1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/ceph_features.h> 19 #include <linux/ceph/libceph.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/export.h> 24 25 #define list_entry_next(pos, member) \ 26 list_entry(pos->member.next, typeof(*pos), member) 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void con_work(struct work_struct *); 178 static void con_fault(struct ceph_connection *con); 179 180 /* 181 * Nicely render a sockaddr as a string. An array of formatted 182 * strings is used, to approximate reentrancy. 183 */ 184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 188 189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 190 static atomic_t addr_str_seq = ATOMIC_INIT(0); 191 192 static struct page *zero_page; /* used in certain error cases */ 193 194 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 195 { 196 int i; 197 char *s; 198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 200 201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 202 s = addr_str[i]; 203 204 switch (ss->ss_family) { 205 case AF_INET: 206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 207 ntohs(in4->sin_port)); 208 break; 209 210 case AF_INET6: 211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 212 ntohs(in6->sin6_port)); 213 break; 214 215 default: 216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 217 ss->ss_family); 218 } 219 220 return s; 221 } 222 EXPORT_SYMBOL(ceph_pr_addr); 223 224 static void encode_my_addr(struct ceph_messenger *msgr) 225 { 226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 227 ceph_encode_addr(&msgr->my_enc_addr); 228 } 229 230 /* 231 * work queue for all reading and writing to/from the socket. 232 */ 233 static struct workqueue_struct *ceph_msgr_wq; 234 235 static int ceph_msgr_slab_init(void) 236 { 237 BUG_ON(ceph_msg_cache); 238 ceph_msg_cache = kmem_cache_create("ceph_msg", 239 sizeof (struct ceph_msg), 240 __alignof__(struct ceph_msg), 0, NULL); 241 242 if (!ceph_msg_cache) 243 return -ENOMEM; 244 245 BUG_ON(ceph_msg_data_cache); 246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 247 sizeof (struct ceph_msg_data), 248 __alignof__(struct ceph_msg_data), 249 0, NULL); 250 if (ceph_msg_data_cache) 251 return 0; 252 253 kmem_cache_destroy(ceph_msg_cache); 254 ceph_msg_cache = NULL; 255 256 return -ENOMEM; 257 } 258 259 static void ceph_msgr_slab_exit(void) 260 { 261 BUG_ON(!ceph_msg_data_cache); 262 kmem_cache_destroy(ceph_msg_data_cache); 263 ceph_msg_data_cache = NULL; 264 265 BUG_ON(!ceph_msg_cache); 266 kmem_cache_destroy(ceph_msg_cache); 267 ceph_msg_cache = NULL; 268 } 269 270 static void _ceph_msgr_exit(void) 271 { 272 if (ceph_msgr_wq) { 273 destroy_workqueue(ceph_msgr_wq); 274 ceph_msgr_wq = NULL; 275 } 276 277 ceph_msgr_slab_exit(); 278 279 BUG_ON(zero_page == NULL); 280 kunmap(zero_page); 281 page_cache_release(zero_page); 282 zero_page = NULL; 283 } 284 285 int ceph_msgr_init(void) 286 { 287 BUG_ON(zero_page != NULL); 288 zero_page = ZERO_PAGE(0); 289 page_cache_get(zero_page); 290 291 if (ceph_msgr_slab_init()) 292 return -ENOMEM; 293 294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0); 295 if (ceph_msgr_wq) 296 return 0; 297 298 pr_err("msgr_init failed to create workqueue\n"); 299 _ceph_msgr_exit(); 300 301 return -ENOMEM; 302 } 303 EXPORT_SYMBOL(ceph_msgr_init); 304 305 void ceph_msgr_exit(void) 306 { 307 BUG_ON(ceph_msgr_wq == NULL); 308 309 _ceph_msgr_exit(); 310 } 311 EXPORT_SYMBOL(ceph_msgr_exit); 312 313 void ceph_msgr_flush(void) 314 { 315 flush_workqueue(ceph_msgr_wq); 316 } 317 EXPORT_SYMBOL(ceph_msgr_flush); 318 319 /* Connection socket state transition functions */ 320 321 static void con_sock_state_init(struct ceph_connection *con) 322 { 323 int old_state; 324 325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 327 printk("%s: unexpected old state %d\n", __func__, old_state); 328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 329 CON_SOCK_STATE_CLOSED); 330 } 331 332 static void con_sock_state_connecting(struct ceph_connection *con) 333 { 334 int old_state; 335 336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 338 printk("%s: unexpected old state %d\n", __func__, old_state); 339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 340 CON_SOCK_STATE_CONNECTING); 341 } 342 343 static void con_sock_state_connected(struct ceph_connection *con) 344 { 345 int old_state; 346 347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 349 printk("%s: unexpected old state %d\n", __func__, old_state); 350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 351 CON_SOCK_STATE_CONNECTED); 352 } 353 354 static void con_sock_state_closing(struct ceph_connection *con) 355 { 356 int old_state; 357 358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 360 old_state != CON_SOCK_STATE_CONNECTED && 361 old_state != CON_SOCK_STATE_CLOSING)) 362 printk("%s: unexpected old state %d\n", __func__, old_state); 363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 364 CON_SOCK_STATE_CLOSING); 365 } 366 367 static void con_sock_state_closed(struct ceph_connection *con) 368 { 369 int old_state; 370 371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 373 old_state != CON_SOCK_STATE_CLOSING && 374 old_state != CON_SOCK_STATE_CONNECTING && 375 old_state != CON_SOCK_STATE_CLOSED)) 376 printk("%s: unexpected old state %d\n", __func__, old_state); 377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 378 CON_SOCK_STATE_CLOSED); 379 } 380 381 /* 382 * socket callback functions 383 */ 384 385 /* data available on socket, or listen socket received a connect */ 386 static void ceph_sock_data_ready(struct sock *sk, int count_unused) 387 { 388 struct ceph_connection *con = sk->sk_user_data; 389 if (atomic_read(&con->msgr->stopping)) { 390 return; 391 } 392 393 if (sk->sk_state != TCP_CLOSE_WAIT) { 394 dout("%s on %p state = %lu, queueing work\n", __func__, 395 con, con->state); 396 queue_con(con); 397 } 398 } 399 400 /* socket has buffer space for writing */ 401 static void ceph_sock_write_space(struct sock *sk) 402 { 403 struct ceph_connection *con = sk->sk_user_data; 404 405 /* only queue to workqueue if there is data we want to write, 406 * and there is sufficient space in the socket buffer to accept 407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 408 * doesn't get called again until try_write() fills the socket 409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 410 * and net/core/stream.c:sk_stream_write_space(). 411 */ 412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 413 if (sk_stream_is_writeable(sk)) { 414 dout("%s %p queueing write work\n", __func__, con); 415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 416 queue_con(con); 417 } 418 } else { 419 dout("%s %p nothing to write\n", __func__, con); 420 } 421 } 422 423 /* socket's state has changed */ 424 static void ceph_sock_state_change(struct sock *sk) 425 { 426 struct ceph_connection *con = sk->sk_user_data; 427 428 dout("%s %p state = %lu sk_state = %u\n", __func__, 429 con, con->state, sk->sk_state); 430 431 switch (sk->sk_state) { 432 case TCP_CLOSE: 433 dout("%s TCP_CLOSE\n", __func__); 434 case TCP_CLOSE_WAIT: 435 dout("%s TCP_CLOSE_WAIT\n", __func__); 436 con_sock_state_closing(con); 437 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 438 queue_con(con); 439 break; 440 case TCP_ESTABLISHED: 441 dout("%s TCP_ESTABLISHED\n", __func__); 442 con_sock_state_connected(con); 443 queue_con(con); 444 break; 445 default: /* Everything else is uninteresting */ 446 break; 447 } 448 } 449 450 /* 451 * set up socket callbacks 452 */ 453 static void set_sock_callbacks(struct socket *sock, 454 struct ceph_connection *con) 455 { 456 struct sock *sk = sock->sk; 457 sk->sk_user_data = con; 458 sk->sk_data_ready = ceph_sock_data_ready; 459 sk->sk_write_space = ceph_sock_write_space; 460 sk->sk_state_change = ceph_sock_state_change; 461 } 462 463 464 /* 465 * socket helpers 466 */ 467 468 /* 469 * initiate connection to a remote socket. 470 */ 471 static int ceph_tcp_connect(struct ceph_connection *con) 472 { 473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 474 struct socket *sock; 475 int ret; 476 477 BUG_ON(con->sock); 478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 479 IPPROTO_TCP, &sock); 480 if (ret) 481 return ret; 482 sock->sk->sk_allocation = GFP_NOFS; 483 484 #ifdef CONFIG_LOCKDEP 485 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 486 #endif 487 488 set_sock_callbacks(sock, con); 489 490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 491 492 con_sock_state_connecting(con); 493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 494 O_NONBLOCK); 495 if (ret == -EINPROGRESS) { 496 dout("connect %s EINPROGRESS sk_state = %u\n", 497 ceph_pr_addr(&con->peer_addr.in_addr), 498 sock->sk->sk_state); 499 } else if (ret < 0) { 500 pr_err("connect %s error %d\n", 501 ceph_pr_addr(&con->peer_addr.in_addr), ret); 502 sock_release(sock); 503 con->error_msg = "connect error"; 504 505 return ret; 506 } 507 con->sock = sock; 508 return 0; 509 } 510 511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 512 { 513 struct kvec iov = {buf, len}; 514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 515 int r; 516 517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 518 if (r == -EAGAIN) 519 r = 0; 520 return r; 521 } 522 523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 524 int page_offset, size_t length) 525 { 526 void *kaddr; 527 int ret; 528 529 BUG_ON(page_offset + length > PAGE_SIZE); 530 531 kaddr = kmap(page); 532 BUG_ON(!kaddr); 533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 534 kunmap(page); 535 536 return ret; 537 } 538 539 /* 540 * write something. @more is true if caller will be sending more data 541 * shortly. 542 */ 543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 544 size_t kvlen, size_t len, int more) 545 { 546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 547 int r; 548 549 if (more) 550 msg.msg_flags |= MSG_MORE; 551 else 552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 553 554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 555 if (r == -EAGAIN) 556 r = 0; 557 return r; 558 } 559 560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 561 int offset, size_t size, bool more) 562 { 563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 564 int ret; 565 566 ret = kernel_sendpage(sock, page, offset, size, flags); 567 if (ret == -EAGAIN) 568 ret = 0; 569 570 return ret; 571 } 572 573 574 /* 575 * Shutdown/close the socket for the given connection. 