1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/ceph_features.h> 19 #include <linux/ceph/libceph.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/export.h> 24 25 #define list_entry_next(pos, member) \ 26 list_entry(pos->member.next, typeof(*pos), member) 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void cancel_con(struct ceph_connection *con); 178 static void con_work(struct work_struct *); 179 static void con_fault(struct ceph_connection *con); 180 181 /* 182 * Nicely render a sockaddr as a string. An array of formatted 183 * strings is used, to approximate reentrancy. 184 */ 185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 189 190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 191 static atomic_t addr_str_seq = ATOMIC_INIT(0); 192 193 static struct page *zero_page; /* used in certain error cases */ 194 195 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 196 { 197 int i; 198 char *s; 199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 201 202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 203 s = addr_str[i]; 204 205 switch (ss->ss_family) { 206 case AF_INET: 207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 208 ntohs(in4->sin_port)); 209 break; 210 211 case AF_INET6: 212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 213 ntohs(in6->sin6_port)); 214 break; 215 216 default: 217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 218 ss->ss_family); 219 } 220 221 return s; 222 } 223 EXPORT_SYMBOL(ceph_pr_addr); 224 225 static void encode_my_addr(struct ceph_messenger *msgr) 226 { 227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 228 ceph_encode_addr(&msgr->my_enc_addr); 229 } 230 231 /* 232 * work queue for all reading and writing to/from the socket. 233 */ 234 static struct workqueue_struct *ceph_msgr_wq; 235 236 static int ceph_msgr_slab_init(void) 237 { 238 BUG_ON(ceph_msg_cache); 239 ceph_msg_cache = kmem_cache_create("ceph_msg", 240 sizeof (struct ceph_msg), 241 __alignof__(struct ceph_msg), 0, NULL); 242 243 if (!ceph_msg_cache) 244 return -ENOMEM; 245 246 BUG_ON(ceph_msg_data_cache); 247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 248 sizeof (struct ceph_msg_data), 249 __alignof__(struct ceph_msg_data), 250 0, NULL); 251 if (ceph_msg_data_cache) 252 return 0; 253 254 kmem_cache_destroy(ceph_msg_cache); 255 ceph_msg_cache = NULL; 256 257 return -ENOMEM; 258 } 259 260 static void ceph_msgr_slab_exit(void) 261 { 262 BUG_ON(!ceph_msg_data_cache); 263 kmem_cache_destroy(ceph_msg_data_cache); 264 ceph_msg_data_cache = NULL; 265 266 BUG_ON(!ceph_msg_cache); 267 kmem_cache_destroy(ceph_msg_cache); 268 ceph_msg_cache = NULL; 269 } 270 271 static void _ceph_msgr_exit(void) 272 { 273 if (ceph_msgr_wq) { 274 destroy_workqueue(ceph_msgr_wq); 275 ceph_msgr_wq = NULL; 276 } 277 278 ceph_msgr_slab_exit(); 279 280 BUG_ON(zero_page == NULL); 281 kunmap(zero_page); 282 page_cache_release(zero_page); 283 zero_page = NULL; 284 } 285 286 int ceph_msgr_init(void) 287 { 288 BUG_ON(zero_page != NULL); 289 zero_page = ZERO_PAGE(0); 290 page_cache_get(zero_page); 291 292 if (ceph_msgr_slab_init()) 293 return -ENOMEM; 294 295 /* 296 * The number of active work items is limited by the number of 297 * connections, so leave @max_active at default. 298 */ 299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 300 if (ceph_msgr_wq) 301 return 0; 302 303 pr_err("msgr_init failed to create workqueue\n"); 304 _ceph_msgr_exit(); 305 306 return -ENOMEM; 307 } 308 EXPORT_SYMBOL(ceph_msgr_init); 309 310 void ceph_msgr_exit(void) 311 { 312 BUG_ON(ceph_msgr_wq == NULL); 313 314 _ceph_msgr_exit(); 315 } 316 EXPORT_SYMBOL(ceph_msgr_exit); 317 318 void ceph_msgr_flush(void) 319 { 320 flush_workqueue(ceph_msgr_wq); 321 } 322 EXPORT_SYMBOL(ceph_msgr_flush); 323 324 /* Connection socket state transition functions */ 325 326 static void con_sock_state_init(struct ceph_connection *con) 327 { 328 int old_state; 329 330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 332 printk("%s: unexpected old state %d\n", __func__, old_state); 333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 334 CON_SOCK_STATE_CLOSED); 335 } 336 337 static void con_sock_state_connecting(struct ceph_connection *con) 338 { 339 int old_state; 340 341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 343 printk("%s: unexpected old state %d\n", __func__, old_state); 344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 345 CON_SOCK_STATE_CONNECTING); 346 } 347 348 static void con_sock_state_connected(struct ceph_connection *con) 349 { 350 int old_state; 351 352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 354 printk("%s: unexpected old state %d\n", __func__, old_state); 355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 356 CON_SOCK_STATE_CONNECTED); 357 } 358 359 static void con_sock_state_closing(struct ceph_connection *con) 360 { 361 int old_state; 362 363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 365 old_state != CON_SOCK_STATE_CONNECTED && 366 old_state != CON_SOCK_STATE_CLOSING)) 367 printk("%s: unexpected old state %d\n", __func__, old_state); 368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 369 CON_SOCK_STATE_CLOSING); 370 } 371 372 static void con_sock_state_closed(struct ceph_connection *con) 373 { 374 int old_state; 375 376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 378 old_state != CON_SOCK_STATE_CLOSING && 379 old_state != CON_SOCK_STATE_CONNECTING && 380 old_state != CON_SOCK_STATE_CLOSED)) 381 printk("%s: unexpected old state %d\n", __func__, old_state); 382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 383 CON_SOCK_STATE_CLOSED); 384 } 385 386 /* 387 * socket callback functions 388 */ 389 390 /* data available on socket, or listen socket received a connect */ 391 static void ceph_sock_data_ready(struct sock *sk) 392 { 393 struct ceph_connection *con = sk->sk_user_data; 394 if (atomic_read(&con->msgr->stopping)) { 395 return; 396 } 397 398 if (sk->sk_state != TCP_CLOSE_WAIT) { 399 dout("%s on %p state = %lu, queueing work\n", __func__, 400 con, con->state); 401 queue_con(con); 402 } 403 } 404 405 /* socket has buffer space for writing */ 406 static void ceph_sock_write_space(struct sock *sk) 407 { 408 struct ceph_connection *con = sk->sk_user_data; 409 410 /* only queue to workqueue if there is data we want to write, 411 * and there is sufficient space in the socket buffer to accept 412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 413 * doesn't get called again until try_write() fills the socket 414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 415 * and net/core/stream.c:sk_stream_write_space(). 416 */ 417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 418 if (sk_stream_is_writeable(sk)) { 419 dout("%s %p queueing write work\n", __func__, con); 420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 421 queue_con(con); 422 } 423 } else { 424 dout("%s %p nothing to write\n", __func__, con); 425 } 426 } 427 428 /* socket's state has changed */ 429 static void ceph_sock_state_change(struct sock *sk) 430 { 431 struct ceph_connection *con = sk->sk_user_data; 432 433 dout("%s %p state = %lu sk_state = %u\n", __func__, 434 con, con->state, sk->sk_state); 435 436 switch (sk->sk_state) { 437 case TCP_CLOSE: 438 dout("%s TCP_CLOSE\n", __func__); 439 case TCP_CLOSE_WAIT: 440 dout("%s TCP_CLOSE_WAIT\n", __func__); 441 con_sock_state_closing(con); 442 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 443 queue_con(con); 444 break; 445 case TCP_ESTABLISHED: 446 dout("%s TCP_ESTABLISHED\n", __func__); 447 con_sock_state_connected(con); 448 queue_con(con); 449 break; 450 default: /* Everything else is uninteresting */ 451 break; 452 } 453 } 454 455 /* 456 * set up socket callbacks 457 */ 458 static void set_sock_callbacks(struct socket *sock, 459 struct ceph_connection *con) 460 { 461 struct sock *sk = sock->sk; 462 sk->sk_user_data = con; 463 sk->sk_data_ready = ceph_sock_data_ready; 464 sk->sk_write_space = ceph_sock_write_space; 465 sk->sk_state_change = ceph_sock_state_change; 466 } 467 468 469 /* 470 * socket helpers 471 */ 472 473 /* 474 * initiate connection to a remote socket. 475 */ 476 static int ceph_tcp_connect(struct ceph_connection *con) 477 { 478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 479 struct socket *sock; 480 int ret; 481 482 BUG_ON(con->sock); 483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 484 IPPROTO_TCP, &sock); 485 if (ret) 486 return ret; 487 sock->sk->sk_allocation = GFP_NOFS; 488 489 #ifdef CONFIG_LOCKDEP 490 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 491 #endif 492 493 set_sock_callbacks(sock, con); 494 495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 496 497 con_sock_state_connecting(con); 498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 499 O_NONBLOCK); 500 if (ret == -EINPROGRESS) { 501 dout("connect %s EINPROGRESS sk_state = %u\n", 502 ceph_pr_addr(&con->peer_addr.in_addr), 503 sock->sk->sk_state); 504 } else if (ret < 0) { 505 pr_err("connect %s error %d\n", 506 ceph_pr_addr(&con->peer_addr.in_addr), ret); 507 sock_release(sock); 508 con->error_msg = "connect error"; 509 510 return ret; 511 } 512 con->sock = sock; 513 return 0; 514 } 515 516 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 517 { 518 struct kvec iov = {buf, len}; 519 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 520 int r; 521 522 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 523 if (r == -EAGAIN) 524 r = 0; 525 return r; 526 } 527 528 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 529 int page_offset, size_t length) 530 { 531 void *kaddr; 532 int ret; 533 534 BUG_ON(page_offset + length > PAGE_SIZE); 535 536 kaddr = kmap(page); 537 BUG_ON(!kaddr); 538 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 539 kunmap(page); 540 541 return ret; 542 } 543 544 /* 545 * write something. @more is true if caller will be sending more data 546 * shortly. 547 */ 548 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 549 size_t kvlen, size_t len, int more) 550 { 551 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 552 int r; 553 554 if (more) 555 msg.msg_flags |= MSG_MORE; 556 else 557 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 558 559 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 560 if (r == -EAGAIN) 561 r = 0; 562 return r; 563 } 564 565 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 566 int offset, size_t size, bool more) 567 { 568 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 569 int ret; 570 571 ret = kernel_sendpage(sock, page, offset, size, flags); 572 if (ret == -EAGAIN) 573 ret = 0; 574 575 return ret; 576 } 577 578 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 579 int offset, size_t size, bool more) 580 { 581 int ret; 582 struct kvec iov; 583 584 /* sendpage cannot properly handle pages with page_count == 0, 585 * we need to fallback to sendmsg if that's the case */ 586 if (page_count(page) >= 1) 587 return __ceph_tcp_sendpage(sock, page, offset, size, more); 588 589 iov.iov_base = kmap(page) + offset; 590 iov.iov_len = size; 591 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 592 kunmap(page); 593 594 return ret; 595 } 596 597 /* 598 * Shutdown/close the socket for the given connection. 