xref: /openbmc/linux/net/ceph/messenger.c (revision 4d2804b7)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/sched/mm.h>
11 #include <linux/slab.h>
12 #include <linux/socket.h>
13 #include <linux/string.h>
14 #ifdef	CONFIG_BLOCK
15 #include <linux/bio.h>
16 #endif	/* CONFIG_BLOCK */
17 #include <linux/dns_resolver.h>
18 #include <net/tcp.h>
19 
20 #include <linux/ceph/ceph_features.h>
21 #include <linux/ceph/libceph.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/export.h>
26 
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35 
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77 
78 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
83 
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93 
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98 				       * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103 
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 	switch (con_flag) {
107 	case CON_FLAG_LOSSYTX:
108 	case CON_FLAG_KEEPALIVE_PENDING:
109 	case CON_FLAG_WRITE_PENDING:
110 	case CON_FLAG_SOCK_CLOSED:
111 	case CON_FLAG_BACKOFF:
112 		return true;
113 	default:
114 		return false;
115 	}
116 }
117 
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 	BUG_ON(!con_flag_valid(con_flag));
121 
122 	clear_bit(con_flag, &con->flags);
123 }
124 
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 	BUG_ON(!con_flag_valid(con_flag));
128 
129 	set_bit(con_flag, &con->flags);
130 }
131 
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 	BUG_ON(!con_flag_valid(con_flag));
135 
136 	return test_bit(con_flag, &con->flags);
137 }
138 
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 					unsigned long con_flag)
141 {
142 	BUG_ON(!con_flag_valid(con_flag));
143 
144 	return test_and_clear_bit(con_flag, &con->flags);
145 }
146 
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 					unsigned long con_flag)
149 {
150 	BUG_ON(!con_flag_valid(con_flag));
151 
152 	return test_and_set_bit(con_flag, &con->flags);
153 }
154 
155 /* Slab caches for frequently-allocated structures */
156 
157 static struct kmem_cache	*ceph_msg_cache;
158 static struct kmem_cache	*ceph_msg_data_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void ceph_con_workfn(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
240 	if (!ceph_msg_cache)
241 		return -ENOMEM;
242 
243 	BUG_ON(ceph_msg_data_cache);
244 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
245 	if (ceph_msg_data_cache)
246 		return 0;
247 
248 	kmem_cache_destroy(ceph_msg_cache);
249 	ceph_msg_cache = NULL;
250 
251 	return -ENOMEM;
252 }
253 
254 static void ceph_msgr_slab_exit(void)
255 {
256 	BUG_ON(!ceph_msg_data_cache);
257 	kmem_cache_destroy(ceph_msg_data_cache);
258 	ceph_msg_data_cache = NULL;
259 
260 	BUG_ON(!ceph_msg_cache);
261 	kmem_cache_destroy(ceph_msg_cache);
262 	ceph_msg_cache = NULL;
263 }
264 
265 static void _ceph_msgr_exit(void)
266 {
267 	if (ceph_msgr_wq) {
268 		destroy_workqueue(ceph_msgr_wq);
269 		ceph_msgr_wq = NULL;
270 	}
271 
272 	BUG_ON(zero_page == NULL);
273 	put_page(zero_page);
274 	zero_page = NULL;
275 
276 	ceph_msgr_slab_exit();
277 }
278 
279 int ceph_msgr_init(void)
280 {
281 	if (ceph_msgr_slab_init())
282 		return -ENOMEM;
283 
284 	BUG_ON(zero_page != NULL);
285 	zero_page = ZERO_PAGE(0);
286 	get_page(zero_page);
287 
288 	/*
289 	 * The number of active work items is limited by the number of
290 	 * connections, so leave @max_active at default.
291 	 */
292 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
293 	if (ceph_msgr_wq)
294 		return 0;
295 
296 	pr_err("msgr_init failed to create workqueue\n");
297 	_ceph_msgr_exit();
298 
299 	return -ENOMEM;
300 }
301 EXPORT_SYMBOL(ceph_msgr_init);
302 
303 void ceph_msgr_exit(void)
304 {
305 	BUG_ON(ceph_msgr_wq == NULL);
306 
307 	_ceph_msgr_exit();
308 }
309 EXPORT_SYMBOL(ceph_msgr_exit);
310 
311 void ceph_msgr_flush(void)
312 {
313 	flush_workqueue(ceph_msgr_wq);
314 }
315 EXPORT_SYMBOL(ceph_msgr_flush);
316 
317 /* Connection socket state transition functions */
318 
319 static void con_sock_state_init(struct ceph_connection *con)
320 {
321 	int old_state;
322 
323 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
324 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
325 		printk("%s: unexpected old state %d\n", __func__, old_state);
326 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
327 	     CON_SOCK_STATE_CLOSED);
328 }
329 
330 static void con_sock_state_connecting(struct ceph_connection *con)
331 {
332 	int old_state;
333 
334 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
335 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
336 		printk("%s: unexpected old state %d\n", __func__, old_state);
337 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
338 	     CON_SOCK_STATE_CONNECTING);
339 }
340 
341 static void con_sock_state_connected(struct ceph_connection *con)
342 {
343 	int old_state;
344 
345 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
346 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
347 		printk("%s: unexpected old state %d\n", __func__, old_state);
348 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
349 	     CON_SOCK_STATE_CONNECTED);
350 }
351 
352 static void con_sock_state_closing(struct ceph_connection *con)
353 {
354 	int old_state;
355 
356 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
357 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
358 			old_state != CON_SOCK_STATE_CONNECTED &&
359 			old_state != CON_SOCK_STATE_CLOSING))
360 		printk("%s: unexpected old state %d\n", __func__, old_state);
361 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
362 	     CON_SOCK_STATE_CLOSING);
363 }
364 
365 static void con_sock_state_closed(struct ceph_connection *con)
366 {
367 	int old_state;
368 
369 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
370 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
371 		    old_state != CON_SOCK_STATE_CLOSING &&
372 		    old_state != CON_SOCK_STATE_CONNECTING &&
373 		    old_state != CON_SOCK_STATE_CLOSED))
374 		printk("%s: unexpected old state %d\n", __func__, old_state);
375 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
376 	     CON_SOCK_STATE_CLOSED);
377 }
378 
379 /*
380  * socket callback functions
381  */
382 
383 /* data available on socket, or listen socket received a connect */
384 static void ceph_sock_data_ready(struct sock *sk)
385 {
386 	struct ceph_connection *con = sk->sk_user_data;
387 	if (atomic_read(&con->msgr->stopping)) {
388 		return;
389 	}
390 
391 	if (sk->sk_state != TCP_CLOSE_WAIT) {
392 		dout("%s on %p state = %lu, queueing work\n", __func__,
393 		     con, con->state);
394 		queue_con(con);
395 	}
396 }
397 
398 /* socket has buffer space for writing */
399 static void ceph_sock_write_space(struct sock *sk)
400 {
401 	struct ceph_connection *con = sk->sk_user_data;
402 
403 	/* only queue to workqueue if there is data we want to write,
404 	 * and there is sufficient space in the socket buffer to accept
405 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
406 	 * doesn't get called again until try_write() fills the socket
407 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
408 	 * and net/core/stream.c:sk_stream_write_space().
409 	 */
410 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
411 		if (sk_stream_is_writeable(sk)) {
412 			dout("%s %p queueing write work\n", __func__, con);
413 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
414 			queue_con(con);
415 		}
416 	} else {
417 		dout("%s %p nothing to write\n", __func__, con);
418 	}
419 }
420 
421 /* socket's state has changed */
422 static void ceph_sock_state_change(struct sock *sk)
423 {
424 	struct ceph_connection *con = sk->sk_user_data;
425 
426 	dout("%s %p state = %lu sk_state = %u\n", __func__,
427 	     con, con->state, sk->sk_state);
428 
429 	switch (sk->sk_state) {
430 	case TCP_CLOSE:
431 		dout("%s TCP_CLOSE\n", __func__);
432 	case TCP_CLOSE_WAIT:
433 		dout("%s TCP_CLOSE_WAIT\n", __func__);
434 		con_sock_state_closing(con);
435 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
436 		queue_con(con);
437 		break;
438 	case TCP_ESTABLISHED:
439 		dout("%s TCP_ESTABLISHED\n", __func__);
440 		con_sock_state_connected(con);
441 		queue_con(con);
442 		break;
443 	default:	/* Everything else is uninteresting */
444 		break;
445 	}
446 }
447 
448 /*
449  * set up socket callbacks
450  */
451 static void set_sock_callbacks(struct socket *sock,
452 			       struct ceph_connection *con)
453 {
454 	struct sock *sk = sock->sk;
455 	sk->sk_user_data = con;
456 	sk->sk_data_ready = ceph_sock_data_ready;
457 	sk->sk_write_space = ceph_sock_write_space;
458 	sk->sk_state_change = ceph_sock_state_change;
459 }
460 
461 
462 /*
463  * socket helpers
464  */
465 
466 /*
467  * initiate connection to a remote socket.
468  */
469 static int ceph_tcp_connect(struct ceph_connection *con)
470 {
471 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
472 	struct socket *sock;
473 	unsigned int noio_flag;
474 	int ret;
475 
476 	BUG_ON(con->sock);
477 
478 	/* sock_create_kern() allocates with GFP_KERNEL */
479 	noio_flag = memalloc_noio_save();
480 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
481 			       SOCK_STREAM, IPPROTO_TCP, &sock);
482 	memalloc_noio_restore(noio_flag);
483 	if (ret)
484 		return ret;
485 	sock->sk->sk_allocation = GFP_NOFS;
486 
487 #ifdef CONFIG_LOCKDEP
488 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490 
491 	set_sock_callbacks(sock, con);
492 
493 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494 
495 	con_sock_state_connecting(con);
496 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 				 O_NONBLOCK);
498 	if (ret == -EINPROGRESS) {
499 		dout("connect %s EINPROGRESS sk_state = %u\n",
500 		     ceph_pr_addr(&con->peer_addr.in_addr),
501 		     sock->sk->sk_state);
502 	} else if (ret < 0) {
503 		pr_err("connect %s error %d\n",
504 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 		sock_release(sock);
506 		return ret;
507 	}
508 
509 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 		int optval = 1;
511 
512 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 					(char *)&optval, sizeof(optval));
514 		if (ret)
515 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 			       ret);
517 	}
518 
519 	con->sock = sock;
520 	return 0;
521 }
522 
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 	struct kvec iov = {buf, len};
526 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 	int r;
528 
529 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 	if (r == -EAGAIN)
532 		r = 0;
533 	return r;
534 }
535 
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 		     int page_offset, size_t length)
538 {
539 	struct bio_vec bvec = {
540 		.bv_page = page,
541 		.bv_offset = page_offset,
542 		.bv_len = length
543 	};
544 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 	int r;
546 
547 	BUG_ON(page_offset + length > PAGE_SIZE);
548 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 	if (r == -EAGAIN)
551 		r = 0;
552 	return r;
553 }
554 
555 /*
556  * write something.  @more is true if caller will be sending more data
557  * shortly.
558  */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 		     size_t kvlen, size_t len, int more)
561 {
562 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 	int r;
564 
565 	if (more)
566 		msg.msg_flags |= MSG_MORE;
567 	else
568 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
569 
570 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 	if (r == -EAGAIN)
572 		r = 0;
573 	return r;
574 }
575 
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 		     int offset, size_t size, bool more)
578 {
579 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 	int ret;
581 
582 	ret = kernel_sendpage(sock, page, offset, size, flags);
583 	if (ret == -EAGAIN)
584 		ret = 0;
585 
586 	return ret;
587 }
588 
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 		     int offset, size_t size, bool more)
591 {
592 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 	struct bio_vec bvec;
594 	int ret;
595 
596 	/* sendpage cannot properly handle pages with page_count == 0,
597 	 * we need to fallback to sendmsg if that's the case */
598 	if (page_count(page) >= 1)
599 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
600 
601 	bvec.bv_page = page;
602 	bvec.bv_offset = offset;
603 	bvec.bv_len = size;
604 
605 	if (more)
606 		msg.msg_flags |= MSG_MORE;
607 	else
608 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
609 
610 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 	ret = sock_sendmsg(sock, &msg);
612 	if (ret == -EAGAIN)
613 		ret = 0;
614 
615 	return ret;
616 }
617 
618 /*
619  * Shutdown/close the socket for the given connection.
