xref: /openbmc/linux/net/ceph/messenger.c (revision 54525552)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15 
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 
21 /*
22  * Ceph uses the messenger to exchange ceph_msg messages with other
23  * hosts in the system.  The messenger provides ordered and reliable
24  * delivery.  We tolerate TCP disconnects by reconnecting (with
25  * exponential backoff) in the case of a fault (disconnection, bad
26  * crc, protocol error).  Acks allow sent messages to be discarded by
27  * the sender.
28  */
29 
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34 
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38 
39 
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43 
44 /*
45  * nicely render a sockaddr as a string.
46  */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52 
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55 	int i;
56 	char *s;
57 	struct sockaddr_in *in4 = (void *)ss;
58 	struct sockaddr_in6 *in6 = (void *)ss;
59 
60 	spin_lock(&addr_str_lock);
61 	i = last_addr_str++;
62 	if (last_addr_str == MAX_ADDR_STR)
63 		last_addr_str = 0;
64 	spin_unlock(&addr_str_lock);
65 	s = addr_str[i];
66 
67 	switch (ss->ss_family) {
68 	case AF_INET:
69 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 			 (unsigned int)ntohs(in4->sin_port));
71 		break;
72 
73 	case AF_INET6:
74 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 			 (unsigned int)ntohs(in6->sin6_port));
76 		break;
77 
78 	default:
79 		sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
80 	}
81 
82 	return s;
83 }
84 EXPORT_SYMBOL(ceph_pr_addr);
85 
86 static void encode_my_addr(struct ceph_messenger *msgr)
87 {
88 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89 	ceph_encode_addr(&msgr->my_enc_addr);
90 }
91 
92 /*
93  * work queue for all reading and writing to/from the socket.
94  */
95 struct workqueue_struct *ceph_msgr_wq;
96 
97 int ceph_msgr_init(void)
98 {
99 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
100 	if (!ceph_msgr_wq) {
101 		pr_err("msgr_init failed to create workqueue\n");
102 		return -ENOMEM;
103 	}
104 	return 0;
105 }
106 EXPORT_SYMBOL(ceph_msgr_init);
107 
108 void ceph_msgr_exit(void)
109 {
110 	destroy_workqueue(ceph_msgr_wq);
111 }
112 EXPORT_SYMBOL(ceph_msgr_exit);
113 
114 void ceph_msgr_flush(void)
115 {
116 	flush_workqueue(ceph_msgr_wq);
117 }
118 EXPORT_SYMBOL(ceph_msgr_flush);
119 
120 
121 /*
122  * socket callback functions
123  */
124 
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock *sk, int count_unused)
127 {
128 	struct ceph_connection *con =
129 		(struct ceph_connection *)sk->sk_user_data;
130 	if (sk->sk_state != TCP_CLOSE_WAIT) {
131 		dout("ceph_data_ready on %p state = %lu, queueing work\n",
132 		     con, con->state);
133 		queue_con(con);
134 	}
135 }
136 
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock *sk)
139 {
140 	struct ceph_connection *con =
141 		(struct ceph_connection *)sk->sk_user_data;
142 
143 	/* only queue to workqueue if there is data we want to write. */
144 	if (test_bit(WRITE_PENDING, &con->state)) {
145 		dout("ceph_write_space %p queueing write work\n", con);
146 		queue_con(con);
147 	} else {
148 		dout("ceph_write_space %p nothing to write\n", con);
149 	}
150 
151 	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
152 	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
153 }
154 
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock *sk)
157 {
158 	struct ceph_connection *con =
159 		(struct ceph_connection *)sk->sk_user_data;
160 
161 	dout("ceph_state_change %p state = %lu sk_state = %u\n",
162 	     con, con->state, sk->sk_state);
163 
164 	if (test_bit(CLOSED, &con->state))
165 		return;
166 
167 	switch (sk->sk_state) {
168 	case TCP_CLOSE:
169 		dout("ceph_state_change TCP_CLOSE\n");
170 	case TCP_CLOSE_WAIT:
171 		dout("ceph_state_change TCP_CLOSE_WAIT\n");
172 		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
173 			if (test_bit(CONNECTING, &con->state))
174 				con->error_msg = "connection failed";
175 			else
176 				con->error_msg = "socket closed";
177 			queue_con(con);
178 		}
179 		break;
180 	case TCP_ESTABLISHED:
181 		dout("ceph_state_change TCP_ESTABLISHED\n");
182 		queue_con(con);
183 		break;
184 	}
185 }
186 
187 /*
188  * set up socket callbacks
189  */
190 static void set_sock_callbacks(struct socket *sock,
191 			       struct ceph_connection *con)
192 {
193 	struct sock *sk = sock->sk;
194 	sk->sk_user_data = (void *)con;
195 	sk->sk_data_ready = ceph_data_ready;
196 	sk->sk_write_space = ceph_write_space;
197 	sk->sk_state_change = ceph_state_change;
198 }
199 
200 
201 /*
202  * socket helpers
203  */
204 
205 /*
206  * initiate connection to a remote socket.
207  */
208 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
209 {
210 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
211 	struct socket *sock;
212 	int ret;
213 
214 	BUG_ON(con->sock);
215 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
216 			       IPPROTO_TCP, &sock);
217 	if (ret)
218 		return ERR_PTR(ret);
219 	con->sock = sock;
220 	sock->sk->sk_allocation = GFP_NOFS;
221 
222 #ifdef CONFIG_LOCKDEP
223 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
224 #endif
225 
226 	set_sock_callbacks(sock, con);
227 
228 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
229 
230 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
231 				 O_NONBLOCK);
232 	if (ret == -EINPROGRESS) {
233 		dout("connect %s EINPROGRESS sk_state = %u\n",
234 		     ceph_pr_addr(&con->peer_addr.in_addr),
235 		     sock->sk->sk_state);
236 		ret = 0;
237 	}
238 	if (ret < 0) {
239 		pr_err("connect %s error %d\n",
240 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
241 		sock_release(sock);
242 		con->sock = NULL;
243 		con->error_msg = "connect error";
244 	}
245 
246 	if (ret < 0)
247 		return ERR_PTR(ret);
248 	return sock;
249 }
250 
251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
252 {
253 	struct kvec iov = {buf, len};
254 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
255 	int r;
256 
257 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
258 	if (r == -EAGAIN)
259 		r = 0;
260 	return r;
261 }
262 
263 /*
264  * write something.  @more is true if caller will be sending more data
265  * shortly.
266  */
267 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
268 		     size_t kvlen, size_t len, int more)
269 {
270 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
271 	int r;
272 
273 	if (more)
274 		msg.msg_flags |= MSG_MORE;
275 	else
276 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
277 
278 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
279 	if (r == -EAGAIN)
280 		r = 0;
281 	return r;
282 }
283 
284 
285 /*
286  * Shutdown/close the socket for the given connection.
287  */
288 static int con_close_socket(struct ceph_connection *con)
289 {
290 	int rc;
291 
292 	dout("con_close_socket on %p sock %p\n", con, con->sock);
293 	if (!con->sock)
294 		return 0;
295 	set_bit(SOCK_CLOSED, &con->state);
296 	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
297 	sock_release(con->sock);
298 	con->sock = NULL;
299 	clear_bit(SOCK_CLOSED, &con->state);
300 	return rc;
301 }
302 
303 /*
304  * Reset a connection.  Discard all incoming and outgoing messages
305  * and clear *_seq state.
306  */
307 static void ceph_msg_remove(struct ceph_msg *msg)
308 {
309 	list_del_init(&msg->list_head);
310 	ceph_msg_put(msg);
311 }
312 static void ceph_msg_remove_list(struct list_head *head)
313 {
314 	while (!list_empty(head)) {
315 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
316 							list_head);
317 		ceph_msg_remove(msg);
318 	}
319 }
320 
321 static void reset_connection(struct ceph_connection *con)
322 {
323 	/* reset connection, out_queue, msg_ and connect_seq */
324 	/* discard existing out_queue and msg_seq */
325 	ceph_msg_remove_list(&con->out_queue);
326 	ceph_msg_remove_list(&con->out_sent);
327 
328 	if (con->in_msg) {
329 		ceph_msg_put(con->in_msg);
330 		con->in_msg = NULL;
331 	}
332 
333 	con->connect_seq = 0;
334 	con->out_seq = 0;
335 	if (con->out_msg) {
336 		ceph_msg_put(con->out_msg);
337 		con->out_msg = NULL;
338 	}
339 	con->in_seq = 0;
340 	con->in_seq_acked = 0;
341 }
342 
343 /*
344  * mark a peer down.  drop any open connections.
345  */
346 void ceph_con_close(struct ceph_connection *con)
347 {
348 	dout("con_close %p peer %s\n", con,
349 	     ceph_pr_addr(&con->peer_addr.in_addr));
350 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
351 	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
352 	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
353 	clear_bit(KEEPALIVE_PENDING, &con->state);
354 	clear_bit(WRITE_PENDING, &con->state);
355 	mutex_lock(&con->mutex);
356 	reset_connection(con);
357 	con->peer_global_seq = 0;
358 	cancel_delayed_work(&con->work);
359 	mutex_unlock(&con->mutex);
360 	queue_con(con);
361 }
362 EXPORT_SYMBOL(ceph_con_close);
363 
364 /*
365  * Reopen a closed connection, with a new peer address.
