
1325 			m->middle->vec.iov_base);
1326 
1327 	/* fill in hdr crc and finalize hdr */
1328 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1329 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1330 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1331 
1332 	/* fill in front and middle crc, footer */
1333 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1334 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1335 	if (m->middle) {
1336 		crc = crc32c(0, m->middle->vec.iov_base,
1337 				m->middle->vec.iov_len);
1338 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1339 	} else
1340 		con->out_msg->footer.middle_crc = 0;
1341 	dout("%s front_crc %u middle_crc %u\n", __func__,
1342 	     le32_to_cpu(con->out_msg->footer.front_crc),
1343 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1344 	con->out_msg->footer.flags = 0;
1345 
1346 	/* is there a data payload? */
1347 	con->out_msg->footer.data_crc = 0;
1348 	if (m->data_length) {
1349 		prepare_message_data(con->out_msg, m->data_length);
1350 		con->out_more = 1;  /* data + footer will follow */
1351 	} else {
1352 		/* no, queue up footer too and be done */
1353 		prepare_write_message_footer(con);
1354 	}
1355 
1356 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1357 }
1358 
1359 /*
1360  * Prepare an ack.
1361  */
1362 static void prepare_write_ack(struct ceph_connection *con)
1363 {
1364 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1365 	     con->in_seq_acked, con->in_seq);
1366 	con->in_seq_acked = con->in_seq;
1367 
1368 	con_out_kvec_reset(con);
1369 
1370 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1371 
1372 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1373 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1374 				&con->out_temp_ack);
1375 
1376 	con->out_more = 1;  /* more will follow.. eventually.. */
1377 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1378 }
1379 
1380 /*
1381  * Prepare to share the seq during handshake
1382  */
1383 static void prepare_write_seq(struct ceph_connection *con)
1384 {
1385 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1386 	     con->in_seq_acked, con->in_seq);
1387 	con->in_seq_acked = con->in_seq;
1388 
1389 	con_out_kvec_reset(con);
1390 
1391 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1392 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1393 			 &con->out_temp_ack);
1394 
1395 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1396 }
1397 
1398 /*
1399  * Prepare to write keepalive byte.
1400  */
1401 static void prepare_write_keepalive(struct ceph_connection *con)
1402 {
1403 	dout("prepare_write_keepalive %p\n", con);
1404 	con_out_kvec_reset(con);
1405 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1406 		struct timespec64 now;
1407 
1408 		ktime_get_real_ts64(&now);
1409 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1410 		ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1411 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1412 				 &con->out_temp_keepalive2);
1413 	} else {
1414 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1415 	}
1416 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1417 }
1418 
1419 /*
1420  * Connection negotiation.
1421  */
1422 
1423 static int get_connect_authorizer(struct ceph_connection *con)
1424 {
1425 	struct ceph_auth_handshake *auth;
1426 	int auth_proto;
1427 
1428 	if (!con->ops->get_authorizer) {
1429 		con->auth = NULL;
1430 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1431 		con->out_connect.authorizer_len = 0;
1432 		return 0;
1433 	}
1434 
1435 	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1436 	if (IS_ERR(auth))
1437 		return PTR_ERR(auth);
1438 
1439 	con->auth = auth;
1440 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1441 	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1442 	return 0;
1443 }
1444 
1445 /*
1446  * We connected to a peer and are saying hello.
1447  */
1448 static void prepare_write_banner(struct ceph_connection *con)
1449 {
1450 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1451 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1452 					&con->msgr->my_enc_addr);
1453 
1454 	con->out_more = 0;
1455 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1456 }
1457 
1458 static void __prepare_write_connect(struct ceph_connection *con)
1459 {
1460 	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1461 	if (con->auth)
1462 		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1463 				 con->auth->authorizer_buf);
1464 
1465 	con->out_more = 0;
1466 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1467 }
1468 
1469 static int prepare_write_connect(struct ceph_connection *con)
1470 {
1471 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1472 	int proto;
1473 	int ret;
1474 
1475 	switch (con->peer_name.type) {
1476 	case CEPH_ENTITY_TYPE_MON:
1477 		proto = CEPH_MONC_PROTOCOL;
1478 		break;
1479 	case CEPH_ENTITY_TYPE_OSD:
1480 		proto = CEPH_OSDC_PROTOCOL;
1481 		break;
1482 	case CEPH_ENTITY_TYPE_MDS:
1483 		proto = CEPH_MDSC_PROTOCOL;
1484 		break;
1485 	default:
1486 		BUG();
1487 	}
1488 
1489 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1490 	     con->connect_seq, global_seq, proto);
1491 
1492 	con->out_connect.features =
1493 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1494 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1495 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1496 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1497 	con->out_connect.protocol_version = cpu_to_le32(proto);
1498 	con->out_connect.flags = 0;
1499 
1500 	ret = get_connect_authorizer(con);
1501 	if (ret)
1502 		return ret;
1503 
1504 	__prepare_write_connect(con);
1505 	return 0;
1506 }
1507 
1508 /*
1509  * write as much of pending kvecs to the socket as we can.
1510  *  1 -> done
1511  *  0 -> socket full, but more to do
1512  * <0 -> error
1513  */
1514 static int write_partial_kvec(struct ceph_connection *con)
1515 {
1516 	int ret;
1517 
1518 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1519 	while (con->out_kvec_bytes > 0) {
1520 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1521 				       con->out_kvec_left, con->out_kvec_bytes,
1522 				       con->out_more);
1523 		if (ret <= 0)
1524 			goto out;
1525 		con->out_kvec_bytes -= ret;
1526 		if (con->out_kvec_bytes == 0)
1527 			break;            /* done */
1528 
1529 		/* account for full iov entries consumed */
1530 		while (ret >= con->out_kvec_cur->iov_len) {
1531 			BUG_ON(!con->out_kvec_left);
1532 			ret -= con->out_kvec_cur->iov_len;
1533 			con->out_kvec_cur++;
1534 			con->out_kvec_left--;
1535 		}
1536 		/* and for a partially-consumed entry */
1537 		if (ret) {
1538 			con->out_kvec_cur->iov_len -= ret;
1539 			con->out_kvec_cur->iov_base += ret;
1540 		}
1541 	}
1542 	con->out_kvec_left = 0;
1543 	ret = 1;
1544 out:
1545 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1546 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1547 	return ret;  /* done! */
1548 }
1549 
1550 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1551 				unsigned int page_offset,
1552 				unsigned int length)
1553 {
1554 	char *kaddr;
1555 
1556 	kaddr = kmap(page);
1557 	BUG_ON(kaddr == NULL);
1558 	crc = crc32c(crc, kaddr + page_offset, length);
1559 	kunmap(page);
1560 
1561 	return crc;
1562 }
1563 /*
1564  * Write as much message data payload as we can.  If we finish, queue
1565  * up the footer.
1566  *  1 -> done, footer is now queued in out_kvec[].
1567  *  0 -> socket full, but more to do
1568  * <0 -> error
1569  */
1570 static int write_partial_message_data(struct ceph_connection *con)
1571 {
1572 	struct ceph_msg *msg = con->out_msg;
1573 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1574 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1575 	u32 crc;
1576 
1577 	dout("%s %p msg %p\n", __func__, con, msg);
1578 
1579 	if (!msg->num_data_items)
1580 		return -EINVAL;
1581 
1582 	/*
1583 	 * Iterate through each page that contains data to be
1584 	 * written, and send as much as possible for each.
1585 	 *
1586 	 * If we are calculating the data crc (the default), we will
1587 	 * need to map the page.  If we have no pages, they have
1588 	 * been revoked, so use the zero page.
1589 	 */
1590 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1591 	while (cursor->total_resid) {
1592 		struct page *page;
1593 		size_t page_offset;
1594 		size_t length;
1595 		bool last_piece;
1596 		int ret;
1597 
1598 		if (!cursor->resid) {
1599 			ceph_msg_data_advance(cursor, 0);
1600 			continue;
1601 		}
1602 
1603 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1604 					  &last_piece);
1605 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1606 					length, !last_piece);
1607 		if (ret <= 0) {
1608 			if (do_datacrc)
1609 				msg->footer.data_crc = cpu_to_le32(crc);
1610 
1611 			return ret;
1612 		}
1613 		if (do_datacrc && cursor->need_crc)
1614 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1615 		ceph_msg_data_advance(cursor, (size_t)ret);
1616 	}
1617 
1618 	dout("%s %p msg %p done\n", __func__, con, msg);
1619 
1620 	/* prepare and queue up footer, too */
1621 	if (do_datacrc)
1622 		msg->footer.data_crc = cpu_to_le32(crc);
1623 	else
1624 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1625 	con_out_kvec_reset(con);
1626 	prepare_write_message_footer(con);
1627 
1628 	return 1;	/* must return > 0 to indicate success */
1629 }
1630 
1631 /*
1632  * write some zeros
1633  */
1634 static int write_partial_skip(struct ceph_connection *con)
1635 {
1636 	int ret;
1637 
1638 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1639 	while (con->out_skip > 0) {
1640 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1641 
1642 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1643 		if (ret <= 0)
1644 			goto out;
1645 		con->out_skip -= ret;
1646 	}
1647 	ret = 1;
1648 out:
1649 	return ret;
1650 }
1651 
1652 /*
1653  * Prepare to read connection handshake, or an ack.
