xref: /openbmc/linux/net/ceph/messenger.c (revision 37be287c)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
185 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;		/* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 	int i;
197 	char *s;
198 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 	s = addr_str[i];
203 
204 	switch (ss->ss_family) {
205 	case AF_INET:
206 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 			 ntohs(in4->sin_port));
208 		break;
209 
210 	case AF_INET6:
211 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 			 ntohs(in6->sin6_port));
213 		break;
214 
215 	default:
216 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 			 ss->ss_family);
218 	}
219 
220 	return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 	ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237 	BUG_ON(ceph_msg_cache);
238 	ceph_msg_cache = kmem_cache_create("ceph_msg",
239 					sizeof (struct ceph_msg),
240 					__alignof__(struct ceph_msg), 0, NULL);
241 
242 	if (!ceph_msg_cache)
243 		return -ENOMEM;
244 
245 	BUG_ON(ceph_msg_data_cache);
246 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 					sizeof (struct ceph_msg_data),
248 					__alignof__(struct ceph_msg_data),
249 					0, NULL);
250 	if (ceph_msg_data_cache)
251 		return 0;
252 
253 	kmem_cache_destroy(ceph_msg_cache);
254 	ceph_msg_cache = NULL;
255 
256 	return -ENOMEM;
257 }
258 
259 static void ceph_msgr_slab_exit(void)
260 {
261 	BUG_ON(!ceph_msg_data_cache);
262 	kmem_cache_destroy(ceph_msg_data_cache);
263 	ceph_msg_data_cache = NULL;
264 
265 	BUG_ON(!ceph_msg_cache);
266 	kmem_cache_destroy(ceph_msg_cache);
267 	ceph_msg_cache = NULL;
268 }
269 
270 static void _ceph_msgr_exit(void)
271 {
272 	if (ceph_msgr_wq) {
273 		destroy_workqueue(ceph_msgr_wq);
274 		ceph_msgr_wq = NULL;
275 	}
276 
277 	ceph_msgr_slab_exit();
278 
279 	BUG_ON(zero_page == NULL);
280 	kunmap(zero_page);
281 	page_cache_release(zero_page);
282 	zero_page = NULL;
283 }
284 
285 int ceph_msgr_init(void)
286 {
287 	BUG_ON(zero_page != NULL);
288 	zero_page = ZERO_PAGE(0);
289 	page_cache_get(zero_page);
290 
291 	if (ceph_msgr_slab_init())
292 		return -ENOMEM;
293 
294 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 	if (ceph_msgr_wq)
296 		return 0;
297 
298 	pr_err("msgr_init failed to create workqueue\n");
299 	_ceph_msgr_exit();
300 
301 	return -ENOMEM;
302 }
303 EXPORT_SYMBOL(ceph_msgr_init);
304 
305 void ceph_msgr_exit(void)
306 {
307 	BUG_ON(ceph_msgr_wq == NULL);
308 
309 	_ceph_msgr_exit();
310 }
311 EXPORT_SYMBOL(ceph_msgr_exit);
312 
313 void ceph_msgr_flush(void)
314 {
315 	flush_workqueue(ceph_msgr_wq);
316 }
317 EXPORT_SYMBOL(ceph_msgr_flush);
318 
319 /* Connection socket state transition functions */
320 
321 static void con_sock_state_init(struct ceph_connection *con)
322 {
323 	int old_state;
324 
325 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 		printk("%s: unexpected old state %d\n", __func__, old_state);
328 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 	     CON_SOCK_STATE_CLOSED);
330 }
331 
332 static void con_sock_state_connecting(struct ceph_connection *con)
333 {
334 	int old_state;
335 
336 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 		printk("%s: unexpected old state %d\n", __func__, old_state);
339 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 	     CON_SOCK_STATE_CONNECTING);
341 }
342 
343 static void con_sock_state_connected(struct ceph_connection *con)
344 {
345 	int old_state;
346 
347 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 		printk("%s: unexpected old state %d\n", __func__, old_state);
350 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 	     CON_SOCK_STATE_CONNECTED);
352 }
353 
354 static void con_sock_state_closing(struct ceph_connection *con)
355 {
356 	int old_state;
357 
358 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 			old_state != CON_SOCK_STATE_CONNECTED &&
361 			old_state != CON_SOCK_STATE_CLOSING))
362 		printk("%s: unexpected old state %d\n", __func__, old_state);
363 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 	     CON_SOCK_STATE_CLOSING);
365 }
366 
367 static void con_sock_state_closed(struct ceph_connection *con)
368 {
369 	int old_state;
370 
371 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 		    old_state != CON_SOCK_STATE_CLOSING &&
374 		    old_state != CON_SOCK_STATE_CONNECTING &&
375 		    old_state != CON_SOCK_STATE_CLOSED))
376 		printk("%s: unexpected old state %d\n", __func__, old_state);
377 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 	     CON_SOCK_STATE_CLOSED);
379 }
380 
381 /*
382  * socket callback functions
383  */
384 
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
387 {
388 	struct ceph_connection *con = sk->sk_user_data;
389 	if (atomic_read(&con->msgr->stopping)) {
390 		return;
391 	}
392 
393 	if (sk->sk_state != TCP_CLOSE_WAIT) {
394 		dout("%s on %p state = %lu, queueing work\n", __func__,
395 		     con, con->state);
396 		queue_con(con);
397 	}
398 }
399 
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
402 {
403 	struct ceph_connection *con = sk->sk_user_data;
404 
405 	/* only queue to workqueue if there is data we want to write,
406 	 * and there is sufficient space in the socket buffer to accept
407 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
408 	 * doesn't get called again until try_write() fills the socket
409 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 	 * and net/core/stream.c:sk_stream_write_space().
411 	 */
412 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 		if (sk_stream_is_writeable(sk)) {
414 			dout("%s %p queueing write work\n", __func__, con);
415 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 			queue_con(con);
417 		}
418 	} else {
419 		dout("%s %p nothing to write\n", __func__, con);
420 	}
421 }
422 
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
425 {
426 	struct ceph_connection *con = sk->sk_user_data;
427 
428 	dout("%s %p state = %lu sk_state = %u\n", __func__,
429 	     con, con->state, sk->sk_state);
430 
431 	switch (sk->sk_state) {
432 	case TCP_CLOSE:
433 		dout("%s TCP_CLOSE\n", __func__);
434 	case TCP_CLOSE_WAIT:
435 		dout("%s TCP_CLOSE_WAIT\n", __func__);
436 		con_sock_state_closing(con);
437 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 		queue_con(con);
439 		break;
440 	case TCP_ESTABLISHED:
441 		dout("%s TCP_ESTABLISHED\n", __func__);
442 		con_sock_state_connected(con);
443 		queue_con(con);
444 		break;
445 	default:	/* Everything else is uninteresting */
446 		break;
447 	}
448 }
449 
450 /*
451  * set up socket callbacks
452  */
453 static void set_sock_callbacks(struct socket *sock,
454 			       struct ceph_connection *con)
455 {
456 	struct sock *sk = sock->sk;
457 	sk->sk_user_data = con;
458 	sk->sk_data_ready = ceph_sock_data_ready;
459 	sk->sk_write_space = ceph_sock_write_space;
460 	sk->sk_state_change = ceph_sock_state_change;
461 }
462 
463 
464 /*
465  * socket helpers
466  */
467 
468 /*
469  * initiate connection to a remote socket.
470  */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 	struct socket *sock;
475 	int ret;
476 
477 	BUG_ON(con->sock);
478 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 			       IPPROTO_TCP, &sock);
480 	if (ret)
481 		return ret;
482 	sock->sk->sk_allocation = GFP_NOFS;
483 
484 #ifdef CONFIG_LOCKDEP
485 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
487 
488 	set_sock_callbacks(sock, con);
489 
490 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
491 
492 	con_sock_state_connecting(con);
493 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 				 O_NONBLOCK);
495 	if (ret == -EINPROGRESS) {
496 		dout("connect %s EINPROGRESS sk_state = %u\n",
497 		     ceph_pr_addr(&con->peer_addr.in_addr),
498 		     sock->sk->sk_state);
499 	} else if (ret < 0) {
500 		pr_err("connect %s error %d\n",
501 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 		sock_release(sock);
503 		con->error_msg = "connect error";
504 
505 		return ret;
506 	}
507 	con->sock = sock;
508 	return 0;
509 }
510 
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
512 {
513 	struct kvec iov = {buf, len};
514 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 	int r;
516 
517 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 	if (r == -EAGAIN)
519 		r = 0;
520 	return r;
521 }
522 
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 		     int page_offset, size_t length)
525 {
526 	void *kaddr;
527 	int ret;
528 
529 	BUG_ON(page_offset + length > PAGE_SIZE);
530 
531 	kaddr = kmap(page);
532 	BUG_ON(!kaddr);
533 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 	kunmap(page);
535 
536 	return ret;
537 }
538 
539 /*
540  * write something.  @more is true if caller will be sending more data
541  * shortly.
542  */
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 		     size_t kvlen, size_t len, int more)
545 {
546 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 	int r;
548 
549 	if (more)
550 		msg.msg_flags |= MSG_MORE;
551 	else
552 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
553 
554 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 	if (r == -EAGAIN)
556 		r = 0;
557 	return r;
558 }
559 
560 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 		     int offset, size_t size, bool more)
562 {
563 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 	int ret;
565 
566 	ret = kernel_sendpage(sock, page, offset, size, flags);
567 	if (ret == -EAGAIN)
568 		ret = 0;
569 
570 	return ret;
571 }
572 
573 
574 /*
575  * Shutdown/close the socket for the given connection.