366  */
367 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
368 {
369 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
370 	set_bit(OPENING, &con->state);
371 	clear_bit(CLOSED, &con->state);
372 	memcpy(&con->peer_addr, addr, sizeof(*addr));
373 	con->delay = 0;      /* reset backoff memory */
374 	queue_con(con);
375 }
376 EXPORT_SYMBOL(ceph_con_open);
377 
378 /*
379  * return true if this connection ever successfully opened
380  */
381 bool ceph_con_opened(struct ceph_connection *con)
382 {
383 	return con->connect_seq > 0;
384 }
385 
386 /*
387  * generic get/put
388  */
389 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
390 {
391 	dout("con_get %p nref = %d -> %d\n", con,
392 	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
393 	if (atomic_inc_not_zero(&con->nref))
394 		return con;
395 	return NULL;
396 }
397 
398 void ceph_con_put(struct ceph_connection *con)
399 {
400 	dout("con_put %p nref = %d -> %d\n", con,
401 	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
402 	BUG_ON(atomic_read(&con->nref) == 0);
403 	if (atomic_dec_and_test(&con->nref)) {
404 		BUG_ON(con->sock);
405 		kfree(con);
406 	}
407 }
408 
409 /*
410  * initialize a new connection.
411  */
412 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
413 {
414 	dout("con_init %p\n", con);
415 	memset(con, 0, sizeof(*con));
416 	atomic_set(&con->nref, 1);
417 	con->msgr = msgr;
418 	mutex_init(&con->mutex);
419 	INIT_LIST_HEAD(&con->out_queue);
420 	INIT_LIST_HEAD(&con->out_sent);
421 	INIT_DELAYED_WORK(&con->work, con_work);
422 }
423 EXPORT_SYMBOL(ceph_con_init);
424 
425 
426 /*
427  * We maintain a global counter to order connection attempts.  Get
428  * a unique seq greater than @gt.
429  */
430 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
431 {
432 	u32 ret;
433 
434 	spin_lock(&msgr->global_seq_lock);
435 	if (msgr->global_seq < gt)
436 		msgr->global_seq = gt;
437 	ret = ++msgr->global_seq;
438 	spin_unlock(&msgr->global_seq_lock);
439 	return ret;
440 }
441 
442 
443 /*
444  * Prepare footer for currently outgoing message, and finish things
445  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
446  */
447 static void prepare_write_message_footer(struct ceph_connection *con, int v)
448 {
449 	struct ceph_msg *m = con->out_msg;
450 
451 	dout("prepare_write_message_footer %p\n", con);
452 	con->out_kvec_is_msg = true;
453 	con->out_kvec[v].iov_base = &m->footer;
454 	con->out_kvec[v].iov_len = sizeof(m->footer);
455 	con->out_kvec_bytes += sizeof(m->footer);
456 	con->out_kvec_left++;
457 	con->out_more = m->more_to_follow;
458 	con->out_msg_done = true;
459 }
460 
461 /*
462  * Prepare headers for the next outgoing message.
463  */
464 static void prepare_write_message(struct ceph_connection *con)
465 {
466 	struct ceph_msg *m;
467 	int v = 0;
468 
469 	con->out_kvec_bytes = 0;
470 	con->out_kvec_is_msg = true;
471 	con->out_msg_done = false;
472 
473 	/* Sneak an ack in there first?  If we can get it into the same
474 	 * TCP packet that's a good thing. */
475 	if (con->in_seq > con->in_seq_acked) {
476 		con->in_seq_acked = con->in_seq;
477 		con->out_kvec[v].iov_base = &tag_ack;
478 		con->out_kvec[v++].iov_len = 1;
479 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
480 		con->out_kvec[v].iov_base = &con->out_temp_ack;
481 		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
482 		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
483 	}
484 
485 	m = list_first_entry(&con->out_queue,
486 		       struct ceph_msg, list_head);
487 	con->out_msg = m;
488 	if (test_bit(LOSSYTX, &con->state)) {
489 		list_del_init(&m->list_head);
490 	} else {
491 		/* put message on sent list */
492 		ceph_msg_get(m);
493 		list_move_tail(&m->list_head, &con->out_sent);
494 	}
495 
496 	/*
497 	 * only assign outgoing seq # if we haven't sent this message
498 	 * yet.  if it is requeued, resend with it's original seq.
499 	 */
500 	if (m->needs_out_seq) {
501 		m->hdr.seq = cpu_to_le64(++con->out_seq);
502 		m->needs_out_seq = false;
503 	}
504 
505 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
506 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
507 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
508 	     le32_to_cpu(m->hdr.data_len),
509 	     m->nr_pages);
510 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
511 
512 	/* tag + hdr + front + middle */
513 	con->out_kvec[v].iov_base = &tag_msg;
514 	con->out_kvec[v++].iov_len = 1;
515 	con->out_kvec[v].iov_base = &m->hdr;
516 	con->out_kvec[v++].iov_len = sizeof(m->hdr);
517 	con->out_kvec[v++] = m->front;
518 	if (m->middle)
519 		con->out_kvec[v++] = m->middle->vec;
520 	con->out_kvec_left = v;
521 	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
522 		(m->middle ? m->middle->vec.iov_len : 0);
523 	con->out_kvec_cur = con->out_kvec;
524 
525 	/* fill in crc (except data pages), footer */
526 	con->out_msg->hdr.crc =
527 		cpu_to_le32(crc32c(0, (void *)&m->hdr,
528 				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
529 	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
530 	con->out_msg->footer.front_crc =
531 		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
532 	if (m->middle)
533 		con->out_msg->footer.middle_crc =
534 			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
535 					   m->middle->vec.iov_len));
536 	else
537 		con->out_msg->footer.middle_crc = 0;
538 	con->out_msg->footer.data_crc = 0;
539 	dout("prepare_write_message front_crc %u data_crc %u\n",
540 	     le32_to_cpu(con->out_msg->footer.front_crc),
541 	     le32_to_cpu(con->out_msg->footer.middle_crc));
542 
543 	/* is there a data payload? */
544 	if (le32_to_cpu(m->hdr.data_len) > 0) {
545 		/* initialize page iterator */
546 		con->out_msg_pos.page = 0;
547 		if (m->pages)
548 			con->out_msg_pos.page_pos = m->page_alignment;
549 		else
550 			con->out_msg_pos.page_pos = 0;
551 		con->out_msg_pos.data_pos = 0;
552 		con->out_msg_pos.did_page_crc = 0;
553 		con->out_more = 1;  /* data + footer will follow */
554 	} else {
555 		/* no, queue up footer too and be done */
556 		prepare_write_message_footer(con, v);
557 	}
558 
559 	set_bit(WRITE_PENDING, &con->state);
560 }
561 
562 /*
563  * Prepare an ack.
564  */
565 static void prepare_write_ack(struct ceph_connection *con)
566 {
567 	dout("prepare_write_ack %p %llu -> %llu\n", con,
568 	     con->in_seq_acked, con->in_seq);
569 	con->in_seq_acked = con->in_seq;
570 
571 	con->out_kvec[0].iov_base = &tag_ack;
572 	con->out_kvec[0].iov_len = 1;
573 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
574 	con->out_kvec[1].iov_base = &con->out_temp_ack;
575 	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
576 	con->out_kvec_left = 2;
577 	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
578 	con->out_kvec_cur = con->out_kvec;
579 	con->out_more = 1;  /* more will follow.. eventually.. */
580 	set_bit(WRITE_PENDING, &con->state);
581 }
582 
583 /*
584  * Prepare to write keepalive byte.
585  */
586 static void prepare_write_keepalive(struct ceph_connection *con)
587 {
588 	dout("prepare_write_keepalive %p\n", con);
589 	con->out_kvec[0].iov_base = &tag_keepalive;
590 	con->out_kvec[0].iov_len = 1;
591 	con->out_kvec_left = 1;
592 	con->out_kvec_bytes = 1;
593 	con->out_kvec_cur = con->out_kvec;
594 	set_bit(WRITE_PENDING, &con->state);
595 }
596 
597 /*
598  * Connection negotiation.
599  */
600 
601 static void prepare_connect_authorizer(struct ceph_connection *con)
602 {
603 	void *auth_buf;
604 	int auth_len = 0;
605 	int auth_protocol = 0;
606 
607 	mutex_unlock(&con->mutex);
608 	if (con->ops->get_authorizer)
609 		con->ops->get_authorizer(con, &auth_buf, &auth_len,
610 					 &auth_protocol, &con->auth_reply_buf,
611 					 &con->auth_reply_buf_len,
612 					 con->auth_retry);
613 	mutex_lock(&con->mutex);
614 
615 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
616 	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
617 
618 	con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
619 	con->out_kvec[con->out_kvec_left].iov_len = auth_len;
620 	con->out_kvec_left++;
621 	con->out_kvec_bytes += auth_len;
622 }
623 
624 /*
625  * We connected to a peer and are saying hello.