576 */ 577 static int con_close_socket(struct ceph_connection *con) 578 { 579 int rc = 0; 580 581 dout("con_close_socket on %p sock %p\n", con, con->sock); 582 if (con->sock) { 583 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 584 sock_release(con->sock); 585 con->sock = NULL; 586 } 587 588 /* 589 * Forcibly clear the SOCK_CLOSED flag. It gets set 590 * independent of the connection mutex, and we could have 591 * received a socket close event before we had the chance to 592 * shut the socket down. 593 */ 594 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 595 596 con_sock_state_closed(con); 597 return rc; 598 } 599 600 /* 601 * Reset a connection. Discard all incoming and outgoing messages 602 * and clear *_seq state. 603 */ 604 static void ceph_msg_remove(struct ceph_msg *msg) 605 { 606 list_del_init(&msg->list_head); 607 BUG_ON(msg->con == NULL); 608 msg->con->ops->put(msg->con); 609 msg->con = NULL; 610 611 ceph_msg_put(msg); 612 } 613 static void ceph_msg_remove_list(struct list_head *head) 614 { 615 while (!list_empty(head)) { 616 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 617 list_head); 618 ceph_msg_remove(msg); 619 } 620 } 621 622 static void reset_connection(struct ceph_connection *con) 623 { 624 /* reset connection, out_queue, msg_ and connect_seq */ 625 /* discard existing out_queue and msg_seq */ 626 dout("reset_connection %p\n", con); 627 ceph_msg_remove_list(&con->out_queue); 628 ceph_msg_remove_list(&con->out_sent); 629 630 if (con->in_msg) { 631 BUG_ON(con->in_msg->con != con); 632 con->in_msg->con = NULL; 633 ceph_msg_put(con->in_msg); 634 con->in_msg = NULL; 635 con->ops->put(con); 636 } 637 638 con->connect_seq = 0; 639 con->out_seq = 0; 640 if (con->out_msg) { 641 ceph_msg_put(con->out_msg); 642 con->out_msg = NULL; 643 } 644 con->in_seq = 0; 645 con->in_seq_acked = 0; 646 } 647 648 /* 649 * mark a peer down. drop any open connections. 650 */ 651 void ceph_con_close(struct ceph_connection *con) 652 { 653 mutex_lock(&con->mutex); 654 dout("con_close %p peer %s\n", con, 655 ceph_pr_addr(&con->peer_addr.in_addr)); 656 con->state = CON_STATE_CLOSED; 657 658 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 659 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 660 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 661 con_flag_clear(con, CON_FLAG_BACKOFF); 662 663 reset_connection(con); 664 con->peer_global_seq = 0; 665 cancel_delayed_work(&con->work); 666 con_close_socket(con); 667 mutex_unlock(&con->mutex); 668 } 669 EXPORT_SYMBOL(ceph_con_close); 670 671 /* 672 * Reopen a closed connection, with a new peer address. 673 */ 674 void ceph_con_open(struct ceph_connection *con, 675 __u8 entity_type, __u64 entity_num, 676 struct ceph_entity_addr *addr) 677 { 678 mutex_lock(&con->mutex); 679 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 680 681 WARN_ON(con->state != CON_STATE_CLOSED); 682 con->state = CON_STATE_PREOPEN; 683 684 con->peer_name.type = (__u8) entity_type; 685 con->peer_name.num = cpu_to_le64(entity_num); 686 687 memcpy(&con->peer_addr, addr, sizeof(*addr)); 688 con->delay = 0; /* reset backoff memory */ 689 mutex_unlock(&con->mutex); 690 queue_con(con); 691 } 692 EXPORT_SYMBOL(ceph_con_open); 693 694 /* 695 * return true if this connection ever successfully opened 696 */ 697 bool ceph_con_opened(struct ceph_connection *con) 698 { 699 return con->connect_seq > 0; 700 } 701 702 /* 703 * initialize a new connection. 704 */ 705 void ceph_con_init(struct ceph_connection *con, void *private, 706 const struct ceph_connection_operations *ops, 707 struct ceph_messenger *msgr) 708 { 709 dout("con_init %p\n", con); 710 memset(con, 0, sizeof(*con)); 711 con->private = private; 712 con->ops = ops; 713 con->msgr = msgr; 714 715 con_sock_state_init(con); 716 717 mutex_init(&con->mutex); 718 INIT_LIST_HEAD(&con->out_queue); 719 INIT_LIST_HEAD(&con->out_sent); 720 INIT_DELAYED_WORK(&con->work, con_work); 721 722 con->state = CON_STATE_CLOSED; 723 } 724 EXPORT_SYMBOL(ceph_con_init); 725 726 727 /* 728 * We maintain a global counter to order connection attempts. Get 729 * a unique seq greater than @gt. 730 */ 731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 732 { 733 u32 ret; 734 735 spin_lock(&msgr->global_seq_lock); 736 if (msgr->global_seq < gt) 737 msgr->global_seq = gt; 738 ret = ++msgr->global_seq; 739 spin_unlock(&msgr->global_seq_lock); 740 return ret; 741 } 742 743 static void con_out_kvec_reset(struct ceph_connection *con) 744 { 745 con->out_kvec_left = 0; 746 con->out_kvec_bytes = 0; 747 con->out_kvec_cur = &con->out_kvec[0]; 748 } 749 750 static void con_out_kvec_add(struct ceph_connection *con, 751 size_t size, void *data) 752 { 753 int index; 754 755 index = con->out_kvec_left; 756 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 757 758 con->out_kvec[index].iov_len = size; 759 con->out_kvec[index].iov_base = data; 760 con->out_kvec_left++; 761 con->out_kvec_bytes += size; 762 } 763 764 #ifdef CONFIG_BLOCK 765 766 /* 767 * For a bio data item, a piece is whatever remains of the next 768 * entry in the current bio iovec, or the first entry in the next 769 * bio in the list. 770 */ 771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 772 size_t length) 773 { 774 struct ceph_msg_data *data = cursor->data; 775 struct bio *bio; 776 777 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 778 779 bio = data->bio; 780 BUG_ON(!bio); 781 782 cursor->resid = min(length, data->bio_length); 783 cursor->bio = bio; 784 cursor->bvec_iter = bio->bi_iter; 785 cursor->last_piece = 786 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 787 } 788 789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 790 size_t *page_offset, 791 size_t *length) 792 { 793 struct ceph_msg_data *data = cursor->data; 794 struct bio *bio; 795 struct bio_vec bio_vec; 796 797 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 798 799 bio = cursor->bio; 800 BUG_ON(!bio); 801 802 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 803 804 *page_offset = (size_t) bio_vec.bv_offset; 805 BUG_ON(*page_offset >= PAGE_SIZE); 806 if (cursor->last_piece) /* pagelist offset is always 0 */ 807 *length = cursor->resid; 808 else 809 *length = (size_t) bio_vec.bv_len; 810 BUG_ON(*length > cursor->resid); 811 BUG_ON(*page_offset + *length > PAGE_SIZE); 812 813 return bio_vec.bv_page; 814 } 815 816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 817 size_t bytes) 818 { 819 struct bio *bio; 820 struct bio_vec bio_vec; 821 822 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 823 824 bio = cursor->bio; 825 BUG_ON(!bio); 826 827 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 828 829 /* Advance the cursor offset */ 830 831 BUG_ON(cursor->resid < bytes); 832 cursor->resid -= bytes; 833 834 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 835 836 if (bytes < bio_vec.bv_len) 837 return false; /* more bytes to process in this segment */ 838 839 /* Move on to the next segment, and possibly the next bio */ 840 841 if (!cursor->bvec_iter.bi_size) { 842 bio = bio->bi_next; 843 cursor->bvec_iter = bio->bi_iter; 844 } 845 cursor->bio = bio; 846 847 if (!cursor->last_piece) { 848 BUG_ON(!cursor->resid); 849 BUG_ON(!bio); 850 /* A short read is OK, so use <= rather than == */ 851 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 852 cursor->last_piece = true; 853 } 854 855 return true; 856 } 857 #endif /* CONFIG_BLOCK */ 858 859 /* 860 * For a page array, a piece comes from the first page in the array 861 * that has not already been fully consumed. 862 */ 863 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 864 size_t length) 865 { 866 struct ceph_msg_data *data = cursor->data; 867 int page_count; 868 869 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 870 871 BUG_ON(!data->pages); 872 BUG_ON(!data->length); 873 874 cursor->resid = min(length, data->length); 875 page_count = calc_pages_for(data->alignment, (u64)data->length); 876 cursor->page_offset = data->alignment & ~PAGE_MASK; 877 cursor->page_index = 0; 878 BUG_ON(page_count > (int)USHRT_MAX); 879 cursor->page_count = (unsigned short)page_count; 880 BUG_ON(length > SIZE_MAX - cursor->page_offset); 881 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE; 882 } 883 884 static struct page * 885 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 886 size_t *page_offset, size_t *length) 887 { 888 struct ceph_msg_data *data = cursor->data; 889 890 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 891 892 BUG_ON(cursor->page_index >= cursor->page_count); 893 BUG_ON(cursor->page_offset >= PAGE_SIZE); 894 895 *page_offset = cursor->page_offset; 896 if (cursor->last_piece) 897 *length = cursor->resid; 898 else 899 *length = PAGE_SIZE - *page_offset; 900 901 return data->pages[cursor->page_index]; 902 } 903 904 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 905 size_t bytes) 906 { 907 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 908 909 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 910 911 /* Advance the cursor page offset */ 912 913 cursor->resid -= bytes; 914 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 915 if (!bytes || cursor->page_offset) 916 return false; /* more bytes to process in the current page */ 917 918 /* Move on to the next page; offset is already at 0 */ 919 920 BUG_ON(cursor->page_index >= cursor->page_count); 921 cursor->page_index++; 922 cursor->last_piece = cursor->resid <= PAGE_SIZE; 923 924 return true; 925 } 926 927 /* 928 * For a pagelist, a piece is whatever remains to be consumed in the 929 * first page in the list, or the front of the next page. 930 */ 931 static void 932 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 933 size_t length) 934 { 935 struct ceph_msg_data *data = cursor->data; 936 struct ceph_pagelist *pagelist; 937 struct page *page; 938 939 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 940 941 pagelist = data->pagelist; 942 BUG_ON(!pagelist); 943 944 if (!length) 945 return; /* pagelist can be assigned but empty */ 946 947 BUG_ON(list_empty(&pagelist->head)); 948 page = list_first_entry(&pagelist->head, struct page, lru); 949 950 cursor->resid = min(length, pagelist->length); 951 cursor->page = page; 952 cursor->offset = 0; 953 cursor->last_piece = cursor->resid <= PAGE_SIZE; 954 } 955 956 static struct page * 957 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 958 size_t *page_offset, size_t *length) 959 { 960 struct ceph_msg_data *data = cursor->data; 961 struct ceph_pagelist *pagelist; 962 963 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 964 965 pagelist = data->pagelist; 966 BUG_ON(!pagelist); 967 968 BUG_ON(!cursor->page); 969 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 970 971 /* offset of first page in pagelist is always 0 */ 972 *page_offset = cursor->offset & ~PAGE_MASK; 973 if (cursor->last_piece) 974 *length = cursor->resid; 975 else 976 *length = PAGE_SIZE - *page_offset; 977 978 return cursor->page; 979 } 980 981 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 982 size_t bytes) 983 { 984 struct ceph_msg_data *data = cursor->data; 985 struct ceph_pagelist *pagelist; 986 987 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 988 989 pagelist = data->pagelist; 990 BUG_ON(!pagelist); 991 992 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 993 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 994 995 /* Advance the cursor offset */ 996 997 cursor->resid -= bytes; 998 cursor->offset += bytes; 999 /* offset of first page in pagelist is always 0 */ 1000 if (!bytes || cursor->offset & ~PAGE_MASK) 1001 return false; /* more bytes to process in the current page */ 1002 1003 /* Move on to the next page */ 1004 1005 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1006 cursor->page = list_entry_next(cursor->page, lru); 1007 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1008 1009 return true; 1010 } 1011 1012 /* 1013 * Message data is handled (sent or received) in pieces, where each 1014 * piece resides on a single page. The network layer might not 1015 * consume an entire piece at once. A data item's cursor keeps 1016 * track of which piece is next to process and how much remains to 1017 * be processed in that piece. It also tracks whether the current 1018 * piece is the last one in the data item. 1019 */ 1020 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1021 { 1022 size_t length = cursor->total_resid; 1023 1024 switch (cursor->data->type) { 1025 case CEPH_MSG_DATA_PAGELIST: 1026 ceph_msg_data_pagelist_cursor_init(cursor, length); 1027 break; 1028 case CEPH_MSG_DATA_PAGES: 1029 ceph_msg_data_pages_cursor_init(cursor, length); 1030 break; 1031 #ifdef CONFIG_BLOCK 1032 case CEPH_MSG_DATA_BIO: 1033 ceph_msg_data_bio_cursor_init(cursor, length); 1034 break; 1035 #endif /* CONFIG_BLOCK */ 1036 case CEPH_MSG_DATA_NONE: 1037 default: 1038 /* BUG(); */ 1039 break; 1040 } 1041 cursor->need_crc = true; 1042 } 1043 1044 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1045 { 1046 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1047 struct ceph_msg_data *data; 1048 1049 BUG_ON(!length); 1050 BUG_ON(length > msg->data_length); 1051 BUG_ON(list_empty(&msg->data)); 1052 1053 cursor->data_head = &msg->data; 1054 cursor->total_resid = length; 1055 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1056 cursor->data = data; 1057 1058 __ceph_msg_data_cursor_init(cursor); 1059 } 1060 1061 /* 1062 * Return the page containing the next piece to process for a given 1063 * data item, and supply the page offset and length of that piece. 1064 * Indicate whether this is the last piece in this data item. 1065 */ 1066 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1067 size_t *page_offset, size_t *length, 1068 bool *last_piece) 1069 { 1070 struct page *page; 1071 1072 switch (cursor->data->type) { 1073 case CEPH_MSG_DATA_PAGELIST: 1074 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1075 break; 1076 case CEPH_MSG_DATA_PAGES: 1077 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1078 break; 1079 #ifdef CONFIG_BLOCK 1080 case CEPH_MSG_DATA_BIO: 1081 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1082 break; 1083 #endif /* CONFIG_BLOCK */ 1084 case CEPH_MSG_DATA_NONE: 1085 default: 1086 page = NULL; 1087 break; 1088 } 1089 BUG_ON(!page); 1090 BUG_ON(*page_offset + *length > PAGE_SIZE); 1091 BUG_ON(!*length); 1092 if (last_piece) 1093 *last_piece = cursor->last_piece; 1094 1095 return page; 1096 } 1097 1098 /* 1099 * Returns true if the result moves the cursor on to the next piece 1100 * of the data item. 1101 */ 1102 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1103 size_t bytes) 1104 { 1105 bool new_piece; 1106 1107 BUG_ON(bytes > cursor->resid); 1108 switch (cursor->data->type) { 1109 case CEPH_MSG_DATA_PAGELIST: 1110 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1111 break; 1112 case CEPH_MSG_DATA_PAGES: 1113 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1114 break; 1115 #ifdef CONFIG_BLOCK 1116 case CEPH_MSG_DATA_BIO: 1117 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1118 break; 1119 #endif /* CONFIG_BLOCK */ 1120 case CEPH_MSG_DATA_NONE: 1121 default: 1122 BUG(); 1123 break; 1124 } 1125 cursor->total_resid -= bytes; 1126 1127 if (!cursor->resid && cursor->total_resid) { 1128 WARN_ON(!cursor->last_piece); 1129 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1130 cursor->data = list_entry_next(cursor->data, links); 1131 __ceph_msg_data_cursor_init(cursor); 1132 new_piece = true; 1133 } 1134 cursor->need_crc = new_piece; 1135 1136 return new_piece; 1137 } 1138 1139 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1140 { 1141 BUG_ON(!msg); 1142 BUG_ON(!data_len); 1143 1144 /* Initialize data cursor */ 1145 1146 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1147 } 1148 1149 /* 1150 * Prepare footer for currently outgoing message, and finish things 1151 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1152 */ 1153 static void prepare_write_message_footer(struct ceph_connection *con) 1154 { 1155 struct ceph_msg *m = con->out_msg; 1156 int v = con->out_kvec_left; 1157 1158 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1159 1160 dout("prepare_write_message_footer %p\n", con); 1161 con->out_kvec_is_msg = true; 1162 con->out_kvec[v].iov_base = &m->footer; 1163 con->out_kvec[v].iov_len = sizeof(m->footer); 1164 con->out_kvec_bytes += sizeof(m->footer); 1165 con->out_kvec_left++; 1166 con->out_more = m->more_to_follow; 1167 con->out_msg_done = true; 1168 } 1169 1170 /* 1171 * Prepare headers for the next outgoing message. 1172 */ 1173 static void prepare_write_message(struct ceph_connection *con) 1174 { 1175 struct ceph_msg *m; 1176 u32 crc; 1177 1178 con_out_kvec_reset(con); 1179 con->out_kvec_is_msg = true; 1180 con->out_msg_done = false; 1181 1182 /* Sneak an ack in there first? If we can get it into the same 1183 * TCP packet that's a good thing. */ 1184 if (con->in_seq > con->in_seq_acked) { 1185 con->in_seq_acked = con->in_seq; 1186 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1187 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1188 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1189 &con->out_temp_ack); 1190 } 1191 1192 BUG_ON(list_empty(&con->out_queue)); 1193 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1194 con->out_msg = m; 1195 BUG_ON(m->con != con); 1196 1197 /* put message on sent list */ 1198 ceph_msg_get(m); 1199 list_move_tail(&m->list_head, &con->out_sent); 1200 1201 /* 1202 * only assign outgoing seq # if we haven't sent this message 1203 * yet. if it is requeued, resend with it's original seq. 1204 */ 1205 if (m->needs_out_seq) { 1206 m->hdr.seq = cpu_to_le64(++con->out_seq); 1207 m->needs_out_seq = false; 1208 } 1209 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1210 1211 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1212 m, con->out_seq, le16_to_cpu(m->hdr.type), 1213 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1214 m->data_length); 1215 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1216 1217 /* tag + hdr + front + middle */ 1218 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1219 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1220 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1221 1222 if (m->middle) 1223 con_out_kvec_add(con, m->middle->vec.iov_len, 1224 m->middle->vec.iov_base); 1225 1226 /* fill in crc (except data pages), footer */ 1227 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1228 con->out_msg->hdr.crc = cpu_to_le32(crc); 1229 con->out_msg->footer.flags = 0; 1230 1231 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1232 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1233 if (m->middle) { 1234 crc = crc32c(0, m->middle->vec.iov_base, 1235 m->middle->vec.iov_len); 1236 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1237 } else 1238 con->out_msg->footer.middle_crc = 0; 1239 dout("%s front_crc %u middle_crc %u\n", __func__, 1240 le32_to_cpu(con->out_msg->footer.front_crc), 1241 le32_to_cpu(con->out_msg->footer.middle_crc)); 1242 1243 /* is there a data payload? */ 1244 con->out_msg->footer.data_crc = 0; 1245 if (m->data_length) { 1246 prepare_message_data(con->out_msg, m->data_length); 1247 con->out_more = 1; /* data + footer will follow */ 1248 } else { 1249 /* no, queue up footer too and be done */ 1250 prepare_write_message_footer(con); 1251 } 1252 1253 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1254 } 1255 1256 /* 1257 * Prepare an ack. 1258 */ 1259 static void prepare_write_ack(struct ceph_connection *con) 1260 { 1261 dout("prepare_write_ack %p %llu -> %llu\n", con, 1262 con->in_seq_acked, con->in_seq); 1263 con->in_seq_acked = con->in_seq; 1264 1265 con_out_kvec_reset(con); 1266 1267 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1268 1269 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1270 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1271 &con->out_temp_ack); 1272 1273 con->out_more = 1; /* more will follow.. eventually.. */ 1274 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1275 } 1276 1277 /* 1278 * Prepare to share the seq during handshake 1279 */ 1280 static void prepare_write_seq(struct ceph_connection *con) 1281 { 1282 dout("prepare_write_seq %p %llu -> %llu\n", con, 1283 con->in_seq_acked, con->in_seq); 1284 con->in_seq_acked = con->in_seq; 1285 1286 con_out_kvec_reset(con); 1287 1288 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1289 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1290 &con->out_temp_ack); 1291 1292 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1293 } 1294 1295 /* 1296 * Prepare to write keepalive byte. 1297 */ 1298 static void prepare_write_keepalive(struct ceph_connection *con) 1299 { 1300 dout("prepare_write_keepalive %p\n", con); 1301 con_out_kvec_reset(con); 1302 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1303 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1304 } 1305 1306 /* 1307 * Connection negotiation. 1308 */ 1309 1310 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1311 int *auth_proto) 1312 { 1313 struct ceph_auth_handshake *auth; 1314 1315 if (!con->ops->get_authorizer) { 1316 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1317 con->out_connect.authorizer_len = 0; 1318 return NULL; 1319 } 1320 1321 /* Can't hold the mutex while getting authorizer */ 1322 mutex_unlock(&con->mutex); 1323 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1324 mutex_lock(&con->mutex); 1325 1326 if (IS_ERR(auth)) 1327 return auth; 1328 if (con->state != CON_STATE_NEGOTIATING) 1329 return ERR_PTR(-EAGAIN); 1330 1331 con->auth_reply_buf = auth->authorizer_reply_buf; 1332 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1333 return auth; 1334 } 1335 1336 /* 1337 * We connected to a peer and are saying hello. 