620  */
621 static int con_close_socket(struct ceph_connection *con)
622 {
623 	int rc = 0;
624 
625 	dout("con_close_socket on %p sock %p\n", con, con->sock);
626 	if (con->sock) {
627 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 		sock_release(con->sock);
629 		con->sock = NULL;
630 	}
631 
632 	/*
633 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
634 	 * independent of the connection mutex, and we could have
635 	 * received a socket close event before we had the chance to
636 	 * shut the socket down.
637 	 */
638 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639 
640 	con_sock_state_closed(con);
641 	return rc;
642 }
643 
644 /*
645  * Reset a connection.  Discard all incoming and outgoing messages
646  * and clear *_seq state.
647  */
648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 	list_del_init(&msg->list_head);
651 
652 	ceph_msg_put(msg);
653 }
654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 	while (!list_empty(head)) {
657 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 							list_head);
659 		ceph_msg_remove(msg);
660 	}
661 }
662 
663 static void reset_connection(struct ceph_connection *con)
664 {
665 	/* reset connection, out_queue, msg_ and connect_seq */
666 	/* discard existing out_queue and msg_seq */
667 	dout("reset_connection %p\n", con);
668 	ceph_msg_remove_list(&con->out_queue);
669 	ceph_msg_remove_list(&con->out_sent);
670 
671 	if (con->in_msg) {
672 		BUG_ON(con->in_msg->con != con);
673 		ceph_msg_put(con->in_msg);
674 		con->in_msg = NULL;
675 	}
676 
677 	con->connect_seq = 0;
678 	con->out_seq = 0;
679 	if (con->out_msg) {
680 		BUG_ON(con->out_msg->con != con);
681 		ceph_msg_put(con->out_msg);
682 		con->out_msg = NULL;
683 	}
684 	con->in_seq = 0;
685 	con->in_seq_acked = 0;
686 
687 	con->out_skip = 0;
688 }
689 
690 /*
691  * mark a peer down.  drop any open connections.
692  */
693 void ceph_con_close(struct ceph_connection *con)
694 {
695 	mutex_lock(&con->mutex);
696 	dout("con_close %p peer %s\n", con,
697 	     ceph_pr_addr(&con->peer_addr.in_addr));
698 	con->state = CON_STATE_CLOSED;
699 
700 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
701 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 	con_flag_clear(con, CON_FLAG_BACKOFF);
704 
705 	reset_connection(con);
706 	con->peer_global_seq = 0;
707 	cancel_con(con);
708 	con_close_socket(con);
709 	mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712 
713 /*
714  * Reopen a closed connection, with a new peer address.
715  */
716 void ceph_con_open(struct ceph_connection *con,
717 		   __u8 entity_type, __u64 entity_num,
718 		   struct ceph_entity_addr *addr)
719 {
720 	mutex_lock(&con->mutex);
721 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722 
723 	WARN_ON(con->state != CON_STATE_CLOSED);
724 	con->state = CON_STATE_PREOPEN;
725 
726 	con->peer_name.type = (__u8) entity_type;
727 	con->peer_name.num = cpu_to_le64(entity_num);
728 
729 	memcpy(&con->peer_addr, addr, sizeof(*addr));
730 	con->delay = 0;      /* reset backoff memory */
731 	mutex_unlock(&con->mutex);
732 	queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735 
736 /*
737  * return true if this connection ever successfully opened
738  */
739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 	return con->connect_seq > 0;
742 }
743 
744 /*
745  * initialize a new connection.
746  */
747 void ceph_con_init(struct ceph_connection *con, void *private,
748 	const struct ceph_connection_operations *ops,
749 	struct ceph_messenger *msgr)
750 {
751 	dout("con_init %p\n", con);
752 	memset(con, 0, sizeof(*con));
753 	con->private = private;
754 	con->ops = ops;
755 	con->msgr = msgr;
756 
757 	con_sock_state_init(con);
758 
759 	mutex_init(&con->mutex);
760 	INIT_LIST_HEAD(&con->out_queue);
761 	INIT_LIST_HEAD(&con->out_sent);
762 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763 
764 	con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767 
768 
769 /*
770  * We maintain a global counter to order connection attempts.  Get
771  * a unique seq greater than @gt.
772  */
773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 	u32 ret;
776 
777 	spin_lock(&msgr->global_seq_lock);
778 	if (msgr->global_seq < gt)
779 		msgr->global_seq = gt;
780 	ret = ++msgr->global_seq;
781 	spin_unlock(&msgr->global_seq_lock);
782 	return ret;
783 }
784 
785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 	BUG_ON(con->out_skip);
788 
789 	con->out_kvec_left = 0;
790 	con->out_kvec_bytes = 0;
791 	con->out_kvec_cur = &con->out_kvec[0];
792 }
793 
794 static void con_out_kvec_add(struct ceph_connection *con,
795 				size_t size, void *data)
796 {
797 	int index = con->out_kvec_left;
798 
799 	BUG_ON(con->out_skip);
800 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801 
802 	con->out_kvec[index].iov_len = size;
803 	con->out_kvec[index].iov_base = data;
804 	con->out_kvec_left++;
805 	con->out_kvec_bytes += size;
806 }
807 
808 /*
809  * Chop off a kvec from the end.  Return residual number of bytes for
810  * that kvec, i.e. how many bytes would have been written if the kvec
811  * hadn't been nuked.
812  */
813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 	int off = con->out_kvec_cur - con->out_kvec;
816 	int skip = 0;
817 
818 	if (con->out_kvec_bytes > 0) {
819 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 		BUG_ON(con->out_kvec_bytes < skip);
821 		BUG_ON(!con->out_kvec_left);
822 		con->out_kvec_bytes -= skip;
823 		con->out_kvec_left--;
824 	}
825 
826 	return skip;
827 }
828 
829 #ifdef CONFIG_BLOCK
830 
831 /*
832  * For a bio data item, a piece is whatever remains of the next
833  * entry in the current bio iovec, or the first entry in the next
834  * bio in the list.
835  */
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 					size_t length)
838 {
839 	struct ceph_msg_data *data = cursor->data;
840 	struct bio *bio;
841 
842 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
843 
844 	bio = data->bio;
845 	BUG_ON(!bio);
846 
847 	cursor->resid = min(length, data->bio_length);
848 	cursor->bio = bio;
849 	cursor->bvec_iter = bio->bi_iter;
850 	cursor->last_piece =
851 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
852 }
853 
854 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
855 						size_t *page_offset,
856 						size_t *length)
857 {
858 	struct ceph_msg_data *data = cursor->data;
859 	struct bio *bio;
860 	struct bio_vec bio_vec;
861 
862 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
863 
864 	bio = cursor->bio;
865 	BUG_ON(!bio);
866 
867 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
868 
869 	*page_offset = (size_t) bio_vec.bv_offset;
870 	BUG_ON(*page_offset >= PAGE_SIZE);
871 	if (cursor->last_piece) /* pagelist offset is always 0 */
872 		*length = cursor->resid;
873 	else
874 		*length = (size_t) bio_vec.bv_len;
875 	BUG_ON(*length > cursor->resid);
876 	BUG_ON(*page_offset + *length > PAGE_SIZE);
877 
878 	return bio_vec.bv_page;
879 }
880 
881 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
882 					size_t bytes)
883 {
884 	struct bio *bio;
885 	struct bio_vec bio_vec;
886 
887 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
888 
889 	bio = cursor->bio;
890 	BUG_ON(!bio);
891 
892 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
893 
894 	/* Advance the cursor offset */
895 
896 	BUG_ON(cursor->resid < bytes);
897 	cursor->resid -= bytes;
898 
899 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
900 
901 	if (bytes < bio_vec.bv_len)
902 		return false;	/* more bytes to process in this segment */
903 
904 	/* Move on to the next segment, and possibly the next bio */
905 
906 	if (!cursor->bvec_iter.bi_size) {
907 		bio = bio->bi_next;
908 		cursor->bio = bio;
909 		if (bio)
910 			cursor->bvec_iter = bio->bi_iter;
911 		else
912 			memset(&cursor->bvec_iter, 0,
913 			       sizeof(cursor->bvec_iter));
914 	}
915 
916 	if (!cursor->last_piece) {
917 		BUG_ON(!cursor->resid);
918 		BUG_ON(!bio);
919 		/* A short read is OK, so use <= rather than == */
920 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
921 			cursor->last_piece = true;
922 	}
923 
924 	return true;
925 }
926 #endif /* CONFIG_BLOCK */
927 
928 /*
929  * For a page array, a piece comes from the first page in the array
930  * that has not already been fully consumed.
931  */
932 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
933 					size_t length)
934 {
935 	struct ceph_msg_data *data = cursor->data;
936 	int page_count;
937 
938 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
939 
940 	BUG_ON(!data->pages);
941 	BUG_ON(!data->length);
942 
943 	cursor->resid = min(length, data->length);
944 	page_count = calc_pages_for(data->alignment, (u64)data->length);
945 	cursor->page_offset = data->alignment & ~PAGE_MASK;
946 	cursor->page_index = 0;
947 	BUG_ON(page_count > (int)USHRT_MAX);
948 	cursor->page_count = (unsigned short)page_count;
949 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
950 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
951 }
952 
953 static struct page *
954 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
955 					size_t *page_offset, size_t *length)
956 {
957 	struct ceph_msg_data *data = cursor->data;
958 
959 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
960 
961 	BUG_ON(cursor->page_index >= cursor->page_count);
962 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
963 
964 	*page_offset = cursor->page_offset;
965 	if (cursor->last_piece)
966 		*length = cursor->resid;
967 	else
968 		*length = PAGE_SIZE - *page_offset;
969 
970 	return data->pages[cursor->page_index];
971 }
972 
973 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
974 						size_t bytes)
975 {
976 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
977 
978 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
979 
980 	/* Advance the cursor page offset */
981 
982 	cursor->resid -= bytes;
983 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
984 	if (!bytes || cursor->page_offset)
985 		return false;	/* more bytes to process in the current page */
986 
987 	if (!cursor->resid)
988 		return false;   /* no more data */
989 
990 	/* Move on to the next page; offset is already at 0 */
991 
992 	BUG_ON(cursor->page_index >= cursor->page_count);
993 	cursor->page_index++;
994 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
995 
996 	return true;
997 }
998 
999 /*
1000  * For a pagelist, a piece is whatever remains to be consumed in the
1001  * first page in the list, or the front of the next page.
1002  */
1003 static void
1004 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1005 					size_t length)
1006 {
1007 	struct ceph_msg_data *data = cursor->data;
1008 	struct ceph_pagelist *pagelist;
1009 	struct page *page;
1010 
1011 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1012 
1013 	pagelist = data->pagelist;
1014 	BUG_ON(!pagelist);
1015 
1016 	if (!length)
1017 		return;		/* pagelist can be assigned but empty */
1018 
1019 	BUG_ON(list_empty(&pagelist->head));
1020 	page = list_first_entry(&pagelist->head, struct page, lru);
1021 
1022 	cursor->resid = min(length, pagelist->length);
1023 	cursor->page = page;
1024 	cursor->offset = 0;
1025 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1026 }
1027 
1028 static struct page *
1029 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1030 				size_t *page_offset, size_t *length)
1031 {
1032 	struct ceph_msg_data *data = cursor->data;
1033 	struct ceph_pagelist *pagelist;
1034 
1035 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1036 
1037 	pagelist = data->pagelist;
1038 	BUG_ON(!pagelist);
1039 
1040 	BUG_ON(!cursor->page);
1041 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1042 
1043 	/* offset of first page in pagelist is always 0 */
1044 	*page_offset = cursor->offset & ~PAGE_MASK;
1045 	if (cursor->last_piece)
1046 		*length = cursor->resid;
1047 	else
1048 		*length = PAGE_SIZE - *page_offset;
1049 
1050 	return cursor->page;
1051 }
1052 
1053 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1054 						size_t bytes)
1055 {
1056 	struct ceph_msg_data *data = cursor->data;
1057 	struct ceph_pagelist *pagelist;
1058 
1059 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1060 
1061 	pagelist = data->pagelist;
1062 	BUG_ON(!pagelist);
1063 
1064 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1065 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1066 
1067 	/* Advance the cursor offset */
1068 
1069 	cursor->resid -= bytes;
1070 	cursor->offset += bytes;
1071 	/* offset of first page in pagelist is always 0 */
1072 	if (!bytes || cursor->offset & ~PAGE_MASK)
1073 		return false;	/* more bytes to process in the current page */
1074 
1075 	if (!cursor->resid)
1076 		return false;   /* no more data */
1077 
1078 	/* Move on to the next page */
1079 
1080 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1081 	cursor->page = list_next_entry(cursor->page, lru);
1082 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1083 
1084 	return true;
1085 }
1086 
1087 /*
1088  * Message data is handled (sent or received) in pieces, where each
1089  * piece resides on a single page.  The network layer might not
1090  * consume an entire piece at once.  A data item's cursor keeps
1091  * track of which piece is next to process and how much remains to
1092  * be processed in that piece.  It also tracks whether the current
1093  * piece is the last one in the data item.