599 */ 600 static int con_close_socket(struct ceph_connection *con) 601 { 602 int rc = 0; 603 604 dout("con_close_socket on %p sock %p\n", con, con->sock); 605 if (con->sock) { 606 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 607 sock_release(con->sock); 608 con->sock = NULL; 609 } 610 611 /* 612 * Forcibly clear the SOCK_CLOSED flag. It gets set 613 * independent of the connection mutex, and we could have 614 * received a socket close event before we had the chance to 615 * shut the socket down. 616 */ 617 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 618 619 con_sock_state_closed(con); 620 return rc; 621 } 622 623 /* 624 * Reset a connection. Discard all incoming and outgoing messages 625 * and clear *_seq state. 626 */ 627 static void ceph_msg_remove(struct ceph_msg *msg) 628 { 629 list_del_init(&msg->list_head); 630 BUG_ON(msg->con == NULL); 631 msg->con->ops->put(msg->con); 632 msg->con = NULL; 633 634 ceph_msg_put(msg); 635 } 636 static void ceph_msg_remove_list(struct list_head *head) 637 { 638 while (!list_empty(head)) { 639 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 640 list_head); 641 ceph_msg_remove(msg); 642 } 643 } 644 645 static void reset_connection(struct ceph_connection *con) 646 { 647 /* reset connection, out_queue, msg_ and connect_seq */ 648 /* discard existing out_queue and msg_seq */ 649 dout("reset_connection %p\n", con); 650 ceph_msg_remove_list(&con->out_queue); 651 ceph_msg_remove_list(&con->out_sent); 652 653 if (con->in_msg) { 654 BUG_ON(con->in_msg->con != con); 655 con->in_msg->con = NULL; 656 ceph_msg_put(con->in_msg); 657 con->in_msg = NULL; 658 con->ops->put(con); 659 } 660 661 con->connect_seq = 0; 662 con->out_seq = 0; 663 if (con->out_msg) { 664 ceph_msg_put(con->out_msg); 665 con->out_msg = NULL; 666 } 667 con->in_seq = 0; 668 con->in_seq_acked = 0; 669 } 670 671 /* 672 * mark a peer down. drop any open connections. 673 */ 674 void ceph_con_close(struct ceph_connection *con) 675 { 676 mutex_lock(&con->mutex); 677 dout("con_close %p peer %s\n", con, 678 ceph_pr_addr(&con->peer_addr.in_addr)); 679 con->state = CON_STATE_CLOSED; 680 681 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 682 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 683 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 684 con_flag_clear(con, CON_FLAG_BACKOFF); 685 686 reset_connection(con); 687 con->peer_global_seq = 0; 688 cancel_con(con); 689 con_close_socket(con); 690 mutex_unlock(&con->mutex); 691 } 692 EXPORT_SYMBOL(ceph_con_close); 693 694 /* 695 * Reopen a closed connection, with a new peer address. 696 */ 697 void ceph_con_open(struct ceph_connection *con, 698 __u8 entity_type, __u64 entity_num, 699 struct ceph_entity_addr *addr) 700 { 701 mutex_lock(&con->mutex); 702 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 703 704 WARN_ON(con->state != CON_STATE_CLOSED); 705 con->state = CON_STATE_PREOPEN; 706 707 con->peer_name.type = (__u8) entity_type; 708 con->peer_name.num = cpu_to_le64(entity_num); 709 710 memcpy(&con->peer_addr, addr, sizeof(*addr)); 711 con->delay = 0; /* reset backoff memory */ 712 mutex_unlock(&con->mutex); 713 queue_con(con); 714 } 715 EXPORT_SYMBOL(ceph_con_open); 716 717 /* 718 * return true if this connection ever successfully opened 719 */ 720 bool ceph_con_opened(struct ceph_connection *con) 721 { 722 return con->connect_seq > 0; 723 } 724 725 /* 726 * initialize a new connection. 727 */ 728 void ceph_con_init(struct ceph_connection *con, void *private, 729 const struct ceph_connection_operations *ops, 730 struct ceph_messenger *msgr) 731 { 732 dout("con_init %p\n", con); 733 memset(con, 0, sizeof(*con)); 734 con->private = private; 735 con->ops = ops; 736 con->msgr = msgr; 737 738 con_sock_state_init(con); 739 740 mutex_init(&con->mutex); 741 INIT_LIST_HEAD(&con->out_queue); 742 INIT_LIST_HEAD(&con->out_sent); 743 INIT_DELAYED_WORK(&con->work, con_work); 744 745 con->state = CON_STATE_CLOSED; 746 } 747 EXPORT_SYMBOL(ceph_con_init); 748 749 750 /* 751 * We maintain a global counter to order connection attempts. Get 752 * a unique seq greater than @gt. 753 */ 754 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 755 { 756 u32 ret; 757 758 spin_lock(&msgr->global_seq_lock); 759 if (msgr->global_seq < gt) 760 msgr->global_seq = gt; 761 ret = ++msgr->global_seq; 762 spin_unlock(&msgr->global_seq_lock); 763 return ret; 764 } 765 766 static void con_out_kvec_reset(struct ceph_connection *con) 767 { 768 con->out_kvec_left = 0; 769 con->out_kvec_bytes = 0; 770 con->out_kvec_cur = &con->out_kvec[0]; 771 } 772 773 static void con_out_kvec_add(struct ceph_connection *con, 774 size_t size, void *data) 775 { 776 int index; 777 778 index = con->out_kvec_left; 779 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 780 781 con->out_kvec[index].iov_len = size; 782 con->out_kvec[index].iov_base = data; 783 con->out_kvec_left++; 784 con->out_kvec_bytes += size; 785 } 786 787 #ifdef CONFIG_BLOCK 788 789 /* 790 * For a bio data item, a piece is whatever remains of the next 791 * entry in the current bio iovec, or the first entry in the next 792 * bio in the list. 793 */ 794 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 795 size_t length) 796 { 797 struct ceph_msg_data *data = cursor->data; 798 struct bio *bio; 799 800 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 801 802 bio = data->bio; 803 BUG_ON(!bio); 804 805 cursor->resid = min(length, data->bio_length); 806 cursor->bio = bio; 807 cursor->bvec_iter = bio->bi_iter; 808 cursor->last_piece = 809 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 810 } 811 812 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 813 size_t *page_offset, 814 size_t *length) 815 { 816 struct ceph_msg_data *data = cursor->data; 817 struct bio *bio; 818 struct bio_vec bio_vec; 819 820 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 821 822 bio = cursor->bio; 823 BUG_ON(!bio); 824 825 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 826 827 *page_offset = (size_t) bio_vec.bv_offset; 828 BUG_ON(*page_offset >= PAGE_SIZE); 829 if (cursor->last_piece) /* pagelist offset is always 0 */ 830 *length = cursor->resid; 831 else 832 *length = (size_t) bio_vec.bv_len; 833 BUG_ON(*length > cursor->resid); 834 BUG_ON(*page_offset + *length > PAGE_SIZE); 835 836 return bio_vec.bv_page; 837 } 838 839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 840 size_t bytes) 841 { 842 struct bio *bio; 843 struct bio_vec bio_vec; 844 845 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 846 847 bio = cursor->bio; 848 BUG_ON(!bio); 849 850 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 851 852 /* Advance the cursor offset */ 853 854 BUG_ON(cursor->resid < bytes); 855 cursor->resid -= bytes; 856 857 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 858 859 if (bytes < bio_vec.bv_len) 860 return false; /* more bytes to process in this segment */ 861 862 /* Move on to the next segment, and possibly the next bio */ 863 864 if (!cursor->bvec_iter.bi_size) { 865 bio = bio->bi_next; 866 cursor->bio = bio; 867 if (bio) 868 cursor->bvec_iter = bio->bi_iter; 869 else 870 memset(&cursor->bvec_iter, 0, 871 sizeof(cursor->bvec_iter)); 872 } 873 874 if (!cursor->last_piece) { 875 BUG_ON(!cursor->resid); 876 BUG_ON(!bio); 877 /* A short read is OK, so use <= rather than == */ 878 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 879 cursor->last_piece = true; 880 } 881 882 return true; 883 } 884 #endif /* CONFIG_BLOCK */ 885 886 /* 887 * For a page array, a piece comes from the first page in the array 888 * that has not already been fully consumed. 889 */ 890 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 891 size_t length) 892 { 893 struct ceph_msg_data *data = cursor->data; 894 int page_count; 895 896 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 897 898 BUG_ON(!data->pages); 899 BUG_ON(!data->length); 900 901 cursor->resid = min(length, data->length); 902 page_count = calc_pages_for(data->alignment, (u64)data->length); 903 cursor->page_offset = data->alignment & ~PAGE_MASK; 904 cursor->page_index = 0; 905 BUG_ON(page_count > (int)USHRT_MAX); 906 cursor->page_count = (unsigned short)page_count; 907 BUG_ON(length > SIZE_MAX - cursor->page_offset); 908 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 909 } 910 911 static struct page * 912 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 913 size_t *page_offset, size_t *length) 914 { 915 struct ceph_msg_data *data = cursor->data; 916 917 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 918 919 BUG_ON(cursor->page_index >= cursor->page_count); 920 BUG_ON(cursor->page_offset >= PAGE_SIZE); 921 922 *page_offset = cursor->page_offset; 923 if (cursor->last_piece) 924 *length = cursor->resid; 925 else 926 *length = PAGE_SIZE - *page_offset; 927 928 return data->pages[cursor->page_index]; 929 } 930 931 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 932 size_t bytes) 933 { 934 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 935 936 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 937 938 /* Advance the cursor page offset */ 939 940 cursor->resid -= bytes; 941 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 942 if (!bytes || cursor->page_offset) 943 return false; /* more bytes to process in the current page */ 944 945 if (!cursor->resid) 946 return false; /* no more data */ 947 948 /* Move on to the next page; offset is already at 0 */ 949 950 BUG_ON(cursor->page_index >= cursor->page_count); 951 cursor->page_index++; 952 cursor->last_piece = cursor->resid <= PAGE_SIZE; 953 954 return true; 955 } 956 957 /* 958 * For a pagelist, a piece is whatever remains to be consumed in the 959 * first page in the list, or the front of the next page. 960 */ 961 static void 962 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 963 size_t length) 964 { 965 struct ceph_msg_data *data = cursor->data; 966 struct ceph_pagelist *pagelist; 967 struct page *page; 968 969 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 970 971 pagelist = data->pagelist; 972 BUG_ON(!pagelist); 973 974 if (!length) 975 return; /* pagelist can be assigned but empty */ 976 977 BUG_ON(list_empty(&pagelist->head)); 978 page = list_first_entry(&pagelist->head, struct page, lru); 979 980 cursor->resid = min(length, pagelist->length); 981 cursor->page = page; 982 cursor->offset = 0; 983 cursor->last_piece = cursor->resid <= PAGE_SIZE; 984 } 985 986 static struct page * 987 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 988 size_t *page_offset, size_t *length) 989 { 990 struct ceph_msg_data *data = cursor->data; 991 struct ceph_pagelist *pagelist; 992 993 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 994 995 