1338 */ 1339 static void prepare_write_banner(struct ceph_connection *con) 1340 { 1341 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1342 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1343 &con->msgr->my_enc_addr); 1344 1345 con->out_more = 0; 1346 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1347 } 1348 1349 static int prepare_write_connect(struct ceph_connection *con) 1350 { 1351 unsigned int global_seq = get_global_seq(con->msgr, 0); 1352 int proto; 1353 int auth_proto; 1354 struct ceph_auth_handshake *auth; 1355 1356 switch (con->peer_name.type) { 1357 case CEPH_ENTITY_TYPE_MON: 1358 proto = CEPH_MONC_PROTOCOL; 1359 break; 1360 case CEPH_ENTITY_TYPE_OSD: 1361 proto = CEPH_OSDC_PROTOCOL; 1362 break; 1363 case CEPH_ENTITY_TYPE_MDS: 1364 proto = CEPH_MDSC_PROTOCOL; 1365 break; 1366 default: 1367 BUG(); 1368 } 1369 1370 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1371 con->connect_seq, global_seq, proto); 1372 1373 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1374 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1375 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1376 con->out_connect.global_seq = cpu_to_le32(global_seq); 1377 con->out_connect.protocol_version = cpu_to_le32(proto); 1378 con->out_connect.flags = 0; 1379 1380 auth_proto = CEPH_AUTH_UNKNOWN; 1381 auth = get_connect_authorizer(con, &auth_proto); 1382 if (IS_ERR(auth)) 1383 return PTR_ERR(auth); 1384 1385 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1386 con->out_connect.authorizer_len = auth ? 1387 cpu_to_le32(auth->authorizer_buf_len) : 0; 1388 1389 con_out_kvec_add(con, sizeof (con->out_connect), 1390 &con->out_connect); 1391 if (auth && auth->authorizer_buf_len) 1392 con_out_kvec_add(con, auth->authorizer_buf_len, 1393 auth->authorizer_buf); 1394 1395 con->out_more = 0; 1396 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1397 1398 return 0; 1399 } 1400 1401 /* 1402 * write as much of pending kvecs to the socket as we can. 1403 * 1 -> done 1404 * 0 -> socket full, but more to do 1405 * <0 -> error 1406 */ 1407 static int write_partial_kvec(struct ceph_connection *con) 1408 { 1409 int ret; 1410 1411 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1412 while (con->out_kvec_bytes > 0) { 1413 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1414 con->out_kvec_left, con->out_kvec_bytes, 1415 con->out_more); 1416 if (ret <= 0) 1417 goto out; 1418 con->out_kvec_bytes -= ret; 1419 if (con->out_kvec_bytes == 0) 1420 break; /* done */ 1421 1422 /* account for full iov entries consumed */ 1423 while (ret >= con->out_kvec_cur->iov_len) { 1424 BUG_ON(!con->out_kvec_left); 1425 ret -= con->out_kvec_cur->iov_len; 1426 con->out_kvec_cur++; 1427 con->out_kvec_left--; 1428 } 1429 /* and for a partially-consumed entry */ 1430 if (ret) { 1431 con->out_kvec_cur->iov_len -= ret; 1432 con->out_kvec_cur->iov_base += ret; 1433 } 1434 } 1435 con->out_kvec_left = 0; 1436 con->out_kvec_is_msg = false; 1437 ret = 1; 1438 out: 1439 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1440 con->out_kvec_bytes, con->out_kvec_left, ret); 1441 return ret; /* done! */ 1442 } 1443 1444 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1445 unsigned int page_offset, 1446 unsigned int length) 1447 { 1448 char *kaddr; 1449 1450 kaddr = kmap(page); 1451 BUG_ON(kaddr == NULL); 1452 crc = crc32c(crc, kaddr + page_offset, length); 1453 kunmap(page); 1454 1455 return crc; 1456 } 1457 /* 1458 * Write as much message data payload as we can. If we finish, queue 1459 * up the footer. 1460 * 1 -> done, footer is now queued in out_kvec[]. 1461 * 0 -> socket full, but more to do 1462 * <0 -> error 1463 */ 1464 static int write_partial_message_data(struct ceph_connection *con) 1465 { 1466 struct ceph_msg *msg = con->out_msg; 1467 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1468 bool do_datacrc = !con->msgr->nocrc; 1469 u32 crc; 1470 1471 dout("%s %p msg %p\n", __func__, con, msg); 1472 1473 if (list_empty(&msg->data)) 1474 return -EINVAL; 1475 1476 /* 1477 * Iterate through each page that contains data to be 1478 * written, and send as much as possible for each. 1479 * 1480 * If we are calculating the data crc (the default), we will 1481 * need to map the page. If we have no pages, they have 1482 * been revoked, so use the zero page. 1483 */ 1484 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1485 while (cursor->resid) { 1486 struct page *page; 1487 size_t page_offset; 1488 size_t length; 1489 bool last_piece; 1490 bool need_crc; 1491 int ret; 1492 1493 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1494 &last_piece); 1495 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1496 length, last_piece); 1497 if (ret <= 0) { 1498 if (do_datacrc) 1499 msg->footer.data_crc = cpu_to_le32(crc); 1500 1501 return ret; 1502 } 1503 if (do_datacrc && cursor->need_crc) 1504 crc = ceph_crc32c_page(crc, page, page_offset, length); 1505 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1506 } 1507 1508 dout("%s %p msg %p done\n", __func__, con, msg); 1509 1510 /* prepare and queue up footer, too */ 1511 if (do_datacrc) 1512 msg->footer.data_crc = cpu_to_le32(crc); 1513 else 1514 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1515 con_out_kvec_reset(con); 1516 prepare_write_message_footer(con); 1517 1518 return 1; /* must return > 0 to indicate success */ 1519 } 1520 1521 /* 1522 * write some zeros 1523 */ 1524 static int write_partial_skip(struct ceph_connection *con) 1525 { 1526 int ret; 1527 1528 while (con->out_skip > 0) { 1529 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1530 1531 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1532 if (ret <= 0) 1533 goto out; 1534 con->out_skip -= ret; 1535 } 1536 ret = 1; 1537 out: 1538 return ret; 1539 } 1540 1541 /* 1542 * Prepare to read connection handshake, or an ack. 1543 */ 1544 static void prepare_read_banner(struct ceph_connection *con) 1545 { 1546 dout("prepare_read_banner %p\n", con); 1547 con->in_base_pos = 0; 1548 } 1549 1550 static void prepare_read_connect(struct ceph_connection *con) 1551 { 1552 dout("prepare_read_connect %p\n", con); 1553 con->in_base_pos = 0; 1554 } 1555 1556 static void prepare_read_ack(struct ceph_connection *con) 1557 { 1558 dout("prepare_read_ack %p\n", con); 1559 con->in_base_pos = 0; 1560 } 1561 1562 static void prepare_read_seq(struct ceph_connection *con) 1563 { 1564 dout("prepare_read_seq %p\n", con); 1565 con->in_base_pos = 0; 1566 con->in_tag = CEPH_MSGR_TAG_SEQ; 1567 } 1568 1569 static void prepare_read_tag(struct ceph_connection *con) 1570 { 1571 dout("prepare_read_tag %p\n", con); 1572 con->in_base_pos = 0; 1573 con->in_tag = CEPH_MSGR_TAG_READY; 1574 } 1575 1576 /* 1577 * Prepare to read a message. 1578 */ 1579 static int prepare_read_message(struct ceph_connection *con) 1580 { 1581 dout("prepare_read_message %p\n", con); 1582 BUG_ON(con->in_msg != NULL); 1583 con->in_base_pos = 0; 1584 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1585 return 0; 1586 } 1587 1588 1589 static int read_partial(struct ceph_connection *con, 1590 int end, int size, void *object) 1591 { 1592 while (con->in_base_pos < end) { 1593 int left = end - con->in_base_pos; 1594 int have = size - left; 1595 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1596 if (ret <= 0) 1597 return ret; 1598 con->in_base_pos += ret; 1599 } 1600 return 1; 1601 } 1602 1603 1604 /* 1605 * Read all or part of the connect-side handshake on a new connection 1606 */ 1607 static int read_partial_banner(struct ceph_connection *con) 1608 { 1609 int size; 1610 int end; 1611 int ret; 1612 1613 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1614 1615 /* peer's banner */ 1616 size = strlen(CEPH_BANNER); 1617 end = size; 1618 ret = read_partial(con, end, size, con->in_banner); 1619 if (ret <= 0) 1620 goto out; 1621 1622 size = sizeof (con->actual_peer_addr); 1623 end += size; 1624 ret = read_partial(con, end, size, &con->actual_peer_addr); 1625 if (ret <= 0) 1626 goto out; 1627 1628 size = sizeof (con->peer_addr_for_me); 1629 end += size; 1630 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1631 if (ret <= 0) 1632 goto out; 1633 1634 out: 1635 return ret; 1636 } 1637 1638 static int read_partial_connect(struct ceph_connection *con) 1639 { 1640 int size; 1641 int end; 1642 int ret; 1643 1644 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1645 1646 size = sizeof (con->in_reply); 1647 end = size; 1648 ret = read_partial(con, end, size, &con->in_reply); 1649 if (ret <= 0) 1650 goto out; 1651 1652 size = le32_to_cpu(con->in_reply.authorizer_len); 1653 end += size; 1654 ret = read_partial(con, end, size, con->auth_reply_buf); 1655 if (ret <= 0) 1656 goto out; 1657 1658 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1659 con, (int)con->in_reply.tag, 1660 le32_to_cpu(con->in_reply.connect_seq), 1661 le32_to_cpu(con->in_reply.global_seq)); 1662 out: 1663 return ret; 1664 1665 } 1666 1667 /* 1668 * Verify the hello banner looks okay. 1669 */ 1670 static int verify_hello(struct ceph_connection *con) 1671 { 1672 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1673 pr_err("connect to %s got bad banner\n", 1674 ceph_pr_addr(&con->peer_addr.in_addr)); 1675 con->error_msg = "protocol error, bad banner"; 1676 return -1; 1677 } 1678 return 0; 1679 } 1680 1681 static bool addr_is_blank(struct sockaddr_storage *ss) 1682 { 1683 switch (ss->ss_family) { 1684 case AF_INET: 1685 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1686 case AF_INET6: 1687 return 1688 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1689 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1690 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1691 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1692 } 1693 return false; 1694 } 1695 1696 static int addr_port(struct sockaddr_storage *ss) 1697 { 1698 switch (ss->ss_family) { 1699 case AF_INET: 1700 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1701 case AF_INET6: 1702 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1703 } 1704 return 0; 1705 } 1706 1707 static void addr_set_port(struct sockaddr_storage *ss, int p) 1708 { 1709 switch (ss->ss_family) { 1710 case AF_INET: 1711 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1712 break; 1713 case AF_INET6: 1714 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1715 break; 1716 } 1717 } 1718 1719 /* 1720 * Unlike other *_pton function semantics, zero indicates success. 1721 */ 1722 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1723 char delim, const char **ipend) 1724 { 1725 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1726 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1727 1728 memset(ss, 0, sizeof(*ss)); 1729 1730 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1731 ss->ss_family = AF_INET; 1732 return 0; 1733 } 1734 1735 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1736 ss->ss_family = AF_INET6; 1737 return 0; 1738 } 1739 1740 return -EINVAL; 1741 } 1742 1743 /* 1744 * Extract hostname string and resolve using kernel DNS facility. 