1094  */
1095 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1096 {
1097 	size_t length = cursor->total_resid;
1098 
1099 	switch (cursor->data->type) {
1100 	case CEPH_MSG_DATA_PAGELIST:
1101 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1102 		break;
1103 	case CEPH_MSG_DATA_PAGES:
1104 		ceph_msg_data_pages_cursor_init(cursor, length);
1105 		break;
1106 #ifdef CONFIG_BLOCK
1107 	case CEPH_MSG_DATA_BIO:
1108 		ceph_msg_data_bio_cursor_init(cursor, length);
1109 		break;
1110 #endif /* CONFIG_BLOCK */
1111 	case CEPH_MSG_DATA_NONE:
1112 	default:
1113 		/* BUG(); */
1114 		break;
1115 	}
1116 	cursor->need_crc = true;
1117 }
1118 
1119 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1120 {
1121 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1122 	struct ceph_msg_data *data;
1123 
1124 	BUG_ON(!length);
1125 	BUG_ON(length > msg->data_length);
1126 	BUG_ON(list_empty(&msg->data));
1127 
1128 	cursor->data_head = &msg->data;
1129 	cursor->total_resid = length;
1130 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1131 	cursor->data = data;
1132 
1133 	__ceph_msg_data_cursor_init(cursor);
1134 }
1135 
1136 /*
1137  * Return the page containing the next piece to process for a given
1138  * data item, and supply the page offset and length of that piece.
1139  * Indicate whether this is the last piece in this data item.
1140  */
1141 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1142 					size_t *page_offset, size_t *length,
1143 					bool *last_piece)
1144 {
1145 	struct page *page;
1146 
1147 	switch (cursor->data->type) {
1148 	case CEPH_MSG_DATA_PAGELIST:
1149 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1150 		break;
1151 	case CEPH_MSG_DATA_PAGES:
1152 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1153 		break;
1154 #ifdef CONFIG_BLOCK
1155 	case CEPH_MSG_DATA_BIO:
1156 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1157 		break;
1158 #endif /* CONFIG_BLOCK */
1159 	case CEPH_MSG_DATA_NONE:
1160 	default:
1161 		page = NULL;
1162 		break;
1163 	}
1164 	BUG_ON(!page);
1165 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1166 	BUG_ON(!*length);
1167 	if (last_piece)
1168 		*last_piece = cursor->last_piece;
1169 
1170 	return page;
1171 }
1172 
1173 /*
1174  * Returns true if the result moves the cursor on to the next piece
1175  * of the data item.
1176  */
1177 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1178 				  size_t bytes)
1179 {
1180 	bool new_piece;
1181 
1182 	BUG_ON(bytes > cursor->resid);
1183 	switch (cursor->data->type) {
1184 	case CEPH_MSG_DATA_PAGELIST:
1185 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1186 		break;
1187 	case CEPH_MSG_DATA_PAGES:
1188 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1189 		break;
1190 #ifdef CONFIG_BLOCK
1191 	case CEPH_MSG_DATA_BIO:
1192 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1193 		break;
1194 #endif /* CONFIG_BLOCK */
1195 	case CEPH_MSG_DATA_NONE:
1196 	default:
1197 		BUG();
1198 		break;
1199 	}
1200 	cursor->total_resid -= bytes;
1201 
1202 	if (!cursor->resid && cursor->total_resid) {
1203 		WARN_ON(!cursor->last_piece);
1204 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1205 		cursor->data = list_next_entry(cursor->data, links);
1206 		__ceph_msg_data_cursor_init(cursor);
1207 		new_piece = true;
1208 	}
1209 	cursor->need_crc = new_piece;
1210 }
1211 
1212 static size_t sizeof_footer(struct ceph_connection *con)
1213 {
1214 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1215 	    sizeof(struct ceph_msg_footer) :
1216 	    sizeof(struct ceph_msg_footer_old);
1217 }
1218 
1219 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1220 {
1221 	BUG_ON(!msg);
1222 	BUG_ON(!data_len);
1223 
1224 	/* Initialize data cursor */
1225 
1226 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1227 }
1228 
1229 /*
1230  * Prepare footer for currently outgoing message, and finish things
1231  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1232  */
1233 static void prepare_write_message_footer(struct ceph_connection *con)
1234 {
1235 	struct ceph_msg *m = con->out_msg;
1236 
1237 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1238 
1239 	dout("prepare_write_message_footer %p\n", con);
1240 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1241 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1242 		if (con->ops->sign_message)
1243 			con->ops->sign_message(m);
1244 		else
1245 			m->footer.sig = 0;
1246 	} else {
1247 		m->old_footer.flags = m->footer.flags;
1248 	}
1249 	con->out_more = m->more_to_follow;
1250 	con->out_msg_done = true;
1251 }
1252 
1253 /*
1254  * Prepare headers for the next outgoing message.
1255  */
1256 static void prepare_write_message(struct ceph_connection *con)
1257 {
1258 	struct ceph_msg *m;
1259 	u32 crc;
1260 
1261 	con_out_kvec_reset(con);
1262 	con->out_msg_done = false;
1263 
1264 	/* Sneak an ack in there first?  If we can get it into the same
1265 	 * TCP packet that's a good thing. */
1266 	if (con->in_seq > con->in_seq_acked) {
1267 		con->in_seq_acked = con->in_seq;
1268 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1269 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1270 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1271 			&con->out_temp_ack);
1272 	}
1273 
1274 	BUG_ON(list_empty(&con->out_queue));
1275 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1276 	con->out_msg = m;
1277 	BUG_ON(m->con != con);
1278 
1279 	/* put message on sent list */
1280 	ceph_msg_get(m);
1281 	list_move_tail(&m->list_head, &con->out_sent);
1282 
1283 	/*
1284 	 * only assign outgoing seq # if we haven't sent this message
1285 	 * yet.  if it is requeued, resend with it's original seq.
1286 	 */
1287 	if (m->needs_out_seq) {
1288 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1289 		m->needs_out_seq = false;
1290 	}
1291 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1292 
1293 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1294 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1295 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1296 	     m->data_length);
1297 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1298 
1299 	/* tag + hdr + front + middle */
1300 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1301 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1302 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1303 
1304 	if (m->middle)
1305 		con_out_kvec_add(con, m->middle->vec.iov_len,
1306 			m->middle->vec.iov_base);
1307 
1308 	/* fill in hdr crc and finalize hdr */
1309 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1310 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1311 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1312 
1313 	/* fill in front and middle crc, footer */
1314 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1315 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1316 	if (m->middle) {
1317 		crc = crc32c(0, m->middle->vec.iov_base,
1318 				m->middle->vec.iov_len);
1319 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1320 	} else
1321 		con->out_msg->footer.middle_crc = 0;
1322 	dout("%s front_crc %u middle_crc %u\n", __func__,
1323 	     le32_to_cpu(con->out_msg->footer.front_crc),
1324 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1325 	con->out_msg->footer.flags = 0;
1326 
1327 	/* is there a data payload? */
1328 	con->out_msg->footer.data_crc = 0;
1329 	if (m->data_length) {
1330 		prepare_message_data(con->out_msg, m->data_length);
1331 		con->out_more = 1;  /* data + footer will follow */
1332 	} else {
1333 		/* no, queue up footer too and be done */
1334 		prepare_write_message_footer(con);
1335 	}
1336 
1337 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1338 }
1339 
1340 /*
1341  * Prepare an ack.
1342  */
1343 static void prepare_write_ack(struct ceph_connection *con)
1344 {
1345 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1346 	     con->in_seq_acked, con->in_seq);
1347 	con->in_seq_acked = con->in_seq;
1348 
1349 	con_out_kvec_reset(con);
1350 
1351 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1352 
1353 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1354 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1355 				&con->out_temp_ack);
1356 
1357 	con->out_more = 1;  /* more will follow.. eventually.. */
1358 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359 }
1360 
1361 /*
1362  * Prepare to share the seq during handshake
1363  */
1364 static void prepare_write_seq(struct ceph_connection *con)
1365 {
1366 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1367 	     con->in_seq_acked, con->in_seq);
1368 	con->in_seq_acked = con->in_seq;
1369 
1370 	con_out_kvec_reset(con);
1371 
1372 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1373 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1374 			 &con->out_temp_ack);
1375 
1376 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1377 }
1378 
1379 /*
1380  * Prepare to write keepalive byte.
1381  */
1382 static void prepare_write_keepalive(struct ceph_connection *con)
1383 {
1384 	dout("prepare_write_keepalive %p\n", con);
1385 	con_out_kvec_reset(con);
1386 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1387 		struct timespec now;
1388 
1389 		ktime_get_real_ts(&now);
1390 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1391 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1392 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1393 				 &con->out_temp_keepalive2);
1394 	} else {
1395 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1396 	}
1397 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1398 }
1399 
1400 /*
1401  * Connection negotiation.
1402  */
1403 
1404 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1405 						int *auth_proto)
1406 {
1407 	struct ceph_auth_handshake *auth;
1408 
1409 	if (!con->ops->get_authorizer) {
1410 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1411 		con->out_connect.authorizer_len = 0;
1412 		return NULL;
1413 	}
1414 
1415 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1416 	if (IS_ERR(auth))
1417 		return auth;
1418 
1419 	con->auth_reply_buf = auth->authorizer_reply_buf;
1420 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1421 	return auth;
1422 }
1423 
1424 /*
1425  * We connected to a peer and are saying hello.
1426  */
1427 static void prepare_write_banner(struct ceph_connection *con)
1428 {
1429 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1430 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1431 					&con->msgr->my_enc_addr);
1432 
1433 	con->out_more = 0;
1434 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1435 }
1436 
1437 static int prepare_write_connect(struct ceph_connection *con)
1438 {
1439 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1440 	int proto;
1441 	int auth_proto;
1442 	struct ceph_auth_handshake *auth;
1443 
1444 	switch (con->peer_name.type) {
1445 	case CEPH_ENTITY_TYPE_MON:
1446 		proto = CEPH_MONC_PROTOCOL;
1447 		break;
1448 	case CEPH_ENTITY_TYPE_OSD:
1449 		proto = CEPH_OSDC_PROTOCOL;
1450 		break;
1451 	case CEPH_ENTITY_TYPE_MDS:
1452 		proto = CEPH_MDSC_PROTOCOL;
1453 		break;
1454 	default:
1455 		BUG();
1456 	}
1457 
1458 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1459 	     con->connect_seq, global_seq, proto);
1460 
1461 	con->out_connect.features =
1462 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1463 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1464 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1465 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1466 	con->out_connect.protocol_version = cpu_to_le32(proto);
1467 	con->out_connect.flags = 0;
1468 
1469 	auth_proto = CEPH_AUTH_UNKNOWN;
1470 	auth = get_connect_authorizer(con, &auth_proto);
1471 	if (IS_ERR(auth))
1472 		return PTR_ERR(auth);
1473 
1474 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1475 	con->out_connect.authorizer_len = auth ?
1476 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1477 
1478 	con_out_kvec_add(con, sizeof (con->out_connect),
1479 					&con->out_connect);
1480 	if (auth && auth->authorizer_buf_len)
1481 		con_out_kvec_add(con, auth->authorizer_buf_len,
1482 					auth->authorizer_buf);
1483 
1484 	con->out_more = 0;
1485 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1486 
1487 	return 0;
1488 }
1489 
1490 /*
1491  * write as much of pending kvecs to the socket as we can.