pagelist = data->pagelist; 996 BUG_ON(!pagelist); 997 998 BUG_ON(!cursor->page); 999 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1000 1001 /* offset of first page in pagelist is always 0 */ 1002 *page_offset = cursor->offset & ~PAGE_MASK; 1003 if (cursor->last_piece) 1004 *length = cursor->resid; 1005 else 1006 *length = PAGE_SIZE - *page_offset; 1007 1008 return cursor->page; 1009 } 1010 1011 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1012 size_t bytes) 1013 { 1014 struct ceph_msg_data *data = cursor->data; 1015 struct ceph_pagelist *pagelist; 1016 1017 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1018 1019 pagelist = data->pagelist; 1020 BUG_ON(!pagelist); 1021 1022 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1023 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1024 1025 /* Advance the cursor offset */ 1026 1027 cursor->resid -= bytes; 1028 cursor->offset += bytes; 1029 /* offset of first page in pagelist is always 0 */ 1030 if (!bytes || cursor->offset & ~PAGE_MASK) 1031 return false; /* more bytes to process in the current page */ 1032 1033 if (!cursor->resid) 1034 return false; /* no more data */ 1035 1036 /* Move on to the next page */ 1037 1038 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1039 cursor->page = list_entry_next(cursor->page, lru); 1040 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1041 1042 return true; 1043 } 1044 1045 /* 1046 * Message data is handled (sent or received) in pieces, where each 1047 * piece resides on a single page. The network layer might not 1048 * consume an entire piece at once. A data item's cursor keeps 1049 * track of which piece is next to process and how much remains to 1050 * be processed in that piece. It also tracks whether the current 1051 * piece is the last one in the data item. 1052 */ 1053 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1054 { 1055 size_t length = cursor->total_resid; 1056 1057 switch (cursor->data->type) { 1058 case CEPH_MSG_DATA_PAGELIST: 1059 ceph_msg_data_pagelist_cursor_init(cursor, length); 1060 break; 1061 case CEPH_MSG_DATA_PAGES: 1062 ceph_msg_data_pages_cursor_init(cursor, length); 1063 break; 1064 #ifdef CONFIG_BLOCK 1065 case CEPH_MSG_DATA_BIO: 1066 ceph_msg_data_bio_cursor_init(cursor, length); 1067 break; 1068 #endif /* CONFIG_BLOCK */ 1069 case CEPH_MSG_DATA_NONE: 1070 default: 1071 /* BUG(); */ 1072 break; 1073 } 1074 cursor->need_crc = true; 1075 } 1076 1077 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1078 { 1079 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1080 struct ceph_msg_data *data; 1081 1082 BUG_ON(!length); 1083 BUG_ON(length > msg->data_length); 1084 BUG_ON(list_empty(&msg->data)); 1085 1086 cursor->data_head = &msg->data; 1087 cursor->total_resid = length; 1088 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1089 cursor->data = data; 1090 1091 __ceph_msg_data_cursor_init(cursor); 1092 } 1093 1094 /* 1095 * Return the page containing the next piece to process for a given 1096 * data item, and supply the page offset and length of that piece. 1097 * Indicate whether this is the last piece in this data item. 1098 */ 1099 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1100 size_t *page_offset, size_t *length, 1101 bool *last_piece) 1102 { 1103 struct page *page; 1104 1105 switch (cursor->data->type) { 1106 case CEPH_MSG_DATA_PAGELIST: 1107 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1108 break; 1109 case CEPH_MSG_DATA_PAGES: 1110 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1111 break; 1112 #ifdef CONFIG_BLOCK 1113 case CEPH_MSG_DATA_BIO: 1114 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1115 break; 1116 #endif /* CONFIG_BLOCK */ 1117 case CEPH_MSG_DATA_NONE: 1118 default: 1119 page = NULL; 1120 break; 1121 } 1122 BUG_ON(!page); 1123 BUG_ON(*page_offset + *length > PAGE_SIZE); 1124 BUG_ON(!*length); 1125 if (last_piece) 1126 *last_piece = cursor->last_piece; 1127 1128 return page; 1129 } 1130 1131 /* 1132 * Returns true if the result moves the cursor on to the next piece 1133 * of the data item. 1134 */ 1135 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1136 size_t bytes) 1137 { 1138 bool new_piece; 1139 1140 BUG_ON(bytes > cursor->resid); 1141 switch (cursor->data->type) { 1142 case CEPH_MSG_DATA_PAGELIST: 1143 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1144 break; 1145 case CEPH_MSG_DATA_PAGES: 1146 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1147 break; 1148 #ifdef CONFIG_BLOCK 1149 case CEPH_MSG_DATA_BIO: 1150 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1151 break; 1152 #endif /* CONFIG_BLOCK */ 1153 case CEPH_MSG_DATA_NONE: 1154 default: 1155 BUG(); 1156 break; 1157 } 1158 cursor->total_resid -= bytes; 1159 1160 if (!cursor->resid && cursor->total_resid) { 1161 WARN_ON(!cursor->last_piece); 1162 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1163 cursor->data = list_entry_next(cursor->data, links); 1164 __ceph_msg_data_cursor_init(cursor); 1165 new_piece = true; 1166 } 1167 cursor->need_crc = new_piece; 1168 1169 return new_piece; 1170 } 1171 1172 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1173 { 1174 BUG_ON(!msg); 1175 BUG_ON(!data_len); 1176 1177 /* Initialize data cursor */ 1178 1179 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1180 } 1181 1182 /* 1183 * Prepare footer for currently outgoing message, and finish things 1184 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1185 */ 1186 static void prepare_write_message_footer(struct ceph_connection *con) 1187 { 1188 struct ceph_msg *m = con->out_msg; 1189 int v = con->out_kvec_left; 1190 1191 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1192 1193 dout("prepare_write_message_footer %p\n", con); 1194 con->out_kvec_is_msg = true; 1195 con->out_kvec[v].iov_base = &m->footer; 1196 con->out_kvec[v].iov_len = sizeof(m->footer); 1197 con->out_kvec_bytes += sizeof(m->footer); 1198 con->out_kvec_left++; 1199 con->out_more = m->more_to_follow; 1200 con->out_msg_done = true; 1201 } 1202 1203 /* 1204 * Prepare headers for the next outgoing message. 1205 */ 1206 static void prepare_write_message(struct ceph_connection *con) 1207 { 1208 struct ceph_msg *m; 1209 u32 crc; 1210 1211 con_out_kvec_reset(con); 1212 con->out_kvec_is_msg = true; 1213 con->out_msg_done = false; 1214 1215 /* Sneak an ack in there first? If we can get it into the same 1216 * TCP packet that's a good thing. */ 1217 if (con->in_seq > con->in_seq_acked) { 1218 con->in_seq_acked = con->in_seq; 1219 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1220 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1221 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1222 &con->out_temp_ack); 1223 } 1224 1225 BUG_ON(list_empty(&con->out_queue)); 1226 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1227 con->out_msg = m; 1228 BUG_ON(m->con != con); 1229 1230 /* put message on sent list */ 1231 ceph_msg_get(m); 1232 list_move_tail(&m->list_head, &con->out_sent); 1233 1234 /* 1235 * only assign outgoing seq # if we haven't sent this message 1236 * yet. if it is requeued, resend with it's original seq. 1237 */ 1238 if (m->needs_out_seq) { 1239 m->hdr.seq = cpu_to_le64(++con->out_seq); 1240 m->needs_out_seq = false; 1241 } 1242 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1243 1244 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1245 m, con->out_seq, le16_to_cpu(m->hdr.type), 1246 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1247 m->data_length); 1248 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1249 1250 /* tag + hdr + front + middle */ 1251 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1252 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1253 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1254 1255 if (m->middle) 1256 con_out_kvec_add(con, m->middle->vec.iov_len, 1257 m->middle->vec.iov_base); 1258 1259 /* fill in crc (except data pages), footer */ 1260 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1261 con->out_msg->hdr.crc = cpu_to_le32(crc); 1262 con->out_msg->footer.flags = 0; 1263 1264 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1265 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1266 if (m->middle) { 1267 crc = crc32c(0, m->middle->vec.iov_base, 1268 m->middle->vec.iov_len); 1269 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1270 } else 1271 con->out_msg->footer.middle_crc = 0; 1272 dout("%s front_crc %u middle_crc %u\n", __func__, 1273 le32_to_cpu(con->out_msg->footer.front_crc), 1274 le32_to_cpu(con->out_msg->footer.middle_crc)); 1275 1276 /* is there a data payload? */ 1277 con->out_msg->footer.data_crc = 0; 1278 if (m->data_length) { 1279 prepare_message_data(con->out_msg, m->data_length); 1280 con->out_more = 1; /* data + footer will follow */ 1281 } else { 1282 /* no, queue up footer too and be done */ 1283 prepare_write_message_footer(con); 1284 } 1285 1286 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1287 } 1288 1289 /* 1290 * Prepare an ack. 1291 */ 1292 static void prepare_write_ack(struct ceph_connection *con) 1293 { 1294 dout("prepare_write_ack %p %llu -> %llu\n", con, 1295 con->in_seq_acked, con->in_seq); 1296 con->in_seq_acked = con->in_seq; 1297 1298 con_out_kvec_reset(con); 1299 1300 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1301 1302 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1303 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1304 &con->out_temp_ack); 1305 1306 con->out_more = 1; /* more will follow.. eventually.. */ 1307 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1308 } 1309 1310 /* 1311 * Prepare to share the seq during handshake 1312 */ 1313 static void prepare_write_seq(struct ceph_connection *con) 1314 { 1315 dout("prepare_write_seq %p %llu -> %llu\n", con, 1316 con->in_seq_acked, con->in_seq); 1317 con->in_seq_acked = con->in_seq; 1318 1319 con_out_kvec_reset(con); 1320 1321 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1322 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1323 &con->out_temp_ack); 1324 1325 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1326 } 1327 1328 /* 1329 * Prepare to write keepalive byte. 1330 */ 1331 static void prepare_write_keepalive(struct ceph_connection *con) 1332 { 1333 dout("prepare_write_keepalive %p\n", con); 1334 con_out_kvec_reset(con); 1335 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1336 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1337 } 1338 1339 /* 1340 * Connection negotiation. 1341 */ 1342 1343 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1344 int *auth_proto) 1345 { 1346 struct ceph_auth_handshake *auth; 1347 1348 if (!con->ops->get_authorizer) { 1349 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1350 con->out_connect.authorizer_len = 0; 1351 return NULL; 1352 } 1353 1354 /* Can't hold the mutex while getting authorizer */ 1355 mutex_unlock(&con->mutex); 1356 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1357 mutex_lock(&con->mutex); 1358 1359 if (IS_ERR(auth)) 1360 return auth; 1361 if (con->state != CON_STATE_NEGOTIATING) 1362 return ERR_PTR(-EAGAIN); 1363 1364 con->auth_reply_buf = auth->authorizer_reply_buf; 1365 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1366 return auth; 1367 } 1368 1369 /* 1370 * We connected to a peer and are saying hello. 