1654  */
1655 static void prepare_read_banner(struct ceph_connection *con)
1656 {
1657 	dout("prepare_read_banner %p\n", con);
1658 	con->in_base_pos = 0;
1659 }
1660 
1661 static void prepare_read_connect(struct ceph_connection *con)
1662 {
1663 	dout("prepare_read_connect %p\n", con);
1664 	con->in_base_pos = 0;
1665 }
1666 
1667 static void prepare_read_ack(struct ceph_connection *con)
1668 {
1669 	dout("prepare_read_ack %p\n", con);
1670 	con->in_base_pos = 0;
1671 }
1672 
1673 static void prepare_read_seq(struct ceph_connection *con)
1674 {
1675 	dout("prepare_read_seq %p\n", con);
1676 	con->in_base_pos = 0;
1677 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1678 }
1679 
1680 static void prepare_read_tag(struct ceph_connection *con)
1681 {
1682 	dout("prepare_read_tag %p\n", con);
1683 	con->in_base_pos = 0;
1684 	con->in_tag = CEPH_MSGR_TAG_READY;
1685 }
1686 
1687 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1688 {
1689 	dout("prepare_read_keepalive_ack %p\n", con);
1690 	con->in_base_pos = 0;
1691 }
1692 
1693 /*
1694  * Prepare to read a message.
1695  */
1696 static int prepare_read_message(struct ceph_connection *con)
1697 {
1698 	dout("prepare_read_message %p\n", con);
1699 	BUG_ON(con->in_msg != NULL);
1700 	con->in_base_pos = 0;
1701 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1702 	return 0;
1703 }
1704 
1705 
1706 static int read_partial(struct ceph_connection *con,
1707 			int end, int size, void *object)
1708 {
1709 	while (con->in_base_pos < end) {
1710 		int left = end - con->in_base_pos;
1711 		int have = size - left;
1712 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1713 		if (ret <= 0)
1714 			return ret;
1715 		con->in_base_pos += ret;
1716 	}
1717 	return 1;
1718 }
1719 
1720 
1721 /*
1722  * Read all or part of the connect-side handshake on a new connection
1723  */
1724 static int read_partial_banner(struct ceph_connection *con)
1725 {
1726 	int size;
1727 	int end;
1728 	int ret;
1729 
1730 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1731 
1732 	/* peer's banner */
1733 	size = strlen(CEPH_BANNER);
1734 	end = size;
1735 	ret = read_partial(con, end, size, con->in_banner);
1736 	if (ret <= 0)
1737 		goto out;
1738 
1739 	size = sizeof (con->actual_peer_addr);
1740 	end += size;
1741 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1742 	if (ret <= 0)
1743 		goto out;
1744 
1745 	size = sizeof (con->peer_addr_for_me);
1746 	end += size;
1747 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1748 	if (ret <= 0)
1749 		goto out;
1750 
1751 out:
1752 	return ret;
1753 }
1754 
1755 static int read_partial_connect(struct ceph_connection *con)
1756 {
1757 	int size;
1758 	int end;
1759 	int ret;
1760 
1761 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1762 
1763 	size = sizeof (con->in_reply);
1764 	end = size;
1765 	ret = read_partial(con, end, size, &con->in_reply);
1766 	if (ret <= 0)
1767 		goto out;
1768 
1769 	if (con->auth) {
1770 		size = le32_to_cpu(con->in_reply.authorizer_len);
1771 		if (size > con->auth->authorizer_reply_buf_len) {
1772 			pr_err("authorizer reply too big: %d > %zu\n", size,
1773 			       con->auth->authorizer_reply_buf_len);
1774 			ret = -EINVAL;
1775 			goto out;
1776 		}
1777 
1778 		end += size;
1779 		ret = read_partial(con, end, size,
1780 				   con->auth->authorizer_reply_buf);
1781 		if (ret <= 0)
1782 			goto out;
1783 	}
1784 
1785 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1786 	     con, (int)con->in_reply.tag,
1787 	     le32_to_cpu(con->in_reply.connect_seq),
1788 	     le32_to_cpu(con->in_reply.global_seq));
1789 out:
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Verify the hello banner looks okay.
1795  */
1796 static int verify_hello(struct ceph_connection *con)
1797 {
1798 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1799 		pr_err("connect to %s got bad banner\n",
1800 		       ceph_pr_addr(&con->peer_addr.in_addr));
1801 		con->error_msg = "protocol error, bad banner";
1802 		return -1;
1803 	}
1804 	return 0;
1805 }
1806 
1807 static bool addr_is_blank(struct sockaddr_storage *ss)
1808 {
1809 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1810 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1811 
1812 	switch (ss->ss_family) {
1813 	case AF_INET:
1814 		return addr->s_addr == htonl(INADDR_ANY);
1815 	case AF_INET6:
1816 		return ipv6_addr_any(addr6);
1817 	default:
1818 		return true;
1819 	}
1820 }
1821 
1822 static int addr_port(struct sockaddr_storage *ss)
1823 {
1824 	switch (ss->ss_family) {
1825 	case AF_INET:
1826 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1827 	case AF_INET6:
1828 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1829 	}
1830 	return 0;
1831 }
1832 
1833 static void addr_set_port(struct sockaddr_storage *ss, int p)
1834 {
1835 	switch (ss->ss_family) {
1836 	case AF_INET:
1837 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1838 		break;
1839 	case AF_INET6:
1840 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1841 		break;
1842 	}
1843 }
1844 
1845 /*
1846  * Unlike other *_pton function semantics, zero indicates success.
1847  */
1848 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1849 		char delim, const char **ipend)
1850 {
1851 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1852 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1853 
1854 	memset(ss, 0, sizeof(*ss));
1855 
1856 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1857 		ss->ss_family = AF_INET;
1858 		return 0;
1859 	}
1860 
1861 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1862 		ss->ss_family = AF_INET6;
1863 		return 0;
1864 	}
1865 
1866 	return -EINVAL;
1867 }
1868 
1869 /*
1870  * Extract hostname string and resolve using kernel DNS facility.
1871  */
1872 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1873 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1874 		struct sockaddr_storage *ss, char delim, const char **ipend)
1875 {
1876 	const char *end, *delim_p;
1877 	char *colon_p, *ip_addr = NULL;
1878 	int ip_len, ret;
1879 
1880 	/*
1881 	 * The end of the hostname occurs immediately preceding the delimiter or
1882 	 * the port marker (':') where the delimiter takes precedence.
1883 	 */
1884 	delim_p = memchr(name, delim, namelen);
1885 	colon_p = memchr(name, ':', namelen);
1886 
1887 	if (delim_p && colon_p)
1888 		end = delim_p < colon_p ? delim_p : colon_p;
1889 	else if (!delim_p && colon_p)
1890 		end = colon_p;
1891 	else {
1892 		end = delim_p;
1893 		if (!end) /* case: hostname:/ */
1894 			end = name + namelen;
1895 	}
1896 
1897 	if (end <= name)
1898 		return -EINVAL;
1899 
1900 	/* do dns_resolve upcall */
1901 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1902 	if (ip_len > 0)
1903 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1904 	else
1905 		ret = -ESRCH;
1906 
1907 	kfree(ip_addr);
1908 
1909 	*ipend = end;
1910 
1911 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1912 			ret, ret ? "failed" : ceph_pr_addr(ss));
1913 
1914 	return ret;
1915 }
1916 #else
1917 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1918 		struct sockaddr_storage *ss, char delim, const char **ipend)
1919 {
1920 	return -EINVAL;
1921 }
1922 #endif
1923 
1924 /*
1925  * Parse a server name (IP or hostname). If a valid IP address is not found
1926  * then try to extract a hostname to resolve using userspace DNS upcall.