1492  *  1 -> done
1493  *  0 -> socket full, but more to do
1494  * <0 -> error
1495  */
1496 static int write_partial_kvec(struct ceph_connection *con)
1497 {
1498 	int ret;
1499 
1500 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1501 	while (con->out_kvec_bytes > 0) {
1502 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1503 				       con->out_kvec_left, con->out_kvec_bytes,
1504 				       con->out_more);
1505 		if (ret <= 0)
1506 			goto out;
1507 		con->out_kvec_bytes -= ret;
1508 		if (con->out_kvec_bytes == 0)
1509 			break;            /* done */
1510 
1511 		/* account for full iov entries consumed */
1512 		while (ret >= con->out_kvec_cur->iov_len) {
1513 			BUG_ON(!con->out_kvec_left);
1514 			ret -= con->out_kvec_cur->iov_len;
1515 			con->out_kvec_cur++;
1516 			con->out_kvec_left--;
1517 		}
1518 		/* and for a partially-consumed entry */
1519 		if (ret) {
1520 			con->out_kvec_cur->iov_len -= ret;
1521 			con->out_kvec_cur->iov_base += ret;
1522 		}
1523 	}
1524 	con->out_kvec_left = 0;
1525 	ret = 1;
1526 out:
1527 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1528 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1529 	return ret;  /* done! */
1530 }
1531 
1532 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1533 				unsigned int page_offset,
1534 				unsigned int length)
1535 {
1536 	char *kaddr;
1537 
1538 	kaddr = kmap(page);
1539 	BUG_ON(kaddr == NULL);
1540 	crc = crc32c(crc, kaddr + page_offset, length);
1541 	kunmap(page);
1542 
1543 	return crc;
1544 }
1545 /*
1546  * Write as much message data payload as we can.  If we finish, queue
1547  * up the footer.
1548  *  1 -> done, footer is now queued in out_kvec[].
1549  *  0 -> socket full, but more to do
1550  * <0 -> error
1551  */
1552 static int write_partial_message_data(struct ceph_connection *con)
1553 {
1554 	struct ceph_msg *msg = con->out_msg;
1555 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1556 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1557 	u32 crc;
1558 
1559 	dout("%s %p msg %p\n", __func__, con, msg);
1560 
1561 	if (list_empty(&msg->data))
1562 		return -EINVAL;
1563 
1564 	/*
1565 	 * Iterate through each page that contains data to be
1566 	 * written, and send as much as possible for each.
1567 	 *
1568 	 * If we are calculating the data crc (the default), we will
1569 	 * need to map the page.  If we have no pages, they have
1570 	 * been revoked, so use the zero page.
1571 	 */
1572 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1573 	while (cursor->resid) {
1574 		struct page *page;
1575 		size_t page_offset;
1576 		size_t length;
1577 		bool last_piece;
1578 		int ret;
1579 
1580 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1581 					  &last_piece);
1582 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1583 					length, !last_piece);
1584 		if (ret <= 0) {
1585 			if (do_datacrc)
1586 				msg->footer.data_crc = cpu_to_le32(crc);
1587 
1588 			return ret;
1589 		}
1590 		if (do_datacrc && cursor->need_crc)
1591 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1592 		ceph_msg_data_advance(cursor, (size_t)ret);
1593 	}
1594 
1595 	dout("%s %p msg %p done\n", __func__, con, msg);
1596 
1597 	/* prepare and queue up footer, too */
1598 	if (do_datacrc)
1599 		msg->footer.data_crc = cpu_to_le32(crc);
1600 	else
1601 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1602 	con_out_kvec_reset(con);
1603 	prepare_write_message_footer(con);
1604 
1605 	return 1;	/* must return > 0 to indicate success */
1606 }
1607 
1608 /*
1609  * write some zeros
1610  */
1611 static int write_partial_skip(struct ceph_connection *con)
1612 {
1613 	int ret;
1614 
1615 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1616 	while (con->out_skip > 0) {
1617 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1618 
1619 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1620 		if (ret <= 0)
1621 			goto out;
1622 		con->out_skip -= ret;
1623 	}
1624 	ret = 1;
1625 out:
1626 	return ret;
1627 }
1628 
1629 /*
1630  * Prepare to read connection handshake, or an ack.
1631  */
1632 static void prepare_read_banner(struct ceph_connection *con)
1633 {
1634 	dout("prepare_read_banner %p\n", con);
1635 	con->in_base_pos = 0;
1636 }
1637 
1638 static void prepare_read_connect(struct ceph_connection *con)
1639 {
1640 	dout("prepare_read_connect %p\n", con);
1641 	con->in_base_pos = 0;
1642 }
1643 
1644 static void prepare_read_ack(struct ceph_connection *con)
1645 {
1646 	dout("prepare_read_ack %p\n", con);
1647 	con->in_base_pos = 0;
1648 }
1649 
1650 static void prepare_read_seq(struct ceph_connection *con)
1651 {
1652 	dout("prepare_read_seq %p\n", con);
1653 	con->in_base_pos = 0;
1654 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1655 }
1656 
1657 static void prepare_read_tag(struct ceph_connection *con)
1658 {
1659 	dout("prepare_read_tag %p\n", con);
1660 	con->in_base_pos = 0;
1661 	con->in_tag = CEPH_MSGR_TAG_READY;
1662 }
1663 
1664 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1665 {
1666 	dout("prepare_read_keepalive_ack %p\n", con);
1667 	con->in_base_pos = 0;
1668 }
1669 
1670 /*
1671  * Prepare to read a message.
1672  */
1673 static int prepare_read_message(struct ceph_connection *con)
1674 {
1675 	dout("prepare_read_message %p\n", con);
1676 	BUG_ON(con->in_msg != NULL);
1677 	con->in_base_pos = 0;
1678 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1679 	return 0;
1680 }
1681 
1682 
1683 static int read_partial(struct ceph_connection *con,
1684 			int end, int size, void *object)
1685 {
1686 	while (con->in_base_pos < end) {
1687 		int left = end - con->in_base_pos;
1688 		int have = size - left;
1689 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1690 		if (ret <= 0)
1691 			return ret;
1692 		con->in_base_pos += ret;
1693 	}
1694 	return 1;
1695 }
1696 
1697 
1698 /*
1699  * Read all or part of the connect-side handshake on a new connection
1700  */
1701 static int read_partial_banner(struct ceph_connection *con)
1702 {
1703 	int size;
1704 	int end;
1705 	int ret;
1706 
1707 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1708 
1709 	/* peer's banner */
1710 	size = strlen(CEPH_BANNER);
1711 	end = size;
1712 	ret = read_partial(con, end, size, con->in_banner);
1713 	if (ret <= 0)
1714 		goto out;
1715 
1716 	size = sizeof (con->actual_peer_addr);
1717 	end += size;
1718 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1719 	if (ret <= 0)
1720 		goto out;
1721 
1722 	size = sizeof (con->peer_addr_for_me);
1723 	end += size;
1724 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1725 	if (ret <= 0)
1726 		goto out;
1727 
1728 out:
1729 	return ret;
1730 }
1731 
1732 static int read_partial_connect(struct ceph_connection *con)
1733 {
1734 	int size;
1735 	int end;
1736 	int ret;
1737 
1738 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1739 
1740 	size = sizeof (con->in_reply);
1741 	end = size;
1742 	ret = read_partial(con, end, size, &con->in_reply);
1743 	if (ret <= 0)
1744 		goto out;
1745 
1746 	size = le32_to_cpu(con->in_reply.authorizer_len);
1747 	end += size;
1748 	ret = read_partial(con, end, size, con->auth_reply_buf);
1749 	if (ret <= 0)
1750 		goto out;
1751 
1752 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1753 	     con, (int)con->in_reply.tag,
1754 	     le32_to_cpu(con->in_reply.connect_seq),
1755 	     le32_to_cpu(con->in_reply.global_seq));
1756 out:
1757 	return ret;
1758 
1759 }
1760 
1761 /*
1762  * Verify the hello banner looks okay.
1763  */
1764 static int verify_hello(struct ceph_connection *con)
1765 {
1766 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1767 		pr_err("connect to %s got bad banner\n",
1768 		       ceph_pr_addr(&con->peer_addr.in_addr));
1769 		con->error_msg = "protocol error, bad banner";
1770 		return -1;
1771 	}
1772 	return 0;
1773 }
1774 
1775 static bool addr_is_blank(struct sockaddr_storage *ss)
1776 {
1777 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1778 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1779 
1780 	switch (ss->ss_family) {
1781 	case AF_INET:
1782 		return addr->s_addr == htonl(INADDR_ANY);
1783 	case AF_INET6:
1784 		return ipv6_addr_any(addr6);
1785 	default:
1786 		return true;
1787 	}
1788 }
1789 
1790 static int addr_port(struct sockaddr_storage *ss)
1791 {
1792 	switch (ss->ss_family) {
1793 	case AF_INET:
1794 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1795 	case AF_INET6:
1796 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1797 	}
1798 	return 0;
1799 }
1800 
1801 static void addr_set_port(struct sockaddr_storage *ss, int p)
1802 {
1803 	switch (ss->ss_family) {
1804 	case AF_INET:
1805 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1806 		break;
1807 	case AF_INET6:
1808 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1809 		break;
1810 	}
1811 }
1812 
1813 /*
1814  * Unlike other *_pton function semantics, zero indicates success.
1815  */
1816 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1817 		char delim, const char **ipend)
1818 {
1819 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1820 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1821 
1822 	memset(ss, 0, sizeof(*ss));
1823 
1824 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1825 		ss->ss_family = AF_INET;
1826 		return 0;
1827 	}
1828 
1829 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1830 		ss->ss_family = AF_INET6;
1831 		return 0;
1832 	}
1833 
1834 	return -EINVAL;
1835 }
1836 
1837 /*
1838  * Extract hostname string and resolve using kernel DNS facility.
1839  */
1840 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1841 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1842 		struct sockaddr_storage *ss, char delim, const char **ipend)
1843 {
1844 	const char *end, *delim_p;
1845 	char *colon_p, *ip_addr = NULL;
1846 	int ip_len, ret;
1847 
1848 	/*
1849 	 * The end of the hostname occurs immediately preceding the delimiter or
1850 	 * the port marker (':') where the delimiter takes precedence.
1851 	 */
1852 	delim_p = memchr(name, delim, namelen);
1853 	colon_p = memchr(name, ':', namelen);
1854 
1855 	if (delim_p && colon_p)
1856 		end = delim_p < colon_p ? delim_p : colon_p;
1857 	else if (!delim_p && colon_p)
1858 		end = colon_p;
1859 	else {
1860 		end = delim_p;
1861 		if (!end) /* case: hostname:/ */
1862 			end = name + namelen;
1863 	}
1864 
1865 	if (end <= name)
1866 		return -EINVAL;
1867 
1868 	/* do dns_resolve upcall */
1869 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1870 	if (ip_len > 0)
1871 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1872 	else
1873 		ret = -ESRCH;
1874 
1875 	kfree(ip_addr);
1876 
1877 	*ipend = end;
1878 
1879 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1880 			ret, ret ? "failed" : ceph_pr_addr(ss));
1881 
1882 	return ret;
1883 }
1884 #else
1885 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1886 		struct sockaddr_storage *ss, char delim, const char **ipend)
1887 {
1888 	return -EINVAL;
1889 }
1890 #endif
1891 
1892 /*
1893  * Parse a server name (IP or hostname). If a valid IP address is not found
1894  * then try to extract a hostname to resolve using userspace DNS upcall.
1895  */
1896 static int ceph_parse_server_name(const char *name, size_t namelen,
1897 			struct sockaddr_storage *ss, char delim, const char **ipend)
1898 {
1899 	int ret;
1900 
1901 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1902 	if (ret)
1903 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1904 
1905 	return ret;
1906 }
1907 
1908 /*
1909  * Parse an ip[:port] list into an addr array.  Use the default
1910  * monitor port if a port isn't specified.