1745 */ 1746 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1747 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1748 struct sockaddr_storage *ss, char delim, const char **ipend) 1749 { 1750 const char *end, *delim_p; 1751 char *colon_p, *ip_addr = NULL; 1752 int ip_len, ret; 1753 1754 /* 1755 * The end of the hostname occurs immediately preceding the delimiter or 1756 * the port marker (':') where the delimiter takes precedence. 1757 */ 1758 delim_p = memchr(name, delim, namelen); 1759 colon_p = memchr(name, ':', namelen); 1760 1761 if (delim_p && colon_p) 1762 end = delim_p < colon_p ? delim_p : colon_p; 1763 else if (!delim_p && colon_p) 1764 end = colon_p; 1765 else { 1766 end = delim_p; 1767 if (!end) /* case: hostname:/ */ 1768 end = name + namelen; 1769 } 1770 1771 if (end <= name) 1772 return -EINVAL; 1773 1774 /* do dns_resolve upcall */ 1775 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1776 if (ip_len > 0) 1777 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1778 else 1779 ret = -ESRCH; 1780 1781 kfree(ip_addr); 1782 1783 *ipend = end; 1784 1785 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1786 ret, ret ? "failed" : ceph_pr_addr(ss)); 1787 1788 return ret; 1789 } 1790 #else 1791 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1792 struct sockaddr_storage *ss, char delim, const char **ipend) 1793 { 1794 return -EINVAL; 1795 } 1796 #endif 1797 1798 /* 1799 * Parse a server name (IP or hostname). If a valid IP address is not found 1800 * then try to extract a hostname to resolve using userspace DNS upcall. 1801 */ 1802 static int ceph_parse_server_name(const char *name, size_t namelen, 1803 struct sockaddr_storage *ss, char delim, const char **ipend) 1804 { 1805 int ret; 1806 1807 ret = ceph_pton(name, namelen, ss, delim, ipend); 1808 if (ret) 1809 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1810 1811 return ret; 1812 } 1813 1814 /* 1815 * Parse an ip[:port] list into an addr array. Use the default 1816 * monitor port if a port isn't specified. 1817 */ 1818 int ceph_parse_ips(const char *c, const char *end, 1819 struct ceph_entity_addr *addr, 1820 int max_count, int *count) 1821 { 1822 int i, ret = -EINVAL; 1823 const char *p = c; 1824 1825 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1826 for (i = 0; i < max_count; i++) { 1827 const char *ipend; 1828 struct sockaddr_storage *ss = &addr[i].in_addr; 1829 int port; 1830 char delim = ','; 1831 1832 if (*p == '[') { 1833 delim = ']'; 1834 p++; 1835 } 1836 1837 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1838 if (ret) 1839 goto bad; 1840 ret = -EINVAL; 1841 1842 p = ipend; 1843 1844 if (delim == ']') { 1845 if (*p != ']') { 1846 dout("missing matching ']'\n"); 1847 goto bad; 1848 } 1849 p++; 1850 } 1851 1852 /* port? */ 1853 if (p < end && *p == ':') { 1854 port = 0; 1855 p++; 1856 while (p < end && *p >= '0' && *p <= '9') { 1857 port = (port * 10) + (*p - '0'); 1858 p++; 1859 } 1860 if (port == 0) 1861 port = CEPH_MON_PORT; 1862 else if (port > 65535) 1863 goto bad; 1864 } else { 1865 port = CEPH_MON_PORT; 1866 } 1867 1868 addr_set_port(ss, port); 1869 1870 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1871 1872 if (p == end) 1873 break; 1874 if (*p != ',') 1875 goto bad; 1876 p++; 1877 } 1878 1879 if (p != end) 1880 goto bad; 1881 1882 if (count) 1883 *count = i + 1; 1884 return 0; 1885 1886 bad: 1887 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1888 return ret; 1889 } 1890 EXPORT_SYMBOL(ceph_parse_ips); 1891 1892 static int process_banner(struct ceph_connection *con) 1893 { 1894 dout("process_banner on %p\n", con); 1895 1896 if (verify_hello(con) < 0) 1897 return -1; 1898 1899 ceph_decode_addr(&con->actual_peer_addr); 1900 ceph_decode_addr(&con->peer_addr_for_me); 1901 1902 /* 1903 * Make sure the other end is who we wanted. note that the other 1904 * end may not yet know their ip address, so if it's 0.0.0.0, give 1905 * them the benefit of the doubt. 1906 */ 1907 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1908 sizeof(con->peer_addr)) != 0 && 1909 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1910 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1911 pr_warning("wrong peer, want %s/%d, got %s/%d\n", 1912 ceph_pr_addr(&con->peer_addr.in_addr), 1913 (int)le32_to_cpu(con->peer_addr.nonce), 1914 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1915 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1916 con->error_msg = "wrong peer at address"; 1917 return -1; 1918 } 1919 1920 /* 1921 * did we learn our address? 1922 */ 1923 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1924 int port = addr_port(&con->msgr->inst.addr.in_addr); 1925 1926 memcpy(&con->msgr->inst.addr.in_addr, 1927 &con->peer_addr_for_me.in_addr, 1928 sizeof(con->peer_addr_for_me.in_addr)); 1929 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1930 encode_my_addr(con->msgr); 1931 dout("process_banner learned my addr is %s\n", 1932 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1933 } 1934 1935 return 0; 1936 } 1937 1938 static int process_connect(struct ceph_connection *con) 1939 { 1940 u64 sup_feat = con->msgr->supported_features; 1941 u64 req_feat = con->msgr->required_features; 1942 u64 server_feat = ceph_sanitize_features( 1943 le64_to_cpu(con->in_reply.features)); 1944 int ret; 1945 1946 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1947 1948 switch (con->in_reply.tag) { 1949 case CEPH_MSGR_TAG_FEATURES: 1950 pr_err("%s%lld %s feature set mismatch," 1951 " my %llx < server's %llx, missing %llx\n", 1952 ENTITY_NAME(con->peer_name), 1953 ceph_pr_addr(&con->peer_addr.in_addr), 1954 sup_feat, server_feat, server_feat & ~sup_feat); 1955 con->error_msg = "missing required protocol features"; 1956 reset_connection(con); 1957 return -1; 1958 1959 case CEPH_MSGR_TAG_BADPROTOVER: 1960 pr_err("%s%lld %s protocol version mismatch," 1961 " my %d != server's %d\n", 1962 ENTITY_NAME(con->peer_name), 1963 ceph_pr_addr(&con->peer_addr.in_addr), 1964 le32_to_cpu(con->out_connect.protocol_version), 1965 le32_to_cpu(con->in_reply.protocol_version)); 1966 con->error_msg = "protocol version mismatch"; 1967 reset_connection(con); 1968 return -1; 1969 1970 case CEPH_MSGR_TAG_BADAUTHORIZER: 1971 con->auth_retry++; 1972 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 1973 con->auth_retry); 1974 if (con->auth_retry == 2) { 1975 con->error_msg = "connect authorization failure"; 1976 return -1; 1977 } 1978 con_out_kvec_reset(con); 1979 ret = prepare_write_connect(con); 1980 if (ret < 0) 1981 return ret; 1982 prepare_read_connect(con); 1983 break; 1984 1985 case CEPH_MSGR_TAG_RESETSESSION: 1986 /* 1987 * If we connected with a large connect_seq but the peer 1988 * has no record of a session with us (no connection, or 1989 * connect_seq == 0), they will send RESETSESION to indicate 1990 * that they must have reset their session, and may have 1991 * dropped messages. 1992 */ 1993 dout("process_connect got RESET peer seq %u\n", 1994 le32_to_cpu(con->in_reply.connect_seq)); 1995 pr_err("%s%lld %s connection reset\n", 1996 ENTITY_NAME(con->peer_name), 1997 ceph_pr_addr(&con->peer_addr.in_addr)); 1998 reset_connection(con); 1999 con_out_kvec_reset(con); 2000 ret = prepare_write_connect(con); 2001 if (ret < 0) 2002 return ret; 2003 prepare_read_connect(con); 2004 2005 /* Tell ceph about it. */ 2006 mutex_unlock(&con->mutex); 2007 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2008 if (con->ops->peer_reset) 2009 con->ops->peer_reset(con); 2010 mutex_lock(&con->mutex); 2011 if (con->state != CON_STATE_NEGOTIATING) 2012 return -EAGAIN; 2013 break; 2014 2015 case CEPH_MSGR_TAG_RETRY_SESSION: 2016 /* 2017 * If we sent a smaller connect_seq than the peer has, try 2018 * again with a larger value. 2019 */ 2020 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2021 le32_to_cpu(con->out_connect.connect_seq), 2022 le32_to_cpu(con->in_reply.connect_seq)); 2023 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2024 con_out_kvec_reset(con); 2025 ret = prepare_write_connect(con); 2026 if (ret < 0) 2027 return ret; 2028 prepare_read_connect(con); 2029 break; 2030 2031 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2032 /* 2033 * If we sent a smaller global_seq than the peer has, try 2034 * again with a larger value. 2035 */ 2036 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2037 con->peer_global_seq, 2038 le32_to_cpu(con->in_reply.global_seq)); 2039 get_global_seq(con->msgr, 2040 le32_to_cpu(con->in_reply.global_seq)); 2041 con_out_kvec_reset(con); 2042 ret = prepare_write_connect(con); 2043 if (ret < 0) 2044 return ret; 2045 prepare_read_connect(con); 2046 break; 2047 2048 case CEPH_MSGR_TAG_SEQ: 2049 case CEPH_MSGR_TAG_READY: 2050 if (req_feat & ~server_feat) { 2051 pr_err("%s%lld %s protocol feature mismatch," 2052 " my required %llx > server's %llx, need %llx\n", 2053 ENTITY_NAME(con->peer_name), 2054 ceph_pr_addr(&con->peer_addr.in_addr), 2055 req_feat, server_feat, req_feat & ~server_feat); 2056 con->error_msg = "missing required protocol features"; 2057 reset_connection(con); 2058 return -1; 2059 } 2060 2061 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2062 con->state = CON_STATE_OPEN; 2063 con->auth_retry = 0; /* we authenticated; clear flag */ 2064 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2065 con->connect_seq++; 2066 con->peer_features = server_feat; 2067 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2068 con->peer_global_seq, 2069 le32_to_cpu(con->in_reply.connect_seq), 2070 con->connect_seq); 2071 WARN_ON(con->connect_seq != 2072 le32_to_cpu(con->in_reply.connect_seq)); 2073 2074 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2075 con_flag_set(con, CON_FLAG_LOSSYTX); 2076 2077 con->delay = 0; /* reset backoff memory */ 2078 2079 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2080 prepare_write_seq(con); 2081 prepare_read_seq(con); 2082 } else { 2083 prepare_read_tag(con); 2084 } 2085 break; 2086 2087 case CEPH_MSGR_TAG_WAIT: 2088 /* 2089 * If there is a connection race (we are opening 2090 * connections to each other), one of us may just have 2091 * to WAIT. This shouldn't happen if we are the 2092 * client. 2093 */ 2094 pr_err("process_connect got WAIT as client\n"); 2095 con->error_msg = "protocol error, got WAIT as client"; 2096 return -1; 2097 2098 default: 2099 pr_err("connect protocol error, will retry\n"); 2100 con->error_msg = "protocol error, garbage tag during connect"; 2101 return -1; 2102 } 2103 return 0; 2104 } 2105 2106 2107 /* 2108 * read (part of) an ack 2109 */ 2110 static int read_partial_ack(struct ceph_connection *con) 2111 { 2112 int size = sizeof (con->in_temp_ack); 2113 int end = size; 2114 2115 return read_partial(con, end, size, &con->in_temp_ack); 2116 } 2117 2118 /* 2119 * We can finally discard anything that's been acked. 