1371 */ 1372 static void prepare_write_banner(struct ceph_connection *con) 1373 { 1374 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1375 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1376 &con->msgr->my_enc_addr); 1377 1378 con->out_more = 0; 1379 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1380 } 1381 1382 static int prepare_write_connect(struct ceph_connection *con) 1383 { 1384 unsigned int global_seq = get_global_seq(con->msgr, 0); 1385 int proto; 1386 int auth_proto; 1387 struct ceph_auth_handshake *auth; 1388 1389 switch (con->peer_name.type) { 1390 case CEPH_ENTITY_TYPE_MON: 1391 proto = CEPH_MONC_PROTOCOL; 1392 break; 1393 case CEPH_ENTITY_TYPE_OSD: 1394 proto = CEPH_OSDC_PROTOCOL; 1395 break; 1396 case CEPH_ENTITY_TYPE_MDS: 1397 proto = CEPH_MDSC_PROTOCOL; 1398 break; 1399 default: 1400 BUG(); 1401 } 1402 1403 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1404 con->connect_seq, global_seq, proto); 1405 1406 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1407 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1408 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1409 con->out_connect.global_seq = cpu_to_le32(global_seq); 1410 con->out_connect.protocol_version = cpu_to_le32(proto); 1411 con->out_connect.flags = 0; 1412 1413 auth_proto = CEPH_AUTH_UNKNOWN; 1414 auth = get_connect_authorizer(con, &auth_proto); 1415 if (IS_ERR(auth)) 1416 return PTR_ERR(auth); 1417 1418 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1419 con->out_connect.authorizer_len = auth ? 1420 cpu_to_le32(auth->authorizer_buf_len) : 0; 1421 1422 con_out_kvec_add(con, sizeof (con->out_connect), 1423 &con->out_connect); 1424 if (auth && auth->authorizer_buf_len) 1425 con_out_kvec_add(con, auth->authorizer_buf_len, 1426 auth->authorizer_buf); 1427 1428 con->out_more = 0; 1429 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1430 1431 return 0; 1432 } 1433 1434 /* 1435 * write as much of pending kvecs to the socket as we can. 1436 * 1 -> done 1437 * 0 -> socket full, but more to do 1438 * <0 -> error 1439 */ 1440 static int write_partial_kvec(struct ceph_connection *con) 1441 { 1442 int ret; 1443 1444 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1445 while (con->out_kvec_bytes > 0) { 1446 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1447 con->out_kvec_left, con->out_kvec_bytes, 1448 con->out_more); 1449 if (ret <= 0) 1450 goto out; 1451 con->out_kvec_bytes -= ret; 1452 if (con->out_kvec_bytes == 0) 1453 break; /* done */ 1454 1455 /* account for full iov entries consumed */ 1456 while (ret >= con->out_kvec_cur->iov_len) { 1457 BUG_ON(!con->out_kvec_left); 1458 ret -= con->out_kvec_cur->iov_len; 1459 con->out_kvec_cur++; 1460 con->out_kvec_left--; 1461 } 1462 /* and for a partially-consumed entry */ 1463 if (ret) { 1464 con->out_kvec_cur->iov_len -= ret; 1465 con->out_kvec_cur->iov_base += ret; 1466 } 1467 } 1468 con->out_kvec_left = 0; 1469 con->out_kvec_is_msg = false; 1470 ret = 1; 1471 out: 1472 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1473 con->out_kvec_bytes, con->out_kvec_left, ret); 1474 return ret; /* done! */ 1475 } 1476 1477 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1478 unsigned int page_offset, 1479 unsigned int length) 1480 { 1481 char *kaddr; 1482 1483 kaddr = kmap(page); 1484 BUG_ON(kaddr == NULL); 1485 crc = crc32c(crc, kaddr + page_offset, length); 1486 kunmap(page); 1487 1488 return crc; 1489 } 1490 /* 1491 * Write as much message data payload as we can. If we finish, queue 1492 * up the footer. 1493 * 1 -> done, footer is now queued in out_kvec[]. 1494 * 0 -> socket full, but more to do 1495 * <0 -> error 1496 */ 1497 static int write_partial_message_data(struct ceph_connection *con) 1498 { 1499 struct ceph_msg *msg = con->out_msg; 1500 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1501 bool do_datacrc = !con->msgr->nocrc; 1502 u32 crc; 1503 1504 dout("%s %p msg %p\n", __func__, con, msg); 1505 1506 if (list_empty(&msg->data)) 1507 return -EINVAL; 1508 1509 /* 1510 * Iterate through each page that contains data to be 1511 * written, and send as much as possible for each. 1512 * 1513 * If we are calculating the data crc (the default), we will 1514 * need to map the page. If we have no pages, they have 1515 * been revoked, so use the zero page. 1516 */ 1517 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1518 while (cursor->resid) { 1519 struct page *page; 1520 size_t page_offset; 1521 size_t length; 1522 bool last_piece; 1523 bool need_crc; 1524 int ret; 1525 1526 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1527 &last_piece); 1528 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1529 length, last_piece); 1530 if (ret <= 0) { 1531 if (do_datacrc) 1532 msg->footer.data_crc = cpu_to_le32(crc); 1533 1534 return ret; 1535 } 1536 if (do_datacrc && cursor->need_crc) 1537 crc = ceph_crc32c_page(crc, page, page_offset, length); 1538 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1539 } 1540 1541 dout("%s %p msg %p done\n", __func__, con, msg); 1542 1543 /* prepare and queue up footer, too */ 1544 if (do_datacrc) 1545 msg->footer.data_crc = cpu_to_le32(crc); 1546 else 1547 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1548 con_out_kvec_reset(con); 1549 prepare_write_message_footer(con); 1550 1551 return 1; /* must return > 0 to indicate success */ 1552 } 1553 1554 /* 1555 * write some zeros 1556 */ 1557 static int write_partial_skip(struct ceph_connection *con) 1558 { 1559 int ret; 1560 1561 while (con->out_skip > 0) { 1562 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1563 1564 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1565 if (ret <= 0) 1566 goto out; 1567 con->out_skip -= ret; 1568 } 1569 ret = 1; 1570 out: 1571 return ret; 1572 } 1573 1574 /* 1575 * Prepare to read connection handshake, or an ack. 1576 */ 1577 static void prepare_read_banner(struct ceph_connection *con) 1578 { 1579 dout("prepare_read_banner %p\n", con); 1580 con->in_base_pos = 0; 1581 } 1582 1583 static void prepare_read_connect(struct ceph_connection *con) 1584 { 1585 dout("prepare_read_connect %p\n", con); 1586 con->in_base_pos = 0; 1587 } 1588 1589 static void prepare_read_ack(struct ceph_connection *con) 1590 { 1591 dout("prepare_read_ack %p\n", con); 1592 con->in_base_pos = 0; 1593 } 1594 1595 static void prepare_read_seq(struct ceph_connection *con) 1596 { 1597 dout("prepare_read_seq %p\n", con); 1598 con->in_base_pos = 0; 1599 con->in_tag = CEPH_MSGR_TAG_SEQ; 1600 } 1601 1602 static void prepare_read_tag(struct ceph_connection *con) 1603 { 1604 dout("prepare_read_tag %p\n", con); 1605 con->in_base_pos = 0; 1606 con->in_tag = CEPH_MSGR_TAG_READY; 1607 } 1608 1609 /* 1610 * Prepare to read a message. 1611 */ 1612 static int prepare_read_message(struct ceph_connection *con) 1613 { 1614 dout("prepare_read_message %p\n", con); 1615 BUG_ON(con->in_msg != NULL); 1616 con->in_base_pos = 0; 1617 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1618 return 0; 1619 } 1620 1621 1622 static int read_partial(struct ceph_connection *con, 1623 int end, int size, void *object) 1624 { 1625 while (con->in_base_pos < end) { 1626 int left = end - con->in_base_pos; 1627 int have = size - left; 1628 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1629 if (ret <= 0) 1630 return ret; 1631 con->in_base_pos += ret; 1632 } 1633 return 1; 1634 } 1635 1636 1637 /* 1638 * Read all or part of the connect-side handshake on a new connection 1639 */ 1640 static int read_partial_banner(struct ceph_connection *con) 1641 { 1642 int size; 1643 int end; 1644 int ret; 1645 1646 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1647 1648 /* peer's banner */ 1649 size = strlen(CEPH_BANNER); 1650 end = size; 1651 ret = read_partial(con, end, size, con->in_banner); 1652 if (ret <= 0) 1653 goto out; 1654 1655 size = sizeof (con->actual_peer_addr); 1656 end += size; 1657 ret = read_partial(con, end, size, &con->actual_peer_addr); 1658 if (ret <= 0) 1659 goto out; 1660 1661 size = sizeof (con->peer_addr_for_me); 1662 end += size; 1663 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1664 if (ret <= 0) 1665 goto out; 1666 1667 out: 1668 return ret; 1669 } 1670 1671 static int read_partial_connect(struct ceph_connection *con) 1672 { 1673 int size; 1674 int end; 1675 int ret; 1676 1677 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1678 1679 size = sizeof (con->in_reply); 1680 end = size; 1681 ret = read_partial(con, end, size, &con->in_reply); 1682 if (ret <= 0) 1683 goto out; 1684 1685 size = le32_to_cpu(con->in_reply.authorizer_len); 1686 end += size; 1687 ret = read_partial(con, end, size, con->auth_reply_buf); 1688 if (ret <= 0) 1689 goto out; 1690 1691 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1692 con, (int)con->in_reply.tag, 1693 le32_to_cpu(con->in_reply.connect_seq), 1694 le32_to_cpu(con->in_reply.global_seq)); 1695 out: 1696 return ret; 1697 1698 } 1699 1700 /* 1701 * Verify the hello banner looks okay. 1702 */ 1703 static int verify_hello(struct ceph_connection *con) 1704 { 1705 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1706 pr_err("connect to %s got bad banner\n", 1707 ceph_pr_addr(&con->peer_addr.in_addr)); 1708 con->error_msg = "protocol error, bad banner"; 1709 return -1; 1710 } 1711 return 0; 1712 } 1713 1714 static bool addr_is_blank(struct sockaddr_storage *ss) 1715 { 1716 switch (ss->ss_family) { 1717 case AF_INET: 1718 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1719 case AF_INET6: 1720 return 1721 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1722 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1723 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1724 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1725 } 1726 return false; 1727 } 1728 1729 static int addr_port(struct sockaddr_storage *ss) 1730 { 1731 switch (ss->ss_family) { 1732 case AF_INET: 1733 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1734 case AF_INET6: 1735 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1736 } 1737 return 0; 1738 } 1739 1740 static void addr_set_port(struct sockaddr_storage *ss, int p) 1741 { 1742 switch (ss->ss_family) { 1743 case AF_INET: 1744 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1745 break; 1746 case AF_INET6: 1747 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1748 break; 1749 } 1750 } 1751 1752 /* 1753 * Unlike other *_pton function semantics, zero indicates success. 