626  */
627 static void prepare_write_banner(struct ceph_messenger *msgr,
628 				 struct ceph_connection *con)
629 {
630 	int len = strlen(CEPH_BANNER);
631 
632 	con->out_kvec[0].iov_base = CEPH_BANNER;
633 	con->out_kvec[0].iov_len = len;
634 	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
635 	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
636 	con->out_kvec_left = 2;
637 	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
638 	con->out_kvec_cur = con->out_kvec;
639 	con->out_more = 0;
640 	set_bit(WRITE_PENDING, &con->state);
641 }
642 
643 static void prepare_write_connect(struct ceph_messenger *msgr,
644 				  struct ceph_connection *con,
645 				  int after_banner)
646 {
647 	unsigned global_seq = get_global_seq(con->msgr, 0);
648 	int proto;
649 
650 	switch (con->peer_name.type) {
651 	case CEPH_ENTITY_TYPE_MON:
652 		proto = CEPH_MONC_PROTOCOL;
653 		break;
654 	case CEPH_ENTITY_TYPE_OSD:
655 		proto = CEPH_OSDC_PROTOCOL;
656 		break;
657 	case CEPH_ENTITY_TYPE_MDS:
658 		proto = CEPH_MDSC_PROTOCOL;
659 		break;
660 	default:
661 		BUG();
662 	}
663 
664 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
665 	     con->connect_seq, global_seq, proto);
666 
667 	con->out_connect.features = cpu_to_le64(msgr->supported_features);
668 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
669 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
670 	con->out_connect.global_seq = cpu_to_le32(global_seq);
671 	con->out_connect.protocol_version = cpu_to_le32(proto);
672 	con->out_connect.flags = 0;
673 
674 	if (!after_banner) {
675 		con->out_kvec_left = 0;
676 		con->out_kvec_bytes = 0;
677 	}
678 	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
679 	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
680 	con->out_kvec_left++;
681 	con->out_kvec_bytes += sizeof(con->out_connect);
682 	con->out_kvec_cur = con->out_kvec;
683 	con->out_more = 0;
684 	set_bit(WRITE_PENDING, &con->state);
685 
686 	prepare_connect_authorizer(con);
687 }
688 
689 
690 /*
691  * write as much of pending kvecs to the socket as we can.
692  *  1 -> done
693  *  0 -> socket full, but more to do
694  * <0 -> error
695  */
696 static int write_partial_kvec(struct ceph_connection *con)
697 {
698 	int ret;
699 
700 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
701 	while (con->out_kvec_bytes > 0) {
702 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
703 				       con->out_kvec_left, con->out_kvec_bytes,
704 				       con->out_more);
705 		if (ret <= 0)
706 			goto out;
707 		con->out_kvec_bytes -= ret;
708 		if (con->out_kvec_bytes == 0)
709 			break;            /* done */
710 		while (ret > 0) {
711 			if (ret >= con->out_kvec_cur->iov_len) {
712 				ret -= con->out_kvec_cur->iov_len;
713 				con->out_kvec_cur++;
714 				con->out_kvec_left--;
715 			} else {
716 				con->out_kvec_cur->iov_len -= ret;
717 				con->out_kvec_cur->iov_base += ret;
718 				ret = 0;
719 				break;
720 			}
721 		}
722 	}
723 	con->out_kvec_left = 0;
724 	con->out_kvec_is_msg = false;
725 	ret = 1;
726 out:
727 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
728 	     con->out_kvec_bytes, con->out_kvec_left, ret);
729 	return ret;  /* done! */
730 }
731 
732 #ifdef CONFIG_BLOCK
733 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
734 {
735 	if (!bio) {
736 		*iter = NULL;
737 		*seg = 0;
738 		return;
739 	}
740 	*iter = bio;
741 	*seg = bio->bi_idx;
742 }
743 
744 static void iter_bio_next(struct bio **bio_iter, int *seg)
745 {
746 	if (*bio_iter == NULL)
747 		return;
748 
749 	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
750 
751 	(*seg)++;
752 	if (*seg == (*bio_iter)->bi_vcnt)
753 		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
754 }
755 #endif
756 
757 /*
758  * Write as much message data payload as we can.  If we finish, queue
759  * up the footer.
760  *  1 -> done, footer is now queued in out_kvec[].
761  *  0 -> socket full, but more to do
762  * <0 -> error
763  */
764 static int write_partial_msg_pages(struct ceph_connection *con)
765 {
766 	struct ceph_msg *msg = con->out_msg;
767 	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
768 	size_t len;
769 	int crc = con->msgr->nocrc;
770 	int ret;
771 	int total_max_write;
772 	int in_trail = 0;
773 	size_t trail_len = (msg->trail ? msg->trail->length : 0);
774 
775 	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
776 	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
777 	     con->out_msg_pos.page_pos);
778 
779 #ifdef CONFIG_BLOCK
780 	if (msg->bio && !msg->bio_iter)
781 		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
782 #endif
783 
784 	while (data_len > con->out_msg_pos.data_pos) {
785 		struct page *page = NULL;
786 		void *kaddr = NULL;
787 		int max_write = PAGE_SIZE;
788 		int page_shift = 0;
789 
790 		total_max_write = data_len - trail_len -
791 			con->out_msg_pos.data_pos;
792 
793 		/*
794 		 * if we are calculating the data crc (the default), we need
795 		 * to map the page.  if our pages[] has been revoked, use the
796 		 * zero page.
797 		 */
798 
799 		/* have we reached the trail part of the data? */
800 		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
801 			in_trail = 1;
802 
803 			total_max_write = data_len - con->out_msg_pos.data_pos;
804 
805 			page = list_first_entry(&msg->trail->head,
806 						struct page, lru);
807 			if (crc)
808 				kaddr = kmap(page);
809 			max_write = PAGE_SIZE;
810 		} else if (msg->pages) {
811 			page = msg->pages[con->out_msg_pos.page];
812 			if (crc)
813 				kaddr = kmap(page);
814 		} else if (msg->pagelist) {
815 			page = list_first_entry(&msg->pagelist->head,
816 						struct page, lru);
817 			if (crc)
818 				kaddr = kmap(page);
819 #ifdef CONFIG_BLOCK
820 		} else if (msg->bio) {
821 			struct bio_vec *bv;
822 
823 			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
824 			page = bv->bv_page;
825 			page_shift = bv->bv_offset;
826 			if (crc)
827 				kaddr = kmap(page) + page_shift;
828 			max_write = bv->bv_len;
829 #endif
830 		} else {
831 			page = con->msgr->zero_page;
832 			if (crc)
833 				kaddr = page_address(con->msgr->zero_page);
834 		}
835 		len = min_t(int, max_write - con->out_msg_pos.page_pos,
836 			    total_max_write);
837 
838 		if (crc && !con->out_msg_pos.did_page_crc) {
839 			void *base = kaddr + con->out_msg_pos.page_pos;
840 			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
841 
842 			BUG_ON(kaddr == NULL);
843 			con->out_msg->footer.data_crc =
844 				cpu_to_le32(crc32c(tmpcrc, base, len));
845 			con->out_msg_pos.did_page_crc = 1;
846 		}
847 		ret = kernel_sendpage(con->sock, page,
848 				      con->out_msg_pos.page_pos + page_shift,
849 				      len,
850 				      MSG_DONTWAIT | MSG_NOSIGNAL |
851 				      MSG_MORE);
852 
853 		if (crc &&
854 		    (msg->pages || msg->pagelist || msg->bio || in_trail))
855 			kunmap(page);
856 
857 		if (ret == -EAGAIN)
858 			ret = 0;
859 		if (ret <= 0)
860 			goto out;
861 
862 		con->out_msg_pos.data_pos += ret;
863 		con->out_msg_pos.page_pos += ret;
864 		if (ret == len) {
865 			con->out_msg_pos.page_pos = 0;
866 			con->out_msg_pos.page++;
867 			con->out_msg_pos.did_page_crc = 0;
868 			if (in_trail)
869 				list_move_tail(&page->lru,
870 					       &msg->trail->head);
871 			else if (msg->pagelist)
872 				list_move_tail(&page->lru,
873 					       &msg->pagelist->head);
874 #ifdef CONFIG_BLOCK
875 			else if (msg->bio)
876 				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
877 #endif
878 		}
879 	}
880 
881 	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
882 
883 	/* prepare and queue up footer, too */
884 	if (!crc)
885 		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
886 	con->out_kvec_bytes = 0;
887 	con->out_kvec_left = 0;
888 	con->out_kvec_cur = con->out_kvec;
889 	prepare_write_message_footer(con, 0);
890 	ret = 1;
891 out:
892 	return ret;
893 }
894 
895 /*
896  * write some zeros
897  */
898 static int write_partial_skip(struct ceph_connection *con)
899 {
900 	int ret;
901 
902 	while (con->out_skip > 0) {
903 		struct kvec iov = {
904 			.iov_base = page_address(con->msgr->zero_page),
905 			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
906 		};
907 
908 		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
909 		if (ret <= 0)
910 			goto out;
911 		con->out_skip -= ret;
912 	}
913 	ret = 1;
914 out:
915 	return ret;
916 }
917 
918 /*
919  * Prepare to read connection handshake, or an ack.
920  */
921 static void prepare_read_banner(struct ceph_connection *con)
922 {
923 	dout("prepare_read_banner %p\n", con);
924 	con->in_base_pos = 0;
925 }
926 
927 static void prepare_read_connect(struct ceph_connection *con)
928 {
929 	dout("prepare_read_connect %p\n", con);
930 	con->in_base_pos = 0;
931 }
932 
933 static void prepare_read_ack(struct ceph_connection *con)
934 {
935 	dout("prepare_read_ack %p\n", con);
936 	con->in_base_pos = 0;
937 }
938 
939 static void prepare_read_tag(struct ceph_connection *con)
940 {
941 	dout("prepare_read_tag %p\n", con);
942 	con->in_base_pos = 0;
943 	con->in_tag = CEPH_MSGR_TAG_READY;
944 }
945 
946 /*
947  * Prepare to read a message.