576  */
577 static int con_close_socket(struct ceph_connection *con)
578 {
579 	int rc = 0;
580 
581 	dout("con_close_socket on %p sock %p\n", con, con->sock);
582 	if (con->sock) {
583 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
584 		sock_release(con->sock);
585 		con->sock = NULL;
586 	}
587 
588 	/*
589 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
590 	 * independent of the connection mutex, and we could have
591 	 * received a socket close event before we had the chance to
592 	 * shut the socket down.
593 	 */
594 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
595 
596 	con_sock_state_closed(con);
597 	return rc;
598 }
599 
600 /*
601  * Reset a connection.  Discard all incoming and outgoing messages
602  * and clear *_seq state.
603  */
604 static void ceph_msg_remove(struct ceph_msg *msg)
605 {
606 	list_del_init(&msg->list_head);
607 	BUG_ON(msg->con == NULL);
608 	msg->con->ops->put(msg->con);
609 	msg->con = NULL;
610 
611 	ceph_msg_put(msg);
612 }
613 static void ceph_msg_remove_list(struct list_head *head)
614 {
615 	while (!list_empty(head)) {
616 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
617 							list_head);
618 		ceph_msg_remove(msg);
619 	}
620 }
621 
622 static void reset_connection(struct ceph_connection *con)
623 {
624 	/* reset connection, out_queue, msg_ and connect_seq */
625 	/* discard existing out_queue and msg_seq */
626 	dout("reset_connection %p\n", con);
627 	ceph_msg_remove_list(&con->out_queue);
628 	ceph_msg_remove_list(&con->out_sent);
629 
630 	if (con->in_msg) {
631 		BUG_ON(con->in_msg->con != con);
632 		con->in_msg->con = NULL;
633 		ceph_msg_put(con->in_msg);
634 		con->in_msg = NULL;
635 		con->ops->put(con);
636 	}
637 
638 	con->connect_seq = 0;
639 	con->out_seq = 0;
640 	if (con->out_msg) {
641 		ceph_msg_put(con->out_msg);
642 		con->out_msg = NULL;
643 	}
644 	con->in_seq = 0;
645 	con->in_seq_acked = 0;
646 }
647 
648 /*
649  * mark a peer down.  drop any open connections.
650  */
651 void ceph_con_close(struct ceph_connection *con)
652 {
653 	mutex_lock(&con->mutex);
654 	dout("con_close %p peer %s\n", con,
655 	     ceph_pr_addr(&con->peer_addr.in_addr));
656 	con->state = CON_STATE_CLOSED;
657 
658 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
659 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
660 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
661 	con_flag_clear(con, CON_FLAG_BACKOFF);
662 
663 	reset_connection(con);
664 	con->peer_global_seq = 0;
665 	cancel_delayed_work(&con->work);
666 	con_close_socket(con);
667 	mutex_unlock(&con->mutex);
668 }
669 EXPORT_SYMBOL(ceph_con_close);
670 
671 /*
672  * Reopen a closed connection, with a new peer address.
673  */
674 void ceph_con_open(struct ceph_connection *con,
675 		   __u8 entity_type, __u64 entity_num,
676 		   struct ceph_entity_addr *addr)
677 {
678 	mutex_lock(&con->mutex);
679 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
680 
681 	WARN_ON(con->state != CON_STATE_CLOSED);
682 	con->state = CON_STATE_PREOPEN;
683 
684 	con->peer_name.type = (__u8) entity_type;
685 	con->peer_name.num = cpu_to_le64(entity_num);
686 
687 	memcpy(&con->peer_addr, addr, sizeof(*addr));
688 	con->delay = 0;      /* reset backoff memory */
689 	mutex_unlock(&con->mutex);
690 	queue_con(con);
691 }
692 EXPORT_SYMBOL(ceph_con_open);
693 
694 /*
695  * return true if this connection ever successfully opened
696  */
697 bool ceph_con_opened(struct ceph_connection *con)
698 {
699 	return con->connect_seq > 0;
700 }
701 
702 /*
703  * initialize a new connection.
704  */
705 void ceph_con_init(struct ceph_connection *con, void *private,
706 	const struct ceph_connection_operations *ops,
707 	struct ceph_messenger *msgr)
708 {
709 	dout("con_init %p\n", con);
710 	memset(con, 0, sizeof(*con));
711 	con->private = private;
712 	con->ops = ops;
713 	con->msgr = msgr;
714 
715 	con_sock_state_init(con);
716 
717 	mutex_init(&con->mutex);
718 	INIT_LIST_HEAD(&con->out_queue);
719 	INIT_LIST_HEAD(&con->out_sent);
720 	INIT_DELAYED_WORK(&con->work, con_work);
721 
722 	con->state = CON_STATE_CLOSED;
723 }
724 EXPORT_SYMBOL(ceph_con_init);
725 
726 
727 /*
728  * We maintain a global counter to order connection attempts.  Get
729  * a unique seq greater than @gt.
730  */
731 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
732 {
733 	u32 ret;
734 
735 	spin_lock(&msgr->global_seq_lock);
736 	if (msgr->global_seq < gt)
737 		msgr->global_seq = gt;
738 	ret = ++msgr->global_seq;
739 	spin_unlock(&msgr->global_seq_lock);
740 	return ret;
741 }
742 
743 static void con_out_kvec_reset(struct ceph_connection *con)
744 {
745 	con->out_kvec_left = 0;
746 	con->out_kvec_bytes = 0;
747 	con->out_kvec_cur = &con->out_kvec[0];
748 }
749 
750 static void con_out_kvec_add(struct ceph_connection *con,
751 				size_t size, void *data)
752 {
753 	int index;
754 
755 	index = con->out_kvec_left;
756 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
757 
758 	con->out_kvec[index].iov_len = size;
759 	con->out_kvec[index].iov_base = data;
760 	con->out_kvec_left++;
761 	con->out_kvec_bytes += size;
762 }
763 
764 #ifdef CONFIG_BLOCK
765 
766 /*
767  * For a bio data item, a piece is whatever remains of the next
768  * entry in the current bio iovec, or the first entry in the next
769  * bio in the list.
770  */
771 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
772 					size_t length)
773 {
774 	struct ceph_msg_data *data = cursor->data;
775 	struct bio *bio;
776 
777 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
778 
779 	bio = data->bio;
780 	BUG_ON(!bio);
781 
782 	cursor->resid = min(length, data->bio_length);
783 	cursor->bio = bio;
784 	cursor->bvec_iter = bio->bi_iter;
785 	cursor->last_piece =
786 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
787 }
788 
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 						size_t *page_offset,
791 						size_t *length)
792 {
793 	struct ceph_msg_data *data = cursor->data;
794 	struct bio *bio;
795 	struct bio_vec bio_vec;
796 
797 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
798 
799 	bio = cursor->bio;
800 	BUG_ON(!bio);
801 
802 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
803 
804 	*page_offset = (size_t) bio_vec.bv_offset;
805 	BUG_ON(*page_offset >= PAGE_SIZE);
806 	if (cursor->last_piece) /* pagelist offset is always 0 */
807 		*length = cursor->resid;
808 	else
809 		*length = (size_t) bio_vec.bv_len;
810 	BUG_ON(*length > cursor->resid);
811 	BUG_ON(*page_offset + *length > PAGE_SIZE);
812 
813 	return bio_vec.bv_page;
814 }
815 
816 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
817 					size_t bytes)
818 {
819 	struct bio *bio;
820 	struct bio_vec bio_vec;
821 
822 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
823 
824 	bio = cursor->bio;
825 	BUG_ON(!bio);
826 
827 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
828 
829 	/* Advance the cursor offset */
830 
831 	BUG_ON(cursor->resid < bytes);
832 	cursor->resid -= bytes;
833 
834 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
835 
836 	if (bytes < bio_vec.bv_len)
837 		return false;	/* more bytes to process in this segment */
838 
839 	/* Move on to the next segment, and possibly the next bio */
840 
841 	if (!cursor->bvec_iter.bi_size) {
842 		bio = bio->bi_next;
843 		cursor->bvec_iter = bio->bi_iter;
844 	}
845 	cursor->bio = bio;
846 
847 	if (!cursor->last_piece) {
848 		BUG_ON(!cursor->resid);
849 		BUG_ON(!bio);
850 		/* A short read is OK, so use <= rather than == */
851 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
852 			cursor->last_piece = true;
853 	}
854 
855 	return true;
856 }
857 #endif /* CONFIG_BLOCK */
858 
859 /*
860  * For a page array, a piece comes from the first page in the array
861  * that has not already been fully consumed.
862  */
863 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
864 					size_t length)
865 {
866 	struct ceph_msg_data *data = cursor->data;
867 	int page_count;
868 
869 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
870 
871 	BUG_ON(!data->pages);
872 	BUG_ON(!data->length);
873 
874 	cursor->resid = min(length, data->length);
875 	page_count = calc_pages_for(data->alignment, (u64)data->length);
876 	cursor->page_offset = data->alignment & ~PAGE_MASK;
877 	cursor->page_index = 0;
878 	BUG_ON(page_count > (int)USHRT_MAX);
879 	cursor->page_count = (unsigned short)page_count;
880 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
881 	cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
882 }
883 
884 static struct page *
885 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
886 					size_t *page_offset, size_t *length)
887 {
888 	struct ceph_msg_data *data = cursor->data;
889 
890 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
891 
892 	BUG_ON(cursor->page_index >= cursor->page_count);
893 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
894 
895 	*page_offset = cursor->page_offset;
896 	if (cursor->last_piece)
897 		*length = cursor->resid;
898 	else
899 		*length = PAGE_SIZE - *page_offset;
900 
901 	return data->pages[cursor->page_index];
902 }
903 
904 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
905 						size_t bytes)
906 {
907 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
908 
909 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
910 
911 	/* Advance the cursor page offset */
912 
913 	cursor->resid -= bytes;
914 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
915 	if (!bytes || cursor->page_offset)
916 		return false;	/* more bytes to process in the current page */
917 
918 	/* Move on to the next page; offset is already at 0 */
919 
920 	BUG_ON(cursor->page_index >= cursor->page_count);
921 	cursor->page_index++;
922 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
923 
924 	return true;
925 }
926 
927 /*
928  * For a pagelist, a piece is whatever remains to be consumed in the
929  * first page in the list, or the front of the next page.