1927  */
1928 static int ceph_parse_server_name(const char *name, size_t namelen,
1929 			struct sockaddr_storage *ss, char delim, const char **ipend)
1930 {
1931 	int ret;
1932 
1933 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1934 	if (ret)
1935 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1936 
1937 	return ret;
1938 }
1939 
1940 /*
1941  * Parse an ip[:port] list into an addr array.  Use the default
1942  * monitor port if a port isn't specified.
1943  */
1944 int ceph_parse_ips(const char *c, const char *end,
1945 		   struct ceph_entity_addr *addr,
1946 		   int max_count, int *count)
1947 {
1948 	int i, ret = -EINVAL;
1949 	const char *p = c;
1950 
1951 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1952 	for (i = 0; i < max_count; i++) {
1953 		const char *ipend;
1954 		struct sockaddr_storage *ss = &addr[i].in_addr;
1955 		int port;
1956 		char delim = ',';
1957 
1958 		if (*p == '[') {
1959 			delim = ']';
1960 			p++;
1961 		}
1962 
1963 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1964 		if (ret)
1965 			goto bad;
1966 		ret = -EINVAL;
1967 
1968 		p = ipend;
1969 
1970 		if (delim == ']') {
1971 			if (*p != ']') {
1972 				dout("missing matching ']'\n");
1973 				goto bad;
1974 			}
1975 			p++;
1976 		}
1977 
1978 		/* port? */
1979 		if (p < end && *p == ':') {
1980 			port = 0;
1981 			p++;
1982 			while (p < end && *p >= '0' && *p <= '9') {
1983 				port = (port * 10) + (*p - '0');
1984 				p++;
1985 			}
1986 			if (port == 0)
1987 				port = CEPH_MON_PORT;
1988 			else if (port > 65535)
1989 				goto bad;
1990 		} else {
1991 			port = CEPH_MON_PORT;
1992 		}
1993 
1994 		addr_set_port(ss, port);
1995 
1996 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1997 
1998 		if (p == end)
1999 			break;
2000 		if (*p != ',')
2001 			goto bad;
2002 		p++;
2003 	}
2004 
2005 	if (p != end)
2006 		goto bad;
2007 
2008 	if (count)
2009 		*count = i + 1;
2010 	return 0;
2011 
2012 bad:
2013 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2014 	return ret;
2015 }
2016 EXPORT_SYMBOL(ceph_parse_ips);
2017 
2018 static int process_banner(struct ceph_connection *con)
2019 {
2020 	dout("process_banner on %p\n", con);
2021 
2022 	if (verify_hello(con) < 0)
2023 		return -1;
2024 
2025 	ceph_decode_addr(&con->actual_peer_addr);
2026 	ceph_decode_addr(&con->peer_addr_for_me);
2027 
2028 	/*
2029 	 * Make sure the other end is who we wanted.  note that the other
2030 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2031 	 * them the benefit of the doubt.
2032 	 */
2033 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2034 		   sizeof(con->peer_addr)) != 0 &&
2035 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2036 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2037 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2038 			ceph_pr_addr(&con->peer_addr.in_addr),
2039 			(int)le32_to_cpu(con->peer_addr.nonce),
2040 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2041 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2042 		con->error_msg = "wrong peer at address";
2043 		return -1;
2044 	}
2045 
2046 	/*
2047 	 * did we learn our address?
2048 	 */
2049 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2050 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2051 
2052 		memcpy(&con->msgr->inst.addr.in_addr,
2053 		       &con->peer_addr_for_me.in_addr,
2054 		       sizeof(con->peer_addr_for_me.in_addr));
2055 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2056 		encode_my_addr(con->msgr);
2057 		dout("process_banner learned my addr is %s\n",
2058 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static int process_connect(struct ceph_connection *con)
2065 {
2066 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2067 	u64 req_feat = from_msgr(con->msgr)->required_features;
2068 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2069 	int ret;
2070 
2071 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2072 
2073 	if (con->auth) {
2074 		/*
2075 		 * Any connection that defines ->get_authorizer()
2076 		 * should also define ->add_authorizer_challenge() and
2077 		 * ->verify_authorizer_reply().
2078 		 *
2079 		 * See get_connect_authorizer().
2080 		 */
2081 		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2082 			ret = con->ops->add_authorizer_challenge(
2083 				    con, con->auth->authorizer_reply_buf,
2084 				    le32_to_cpu(con->in_reply.authorizer_len));
2085 			if (ret < 0)
2086 				return ret;
2087 
2088 			con_out_kvec_reset(con);
2089 			__prepare_write_connect(con);
2090 			prepare_read_connect(con);
2091 			return 0;
2092 		}
2093 
2094 		ret = con->ops->verify_authorizer_reply(con);
2095 		if (ret < 0) {
2096 			con->error_msg = "bad authorize reply";
2097 			return ret;
2098 		}
2099 	}
2100 
2101 	switch (con->in_reply.tag) {
2102 	case CEPH_MSGR_TAG_FEATURES:
2103 		pr_err("%s%lld %s feature set mismatch,"
2104 		       " my %llx < server's %llx, missing %llx\n",
2105 		       ENTITY_NAME(con->peer_name),
2106 		       ceph_pr_addr(&con->peer_addr.in_addr),
2107 		       sup_feat, server_feat, server_feat & ~sup_feat);
2108 		con->error_msg = "missing required protocol features";
2109 		reset_connection(con);
2110 		return -1;
2111 
2112 	case CEPH_MSGR_TAG_BADPROTOVER:
2113 		pr_err("%s%lld %s protocol version mismatch,"
2114 		       " my %d != server's %d\n",
2115 		       ENTITY_NAME(con->peer_name),
2116 		       ceph_pr_addr(&con->peer_addr.in_addr),
2117 		       le32_to_cpu(con->out_connect.protocol_version),
2118 		       le32_to_cpu(con->in_reply.protocol_version));
2119 		con->error_msg = "protocol version mismatch";
2120 		reset_connection(con);
2121 		return -1;
2122 
2123 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2124 		con->auth_retry++;
2125 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2126 		     con->auth_retry);
2127 		if (con->auth_retry == 2) {
2128 			con->error_msg = "connect authorization failure";
2129 			return -1;
2130 		}
2131 		con_out_kvec_reset(con);
2132 		ret = prepare_write_connect(con);
2133 		if (ret < 0)
2134 			return ret;
2135 		prepare_read_connect(con);
2136 		break;
2137 
2138 	case CEPH_MSGR_TAG_RESETSESSION:
2139 		/*
2140 		 * If we connected with a large connect_seq but the peer
2141 		 * has no record of a session with us (no connection, or
2142 		 * connect_seq == 0), they will send RESETSESION to indicate
2143 		 * that they must have reset their session, and may have
2144 		 * dropped messages.
2145 		 */
2146 		dout("process_connect got RESET peer seq %u\n",
2147 		     le32_to_cpu(con->in_reply.connect_seq));
2148 		pr_err("%s%lld %s connection reset\n",
2149 		       ENTITY_NAME(con->peer_name),
2150 		       ceph_pr_addr(&con->peer_addr.in_addr));
2151 		reset_connection(con);
2152 		con_out_kvec_reset(con);
2153 		ret = prepare_write_connect(con);
2154 		if (ret < 0)
2155 			return ret;
2156 		prepare_read_connect(con);
2157 
2158 		/* Tell ceph about it. */
2159 		mutex_unlock(&con->mutex);
2160 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2161 		if (con->ops->peer_reset)
2162 			con->ops->peer_reset(con);
2163 		mutex_lock(&con->mutex);
2164 		if (con->state != CON_STATE_NEGOTIATING)
2165 			return -EAGAIN;
2166 		break;
2167 
2168 	case CEPH_MSGR_TAG_RETRY_SESSION:
2169 		/*
2170 		 * If we sent a smaller connect_seq than the peer has, try
2171 		 * again with a larger value.
2172 		 */
2173 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2174 		     le32_to_cpu(con->out_connect.connect_seq),
2175 		     le32_to_cpu(con->in_reply.connect_seq));
2176 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2177 		con_out_kvec_reset(con);
2178 		ret = prepare_write_connect(con);
2179 		if (ret < 0)
2180 			return ret;
2181 		prepare_read_connect(con);
2182 		break;
2183 
2184 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2185 		/*
2186 		 * If we sent a smaller global_seq than the peer has, try
2187 		 * again with a larger value.