948  */
949 static int prepare_read_message(struct ceph_connection *con)
950 {
951 	dout("prepare_read_message %p\n", con);
952 	BUG_ON(con->in_msg != NULL);
953 	con->in_base_pos = 0;
954 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
955 	return 0;
956 }
957 
958 
959 static int read_partial(struct ceph_connection *con,
960 			int *to, int size, void *object)
961 {
962 	*to += size;
963 	while (con->in_base_pos < *to) {
964 		int left = *to - con->in_base_pos;
965 		int have = size - left;
966 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
967 		if (ret <= 0)
968 			return ret;
969 		con->in_base_pos += ret;
970 	}
971 	return 1;
972 }
973 
974 
975 /*
976  * Read all or part of the connect-side handshake on a new connection
977  */
978 static int read_partial_banner(struct ceph_connection *con)
979 {
980 	int ret, to = 0;
981 
982 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
983 
984 	/* peer's banner */
985 	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
986 	if (ret <= 0)
987 		goto out;
988 	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
989 			   &con->actual_peer_addr);
990 	if (ret <= 0)
991 		goto out;
992 	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
993 			   &con->peer_addr_for_me);
994 	if (ret <= 0)
995 		goto out;
996 out:
997 	return ret;
998 }
999 
1000 static int read_partial_connect(struct ceph_connection *con)
1001 {
1002 	int ret, to = 0;
1003 
1004 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1005 
1006 	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1007 	if (ret <= 0)
1008 		goto out;
1009 	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1010 			   con->auth_reply_buf);
1011 	if (ret <= 0)
1012 		goto out;
1013 
1014 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1015 	     con, (int)con->in_reply.tag,
1016 	     le32_to_cpu(con->in_reply.connect_seq),
1017 	     le32_to_cpu(con->in_reply.global_seq));
1018 out:
1019 	return ret;
1020 
1021 }
1022 
1023 /*
1024  * Verify the hello banner looks okay.
1025  */
1026 static int verify_hello(struct ceph_connection *con)
1027 {
1028 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1029 		pr_err("connect to %s got bad banner\n",
1030 		       ceph_pr_addr(&con->peer_addr.in_addr));
1031 		con->error_msg = "protocol error, bad banner";
1032 		return -1;
1033 	}
1034 	return 0;
1035 }
1036 
1037 static bool addr_is_blank(struct sockaddr_storage *ss)
1038 {
1039 	switch (ss->ss_family) {
1040 	case AF_INET:
1041 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1042 	case AF_INET6:
1043 		return
1044 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1045 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1046 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1047 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1048 	}
1049 	return false;
1050 }
1051 
1052 static int addr_port(struct sockaddr_storage *ss)
1053 {
1054 	switch (ss->ss_family) {
1055 	case AF_INET:
1056 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1057 	case AF_INET6:
1058 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1059 	}
1060 	return 0;
1061 }
1062 
1063 static void addr_set_port(struct sockaddr_storage *ss, int p)
1064 {
1065 	switch (ss->ss_family) {
1066 	case AF_INET:
1067 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1068 	case AF_INET6:
1069 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1070 	}
1071 }
1072 
1073 /*
1074  * Parse an ip[:port] list into an addr array.  Use the default
1075  * monitor port if a port isn't specified.
1076  */
1077 int ceph_parse_ips(const char *c, const char *end,
1078 		   struct ceph_entity_addr *addr,
1079 		   int max_count, int *count)
1080 {
1081 	int i;
1082 	const char *p = c;
1083 
1084 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1085 	for (i = 0; i < max_count; i++) {
1086 		const char *ipend;
1087 		struct sockaddr_storage *ss = &addr[i].in_addr;
1088 		struct sockaddr_in *in4 = (void *)ss;
1089 		struct sockaddr_in6 *in6 = (void *)ss;
1090 		int port;
1091 		char delim = ',';
1092 
1093 		if (*p == '[') {
1094 			delim = ']';
1095 			p++;
1096 		}
1097 
1098 		memset(ss, 0, sizeof(*ss));
1099 		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1100 			     delim, &ipend))
1101 			ss->ss_family = AF_INET;
1102 		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1103 				  delim, &ipend))
1104 			ss->ss_family = AF_INET6;
1105 		else
1106 			goto bad;
1107 		p = ipend;
1108 
1109 		if (delim == ']') {
1110 			if (*p != ']') {
1111 				dout("missing matching ']'\n");
1112 				goto bad;
1113 			}
1114 			p++;
1115 		}
1116 
1117 		/* port? */
1118 		if (p < end && *p == ':') {
1119 			port = 0;
1120 			p++;
1121 			while (p < end && *p >= '0' && *p <= '9') {
1122 				port = (port * 10) + (*p - '0');
1123 				p++;
1124 			}
1125 			if (port > 65535 || port == 0)
1126 				goto bad;
1127 		} else {
1128 			port = CEPH_MON_PORT;
1129 		}
1130 
1131 		addr_set_port(ss, port);
1132 
1133 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1134 
1135 		if (p == end)
1136 			break;
1137 		if (*p != ',')
1138 			goto bad;
1139 		p++;
1140 	}
1141 
1142 	if (p != end)
1143 		goto bad;
1144 
1145 	if (count)
1146 		*count = i + 1;
1147 	return 0;
1148 
1149 bad:
1150 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1151 	return -EINVAL;
1152 }
1153 EXPORT_SYMBOL(ceph_parse_ips);
1154 
1155 static int process_banner(struct ceph_connection *con)
1156 {
1157 	dout("process_banner on %p\n", con);
1158 
1159 	if (verify_hello(con) < 0)
1160 		return -1;
1161 
1162 	ceph_decode_addr(&con->actual_peer_addr);
1163 	ceph_decode_addr(&con->peer_addr_for_me);
1164 
1165 	/*
1166 	 * Make sure the other end is who we wanted.  note that the other
1167 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1168 	 * them the benefit of the doubt.
1169 	 */
1170 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1171 		   sizeof(con->peer_addr)) != 0 &&
1172 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1173 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1174 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1175 			   ceph_pr_addr(&con->peer_addr.in_addr),
1176 			   (int)le32_to_cpu(con->peer_addr.nonce),
1177 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1178 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1179 		con->error_msg = "wrong peer at address";
1180 		return -1;
1181 	}
1182 
1183 	/*
1184 	 * did we learn our address?
1185 	 */
1186 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1187 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1188 
1189 		memcpy(&con->msgr->inst.addr.in_addr,
1190 		       &con->peer_addr_for_me.in_addr,
1191 		       sizeof(con->peer_addr_for_me.in_addr));
1192 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1193 		encode_my_addr(con->msgr);
1194 		dout("process_banner learned my addr is %s\n",
1195 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1196 	}
1197 
1198 	set_bit(NEGOTIATING, &con->state);
1199 	prepare_read_connect(con);
1200 	return 0;
1201 }
1202 
1203 static void fail_protocol(struct ceph_connection *con)
1204 {
1205 	reset_connection(con);
1206 	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1207 
1208 	mutex_unlock(&con->mutex);
1209 	if (con->ops->bad_proto)
1210 		con->ops->bad_proto(con);
1211 	mutex_lock(&con->mutex);
1212 }
1213 
1214 static int process_connect(struct ceph_connection *con)
1215 {
1216 	u64 sup_feat = con->msgr->supported_features;
1217 	u64 req_feat = con->msgr->required_features;
1218 	u64 server_feat = le64_to_cpu(con->in_reply.features);
1219 
1220 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1221 
1222 	switch (con->in_reply.tag) {
1223 	case CEPH_MSGR_TAG_FEATURES:
1224 		pr_err("%s%lld %s feature set mismatch,"
1225 		       " my %llx < server's %llx, missing %llx\n",
1226 		       ENTITY_NAME(con->peer_name),
1227 		       ceph_pr_addr(&con->peer_addr.in_addr),
1228 		       sup_feat, server_feat, server_feat & ~sup_feat);
1229 		con->error_msg = "missing required protocol features";
1230 		fail_protocol(con);
1231 		return -1;
1232 
1233 	case CEPH_MSGR_TAG_BADPROTOVER:
1234 		pr_err("%s%lld %s protocol version mismatch,"
1235 		       " my %d != server's %d\n",
1236 		       ENTITY_NAME(con->peer_name),
1237 		       ceph_pr_addr(&con->peer_addr.in_addr),
1238 		       le32_to_cpu(con->out_connect.protocol_version),
1239 		       le32_to_cpu(con->in_reply.protocol_version));
1240 		con->error_msg = "protocol version mismatch";
1241 		fail_protocol(con);
1242 		return -1;
1243 
1244 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1245 		con->auth_retry++;
1246 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1247 		     con->auth_retry);
1248 		if (con->auth_retry == 2) {
1249 			con->error_msg = "connect authorization failure";
1250 			return -1;
1251 		}
1252 		con->auth_retry = 1;
1253 		prepare_write_connect(con->msgr, con, 0);
1254 		prepare_read_connect(con);
1255 		break;
1256 
1257 	case CEPH_MSGR_TAG_RESETSESSION:
1258 		/*
1259 		 * If we connected with a large connect_seq but the peer
1260 		 * has no record of a session with us (no connection, or
1261 		 * connect_seq == 0), they will send RESETSESION to indicate
1262 		 * that they must have reset their session, and may have
1263 		 * dropped messages.
1264 		 */
1265 		dout("process_connect got RESET peer seq %u\n",
1266 		     le32_to_cpu(con->in_connect.connect_seq));
1267 		pr_err("%s%lld %s connection reset\n",
1268 		       ENTITY_NAME(con->peer_name),
1269 		       ceph_pr_addr(&con->peer_addr.in_addr));
1270 		reset_connection(con);
1271 		prepare_write_connect(con->msgr, con, 0);
1272 		prepare_read_connect(con);
1273 
1274 		/* Tell ceph about it. */
1275 		mutex_unlock(&con->mutex);
1276 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1277 		if (con->ops->peer_reset)
1278 			con->ops->peer_reset(con);
1279 		mutex_lock(&con->mutex);
1280 		break;
1281 
1282 	case CEPH_MSGR_TAG_RETRY_SESSION:
1283 		/*
1284 		 * If we sent a smaller connect_seq than the peer has, try
1285 		 * again with a larger value.