1754 */ 1755 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1756 char delim, const char **ipend) 1757 { 1758 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1759 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1760 1761 memset(ss, 0, sizeof(*ss)); 1762 1763 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1764 ss->ss_family = AF_INET; 1765 return 0; 1766 } 1767 1768 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1769 ss->ss_family = AF_INET6; 1770 return 0; 1771 } 1772 1773 return -EINVAL; 1774 } 1775 1776 /* 1777 * Extract hostname string and resolve using kernel DNS facility. 1778 */ 1779 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1780 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1781 struct sockaddr_storage *ss, char delim, const char **ipend) 1782 { 1783 const char *end, *delim_p; 1784 char *colon_p, *ip_addr = NULL; 1785 int ip_len, ret; 1786 1787 /* 1788 * The end of the hostname occurs immediately preceding the delimiter or 1789 * the port marker (':') where the delimiter takes precedence. 1790 */ 1791 delim_p = memchr(name, delim, namelen); 1792 colon_p = memchr(name, ':', namelen); 1793 1794 if (delim_p && colon_p) 1795 end = delim_p < colon_p ? delim_p : colon_p; 1796 else if (!delim_p && colon_p) 1797 end = colon_p; 1798 else { 1799 end = delim_p; 1800 if (!end) /* case: hostname:/ */ 1801 end = name + namelen; 1802 } 1803 1804 if (end <= name) 1805 return -EINVAL; 1806 1807 /* do dns_resolve upcall */ 1808 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1809 if (ip_len > 0) 1810 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1811 else 1812 ret = -ESRCH; 1813 1814 kfree(ip_addr); 1815 1816 *ipend = end; 1817 1818 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1819 ret, ret ? "failed" : ceph_pr_addr(ss)); 1820 1821 return ret; 1822 } 1823 #else 1824 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1825 struct sockaddr_storage *ss, char delim, const char **ipend) 1826 { 1827 return -EINVAL; 1828 } 1829 #endif 1830 1831 /* 1832 * Parse a server name (IP or hostname). If a valid IP address is not found 1833 * then try to extract a hostname to resolve using userspace DNS upcall. 1834 */ 1835 static int ceph_parse_server_name(const char *name, size_t namelen, 1836 struct sockaddr_storage *ss, char delim, const char **ipend) 1837 { 1838 int ret; 1839 1840 ret = ceph_pton(name, namelen, ss, delim, ipend); 1841 if (ret) 1842 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1843 1844 return ret; 1845 } 1846 1847 /* 1848 * Parse an ip[:port] list into an addr array. Use the default 1849 * monitor port if a port isn't specified. 1850 */ 1851 int ceph_parse_ips(const char *c, const char *end, 1852 struct ceph_entity_addr *addr, 1853 int max_count, int *count) 1854 { 1855 int i, ret = -EINVAL; 1856 const char *p = c; 1857 1858 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1859 for (i = 0; i < max_count; i++) { 1860 const char *ipend; 1861 struct sockaddr_storage *ss = &addr[i].in_addr; 1862 int port; 1863 char delim = ','; 1864 1865 if (*p == '[') { 1866 delim = ']'; 1867 p++; 1868 } 1869 1870 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1871 if (ret) 1872 goto bad; 1873 ret = -EINVAL; 1874 1875 p = ipend; 1876 1877 if (delim == ']') { 1878 if (*p != ']') { 1879 dout("missing matching ']'\n"); 1880 goto bad; 1881 } 1882 p++; 1883 } 1884 1885 /* port? */ 1886 if (p < end && *p == ':') { 1887 port = 0; 1888 p++; 1889 while (p < end && *p >= '0' && *p <= '9') { 1890 port = (port * 10) + (*p - '0'); 1891 p++; 1892 } 1893 if (port == 0) 1894 port = CEPH_MON_PORT; 1895 else if (port > 65535) 1896 goto bad; 1897 } else { 1898 port = CEPH_MON_PORT; 1899 } 1900 1901 addr_set_port(ss, port); 1902 1903 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1904 1905 if (p == end) 1906 break; 1907 if (*p != ',') 1908 goto bad; 1909 p++; 1910 } 1911 1912 if (p != end) 1913 goto bad; 1914 1915 if (count) 1916 *count = i + 1; 1917 return 0; 1918 1919 bad: 1920 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1921 return ret; 1922 } 1923 EXPORT_SYMBOL(ceph_parse_ips); 1924 1925 static int process_banner(struct ceph_connection *con) 1926 { 1927 dout("process_banner on %p\n", con); 1928 1929 if (verify_hello(con) < 0) 1930 return -1; 1931 1932 ceph_decode_addr(&con->actual_peer_addr); 1933 ceph_decode_addr(&con->peer_addr_for_me); 1934 1935 /* 1936 * Make sure the other end is who we wanted. note that the other 1937 * end may not yet know their ip address, so if it's 0.0.0.0, give 1938 * them the benefit of the doubt. 1939 */ 1940 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1941 sizeof(con->peer_addr)) != 0 && 1942 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1943 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1944 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 1945 ceph_pr_addr(&con->peer_addr.in_addr), 1946 (int)le32_to_cpu(con->peer_addr.nonce), 1947 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1948 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1949 con->error_msg = "wrong peer at address"; 1950 return -1; 1951 } 1952 1953 /* 1954 * did we learn our address? 1955 */ 1956 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1957 int port = addr_port(&con->msgr->inst.addr.in_addr); 1958 1959 memcpy(&con->msgr->inst.addr.in_addr, 1960 &con->peer_addr_for_me.in_addr, 1961 sizeof(con->peer_addr_for_me.in_addr)); 1962 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1963 encode_my_addr(con->msgr); 1964 dout("process_banner learned my addr is %s\n", 1965 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1966 } 1967 1968 return 0; 1969 } 1970 1971 static int process_connect(struct ceph_connection *con) 1972 { 1973 u64 sup_feat = con->msgr->supported_features; 1974 u64 req_feat = con->msgr->required_features; 1975 u64 server_feat = ceph_sanitize_features( 1976 le64_to_cpu(con->in_reply.features)); 1977 int ret; 1978 1979 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1980 1981 switch (con->in_reply.tag) { 1982 case CEPH_MSGR_TAG_FEATURES: 1983 pr_err("%s%lld %s feature set mismatch," 1984 " my %llx < server's %llx, missing %llx\n", 1985 ENTITY_NAME(con->peer_name), 1986 ceph_pr_addr(&con->peer_addr.in_addr), 1987 sup_feat, server_feat, server_feat & ~sup_feat); 1988 con->error_msg = "missing required protocol features"; 1989 reset_connection(con); 1990 return -1; 1991 1992 case CEPH_MSGR_TAG_BADPROTOVER: 1993 pr_err("%s%lld %s protocol version mismatch," 1994 " my %d != server's %d\n", 1995 ENTITY_NAME(con->peer_name), 1996 ceph_pr_addr(&con->peer_addr.in_addr), 1997 le32_to_cpu(con->out_connect.protocol_version), 1998 le32_to_cpu(con->in_reply.protocol_version)); 1999 con->error_msg = "protocol version mismatch"; 2000 reset_connection(con); 2001 return -1; 2002 2003 case CEPH_MSGR_TAG_BADAUTHORIZER: 2004 con->auth_retry++; 2005 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2006 con->auth_retry); 2007 if (con->auth_retry == 2) { 2008 con->error_msg = "connect authorization failure"; 2009 return -1; 2010 } 2011 con_out_kvec_reset(con); 2012 ret = prepare_write_connect(con); 2013 if (ret < 0) 2014 return ret; 2015 prepare_read_connect(con); 2016 break; 2017 2018 case CEPH_MSGR_TAG_RESETSESSION: 2019 /* 2020 * If we connected with a large connect_seq but the peer 2021 * has no record of a session with us (no connection, or 2022 * connect_seq == 0), they will send RESETSESION to indicate 2023 * that they must have reset their session, and may have 2024 * dropped messages. 2025 */ 2026 dout("process_connect got RESET peer seq %u\n", 2027 le32_to_cpu(con->in_reply.connect_seq)); 2028 pr_err("%s%lld %s connection reset\n", 2029 ENTITY_NAME(con->peer_name), 2030 ceph_pr_addr(&con->peer_addr.in_addr)); 2031 reset_connection(con); 2032 con_out_kvec_reset(con); 2033 ret = prepare_write_connect(con); 2034 if (ret < 0) 2035 return ret; 2036 prepare_read_connect(con); 2037 2038 /* Tell ceph about it. */ 2039 mutex_unlock(&con->mutex); 2040 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2041 if (con->ops->peer_reset) 2042 con->ops->peer_reset(con); 2043 mutex_lock(&con->mutex); 2044 if (con->state != CON_STATE_NEGOTIATING) 2045 return -EAGAIN; 2046 break; 2047 2048 case CEPH_MSGR_TAG_RETRY_SESSION: 2049 /* 2050 * If we sent a smaller connect_seq than the peer has, try 2051 * again with a larger value. 2052 */ 2053 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2054 le32_to_cpu(con->out_connect.connect_seq), 2055 le32_to_cpu(con->in_reply.connect_seq)); 2056 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2057 con_out_kvec_reset(con); 2058 ret = prepare_write_connect(con); 2059 if (ret < 0) 2060 return ret; 2061 prepare_read_connect(con); 2062 break; 2063 2064 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2065 /* 2066 * If we sent a smaller global_seq than the peer has, try 2067 * again with a larger value. 2068 */ 2069 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2070 con->peer_global_seq, 2071 le32_to_cpu(con->in_reply.global_seq)); 2072 get_global_seq(con->msgr, 2073 le32_to_cpu(con->in_reply.global_seq)); 2074 con_out_kvec_reset(con); 2075 ret = prepare_write_connect(con); 2076 if (ret < 0) 2077 return ret; 2078 prepare_read_connect(con); 2079 break; 2080 2081 case CEPH_MSGR_TAG_SEQ: 2082 case CEPH_MSGR_TAG_READY: 2083 if (req_feat & ~server_feat) { 2084 pr_err("%s%lld %s protocol feature mismatch," 2085 " my required %llx > server's %llx, need %llx\n", 2086 ENTITY_NAME(con->peer_name), 2087 ceph_pr_addr(&con->peer_addr.in_addr), 2088 req_feat, server_feat, req_feat & ~server_feat); 2089 con->error_msg = "missing required protocol features"; 2090 reset_connection(con); 2091 return -1; 2092 } 2093 2094 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2095 con->state = CON_STATE_OPEN; 2096 con->auth_retry = 0; /* we authenticated; clear flag */ 2097 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2098 con->connect_seq++; 2099 con->peer_features = server_feat; 2100 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2101 con->peer_global_seq, 2102 le32_to_cpu(con->in_reply.connect_seq), 2103 con->connect_seq); 2104 WARN_ON(con->connect_seq != 2105 le32_to_cpu(con->in_reply.connect_seq)); 2106 2107 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2108 con_flag_set(con, CON_FLAG_LOSSYTX); 2109 2110 con->delay = 0; /* reset backoff memory */ 2111 2112 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2113 prepare_write_seq(con); 2114 prepare_read_seq(con); 2115 } else { 2116 prepare_read_tag(con); 2117 } 2118 break; 2119 2120 case CEPH_MSGR_TAG_WAIT: 2121 /* 2122 * If there is a connection race (we are opening 2123 * connections to each other), one of us may just have 2124 * to WAIT. This shouldn't happen if we are the 2125 * client. 2126 */ 2127 pr_err("process_connect got WAIT as client\n"); 2128 con->error_msg = "protocol error, got WAIT as client"; 2129 return -1; 2130 2131 default: 2132 pr_err("connect protocol error, will retry\n"); 2133 con->error_msg = "protocol error, garbage tag during connect"; 2134 return -1; 2135 } 2136 return 0; 2137 } 2138 2139 2140 /* 2141 * read (part of) an ack 2142 */ 2143 static int read_partial_ack(struct ceph_connection *con) 2144 { 2145 int size = sizeof (con->in_temp_ack); 2146 int end = size; 2147 2148 return read_partial(con, end, size, &con->in_temp_ack); 2149 } 2150 2151 /* 2152 * We can finally discard anything that's been acked. 