2188 		 */
2189 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2190 		     con->peer_global_seq,
2191 		     le32_to_cpu(con->in_reply.global_seq));
2192 		get_global_seq(con->msgr,
2193 			       le32_to_cpu(con->in_reply.global_seq));
2194 		con_out_kvec_reset(con);
2195 		ret = prepare_write_connect(con);
2196 		if (ret < 0)
2197 			return ret;
2198 		prepare_read_connect(con);
2199 		break;
2200 
2201 	case CEPH_MSGR_TAG_SEQ:
2202 	case CEPH_MSGR_TAG_READY:
2203 		if (req_feat & ~server_feat) {
2204 			pr_err("%s%lld %s protocol feature mismatch,"
2205 			       " my required %llx > server's %llx, need %llx\n",
2206 			       ENTITY_NAME(con->peer_name),
2207 			       ceph_pr_addr(&con->peer_addr.in_addr),
2208 			       req_feat, server_feat, req_feat & ~server_feat);
2209 			con->error_msg = "missing required protocol features";
2210 			reset_connection(con);
2211 			return -1;
2212 		}
2213 
2214 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2215 		con->state = CON_STATE_OPEN;
2216 		con->auth_retry = 0;    /* we authenticated; clear flag */
2217 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2218 		con->connect_seq++;
2219 		con->peer_features = server_feat;
2220 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2221 		     con->peer_global_seq,
2222 		     le32_to_cpu(con->in_reply.connect_seq),
2223 		     con->connect_seq);
2224 		WARN_ON(con->connect_seq !=
2225 			le32_to_cpu(con->in_reply.connect_seq));
2226 
2227 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2228 			con_flag_set(con, CON_FLAG_LOSSYTX);
2229 
2230 		con->delay = 0;      /* reset backoff memory */
2231 
2232 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2233 			prepare_write_seq(con);
2234 			prepare_read_seq(con);
2235 		} else {
2236 			prepare_read_tag(con);
2237 		}
2238 		break;
2239 
2240 	case CEPH_MSGR_TAG_WAIT:
2241 		/*
2242 		 * If there is a connection race (we are opening
2243 		 * connections to each other), one of us may just have
2244 		 * to WAIT.  This shouldn't happen if we are the
2245 		 * client.
2246 		 */
2247 		con->error_msg = "protocol error, got WAIT as client";
2248 		return -1;
2249 
2250 	default:
2251 		con->error_msg = "protocol error, garbage tag during connect";
2252 		return -1;
2253 	}
2254 	return 0;
2255 }
2256 
2257 
2258 /*
2259  * read (part of) an ack
2260  */
2261 static int read_partial_ack(struct ceph_connection *con)
2262 {
2263 	int size = sizeof (con->in_temp_ack);
2264 	int end = size;
2265 
2266 	return read_partial(con, end, size, &con->in_temp_ack);
2267 }
2268 
2269 /*
2270  * We can finally discard anything that's been acked.
2271  */
2272 static void process_ack(struct ceph_connection *con)
2273 {
2274 	struct ceph_msg *m;
2275 	u64 ack = le64_to_cpu(con->in_temp_ack);
2276 	u64 seq;
2277 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2278 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2279 
2280 	/*
2281 	 * In the reconnect case, con_fault() has requeued messages
2282 	 * in out_sent. We should cleanup old messages according to
2283 	 * the reconnect seq.
2284 	 */
2285 	while (!list_empty(list)) {
2286 		m = list_first_entry(list, struct ceph_msg, list_head);
2287 		if (reconnect && m->needs_out_seq)
2288 			break;
2289 		seq = le64_to_cpu(m->hdr.seq);
2290 		if (seq > ack)
2291 			break;
2292 		dout("got ack for seq %llu type %d at %p\n", seq,
2293 		     le16_to_cpu(m->hdr.type), m);
2294 		m->ack_stamp = jiffies;
2295 		ceph_msg_remove(m);
2296 	}
2297 
2298 	prepare_read_tag(con);
2299 }
2300 
2301 
2302 static int read_partial_message_section(struct ceph_connection *con,
2303 					struct kvec *section,
2304 					unsigned int sec_len, u32 *crc)
2305 {
2306 	int ret, left;
2307 
2308 	BUG_ON(!section);
2309 
2310 	while (section->iov_len < sec_len) {
2311 		BUG_ON(section->iov_base == NULL);
2312 		left = sec_len - section->iov_len;
2313 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2314 				       section->iov_len, left);
2315 		if (ret <= 0)
2316 			return ret;
2317 		section->iov_len += ret;
2318 	}
2319 	if (section->iov_len == sec_len)
2320 		*crc = crc32c(0, section->iov_base, section->iov_len);
2321 
2322 	return 1;
2323 }
2324 
2325 static int read_partial_msg_data(struct ceph_connection *con)
2326 {
2327 	struct ceph_msg *msg = con->in_msg;
2328 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2329 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2330 	struct page *page;
2331 	size_t page_offset;
2332 	size_t length;
2333 	u32 crc = 0;
2334 	int ret;
2335 
2336 	if (!msg->num_data_items)
2337 		return -EIO;
2338 
2339 	if (do_datacrc)
2340 		crc = con->in_data_crc;
2341 	while (cursor->total_resid) {
2342 		if (!cursor->resid) {
2343 			ceph_msg_data_advance(cursor, 0);
2344 			continue;
2345 		}
2346 
2347 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2348 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2349 		if (ret <= 0) {
2350 			if (do_datacrc)
2351 				con->in_data_crc = crc;
2352 
2353 			return ret;
2354 		}
2355 
2356 		if (do_datacrc)
2357 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2358 		ceph_msg_data_advance(cursor, (size_t)ret);
2359 	}
2360 	if (do_datacrc)
2361 		con->in_data_crc = crc;
2362 
2363 	return 1;	/* must return > 0 to indicate success */
2364 }
2365 
2366 /*
2367  * read (part of) a message.
2368  */
2369 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2370 
2371 static int read_partial_message(struct ceph_connection *con)
2372 {
2373 	struct ceph_msg *m = con->in_msg;
2374 	int size;
2375 	int end;
2376 	int ret;
2377 	unsigned int front_len, middle_len, data_len;
2378 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2379 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2380 	u64 seq;
2381 	u32 crc;
2382 
2383 	dout("read_partial_message con %p msg %p\n", con, m);
2384 
2385 	/* header */
2386 	size = sizeof (con->in_hdr);
2387 	end = size;
2388 	ret = read_partial(con, end, size, &con->in_hdr);
2389 	if (ret <= 0)
2390 		return ret;
2391 
2392 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2393 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2394 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2395 		       crc, con->in_hdr.crc);
2396 		return -EBADMSG;
2397 	}
2398 
2399 	front_len = le32_to_cpu(con->in_hdr.front_len);
2400 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2401 		return -EIO;
2402 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2403 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2404 		return -EIO;
2405 	data_len = le32_to_cpu(con->in_hdr.data_len);
2406 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2407 		return -EIO;
2408 
2409 	/* verify seq# */
2410 	seq = le64_to_cpu(con->in_hdr.seq);
2411 	if ((s64)seq - (s64)con->in_seq < 1) {
2412 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2413 			ENTITY_NAME(con->peer_name),
2414 			ceph_pr_addr(&con->peer_addr.in_addr),
2415 			seq, con->in_seq + 1);
2416 		con->in_base_pos = -front_len - middle_len - data_len -
2417 			sizeof_footer(con);
2418 		con->in_tag = CEPH_MSGR_TAG_READY;
2419 		return 1;
2420 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2421 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2422 		       seq, con->in_seq + 1);
2423 		con->error_msg = "bad message sequence # for incoming message";
2424 		return -EBADE;
2425 	}
2426 
2427 	/* allocate message? */
2428 	if (!con->in_msg) {
2429 		int skip = 0;
2430 
2431 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2432 		     front_len, data_len);
2433 		ret = ceph_con_in_msg_alloc(con, &skip);
2434 		if (ret < 0)
2435 			return ret;
2436 
2437 		BUG_ON(!con->in_msg ^ skip);
2438 		if (skip) {
2439 			/* skip this message */
2440 			dout("alloc_msg said skip message\n");
2441 			con->in_base_pos = -front_len - middle_len - data_len -
2442 				sizeof_footer(con);
2443 			con->in_tag = CEPH_MSGR_TAG_READY;
2444 			con->in_seq++;
2445 			return 1;
2446 		}
2447 
2448 		BUG_ON(!con->in_msg);
2449 		BUG_ON(con->in_msg->con != con);
2450 		m = con->in_msg;
2451 		m->front.iov_len = 0;    /* haven't read it yet */
2452 		if (m->middle)
2453 			m->middle->vec.iov_len = 0;
2454 
2455 		/* prepare for data payload, if any */
2456 
2457 		if (data_len)
2458 			prepare_message_data(con->in_msg, data_len);
2459 	}
2460 
2461 	/* front */
2462 	ret = read_partial_message_section(con, &m->front, front_len,
2463 					   &con->in_front_crc);
2464 	if (ret <= 0)
2465 		return ret;
2466 
2467 	/* middle */
2468 	if (m->middle) {
2469 		ret = read_partial_message_section(con, &m->middle->vec,
2470 						   middle_len,
2471 						   &con->in_middle_crc);
2472 		if (ret <= 0)
2473 			return ret;
2474 	}
2475 
2476 	/* (page) data */
2477 	if (data_len) {
2478 		ret = read_partial_msg_data(con);
2479 		if (ret <= 0)
2480 			return ret;
2481 	}
2482 
2483 	/* footer */
2484 	size = sizeof_footer(con);
2485 	end += size;
2486 	ret = read_partial(con, end, size, &m->footer);
2487 	if (ret <= 0)
2488 		return ret;
2489 
2490 	if (!need_sign) {
2491 		m->footer.flags = m->old_footer.flags;
2492 		m->footer.sig = 0;
2493 	}
2494 
2495 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2496 	     m, front_len, m->footer.front_crc, middle_len,
2497 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2498 
2499 	/* crc ok? */
2500 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2501 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2502 		       m, con->in_front_crc, m->footer.front_crc);
2503 		return -EBADMSG;
2504 	}
2505 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2506 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2507 		       m, con->in_middle_crc, m->footer.middle_crc);
2508 		return -EBADMSG;
2509 	}
2510 	if (do_datacrc &&
2511 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2512 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2513 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2514 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2515 		return -EBADMSG;
2516 	}
2517 
2518 	if (need_sign && con->ops->check_message_signature &&
2519 	    con->ops->check_message_signature(m)) {
2520 		pr_err("read_partial_message %p signature check failed\n", m);
2521 		return -EBADMSG;
2522 	}
2523 
2524 	return 1; /* done! */
2525 }
2526 
2527 /*
2528  * Process message.  This happens in the worker thread.  The callback should
2529  * be careful not to do anything that waits on other incoming messages or it
2530  * may deadlock.