1286 		 */
1287 		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1288 		     le32_to_cpu(con->out_connect.connect_seq),
1289 		     le32_to_cpu(con->in_connect.connect_seq));
1290 		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1291 		prepare_write_connect(con->msgr, con, 0);
1292 		prepare_read_connect(con);
1293 		break;
1294 
1295 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1296 		/*
1297 		 * If we sent a smaller global_seq than the peer has, try
1298 		 * again with a larger value.
1299 		 */
1300 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1301 		     con->peer_global_seq,
1302 		     le32_to_cpu(con->in_connect.global_seq));
1303 		get_global_seq(con->msgr,
1304 			       le32_to_cpu(con->in_connect.global_seq));
1305 		prepare_write_connect(con->msgr, con, 0);
1306 		prepare_read_connect(con);
1307 		break;
1308 
1309 	case CEPH_MSGR_TAG_READY:
1310 		if (req_feat & ~server_feat) {
1311 			pr_err("%s%lld %s protocol feature mismatch,"
1312 			       " my required %llx > server's %llx, need %llx\n",
1313 			       ENTITY_NAME(con->peer_name),
1314 			       ceph_pr_addr(&con->peer_addr.in_addr),
1315 			       req_feat, server_feat, req_feat & ~server_feat);
1316 			con->error_msg = "missing required protocol features";
1317 			fail_protocol(con);
1318 			return -1;
1319 		}
1320 		clear_bit(CONNECTING, &con->state);
1321 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1322 		con->connect_seq++;
1323 		con->peer_features = server_feat;
1324 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1325 		     con->peer_global_seq,
1326 		     le32_to_cpu(con->in_reply.connect_seq),
1327 		     con->connect_seq);
1328 		WARN_ON(con->connect_seq !=
1329 			le32_to_cpu(con->in_reply.connect_seq));
1330 
1331 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1332 			set_bit(LOSSYTX, &con->state);
1333 
1334 		prepare_read_tag(con);
1335 		break;
1336 
1337 	case CEPH_MSGR_TAG_WAIT:
1338 		/*
1339 		 * If there is a connection race (we are opening
1340 		 * connections to each other), one of us may just have
1341 		 * to WAIT.  This shouldn't happen if we are the
1342 		 * client.
1343 		 */
1344 		pr_err("process_connect peer connecting WAIT\n");
1345 
1346 	default:
1347 		pr_err("connect protocol error, will retry\n");
1348 		con->error_msg = "protocol error, garbage tag during connect";
1349 		return -1;
1350 	}
1351 	return 0;
1352 }
1353 
1354 
1355 /*
1356  * read (part of) an ack
1357  */
1358 static int read_partial_ack(struct ceph_connection *con)
1359 {
1360 	int to = 0;
1361 
1362 	return read_partial(con, &to, sizeof(con->in_temp_ack),
1363 			    &con->in_temp_ack);
1364 }
1365 
1366 
1367 /*
1368  * We can finally discard anything that's been acked.
1369  */
1370 static void process_ack(struct ceph_connection *con)
1371 {
1372 	struct ceph_msg *m;
1373 	u64 ack = le64_to_cpu(con->in_temp_ack);
1374 	u64 seq;
1375 
1376 	while (!list_empty(&con->out_sent)) {
1377 		m = list_first_entry(&con->out_sent, struct ceph_msg,
1378 				     list_head);
1379 		seq = le64_to_cpu(m->hdr.seq);
1380 		if (seq > ack)
1381 			break;
1382 		dout("got ack for seq %llu type %d at %p\n", seq,
1383 		     le16_to_cpu(m->hdr.type), m);
1384 		ceph_msg_remove(m);
1385 	}
1386 	prepare_read_tag(con);
1387 }
1388 
1389 
1390 
1391 
1392 static int read_partial_message_section(struct ceph_connection *con,
1393 					struct kvec *section,
1394 					unsigned int sec_len, u32 *crc)
1395 {
1396 	int ret, left;
1397 
1398 	BUG_ON(!section);
1399 
1400 	while (section->iov_len < sec_len) {
1401 		BUG_ON(section->iov_base == NULL);
1402 		left = sec_len - section->iov_len;
1403 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1404 				       section->iov_len, left);
1405 		if (ret <= 0)
1406 			return ret;
1407 		section->iov_len += ret;
1408 		if (section->iov_len == sec_len)
1409 			*crc = crc32c(0, section->iov_base,
1410 				      section->iov_len);
1411 	}
1412 
1413 	return 1;
1414 }
1415 
1416 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1417 				struct ceph_msg_header *hdr,
1418 				int *skip);
1419 
1420 
1421 static int read_partial_message_pages(struct ceph_connection *con,
1422 				      struct page **pages,
1423 				      unsigned data_len, int datacrc)
1424 {
1425 	void *p;
1426 	int ret;
1427 	int left;
1428 
1429 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1430 		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1431 	/* (page) data */
1432 	BUG_ON(pages == NULL);
1433 	p = kmap(pages[con->in_msg_pos.page]);
1434 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1435 			       left);
1436 	if (ret > 0 && datacrc)
1437 		con->in_data_crc =
1438 			crc32c(con->in_data_crc,
1439 				  p + con->in_msg_pos.page_pos, ret);
1440 	kunmap(pages[con->in_msg_pos.page]);
1441 	if (ret <= 0)
1442 		return ret;
1443 	con->in_msg_pos.data_pos += ret;
1444 	con->in_msg_pos.page_pos += ret;
1445 	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1446 		con->in_msg_pos.page_pos = 0;
1447 		con->in_msg_pos.page++;
1448 	}
1449 
1450 	return ret;
1451 }
1452 
1453 #ifdef CONFIG_BLOCK
1454 static int read_partial_message_bio(struct ceph_connection *con,
1455 				    struct bio **bio_iter, int *bio_seg,
1456 				    unsigned data_len, int datacrc)
1457 {
1458 	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1459 	void *p;
1460 	int ret, left;
1461 
1462 	if (IS_ERR(bv))
1463 		return PTR_ERR(bv);
1464 
1465 	left = min((int)(data_len - con->in_msg_pos.data_pos),
1466 		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1467 
1468 	p = kmap(bv->bv_page) + bv->bv_offset;
1469 
1470 	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1471 			       left);
1472 	if (ret > 0 && datacrc)
1473 		con->in_data_crc =
1474 			crc32c(con->in_data_crc,
1475 				  p + con->in_msg_pos.page_pos, ret);
1476 	kunmap(bv->bv_page);
1477 	if (ret <= 0)
1478 		return ret;
1479 	con->in_msg_pos.data_pos += ret;
1480 	con->in_msg_pos.page_pos += ret;
1481 	if (con->in_msg_pos.page_pos == bv->bv_len) {
1482 		con->in_msg_pos.page_pos = 0;
1483 		iter_bio_next(bio_iter, bio_seg);
1484 	}
1485 
1486 	return ret;
1487 }
1488 #endif
1489 
1490 /*
1491  * read (part of) a message.