930  */
931 static void
932 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
933 					size_t length)
934 {
935 	struct ceph_msg_data *data = cursor->data;
936 	struct ceph_pagelist *pagelist;
937 	struct page *page;
938 
939 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
940 
941 	pagelist = data->pagelist;
942 	BUG_ON(!pagelist);
943 
944 	if (!length)
945 		return;		/* pagelist can be assigned but empty */
946 
947 	BUG_ON(list_empty(&pagelist->head));
948 	page = list_first_entry(&pagelist->head, struct page, lru);
949 
950 	cursor->resid = min(length, pagelist->length);
951 	cursor->page = page;
952 	cursor->offset = 0;
953 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
954 }
955 
956 static struct page *
957 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
958 				size_t *page_offset, size_t *length)
959 {
960 	struct ceph_msg_data *data = cursor->data;
961 	struct ceph_pagelist *pagelist;
962 
963 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
964 
965 	pagelist = data->pagelist;
966 	BUG_ON(!pagelist);
967 
968 	BUG_ON(!cursor->page);
969 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
970 
971 	/* offset of first page in pagelist is always 0 */
972 	*page_offset = cursor->offset & ~PAGE_MASK;
973 	if (cursor->last_piece)
974 		*length = cursor->resid;
975 	else
976 		*length = PAGE_SIZE - *page_offset;
977 
978 	return cursor->page;
979 }
980 
981 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
982 						size_t bytes)
983 {
984 	struct ceph_msg_data *data = cursor->data;
985 	struct ceph_pagelist *pagelist;
986 
987 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
988 
989 	pagelist = data->pagelist;
990 	BUG_ON(!pagelist);
991 
992 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
993 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
994 
995 	/* Advance the cursor offset */
996 
997 	cursor->resid -= bytes;
998 	cursor->offset += bytes;
999 	/* offset of first page in pagelist is always 0 */
1000 	if (!bytes || cursor->offset & ~PAGE_MASK)
1001 		return false;	/* more bytes to process in the current page */
1002 
1003 	/* Move on to the next page */
1004 
1005 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1006 	cursor->page = list_entry_next(cursor->page, lru);
1007 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1008 
1009 	return true;
1010 }
1011 
1012 /*
1013  * Message data is handled (sent or received) in pieces, where each
1014  * piece resides on a single page.  The network layer might not
1015  * consume an entire piece at once.  A data item's cursor keeps
1016  * track of which piece is next to process and how much remains to
1017  * be processed in that piece.  It also tracks whether the current
1018  * piece is the last one in the data item.
1019  */
1020 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1021 {
1022 	size_t length = cursor->total_resid;
1023 
1024 	switch (cursor->data->type) {
1025 	case CEPH_MSG_DATA_PAGELIST:
1026 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1027 		break;
1028 	case CEPH_MSG_DATA_PAGES:
1029 		ceph_msg_data_pages_cursor_init(cursor, length);
1030 		break;
1031 #ifdef CONFIG_BLOCK
1032 	case CEPH_MSG_DATA_BIO:
1033 		ceph_msg_data_bio_cursor_init(cursor, length);
1034 		break;
1035 #endif /* CONFIG_BLOCK */
1036 	case CEPH_MSG_DATA_NONE:
1037 	default:
1038 		/* BUG(); */
1039 		break;
1040 	}
1041 	cursor->need_crc = true;
1042 }
1043 
1044 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1045 {
1046 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1047 	struct ceph_msg_data *data;
1048 
1049 	BUG_ON(!length);
1050 	BUG_ON(length > msg->data_length);
1051 	BUG_ON(list_empty(&msg->data));
1052 
1053 	cursor->data_head = &msg->data;
1054 	cursor->total_resid = length;
1055 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1056 	cursor->data = data;
1057 
1058 	__ceph_msg_data_cursor_init(cursor);
1059 }
1060 
1061 /*
1062  * Return the page containing the next piece to process for a given
1063  * data item, and supply the page offset and length of that piece.
1064  * Indicate whether this is the last piece in this data item.
1065  */
1066 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1067 					size_t *page_offset, size_t *length,
1068 					bool *last_piece)
1069 {
1070 	struct page *page;
1071 
1072 	switch (cursor->data->type) {
1073 	case CEPH_MSG_DATA_PAGELIST:
1074 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1075 		break;
1076 	case CEPH_MSG_DATA_PAGES:
1077 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1078 		break;
1079 #ifdef CONFIG_BLOCK
1080 	case CEPH_MSG_DATA_BIO:
1081 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1082 		break;
1083 #endif /* CONFIG_BLOCK */
1084 	case CEPH_MSG_DATA_NONE:
1085 	default:
1086 		page = NULL;
1087 		break;
1088 	}
1089 	BUG_ON(!page);
1090 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1091 	BUG_ON(!*length);
1092 	if (last_piece)
1093 		*last_piece = cursor->last_piece;
1094 
1095 	return page;
1096 }
1097 
1098 /*
1099  * Returns true if the result moves the cursor on to the next piece
1100  * of the data item.
1101  */
1102 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1103 				size_t bytes)
1104 {
1105 	bool new_piece;
1106 
1107 	BUG_ON(bytes > cursor->resid);
1108 	switch (cursor->data->type) {
1109 	case CEPH_MSG_DATA_PAGELIST:
1110 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1111 		break;
1112 	case CEPH_MSG_DATA_PAGES:
1113 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1114 		break;
1115 #ifdef CONFIG_BLOCK
1116 	case CEPH_MSG_DATA_BIO:
1117 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1118 		break;
1119 #endif /* CONFIG_BLOCK */
1120 	case CEPH_MSG_DATA_NONE:
1121 	default:
1122 		BUG();
1123 		break;
1124 	}
1125 	cursor->total_resid -= bytes;
1126 
1127 	if (!cursor->resid && cursor->total_resid) {
1128 		WARN_ON(!cursor->last_piece);
1129 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1130 		cursor->data = list_entry_next(cursor->data, links);
1131 		__ceph_msg_data_cursor_init(cursor);
1132 		new_piece = true;
1133 	}
1134 	cursor->need_crc = new_piece;
1135 
1136 	return new_piece;
1137 }
1138 
1139 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1140 {
1141 	BUG_ON(!msg);
1142 	BUG_ON(!data_len);
1143 
1144 	/* Initialize data cursor */
1145 
1146 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1147 }
1148 
1149 /*
1150  * Prepare footer for currently outgoing message, and finish things
1151  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1152  */
1153 static void prepare_write_message_footer(struct ceph_connection *con)
1154 {
1155 	struct ceph_msg *m = con->out_msg;
1156 	int v = con->out_kvec_left;
1157 
1158 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1159 
1160 	dout("prepare_write_message_footer %p\n", con);
1161 	con->out_kvec_is_msg = true;
1162 	con->out_kvec[v].iov_base = &m->footer;
1163 	con->out_kvec[v].iov_len = sizeof(m->footer);
1164 	con->out_kvec_bytes += sizeof(m->footer);
1165 	con->out_kvec_left++;
1166 	con->out_more = m->more_to_follow;
1167 	con->out_msg_done = true;
1168 }
1169 
1170 /*
1171  * Prepare headers for the next outgoing message.
1172  */
1173 static void prepare_write_message(struct ceph_connection *con)
1174 {
1175 	struct ceph_msg *m;
1176 	u32 crc;
1177 
1178 	con_out_kvec_reset(con);
1179 	con->out_kvec_is_msg = true;
1180 	con->out_msg_done = false;
1181 
1182 	/* Sneak an ack in there first?  If we can get it into the same
1183 	 * TCP packet that's a good thing. */
1184 	if (con->in_seq > con->in_seq_acked) {
1185 		con->in_seq_acked = con->in_seq;
1186 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1187 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1188 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1189 			&con->out_temp_ack);
1190 	}
1191 
1192 	BUG_ON(list_empty(&con->out_queue));
1193 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1194 	con->out_msg = m;
1195 	BUG_ON(m->con != con);
1196 
1197 	/* put message on sent list */
1198 	ceph_msg_get(m);
1199 	list_move_tail(&m->list_head, &con->out_sent);
1200 
1201 	/*
1202 	 * only assign outgoing seq # if we haven't sent this message
1203 	 * yet.  if it is requeued, resend with it's original seq.