2531  */
2532 static void process_message(struct ceph_connection *con)
2533 {
2534 	struct ceph_msg *msg = con->in_msg;
2535 
2536 	BUG_ON(con->in_msg->con != con);
2537 	con->in_msg = NULL;
2538 
2539 	/* if first message, set peer_name */
2540 	if (con->peer_name.type == 0)
2541 		con->peer_name = msg->hdr.src;
2542 
2543 	con->in_seq++;
2544 	mutex_unlock(&con->mutex);
2545 
2546 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2547 	     msg, le64_to_cpu(msg->hdr.seq),
2548 	     ENTITY_NAME(msg->hdr.src),
2549 	     le16_to_cpu(msg->hdr.type),
2550 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2551 	     le32_to_cpu(msg->hdr.front_len),
2552 	     le32_to_cpu(msg->hdr.data_len),
2553 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2554 	con->ops->dispatch(con, msg);
2555 
2556 	mutex_lock(&con->mutex);
2557 }
2558 
2559 static int read_keepalive_ack(struct ceph_connection *con)
2560 {
2561 	struct ceph_timespec ceph_ts;
2562 	size_t size = sizeof(ceph_ts);
2563 	int ret = read_partial(con, size, size, &ceph_ts);
2564 	if (ret <= 0)
2565 		return ret;
2566 	ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2567 	prepare_read_tag(con);
2568 	return 1;
2569 }
2570 
2571 /*
2572  * Write something to the socket.  Called in a worker thread when the
2573  * socket appears to be writeable and we have something ready to send.
2574  */
2575 static int try_write(struct ceph_connection *con)
2576 {
2577 	int ret = 1;
2578 
2579 	dout("try_write start %p state %lu\n", con, con->state);
2580 	if (con->state != CON_STATE_PREOPEN &&
2581 	    con->state != CON_STATE_CONNECTING &&
2582 	    con->state != CON_STATE_NEGOTIATING &&
2583 	    con->state != CON_STATE_OPEN)
2584 		return 0;
2585 
2586 	/* open the socket first? */
2587 	if (con->state == CON_STATE_PREOPEN) {
2588 		BUG_ON(con->sock);
2589 		con->state = CON_STATE_CONNECTING;
2590 
2591 		con_out_kvec_reset(con);
2592 		prepare_write_banner(con);
2593 		prepare_read_banner(con);
2594 
2595 		BUG_ON(con->in_msg);
2596 		con->in_tag = CEPH_MSGR_TAG_READY;
2597 		dout("try_write initiating connect on %p new state %lu\n",
2598 		     con, con->state);
2599 		ret = ceph_tcp_connect(con);
2600 		if (ret < 0) {
2601 			con->error_msg = "connect error";
2602 			goto out;
2603 		}
2604 	}
2605 
2606 more:
2607 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2608 	BUG_ON(!con->sock);
2609 
2610 	/* kvec data queued? */
2611 	if (con->out_kvec_left) {
2612 		ret = write_partial_kvec(con);
2613 		if (ret <= 0)
2614 			goto out;
2615 	}
2616 	if (con->out_skip) {
2617 		ret = write_partial_skip(con);
2618 		if (ret <= 0)
2619 			goto out;
2620 	}
2621 
2622 	/* msg pages? */
2623 	if (con->out_msg) {
2624 		if (con->out_msg_done) {
2625 			ceph_msg_put(con->out_msg);
2626 			con->out_msg = NULL;   /* we're done with this one */
2627 			goto do_next;
2628 		}
2629 
2630 		ret = write_partial_message_data(con);
2631 		if (ret == 1)
2632 			goto more;  /* we need to send the footer, too! */
2633 		if (ret == 0)
2634 			goto out;
2635 		if (ret < 0) {
2636 			dout("try_write write_partial_message_data err %d\n",
2637 			     ret);
2638 			goto out;
2639 		}
2640 	}
2641 
2642 do_next:
2643 	if (con->state == CON_STATE_OPEN) {
2644 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2645 			prepare_write_keepalive(con);
2646 			goto more;
2647 		}
2648 		/* is anything else pending? */
2649 		if (!list_empty(&con->out_queue)) {
2650 			prepare_write_message(con);
2651 			goto more;
2652 		}
2653 		if (con->in_seq > con->in_seq_acked) {
2654 			prepare_write_ack(con);
2655 			goto more;
2656 		}
2657 	}
2658 
2659 	/* Nothing to do! */
2660 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2661 	dout("try_write nothing else to write.\n");
2662 	ret = 0;
2663 out:
2664 	dout("try_write done on %p ret %d\n", con, ret);
2665 	return ret;
2666 }
2667 
2668 /*
2669  * Read what we can from the socket.
2670  */
2671 static int try_read(struct ceph_connection *con)
2672 {
2673 	int ret = -1;
2674 
2675 more:
2676 	dout("try_read start on %p state %lu\n", con, con->state);
2677 	if (con->state != CON_STATE_CONNECTING &&
2678 	    con->state != CON_STATE_NEGOTIATING &&
2679 	    con->state != CON_STATE_OPEN)
2680 		return 0;
2681 
2682 	BUG_ON(!con->sock);
2683 
2684 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2685 	     con->in_base_pos);
2686 
2687 	if (con->state == CON_STATE_CONNECTING) {
2688 		dout("try_read connecting\n");
2689 		ret = read_partial_banner(con);
2690 		if (ret <= 0)
2691 			goto out;
2692 		ret = process_banner(con);
2693 		if (ret < 0)
2694 			goto out;
2695 
2696 		con->state = CON_STATE_NEGOTIATING;
2697 
2698 		/*
2699 		 * Received banner is good, exchange connection info.
2700 		 * Do not reset out_kvec, as sending our banner raced
2701 		 * with receiving peer banner after connect completed.
2702 		 */
2703 		ret = prepare_write_connect(con);
2704 		if (ret < 0)
2705 			goto out;
2706 		prepare_read_connect(con);
2707 
2708 		/* Send connection info before awaiting response */
2709 		goto out;
2710 	}
2711 
2712 	if (con->state == CON_STATE_NEGOTIATING) {
2713 		dout("try_read negotiating\n");
2714 		ret = read_partial_connect(con);
2715 		if (ret <= 0)
2716 			goto out;
2717 		ret = process_connect(con);
2718 		if (ret < 0)
2719 			goto out;
2720 		goto more;
2721 	}
2722 
2723 	WARN_ON(con->state != CON_STATE_OPEN);
2724 
2725 	if (con->in_base_pos < 0) {
2726 		/*
2727 		 * skipping + discarding content.