2120 */ 2121 static void process_ack(struct ceph_connection *con) 2122 { 2123 struct ceph_msg *m; 2124 u64 ack = le64_to_cpu(con->in_temp_ack); 2125 u64 seq; 2126 2127 while (!list_empty(&con->out_sent)) { 2128 m = list_first_entry(&con->out_sent, struct ceph_msg, 2129 list_head); 2130 seq = le64_to_cpu(m->hdr.seq); 2131 if (seq > ack) 2132 break; 2133 dout("got ack for seq %llu type %d at %p\n", seq, 2134 le16_to_cpu(m->hdr.type), m); 2135 m->ack_stamp = jiffies; 2136 ceph_msg_remove(m); 2137 } 2138 prepare_read_tag(con); 2139 } 2140 2141 2142 static int read_partial_message_section(struct ceph_connection *con, 2143 struct kvec *section, 2144 unsigned int sec_len, u32 *crc) 2145 { 2146 int ret, left; 2147 2148 BUG_ON(!section); 2149 2150 while (section->iov_len < sec_len) { 2151 BUG_ON(section->iov_base == NULL); 2152 left = sec_len - section->iov_len; 2153 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2154 section->iov_len, left); 2155 if (ret <= 0) 2156 return ret; 2157 section->iov_len += ret; 2158 } 2159 if (section->iov_len == sec_len) 2160 *crc = crc32c(0, section->iov_base, section->iov_len); 2161 2162 return 1; 2163 } 2164 2165 static int read_partial_msg_data(struct ceph_connection *con) 2166 { 2167 struct ceph_msg *msg = con->in_msg; 2168 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2169 const bool do_datacrc = !con->msgr->nocrc; 2170 struct page *page; 2171 size_t page_offset; 2172 size_t length; 2173 u32 crc = 0; 2174 int ret; 2175 2176 BUG_ON(!msg); 2177 if (list_empty(&msg->data)) 2178 return -EIO; 2179 2180 if (do_datacrc) 2181 crc = con->in_data_crc; 2182 while (cursor->resid) { 2183 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2184 NULL); 2185 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2186 if (ret <= 0) { 2187 if (do_datacrc) 2188 con->in_data_crc = crc; 2189 2190 return ret; 2191 } 2192 2193 if (do_datacrc) 2194 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2195 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2196 } 2197 if (do_datacrc) 2198 con->in_data_crc = crc; 2199 2200 return 1; /* must return > 0 to indicate success */ 2201 } 2202 2203 /* 2204 * read (part of) a message. 2205 */ 2206 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2207 2208 static int read_partial_message(struct ceph_connection *con) 2209 { 2210 struct ceph_msg *m = con->in_msg; 2211 int size; 2212 int end; 2213 int ret; 2214 unsigned int front_len, middle_len, data_len; 2215 bool do_datacrc = !con->msgr->nocrc; 2216 u64 seq; 2217 u32 crc; 2218 2219 dout("read_partial_message con %p msg %p\n", con, m); 2220 2221 /* header */ 2222 size = sizeof (con->in_hdr); 2223 end = size; 2224 ret = read_partial(con, end, size, &con->in_hdr); 2225 if (ret <= 0) 2226 return ret; 2227 2228 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2229 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2230 pr_err("read_partial_message bad hdr " 2231 " crc %u != expected %u\n", 2232 crc, con->in_hdr.crc); 2233 return -EBADMSG; 2234 } 2235 2236 front_len = le32_to_cpu(con->in_hdr.front_len); 2237 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2238 return -EIO; 2239 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2240 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2241 return -EIO; 2242 data_len = le32_to_cpu(con->in_hdr.data_len); 2243 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2244 return -EIO; 2245 2246 /* verify seq# */ 2247 seq = le64_to_cpu(con->in_hdr.seq); 2248 if ((s64)seq - (s64)con->in_seq < 1) { 2249 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2250 ENTITY_NAME(con->peer_name), 2251 ceph_pr_addr(&con->peer_addr.in_addr), 2252 seq, con->in_seq + 1); 2253 con->in_base_pos = -front_len - middle_len - data_len - 2254 sizeof(m->footer); 2255 con->in_tag = CEPH_MSGR_TAG_READY; 2256 return 0; 2257 } else if ((s64)seq - (s64)con->in_seq > 1) { 2258 pr_err("read_partial_message bad seq %lld expected %lld\n", 2259 seq, con->in_seq + 1); 2260 con->error_msg = "bad message sequence # for incoming message"; 2261 return -EBADMSG; 2262 } 2263 2264 /* allocate message? */ 2265 if (!con->in_msg) { 2266 int skip = 0; 2267 2268 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2269 front_len, data_len); 2270 ret = ceph_con_in_msg_alloc(con, &skip); 2271 if (ret < 0) 2272 return ret; 2273 2274 BUG_ON(!con->in_msg ^ skip); 2275 if (con->in_msg && data_len > con->in_msg->data_length) { 2276 pr_warning("%s skipping long message (%u > %zd)\n", 2277 __func__, data_len, con->in_msg->data_length); 2278 ceph_msg_put(con->in_msg); 2279 con->in_msg = NULL; 2280 skip = 1; 2281 } 2282 if (skip) { 2283 /* skip this message */ 2284 dout("alloc_msg said skip message\n"); 2285 con->in_base_pos = -front_len - middle_len - data_len - 2286 sizeof(m->footer); 2287 con->in_tag = CEPH_MSGR_TAG_READY; 2288 con->in_seq++; 2289 return 0; 2290 } 2291 2292 BUG_ON(!con->in_msg); 2293 BUG_ON(con->in_msg->con != con); 2294 m = con->in_msg; 2295 m->front.iov_len = 0; /* haven't read it yet */ 2296 if (m->middle) 2297 m->middle->vec.iov_len = 0; 2298 2299 /* prepare for data payload, if any */ 2300 2301 if (data_len) 2302 prepare_message_data(con->in_msg, data_len); 2303 } 2304 2305 /* front */ 2306 ret = read_partial_message_section(con, &m->front, front_len, 2307 &con->in_front_crc); 2308 if (ret <= 0) 2309 return ret; 2310 2311 /* middle */ 2312 if (m->middle) { 2313 ret = read_partial_message_section(con, &m->middle->vec, 2314 middle_len, 2315 &con->in_middle_crc); 2316 if (ret <= 0) 2317 return ret; 2318 } 2319 2320 /* (page) data */ 2321 if (data_len) { 2322 ret = read_partial_msg_data(con); 2323 if (ret <= 0) 2324 return ret; 2325 } 2326 2327 /* footer */ 2328 size = sizeof (m->footer); 2329 end += size; 2330 ret = read_partial(con, end, size, &m->footer); 2331 if (ret <= 0) 2332 return ret; 2333 2334 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2335 m, front_len, m->footer.front_crc, middle_len, 2336 m->footer.middle_crc, data_len, m->footer.data_crc); 2337 2338 /* crc ok? */ 2339 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2340 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2341 m, con->in_front_crc, m->footer.front_crc); 2342 return -EBADMSG; 2343 } 2344 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2345 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2346 m, con->in_middle_crc, m->footer.middle_crc); 2347 return -EBADMSG; 2348 } 2349 if (do_datacrc && 2350 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2351 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2352 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2353 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2354 return -EBADMSG; 2355 } 2356 2357 return 1; /* done! */ 2358 } 2359 2360 /* 2361 * Process message. This happens in the worker thread. The callback should 2362 * be careful not to do anything that waits on other incoming messages or it 2363 * may deadlock. 2364 */ 2365 static void process_message(struct ceph_connection *con) 2366 { 2367 struct ceph_msg *msg; 2368 2369 BUG_ON(con->in_msg->con != con); 2370 con->in_msg->con = NULL; 2371 msg = con->in_msg; 2372 con->in_msg = NULL; 2373 con->ops->put(con); 2374 2375 /* if first message, set peer_name */ 2376 if (con->peer_name.type == 0) 2377 con->peer_name = msg->hdr.src; 2378 2379 con->in_seq++; 2380 mutex_unlock(&con->mutex); 2381 2382 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2383 msg, le64_to_cpu(msg->hdr.seq), 2384 ENTITY_NAME(msg->hdr.src), 2385 le16_to_cpu(msg->hdr.type), 2386 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2387 le32_to_cpu(msg->hdr.front_len), 2388 le32_to_cpu(msg->hdr.data_len), 2389 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2390 con->ops->dispatch(con, msg); 2391 2392 mutex_lock(&con->mutex); 2393 } 2394 2395 2396 /* 2397 * Write something to the socket. Called in a worker thread when the 2398 * socket appears to be writeable and we have something ready to send. 2399 */ 2400 static int try_write(struct ceph_connection *con) 2401 { 2402 int ret = 1; 2403 2404 dout("try_write start %p state %lu\n", con, con->state); 2405 2406 more: 2407 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2408 2409 /* open the socket first? */ 2410 if (con->state == CON_STATE_PREOPEN) { 2411 BUG_ON(con->sock); 2412 con->state = CON_STATE_CONNECTING; 2413 2414 con_out_kvec_reset(con); 2415 prepare_write_banner(con); 2416 prepare_read_banner(con); 2417 2418 BUG_ON(con->in_msg); 2419 con->in_tag = CEPH_MSGR_TAG_READY; 2420 dout("try_write initiating connect on %p new state %lu\n", 2421 con, con->state); 2422 ret = ceph_tcp_connect(con); 2423 if (ret < 0) { 2424 con->error_msg = "connect error"; 2425 goto out; 2426 } 2427 } 2428 2429 more_kvec: 2430 /* kvec data queued? */ 2431 if (con->out_skip) { 2432 ret = write_partial_skip(con); 2433 if (ret <= 0) 2434 goto out; 2435 } 2436 if (con->out_kvec_left) { 2437 ret = write_partial_kvec(con); 2438 if (ret <= 0) 2439 goto out; 2440 } 2441 2442 /* msg pages? */ 2443 if (con->out_msg) { 2444 if (con->out_msg_done) { 2445 ceph_msg_put(con->out_msg); 2446 con->out_msg = NULL; /* we're done with this one */ 2447 goto do_next; 2448 } 2449 2450 ret = write_partial_message_data(con); 2451 if (ret == 1) 2452 goto more_kvec; /* we need to send the footer, too! */ 2453 if (ret == 0) 2454 goto out; 2455 if (ret < 0) { 2456 dout("try_write write_partial_message_data err %d\n", 2457 ret); 2458 goto out; 2459 } 2460 } 2461 2462 do_next: 2463 if (con->state == CON_STATE_OPEN) { 2464 /* is anything else pending? */ 2465 if (!list_empty(&con->out_queue)) { 2466 prepare_write_message(con); 2467 goto more; 2468 } 2469 if (con->in_seq > con->in_seq_acked) { 2470 prepare_write_ack(con); 2471 goto more; 2472 } 2473 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2474 prepare_write_keepalive(con); 2475 goto more; 2476 } 2477 } 2478 2479 /* Nothing to do! */ 2480 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2481 dout("try_write nothing else to write.\n"); 2482 ret = 0; 2483 out: 2484 dout("try_write done on %p ret %d\n", con, ret); 2485 return ret; 2486 } 2487 2488 2489 2490 /* 2491 * Read what we can from the socket. 