1204 	 */
1205 	if (m->needs_out_seq) {
1206 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1207 		m->needs_out_seq = false;
1208 	}
1209 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1210 
1211 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1212 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1213 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1214 	     m->data_length);
1215 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1216 
1217 	/* tag + hdr + front + middle */
1218 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1219 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1220 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1221 
1222 	if (m->middle)
1223 		con_out_kvec_add(con, m->middle->vec.iov_len,
1224 			m->middle->vec.iov_base);
1225 
1226 	/* fill in crc (except data pages), footer */
1227 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1228 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1229 	con->out_msg->footer.flags = 0;
1230 
1231 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1232 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1233 	if (m->middle) {
1234 		crc = crc32c(0, m->middle->vec.iov_base,
1235 				m->middle->vec.iov_len);
1236 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1237 	} else
1238 		con->out_msg->footer.middle_crc = 0;
1239 	dout("%s front_crc %u middle_crc %u\n", __func__,
1240 	     le32_to_cpu(con->out_msg->footer.front_crc),
1241 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1242 
1243 	/* is there a data payload? */
1244 	con->out_msg->footer.data_crc = 0;
1245 	if (m->data_length) {
1246 		prepare_message_data(con->out_msg, m->data_length);
1247 		con->out_more = 1;  /* data + footer will follow */
1248 	} else {
1249 		/* no, queue up footer too and be done */
1250 		prepare_write_message_footer(con);
1251 	}
1252 
1253 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1254 }
1255 
1256 /*
1257  * Prepare an ack.
1258  */
1259 static void prepare_write_ack(struct ceph_connection *con)
1260 {
1261 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1262 	     con->in_seq_acked, con->in_seq);
1263 	con->in_seq_acked = con->in_seq;
1264 
1265 	con_out_kvec_reset(con);
1266 
1267 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1268 
1269 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1270 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1271 				&con->out_temp_ack);
1272 
1273 	con->out_more = 1;  /* more will follow.. eventually.. */
1274 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1275 }
1276 
1277 /*
1278  * Prepare to share the seq during handshake
1279  */
1280 static void prepare_write_seq(struct ceph_connection *con)
1281 {
1282 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1283 	     con->in_seq_acked, con->in_seq);
1284 	con->in_seq_acked = con->in_seq;
1285 
1286 	con_out_kvec_reset(con);
1287 
1288 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1289 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1290 			 &con->out_temp_ack);
1291 
1292 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1293 }
1294 
1295 /*
1296  * Prepare to write keepalive byte.
1297  */
1298 static void prepare_write_keepalive(struct ceph_connection *con)
1299 {
1300 	dout("prepare_write_keepalive %p\n", con);
1301 	con_out_kvec_reset(con);
1302 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1303 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1304 }
1305 
1306 /*
1307  * Connection negotiation.
1308  */
1309 
1310 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1311 						int *auth_proto)
1312 {
1313 	struct ceph_auth_handshake *auth;
1314 
1315 	if (!con->ops->get_authorizer) {
1316 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1317 		con->out_connect.authorizer_len = 0;
1318 		return NULL;
1319 	}
1320 
1321 	/* Can't hold the mutex while getting authorizer */
1322 	mutex_unlock(&con->mutex);
1323 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1324 	mutex_lock(&con->mutex);
1325 
1326 	if (IS_ERR(auth))
1327 		return auth;
1328 	if (con->state != CON_STATE_NEGOTIATING)
1329 		return ERR_PTR(-EAGAIN);
1330 
1331 	con->auth_reply_buf = auth->authorizer_reply_buf;
1332 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1333 	return auth;
1334 }
1335 
1336 /*
1337  * We connected to a peer and are saying hello.
1338  */
1339 static void prepare_write_banner(struct ceph_connection *con)
1340 {
1341 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1342 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1343 					&con->msgr->my_enc_addr);
1344 
1345 	con->out_more = 0;
1346 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1347 }
1348 
1349 static int prepare_write_connect(struct ceph_connection *con)
1350 {
1351 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1352 	int proto;
1353 	int auth_proto;
1354 	struct ceph_auth_handshake *auth;
1355 
1356 	switch (con->peer_name.type) {
1357 	case CEPH_ENTITY_TYPE_MON:
1358 		proto = CEPH_MONC_PROTOCOL;
1359 		break;
1360 	case CEPH_ENTITY_TYPE_OSD:
1361 		proto = CEPH_OSDC_PROTOCOL;
1362 		break;
1363 	case CEPH_ENTITY_TYPE_MDS:
1364 		proto = CEPH_MDSC_PROTOCOL;
1365 		break;
1366 	default:
1367 		BUG();
1368 	}
1369 
1370 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1371 	     con->connect_seq, global_seq, proto);
1372 
1373 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1374 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1375 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1376 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1377 	con->out_connect.protocol_version = cpu_to_le32(proto);
1378 	con->out_connect.flags = 0;
1379 
1380 	auth_proto = CEPH_AUTH_UNKNOWN;
1381 	auth = get_connect_authorizer(con, &auth_proto);
1382 	if (IS_ERR(auth))
1383 		return PTR_ERR(auth);
1384 
1385 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1386 	con->out_connect.authorizer_len = auth ?
1387 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1388 
1389 	con_out_kvec_add(con, sizeof (con->out_connect),
1390 					&con->out_connect);
1391 	if (auth && auth->authorizer_buf_len)
1392 		con_out_kvec_add(con, auth->authorizer_buf_len,
1393 					auth->authorizer_buf);
1394 
1395 	con->out_more = 0;
1396 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1397 
1398 	return 0;
1399 }
1400 
1401 /*
1402  * write as much of pending kvecs to the socket as we can.
1403  *  1 -> done
1404  *  0 -> socket full, but more to do
1405  * <0 -> error
1406  */
1407 static int write_partial_kvec(struct ceph_connection *con)
1408 {
1409 	int ret;
1410 
1411 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1412 	while (con->out_kvec_bytes > 0) {
1413 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1414 				       con->out_kvec_left, con->out_kvec_bytes,
1415 				       con->out_more);
1416 		if (ret <= 0)
1417 			goto out;
1418 		con->out_kvec_bytes -= ret;
1419 		if (con->out_kvec_bytes == 0)
1420 			break;            /* done */
1421 
1422 		/* account for full iov entries consumed */
1423 		while (ret >= con->out_kvec_cur->iov_len) {
1424 			BUG_ON(!con->out_kvec_left);
1425 			ret -= con->out_kvec_cur->iov_len;
1426 			con->out_kvec_cur++;
1427 			con->out_kvec_left--;
1428 		}
1429 		/* and for a partially-consumed entry */
1430 		if (ret) {
1431 			con->out_kvec_cur->iov_len -= ret;
1432 			con->out_kvec_cur->iov_base += ret;
1433 		}
1434 	}
1435 	con->out_kvec_left = 0;
1436 	con->out_kvec_is_msg = false;
1437 	ret = 1;
1438 out:
1439 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1440 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1441 	return ret;  /* done! */
1442 }
1443 
1444 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1445 				unsigned int page_offset,
1446 				unsigned int length)
1447 {
1448 	char *kaddr;
1449 
1450 	kaddr = kmap(page);
1451 	BUG_ON(kaddr == NULL);
1452 	crc = crc32c(crc, kaddr + page_offset, length);
1453 	kunmap(page);
1454 
1455 	return crc;
1456 }
1457 /*
1458  * Write as much message data payload as we can.  If we finish, queue
1459  * up the footer.
1460  *  1 -> done, footer is now queued in out_kvec[].
1461  *  0 -> socket full, but more to do
1462  * <0 -> error
1463  */
1464 static int write_partial_message_data(struct ceph_connection *con)
1465 {
1466 	struct ceph_msg *msg = con->out_msg;
1467 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1468 	bool do_datacrc = !con->msgr->nocrc;
1469 	u32 crc;
1470 
1471 	dout("%s %p msg %p\n", __func__, con, msg);
1472 
1473 	if (list_empty(&msg->data))
1474 		return -EINVAL;
1475 
1476 	/*
1477 	 * Iterate through each page that contains data to be
1478 	 * written, and send as much as possible for each.
1479 	 *
1480 	 * If we are calculating the data crc (the default), we will
1481 	 * need to map the page.  If we have no pages, they have
1482 	 * been revoked, so use the zero page.
1483 	 */
1484 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1485 	while (cursor->resid) {
1486 		struct page *page;
1487 		size_t page_offset;
1488 		size_t length;
1489 		bool last_piece;
1490 		bool need_crc;
1491 		int ret;
1492 
1493 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1494 							&last_piece);
1495 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1496 				      length, last_piece);
1497 		if (ret <= 0) {
1498 			if (do_datacrc)
1499 				msg->footer.data_crc = cpu_to_le32(crc);
1500 
1501 			return ret;
1502 		}
1503 		if (do_datacrc && cursor->need_crc)
1504 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1505 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1506 	}
1507 
1508 	dout("%s %p msg %p done\n", __func__, con, msg);
1509 
1510 	/* prepare and queue up footer, too */
1511 	if (do_datacrc)
1512 		msg->footer.data_crc = cpu_to_le32(crc);
1513 	else
1514 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1515 	con_out_kvec_reset(con);
1516 	prepare_write_message_footer(con);
1517 
1518 	return 1;	/* must return > 0 to indicate success */
1519 }
1520 
1521 /*
1522  * write some zeros
1523  */
1524 static int write_partial_skip(struct ceph_connection *con)
1525 {
1526 	int ret;
1527 
1528 	while (con->out_skip > 0) {
1529 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1530 
1531 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1532 		if (ret <= 0)
1533 			goto out;
1534 		con->out_skip -= ret;
1535 	}
1536 	ret = 1;
1537 out:
1538 	return ret;
1539 }
1540 
1541 /*
1542  * Prepare to read connection handshake, or an ack.