2728 		 */
2729 		ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2730 		if (ret <= 0)
2731 			goto out;
2732 		dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2733 		con->in_base_pos += ret;
2734 		if (con->in_base_pos)
2735 			goto more;
2736 	}
2737 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2738 		/*
2739 		 * what's next?
2740 		 */
2741 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2742 		if (ret <= 0)
2743 			goto out;
2744 		dout("try_read got tag %d\n", (int)con->in_tag);
2745 		switch (con->in_tag) {
2746 		case CEPH_MSGR_TAG_MSG:
2747 			prepare_read_message(con);
2748 			break;
2749 		case CEPH_MSGR_TAG_ACK:
2750 			prepare_read_ack(con);
2751 			break;
2752 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2753 			prepare_read_keepalive_ack(con);
2754 			break;
2755 		case CEPH_MSGR_TAG_CLOSE:
2756 			con_close_socket(con);
2757 			con->state = CON_STATE_CLOSED;
2758 			goto out;
2759 		default:
2760 			goto bad_tag;
2761 		}
2762 	}
2763 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2764 		ret = read_partial_message(con);
2765 		if (ret <= 0) {
2766 			switch (ret) {
2767 			case -EBADMSG:
2768 				con->error_msg = "bad crc/signature";
2769 				/* fall through */
2770 			case -EBADE:
2771 				ret = -EIO;
2772 				break;
2773 			case -EIO:
2774 				con->error_msg = "io error";
2775 				break;
2776 			}
2777 			goto out;
2778 		}
2779 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2780 			goto more;
2781 		process_message(con);
2782 		if (con->state == CON_STATE_OPEN)
2783 			prepare_read_tag(con);
2784 		goto more;
2785 	}
2786 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2787 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2788 		/*
2789 		 * the final handshake seq exchange is semantically
2790 		 * equivalent to an ACK
2791 		 */
2792 		ret = read_partial_ack(con);
2793 		if (ret <= 0)
2794 			goto out;
2795 		process_ack(con);
2796 		goto more;
2797 	}
2798 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2799 		ret = read_keepalive_ack(con);
2800 		if (ret <= 0)
2801 			goto out;
2802 		goto more;
2803 	}
2804 
2805 out:
2806 	dout("try_read done on %p ret %d\n", con, ret);
2807 	return ret;
2808 
2809 bad_tag:
2810 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2811 	con->error_msg = "protocol error, garbage tag";
2812 	ret = -1;
2813 	goto out;
2814 }
2815 
2816 
2817 /*
2818  * Atomically queue work on a connection after the specified delay.
2819  * Bump @con reference to avoid races with connection teardown.
2820  * Returns 0 if work was queued, or an error code otherwise.
2821  */
2822 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2823 {
2824 	if (!con->ops->get(con)) {
2825 		dout("%s %p ref count 0\n", __func__, con);
2826 		return -ENOENT;
2827 	}
2828 
2829 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2830 		dout("%s %p - already queued\n", __func__, con);
2831 		con->ops->put(con);
2832 		return -EBUSY;
2833 	}
2834 
2835 	dout("%s %p %lu\n", __func__, con, delay);
2836 	return 0;
2837 }
2838 
2839 static void queue_con(struct ceph_connection *con)
2840 {
2841 	(void) queue_con_delay(con, 0);
2842 }
2843 
2844 static void cancel_con(struct ceph_connection *con)
2845 {
2846 	if (cancel_delayed_work(&con->work)) {
2847 		dout("%s %p\n", __func__, con);
2848 		con->ops->put(con);
2849 	}
2850 }
2851 
2852 static bool con_sock_closed(struct ceph_connection *con)
2853 {
2854 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2855 		return false;
2856 
2857 #define CASE(x)								\
2858 	case CON_STATE_ ## x:						\
2859 		con->error_msg = "socket closed (con state " #x ")";	\
2860 		break;
2861 
2862 	switch (con->state) {
2863 	CASE(CLOSED);
2864 	CASE(PREOPEN);
2865 	CASE(CONNECTING);
2866 	CASE(NEGOTIATING);
2867 	CASE(OPEN);
2868 	CASE(STANDBY);
2869 	default:
2870 		pr_warn("%s con %p unrecognized state %lu\n",
2871 			__func__, con, con->state);
2872 		con->error_msg = "unrecognized con state";
2873 		BUG();
2874 		break;
2875 	}
2876 #undef CASE
2877 
2878 	return true;
2879 }
2880 
2881 static bool con_backoff(struct ceph_connection *con)
2882 {
2883 	int ret;
2884 
2885 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2886 		return false;
2887 
2888 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2889 	if (ret) {
2890 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2891 			con, con->delay);
2892 		BUG_ON(ret == -ENOENT);
2893 		con_flag_set(con, CON_FLAG_BACKOFF);
2894 	}
2895 
2896 	return true;
2897 }
2898 
2899 /* Finish fault handling; con->mutex must *not* be held here */
2900 
2901 static void con_fault_finish(struct ceph_connection *con)
2902 {
2903 	dout("%s %p\n", __func__, con);
2904 
2905 	/*
2906 	 * in case we faulted due to authentication, invalidate our
2907 	 * current tickets so that we can get new ones.
2908 	 */
2909 	if (con->auth_retry) {
2910 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2911 		if (con->ops->invalidate_authorizer)
2912 			con->ops->invalidate_authorizer(con);
2913 		con->auth_retry = 0;
2914 	}
2915 
2916 	if (con->ops->fault)
2917 		con->ops->fault(con);
2918 }
2919 
2920 /*
2921  * Do some work on a connection.  Drop a connection ref when we're done.
2922  */
2923 static void ceph_con_workfn(struct work_struct *work)
2924 {
2925 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2926 						   work.work);
2927 	bool fault;
2928 
2929 	mutex_lock(&con->mutex);
2930 	while (true) {
2931 		int ret;
2932 
2933 		if ((fault = con_sock_closed(con))) {
2934 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2935 			break;
2936 		}
2937 		if (con_backoff(con)) {
2938 			dout("%s: con %p BACKOFF\n", __func__, con);
2939 			break;
2940 		}
2941 		if (con->state == CON_STATE_STANDBY) {
2942 			dout("%s: con %p STANDBY\n", __func__, con);
2943 			break;
2944 		}
2945 		if (con->state == CON_STATE_CLOSED) {
2946 			dout("%s: con %p CLOSED\n", __func__, con);
2947 			BUG_ON(con->sock);
2948 			break;
2949 		}
2950 		if (con->state == CON_STATE_PREOPEN) {
2951 			dout("%s: con %p PREOPEN\n", __func__, con);
2952 			BUG_ON(con->sock);
2953 		}
2954 
2955 		ret = try_read(con);
2956 		if (ret < 0) {
2957 			if (ret == -EAGAIN)
2958 				continue;
2959 			if (!con->error_msg)
2960 				con->error_msg = "socket error on read";
2961 			fault = true;
2962 			break;
2963 		}
2964 
2965 		ret = try_write(con);
2966 		if (ret < 0) {
2967 			if (ret == -EAGAIN)
2968 				continue;
2969 			if (!con->error_msg)
2970 				con->error_msg = "socket error on write";
2971 			fault = true;
2972 		}
2973 
2974 		break;	/* If we make it to here, we're done */
2975 	}
2976 	if (fault)
2977 		con_fault(con);
2978 	mutex_unlock(&con->mutex);
2979 
2980 	if (fault)
2981 		con_fault_finish(con);
2982 
2983 	con->ops->put(con);
2984 }
2985 
2986 /*
2987  * Generic error/fault handler.  A retry mechanism is used with
2988  * exponential backoff
2989  */
2990 static void con_fault(struct ceph_connection *con)
2991 {
2992 	dout("fault %p state %lu to peer %s\n",
2993 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2994 
2995 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2996 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2997 	con->error_msg = NULL;
2998 
2999 	WARN_ON(con->state != CON_STATE_CONNECTING &&
3000 	       con->state != CON_STATE_NEGOTIATING &&
3001 	       con->state != CON_STATE_OPEN);
3002 
3003 	con_close_socket(con);
3004 
3005 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3006 		dout("fault on LOSSYTX channel, marking CLOSED\n");
3007 		con->state = CON_STATE_CLOSED;
3008 		return;
3009 	}
3010 
3011 	if (con->in_msg) {
3012 		BUG_ON(con->in_msg->con != con);
3013 		ceph_msg_put(con->in_msg);
3014 		con->in_msg = NULL;
3015 	}
3016 
3017 	/* Requeue anything that hasn't been acked */
3018 	list_splice_init(&con->out_sent, &con->out_queue);
3019 
3020 	/* If there are no messages queued or keepalive pending, place
3021 	 * the connection in a STANDBY state */
3022 	if (list_empty(&con->out_queue) &&
3023 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3024 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3025 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3026 		con->state = CON_STATE_STANDBY;
3027 	} else {
3028 		/* retry after a delay. */
3029 		con->state = CON_STATE_PREOPEN;
3030 		if (con->delay == 0)
3031 			con->delay = BASE_DELAY_INTERVAL;
3032 		else if (con->delay < MAX_DELAY_INTERVAL)
3033 			con->delay *= 2;
3034 		con_flag_set(con, CON_FLAG_BACKOFF);
3035 		queue_con(con);
3036 	}
3037 }
3038 
3039 
3040 
3041 /*
3042  * initialize a new messenger instance
3043  */
3044 void ceph_messenger_init(struct ceph_messenger *msgr,
3045 			 struct ceph_entity_addr *myaddr)
3046 {
3047 	spin_lock_init(&msgr->global_seq_lock);
3048 
3049 	if (myaddr)
3050 		msgr->inst.addr = *myaddr;
3051 
3052 	/* select a random nonce */
3053 	msgr->inst.addr.type = 0;
3054 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3055 	encode_my_addr(msgr);
3056 
3057 	atomic_set(&msgr->stopping, 0);
3058 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3059 
3060 	dout("%s %p\n", __func__, msgr);
3061 }
3062 EXPORT_SYMBOL(ceph_messenger_init);
3063 
3064 void ceph_messenger_fini(struct ceph_messenger *msgr)
3065 {
3066 	put_net(read_pnet(&msgr->net));
3067 }
3068 EXPORT_SYMBOL(ceph_messenger_fini);
3069 
3070 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3071 {
3072 	if (msg->con)
3073 		msg->con->ops->put(msg->con);
3074 
3075 	msg->con = con ? con->ops->get(con) : NULL;
3076 	BUG_ON(msg->con != con);
3077 }
3078 
3079 static void clear_standby(struct ceph_connection *con)
3080 {
3081 	/* come back from STANDBY? */
3082 	if (con->state == CON_STATE_STANDBY) {
3083 		dout("clear_standby %p and ++connect_seq\n", con);
3084 		con->state = CON_STATE_PREOPEN;
3085 		con->connect_seq++;
3086 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3087 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3088 	}
3089 }
3090 
3091 /*
3092  * Queue up an outgoing message on the given connection.