2492 */ 2493 static int try_read(struct ceph_connection *con) 2494 { 2495 int ret = -1; 2496 2497 more: 2498 dout("try_read start on %p state %lu\n", con, con->state); 2499 if (con->state != CON_STATE_CONNECTING && 2500 con->state != CON_STATE_NEGOTIATING && 2501 con->state != CON_STATE_OPEN) 2502 return 0; 2503 2504 BUG_ON(!con->sock); 2505 2506 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2507 con->in_base_pos); 2508 2509 if (con->state == CON_STATE_CONNECTING) { 2510 dout("try_read connecting\n"); 2511 ret = read_partial_banner(con); 2512 if (ret <= 0) 2513 goto out; 2514 ret = process_banner(con); 2515 if (ret < 0) 2516 goto out; 2517 2518 con->state = CON_STATE_NEGOTIATING; 2519 2520 /* 2521 * Received banner is good, exchange connection info. 2522 * Do not reset out_kvec, as sending our banner raced 2523 * with receiving peer banner after connect completed. 2524 */ 2525 ret = prepare_write_connect(con); 2526 if (ret < 0) 2527 goto out; 2528 prepare_read_connect(con); 2529 2530 /* Send connection info before awaiting response */ 2531 goto out; 2532 } 2533 2534 if (con->state == CON_STATE_NEGOTIATING) { 2535 dout("try_read negotiating\n"); 2536 ret = read_partial_connect(con); 2537 if (ret <= 0) 2538 goto out; 2539 ret = process_connect(con); 2540 if (ret < 0) 2541 goto out; 2542 goto more; 2543 } 2544 2545 WARN_ON(con->state != CON_STATE_OPEN); 2546 2547 if (con->in_base_pos < 0) { 2548 /* 2549 * skipping + discarding content. 2550 * 2551 * FIXME: there must be a better way to do this! 2552 */ 2553 static char buf[SKIP_BUF_SIZE]; 2554 int skip = min((int) sizeof (buf), -con->in_base_pos); 2555 2556 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2557 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2558 if (ret <= 0) 2559 goto out; 2560 con->in_base_pos += ret; 2561 if (con->in_base_pos) 2562 goto more; 2563 } 2564 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2565 /* 2566 * what's next? 2567 */ 2568 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2569 if (ret <= 0) 2570 goto out; 2571 dout("try_read got tag %d\n", (int)con->in_tag); 2572 switch (con->in_tag) { 2573 case CEPH_MSGR_TAG_MSG: 2574 prepare_read_message(con); 2575 break; 2576 case CEPH_MSGR_TAG_ACK: 2577 prepare_read_ack(con); 2578 break; 2579 case CEPH_MSGR_TAG_CLOSE: 2580 con_close_socket(con); 2581 con->state = CON_STATE_CLOSED; 2582 goto out; 2583 default: 2584 goto bad_tag; 2585 } 2586 } 2587 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2588 ret = read_partial_message(con); 2589 if (ret <= 0) { 2590 switch (ret) { 2591 case -EBADMSG: 2592 con->error_msg = "bad crc"; 2593 ret = -EIO; 2594 break; 2595 case -EIO: 2596 con->error_msg = "io error"; 2597 break; 2598 } 2599 goto out; 2600 } 2601 if (con->in_tag == CEPH_MSGR_TAG_READY) 2602 goto more; 2603 process_message(con); 2604 if (con->state == CON_STATE_OPEN) 2605 prepare_read_tag(con); 2606 goto more; 2607 } 2608 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2609 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2610 /* 2611 * the final handshake seq exchange is semantically 2612 * equivalent to an ACK 2613 */ 2614 ret = read_partial_ack(con); 2615 if (ret <= 0) 2616 goto out; 2617 process_ack(con); 2618 goto more; 2619 } 2620 2621 out: 2622 dout("try_read done on %p ret %d\n", con, ret); 2623 return ret; 2624 2625 bad_tag: 2626 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2627 con->error_msg = "protocol error, garbage tag"; 2628 ret = -1; 2629 goto out; 2630 } 2631 2632 2633 /* 2634 * Atomically queue work on a connection after the specified delay. 2635 * Bump @con reference to avoid races with connection teardown. 2636 * Returns 0 if work was queued, or an error code otherwise. 2637 */ 2638 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2639 { 2640 if (!con->ops->get(con)) { 2641 dout("%s %p ref count 0\n", __func__, con); 2642 2643 return -ENOENT; 2644 } 2645 2646 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2647 dout("%s %p - already queued\n", __func__, con); 2648 con->ops->put(con); 2649 2650 return -EBUSY; 2651 } 2652 2653 dout("%s %p %lu\n", __func__, con, delay); 2654 2655 return 0; 2656 } 2657 2658 static void queue_con(struct ceph_connection *con) 2659 { 2660 (void) queue_con_delay(con, 0); 2661 } 2662 2663 static bool con_sock_closed(struct ceph_connection *con) 2664 { 2665 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2666 return false; 2667 2668 #define CASE(x) \ 2669 case CON_STATE_ ## x: \ 2670 con->error_msg = "socket closed (con state " #x ")"; \ 2671 break; 2672 2673 switch (con->state) { 2674 CASE(CLOSED); 2675 CASE(PREOPEN); 2676 CASE(CONNECTING); 2677 CASE(NEGOTIATING); 2678 CASE(OPEN); 2679 CASE(STANDBY); 2680 default: 2681 pr_warning("%s con %p unrecognized state %lu\n", 2682 __func__, con, con->state); 2683 con->error_msg = "unrecognized con state"; 2684 BUG(); 2685 break; 2686 } 2687 #undef CASE 2688 2689 return true; 2690 } 2691 2692 static bool con_backoff(struct ceph_connection *con) 2693 { 2694 int ret; 2695 2696 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2697 return false; 2698 2699 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2700 if (ret) { 2701 dout("%s: con %p FAILED to back off %lu\n", __func__, 2702 con, con->delay); 2703 BUG_ON(ret == -ENOENT); 2704 con_flag_set(con, CON_FLAG_BACKOFF); 2705 } 2706 2707 return true; 2708 } 2709 2710 /* Finish fault handling; con->mutex must *not* be held here */ 2711 2712 static void con_fault_finish(struct ceph_connection *con) 2713 { 2714 /* 2715 * in case we faulted due to authentication, invalidate our 2716 * current tickets so that we can get new ones. 2717 */ 2718 if (con->auth_retry && con->ops->invalidate_authorizer) { 2719 dout("calling invalidate_authorizer()\n"); 2720 con->ops->invalidate_authorizer(con); 2721 } 2722 2723 if (con->ops->fault) 2724 con->ops->fault(con); 2725 } 2726 2727 /* 2728 * Do some work on a connection. Drop a connection ref when we're done. 2729 */ 2730 static void con_work(struct work_struct *work) 2731 { 2732 struct ceph_connection *con = container_of(work, struct ceph_connection, 2733 work.work); 2734 bool fault; 2735 2736 mutex_lock(&con->mutex); 2737 while (true) { 2738 int ret; 2739 2740 if ((fault = con_sock_closed(con))) { 2741 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2742 break; 2743 } 2744 if (con_backoff(con)) { 2745 dout("%s: con %p BACKOFF\n", __func__, con); 2746 break; 2747 } 2748 if (con->state == CON_STATE_STANDBY) { 2749 dout("%s: con %p STANDBY\n", __func__, con); 2750 break; 2751 } 2752 if (con->state == CON_STATE_CLOSED) { 2753 dout("%s: con %p CLOSED\n", __func__, con); 2754 BUG_ON(con->sock); 2755 break; 2756 } 2757 if (con->state == CON_STATE_PREOPEN) { 2758 dout("%s: con %p PREOPEN\n", __func__, con); 2759 BUG_ON(con->sock); 2760 } 2761 2762 ret = try_read(con); 2763 if (ret < 0) { 2764 if (ret == -EAGAIN) 2765 continue; 2766 con->error_msg = "socket error on read"; 2767 fault = true; 2768 break; 2769 } 2770 2771 ret = try_write(con); 2772 if (ret < 0) { 2773 if (ret == -EAGAIN) 2774 continue; 2775 con->error_msg = "socket error on write"; 2776 fault = true; 2777 } 2778 2779 break; /* If we make it to here, we're done */ 2780 } 2781 if (fault) 2782 con_fault(con); 2783 mutex_unlock(&con->mutex); 2784 2785 if (fault) 2786 con_fault_finish(con); 2787 2788 con->ops->put(con); 2789 } 2790 2791 /* 2792 * Generic error/fault handler. A retry mechanism is used with 2793 * exponential backoff 2794 */ 2795 static void con_fault(struct ceph_connection *con) 2796 { 2797 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2798 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2799 dout("fault %p state %lu to peer %s\n", 2800 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2801 2802 WARN_ON(con->state != CON_STATE_CONNECTING && 2803 con->state != CON_STATE_NEGOTIATING && 2804 con->state != CON_STATE_OPEN); 2805 2806 con_close_socket(con); 2807 2808 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2809 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2810 con->state = CON_STATE_CLOSED; 2811 return; 2812 } 2813 2814 if (con->in_msg) { 2815 BUG_ON(con->in_msg->con != con); 2816 con->in_msg->con = NULL; 2817 ceph_msg_put(con->in_msg); 2818 con->in_msg = NULL; 2819 con->ops->put(con); 2820 } 2821 2822 /* Requeue anything that hasn't been acked */ 2823 list_splice_init(&con->out_sent, &con->out_queue); 2824 2825 /* If there are no messages queued or keepalive pending, place 2826 * the connection in a STANDBY state */ 2827 if (list_empty(&con->out_queue) && 2828 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2829 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2830 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2831 con->state = CON_STATE_STANDBY; 2832 } else { 2833 /* retry after a delay. */ 2834 con->state = CON_STATE_PREOPEN; 2835 if (con->delay == 0) 2836 con->delay = BASE_DELAY_INTERVAL; 2837 else if (con->delay < MAX_DELAY_INTERVAL) 2838 con->delay *= 2; 2839 con_flag_set(con, CON_FLAG_BACKOFF); 2840 queue_con(con); 2841 } 2842 } 2843 2844 2845 2846 /* 2847 * initialize a new messenger instance 2848 */ 2849 void ceph_messenger_init(struct ceph_messenger *msgr, 2850 struct ceph_entity_addr *myaddr, 2851 u64 supported_features, 2852 u64 required_features, 2853 bool nocrc) 2854 { 2855 msgr->supported_features = supported_features; 2856 msgr->required_features = required_features; 2857 2858 spin_lock_init(&msgr->global_seq_lock); 2859 2860 if (myaddr) 2861 msgr->inst.addr = *myaddr; 2862 2863 /* select a random nonce */ 2864 msgr->inst.addr.type = 0; 2865 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2866 encode_my_addr(msgr); 2867 msgr->nocrc = nocrc; 2868 2869 atomic_set(&msgr->stopping, 0); 2870 2871 dout("%s %p\n", __func__, msgr); 2872 } 2873 EXPORT_SYMBOL(ceph_messenger_init); 2874 2875 static void clear_standby(struct ceph_connection *con) 2876 { 2877 /* come back from STANDBY? */ 2878 if (con->state == CON_STATE_STANDBY) { 2879 dout("clear_standby %p and ++connect_seq\n", con); 2880 con->state = CON_STATE_PREOPEN; 2881 con->connect_seq++; 2882 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2883 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2884 } 2885 } 2886 2887 /* 2888 * Queue up an outgoing message on the given connection. 