1543  */
1544 static void prepare_read_banner(struct ceph_connection *con)
1545 {
1546 	dout("prepare_read_banner %p\n", con);
1547 	con->in_base_pos = 0;
1548 }
1549 
1550 static void prepare_read_connect(struct ceph_connection *con)
1551 {
1552 	dout("prepare_read_connect %p\n", con);
1553 	con->in_base_pos = 0;
1554 }
1555 
1556 static void prepare_read_ack(struct ceph_connection *con)
1557 {
1558 	dout("prepare_read_ack %p\n", con);
1559 	con->in_base_pos = 0;
1560 }
1561 
1562 static void prepare_read_seq(struct ceph_connection *con)
1563 {
1564 	dout("prepare_read_seq %p\n", con);
1565 	con->in_base_pos = 0;
1566 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1567 }
1568 
1569 static void prepare_read_tag(struct ceph_connection *con)
1570 {
1571 	dout("prepare_read_tag %p\n", con);
1572 	con->in_base_pos = 0;
1573 	con->in_tag = CEPH_MSGR_TAG_READY;
1574 }
1575 
1576 /*
1577  * Prepare to read a message.
1578  */
1579 static int prepare_read_message(struct ceph_connection *con)
1580 {
1581 	dout("prepare_read_message %p\n", con);
1582 	BUG_ON(con->in_msg != NULL);
1583 	con->in_base_pos = 0;
1584 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1585 	return 0;
1586 }
1587 
1588 
1589 static int read_partial(struct ceph_connection *con,
1590 			int end, int size, void *object)
1591 {
1592 	while (con->in_base_pos < end) {
1593 		int left = end - con->in_base_pos;
1594 		int have = size - left;
1595 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1596 		if (ret <= 0)
1597 			return ret;
1598 		con->in_base_pos += ret;
1599 	}
1600 	return 1;
1601 }
1602 
1603 
1604 /*
1605  * Read all or part of the connect-side handshake on a new connection
1606  */
1607 static int read_partial_banner(struct ceph_connection *con)
1608 {
1609 	int size;
1610 	int end;
1611 	int ret;
1612 
1613 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1614 
1615 	/* peer's banner */
1616 	size = strlen(CEPH_BANNER);
1617 	end = size;
1618 	ret = read_partial(con, end, size, con->in_banner);
1619 	if (ret <= 0)
1620 		goto out;
1621 
1622 	size = sizeof (con->actual_peer_addr);
1623 	end += size;
1624 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1625 	if (ret <= 0)
1626 		goto out;
1627 
1628 	size = sizeof (con->peer_addr_for_me);
1629 	end += size;
1630 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1631 	if (ret <= 0)
1632 		goto out;
1633 
1634 out:
1635 	return ret;
1636 }
1637 
1638 static int read_partial_connect(struct ceph_connection *con)
1639 {
1640 	int size;
1641 	int end;
1642 	int ret;
1643 
1644 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1645 
1646 	size = sizeof (con->in_reply);
1647 	end = size;
1648 	ret = read_partial(con, end, size, &con->in_reply);
1649 	if (ret <= 0)
1650 		goto out;
1651 
1652 	size = le32_to_cpu(con->in_reply.authorizer_len);
1653 	end += size;
1654 	ret = read_partial(con, end, size, con->auth_reply_buf);
1655 	if (ret <= 0)
1656 		goto out;
1657 
1658 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1659 	     con, (int)con->in_reply.tag,
1660 	     le32_to_cpu(con->in_reply.connect_seq),
1661 	     le32_to_cpu(con->in_reply.global_seq));
1662 out:
1663 	return ret;
1664 
1665 }
1666 
1667 /*
1668  * Verify the hello banner looks okay.
1669  */
1670 static int verify_hello(struct ceph_connection *con)
1671 {
1672 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1673 		pr_err("connect to %s got bad banner\n",
1674 		       ceph_pr_addr(&con->peer_addr.in_addr));
1675 		con->error_msg = "protocol error, bad banner";
1676 		return -1;
1677 	}
1678 	return 0;
1679 }
1680 
1681 static bool addr_is_blank(struct sockaddr_storage *ss)
1682 {
1683 	switch (ss->ss_family) {
1684 	case AF_INET:
1685 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1686 	case AF_INET6:
1687 		return
1688 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1689 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1690 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1691 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1692 	}
1693 	return false;
1694 }
1695 
1696 static int addr_port(struct sockaddr_storage *ss)
1697 {
1698 	switch (ss->ss_family) {
1699 	case AF_INET:
1700 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1701 	case AF_INET6:
1702 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1703 	}
1704 	return 0;
1705 }
1706 
1707 static void addr_set_port(struct sockaddr_storage *ss, int p)
1708 {
1709 	switch (ss->ss_family) {
1710 	case AF_INET:
1711 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1712 		break;
1713 	case AF_INET6:
1714 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1715 		break;
1716 	}
1717 }
1718 
1719 /*
1720  * Unlike other *_pton function semantics, zero indicates success.
1721  */
1722 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1723 		char delim, const char **ipend)
1724 {
1725 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1726 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1727 
1728 	memset(ss, 0, sizeof(*ss));
1729 
1730 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1731 		ss->ss_family = AF_INET;
1732 		return 0;
1733 	}
1734 
1735 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1736 		ss->ss_family = AF_INET6;
1737 		return 0;
1738 	}
1739 
1740 	return -EINVAL;
1741 }
1742 
1743 /*
1744  * Extract hostname string and resolve using kernel DNS facility.
1745  */
1746 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1747 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1748 		struct sockaddr_storage *ss, char delim, const char **ipend)
1749 {
1750 	const char *end, *delim_p;
1751 	char *colon_p, *ip_addr = NULL;
1752 	int ip_len, ret;
1753 
1754 	/*
1755 	 * The end of the hostname occurs immediately preceding the delimiter or
1756 	 * the port marker (':') where the delimiter takes precedence.
1757 	 */
1758 	delim_p = memchr(name, delim, namelen);
1759 	colon_p = memchr(name, ':', namelen);
1760 
1761 	if (delim_p && colon_p)
1762 		end = delim_p < colon_p ? delim_p : colon_p;
1763 	else if (!delim_p && colon_p)
1764 		end = colon_p;
1765 	else {
1766 		end = delim_p;
1767 		if (!end) /* case: hostname:/ */
1768 			end = name + namelen;
1769 	}
1770 
1771 	if (end <= name)
1772 		return -EINVAL;
1773 
1774 	/* do dns_resolve upcall */
1775 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1776 	if (ip_len > 0)
1777 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1778 	else
1779 		ret = -ESRCH;
1780 
1781 	kfree(ip_addr);
1782 
1783 	*ipend = end;
1784 
1785 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1786 			ret, ret ? "failed" : ceph_pr_addr(ss));
1787 
1788 	return ret;
1789 }
1790 #else
1791 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1792 		struct sockaddr_storage *ss, char delim, const char **ipend)
1793 {
1794 	return -EINVAL;
1795 }
1796 #endif
1797 
1798 /*
1799  * Parse a server name (IP or hostname). If a valid IP address is not found
1800  * then try to extract a hostname to resolve using userspace DNS upcall.
1801  */
1802 static int ceph_parse_server_name(const char *name, size_t namelen,
1803 			struct sockaddr_storage *ss, char delim, const char **ipend)
1804 {
1805 	int ret;
1806 
1807 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1808 	if (ret)
1809 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1810 
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Parse an ip[:port] list into an addr array.  Use the default
1816  * monitor port if a port isn't specified.
1817  */
1818 int ceph_parse_ips(const char *c, const char *end,
1819 		   struct ceph_entity_addr *addr,
1820 		   int max_count, int *count)
1821 {
1822 	int i, ret = -EINVAL;
1823 	const char *p = c;
1824 
1825 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1826 	for (i = 0; i < max_count; i++) {
1827 		const char *ipend;
1828 		struct sockaddr_storage *ss = &addr[i].in_addr;
1829 		int port;
1830 		char delim = ',';
1831 
1832 		if (*p == '[') {
1833 			delim = ']';
1834 			p++;
1835 		}
1836 
1837 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1838 		if (ret)
1839 			goto bad;
1840 		ret = -EINVAL;
1841 
1842 		p = ipend;
1843 
1844 		if (delim == ']') {
1845 			if (*p != ']') {
1846 				dout("missing matching ']'\n");
1847 				goto bad;
1848 			}
1849 			p++;
1850 		}
1851 
1852 		/* port? */
1853 		if (p < end && *p == ':') {
1854 			port = 0;
1855 			p++;
1856 			while (p < end && *p >= '0' && *p <= '9') {
1857 				port = (port * 10) + (*p - '0');
1858 				p++;
1859 			}
1860 			if (port == 0)
1861 				port = CEPH_MON_PORT;
1862 			else if (port > 65535)
1863 				goto bad;
1864 		} else {
1865 			port = CEPH_MON_PORT;
1866 		}
1867 
1868 		addr_set_port(ss, port);
1869 
1870 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1871 
1872 		if (p == end)
1873 			break;
1874 		if (*p != ',')
1875 			goto bad;
1876 		p++;
1877 	}
1878 
1879 	if (p != end)
1880 		goto bad;
1881 
1882 	if (count)
1883 		*count = i + 1;
1884 	return 0;
1885 
1886 bad:
1887 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL(ceph_parse_ips);
1891 
1892 static int process_banner(struct ceph_connection *con)
1893 {
1894 	dout("process_banner on %p\n", con);
1895 
1896 	if (verify_hello(con) < 0)
1897 		return -1;
1898 
1899 	ceph_decode_addr(&con->actual_peer_addr);
1900 	ceph_decode_addr(&con->peer_addr_for_me);
1901 
1902 	/*
1903 	 * Make sure the other end is who we wanted.  note that the other
1904 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1905 	 * them the benefit of the doubt.