2153 */ 2154 static void process_ack(struct ceph_connection *con) 2155 { 2156 struct ceph_msg *m; 2157 u64 ack = le64_to_cpu(con->in_temp_ack); 2158 u64 seq; 2159 2160 while (!list_empty(&con->out_sent)) { 2161 m = list_first_entry(&con->out_sent, struct ceph_msg, 2162 list_head); 2163 seq = le64_to_cpu(m->hdr.seq); 2164 if (seq > ack) 2165 break; 2166 dout("got ack for seq %llu type %d at %p\n", seq, 2167 le16_to_cpu(m->hdr.type), m); 2168 m->ack_stamp = jiffies; 2169 ceph_msg_remove(m); 2170 } 2171 prepare_read_tag(con); 2172 } 2173 2174 2175 static int read_partial_message_section(struct ceph_connection *con, 2176 struct kvec *section, 2177 unsigned int sec_len, u32 *crc) 2178 { 2179 int ret, left; 2180 2181 BUG_ON(!section); 2182 2183 while (section->iov_len < sec_len) { 2184 BUG_ON(section->iov_base == NULL); 2185 left = sec_len - section->iov_len; 2186 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2187 section->iov_len, left); 2188 if (ret <= 0) 2189 return ret; 2190 section->iov_len += ret; 2191 } 2192 if (section->iov_len == sec_len) 2193 *crc = crc32c(0, section->iov_base, section->iov_len); 2194 2195 return 1; 2196 } 2197 2198 static int read_partial_msg_data(struct ceph_connection *con) 2199 { 2200 struct ceph_msg *msg = con->in_msg; 2201 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2202 const bool do_datacrc = !con->msgr->nocrc; 2203 struct page *page; 2204 size_t page_offset; 2205 size_t length; 2206 u32 crc = 0; 2207 int ret; 2208 2209 BUG_ON(!msg); 2210 if (list_empty(&msg->data)) 2211 return -EIO; 2212 2213 if (do_datacrc) 2214 crc = con->in_data_crc; 2215 while (cursor->resid) { 2216 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2217 NULL); 2218 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2219 if (ret <= 0) { 2220 if (do_datacrc) 2221 con->in_data_crc = crc; 2222 2223 return ret; 2224 } 2225 2226 if (do_datacrc) 2227 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2228 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2229 } 2230 if (do_datacrc) 2231 con->in_data_crc = crc; 2232 2233 return 1; /* must return > 0 to indicate success */ 2234 } 2235 2236 /* 2237 * read (part of) a message. 2238 */ 2239 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2240 2241 static int read_partial_message(struct ceph_connection *con) 2242 { 2243 struct ceph_msg *m = con->in_msg; 2244 int size; 2245 int end; 2246 int ret; 2247 unsigned int front_len, middle_len, data_len; 2248 bool do_datacrc = !con->msgr->nocrc; 2249 u64 seq; 2250 u32 crc; 2251 2252 dout("read_partial_message con %p msg %p\n", con, m); 2253 2254 /* header */ 2255 size = sizeof (con->in_hdr); 2256 end = size; 2257 ret = read_partial(con, end, size, &con->in_hdr); 2258 if (ret <= 0) 2259 return ret; 2260 2261 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2262 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2263 pr_err("read_partial_message bad hdr " 2264 " crc %u != expected %u\n", 2265 crc, con->in_hdr.crc); 2266 return -EBADMSG; 2267 } 2268 2269 front_len = le32_to_cpu(con->in_hdr.front_len); 2270 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2271 return -EIO; 2272 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2273 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2274 return -EIO; 2275 data_len = le32_to_cpu(con->in_hdr.data_len); 2276 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2277 return -EIO; 2278 2279 /* verify seq# */ 2280 seq = le64_to_cpu(con->in_hdr.seq); 2281 if ((s64)seq - (s64)con->in_seq < 1) { 2282 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2283 ENTITY_NAME(con->peer_name), 2284 ceph_pr_addr(&con->peer_addr.in_addr), 2285 seq, con->in_seq + 1); 2286 con->in_base_pos = -front_len - middle_len - data_len - 2287 sizeof(m->footer); 2288 con->in_tag = CEPH_MSGR_TAG_READY; 2289 return 0; 2290 } else if ((s64)seq - (s64)con->in_seq > 1) { 2291 pr_err("read_partial_message bad seq %lld expected %lld\n", 2292 seq, con->in_seq + 1); 2293 con->error_msg = "bad message sequence # for incoming message"; 2294 return -EBADMSG; 2295 } 2296 2297 /* allocate message? */ 2298 if (!con->in_msg) { 2299 int skip = 0; 2300 2301 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2302 front_len, data_len); 2303 ret = ceph_con_in_msg_alloc(con, &skip); 2304 if (ret < 0) 2305 return ret; 2306 2307 BUG_ON(!con->in_msg ^ skip); 2308 if (con->in_msg && data_len > con->in_msg->data_length) { 2309 pr_warn("%s skipping long message (%u > %zd)\n", 2310 __func__, data_len, con->in_msg->data_length); 2311 ceph_msg_put(con->in_msg); 2312 con->in_msg = NULL; 2313 skip = 1; 2314 } 2315 if (skip) { 2316 /* skip this message */ 2317 dout("alloc_msg said skip message\n"); 2318 con->in_base_pos = -front_len - middle_len - data_len - 2319 sizeof(m->footer); 2320 con->in_tag = CEPH_MSGR_TAG_READY; 2321 con->in_seq++; 2322 return 0; 2323 } 2324 2325 BUG_ON(!con->in_msg); 2326 BUG_ON(con->in_msg->con != con); 2327 m = con->in_msg; 2328 m->front.iov_len = 0; /* haven't read it yet */ 2329 if (m->middle) 2330 m->middle->vec.iov_len = 0; 2331 2332 /* prepare for data payload, if any */ 2333 2334 if (data_len) 2335 prepare_message_data(con->in_msg, data_len); 2336 } 2337 2338 /* front */ 2339 ret = read_partial_message_section(con, &m->front, front_len, 2340 &con->in_front_crc); 2341 if (ret <= 0) 2342 return ret; 2343 2344 /* middle */ 2345 if (m->middle) { 2346 ret = read_partial_message_section(con, &m->middle->vec, 2347 middle_len, 2348 &con->in_middle_crc); 2349 if (ret <= 0) 2350 return ret; 2351 } 2352 2353 /* (page) data */ 2354 if (data_len) { 2355 ret = read_partial_msg_data(con); 2356 if (ret <= 0) 2357 return ret; 2358 } 2359 2360 /* footer */ 2361 size = sizeof (m->footer); 2362 end += size; 2363 ret = read_partial(con, end, size, &m->footer); 2364 if (ret <= 0) 2365 return ret; 2366 2367 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2368 m, front_len, m->footer.front_crc, middle_len, 2369 m->footer.middle_crc, data_len, m->footer.data_crc); 2370 2371 /* crc ok? */ 2372 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2373 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2374 m, con->in_front_crc, m->footer.front_crc); 2375 return -EBADMSG; 2376 } 2377 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2378 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2379 m, con->in_middle_crc, m->footer.middle_crc); 2380 return -EBADMSG; 2381 } 2382 if (do_datacrc && 2383 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2384 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2385 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2386 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2387 return -EBADMSG; 2388 } 2389 2390 return 1; /* done! */ 2391 } 2392 2393 /* 2394 * Process message. This happens in the worker thread. The callback should 2395 * be careful not to do anything that waits on other incoming messages or it 2396 * may deadlock. 2397 */ 2398 static void process_message(struct ceph_connection *con) 2399 { 2400 struct ceph_msg *msg; 2401 2402 BUG_ON(con->in_msg->con != con); 2403 con->in_msg->con = NULL; 2404 msg = con->in_msg; 2405 con->in_msg = NULL; 2406 con->ops->put(con); 2407 2408 /* if first message, set peer_name */ 2409 if (con->peer_name.type == 0) 2410 con->peer_name = msg->hdr.src; 2411 2412 con->in_seq++; 2413 mutex_unlock(&con->mutex); 2414 2415 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2416 msg, le64_to_cpu(msg->hdr.seq), 2417 ENTITY_NAME(msg->hdr.src), 2418 le16_to_cpu(msg->hdr.type), 2419 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2420 le32_to_cpu(msg->hdr.front_len), 2421 le32_to_cpu(msg->hdr.data_len), 2422 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2423 con->ops->dispatch(con, msg); 2424 2425 mutex_lock(&con->mutex); 2426 } 2427 2428 2429 /* 2430 * Write something to the socket. Called in a worker thread when the 2431 * socket appears to be writeable and we have something ready to send. 2432 */ 2433 static int try_write(struct ceph_connection *con) 2434 { 2435 int ret = 1; 2436 2437 dout("try_write start %p state %lu\n", con, con->state); 2438 2439 more: 2440 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2441 2442 /* open the socket first? */ 2443 if (con->state == CON_STATE_PREOPEN) { 2444 BUG_ON(con->sock); 2445 con->state = CON_STATE_CONNECTING; 2446 2447 con_out_kvec_reset(con); 2448 prepare_write_banner(con); 2449 prepare_read_banner(con); 2450 2451 BUG_ON(con->in_msg); 2452 con->in_tag = CEPH_MSGR_TAG_READY; 2453 dout("try_write initiating connect on %p new state %lu\n", 2454 con, con->state); 2455 ret = ceph_tcp_connect(con); 2456 if (ret < 0) { 2457 con->error_msg = "connect error"; 2458 goto out; 2459 } 2460 } 2461 2462 more_kvec: 2463 /* kvec data queued? */ 2464 if (con->out_skip) { 2465 ret = write_partial_skip(con); 2466 if (ret <= 0) 2467 goto out; 2468 } 2469 if (con->out_kvec_left) { 2470 ret = write_partial_kvec(con); 2471 if (ret <= 0) 2472 goto out; 2473 } 2474 2475 /* msg pages? */ 2476 if (con->out_msg) { 2477 if (con->out_msg_done) { 2478 ceph_msg_put(con->out_msg); 2479 con->out_msg = NULL; /* we're done with this one */ 2480 goto do_next; 2481 } 2482 2483 ret = write_partial_message_data(con); 2484 if (ret == 1) 2485 goto more_kvec; /* we need to send the footer, too! */ 2486 if (ret == 0) 2487 goto out; 2488 if (ret < 0) { 2489 dout("try_write write_partial_message_data err %d\n", 2490 ret); 2491 goto out; 2492 } 2493 } 2494 2495 do_next: 2496 if (con->state == CON_STATE_OPEN) { 2497 /* is anything else pending? */ 2498 if (!list_empty(&con->out_queue)) { 2499 prepare_write_message(con); 2500 goto more; 2501 } 2502 if (con->in_seq > con->in_seq_acked) { 2503 prepare_write_ack(con); 2504 goto more; 2505 } 2506 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2507 prepare_write_keepalive(con); 2508 goto more; 2509 } 2510 } 2511 2512 /* Nothing to do! */ 2513 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2514 dout("try_write nothing else to write.\n"); 2515 ret = 0; 2516 out: 2517 dout("try_write done on %p ret %d\n", con, ret); 2518 return ret; 2519 } 2520 2521 2522 2523 /* 2524 * Read what we can from the socket. 2525 */ 2526 static int try_read(struct ceph_connection *con) 2527 { 2528 int ret = -1; 2529 2530 more: 2531 dout("try_read start on %p state %lu\n", con, con->state); 2532 if (con->state != CON_STATE_CONNECTING && 2533 con->state != CON_STATE_NEGOTIATING && 2534 con->state != CON_STATE_OPEN) 2535 return 0; 2536 2537 BUG_ON(!con->sock); 2538 2539 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2540 con->in_base_pos); 2541 2542 if (con->state == CON_STATE_CONNECTING) { 2543 dout("try_read connecting\n"); 2544 ret = read_partial_banner(con); 2545 if (ret <= 0) 2546 goto out; 2547 ret = process_banner(con); 2548 if (ret < 0) 2549 goto out; 2550 2551 con->state = CON_STATE_NEGOTIATING; 2552 2553 /* 2554 * Received banner is good, exchange connection info. 2555 * Do not reset out_kvec, as sending our banner raced 2556 * with receiving peer banner after connect completed. 