1911  */
1912 int ceph_parse_ips(const char *c, const char *end,
1913 		   struct ceph_entity_addr *addr,
1914 		   int max_count, int *count)
1915 {
1916 	int i, ret = -EINVAL;
1917 	const char *p = c;
1918 
1919 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1920 	for (i = 0; i < max_count; i++) {
1921 		const char *ipend;
1922 		struct sockaddr_storage *ss = &addr[i].in_addr;
1923 		int port;
1924 		char delim = ',';
1925 
1926 		if (*p == '[') {
1927 			delim = ']';
1928 			p++;
1929 		}
1930 
1931 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1932 		if (ret)
1933 			goto bad;
1934 		ret = -EINVAL;
1935 
1936 		p = ipend;
1937 
1938 		if (delim == ']') {
1939 			if (*p != ']') {
1940 				dout("missing matching ']'\n");
1941 				goto bad;
1942 			}
1943 			p++;
1944 		}
1945 
1946 		/* port? */
1947 		if (p < end && *p == ':') {
1948 			port = 0;
1949 			p++;
1950 			while (p < end && *p >= '0' && *p <= '9') {
1951 				port = (port * 10) + (*p - '0');
1952 				p++;
1953 			}
1954 			if (port == 0)
1955 				port = CEPH_MON_PORT;
1956 			else if (port > 65535)
1957 				goto bad;
1958 		} else {
1959 			port = CEPH_MON_PORT;
1960 		}
1961 
1962 		addr_set_port(ss, port);
1963 
1964 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1965 
1966 		if (p == end)
1967 			break;
1968 		if (*p != ',')
1969 			goto bad;
1970 		p++;
1971 	}
1972 
1973 	if (p != end)
1974 		goto bad;
1975 
1976 	if (count)
1977 		*count = i + 1;
1978 	return 0;
1979 
1980 bad:
1981 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1982 	return ret;
1983 }
1984 EXPORT_SYMBOL(ceph_parse_ips);
1985 
1986 static int process_banner(struct ceph_connection *con)
1987 {
1988 	dout("process_banner on %p\n", con);
1989 
1990 	if (verify_hello(con) < 0)
1991 		return -1;
1992 
1993 	ceph_decode_addr(&con->actual_peer_addr);
1994 	ceph_decode_addr(&con->peer_addr_for_me);
1995 
1996 	/*
1997 	 * Make sure the other end is who we wanted.  note that the other
1998 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1999 	 * them the benefit of the doubt.
2000 	 */
2001 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2002 		   sizeof(con->peer_addr)) != 0 &&
2003 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2004 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2005 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2006 			ceph_pr_addr(&con->peer_addr.in_addr),
2007 			(int)le32_to_cpu(con->peer_addr.nonce),
2008 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2009 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2010 		con->error_msg = "wrong peer at address";
2011 		return -1;
2012 	}
2013 
2014 	/*
2015 	 * did we learn our address?
2016 	 */
2017 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2018 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2019 
2020 		memcpy(&con->msgr->inst.addr.in_addr,
2021 		       &con->peer_addr_for_me.in_addr,
2022 		       sizeof(con->peer_addr_for_me.in_addr));
2023 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2024 		encode_my_addr(con->msgr);
2025 		dout("process_banner learned my addr is %s\n",
2026 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static int process_connect(struct ceph_connection *con)
2033 {
2034 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2035 	u64 req_feat = from_msgr(con->msgr)->required_features;
2036 	u64 server_feat = ceph_sanitize_features(
2037 				le64_to_cpu(con->in_reply.features));
2038 	int ret;
2039 
2040 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2041 
2042 	if (con->auth_reply_buf) {
2043 		/*
2044 		 * Any connection that defines ->get_authorizer()
2045 		 * should also define ->verify_authorizer_reply().
2046 		 * See get_connect_authorizer().
2047 		 */
2048 		ret = con->ops->verify_authorizer_reply(con);
2049 		if (ret < 0) {
2050 			con->error_msg = "bad authorize reply";
2051 			return ret;
2052 		}
2053 	}
2054 
2055 	switch (con->in_reply.tag) {
2056 	case CEPH_MSGR_TAG_FEATURES:
2057 		pr_err("%s%lld %s feature set mismatch,"
2058 		       " my %llx < server's %llx, missing %llx\n",
2059 		       ENTITY_NAME(con->peer_name),
2060 		       ceph_pr_addr(&con->peer_addr.in_addr),
2061 		       sup_feat, server_feat, server_feat & ~sup_feat);
2062 		con->error_msg = "missing required protocol features";
2063 		reset_connection(con);
2064 		return -1;
2065 
2066 	case CEPH_MSGR_TAG_BADPROTOVER:
2067 		pr_err("%s%lld %s protocol version mismatch,"
2068 		       " my %d != server's %d\n",
2069 		       ENTITY_NAME(con->peer_name),
2070 		       ceph_pr_addr(&con->peer_addr.in_addr),
2071 		       le32_to_cpu(con->out_connect.protocol_version),
2072 		       le32_to_cpu(con->in_reply.protocol_version));
2073 		con->error_msg = "protocol version mismatch";
2074 		reset_connection(con);
2075 		return -1;
2076 
2077 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2078 		con->auth_retry++;
2079 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2080 		     con->auth_retry);
2081 		if (con->auth_retry == 2) {
2082 			con->error_msg = "connect authorization failure";
2083 			return -1;
2084 		}
2085 		con_out_kvec_reset(con);
2086 		ret = prepare_write_connect(con);
2087 		if (ret < 0)
2088 			return ret;
2089 		prepare_read_connect(con);
2090 		break;
2091 
2092 	case CEPH_MSGR_TAG_RESETSESSION:
2093 		/*
2094 		 * If we connected with a large connect_seq but the peer
2095 		 * has no record of a session with us (no connection, or
2096 		 * connect_seq == 0), they will send RESETSESION to indicate
2097 		 * that they must have reset their session, and may have
2098 		 * dropped messages.
2099 		 */
2100 		dout("process_connect got RESET peer seq %u\n",
2101 		     le32_to_cpu(con->in_reply.connect_seq));
2102 		pr_err("%s%lld %s connection reset\n",
2103 		       ENTITY_NAME(con->peer_name),
2104 		       ceph_pr_addr(&con->peer_addr.in_addr));
2105 		reset_connection(con);
2106 		con_out_kvec_reset(con);
2107 		ret = prepare_write_connect(con);
2108 		if (ret < 0)
2109 			return ret;
2110 		prepare_read_connect(con);
2111 
2112 		/* Tell ceph about it. */
2113 		mutex_unlock(&con->mutex);
2114 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2115 		if (con->ops->peer_reset)
2116 			con->ops->peer_reset(con);
2117 		mutex_lock(&con->mutex);
2118 		if (con->state != CON_STATE_NEGOTIATING)
2119 			return -EAGAIN;
2120 		break;
2121 
2122 	case CEPH_MSGR_TAG_RETRY_SESSION:
2123 		/*
2124 		 * If we sent a smaller connect_seq than the peer has, try
2125 		 * again with a larger value.
2126 		 */
2127 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2128 		     le32_to_cpu(con->out_connect.connect_seq),
2129 		     le32_to_cpu(con->in_reply.connect_seq));
2130 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2131 		con_out_kvec_reset(con);
2132 		ret = prepare_write_connect(con);
2133 		if (ret < 0)
2134 			return ret;
2135 		prepare_read_connect(con);
2136 		break;
2137 
2138 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2139 		/*
2140 		 * If we sent a smaller global_seq than the peer has, try
2141 		 * again with a larger value.
2142 		 */
2143 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2144 		     con->peer_global_seq,
2145 		     le32_to_cpu(con->in_reply.global_seq));
2146 		get_global_seq(con->msgr,
2147 			       le32_to_cpu(con->in_reply.global_seq));
2148 		con_out_kvec_reset(con);
2149 		ret = prepare_write_connect(con);
2150 		if (ret < 0)
2151 			return ret;
2152 		prepare_read_connect(con);
2153 		break;
2154 
2155 	case CEPH_MSGR_TAG_SEQ:
2156 	case CEPH_MSGR_TAG_READY:
2157 		if (req_feat & ~server_feat) {
2158 			pr_err("%s%lld %s protocol feature mismatch,"
2159 			       " my required %llx > server's %llx, need %llx\n",
2160 			       ENTITY_NAME(con->peer_name),
2161 			       ceph_pr_addr(&con->peer_addr.in_addr),
2162 			       req_feat, server_feat, req_feat & ~server_feat);
2163 			con->error_msg = "missing required protocol features";
2164 			reset_connection(con);
2165 			return -1;
2166 		}
2167 
2168 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2169 		con->state = CON_STATE_OPEN;
2170 		con->auth_retry = 0;    /* we authenticated; clear flag */
2171 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2172 		con->connect_seq++;
2173 		con->peer_features = server_feat;
2174 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2175 		     con->peer_global_seq,
2176 		     le32_to_cpu(con->in_reply.connect_seq),
2177 		     con->connect_seq);
2178 		WARN_ON(con->connect_seq !=
2179 			le32_to_cpu(con->in_reply.connect_seq));
2180 
2181 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2182 			con_flag_set(con, CON_FLAG_LOSSYTX);
2183 
2184 		con->delay = 0;      /* reset backoff memory */
2185 
2186 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2187 			prepare_write_seq(con);
2188 			prepare_read_seq(con);
2189 		} else {
2190 			prepare_read_tag(con);
2191 		}
2192 		break;
2193 
2194 	case CEPH_MSGR_TAG_WAIT:
2195 		/*
2196 		 * If there is a connection race (we are opening
2197 		 * connections to each other), one of us may just have
2198 		 * to WAIT.  This shouldn't happen if we are the
2199 		 * client.
2200 		 */
2201 		con->error_msg = "protocol error, got WAIT as client";
2202 		return -1;
2203 
2204 	default:
2205 		con->error_msg = "protocol error, garbage tag during connect";
2206 		return -1;
2207 	}
2208 	return 0;
2209 }
2210 
2211 
2212 /*
2213  * read (part of) an ack
2214  */
2215 static int read_partial_ack(struct ceph_connection *con)
2216 {
2217 	int size = sizeof (con->in_temp_ack);
2218 	int end = size;
2219 
2220 	return read_partial(con, end, size, &con->in_temp_ack);
2221 }
2222 
2223 /*
2224  * We can finally discard anything that's been acked.
2225  */
2226 static void process_ack(struct ceph_connection *con)
2227 {
2228 	struct ceph_msg *m;
2229 	u64 ack = le64_to_cpu(con->in_temp_ack);
2230 	u64 seq;
2231 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2232 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2233 
2234 	/*
2235 	 * In the reconnect case, con_fault() has requeued messages
2236 	 * in out_sent. We should cleanup old messages according to
2237 	 * the reconnect seq.
2238 	 */
2239 	while (!list_empty(list)) {
2240 		m = list_first_entry(list, struct ceph_msg, list_head);
2241 		if (reconnect && m->needs_out_seq)
2242 			break;
2243 		seq = le64_to_cpu(m->hdr.seq);
2244 		if (seq > ack)
2245 			break;
2246 		dout("got ack for seq %llu type %d at %p\n", seq,
2247 		     le16_to_cpu(m->hdr.type), m);
2248 		m->ack_stamp = jiffies;
2249 		ceph_msg_remove(m);
2250 	}
2251 
2252 	prepare_read_tag(con);
2253 }
2254 
2255 
2256 static int read_partial_message_section(struct ceph_connection *con,
2257 					struct kvec *section,
2258 					unsigned int sec_len, u32 *crc)
2259 {
2260 	int ret, left;
2261 
2262 	BUG_ON(!section);
2263 
2264 	while (section->iov_len < sec_len) {
2265 		BUG_ON(section->iov_base == NULL);
2266 		left = sec_len - section->iov_len;
2267 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2268 				       section->iov_len, left);
2269 		if (ret <= 0)
2270 			return ret;
2271 		section->iov_len += ret;
2272 	}
2273 	if (section->iov_len == sec_len)
2274 		*crc = crc32c(0, section->iov_base, section->iov_len);
2275 
2276 	return 1;
2277 }
2278 
2279 static int read_partial_msg_data(struct ceph_connection *con)
2280 {
2281 	struct ceph_msg *msg = con->in_msg;
2282 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2283 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2284 	struct page *page;
2285 	size_t page_offset;
2286 	size_t length;
2287 	u32 crc = 0;
2288 	int ret;
2289 
2290 	BUG_ON(!msg);
2291 	if (list_empty(&msg->data))
2292 		return -EIO;
2293 
2294 	if (do_datacrc)
2295 		crc = con->in_data_crc;
2296 	while (cursor->resid) {
2297 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2298 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2299 		if (ret <= 0) {
2300 			if (do_datacrc)
2301 				con->in_data_crc = crc;
2302 
2303 			return ret;
2304 		}
2305 
2306 		if (do_datacrc)
2307 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2308 		ceph_msg_data_advance(cursor, (size_t)ret);
2309 	}
2310 	if (do_datacrc)
2311 		con->in_data_crc = crc;
2312 
2313 	return 1;	/* must return > 0 to indicate success */
2314 }
2315 
2316 /*
2317  * read (part of) a message.