1492  */
1493 static int read_partial_message(struct ceph_connection *con)
1494 {
1495 	struct ceph_msg *m = con->in_msg;
1496 	int ret;
1497 	int to, left;
1498 	unsigned front_len, middle_len, data_len;
1499 	int datacrc = con->msgr->nocrc;
1500 	int skip;
1501 	u64 seq;
1502 
1503 	dout("read_partial_message con %p msg %p\n", con, m);
1504 
1505 	/* header */
1506 	while (con->in_base_pos < sizeof(con->in_hdr)) {
1507 		left = sizeof(con->in_hdr) - con->in_base_pos;
1508 		ret = ceph_tcp_recvmsg(con->sock,
1509 				       (char *)&con->in_hdr + con->in_base_pos,
1510 				       left);
1511 		if (ret <= 0)
1512 			return ret;
1513 		con->in_base_pos += ret;
1514 		if (con->in_base_pos == sizeof(con->in_hdr)) {
1515 			u32 crc = crc32c(0, (void *)&con->in_hdr,
1516 				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1517 			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1518 				pr_err("read_partial_message bad hdr "
1519 				       " crc %u != expected %u\n",
1520 				       crc, con->in_hdr.crc);
1521 				return -EBADMSG;
1522 			}
1523 		}
1524 	}
1525 	front_len = le32_to_cpu(con->in_hdr.front_len);
1526 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1527 		return -EIO;
1528 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1529 	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1530 		return -EIO;
1531 	data_len = le32_to_cpu(con->in_hdr.data_len);
1532 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1533 		return -EIO;
1534 
1535 	/* verify seq# */
1536 	seq = le64_to_cpu(con->in_hdr.seq);
1537 	if ((s64)seq - (s64)con->in_seq < 1) {
1538 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1539 			ENTITY_NAME(con->peer_name),
1540 			ceph_pr_addr(&con->peer_addr.in_addr),
1541 			seq, con->in_seq + 1);
1542 		con->in_base_pos = -front_len - middle_len - data_len -
1543 			sizeof(m->footer);
1544 		con->in_tag = CEPH_MSGR_TAG_READY;
1545 		return 0;
1546 	} else if ((s64)seq - (s64)con->in_seq > 1) {
1547 		pr_err("read_partial_message bad seq %lld expected %lld\n",
1548 		       seq, con->in_seq + 1);
1549 		con->error_msg = "bad message sequence # for incoming message";
1550 		return -EBADMSG;
1551 	}
1552 
1553 	/* allocate message? */
1554 	if (!con->in_msg) {
1555 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1556 		     con->in_hdr.front_len, con->in_hdr.data_len);
1557 		skip = 0;
1558 		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1559 		if (skip) {
1560 			/* skip this message */
1561 			dout("alloc_msg said skip message\n");
1562 			BUG_ON(con->in_msg);
1563 			con->in_base_pos = -front_len - middle_len - data_len -
1564 				sizeof(m->footer);
1565 			con->in_tag = CEPH_MSGR_TAG_READY;
1566 			con->in_seq++;
1567 			return 0;
1568 		}
1569 		if (!con->in_msg) {
1570 			con->error_msg =
1571 				"error allocating memory for incoming message";
1572 			return -ENOMEM;
1573 		}
1574 		m = con->in_msg;
1575 		m->front.iov_len = 0;    /* haven't read it yet */
1576 		if (m->middle)
1577 			m->middle->vec.iov_len = 0;
1578 
1579 		con->in_msg_pos.page = 0;
1580 		if (m->pages)
1581 			con->in_msg_pos.page_pos = m->page_alignment;
1582 		else
1583 			con->in_msg_pos.page_pos = 0;
1584 		con->in_msg_pos.data_pos = 0;
1585 	}
1586 
1587 	/* front */
1588 	ret = read_partial_message_section(con, &m->front, front_len,
1589 					   &con->in_front_crc);
1590 	if (ret <= 0)
1591 		return ret;
1592 
1593 	/* middle */
1594 	if (m->middle) {
1595 		ret = read_partial_message_section(con, &m->middle->vec,
1596 						   middle_len,
1597 						   &con->in_middle_crc);
1598 		if (ret <= 0)
1599 			return ret;
1600 	}
1601 #ifdef CONFIG_BLOCK
1602 	if (m->bio && !m->bio_iter)
1603 		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1604 #endif
1605 
1606 	/* (page) data */
1607 	while (con->in_msg_pos.data_pos < data_len) {
1608 		if (m->pages) {
1609 			ret = read_partial_message_pages(con, m->pages,
1610 						 data_len, datacrc);
1611 			if (ret <= 0)
1612 				return ret;
1613 #ifdef CONFIG_BLOCK
1614 		} else if (m->bio) {
1615 
1616 			ret = read_partial_message_bio(con,
1617 						 &m->bio_iter, &m->bio_seg,
1618 						 data_len, datacrc);
1619 			if (ret <= 0)
1620 				return ret;
1621 #endif
1622 		} else {
1623 			BUG_ON(1);
1624 		}
1625 	}
1626 
1627 	/* footer */
1628 	to = sizeof(m->hdr) + sizeof(m->footer);
1629 	while (con->in_base_pos < to) {
1630 		left = to - con->in_base_pos;
1631 		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1632 				       (con->in_base_pos - sizeof(m->hdr)),
1633 				       left);
1634 		if (ret <= 0)
1635 			return ret;
1636 		con->in_base_pos += ret;
1637 	}
1638 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1639 	     m, front_len, m->footer.front_crc, middle_len,
1640 	     m->footer.middle_crc, data_len, m->footer.data_crc);
1641 
1642 	/* crc ok? */
1643 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1644 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1645 		       m, con->in_front_crc, m->footer.front_crc);
1646 		return -EBADMSG;
1647 	}
1648 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1649 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1650 		       m, con->in_middle_crc, m->footer.middle_crc);
1651 		return -EBADMSG;
1652 	}
1653 	if (datacrc &&
1654 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1655 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1656 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1657 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1658 		return -EBADMSG;
1659 	}
1660 
1661 	return 1; /* done! */
1662 }
1663 
1664 /*
1665  * Process message.  This happens in the worker thread.  The callback should
1666  * be careful not to do anything that waits on other incoming messages or it
1667  * may deadlock.
1668  */
1669 static void process_message(struct ceph_connection *con)
1670 {
1671 	struct ceph_msg *msg;
1672 
1673 	msg = con->in_msg;
1674 	con->in_msg = NULL;
1675 
1676 	/* if first message, set peer_name */
1677 	if (con->peer_name.type == 0)
1678 		con->peer_name = msg->hdr.src;
1679 
1680 	con->in_seq++;
1681 	mutex_unlock(&con->mutex);
1682 
1683 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1684 	     msg, le64_to_cpu(msg->hdr.seq),
1685 	     ENTITY_NAME(msg->hdr.src),
1686 	     le16_to_cpu(msg->hdr.type),
1687 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1688 	     le32_to_cpu(msg->hdr.front_len),
1689 	     le32_to_cpu(msg->hdr.data_len),
1690 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1691 	con->ops->dispatch(con, msg);
1692 
1693 	mutex_lock(&con->mutex);
1694 	prepare_read_tag(con);
1695 }
1696 
1697 
1698 /*
1699  * Write something to the socket.  Called in a worker thread when the
1700  * socket appears to be writeable and we have something ready to send.
1701  */
1702 static int try_write(struct ceph_connection *con)
1703 {
1704 	struct ceph_messenger *msgr = con->msgr;
1705 	int ret = 1;
1706 
1707 	dout("try_write start %p state %lu nref %d\n", con, con->state,
1708 	     atomic_read(&con->nref));
1709 
1710 more:
1711 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1712 
1713 	/* open the socket first? */
1714 	if (con->sock == NULL) {
1715 		prepare_write_banner(msgr, con);
1716 		prepare_write_connect(msgr, con, 1);
1717 		prepare_read_banner(con);
1718 		set_bit(CONNECTING, &con->state);
1719 		clear_bit(NEGOTIATING, &con->state);
1720 
1721 		BUG_ON(con->in_msg);
1722 		con->in_tag = CEPH_MSGR_TAG_READY;
1723 		dout("try_write initiating connect on %p new state %lu\n",
1724 		     con, con->state);
1725 		con->sock = ceph_tcp_connect(con);
1726 		if (IS_ERR(con->sock)) {
1727 			con->sock = NULL;
1728 			con->error_msg = "connect error";
1729 			ret = -1;
1730 			goto out;
1731 		}
1732 	}
1733 
1734 more_kvec:
1735 	/* kvec data queued? */
1736 	if (con->out_skip) {
1737 		ret = write_partial_skip(con);
1738 		if (ret <= 0)
1739 			goto out;
1740 	}
1741 	if (con->out_kvec_left) {
1742 		ret = write_partial_kvec(con);
1743 		if (ret <= 0)
1744 			goto out;
1745 	}
1746 
1747 	/* msg pages? */
1748 	if (con->out_msg) {
1749 		if (con->out_msg_done) {
1750 			ceph_msg_put(con->out_msg);
1751 			con->out_msg = NULL;   /* we're done with this one */
1752 			goto do_next;
1753 		}
1754 
1755 		ret = write_partial_msg_pages(con);
1756 		if (ret == 1)
1757 			goto more_kvec;  /* we need to send the footer, too! */
1758 		if (ret == 0)
1759 			goto out;
1760 		if (ret < 0) {
1761 			dout("try_write write_partial_msg_pages err %d\n",
1762 			     ret);
1763 			goto out;
1764 		}
1765 	}
1766 
1767 do_next:
1768 	if (!test_bit(CONNECTING, &con->state)) {
1769 		/* is anything else pending? */
1770 		if (!list_empty(&con->out_queue)) {
1771 			prepare_write_message(con);
1772 			goto more;
1773 		}
1774 		if (con->in_seq > con->in_seq_acked) {
1775 			prepare_write_ack(con);
1776 			goto more;
1777 		}
1778 		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1779 			prepare_write_keepalive(con);
1780 			goto more;
1781 		}
1782 	}
1783 
1784 	/* Nothing to do! */
1785 	clear_bit(WRITE_PENDING, &con->state);
1786 	dout("try_write nothing else to write.\n");
1787 	ret = 0;
1788 out:
1789 	dout("try_write done on %p ret %d\n", con, ret);
1790 	return ret;
1791 }
1792 
1793 
1794 
1795 /*
1796  * Read what we can from the socket.
1797  */
1798 static int try_read(struct ceph_connection *con)
1799 {
1800 	int ret = -1;
1801 
1802 	if (!con->sock)
1803 		return 0;
1804 
1805 	if (test_bit(STANDBY, &con->state))
1806 		return 0;
1807 
1808 	dout("try_read start on %p\n", con);
1809 
1810 more:
1811 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1812 	     con->in_base_pos);
1813 	if (test_bit(CONNECTING, &con->state)) {
1814 		if (!test_bit(NEGOTIATING, &con->state)) {
1815 			dout("try_read connecting\n");
1816 			ret = read_partial_banner(con);
1817 			if (ret <= 0)
1818 				goto out;
1819 			ret = process_banner(con);
1820 			if (ret < 0)
1821 				goto out;
1822 		}
1823 		ret = read_partial_connect(con);
1824 		if (ret <= 0)
1825 			goto out;
1826 		ret = process_connect(con);
1827 		if (ret < 0)
1828 			goto out;
1829 		goto more;
1830 	}
1831 
1832 	if (con->in_base_pos < 0) {
1833 		/*
1834 		 * skipping + discarding content.
1835 		 *
1836 		 * FIXME: there must be a better way to do this!
1837 		 */
1838 		static char buf[1024];
1839 		int skip = min(1024, -con->in_base_pos);
1840 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1841 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1842 		if (ret <= 0)
1843 			goto out;
1844 		con->in_base_pos += ret;
1845 		if (con->in_base_pos)
1846 			goto more;
1847 	}
1848 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1849 		/*
1850 		 * what's next?