2557 */ 2558 ret = prepare_write_connect(con); 2559 if (ret < 0) 2560 goto out; 2561 prepare_read_connect(con); 2562 2563 /* Send connection info before awaiting response */ 2564 goto out; 2565 } 2566 2567 if (con->state == CON_STATE_NEGOTIATING) { 2568 dout("try_read negotiating\n"); 2569 ret = read_partial_connect(con); 2570 if (ret <= 0) 2571 goto out; 2572 ret = process_connect(con); 2573 if (ret < 0) 2574 goto out; 2575 goto more; 2576 } 2577 2578 WARN_ON(con->state != CON_STATE_OPEN); 2579 2580 if (con->in_base_pos < 0) { 2581 /* 2582 * skipping + discarding content. 2583 * 2584 * FIXME: there must be a better way to do this! 2585 */ 2586 static char buf[SKIP_BUF_SIZE]; 2587 int skip = min((int) sizeof (buf), -con->in_base_pos); 2588 2589 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2590 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2591 if (ret <= 0) 2592 goto out; 2593 con->in_base_pos += ret; 2594 if (con->in_base_pos) 2595 goto more; 2596 } 2597 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2598 /* 2599 * what's next? 2600 */ 2601 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2602 if (ret <= 0) 2603 goto out; 2604 dout("try_read got tag %d\n", (int)con->in_tag); 2605 switch (con->in_tag) { 2606 case CEPH_MSGR_TAG_MSG: 2607 prepare_read_message(con); 2608 break; 2609 case CEPH_MSGR_TAG_ACK: 2610 prepare_read_ack(con); 2611 break; 2612 case CEPH_MSGR_TAG_CLOSE: 2613 con_close_socket(con); 2614 con->state = CON_STATE_CLOSED; 2615 goto out; 2616 default: 2617 goto bad_tag; 2618 } 2619 } 2620 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2621 ret = read_partial_message(con); 2622 if (ret <= 0) { 2623 switch (ret) { 2624 case -EBADMSG: 2625 con->error_msg = "bad crc"; 2626 ret = -EIO; 2627 break; 2628 case -EIO: 2629 con->error_msg = "io error"; 2630 break; 2631 } 2632 goto out; 2633 } 2634 if (con->in_tag == CEPH_MSGR_TAG_READY) 2635 goto more; 2636 process_message(con); 2637 if (con->state == CON_STATE_OPEN) 2638 prepare_read_tag(con); 2639 goto more; 2640 } 2641 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2642 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2643 /* 2644 * the final handshake seq exchange is semantically 2645 * equivalent to an ACK 2646 */ 2647 ret = read_partial_ack(con); 2648 if (ret <= 0) 2649 goto out; 2650 process_ack(con); 2651 goto more; 2652 } 2653 2654 out: 2655 dout("try_read done on %p ret %d\n", con, ret); 2656 return ret; 2657 2658 bad_tag: 2659 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2660 con->error_msg = "protocol error, garbage tag"; 2661 ret = -1; 2662 goto out; 2663 } 2664 2665 2666 /* 2667 * Atomically queue work on a connection after the specified delay. 2668 * Bump @con reference to avoid races with connection teardown. 2669 * Returns 0 if work was queued, or an error code otherwise. 2670 */ 2671 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2672 { 2673 if (!con->ops->get(con)) { 2674 dout("%s %p ref count 0\n", __func__, con); 2675 return -ENOENT; 2676 } 2677 2678 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2679 dout("%s %p - already queued\n", __func__, con); 2680 con->ops->put(con); 2681 return -EBUSY; 2682 } 2683 2684 dout("%s %p %lu\n", __func__, con, delay); 2685 return 0; 2686 } 2687 2688 static void queue_con(struct ceph_connection *con) 2689 { 2690 (void) queue_con_delay(con, 0); 2691 } 2692 2693 static void cancel_con(struct ceph_connection *con) 2694 { 2695 if (cancel_delayed_work(&con->work)) { 2696 dout("%s %p\n", __func__, con); 2697 con->ops->put(con); 2698 } 2699 } 2700 2701 static bool con_sock_closed(struct ceph_connection *con) 2702 { 2703 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2704 return false; 2705 2706 #define CASE(x) \ 2707 case CON_STATE_ ## x: \ 2708 con->error_msg = "socket closed (con state " #x ")"; \ 2709 break; 2710 2711 switch (con->state) { 2712 CASE(CLOSED); 2713 CASE(PREOPEN); 2714 CASE(CONNECTING); 2715 CASE(NEGOTIATING); 2716 CASE(OPEN); 2717 CASE(STANDBY); 2718 default: 2719 pr_warn("%s con %p unrecognized state %lu\n", 2720 __func__, con, con->state); 2721 con->error_msg = "unrecognized con state"; 2722 BUG(); 2723 break; 2724 } 2725 #undef CASE 2726 2727 return true; 2728 } 2729 2730 static bool con_backoff(struct ceph_connection *con) 2731 { 2732 int ret; 2733 2734 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2735 return false; 2736 2737 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2738 if (ret) { 2739 dout("%s: con %p FAILED to back off %lu\n", __func__, 2740 con, con->delay); 2741 BUG_ON(ret == -ENOENT); 2742 con_flag_set(con, CON_FLAG_BACKOFF); 2743 } 2744 2745 return true; 2746 } 2747 2748 /* Finish fault handling; con->mutex must *not* be held here */ 2749 2750 static void con_fault_finish(struct ceph_connection *con) 2751 { 2752 /* 2753 * in case we faulted due to authentication, invalidate our 2754 * current tickets so that we can get new ones. 2755 */ 2756 if (con->auth_retry && con->ops->invalidate_authorizer) { 2757 dout("calling invalidate_authorizer()\n"); 2758 con->ops->invalidate_authorizer(con); 2759 } 2760 2761 if (con->ops->fault) 2762 con->ops->fault(con); 2763 } 2764 2765 /* 2766 * Do some work on a connection. Drop a connection ref when we're done. 2767 */ 2768 static void con_work(struct work_struct *work) 2769 { 2770 struct ceph_connection *con = container_of(work, struct ceph_connection, 2771 work.work); 2772 bool fault; 2773 2774 mutex_lock(&con->mutex); 2775 while (true) { 2776 int ret; 2777 2778 if ((fault = con_sock_closed(con))) { 2779 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2780 break; 2781 } 2782 if (con_backoff(con)) { 2783 dout("%s: con %p BACKOFF\n", __func__, con); 2784 break; 2785 } 2786 if (con->state == CON_STATE_STANDBY) { 2787 dout("%s: con %p STANDBY\n", __func__, con); 2788 break; 2789 } 2790 if (con->state == CON_STATE_CLOSED) { 2791 dout("%s: con %p CLOSED\n", __func__, con); 2792 BUG_ON(con->sock); 2793 break; 2794 } 2795 if (con->state == CON_STATE_PREOPEN) { 2796 dout("%s: con %p PREOPEN\n", __func__, con); 2797 BUG_ON(con->sock); 2798 } 2799 2800 ret = try_read(con); 2801 if (ret < 0) { 2802 if (ret == -EAGAIN) 2803 continue; 2804 con->error_msg = "socket error on read"; 2805 fault = true; 2806 break; 2807 } 2808 2809 ret = try_write(con); 2810 if (ret < 0) { 2811 if (ret == -EAGAIN) 2812 continue; 2813 con->error_msg = "socket error on write"; 2814 fault = true; 2815 } 2816 2817 break; /* If we make it to here, we're done */ 2818 } 2819 if (fault) 2820 con_fault(con); 2821 mutex_unlock(&con->mutex); 2822 2823 if (fault) 2824 con_fault_finish(con); 2825 2826 con->ops->put(con); 2827 } 2828 2829 /* 2830 * Generic error/fault handler. A retry mechanism is used with 2831 * exponential backoff 2832 */ 2833 static void con_fault(struct ceph_connection *con) 2834 { 2835 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2836 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2837 dout("fault %p state %lu to peer %s\n", 2838 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2839 2840 WARN_ON(con->state != CON_STATE_CONNECTING && 2841 con->state != CON_STATE_NEGOTIATING && 2842 con->state != CON_STATE_OPEN); 2843 2844 con_close_socket(con); 2845 2846 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2847 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2848 con->state = CON_STATE_CLOSED; 2849 return; 2850 } 2851 2852 if (con->in_msg) { 2853 BUG_ON(con->in_msg->con != con); 2854 con->in_msg->con = NULL; 2855 ceph_msg_put(con->in_msg); 2856 con->in_msg = NULL; 2857 con->ops->put(con); 2858 } 2859 2860 /* Requeue anything that hasn't been acked */ 2861 list_splice_init(&con->out_sent, &con->out_queue); 2862 2863 /* If there are no messages queued or keepalive pending, place 2864 * the connection in a STANDBY state */ 2865 if (list_empty(&con->out_queue) && 2866 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2867 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2868 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2869 con->state = CON_STATE_STANDBY; 2870 } else { 2871 /* retry after a delay. */ 2872 con->state = CON_STATE_PREOPEN; 2873 if (con->delay == 0) 2874 con->delay = BASE_DELAY_INTERVAL; 2875 else if (con->delay < MAX_DELAY_INTERVAL) 2876 con->delay *= 2; 2877 con_flag_set(con, CON_FLAG_BACKOFF); 2878 queue_con(con); 2879 } 2880 } 2881 2882 2883 2884 /* 2885 * initialize a new messenger instance 2886 */ 2887 void ceph_messenger_init(struct ceph_messenger *msgr, 2888 struct ceph_entity_addr *myaddr, 2889 u64 supported_features, 2890 u64 required_features, 2891 bool nocrc) 2892 { 2893 msgr->supported_features = supported_features; 2894 msgr->required_features = required_features; 2895 2896 spin_lock_init(&msgr->global_seq_lock); 2897 2898 if (myaddr) 2899 msgr->inst.addr = *myaddr; 2900 2901 /* select a random nonce */ 2902 msgr->inst.addr.type = 0; 2903 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2904 encode_my_addr(msgr); 2905 msgr->nocrc = nocrc; 2906 2907 atomic_set(&msgr->stopping, 0); 2908 2909 dout("%s %p\n", __func__, msgr); 2910 } 2911 EXPORT_SYMBOL(ceph_messenger_init); 2912 2913 static void clear_standby(struct ceph_connection *con) 2914 { 2915 /* come back from STANDBY? */ 2916 if (con->state == CON_STATE_STANDBY) { 2917 dout("clear_standby %p and ++connect_seq\n", con); 2918 con->state = CON_STATE_PREOPEN; 2919 con->connect_seq++; 2920 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2921 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2922 } 2923 } 2924 2925 /* 2926 * Queue up an outgoing message on the given connection. 