3093  */
3094 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3095 {
3096 	/* set src+dst */
3097 	msg->hdr.src = con->msgr->inst.name;
3098 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3099 	msg->needs_out_seq = true;
3100 
3101 	mutex_lock(&con->mutex);
3102 
3103 	if (con->state == CON_STATE_CLOSED) {
3104 		dout("con_send %p closed, dropping %p\n", con, msg);
3105 		ceph_msg_put(msg);
3106 		mutex_unlock(&con->mutex);
3107 		return;
3108 	}
3109 
3110 	msg_con_set(msg, con);
3111 
3112 	BUG_ON(!list_empty(&msg->list_head));
3113 	list_add_tail(&msg->list_head, &con->out_queue);
3114 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3115 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3116 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3117 	     le32_to_cpu(msg->hdr.front_len),
3118 	     le32_to_cpu(msg->hdr.middle_len),
3119 	     le32_to_cpu(msg->hdr.data_len));
3120 
3121 	clear_standby(con);
3122 	mutex_unlock(&con->mutex);
3123 
3124 	/* if there wasn't anything waiting to send before, queue
3125 	 * new work */
3126 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3127 		queue_con(con);
3128 }
3129 EXPORT_SYMBOL(ceph_con_send);
3130 
3131 /*
3132  * Revoke a message that was previously queued for send
3133  */
3134 void ceph_msg_revoke(struct ceph_msg *msg)
3135 {
3136 	struct ceph_connection *con = msg->con;
3137 
3138 	if (!con) {
3139 		dout("%s msg %p null con\n", __func__, msg);
3140 		return;		/* Message not in our possession */
3141 	}
3142 
3143 	mutex_lock(&con->mutex);
3144 	if (!list_empty(&msg->list_head)) {
3145 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3146 		list_del_init(&msg->list_head);
3147 		msg->hdr.seq = 0;
3148 
3149 		ceph_msg_put(msg);
3150 	}
3151 	if (con->out_msg == msg) {
3152 		BUG_ON(con->out_skip);
3153 		/* footer */
3154 		if (con->out_msg_done) {
3155 			con->out_skip += con_out_kvec_skip(con);
3156 		} else {
3157 			BUG_ON(!msg->data_length);
3158 			con->out_skip += sizeof_footer(con);
3159 		}
3160 		/* data, middle, front */
3161 		if (msg->data_length)
3162 			con->out_skip += msg->cursor.total_resid;
3163 		if (msg->middle)
3164 			con->out_skip += con_out_kvec_skip(con);
3165 		con->out_skip += con_out_kvec_skip(con);
3166 
3167 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3168 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3169 		msg->hdr.seq = 0;
3170 		con->out_msg = NULL;
3171 		ceph_msg_put(msg);
3172 	}
3173 
3174 	mutex_unlock(&con->mutex);
3175 }
3176 
3177 /*
3178  * Revoke a message that we may be reading data into
3179  */
3180 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3181 {
3182 	struct ceph_connection *con = msg->con;
3183 
3184 	if (!con) {
3185 		dout("%s msg %p null con\n", __func__, msg);
3186 		return;		/* Message not in our possession */
3187 	}
3188 
3189 	mutex_lock(&con->mutex);
3190 	if (con->in_msg == msg) {
3191 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3192 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3193 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3194 
3195 		/* skip rest of message */
3196 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3197 		con->in_base_pos = con->in_base_pos -
3198 				sizeof(struct ceph_msg_header) -
3199 				front_len -
3200 				middle_len -
3201 				data_len -
3202 				sizeof(struct ceph_msg_footer);
3203 		ceph_msg_put(con->in_msg);
3204 		con->in_msg = NULL;
3205 		con->in_tag = CEPH_MSGR_TAG_READY;
3206 		con->in_seq++;
3207 	} else {
3208 		dout("%s %p in_msg %p msg %p no-op\n",
3209 		     __func__, con, con->in_msg, msg);
3210 	}
3211 	mutex_unlock(&con->mutex);
3212 }
3213 
3214 /*
3215  * Queue a keepalive byte to ensure the tcp connection is alive.
3216  */
3217 void ceph_con_keepalive(struct ceph_connection *con)
3218 {
3219 	dout("con_keepalive %p\n", con);
3220 	mutex_lock(&con->mutex);
3221 	clear_standby(con);
3222 	mutex_unlock(&con->mutex);
3223 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3224 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3225 		queue_con(con);
3226 }
3227 EXPORT_SYMBOL(ceph_con_keepalive);
3228 
3229 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3230 			       unsigned long interval)
3231 {
3232 	if (interval > 0 &&
3233 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3234 		struct timespec64 now;
3235 		struct timespec64 ts;
3236 		ktime_get_real_ts64(&now);
3237 		jiffies_to_timespec64(interval, &ts);
3238 		ts = timespec64_add(con->last_keepalive_ack, ts);
3239 		return timespec64_compare(&now, &ts) >= 0;
3240 	}
3241 	return false;
3242 }
3243 
3244 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3245 {
3246 	BUG_ON(msg->num_data_items >= msg->max_data_items);
3247 	return &msg->data[msg->num_data_items++];
3248 }
3249 
3250 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3251 {
3252 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3253 		ceph_pagelist_release(data->pagelist);
3254 }
3255 
3256 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3257 		size_t length, size_t alignment)
3258 {
3259 	struct ceph_msg_data *data;
3260 
3261 	BUG_ON(!pages);
3262 	BUG_ON(!length);
3263 
3264 	data = ceph_msg_data_add(msg);
3265 	data->type = CEPH_MSG_DATA_PAGES;
3266 	data->pages = pages;
3267 	data->length = length;
3268 	data->alignment = alignment & ~PAGE_MASK;
3269 
3270 	msg->data_length += length;
3271 }
3272 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3273 
3274 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3275 				struct ceph_pagelist *pagelist)
3276 {
3277 	struct ceph_msg_data *data;
3278 
3279 	BUG_ON(!pagelist);
3280 	BUG_ON(!pagelist->length);
3281 
3282 	data = ceph_msg_data_add(msg);
3283 	data->type = CEPH_MSG_DATA_PAGELIST;
3284 	refcount_inc(&pagelist->refcnt);
3285 	data->pagelist = pagelist;
3286 
3287 	msg->data_length += pagelist->length;
3288 }
3289 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3290 
3291 #ifdef	CONFIG_BLOCK
3292 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3293 			   u32 length)
3294 {
3295 	struct ceph_msg_data *data;
3296 
3297 	data = ceph_msg_data_add(msg);
3298 	data->type = CEPH_MSG_DATA_BIO;
3299 	data->bio_pos = *bio_pos;
3300 	data->bio_length = length;
3301 
3302 	msg->data_length += length;
3303 }
3304 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3305 #endif	/* CONFIG_BLOCK */
3306 
3307 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3308 			     struct ceph_bvec_iter *bvec_pos)
3309 {
3310 	struct ceph_msg_data *data;
3311 
3312 	data = ceph_msg_data_add(msg);
3313 	data->type = CEPH_MSG_DATA_BVECS;
3314 	data->bvec_pos = *bvec_pos;
3315 
3316 	msg->data_length += bvec_pos->iter.bi_size;
3317 }
3318 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3319 
3320 /*
3321  * construct a new message with given type, size
3322  * the new msg has a ref count of 1.