2318  */
2319 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2320 
2321 static int read_partial_message(struct ceph_connection *con)
2322 {
2323 	struct ceph_msg *m = con->in_msg;
2324 	int size;
2325 	int end;
2326 	int ret;
2327 	unsigned int front_len, middle_len, data_len;
2328 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2329 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2330 	u64 seq;
2331 	u32 crc;
2332 
2333 	dout("read_partial_message con %p msg %p\n", con, m);
2334 
2335 	/* header */
2336 	size = sizeof (con->in_hdr);
2337 	end = size;
2338 	ret = read_partial(con, end, size, &con->in_hdr);
2339 	if (ret <= 0)
2340 		return ret;
2341 
2342 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2343 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2344 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2345 		       crc, con->in_hdr.crc);
2346 		return -EBADMSG;
2347 	}
2348 
2349 	front_len = le32_to_cpu(con->in_hdr.front_len);
2350 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2351 		return -EIO;
2352 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2353 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2354 		return -EIO;
2355 	data_len = le32_to_cpu(con->in_hdr.data_len);
2356 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2357 		return -EIO;
2358 
2359 	/* verify seq# */
2360 	seq = le64_to_cpu(con->in_hdr.seq);
2361 	if ((s64)seq - (s64)con->in_seq < 1) {
2362 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2363 			ENTITY_NAME(con->peer_name),
2364 			ceph_pr_addr(&con->peer_addr.in_addr),
2365 			seq, con->in_seq + 1);
2366 		con->in_base_pos = -front_len - middle_len - data_len -
2367 			sizeof_footer(con);
2368 		con->in_tag = CEPH_MSGR_TAG_READY;
2369 		return 1;
2370 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2371 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2372 		       seq, con->in_seq + 1);
2373 		con->error_msg = "bad message sequence # for incoming message";
2374 		return -EBADE;
2375 	}
2376 
2377 	/* allocate message? */
2378 	if (!con->in_msg) {
2379 		int skip = 0;
2380 
2381 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2382 		     front_len, data_len);
2383 		ret = ceph_con_in_msg_alloc(con, &skip);
2384 		if (ret < 0)
2385 			return ret;
2386 
2387 		BUG_ON(!con->in_msg ^ skip);
2388 		if (skip) {
2389 			/* skip this message */
2390 			dout("alloc_msg said skip message\n");
2391 			con->in_base_pos = -front_len - middle_len - data_len -
2392 				sizeof_footer(con);
2393 			con->in_tag = CEPH_MSGR_TAG_READY;
2394 			con->in_seq++;
2395 			return 1;
2396 		}
2397 
2398 		BUG_ON(!con->in_msg);
2399 		BUG_ON(con->in_msg->con != con);
2400 		m = con->in_msg;
2401 		m->front.iov_len = 0;    /* haven't read it yet */
2402 		if (m->middle)
2403 			m->middle->vec.iov_len = 0;
2404 
2405 		/* prepare for data payload, if any */
2406 
2407 		if (data_len)
2408 			prepare_message_data(con->in_msg, data_len);
2409 	}
2410 
2411 	/* front */
2412 	ret = read_partial_message_section(con, &m->front, front_len,
2413 					   &con->in_front_crc);
2414 	if (ret <= 0)
2415 		return ret;
2416 
2417 	/* middle */
2418 	if (m->middle) {
2419 		ret = read_partial_message_section(con, &m->middle->vec,
2420 						   middle_len,
2421 						   &con->in_middle_crc);
2422 		if (ret <= 0)
2423 			return ret;
2424 	}
2425 
2426 	/* (page) data */
2427 	if (data_len) {
2428 		ret = read_partial_msg_data(con);
2429 		if (ret <= 0)
2430 			return ret;
2431 	}
2432 
2433 	/* footer */
2434 	size = sizeof_footer(con);
2435 	end += size;
2436 	ret = read_partial(con, end, size, &m->footer);
2437 	if (ret <= 0)
2438 		return ret;
2439 
2440 	if (!need_sign) {
2441 		m->footer.flags = m->old_footer.flags;
2442 		m->footer.sig = 0;
2443 	}
2444 
2445 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2446 	     m, front_len, m->footer.front_crc, middle_len,
2447 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2448 
2449 	/* crc ok? */
2450 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2451 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2452 		       m, con->in_front_crc, m->footer.front_crc);
2453 		return -EBADMSG;
2454 	}
2455 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2456 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2457 		       m, con->in_middle_crc, m->footer.middle_crc);
2458 		return -EBADMSG;
2459 	}
2460 	if (do_datacrc &&
2461 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2462 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2463 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2464 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2465 		return -EBADMSG;
2466 	}
2467 
2468 	if (need_sign && con->ops->check_message_signature &&
2469 	    con->ops->check_message_signature(m)) {
2470 		pr_err("read_partial_message %p signature check failed\n", m);
2471 		return -EBADMSG;
2472 	}
2473 
2474 	return 1; /* done! */
2475 }
2476 
2477 /*
2478  * Process message.  This happens in the worker thread.  The callback should
2479  * be careful not to do anything that waits on other incoming messages or it
2480  * may deadlock.
2481  */
2482 static void process_message(struct ceph_connection *con)
2483 {
2484 	struct ceph_msg *msg = con->in_msg;
2485 
2486 	BUG_ON(con->in_msg->con != con);
2487 	con->in_msg = NULL;
2488 
2489 	/* if first message, set peer_name */
2490 	if (con->peer_name.type == 0)
2491 		con->peer_name = msg->hdr.src;
2492 
2493 	con->in_seq++;
2494 	mutex_unlock(&con->mutex);
2495 
2496 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2497 	     msg, le64_to_cpu(msg->hdr.seq),
2498 	     ENTITY_NAME(msg->hdr.src),
2499 	     le16_to_cpu(msg->hdr.type),
2500 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2501 	     le32_to_cpu(msg->hdr.front_len),
2502 	     le32_to_cpu(msg->hdr.data_len),
2503 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2504 	con->ops->dispatch(con, msg);
2505 
2506 	mutex_lock(&con->mutex);
2507 }
2508 
2509 static int read_keepalive_ack(struct ceph_connection *con)
2510 {
2511 	struct ceph_timespec ceph_ts;
2512 	size_t size = sizeof(ceph_ts);
2513 	int ret = read_partial(con, size, size, &ceph_ts);
2514 	if (ret <= 0)
2515 		return ret;
2516 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2517 	prepare_read_tag(con);
2518 	return 1;
2519 }
2520 
2521 /*
2522  * Write something to the socket.  Called in a worker thread when the
2523  * socket appears to be writeable and we have something ready to send.
2524  */
2525 static int try_write(struct ceph_connection *con)
2526 {
2527 	int ret = 1;
2528 
2529 	dout("try_write start %p state %lu\n", con, con->state);
2530 
2531 more:
2532 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2533 
2534 	/* open the socket first? */
2535 	if (con->state == CON_STATE_PREOPEN) {
2536 		BUG_ON(con->sock);
2537 		con->state = CON_STATE_CONNECTING;
2538 
2539 		con_out_kvec_reset(con);
2540 		prepare_write_banner(con);
2541 		prepare_read_banner(con);
2542 
2543 		BUG_ON(con->in_msg);
2544 		con->in_tag = CEPH_MSGR_TAG_READY;
2545 		dout("try_write initiating connect on %p new state %lu\n",
2546 		     con, con->state);
2547 		ret = ceph_tcp_connect(con);
2548 		if (ret < 0) {
2549 			con->error_msg = "connect error";
2550 			goto out;
2551 		}
2552 	}
2553 
2554 more_kvec:
2555 	/* kvec data queued? */
2556 	if (con->out_kvec_left) {
2557 		ret = write_partial_kvec(con);
2558 		if (ret <= 0)
2559 			goto out;
2560 	}
2561 	if (con->out_skip) {
2562 		ret = write_partial_skip(con);
2563 		if (ret <= 0)
2564 			goto out;
2565 	}
2566 
2567 	/* msg pages? */
2568 	if (con->out_msg) {
2569 		if (con->out_msg_done) {
2570 			ceph_msg_put(con->out_msg);
2571 			con->out_msg = NULL;   /* we're done with this one */
2572 			goto do_next;
2573 		}
2574 
2575 		ret = write_partial_message_data(con);
2576 		if (ret == 1)
2577 			goto more_kvec;  /* we need to send the footer, too! */
2578 		if (ret == 0)
2579 			goto out;
2580 		if (ret < 0) {
2581 			dout("try_write write_partial_message_data err %d\n",
2582 			     ret);
2583 			goto out;
2584 		}
2585 	}
2586 
2587 do_next:
2588 	if (con->state == CON_STATE_OPEN) {
2589 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2590 			prepare_write_keepalive(con);
2591 			goto more;
2592 		}
2593 		/* is anything else pending? */
2594 		if (!list_empty(&con->out_queue)) {
2595 			prepare_write_message(con);
2596 			goto more;
2597 		}
2598 		if (con->in_seq > con->in_seq_acked) {
2599 			prepare_write_ack(con);
2600 			goto more;
2601 		}
2602 	}
2603 
2604 	/* Nothing to do! */
2605 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2606 	dout("try_write nothing else to write.\n");
2607 	ret = 0;
2608 out:
2609 	dout("try_write done on %p ret %d\n", con, ret);
2610 	return ret;
2611 }
2612 
2613 
2614 
2615 /*
2616  * Read what we can from the socket.
2617  */
2618 static int try_read(struct ceph_connection *con)
2619 {
2620 	int ret = -1;
2621 
2622 more:
2623 	dout("try_read start on %p state %lu\n", con, con->state);
2624 	if (con->state != CON_STATE_CONNECTING &&
2625 	    con->state != CON_STATE_NEGOTIATING &&
2626 	    con->state != CON_STATE_OPEN)
2627 		return 0;
2628 
2629 	BUG_ON(!con->sock);
2630 
2631 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2632 	     con->in_base_pos);
2633 
2634 	if (con->state == CON_STATE_CONNECTING) {
2635 		dout("try_read connecting\n");
2636 		ret = read_partial_banner(con);
2637 		if (ret <= 0)
2638 			goto out;
2639 		ret = process_banner(con);
2640 		if (ret < 0)
2641 			goto out;
2642 
2643 		con->state = CON_STATE_NEGOTIATING;
2644 
2645 		/*
2646 		 * Received banner is good, exchange connection info.
2647 		 * Do not reset out_kvec, as sending our banner raced
2648 		 * with receiving peer banner after connect completed.
2649 		 */
2650 		ret = prepare_write_connect(con);
2651 		if (ret < 0)
2652 			goto out;
2653 		prepare_read_connect(con);
2654 
2655 		/* Send connection info before awaiting response */
2656 		goto out;
2657 	}
2658 
2659 	if (con->state == CON_STATE_NEGOTIATING) {
2660 		dout("try_read negotiating\n");
2661 		ret = read_partial_connect(con);
2662 		if (ret <= 0)
2663 			goto out;
2664 		ret = process_connect(con);
2665 		if (ret < 0)
2666 			goto out;
2667 		goto more;
2668 	}
2669 
2670 	WARN_ON(con->state != CON_STATE_OPEN);
2671 
2672 	if (con->in_base_pos < 0) {
2673 		/*
2674 		 * skipping + discarding content.
2675 		 *
2676 		 * FIXME: there must be a better way to do this!
2677 		 */
2678 		static char buf[SKIP_BUF_SIZE];
2679 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2680 
2681 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2682 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2683 		if (ret <= 0)
2684 			goto out;
2685 		con->in_base_pos += ret;
2686 		if (con->in_base_pos)
2687 			goto more;
2688 	}
2689 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2690 		/*
2691 		 * what's next?