1851 		 */
1852 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1853 		if (ret <= 0)
1854 			goto out;
1855 		dout("try_read got tag %d\n", (int)con->in_tag);
1856 		switch (con->in_tag) {
1857 		case CEPH_MSGR_TAG_MSG:
1858 			prepare_read_message(con);
1859 			break;
1860 		case CEPH_MSGR_TAG_ACK:
1861 			prepare_read_ack(con);
1862 			break;
1863 		case CEPH_MSGR_TAG_CLOSE:
1864 			set_bit(CLOSED, &con->state);   /* fixme */
1865 			goto out;
1866 		default:
1867 			goto bad_tag;
1868 		}
1869 	}
1870 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1871 		ret = read_partial_message(con);
1872 		if (ret <= 0) {
1873 			switch (ret) {
1874 			case -EBADMSG:
1875 				con->error_msg = "bad crc";
1876 				ret = -EIO;
1877 				break;
1878 			case -EIO:
1879 				con->error_msg = "io error";
1880 				break;
1881 			}
1882 			goto out;
1883 		}
1884 		if (con->in_tag == CEPH_MSGR_TAG_READY)
1885 			goto more;
1886 		process_message(con);
1887 		goto more;
1888 	}
1889 	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1890 		ret = read_partial_ack(con);
1891 		if (ret <= 0)
1892 			goto out;
1893 		process_ack(con);
1894 		goto more;
1895 	}
1896 
1897 out:
1898 	dout("try_read done on %p ret %d\n", con, ret);
1899 	return ret;
1900 
1901 bad_tag:
1902 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1903 	con->error_msg = "protocol error, garbage tag";
1904 	ret = -1;
1905 	goto out;
1906 }
1907 
1908 
1909 /*
1910  * Atomically queue work on a connection.  Bump @con reference to
1911  * avoid races with connection teardown.
1912  */
1913 static void queue_con(struct ceph_connection *con)
1914 {
1915 	if (test_bit(DEAD, &con->state)) {
1916 		dout("queue_con %p ignoring: DEAD\n",
1917 		     con);
1918 		return;
1919 	}
1920 
1921 	if (!con->ops->get(con)) {
1922 		dout("queue_con %p ref count 0\n", con);
1923 		return;
1924 	}
1925 
1926 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1927 		dout("queue_con %p - already queued\n", con);
1928 		con->ops->put(con);
1929 	} else {
1930 		dout("queue_con %p\n", con);
1931 	}
1932 }
1933 
1934 /*
1935  * Do some work on a connection.  Drop a connection ref when we're done.
1936  */
1937 static void con_work(struct work_struct *work)
1938 {
1939 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1940 						   work.work);
1941 
1942 	mutex_lock(&con->mutex);
1943 	if (test_and_clear_bit(BACKOFF, &con->state)) {
1944 		dout("con_work %p backing off\n", con);
1945 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
1946 				       round_jiffies_relative(con->delay))) {
1947 			dout("con_work %p backoff %lu\n", con, con->delay);
1948 			mutex_unlock(&con->mutex);
1949 			return;
1950 		} else {
1951 			con->ops->put(con);
1952 			dout("con_work %p FAILED to back off %lu\n", con,
1953 			     con->delay);
1954 		}
1955 	}
1956 
1957 	if (test_bit(STANDBY, &con->state)) {
1958 		dout("con_work %p STANDBY\n", con);
1959 		goto done;
1960 	}
1961 	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1962 		dout("con_work CLOSED\n");
1963 		con_close_socket(con);
1964 		goto done;
1965 	}
1966 	if (test_and_clear_bit(OPENING, &con->state)) {
1967 		/* reopen w/ new peer */
1968 		dout("con_work OPENING\n");
1969 		con_close_socket(con);
1970 	}
1971 
1972 	if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1973 	    try_read(con) < 0 ||
1974 	    try_write(con) < 0) {
1975 		mutex_unlock(&con->mutex);
1976 		ceph_fault(con);     /* error/fault path */
1977 		goto done_unlocked;
1978 	}
1979 
1980 done:
1981 	mutex_unlock(&con->mutex);
1982 done_unlocked:
1983 	con->ops->put(con);
1984 }
1985 
1986 
1987 /*
1988  * Generic error/fault handler.  A retry mechanism is used with
1989  * exponential backoff
1990  */
1991 static void ceph_fault(struct ceph_connection *con)
1992 {
1993 	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1994 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
1995 	dout("fault %p state %lu to peer %s\n",
1996 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
1997 
1998 	if (test_bit(LOSSYTX, &con->state)) {
1999 		dout("fault on LOSSYTX channel\n");
2000 		goto out;
2001 	}
2002 
2003 	mutex_lock(&con->mutex);
2004 	if (test_bit(CLOSED, &con->state))
2005 		goto out_unlock;
2006 
2007 	con_close_socket(con);
2008 
2009 	if (con->in_msg) {
2010 		ceph_msg_put(con->in_msg);
2011 		con->in_msg = NULL;
2012 	}
2013 
2014 	/* Requeue anything that hasn't been acked */
2015 	list_splice_init(&con->out_sent, &con->out_queue);
2016 
2017 	/* If there are no messages queued or keepalive pending, place
2018 	 * the connection in a STANDBY state */
2019 	if (list_empty(&con->out_queue) &&
2020 	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2021 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2022 		clear_bit(WRITE_PENDING, &con->state);
2023 		set_bit(STANDBY, &con->state);
2024 	} else {
2025 		/* retry after a delay. */
2026 		if (con->delay == 0)
2027 			con->delay = BASE_DELAY_INTERVAL;
2028 		else if (con->delay < MAX_DELAY_INTERVAL)
2029 			con->delay *= 2;
2030 		con->ops->get(con);
2031 		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2032 				       round_jiffies_relative(con->delay))) {
2033 			dout("fault queued %p delay %lu\n", con, con->delay);
2034 		} else {
2035 			con->ops->put(con);
2036 			dout("fault failed to queue %p delay %lu, backoff\n",
2037 			     con, con->delay);
2038 			/*
2039 			 * In many cases we see a socket state change
2040 			 * while con_work is running and end up
2041 			 * queuing (non-delayed) work, such that we
2042 			 * can't backoff with a delay.  Set a flag so
2043 			 * that when con_work restarts we schedule the
2044 			 * delay then.
2045 			 */
2046 			set_bit(BACKOFF, &con->state);
2047 		}
2048 	}
2049 
2050 out_unlock:
2051 	mutex_unlock(&con->mutex);
2052 out:
2053 	/*
2054 	 * in case we faulted due to authentication, invalidate our
2055 	 * current tickets so that we can get new ones.
2056 	 */
2057 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2058 		dout("calling invalidate_authorizer()\n");
2059 		con->ops->invalidate_authorizer(con);
2060 	}
2061 
2062 	if (con->ops->fault)
2063 		con->ops->fault(con);
2064 }
2065 
2066 
2067 
2068 /*
2069  * create a new messenger instance
2070  */
2071 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2072 					     u32 supported_features,
2073 					     u32 required_features)
2074 {
2075 	struct ceph_messenger *msgr;
2076 
2077 	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2078 	if (msgr == NULL)
2079 		return ERR_PTR(-ENOMEM);
2080 
2081 	msgr->supported_features = supported_features;
2082 	msgr->required_features = required_features;
2083 
2084 	spin_lock_init(&msgr->global_seq_lock);
2085 
2086 	/* the zero page is needed if a request is "canceled" while the message
2087 	 * is being written over the socket */
2088 	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2089 	if (!msgr->zero_page) {
2090 		kfree(msgr);
2091 		return ERR_PTR(-ENOMEM);
2092 	}
2093 	kmap(msgr->zero_page);
2094 
2095 	if (myaddr)
2096 		msgr->inst.addr = *myaddr;
2097 
2098 	/* select a random nonce */
2099 	msgr->inst.addr.type = 0;
2100 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2101 	encode_my_addr(msgr);
2102 
2103 	dout("messenger_create %p\n", msgr);
2104 	return msgr;
2105 }
2106 EXPORT_SYMBOL(ceph_messenger_create);
2107 
2108 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2109 {
2110 	dout("destroy %p\n", msgr);
2111 	kunmap(msgr->zero_page);
2112 	__free_page(msgr->zero_page);
2113 	kfree(msgr);
2114 	dout("destroyed messenger %p\n", msgr);
2115 }
2116 EXPORT_SYMBOL(ceph_messenger_destroy);
2117 
2118 static void clear_standby(struct ceph_connection *con)
2119 {
2120 	/* come back from STANDBY? */
2121 	if (test_and_clear_bit(STANDBY, &con->state)) {
2122 		mutex_lock(&con->mutex);
2123 		dout("clear_standby %p and ++connect_seq\n", con);
2124 		con->connect_seq++;
2125 		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2126 		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2127 		mutex_unlock(&con->mutex);
2128 	}
2129 }
2130 
2131 /*
2132  * Queue up an outgoing message on the given connection.