3323  */
3324 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3325 			       gfp_t flags, bool can_fail)
3326 {
3327 	struct ceph_msg *m;
3328 
3329 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3330 	if (m == NULL)
3331 		goto out;
3332 
3333 	m->hdr.type = cpu_to_le16(type);
3334 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3335 	m->hdr.front_len = cpu_to_le32(front_len);
3336 
3337 	INIT_LIST_HEAD(&m->list_head);
3338 	kref_init(&m->kref);
3339 
3340 	/* front */
3341 	if (front_len) {
3342 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3343 		if (m->front.iov_base == NULL) {
3344 			dout("ceph_msg_new can't allocate %d bytes\n",
3345 			     front_len);
3346 			goto out2;
3347 		}
3348 	} else {
3349 		m->front.iov_base = NULL;
3350 	}
3351 	m->front_alloc_len = m->front.iov_len = front_len;
3352 
3353 	if (max_data_items) {
3354 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3355 					flags);
3356 		if (!m->data)
3357 			goto out2;
3358 
3359 		m->max_data_items = max_data_items;
3360 	}
3361 
3362 	dout("ceph_msg_new %p front %d\n", m, front_len);
3363 	return m;
3364 
3365 out2:
3366 	ceph_msg_put(m);
3367 out:
3368 	if (!can_fail) {
3369 		pr_err("msg_new can't create type %d front %d\n", type,
3370 		       front_len);
3371 		WARN_ON(1);
3372 	} else {
3373 		dout("msg_new can't create type %d front %d\n", type,
3374 		     front_len);
3375 	}
3376 	return NULL;
3377 }
3378 EXPORT_SYMBOL(ceph_msg_new2);
3379 
3380 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3381 			      bool can_fail)
3382 {
3383 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3384 }
3385 EXPORT_SYMBOL(ceph_msg_new);
3386 
3387 /*
3388  * Allocate "middle" portion of a message, if it is needed and wasn't
3389  * allocated by alloc_msg.  This allows us to read a small fixed-size
3390  * per-type header in the front and then gracefully fail (i.e.,
3391  * propagate the error to the caller based on info in the front) when
3392  * the middle is too large.
3393  */
3394 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3395 {
3396 	int type = le16_to_cpu(msg->hdr.type);
3397 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3398 
3399 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3400 	     ceph_msg_type_name(type), middle_len);
3401 	BUG_ON(!middle_len);
3402 	BUG_ON(msg->middle);
3403 
3404 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3405 	if (!msg->middle)
3406 		return -ENOMEM;
3407 	return 0;
3408 }
3409 
3410 /*
3411  * Allocate a message for receiving an incoming message on a
3412  * connection, and save the result in con->in_msg.  Uses the
3413  * connection's private alloc_msg op if available.
3414  *
3415  * Returns 0 on success, or a negative error code.
3416  *
3417  * On success, if we set *skip = 1:
3418  *  - the next message should be skipped and ignored.
3419  *  - con->in_msg == NULL
3420  * or if we set *skip = 0:
3421  *  - con->in_msg is non-null.
3422  * On error (ENOMEM, EAGAIN, ...),
3423  *  - con->in_msg == NULL
3424  */
3425 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3426 {
3427 	struct ceph_msg_header *hdr = &con->in_hdr;
3428 	int middle_len = le32_to_cpu(hdr->middle_len);
3429 	struct ceph_msg *msg;
3430 	int ret = 0;
3431 
3432 	BUG_ON(con->in_msg != NULL);
3433 	BUG_ON(!con->ops->alloc_msg);
3434 
3435 	mutex_unlock(&con->mutex);
3436 	msg = con->ops->alloc_msg(con, hdr, skip);
3437 	mutex_lock(&con->mutex);
3438 	if (con->state != CON_STATE_OPEN) {
3439 		if (msg)
3440 			ceph_msg_put(msg);
3441 		return -EAGAIN;
3442 	}
3443 	if (msg) {
3444 		BUG_ON(*skip);
3445 		msg_con_set(msg, con);
3446 		con->in_msg = msg;
3447 	} else {
3448 		/*
3449 		 * Null message pointer means either we should skip
3450 		 * this message or we couldn't allocate memory.  The
3451 		 * former is not an error.
3452 		 */
3453 		if (*skip)
3454 			return 0;
3455 
3456 		con->error_msg = "error allocating memory for incoming message";
3457 		return -ENOMEM;
3458 	}
3459 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3460 
3461 	if (middle_len && !con->in_msg->middle) {
3462 		ret = ceph_alloc_middle(con, con->in_msg);
3463 		if (ret < 0) {
3464 			ceph_msg_put(con->in_msg);
3465 			con->in_msg = NULL;
3466 		}
3467 	}
3468 
3469 	return ret;
3470 }
3471 
3472 
3473 /*
3474  * Free a generically kmalloc'd message.
3475  */
3476 static void ceph_msg_free(struct ceph_msg *m)
3477 {
3478 	dout("%s %p\n", __func__, m);
3479 	kvfree(m->front.iov_base);
3480 	kfree(m->data);
3481 	kmem_cache_free(ceph_msg_cache, m);
3482 }
3483 
3484 static void ceph_msg_release(struct kref *kref)
3485 {
3486 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3487 	int i;
3488 
3489 	dout("%s %p\n", __func__, m);
3490 	WARN_ON(!list_empty(&m->list_head));
3491 
3492 	msg_con_set(m, NULL);
3493 
3494 	/* drop middle, data, if any */
3495 	if (m->middle) {
3496 		ceph_buffer_put(m->middle);
3497 		m->middle = NULL;
3498 	}
3499 
3500 	for (i = 0; i < m->num_data_items; i++)
3501 		ceph_msg_data_destroy(&m->data[i]);
3502 
3503 	if (m->pool)
3504 		ceph_msgpool_put(m->pool, m);
3505 	else
3506 		ceph_msg_free(m);
3507 }
3508 
3509 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3510 {
3511 	dout("%s %p (was %d)\n", __func__, msg,
3512 	     kref_read(&msg->kref));
3513 	kref_get(&msg->kref);
3514 	return msg;
3515 }
3516 EXPORT_SYMBOL(ceph_msg_get);
3517 
3518 void ceph_msg_put(struct ceph_msg *msg)
3519 {
3520 	dout("%s %p (was %d)\n", __func__, msg,
3521 	     kref_read(&msg->kref));
3522 	kref_put(&msg->kref, ceph_msg_release);
3523 }
3524 EXPORT_SYMBOL(ceph_msg_put);
3525 
3526 void ceph_msg_dump(struct ceph_msg *msg)
3527 {
3528 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3529 		 msg->front_alloc_len, msg->data_length);
3530 	print_hex_dump(KERN_DEBUG, "header: ",
3531 		       DUMP_PREFIX_OFFSET, 16, 1,
3532 		       &msg->hdr, sizeof(msg->hdr), true);
3533 	print_hex_dump(KERN_DEBUG, " front: ",
3534 		       DUMP_PREFIX_OFFSET, 16, 1,
3535 		       msg->front.iov_base, msg->front.iov_len, true);
3536 	if (msg->middle)
3537 		print_hex_dump(KERN_DEBUG, "middle: ",
3538 			       DUMP_PREFIX_OFFSET, 16, 1,
3539 			       msg->middle->vec.iov_base,
3540 			       msg->middle->vec.iov_len, true);
3541 	print_hex_dump(KERN_DEBUG, "footer: ",
3542 		       DUMP_PREFIX_OFFSET, 16, 1,
3543 		       &msg->footer, sizeof(msg->footer), true);
3544 }
3545 EXPORT_SYMBOL(ceph_msg_dump);
3546