2692 		 */
2693 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2694 		if (ret <= 0)
2695 			goto out;
2696 		dout("try_read got tag %d\n", (int)con->in_tag);
2697 		switch (con->in_tag) {
2698 		case CEPH_MSGR_TAG_MSG:
2699 			prepare_read_message(con);
2700 			break;
2701 		case CEPH_MSGR_TAG_ACK:
2702 			prepare_read_ack(con);
2703 			break;
2704 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2705 			prepare_read_keepalive_ack(con);
2706 			break;
2707 		case CEPH_MSGR_TAG_CLOSE:
2708 			con_close_socket(con);
2709 			con->state = CON_STATE_CLOSED;
2710 			goto out;
2711 		default:
2712 			goto bad_tag;
2713 		}
2714 	}
2715 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2716 		ret = read_partial_message(con);
2717 		if (ret <= 0) {
2718 			switch (ret) {
2719 			case -EBADMSG:
2720 				con->error_msg = "bad crc/signature";
2721 				/* fall through */
2722 			case -EBADE:
2723 				ret = -EIO;
2724 				break;
2725 			case -EIO:
2726 				con->error_msg = "io error";
2727 				break;
2728 			}
2729 			goto out;
2730 		}
2731 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2732 			goto more;
2733 		process_message(con);
2734 		if (con->state == CON_STATE_OPEN)
2735 			prepare_read_tag(con);
2736 		goto more;
2737 	}
2738 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2739 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2740 		/*
2741 		 * the final handshake seq exchange is semantically
2742 		 * equivalent to an ACK
2743 		 */
2744 		ret = read_partial_ack(con);
2745 		if (ret <= 0)
2746 			goto out;
2747 		process_ack(con);
2748 		goto more;
2749 	}
2750 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2751 		ret = read_keepalive_ack(con);
2752 		if (ret <= 0)
2753 			goto out;
2754 		goto more;
2755 	}
2756 
2757 out:
2758 	dout("try_read done on %p ret %d\n", con, ret);
2759 	return ret;
2760 
2761 bad_tag:
2762 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2763 	con->error_msg = "protocol error, garbage tag";
2764 	ret = -1;
2765 	goto out;
2766 }
2767 
2768 
2769 /*
2770  * Atomically queue work on a connection after the specified delay.
2771  * Bump @con reference to avoid races with connection teardown.
2772  * Returns 0 if work was queued, or an error code otherwise.
2773  */
2774 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2775 {
2776 	if (!con->ops->get(con)) {
2777 		dout("%s %p ref count 0\n", __func__, con);
2778 		return -ENOENT;
2779 	}
2780 
2781 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2782 		dout("%s %p - already queued\n", __func__, con);
2783 		con->ops->put(con);
2784 		return -EBUSY;
2785 	}
2786 
2787 	dout("%s %p %lu\n", __func__, con, delay);
2788 	return 0;
2789 }
2790 
2791 static void queue_con(struct ceph_connection *con)
2792 {
2793 	(void) queue_con_delay(con, 0);
2794 }
2795 
2796 static void cancel_con(struct ceph_connection *con)
2797 {
2798 	if (cancel_delayed_work(&con->work)) {
2799 		dout("%s %p\n", __func__, con);
2800 		con->ops->put(con);
2801 	}
2802 }
2803 
2804 static bool con_sock_closed(struct ceph_connection *con)
2805 {
2806 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2807 		return false;
2808 
2809 #define CASE(x)								\
2810 	case CON_STATE_ ## x:						\
2811 		con->error_msg = "socket closed (con state " #x ")";	\
2812 		break;
2813 
2814 	switch (con->state) {
2815 	CASE(CLOSED);
2816 	CASE(PREOPEN);
2817 	CASE(CONNECTING);
2818 	CASE(NEGOTIATING);
2819 	CASE(OPEN);
2820 	CASE(STANDBY);
2821 	default:
2822 		pr_warn("%s con %p unrecognized state %lu\n",
2823 			__func__, con, con->state);
2824 		con->error_msg = "unrecognized con state";
2825 		BUG();
2826 		break;
2827 	}
2828 #undef CASE
2829 
2830 	return true;
2831 }
2832 
2833 static bool con_backoff(struct ceph_connection *con)
2834 {
2835 	int ret;
2836 
2837 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2838 		return false;
2839 
2840 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2841 	if (ret) {
2842 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2843 			con, con->delay);
2844 		BUG_ON(ret == -ENOENT);
2845 		con_flag_set(con, CON_FLAG_BACKOFF);
2846 	}
2847 
2848 	return true;
2849 }
2850 
2851 /* Finish fault handling; con->mutex must *not* be held here */
2852 
2853 static void con_fault_finish(struct ceph_connection *con)
2854 {
2855 	dout("%s %p\n", __func__, con);
2856 
2857 	/*
2858 	 * in case we faulted due to authentication, invalidate our
2859 	 * current tickets so that we can get new ones.
2860 	 */
2861 	if (con->auth_retry) {
2862 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2863 		if (con->ops->invalidate_authorizer)
2864 			con->ops->invalidate_authorizer(con);
2865 		con->auth_retry = 0;
2866 	}
2867 
2868 	if (con->ops->fault)
2869 		con->ops->fault(con);
2870 }
2871 
2872 /*
2873  * Do some work on a connection.  Drop a connection ref when we're done.
2874  */
2875 static void ceph_con_workfn(struct work_struct *work)
2876 {
2877 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2878 						   work.work);
2879 	bool fault;
2880 
2881 	mutex_lock(&con->mutex);
2882 	while (true) {
2883 		int ret;
2884 
2885 		if ((fault = con_sock_closed(con))) {
2886 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2887 			break;
2888 		}
2889 		if (con_backoff(con)) {
2890 			dout("%s: con %p BACKOFF\n", __func__, con);
2891 			break;
2892 		}
2893 		if (con->state == CON_STATE_STANDBY) {
2894 			dout("%s: con %p STANDBY\n", __func__, con);
2895 			break;
2896 		}
2897 		if (con->state == CON_STATE_CLOSED) {
2898 			dout("%s: con %p CLOSED\n", __func__, con);
2899 			BUG_ON(con->sock);
2900 			break;
2901 		}
2902 		if (con->state == CON_STATE_PREOPEN) {
2903 			dout("%s: con %p PREOPEN\n", __func__, con);
2904 			BUG_ON(con->sock);
2905 		}
2906 
2907 		ret = try_read(con);
2908 		if (ret < 0) {
2909 			if (ret == -EAGAIN)
2910 				continue;
2911 			if (!con->error_msg)
2912 				con->error_msg = "socket error on read";
2913 			fault = true;
2914 			break;
2915 		}
2916 
2917 		ret = try_write(con);
2918 		if (ret < 0) {
2919 			if (ret == -EAGAIN)
2920 				continue;
2921 			if (!con->error_msg)
2922 				con->error_msg = "socket error on write";
2923 			fault = true;
2924 		}
2925 
2926 		break;	/* If we make it to here, we're done */
2927 	}
2928 	if (fault)
2929 		con_fault(con);
2930 	mutex_unlock(&con->mutex);
2931 
2932 	if (fault)
2933 		con_fault_finish(con);
2934 
2935 	con->ops->put(con);
2936 }
2937 
2938 /*
2939  * Generic error/fault handler.  A retry mechanism is used with
2940  * exponential backoff
2941  */
2942 static void con_fault(struct ceph_connection *con)
2943 {
2944 	dout("fault %p state %lu to peer %s\n",
2945 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2946 
2947 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2948 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2949 	con->error_msg = NULL;
2950 
2951 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2952 	       con->state != CON_STATE_NEGOTIATING &&
2953 	       con->state != CON_STATE_OPEN);
2954 
2955 	con_close_socket(con);
2956 
2957 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2958 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2959 		con->state = CON_STATE_CLOSED;
2960 		return;
2961 	}
2962 
2963 	if (con->in_msg) {
2964 		BUG_ON(con->in_msg->con != con);
2965 		ceph_msg_put(con->in_msg);
2966 		con->in_msg = NULL;
2967 	}
2968 
2969 	/* Requeue anything that hasn't been acked */
2970 	list_splice_init(&con->out_sent, &con->out_queue);
2971 
2972 	/* If there are no messages queued or keepalive pending, place
2973 	 * the connection in a STANDBY state */
2974 	if (list_empty(&con->out_queue) &&
2975 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2976 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2977 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2978 		con->state = CON_STATE_STANDBY;
2979 	} else {
2980 		/* retry after a delay. */
2981 		con->state = CON_STATE_PREOPEN;
2982 		if (con->delay == 0)
2983 			con->delay = BASE_DELAY_INTERVAL;
2984 		else if (con->delay < MAX_DELAY_INTERVAL)
2985 			con->delay *= 2;
2986 		con_flag_set(con, CON_FLAG_BACKOFF);
2987 		queue_con(con);
2988 	}
2989 }
2990 
2991 
2992 
2993 /*
2994  * initialize a new messenger instance
2995  */
2996 void ceph_messenger_init(struct ceph_messenger *msgr,
2997 			 struct ceph_entity_addr *myaddr)
2998 {
2999 	spin_lock_init(&msgr->global_seq_lock);
3000 
3001 	if (myaddr)
3002 		msgr->inst.addr = *myaddr;
3003 
3004 	/* select a random nonce */
3005 	msgr->inst.addr.type = 0;
3006 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3007 	encode_my_addr(msgr);
3008 
3009 	atomic_set(&msgr->stopping, 0);
3010 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3011 
3012 	dout("%s %p\n", __func__, msgr);
3013 }
3014 EXPORT_SYMBOL(ceph_messenger_init);
3015 
3016 void ceph_messenger_fini(struct ceph_messenger *msgr)
3017 {
3018 	put_net(read_pnet(&msgr->net));
3019 }
3020 EXPORT_SYMBOL(ceph_messenger_fini);
3021 
3022 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3023 {
3024 	if (msg->con)
3025 		msg->con->ops->put(msg->con);
3026 
3027 	msg->con = con ? con->ops->get(con) : NULL;
3028 	BUG_ON(msg->con != con);
3029 }
3030 
3031 static void clear_standby(struct ceph_connection *con)
3032 {
3033 	/* come back from STANDBY? */
3034 	if (con->state == CON_STATE_STANDBY) {
3035 		dout("clear_standby %p and ++connect_seq\n", con);
3036 		con->state = CON_STATE_PREOPEN;
3037 		con->connect_seq++;
3038 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3039 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3040 	}
3041 }
3042 
3043 /*
3044  * Queue up an outgoing message on the given connection.
3045  */
3046 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3047 {
3048 	/* set src+dst */
3049 	msg->hdr.src = con->msgr->inst.name;
3050 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3051 	msg->needs_out_seq = true;
3052 
3053 	mutex_lock(&con->mutex);
3054 
3055 	if (con->state == CON_STATE_CLOSED) {
3056 		dout("con_send %p closed, dropping %p\n", con, msg);
3057 		ceph_msg_put(msg);
3058 		mutex_unlock(&con->mutex);
3059 		return;
3060 	}
3061 
3062 	msg_con_set(msg, con);
3063 
3064 	BUG_ON(!list_empty(&msg->list_head));
3065 	list_add_tail(&msg->list_head, &con->out_queue);
3066 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3067 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3068 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3069 	     le32_to_cpu(msg->hdr.front_len),
3070 	     le32_to_cpu(msg->hdr.middle_len),
3071 	     le32_to_cpu(msg->hdr.data_len));
3072 
3073 	clear_standby(con);
3074 	mutex_unlock(&con->mutex);
3075 
3076 	/* if there wasn't anything waiting to send before, queue
3077 	 * new work */
3078 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3079 		queue_con(con);
3080 }
3081 EXPORT_SYMBOL(ceph_con_send);
3082 
3083 /*
3084  * Revoke a message that was previously queued for send
3085  */
3086 void ceph_msg_revoke(struct ceph_msg *msg)
3087 {
3088 	struct ceph_connection *con = msg->con;
3089 
3090 	if (!con) {
3091 		dout("%s msg %p null con\n", __func__, msg);
3092 		return;		/* Message not in our possession */
3093 	}
3094 
3095 	mutex_lock(&con->mutex);
3096 	if (!list_empty(&msg->list_head)) {
3097 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3098 		list_del_init(&msg->list_head);
3099 		msg->hdr.seq = 0;
3100 
3101 		ceph_msg_put(msg);
3102 	}
3103 	if (con->out_msg == msg) {
3104 		BUG_ON(con->out_skip);
3105 		/* footer */
3106 		if (con->out_msg_done) {
3107 			con->out_skip += con_out_kvec_skip(con);
3108 		} else {
3109 			BUG_ON(!msg->data_length);
3110 			con->out_skip += sizeof_footer(con);
3111 		}
3112 		/* data, middle, front */
3113 		if (msg->data_length)
3114 			con->out_skip += msg->cursor.total_resid;
3115 		if (msg->middle)
3116 			con->out_skip += con_out_kvec_skip(con);
3117 		con->out_skip += con_out_kvec_skip(con);
3118 
3119 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3120 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3121 		msg->hdr.seq = 0;
3122 		con->out_msg = NULL;
3123 		ceph_msg_put(msg);
3124 	}
3125 
3126 	mutex_unlock(&con->mutex);
3127 }
3128 
3129 /*
3130  * Revoke a message that we may be reading data into
3131  */
3132 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3133 {
3134 	struct ceph_connection *con = msg->con;
3135 
3136 	if (!con) {
3137 		dout("%s msg %p null con\n", __func__, msg);
3138 		return;		/* Message not in our possession */
3139 	}
3140 
3141 	mutex_lock(&con->mutex);
3142 	if (con->in_msg == msg) {
3143 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3144 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3145 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3146 
3147 		/* skip rest of message */
3148 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3149 		con->in_base_pos = con->in_base_pos -
3150 				sizeof(struct ceph_msg_header) -
3151 				front_len -
3152 				middle_len -
3153 				data_len -
3154 				sizeof(struct ceph_msg_footer);
3155 		ceph_msg_put(con->in_msg);
3156 		con->in_msg = NULL;
3157 		con->in_tag = CEPH_MSGR_TAG_READY;
3158 		con->in_seq++;
3159 	} else {
3160 		dout("%s %p in_msg %p msg %p no-op\n",
3161 		     __func__, con, con->in_msg, msg);
3162 	}
3163 	mutex_unlock(&con->mutex);
3164 }
3165 
3166 /*
3167  * Queue a keepalive byte to ensure the tcp connection is alive.