1906 	 */
1907 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1908 		   sizeof(con->peer_addr)) != 0 &&
1909 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1910 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1911 		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1912 			   ceph_pr_addr(&con->peer_addr.in_addr),
1913 			   (int)le32_to_cpu(con->peer_addr.nonce),
1914 			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1915 			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1916 		con->error_msg = "wrong peer at address";
1917 		return -1;
1918 	}
1919 
1920 	/*
1921 	 * did we learn our address?
1922 	 */
1923 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1924 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1925 
1926 		memcpy(&con->msgr->inst.addr.in_addr,
1927 		       &con->peer_addr_for_me.in_addr,
1928 		       sizeof(con->peer_addr_for_me.in_addr));
1929 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1930 		encode_my_addr(con->msgr);
1931 		dout("process_banner learned my addr is %s\n",
1932 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 static int process_connect(struct ceph_connection *con)
1939 {
1940 	u64 sup_feat = con->msgr->supported_features;
1941 	u64 req_feat = con->msgr->required_features;
1942 	u64 server_feat = ceph_sanitize_features(
1943 				le64_to_cpu(con->in_reply.features));
1944 	int ret;
1945 
1946 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1947 
1948 	switch (con->in_reply.tag) {
1949 	case CEPH_MSGR_TAG_FEATURES:
1950 		pr_err("%s%lld %s feature set mismatch,"
1951 		       " my %llx < server's %llx, missing %llx\n",
1952 		       ENTITY_NAME(con->peer_name),
1953 		       ceph_pr_addr(&con->peer_addr.in_addr),
1954 		       sup_feat, server_feat, server_feat & ~sup_feat);
1955 		con->error_msg = "missing required protocol features";
1956 		reset_connection(con);
1957 		return -1;
1958 
1959 	case CEPH_MSGR_TAG_BADPROTOVER:
1960 		pr_err("%s%lld %s protocol version mismatch,"
1961 		       " my %d != server's %d\n",
1962 		       ENTITY_NAME(con->peer_name),
1963 		       ceph_pr_addr(&con->peer_addr.in_addr),
1964 		       le32_to_cpu(con->out_connect.protocol_version),
1965 		       le32_to_cpu(con->in_reply.protocol_version));
1966 		con->error_msg = "protocol version mismatch";
1967 		reset_connection(con);
1968 		return -1;
1969 
1970 	case CEPH_MSGR_TAG_BADAUTHORIZER:
1971 		con->auth_retry++;
1972 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1973 		     con->auth_retry);
1974 		if (con->auth_retry == 2) {
1975 			con->error_msg = "connect authorization failure";
1976 			return -1;
1977 		}
1978 		con_out_kvec_reset(con);
1979 		ret = prepare_write_connect(con);
1980 		if (ret < 0)
1981 			return ret;
1982 		prepare_read_connect(con);
1983 		break;
1984 
1985 	case CEPH_MSGR_TAG_RESETSESSION:
1986 		/*
1987 		 * If we connected with a large connect_seq but the peer
1988 		 * has no record of a session with us (no connection, or
1989 		 * connect_seq == 0), they will send RESETSESION to indicate
1990 		 * that they must have reset their session, and may have
1991 		 * dropped messages.
1992 		 */
1993 		dout("process_connect got RESET peer seq %u\n",
1994 		     le32_to_cpu(con->in_reply.connect_seq));
1995 		pr_err("%s%lld %s connection reset\n",
1996 		       ENTITY_NAME(con->peer_name),
1997 		       ceph_pr_addr(&con->peer_addr.in_addr));
1998 		reset_connection(con);
1999 		con_out_kvec_reset(con);
2000 		ret = prepare_write_connect(con);
2001 		if (ret < 0)
2002 			return ret;
2003 		prepare_read_connect(con);
2004 
2005 		/* Tell ceph about it. */
2006 		mutex_unlock(&con->mutex);
2007 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2008 		if (con->ops->peer_reset)
2009 			con->ops->peer_reset(con);
2010 		mutex_lock(&con->mutex);
2011 		if (con->state != CON_STATE_NEGOTIATING)
2012 			return -EAGAIN;
2013 		break;
2014 
2015 	case CEPH_MSGR_TAG_RETRY_SESSION:
2016 		/*
2017 		 * If we sent a smaller connect_seq than the peer has, try
2018 		 * again with a larger value.
2019 		 */
2020 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2021 		     le32_to_cpu(con->out_connect.connect_seq),
2022 		     le32_to_cpu(con->in_reply.connect_seq));
2023 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2024 		con_out_kvec_reset(con);
2025 		ret = prepare_write_connect(con);
2026 		if (ret < 0)
2027 			return ret;
2028 		prepare_read_connect(con);
2029 		break;
2030 
2031 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2032 		/*
2033 		 * If we sent a smaller global_seq than the peer has, try
2034 		 * again with a larger value.
2035 		 */
2036 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2037 		     con->peer_global_seq,
2038 		     le32_to_cpu(con->in_reply.global_seq));
2039 		get_global_seq(con->msgr,
2040 			       le32_to_cpu(con->in_reply.global_seq));
2041 		con_out_kvec_reset(con);
2042 		ret = prepare_write_connect(con);
2043 		if (ret < 0)
2044 			return ret;
2045 		prepare_read_connect(con);
2046 		break;
2047 
2048 	case CEPH_MSGR_TAG_SEQ:
2049 	case CEPH_MSGR_TAG_READY:
2050 		if (req_feat & ~server_feat) {
2051 			pr_err("%s%lld %s protocol feature mismatch,"
2052 			       " my required %llx > server's %llx, need %llx\n",
2053 			       ENTITY_NAME(con->peer_name),
2054 			       ceph_pr_addr(&con->peer_addr.in_addr),
2055 			       req_feat, server_feat, req_feat & ~server_feat);
2056 			con->error_msg = "missing required protocol features";
2057 			reset_connection(con);
2058 			return -1;
2059 		}
2060 
2061 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2062 		con->state = CON_STATE_OPEN;
2063 		con->auth_retry = 0;    /* we authenticated; clear flag */
2064 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2065 		con->connect_seq++;
2066 		con->peer_features = server_feat;
2067 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2068 		     con->peer_global_seq,
2069 		     le32_to_cpu(con->in_reply.connect_seq),
2070 		     con->connect_seq);
2071 		WARN_ON(con->connect_seq !=
2072 			le32_to_cpu(con->in_reply.connect_seq));
2073 
2074 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2075 			con_flag_set(con, CON_FLAG_LOSSYTX);
2076 
2077 		con->delay = 0;      /* reset backoff memory */
2078 
2079 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2080 			prepare_write_seq(con);
2081 			prepare_read_seq(con);
2082 		} else {
2083 			prepare_read_tag(con);
2084 		}
2085 		break;
2086 
2087 	case CEPH_MSGR_TAG_WAIT:
2088 		/*
2089 		 * If there is a connection race (we are opening
2090 		 * connections to each other), one of us may just have
2091 		 * to WAIT.  This shouldn't happen if we are the
2092 		 * client.
2093 		 */
2094 		pr_err("process_connect got WAIT as client\n");
2095 		con->error_msg = "protocol error, got WAIT as client";
2096 		return -1;
2097 
2098 	default:
2099 		pr_err("connect protocol error, will retry\n");
2100 		con->error_msg = "protocol error, garbage tag during connect";
2101 		return -1;
2102 	}
2103 	return 0;
2104 }
2105 
2106 
2107 /*
2108  * read (part of) an ack
2109  */
2110 static int read_partial_ack(struct ceph_connection *con)
2111 {
2112 	int size = sizeof (con->in_temp_ack);
2113 	int end = size;
2114 
2115 	return read_partial(con, end, size, &con->in_temp_ack);
2116 }
2117 
2118 /*
2119  * We can finally discard anything that's been acked.
2120  */
2121 static void process_ack(struct ceph_connection *con)
2122 {
2123 	struct ceph_msg *m;
2124 	u64 ack = le64_to_cpu(con->in_temp_ack);
2125 	u64 seq;
2126 
2127 	while (!list_empty(&con->out_sent)) {
2128 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2129 				     list_head);
2130 		seq = le64_to_cpu(m->hdr.seq);
2131 		if (seq > ack)
2132 			break;
2133 		dout("got ack for seq %llu type %d at %p\n", seq,
2134 		     le16_to_cpu(m->hdr.type), m);
2135 		m->ack_stamp = jiffies;
2136 		ceph_msg_remove(m);
2137 	}
2138 	prepare_read_tag(con);
2139 }
2140 
2141 
2142 static int read_partial_message_section(struct ceph_connection *con,
2143 					struct kvec *section,
2144 					unsigned int sec_len, u32 *crc)
2145 {
2146 	int ret, left;
2147 
2148 	BUG_ON(!section);
2149 
2150 	while (section->iov_len < sec_len) {
2151 		BUG_ON(section->iov_base == NULL);
2152 		left = sec_len - section->iov_len;
2153 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2154 				       section->iov_len, left);
2155 		if (ret <= 0)
2156 			return ret;
2157 		section->iov_len += ret;
2158 	}
2159 	if (section->iov_len == sec_len)
2160 		*crc = crc32c(0, section->iov_base, section->iov_len);
2161 
2162 	return 1;
2163 }
2164 
2165 static int read_partial_msg_data(struct ceph_connection *con)
2166 {
2167 	struct ceph_msg *msg = con->in_msg;
2168 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2169 	const bool do_datacrc = !con->msgr->nocrc;
2170 	struct page *page;
2171 	size_t page_offset;
2172 	size_t length;
2173 	u32 crc = 0;
2174 	int ret;
2175 
2176 	BUG_ON(!msg);
2177 	if (list_empty(&msg->data))
2178 		return -EIO;
2179 
2180 	if (do_datacrc)
2181 		crc = con->in_data_crc;
2182 	while (cursor->resid) {
2183 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2184 							NULL);
2185 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2186 		if (ret <= 0) {
2187 			if (do_datacrc)
2188 				con->in_data_crc = crc;
2189 
2190 			return ret;
2191 		}
2192 
2193 		if (do_datacrc)
2194 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2195 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2196 	}
2197 	if (do_datacrc)
2198 		con->in_data_crc = crc;
2199 
2200 	return 1;	/* must return > 0 to indicate success */
2201 }
2202 
2203 /*
2204  * read (part of) a message.