2889 */ 2890 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2891 { 2892 /* set src+dst */ 2893 msg->hdr.src = con->msgr->inst.name; 2894 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2895 msg->needs_out_seq = true; 2896 2897 mutex_lock(&con->mutex); 2898 2899 if (con->state == CON_STATE_CLOSED) { 2900 dout("con_send %p closed, dropping %p\n", con, msg); 2901 ceph_msg_put(msg); 2902 mutex_unlock(&con->mutex); 2903 return; 2904 } 2905 2906 BUG_ON(msg->con != NULL); 2907 msg->con = con->ops->get(con); 2908 BUG_ON(msg->con == NULL); 2909 2910 BUG_ON(!list_empty(&msg->list_head)); 2911 list_add_tail(&msg->list_head, &con->out_queue); 2912 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2913 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2914 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2915 le32_to_cpu(msg->hdr.front_len), 2916 le32_to_cpu(msg->hdr.middle_len), 2917 le32_to_cpu(msg->hdr.data_len)); 2918 2919 clear_standby(con); 2920 mutex_unlock(&con->mutex); 2921 2922 /* if there wasn't anything waiting to send before, queue 2923 * new work */ 2924 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2925 queue_con(con); 2926 } 2927 EXPORT_SYMBOL(ceph_con_send); 2928 2929 /* 2930 * Revoke a message that was previously queued for send 2931 */ 2932 void ceph_msg_revoke(struct ceph_msg *msg) 2933 { 2934 struct ceph_connection *con = msg->con; 2935 2936 if (!con) 2937 return; /* Message not in our possession */ 2938 2939 mutex_lock(&con->mutex); 2940 if (!list_empty(&msg->list_head)) { 2941 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2942 list_del_init(&msg->list_head); 2943 BUG_ON(msg->con == NULL); 2944 msg->con->ops->put(msg->con); 2945 msg->con = NULL; 2946 msg->hdr.seq = 0; 2947 2948 ceph_msg_put(msg); 2949 } 2950 if (con->out_msg == msg) { 2951 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2952 con->out_msg = NULL; 2953 if (con->out_kvec_is_msg) { 2954 con->out_skip = con->out_kvec_bytes; 2955 con->out_kvec_is_msg = false; 2956 } 2957 msg->hdr.seq = 0; 2958 2959 ceph_msg_put(msg); 2960 } 2961 mutex_unlock(&con->mutex); 2962 } 2963 2964 /* 2965 * Revoke a message that we may be reading data into 2966 */ 2967 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 2968 { 2969 struct ceph_connection *con; 2970 2971 BUG_ON(msg == NULL); 2972 if (!msg->con) { 2973 dout("%s msg %p null con\n", __func__, msg); 2974 2975 return; /* Message not in our possession */ 2976 } 2977 2978 con = msg->con; 2979 mutex_lock(&con->mutex); 2980 if (con->in_msg == msg) { 2981 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 2982 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 2983 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 2984 2985 /* skip rest of message */ 2986 dout("%s %p msg %p revoked\n", __func__, con, msg); 2987 con->in_base_pos = con->in_base_pos - 2988 sizeof(struct ceph_msg_header) - 2989 front_len - 2990 middle_len - 2991 data_len - 2992 sizeof(struct ceph_msg_footer); 2993 ceph_msg_put(con->in_msg); 2994 con->in_msg = NULL; 2995 con->in_tag = CEPH_MSGR_TAG_READY; 2996 con->in_seq++; 2997 } else { 2998 dout("%s %p in_msg %p msg %p no-op\n", 2999 __func__, con, con->in_msg, msg); 3000 } 3001 mutex_unlock(&con->mutex); 3002 } 3003 3004 /* 3005 * Queue a keepalive byte to ensure the tcp connection is alive. 3006 */ 3007 void ceph_con_keepalive(struct ceph_connection *con) 3008 { 3009 dout("con_keepalive %p\n", con); 3010 mutex_lock(&con->mutex); 3011 clear_standby(con); 3012 mutex_unlock(&con->mutex); 3013 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3014 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3015 queue_con(con); 3016 } 3017 EXPORT_SYMBOL(ceph_con_keepalive); 3018 3019 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3020 { 3021 struct ceph_msg_data *data; 3022 3023 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3024 return NULL; 3025 3026 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3027 if (data) 3028 data->type = type; 3029 INIT_LIST_HEAD(&data->links); 3030 3031 return data; 3032 } 3033 3034 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3035 { 3036 if (!data) 3037 return; 3038 3039 WARN_ON(!list_empty(&data->links)); 3040 if (data->type == CEPH_MSG_DATA_PAGELIST) { 3041 ceph_pagelist_release(data->pagelist); 3042 kfree(data->pagelist); 3043 } 3044 kmem_cache_free(ceph_msg_data_cache, data); 3045 } 3046 3047 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3048 size_t length, size_t alignment) 3049 { 3050 struct ceph_msg_data *data; 3051 3052 BUG_ON(!pages); 3053 BUG_ON(!length); 3054 3055 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3056 BUG_ON(!data); 3057 data->pages = pages; 3058 data->length = length; 3059 data->alignment = alignment & ~PAGE_MASK; 3060 3061 list_add_tail(&data->links, &msg->data); 3062 msg->data_length += length; 3063 } 3064 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3065 3066 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3067 struct ceph_pagelist *pagelist) 3068 { 3069 struct ceph_msg_data *data; 3070 3071 BUG_ON(!pagelist); 3072 BUG_ON(!pagelist->length); 3073 3074 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3075 BUG_ON(!data); 3076 data->pagelist = pagelist; 3077 3078 list_add_tail(&data->links, &msg->data); 3079 msg->data_length += pagelist->length; 3080 } 3081 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3082 3083 #ifdef CONFIG_BLOCK 3084 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3085 size_t length) 3086 { 3087 struct ceph_msg_data *data; 3088 3089 BUG_ON(!bio); 3090 3091 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3092 BUG_ON(!data); 3093 data->bio = bio; 3094 data->bio_length = length; 3095 3096 list_add_tail(&data->links, &msg->data); 3097 msg->data_length += length; 3098 } 3099 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3100 #endif /* CONFIG_BLOCK */ 3101 3102 /* 3103 * construct a new message with given type, size 3104 * the new msg has a ref count of 1. 3105 */ 3106 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3107 bool can_fail) 3108 { 3109 struct ceph_msg *m; 3110 3111 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3112 if (m == NULL) 3113 goto out; 3114 3115 m->hdr.type = cpu_to_le16(type); 3116 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3117 m->hdr.front_len = cpu_to_le32(front_len); 3118 3119 INIT_LIST_HEAD(&m->list_head); 3120 kref_init(&m->kref); 3121 INIT_LIST_HEAD(&m->data); 3122 3123 /* front */ 3124 if (front_len) { 3125 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3126 if (m->front.iov_base == NULL) { 3127 dout("ceph_msg_new can't allocate %d bytes\n", 3128 front_len); 3129 goto out2; 3130 } 3131 } else { 3132 m->front.iov_base = NULL; 3133 } 3134 m->front_alloc_len = m->front.iov_len = front_len; 3135 3136 dout("ceph_msg_new %p front %d\n", m, front_len); 3137 return m; 3138 3139 out2: 3140 ceph_msg_put(m); 3141 out: 3142 if (!can_fail) { 3143 pr_err("msg_new can't create type %d front %d\n", type, 3144 front_len); 3145 WARN_ON(1); 3146 } else { 3147 dout("msg_new can't create type %d front %d\n", type, 3148 front_len); 3149 } 3150 return NULL; 3151 } 3152 EXPORT_SYMBOL(ceph_msg_new); 3153 3154 /* 3155 * Allocate "middle" portion of a message, if it is needed and wasn't 3156 * allocated by alloc_msg. This allows us to read a small fixed-size 3157 * per-type header in the front and then gracefully fail (i.e., 3158 * propagate the error to the caller based on info in the front) when 3159 * the middle is too large. 3160 */ 3161 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3162 { 3163 int type = le16_to_cpu(msg->hdr.type); 3164 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3165 3166 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3167 ceph_msg_type_name(type), middle_len); 3168 BUG_ON(!middle_len); 3169 BUG_ON(msg->middle); 3170 3171 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3172 if (!msg->middle) 3173 return -ENOMEM; 3174 return 0; 3175 } 3176 3177 /* 3178 * Allocate a message for receiving an incoming message on a 3179 * connection, and save the result in con->in_msg. Uses the 3180 * connection's private alloc_msg op if available. 3181 * 3182 * Returns 0 on success, or a negative error code. 3183 * 3184 * On success, if we set *skip = 1: 3185 * - the next message should be skipped and ignored. 3186 * - con->in_msg == NULL 3187 * or if we set *skip = 0: 3188 * - con->in_msg is non-null. 3189 * On error (ENOMEM, EAGAIN, ...), 3190 * - con->in_msg == NULL 3191 */ 3192 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3193 { 3194 struct ceph_msg_header *hdr = &con->in_hdr; 3195 int middle_len = le32_to_cpu(hdr->middle_len); 3196 struct ceph_msg *msg; 3197 int ret = 0; 3198 3199 BUG_ON(con->in_msg != NULL); 3200 BUG_ON(!con->ops->alloc_msg); 3201 3202 mutex_unlock(&con->mutex); 3203 msg = con->ops->alloc_msg(con, hdr, skip); 3204 mutex_lock(&con->mutex); 3205 if (con->state != CON_STATE_OPEN) { 3206 if (msg) 3207 ceph_msg_put(msg); 3208 return -EAGAIN; 3209 } 3210 if (msg) { 3211 BUG_ON(*skip); 3212 con->in_msg = msg; 3213 con->in_msg->con = con->ops->get(con); 3214 BUG_ON(con->in_msg->con == NULL); 3215 } else { 3216 /* 3217 * Null message pointer means either we should skip 3218 * this message or we couldn't allocate memory. The 3219 * former is not an error. 3220 */ 3221 if (*skip) 3222 return 0; 3223 con->error_msg = "error allocating memory for incoming message"; 3224 3225 return -ENOMEM; 3226 } 3227 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3228 3229 if (middle_len && !con->in_msg->middle) { 3230 ret = ceph_alloc_middle(con, con->in_msg); 3231 if (ret < 0) { 3232 ceph_msg_put(con->in_msg); 3233 con->in_msg = NULL; 3234 } 3235 } 3236 3237 return ret; 3238 } 3239 3240 3241 /* 3242 * Free a generically kmalloc'd message. 3243 */ 3244 void ceph_msg_kfree(struct ceph_msg *m) 3245 { 3246 dout("msg_kfree %p\n", m); 3247 ceph_kvfree(m->front.iov_base); 3248 kmem_cache_free(ceph_msg_cache, m); 3249 } 3250 3251 /* 3252 * Drop a msg ref. Destroy as needed. 3253 */ 3254 void ceph_msg_last_put(struct kref *kref) 3255 { 3256 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3257 LIST_HEAD(data); 3258 struct list_head *links; 3259 struct list_head *next; 3260 3261 dout("ceph_msg_put last one on %p\n", m); 3262 WARN_ON(!list_empty(&m->list_head)); 3263 3264 /* drop middle, data, if any */ 3265 if (m->middle) { 3266 ceph_buffer_put(m->middle); 3267 m->middle = NULL; 3268 } 3269 3270 list_splice_init(&m->data, &data); 3271 list_for_each_safe(links, next, &data) { 3272 struct ceph_msg_data *data; 3273 3274 data = list_entry(links, struct ceph_msg_data, links); 3275 list_del_init(links); 3276 ceph_msg_data_destroy(data); 3277 } 3278 m->data_length = 0; 3279 3280 if (m->pool) 3281 ceph_msgpool_put(m->pool, m); 3282 else 3283 ceph_msg_kfree(m); 3284 } 3285 EXPORT_SYMBOL(ceph_msg_last_put); 3286 3287 void ceph_msg_dump(struct ceph_msg *msg) 3288 { 3289 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3290 msg->front_alloc_len, msg->data_length); 3291 print_hex_dump(KERN_DEBUG, "header: ", 3292 DUMP_PREFIX_OFFSET, 16, 1, 3293 &msg->hdr, sizeof(msg->hdr), true); 3294 print_hex_dump(KERN_DEBUG, " front: ", 3295 DUMP_PREFIX_OFFSET, 16, 1, 3296 msg->front.iov_base, msg->front.iov_len, true); 3297 if (msg->middle) 3298 print_hex_dump(KERN_DEBUG, "middle: ", 3299 DUMP_PREFIX_OFFSET, 16, 1, 3300 msg->middle->vec.iov_base, 3301 msg->middle->vec.iov_len, true); 3302 print_hex_dump(KERN_DEBUG, "footer: ", 3303 DUMP_PREFIX_OFFSET, 16, 1, 3304 &msg->footer, sizeof(msg->footer), true); 3305 } 3306 EXPORT_SYMBOL(ceph_msg_dump); 3307