2927 */ 2928 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2929 { 2930 /* set src+dst */ 2931 msg->hdr.src = con->msgr->inst.name; 2932 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2933 msg->needs_out_seq = true; 2934 2935 mutex_lock(&con->mutex); 2936 2937 if (con->state == CON_STATE_CLOSED) { 2938 dout("con_send %p closed, dropping %p\n", con, msg); 2939 ceph_msg_put(msg); 2940 mutex_unlock(&con->mutex); 2941 return; 2942 } 2943 2944 BUG_ON(msg->con != NULL); 2945 msg->con = con->ops->get(con); 2946 BUG_ON(msg->con == NULL); 2947 2948 BUG_ON(!list_empty(&msg->list_head)); 2949 list_add_tail(&msg->list_head, &con->out_queue); 2950 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2951 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2952 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2953 le32_to_cpu(msg->hdr.front_len), 2954 le32_to_cpu(msg->hdr.middle_len), 2955 le32_to_cpu(msg->hdr.data_len)); 2956 2957 clear_standby(con); 2958 mutex_unlock(&con->mutex); 2959 2960 /* if there wasn't anything waiting to send before, queue 2961 * new work */ 2962 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2963 queue_con(con); 2964 } 2965 EXPORT_SYMBOL(ceph_con_send); 2966 2967 /* 2968 * Revoke a message that was previously queued for send 2969 */ 2970 void ceph_msg_revoke(struct ceph_msg *msg) 2971 { 2972 struct ceph_connection *con = msg->con; 2973 2974 if (!con) 2975 return; /* Message not in our possession */ 2976 2977 mutex_lock(&con->mutex); 2978 if (!list_empty(&msg->list_head)) { 2979 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2980 list_del_init(&msg->list_head); 2981 BUG_ON(msg->con == NULL); 2982 msg->con->ops->put(msg->con); 2983 msg->con = NULL; 2984 msg->hdr.seq = 0; 2985 2986 ceph_msg_put(msg); 2987 } 2988 if (con->out_msg == msg) { 2989 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2990 con->out_msg = NULL; 2991 if (con->out_kvec_is_msg) { 2992 con->out_skip = con->out_kvec_bytes; 2993 con->out_kvec_is_msg = false; 2994 } 2995 msg->hdr.seq = 0; 2996 2997 ceph_msg_put(msg); 2998 } 2999 mutex_unlock(&con->mutex); 3000 } 3001 3002 /* 3003 * Revoke a message that we may be reading data into 3004 */ 3005 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3006 { 3007 struct ceph_connection *con; 3008 3009 BUG_ON(msg == NULL); 3010 if (!msg->con) { 3011 dout("%s msg %p null con\n", __func__, msg); 3012 3013 return; /* Message not in our possession */ 3014 } 3015 3016 con = msg->con; 3017 mutex_lock(&con->mutex); 3018 if (con->in_msg == msg) { 3019 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3020 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3021 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3022 3023 /* skip rest of message */ 3024 dout("%s %p msg %p revoked\n", __func__, con, msg); 3025 con->in_base_pos = con->in_base_pos - 3026 sizeof(struct ceph_msg_header) - 3027 front_len - 3028 middle_len - 3029 data_len - 3030 sizeof(struct ceph_msg_footer); 3031 ceph_msg_put(con->in_msg); 3032 con->in_msg = NULL; 3033 con->in_tag = CEPH_MSGR_TAG_READY; 3034 con->in_seq++; 3035 } else { 3036 dout("%s %p in_msg %p msg %p no-op\n", 3037 __func__, con, con->in_msg, msg); 3038 } 3039 mutex_unlock(&con->mutex); 3040 } 3041 3042 /* 3043 * Queue a keepalive byte to ensure the tcp connection is alive. 3044 */ 3045 void ceph_con_keepalive(struct ceph_connection *con) 3046 { 3047 dout("con_keepalive %p\n", con); 3048 mutex_lock(&con->mutex); 3049 clear_standby(con); 3050 mutex_unlock(&con->mutex); 3051 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3052 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3053 queue_con(con); 3054 } 3055 EXPORT_SYMBOL(ceph_con_keepalive); 3056 3057 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3058 { 3059 struct ceph_msg_data *data; 3060 3061 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3062 return NULL; 3063 3064 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3065 if (data) 3066 data->type = type; 3067 INIT_LIST_HEAD(&data->links); 3068 3069 return data; 3070 } 3071 3072 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3073 { 3074 if (!data) 3075 return; 3076 3077 WARN_ON(!list_empty(&data->links)); 3078 if (data->type == CEPH_MSG_DATA_PAGELIST) 3079 ceph_pagelist_release(data->pagelist); 3080 kmem_cache_free(ceph_msg_data_cache, data); 3081 } 3082 3083 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3084 size_t length, size_t alignment) 3085 { 3086 struct ceph_msg_data *data; 3087 3088 BUG_ON(!pages); 3089 BUG_ON(!length); 3090 3091 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3092 BUG_ON(!data); 3093 data->pages = pages; 3094 data->length = length; 3095 data->alignment = alignment & ~PAGE_MASK; 3096 3097 list_add_tail(&data->links, &msg->data); 3098 msg->data_length += length; 3099 } 3100 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3101 3102 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3103 struct ceph_pagelist *pagelist) 3104 { 3105 struct ceph_msg_data *data; 3106 3107 BUG_ON(!pagelist); 3108 BUG_ON(!pagelist->length); 3109 3110 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3111 BUG_ON(!data); 3112 data->pagelist = pagelist; 3113 3114 list_add_tail(&data->links, &msg->data); 3115 msg->data_length += pagelist->length; 3116 } 3117 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3118 3119 #ifdef CONFIG_BLOCK 3120 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3121 size_t length) 3122 { 3123 struct ceph_msg_data *data; 3124 3125 BUG_ON(!bio); 3126 3127 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3128 BUG_ON(!data); 3129 data->bio = bio; 3130 data->bio_length = length; 3131 3132 list_add_tail(&data->links, &msg->data); 3133 msg->data_length += length; 3134 } 3135 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3136 #endif /* CONFIG_BLOCK */ 3137 3138 /* 3139 * construct a new message with given type, size 3140 * the new msg has a ref count of 1. 3141 */ 3142 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3143 bool can_fail) 3144 { 3145 struct ceph_msg *m; 3146 3147 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3148 if (m == NULL) 3149 goto out; 3150 3151 m->hdr.type = cpu_to_le16(type); 3152 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3153 m->hdr.front_len = cpu_to_le32(front_len); 3154 3155 INIT_LIST_HEAD(&m->list_head); 3156 kref_init(&m->kref); 3157 INIT_LIST_HEAD(&m->data); 3158 3159 /* front */ 3160 if (front_len) { 3161 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3162 if (m->front.iov_base == NULL) { 3163 dout("ceph_msg_new can't allocate %d bytes\n", 3164 front_len); 3165 goto out2; 3166 } 3167 } else { 3168 m->front.iov_base = NULL; 3169 } 3170 m->front_alloc_len = m->front.iov_len = front_len; 3171 3172 dout("ceph_msg_new %p front %d\n", m, front_len); 3173 return m; 3174 3175 out2: 3176 ceph_msg_put(m); 3177 out: 3178 if (!can_fail) { 3179 pr_err("msg_new can't create type %d front %d\n", type, 3180 front_len); 3181 WARN_ON(1); 3182 } else { 3183 dout("msg_new can't create type %d front %d\n", type, 3184 front_len); 3185 } 3186 return NULL; 3187 } 3188 EXPORT_SYMBOL(ceph_msg_new); 3189 3190 /* 3191 * Allocate "middle" portion of a message, if it is needed and wasn't 3192 * allocated by alloc_msg. This allows us to read a small fixed-size 3193 * per-type header in the front and then gracefully fail (i.e., 3194 * propagate the error to the caller based on info in the front) when 3195 * the middle is too large. 3196 */ 3197 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3198 { 3199 int type = le16_to_cpu(msg->hdr.type); 3200 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3201 3202 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3203 ceph_msg_type_name(type), middle_len); 3204 BUG_ON(!middle_len); 3205 BUG_ON(msg->middle); 3206 3207 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3208 if (!msg->middle) 3209 return -ENOMEM; 3210 return 0; 3211 } 3212 3213 /* 3214 * Allocate a message for receiving an incoming message on a 3215 * connection, and save the result in con->in_msg. Uses the 3216 * connection's private alloc_msg op if available. 3217 * 3218 * Returns 0 on success, or a negative error code. 3219 * 3220 * On success, if we set *skip = 1: 3221 * - the next message should be skipped and ignored. 3222 * - con->in_msg == NULL 3223 * or if we set *skip = 0: 3224 * - con->in_msg is non-null. 3225 * On error (ENOMEM, EAGAIN, ...), 3226 * - con->in_msg == NULL 3227 */ 3228 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3229 { 3230 struct ceph_msg_header *hdr = &con->in_hdr; 3231 int middle_len = le32_to_cpu(hdr->middle_len); 3232 struct ceph_msg *msg; 3233 int ret = 0; 3234 3235 BUG_ON(con->in_msg != NULL); 3236 BUG_ON(!con->ops->alloc_msg); 3237 3238 mutex_unlock(&con->mutex); 3239 msg = con->ops->alloc_msg(con, hdr, skip); 3240 mutex_lock(&con->mutex); 3241 if (con->state != CON_STATE_OPEN) { 3242 if (msg) 3243 ceph_msg_put(msg); 3244 return -EAGAIN; 3245 } 3246 if (msg) { 3247 BUG_ON(*skip); 3248 con->in_msg = msg; 3249 con->in_msg->con = con->ops->get(con); 3250 BUG_ON(con->in_msg->con == NULL); 3251 } else { 3252 /* 3253 * Null message pointer means either we should skip 3254 * this message or we couldn't allocate memory. The 3255 * former is not an error. 3256 */ 3257 if (*skip) 3258 return 0; 3259 con->error_msg = "error allocating memory for incoming message"; 3260 3261 return -ENOMEM; 3262 } 3263 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3264 3265 if (middle_len && !con->in_msg->middle) { 3266 ret = ceph_alloc_middle(con, con->in_msg); 3267 if (ret < 0) { 3268 ceph_msg_put(con->in_msg); 3269 con->in_msg = NULL; 3270 } 3271 } 3272 3273 return ret; 3274 } 3275 3276 3277 /* 3278 * Free a generically kmalloc'd message. 3279 */ 3280 static void ceph_msg_free(struct ceph_msg *m) 3281 { 3282 dout("%s %p\n", __func__, m); 3283 ceph_kvfree(m->front.iov_base); 3284 kmem_cache_free(ceph_msg_cache, m); 3285 } 3286 3287 static void ceph_msg_release(struct kref *kref) 3288 { 3289 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3290 LIST_HEAD(data); 3291 struct list_head *links; 3292 struct list_head *next; 3293 3294 dout("%s %p\n", __func__, m); 3295 WARN_ON(!list_empty(&m->list_head)); 3296 3297 /* drop middle, data, if any */ 3298 if (m->middle) { 3299 ceph_buffer_put(m->middle); 3300 m->middle = NULL; 3301 } 3302 3303 list_splice_init(&m->data, &data); 3304 list_for_each_safe(links, next, &data) { 3305 struct ceph_msg_data *data; 3306 3307 data = list_entry(links, struct ceph_msg_data, links); 3308 list_del_init(links); 3309 ceph_msg_data_destroy(data); 3310 } 3311 m->data_length = 0; 3312 3313 if (m->pool) 3314 ceph_msgpool_put(m->pool, m); 3315 else 3316 ceph_msg_free(m); 3317 } 3318 3319 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3320 { 3321 dout("%s %p (was %d)\n", __func__, msg, 3322 atomic_read(&msg->kref.refcount)); 3323 kref_get(&msg->kref); 3324 return msg; 3325 } 3326 EXPORT_SYMBOL(ceph_msg_get); 3327 3328 void ceph_msg_put(struct ceph_msg *msg) 3329 { 3330 dout("%s %p (was %d)\n", __func__, msg, 3331 atomic_read(&msg->kref.refcount)); 3332 kref_put(&msg->kref, ceph_msg_release); 3333 } 3334 EXPORT_SYMBOL(ceph_msg_put); 3335 3336 void ceph_msg_dump(struct ceph_msg *msg) 3337 { 3338 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3339 msg->front_alloc_len, msg->data_length); 3340 print_hex_dump(KERN_DEBUG, "header: ", 3341 DUMP_PREFIX_OFFSET, 16, 1, 3342 &msg->hdr, sizeof(msg->hdr), true); 3343 print_hex_dump(KERN_DEBUG, " front: ", 3344 DUMP_PREFIX_OFFSET, 16, 1, 3345 msg->front.iov_base, msg->front.iov_len, true); 3346 if (msg->middle) 3347 print_hex_dump(KERN_DEBUG, "middle: ", 3348 DUMP_PREFIX_OFFSET, 16, 1, 3349 msg->middle->vec.iov_base, 3350 msg->middle->vec.iov_len, true); 3351 print_hex_dump(KERN_DEBUG, "footer: ", 3352 DUMP_PREFIX_OFFSET, 16, 1, 3353 &msg->footer, sizeof(msg->footer), true); 3354 } 3355 EXPORT_SYMBOL(ceph_msg_dump); 3356