2205  */
2206 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2207 
2208 static int read_partial_message(struct ceph_connection *con)
2209 {
2210 	struct ceph_msg *m = con->in_msg;
2211 	int size;
2212 	int end;
2213 	int ret;
2214 	unsigned int front_len, middle_len, data_len;
2215 	bool do_datacrc = !con->msgr->nocrc;
2216 	u64 seq;
2217 	u32 crc;
2218 
2219 	dout("read_partial_message con %p msg %p\n", con, m);
2220 
2221 	/* header */
2222 	size = sizeof (con->in_hdr);
2223 	end = size;
2224 	ret = read_partial(con, end, size, &con->in_hdr);
2225 	if (ret <= 0)
2226 		return ret;
2227 
2228 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2229 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2230 		pr_err("read_partial_message bad hdr "
2231 		       " crc %u != expected %u\n",
2232 		       crc, con->in_hdr.crc);
2233 		return -EBADMSG;
2234 	}
2235 
2236 	front_len = le32_to_cpu(con->in_hdr.front_len);
2237 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2238 		return -EIO;
2239 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2240 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2241 		return -EIO;
2242 	data_len = le32_to_cpu(con->in_hdr.data_len);
2243 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2244 		return -EIO;
2245 
2246 	/* verify seq# */
2247 	seq = le64_to_cpu(con->in_hdr.seq);
2248 	if ((s64)seq - (s64)con->in_seq < 1) {
2249 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2250 			ENTITY_NAME(con->peer_name),
2251 			ceph_pr_addr(&con->peer_addr.in_addr),
2252 			seq, con->in_seq + 1);
2253 		con->in_base_pos = -front_len - middle_len - data_len -
2254 			sizeof(m->footer);
2255 		con->in_tag = CEPH_MSGR_TAG_READY;
2256 		return 0;
2257 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2258 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2259 		       seq, con->in_seq + 1);
2260 		con->error_msg = "bad message sequence # for incoming message";
2261 		return -EBADMSG;
2262 	}
2263 
2264 	/* allocate message? */
2265 	if (!con->in_msg) {
2266 		int skip = 0;
2267 
2268 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2269 		     front_len, data_len);
2270 		ret = ceph_con_in_msg_alloc(con, &skip);
2271 		if (ret < 0)
2272 			return ret;
2273 
2274 		BUG_ON(!con->in_msg ^ skip);
2275 		if (con->in_msg && data_len > con->in_msg->data_length) {
2276 			pr_warning("%s skipping long message (%u > %zd)\n",
2277 				__func__, data_len, con->in_msg->data_length);
2278 			ceph_msg_put(con->in_msg);
2279 			con->in_msg = NULL;
2280 			skip = 1;
2281 		}
2282 		if (skip) {
2283 			/* skip this message */
2284 			dout("alloc_msg said skip message\n");
2285 			con->in_base_pos = -front_len - middle_len - data_len -
2286 				sizeof(m->footer);
2287 			con->in_tag = CEPH_MSGR_TAG_READY;
2288 			con->in_seq++;
2289 			return 0;
2290 		}
2291 
2292 		BUG_ON(!con->in_msg);
2293 		BUG_ON(con->in_msg->con != con);
2294 		m = con->in_msg;
2295 		m->front.iov_len = 0;    /* haven't read it yet */
2296 		if (m->middle)
2297 			m->middle->vec.iov_len = 0;
2298 
2299 		/* prepare for data payload, if any */
2300 
2301 		if (data_len)
2302 			prepare_message_data(con->in_msg, data_len);
2303 	}
2304 
2305 	/* front */
2306 	ret = read_partial_message_section(con, &m->front, front_len,
2307 					   &con->in_front_crc);
2308 	if (ret <= 0)
2309 		return ret;
2310 
2311 	/* middle */
2312 	if (m->middle) {
2313 		ret = read_partial_message_section(con, &m->middle->vec,
2314 						   middle_len,
2315 						   &con->in_middle_crc);
2316 		if (ret <= 0)
2317 			return ret;
2318 	}
2319 
2320 	/* (page) data */
2321 	if (data_len) {
2322 		ret = read_partial_msg_data(con);
2323 		if (ret <= 0)
2324 			return ret;
2325 	}
2326 
2327 	/* footer */
2328 	size = sizeof (m->footer);
2329 	end += size;
2330 	ret = read_partial(con, end, size, &m->footer);
2331 	if (ret <= 0)
2332 		return ret;
2333 
2334 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2335 	     m, front_len, m->footer.front_crc, middle_len,
2336 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2337 
2338 	/* crc ok? */
2339 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2340 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2341 		       m, con->in_front_crc, m->footer.front_crc);
2342 		return -EBADMSG;
2343 	}
2344 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2345 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2346 		       m, con->in_middle_crc, m->footer.middle_crc);
2347 		return -EBADMSG;
2348 	}
2349 	if (do_datacrc &&
2350 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2351 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2352 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2353 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2354 		return -EBADMSG;
2355 	}
2356 
2357 	return 1; /* done! */
2358 }
2359 
2360 /*
2361  * Process message.  This happens in the worker thread.  The callback should
2362  * be careful not to do anything that waits on other incoming messages or it
2363  * may deadlock.
2364  */
2365 static void process_message(struct ceph_connection *con)
2366 {
2367 	struct ceph_msg *msg;
2368 
2369 	BUG_ON(con->in_msg->con != con);
2370 	con->in_msg->con = NULL;
2371 	msg = con->in_msg;
2372 	con->in_msg = NULL;
2373 	con->ops->put(con);
2374 
2375 	/* if first message, set peer_name */
2376 	if (con->peer_name.type == 0)
2377 		con->peer_name = msg->hdr.src;
2378 
2379 	con->in_seq++;
2380 	mutex_unlock(&con->mutex);
2381 
2382 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2383 	     msg, le64_to_cpu(msg->hdr.seq),
2384 	     ENTITY_NAME(msg->hdr.src),
2385 	     le16_to_cpu(msg->hdr.type),
2386 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2387 	     le32_to_cpu(msg->hdr.front_len),
2388 	     le32_to_cpu(msg->hdr.data_len),
2389 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2390 	con->ops->dispatch(con, msg);
2391 
2392 	mutex_lock(&con->mutex);
2393 }
2394 
2395 
2396 /*
2397  * Write something to the socket.  Called in a worker thread when the
2398  * socket appears to be writeable and we have something ready to send.
2399  */
2400 static int try_write(struct ceph_connection *con)
2401 {
2402 	int ret = 1;
2403 
2404 	dout("try_write start %p state %lu\n", con, con->state);
2405 
2406 more:
2407 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2408 
2409 	/* open the socket first? */
2410 	if (con->state == CON_STATE_PREOPEN) {
2411 		BUG_ON(con->sock);
2412 		con->state = CON_STATE_CONNECTING;
2413 
2414 		con_out_kvec_reset(con);
2415 		prepare_write_banner(con);
2416 		prepare_read_banner(con);
2417 
2418 		BUG_ON(con->in_msg);
2419 		con->in_tag = CEPH_MSGR_TAG_READY;
2420 		dout("try_write initiating connect on %p new state %lu\n",
2421 		     con, con->state);
2422 		ret = ceph_tcp_connect(con);
2423 		if (ret < 0) {
2424 			con->error_msg = "connect error";
2425 			goto out;
2426 		}
2427 	}
2428 
2429 more_kvec:
2430 	/* kvec data queued? */
2431 	if (con->out_skip) {
2432 		ret = write_partial_skip(con);
2433 		if (ret <= 0)
2434 			goto out;
2435 	}
2436 	if (con->out_kvec_left) {
2437 		ret = write_partial_kvec(con);
2438 		if (ret <= 0)
2439 			goto out;
2440 	}
2441 
2442 	/* msg pages? */
2443 	if (con->out_msg) {
2444 		if (con->out_msg_done) {
2445 			ceph_msg_put(con->out_msg);
2446 			con->out_msg = NULL;   /* we're done with this one */
2447 			goto do_next;
2448 		}
2449 
2450 		ret = write_partial_message_data(con);
2451 		if (ret == 1)
2452 			goto more_kvec;  /* we need to send the footer, too! */
2453 		if (ret == 0)
2454 			goto out;
2455 		if (ret < 0) {
2456 			dout("try_write write_partial_message_data err %d\n",
2457 			     ret);
2458 			goto out;
2459 		}
2460 	}
2461 
2462 do_next:
2463 	if (con->state == CON_STATE_OPEN) {
2464 		/* is anything else pending? */
2465 		if (!list_empty(&con->out_queue)) {
2466 			prepare_write_message(con);
2467 			goto more;
2468 		}
2469 		if (con->in_seq > con->in_seq_acked) {
2470 			prepare_write_ack(con);
2471 			goto more;
2472 		}
2473 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2474 			prepare_write_keepalive(con);
2475 			goto more;
2476 		}
2477 	}
2478 
2479 	/* Nothing to do! */
2480 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2481 	dout("try_write nothing else to write.\n");
2482 	ret = 0;
2483 out:
2484 	dout("try_write done on %p ret %d\n", con, ret);
2485 	return ret;
2486 }
2487 
2488 
2489 
2490 /*
2491  * Read what we can from the socket.