3168  */
3169 void ceph_con_keepalive(struct ceph_connection *con)
3170 {
3171 	dout("con_keepalive %p\n", con);
3172 	mutex_lock(&con->mutex);
3173 	clear_standby(con);
3174 	mutex_unlock(&con->mutex);
3175 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3176 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3177 		queue_con(con);
3178 }
3179 EXPORT_SYMBOL(ceph_con_keepalive);
3180 
3181 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3182 			       unsigned long interval)
3183 {
3184 	if (interval > 0 &&
3185 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3186 		struct timespec now;
3187 		struct timespec ts;
3188 		ktime_get_real_ts(&now);
3189 		jiffies_to_timespec(interval, &ts);
3190 		ts = timespec_add(con->last_keepalive_ack, ts);
3191 		return timespec_compare(&now, &ts) >= 0;
3192 	}
3193 	return false;
3194 }
3195 
3196 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3197 {
3198 	struct ceph_msg_data *data;
3199 
3200 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3201 		return NULL;
3202 
3203 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3204 	if (data)
3205 		data->type = type;
3206 	INIT_LIST_HEAD(&data->links);
3207 
3208 	return data;
3209 }
3210 
3211 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3212 {
3213 	if (!data)
3214 		return;
3215 
3216 	WARN_ON(!list_empty(&data->links));
3217 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3218 		ceph_pagelist_release(data->pagelist);
3219 	kmem_cache_free(ceph_msg_data_cache, data);
3220 }
3221 
3222 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3223 		size_t length, size_t alignment)
3224 {
3225 	struct ceph_msg_data *data;
3226 
3227 	BUG_ON(!pages);
3228 	BUG_ON(!length);
3229 
3230 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3231 	BUG_ON(!data);
3232 	data->pages = pages;
3233 	data->length = length;
3234 	data->alignment = alignment & ~PAGE_MASK;
3235 
3236 	list_add_tail(&data->links, &msg->data);
3237 	msg->data_length += length;
3238 }
3239 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3240 
3241 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3242 				struct ceph_pagelist *pagelist)
3243 {
3244 	struct ceph_msg_data *data;
3245 
3246 	BUG_ON(!pagelist);
3247 	BUG_ON(!pagelist->length);
3248 
3249 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3250 	BUG_ON(!data);
3251 	data->pagelist = pagelist;
3252 
3253 	list_add_tail(&data->links, &msg->data);
3254 	msg->data_length += pagelist->length;
3255 }
3256 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3257 
3258 #ifdef	CONFIG_BLOCK
3259 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3260 		size_t length)
3261 {
3262 	struct ceph_msg_data *data;
3263 
3264 	BUG_ON(!bio);
3265 
3266 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3267 	BUG_ON(!data);
3268 	data->bio = bio;
3269 	data->bio_length = length;
3270 
3271 	list_add_tail(&data->links, &msg->data);
3272 	msg->data_length += length;
3273 }
3274 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3275 #endif	/* CONFIG_BLOCK */
3276 
3277 /*
3278  * construct a new message with given type, size
3279  * the new msg has a ref count of 1.
3280  */
3281 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3282 			      bool can_fail)
3283 {
3284 	struct ceph_msg *m;
3285 
3286 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3287 	if (m == NULL)
3288 		goto out;
3289 
3290 	m->hdr.type = cpu_to_le16(type);
3291 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3292 	m->hdr.front_len = cpu_to_le32(front_len);
3293 
3294 	INIT_LIST_HEAD(&m->list_head);
3295 	kref_init(&m->kref);
3296 	INIT_LIST_HEAD(&m->data);
3297 
3298 	/* front */
3299 	if (front_len) {
3300 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3301 		if (m->front.iov_base == NULL) {
3302 			dout("ceph_msg_new can't allocate %d bytes\n",
3303 			     front_len);
3304 			goto out2;
3305 		}
3306 	} else {
3307 		m->front.iov_base = NULL;
3308 	}
3309 	m->front_alloc_len = m->front.iov_len = front_len;
3310 
3311 	dout("ceph_msg_new %p front %d\n", m, front_len);
3312 	return m;
3313 
3314 out2:
3315 	ceph_msg_put(m);
3316 out:
3317 	if (!can_fail) {
3318 		pr_err("msg_new can't create type %d front %d\n", type,
3319 		       front_len);
3320 		WARN_ON(1);
3321 	} else {
3322 		dout("msg_new can't create type %d front %d\n", type,
3323 		     front_len);
3324 	}
3325 	return NULL;
3326 }
3327 EXPORT_SYMBOL(ceph_msg_new);
3328 
3329 /*
3330  * Allocate "middle" portion of a message, if it is needed and wasn't
3331  * allocated by alloc_msg.  This allows us to read a small fixed-size
3332  * per-type header in the front and then gracefully fail (i.e.,
3333  * propagate the error to the caller based on info in the front) when
3334  * the middle is too large.
3335  */
3336 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3337 {
3338 	int type = le16_to_cpu(msg->hdr.type);
3339 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3340 
3341 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3342 	     ceph_msg_type_name(type), middle_len);
3343 	BUG_ON(!middle_len);
3344 	BUG_ON(msg->middle);
3345 
3346 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3347 	if (!msg->middle)
3348 		return -ENOMEM;
3349 	return 0;
3350 }
3351 
3352 /*
3353  * Allocate a message for receiving an incoming message on a
3354  * connection, and save the result in con->in_msg.  Uses the
3355  * connection's private alloc_msg op if available.
3356  *
3357  * Returns 0 on success, or a negative error code.
3358  *
3359  * On success, if we set *skip = 1:
3360  *  - the next message should be skipped and ignored.
3361  *  - con->in_msg == NULL
3362  * or if we set *skip = 0:
3363  *  - con->in_msg is non-null.
3364  * On error (ENOMEM, EAGAIN, ...),
3365  *  - con->in_msg == NULL
3366  */
3367 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3368 {
3369 	struct ceph_msg_header *hdr = &con->in_hdr;
3370 	int middle_len = le32_to_cpu(hdr->middle_len);
3371 	struct ceph_msg *msg;
3372 	int ret = 0;
3373 
3374 	BUG_ON(con->in_msg != NULL);
3375 	BUG_ON(!con->ops->alloc_msg);
3376 
3377 	mutex_unlock(&con->mutex);
3378 	msg = con->ops->alloc_msg(con, hdr, skip);
3379 	mutex_lock(&con->mutex);
3380 	if (con->state != CON_STATE_OPEN) {
3381 		if (msg)
3382 			ceph_msg_put(msg);
3383 		return -EAGAIN;
3384 	}
3385 	if (msg) {
3386 		BUG_ON(*skip);
3387 		msg_con_set(msg, con);
3388 		con->in_msg = msg;
3389 	} else {
3390 		/*
3391 		 * Null message pointer means either we should skip
3392 		 * this message or we couldn't allocate memory.  The
3393 		 * former is not an error.
3394 		 */
3395 		if (*skip)
3396 			return 0;
3397 
3398 		con->error_msg = "error allocating memory for incoming message";
3399 		return -ENOMEM;
3400 	}
3401 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3402 
3403 	if (middle_len && !con->in_msg->middle) {
3404 		ret = ceph_alloc_middle(con, con->in_msg);
3405 		if (ret < 0) {
3406 			ceph_msg_put(con->in_msg);
3407 			con->in_msg = NULL;
3408 		}
3409 	}
3410 
3411 	return ret;
3412 }
3413 
3414 
3415 /*
3416  * Free a generically kmalloc'd message.
3417  */
3418 static void ceph_msg_free(struct ceph_msg *m)
3419 {
3420 	dout("%s %p\n", __func__, m);
3421 	kvfree(m->front.iov_base);
3422 	kmem_cache_free(ceph_msg_cache, m);
3423 }
3424 
3425 static void ceph_msg_release(struct kref *kref)
3426 {
3427 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3428 	struct ceph_msg_data *data, *next;
3429 
3430 	dout("%s %p\n", __func__, m);
3431 	WARN_ON(!list_empty(&m->list_head));
3432 
3433 	msg_con_set(m, NULL);
3434 
3435 	/* drop middle, data, if any */
3436 	if (m->middle) {
3437 		ceph_buffer_put(m->middle);
3438 		m->middle = NULL;
3439 	}
3440 
3441 	list_for_each_entry_safe(data, next, &m->data, links) {
3442 		list_del_init(&data->links);
3443 		ceph_msg_data_destroy(data);
3444 	}
3445 	m->data_length = 0;
3446 
3447 	if (m->pool)
3448 		ceph_msgpool_put(m->pool, m);
3449 	else
3450 		ceph_msg_free(m);
3451 }
3452 
3453 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3454 {
3455 	dout("%s %p (was %d)\n", __func__, msg,
3456 	     kref_read(&msg->kref));
3457 	kref_get(&msg->kref);
3458 	return msg;
3459 }
3460 EXPORT_SYMBOL(ceph_msg_get);
3461 
3462 void ceph_msg_put(struct ceph_msg *msg)
3463 {
3464 	dout("%s %p (was %d)\n", __func__, msg,
3465 	     kref_read(&msg->kref));
3466 	kref_put(&msg->kref, ceph_msg_release);
3467 }
3468 EXPORT_SYMBOL(ceph_msg_put);
3469 
3470 void ceph_msg_dump(struct ceph_msg *msg)
3471 {
3472 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3473 		 msg->front_alloc_len, msg->data_length);
3474 	print_hex_dump(KERN_DEBUG, "header: ",
3475 		       DUMP_PREFIX_OFFSET, 16, 1,
3476 		       &msg->hdr, sizeof(msg->hdr), true);
3477 	print_hex_dump(KERN_DEBUG, " front: ",
3478 		       DUMP_PREFIX_OFFSET, 16, 1,
3479 		       msg->front.iov_base, msg->front.iov_len, true);
3480 	if (msg->middle)
3481 		print_hex_dump(KERN_DEBUG, "middle: ",
3482 			       DUMP_PREFIX_OFFSET, 16, 1,
3483 			       msg->middle->vec.iov_base,
3484 			       msg->middle->vec.iov_len, true);
3485 	print_hex_dump(KERN_DEBUG, "footer: ",
3486 		       DUMP_PREFIX_OFFSET, 16, 1,
3487 		       &msg->footer, sizeof(msg->footer), true);
3488 }
3489 EXPORT_SYMBOL(ceph_msg_dump);
3490