2133  */
2134 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2135 {
2136 	if (test_bit(CLOSED, &con->state)) {
2137 		dout("con_send %p closed, dropping %p\n", con, msg);
2138 		ceph_msg_put(msg);
2139 		return;
2140 	}
2141 
2142 	/* set src+dst */
2143 	msg->hdr.src = con->msgr->inst.name;
2144 
2145 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2146 
2147 	msg->needs_out_seq = true;
2148 
2149 	/* queue */
2150 	mutex_lock(&con->mutex);
2151 	BUG_ON(!list_empty(&msg->list_head));
2152 	list_add_tail(&msg->list_head, &con->out_queue);
2153 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2154 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2155 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2156 	     le32_to_cpu(msg->hdr.front_len),
2157 	     le32_to_cpu(msg->hdr.middle_len),
2158 	     le32_to_cpu(msg->hdr.data_len));
2159 	mutex_unlock(&con->mutex);
2160 
2161 	/* if there wasn't anything waiting to send before, queue
2162 	 * new work */
2163 	clear_standby(con);
2164 	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2165 		queue_con(con);
2166 }
2167 EXPORT_SYMBOL(ceph_con_send);
2168 
2169 /*
2170  * Revoke a message that was previously queued for send
2171  */
2172 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2173 {
2174 	mutex_lock(&con->mutex);
2175 	if (!list_empty(&msg->list_head)) {
2176 		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2177 		list_del_init(&msg->list_head);
2178 		ceph_msg_put(msg);
2179 		msg->hdr.seq = 0;
2180 	}
2181 	if (con->out_msg == msg) {
2182 		dout("con_revoke %p msg %p - was sending\n", con, msg);
2183 		con->out_msg = NULL;
2184 		if (con->out_kvec_is_msg) {
2185 			con->out_skip = con->out_kvec_bytes;
2186 			con->out_kvec_is_msg = false;
2187 		}
2188 		ceph_msg_put(msg);
2189 		msg->hdr.seq = 0;
2190 	}
2191 	mutex_unlock(&con->mutex);
2192 }
2193 
2194 /*
2195  * Revoke a message that we may be reading data into
2196  */
2197 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2198 {
2199 	mutex_lock(&con->mutex);
2200 	if (con->in_msg && con->in_msg == msg) {
2201 		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2202 		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2203 		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2204 
2205 		/* skip rest of message */
2206 		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2207 			con->in_base_pos = con->in_base_pos -
2208 				sizeof(struct ceph_msg_header) -
2209 				front_len -
2210 				middle_len -
2211 				data_len -
2212 				sizeof(struct ceph_msg_footer);
2213 		ceph_msg_put(con->in_msg);
2214 		con->in_msg = NULL;
2215 		con->in_tag = CEPH_MSGR_TAG_READY;
2216 		con->in_seq++;
2217 	} else {
2218 		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2219 		     con, con->in_msg, msg);
2220 	}
2221 	mutex_unlock(&con->mutex);
2222 }
2223 
2224 /*
2225  * Queue a keepalive byte to ensure the tcp connection is alive.
2226  */
2227 void ceph_con_keepalive(struct ceph_connection *con)
2228 {
2229 	dout("con_keepalive %p\n", con);
2230 	clear_standby(con);
2231 	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2232 	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2233 		queue_con(con);
2234 }
2235 EXPORT_SYMBOL(ceph_con_keepalive);
2236 
2237 
2238 /*
2239  * construct a new message with given type, size
2240  * the new msg has a ref count of 1.
2241  */
2242 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2243 {
2244 	struct ceph_msg *m;
2245 
2246 	m = kmalloc(sizeof(*m), flags);
2247 	if (m == NULL)
2248 		goto out;
2249 	kref_init(&m->kref);
2250 	INIT_LIST_HEAD(&m->list_head);
2251 
2252 	m->hdr.tid = 0;
2253 	m->hdr.type = cpu_to_le16(type);
2254 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2255 	m->hdr.version = 0;
2256 	m->hdr.front_len = cpu_to_le32(front_len);
2257 	m->hdr.middle_len = 0;
2258 	m->hdr.data_len = 0;
2259 	m->hdr.data_off = 0;
2260 	m->hdr.reserved = 0;
2261 	m->footer.front_crc = 0;
2262 	m->footer.middle_crc = 0;
2263 	m->footer.data_crc = 0;
2264 	m->footer.flags = 0;
2265 	m->front_max = front_len;
2266 	m->front_is_vmalloc = false;
2267 	m->more_to_follow = false;
2268 	m->pool = NULL;
2269 
2270 	/* middle */
2271 	m->middle = NULL;
2272 
2273 	/* data */
2274 	m->nr_pages = 0;
2275 	m->page_alignment = 0;
2276 	m->pages = NULL;
2277 	m->pagelist = NULL;
2278 	m->bio = NULL;
2279 	m->bio_iter = NULL;
2280 	m->bio_seg = 0;
2281 	m->trail = NULL;
2282 
2283 	/* front */
2284 	if (front_len) {
2285 		if (front_len > PAGE_CACHE_SIZE) {
2286 			m->front.iov_base = __vmalloc(front_len, flags,
2287 						      PAGE_KERNEL);
2288 			m->front_is_vmalloc = true;
2289 		} else {
2290 			m->front.iov_base = kmalloc(front_len, flags);
2291 		}
2292 		if (m->front.iov_base == NULL) {
2293 			pr_err("msg_new can't allocate %d bytes\n",
2294 			     front_len);
2295 			goto out2;
2296 		}
2297 	} else {
2298 		m->front.iov_base = NULL;
2299 	}
2300 	m->front.iov_len = front_len;
2301 
2302 	dout("ceph_msg_new %p front %d\n", m, front_len);
2303 	return m;
2304 
2305 out2:
2306 	ceph_msg_put(m);
2307 out:
2308 	pr_err("msg_new can't create type %d front %d\n", type, front_len);
2309 	return NULL;
2310 }
2311 EXPORT_SYMBOL(ceph_msg_new);
2312 
2313 /*
2314  * Allocate "middle" portion of a message, if it is needed and wasn't
2315  * allocated by alloc_msg.  This allows us to read a small fixed-size
2316  * per-type header in the front and then gracefully fail (i.e.,
2317  * propagate the error to the caller based on info in the front) when
2318  * the middle is too large.
2319  */
2320 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2321 {
2322 	int type = le16_to_cpu(msg->hdr.type);
2323 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2324 
2325 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2326 	     ceph_msg_type_name(type), middle_len);
2327 	BUG_ON(!middle_len);
2328 	BUG_ON(msg->middle);
2329 
2330 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2331 	if (!msg->middle)
2332 		return -ENOMEM;
2333 	return 0;
2334 }
2335 
2336 /*
2337  * Generic message allocator, for incoming messages.
2338  */
2339 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2340 				struct ceph_msg_header *hdr,
2341 				int *skip)
2342 {
2343 	int type = le16_to_cpu(hdr->type);
2344 	int front_len = le32_to_cpu(hdr->front_len);
2345 	int middle_len = le32_to_cpu(hdr->middle_len);
2346 	struct ceph_msg *msg = NULL;
2347 	int ret;
2348 
2349 	if (con->ops->alloc_msg) {
2350 		mutex_unlock(&con->mutex);
2351 		msg = con->ops->alloc_msg(con, hdr, skip);
2352 		mutex_lock(&con->mutex);
2353 		if (!msg || *skip)
2354 			return NULL;
2355 	}
2356 	if (!msg) {
2357 		*skip = 0;
2358 		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2359 		if (!msg) {
2360 			pr_err("unable to allocate msg type %d len %d\n",
2361 			       type, front_len);
2362 			return NULL;
2363 		}
2364 		msg->page_alignment = le16_to_cpu(hdr->data_off);
2365 	}
2366 	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2367 
2368 	if (middle_len && !msg->middle) {
2369 		ret = ceph_alloc_middle(con, msg);
2370 		if (ret < 0) {
2371 			ceph_msg_put(msg);
2372 			return NULL;
2373 		}
2374 	}
2375 
2376 	return msg;
2377 }
2378 
2379 
2380 /*
2381  * Free a generically kmalloc'd message.
2382  */
2383 void ceph_msg_kfree(struct ceph_msg *m)
2384 {
2385 	dout("msg_kfree %p\n", m);
2386 	if (m->front_is_vmalloc)
2387 		vfree(m->front.iov_base);
2388 	else
2389 		kfree(m->front.iov_base);
2390 	kfree(m);
2391 }
2392 
2393 /*
2394  * Drop a msg ref.  Destroy as needed.
2395  */
2396 void ceph_msg_last_put(struct kref *kref)
2397 {
2398 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2399 
2400 	dout("ceph_msg_put last one on %p\n", m);
2401 	WARN_ON(!list_empty(&m->list_head));
2402 
2403 	/* drop middle, data, if any */
2404 	if (m->middle) {
2405 		ceph_buffer_put(m->middle);
2406 		m->middle = NULL;
2407 	}
2408 	m->nr_pages = 0;
2409 	m->pages = NULL;
2410 
2411 	if (m->pagelist) {
2412 		ceph_pagelist_release(m->pagelist);
2413 		kfree(m->pagelist);
2414 		m->pagelist = NULL;
2415 	}
2416 
2417 	m->trail = NULL;
2418 
2419 	if (m->pool)
2420 		ceph_msgpool_put(m->pool, m);
2421 	else
2422 		ceph_msg_kfree(m);
2423 }
2424 EXPORT_SYMBOL(ceph_msg_last_put);
2425 
2426 void ceph_msg_dump(struct ceph_msg *msg)
2427 {
2428 	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2429 		 msg->front_max, msg->nr_pages);
2430 	print_hex_dump(KERN_DEBUG, "header: ",
2431 		       DUMP_PREFIX_OFFSET, 16, 1,
2432 		       &msg->hdr, sizeof(msg->hdr), true);
2433 	print_hex_dump(KERN_DEBUG, " front: ",
2434 		       DUMP_PREFIX_OFFSET, 16, 1,
2435 		       msg->front.iov_base, msg->front.iov_len, true);
2436 	if (msg->middle)
2437 		print_hex_dump(KERN_DEBUG, "middle: ",
2438 			       DUMP_PREFIX_OFFSET, 16, 1,
2439 			       msg->middle->vec.iov_base,
2440 			       msg->middle->vec.iov_len, true);
2441 	print_hex_dump(KERN_DEBUG, "footer: ",
2442 		       DUMP_PREFIX_OFFSET, 16, 1,
2443 		       &msg->footer, sizeof(msg->footer), true);
2444 }
2445 EXPORT_SYMBOL(ceph_msg_dump);
2446