2492  */
2493 static int try_read(struct ceph_connection *con)
2494 {
2495 	int ret = -1;
2496 
2497 more:
2498 	dout("try_read start on %p state %lu\n", con, con->state);
2499 	if (con->state != CON_STATE_CONNECTING &&
2500 	    con->state != CON_STATE_NEGOTIATING &&
2501 	    con->state != CON_STATE_OPEN)
2502 		return 0;
2503 
2504 	BUG_ON(!con->sock);
2505 
2506 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2507 	     con->in_base_pos);
2508 
2509 	if (con->state == CON_STATE_CONNECTING) {
2510 		dout("try_read connecting\n");
2511 		ret = read_partial_banner(con);
2512 		if (ret <= 0)
2513 			goto out;
2514 		ret = process_banner(con);
2515 		if (ret < 0)
2516 			goto out;
2517 
2518 		con->state = CON_STATE_NEGOTIATING;
2519 
2520 		/*
2521 		 * Received banner is good, exchange connection info.
2522 		 * Do not reset out_kvec, as sending our banner raced
2523 		 * with receiving peer banner after connect completed.
2524 		 */
2525 		ret = prepare_write_connect(con);
2526 		if (ret < 0)
2527 			goto out;
2528 		prepare_read_connect(con);
2529 
2530 		/* Send connection info before awaiting response */
2531 		goto out;
2532 	}
2533 
2534 	if (con->state == CON_STATE_NEGOTIATING) {
2535 		dout("try_read negotiating\n");
2536 		ret = read_partial_connect(con);
2537 		if (ret <= 0)
2538 			goto out;
2539 		ret = process_connect(con);
2540 		if (ret < 0)
2541 			goto out;
2542 		goto more;
2543 	}
2544 
2545 	WARN_ON(con->state != CON_STATE_OPEN);
2546 
2547 	if (con->in_base_pos < 0) {
2548 		/*
2549 		 * skipping + discarding content.
2550 		 *
2551 		 * FIXME: there must be a better way to do this!
2552 		 */
2553 		static char buf[SKIP_BUF_SIZE];
2554 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2555 
2556 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2557 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2558 		if (ret <= 0)
2559 			goto out;
2560 		con->in_base_pos += ret;
2561 		if (con->in_base_pos)
2562 			goto more;
2563 	}
2564 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2565 		/*
2566 		 * what's next?
2567 		 */
2568 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2569 		if (ret <= 0)
2570 			goto out;
2571 		dout("try_read got tag %d\n", (int)con->in_tag);
2572 		switch (con->in_tag) {
2573 		case CEPH_MSGR_TAG_MSG:
2574 			prepare_read_message(con);
2575 			break;
2576 		case CEPH_MSGR_TAG_ACK:
2577 			prepare_read_ack(con);
2578 			break;
2579 		case CEPH_MSGR_TAG_CLOSE:
2580 			con_close_socket(con);
2581 			con->state = CON_STATE_CLOSED;
2582 			goto out;
2583 		default:
2584 			goto bad_tag;
2585 		}
2586 	}
2587 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2588 		ret = read_partial_message(con);
2589 		if (ret <= 0) {
2590 			switch (ret) {
2591 			case -EBADMSG:
2592 				con->error_msg = "bad crc";
2593 				ret = -EIO;
2594 				break;
2595 			case -EIO:
2596 				con->error_msg = "io error";
2597 				break;
2598 			}
2599 			goto out;
2600 		}
2601 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2602 			goto more;
2603 		process_message(con);
2604 		if (con->state == CON_STATE_OPEN)
2605 			prepare_read_tag(con);
2606 		goto more;
2607 	}
2608 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2609 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2610 		/*
2611 		 * the final handshake seq exchange is semantically
2612 		 * equivalent to an ACK
2613 		 */
2614 		ret = read_partial_ack(con);
2615 		if (ret <= 0)
2616 			goto out;
2617 		process_ack(con);
2618 		goto more;
2619 	}
2620 
2621 out:
2622 	dout("try_read done on %p ret %d\n", con, ret);
2623 	return ret;
2624 
2625 bad_tag:
2626 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2627 	con->error_msg = "protocol error, garbage tag";
2628 	ret = -1;
2629 	goto out;
2630 }
2631 
2632 
2633 /*
2634  * Atomically queue work on a connection after the specified delay.
2635  * Bump @con reference to avoid races with connection teardown.
2636  * Returns 0 if work was queued, or an error code otherwise.
2637  */
2638 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2639 {
2640 	if (!con->ops->get(con)) {
2641 		dout("%s %p ref count 0\n", __func__, con);
2642 
2643 		return -ENOENT;
2644 	}
2645 
2646 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2647 		dout("%s %p - already queued\n", __func__, con);
2648 		con->ops->put(con);
2649 
2650 		return -EBUSY;
2651 	}
2652 
2653 	dout("%s %p %lu\n", __func__, con, delay);
2654 
2655 	return 0;
2656 }
2657 
2658 static void queue_con(struct ceph_connection *con)
2659 {
2660 	(void) queue_con_delay(con, 0);
2661 }
2662 
2663 static bool con_sock_closed(struct ceph_connection *con)
2664 {
2665 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2666 		return false;
2667 
2668 #define CASE(x)								\
2669 	case CON_STATE_ ## x:						\
2670 		con->error_msg = "socket closed (con state " #x ")";	\
2671 		break;
2672 
2673 	switch (con->state) {
2674 	CASE(CLOSED);
2675 	CASE(PREOPEN);
2676 	CASE(CONNECTING);
2677 	CASE(NEGOTIATING);
2678 	CASE(OPEN);
2679 	CASE(STANDBY);
2680 	default:
2681 		pr_warning("%s con %p unrecognized state %lu\n",
2682 			__func__, con, con->state);
2683 		con->error_msg = "unrecognized con state";
2684 		BUG();
2685 		break;
2686 	}
2687 #undef CASE
2688 
2689 	return true;
2690 }
2691 
2692 static bool con_backoff(struct ceph_connection *con)
2693 {
2694 	int ret;
2695 
2696 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2697 		return false;
2698 
2699 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2700 	if (ret) {
2701 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2702 			con, con->delay);
2703 		BUG_ON(ret == -ENOENT);
2704 		con_flag_set(con, CON_FLAG_BACKOFF);
2705 	}
2706 
2707 	return true;
2708 }
2709 
2710 /* Finish fault handling; con->mutex must *not* be held here */
2711 
2712 static void con_fault_finish(struct ceph_connection *con)
2713 {
2714 	/*
2715 	 * in case we faulted due to authentication, invalidate our
2716 	 * current tickets so that we can get new ones.
2717 	 */
2718 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2719 		dout("calling invalidate_authorizer()\n");
2720 		con->ops->invalidate_authorizer(con);
2721 	}
2722 
2723 	if (con->ops->fault)
2724 		con->ops->fault(con);
2725 }
2726 
2727 /*
2728  * Do some work on a connection.  Drop a connection ref when we're done.
2729  */
2730 static void con_work(struct work_struct *work)
2731 {
2732 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2733 						   work.work);
2734 	bool fault;
2735 
2736 	mutex_lock(&con->mutex);
2737 	while (true) {
2738 		int ret;
2739 
2740 		if ((fault = con_sock_closed(con))) {
2741 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2742 			break;
2743 		}
2744 		if (con_backoff(con)) {
2745 			dout("%s: con %p BACKOFF\n", __func__, con);
2746 			break;
2747 		}
2748 		if (con->state == CON_STATE_STANDBY) {
2749 			dout("%s: con %p STANDBY\n", __func__, con);
2750 			break;
2751 		}
2752 		if (con->state == CON_STATE_CLOSED) {
2753 			dout("%s: con %p CLOSED\n", __func__, con);
2754 			BUG_ON(con->sock);
2755 			break;
2756 		}
2757 		if (con->state == CON_STATE_PREOPEN) {
2758 			dout("%s: con %p PREOPEN\n", __func__, con);
2759 			BUG_ON(con->sock);
2760 		}
2761 
2762 		ret = try_read(con);
2763 		if (ret < 0) {
2764 			if (ret == -EAGAIN)
2765 				continue;
2766 			con->error_msg = "socket error on read";
2767 			fault = true;
2768 			break;
2769 		}
2770 
2771 		ret = try_write(con);
2772 		if (ret < 0) {
2773 			if (ret == -EAGAIN)
2774 				continue;
2775 			con->error_msg = "socket error on write";
2776 			fault = true;
2777 		}
2778 
2779 		break;	/* If we make it to here, we're done */
2780 	}
2781 	if (fault)
2782 		con_fault(con);
2783 	mutex_unlock(&con->mutex);
2784 
2785 	if (fault)
2786 		con_fault_finish(con);
2787 
2788 	con->ops->put(con);
2789 }
2790 
2791 /*
2792  * Generic error/fault handler.  A retry mechanism is used with
2793  * exponential backoff
2794  */
2795 static void con_fault(struct ceph_connection *con)
2796 {
2797 	pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2798 	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2799 	dout("fault %p state %lu to peer %s\n",
2800 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2801 
2802 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2803 	       con->state != CON_STATE_NEGOTIATING &&
2804 	       con->state != CON_STATE_OPEN);
2805 
2806 	con_close_socket(con);
2807 
2808 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2809 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2810 		con->state = CON_STATE_CLOSED;
2811 		return;
2812 	}
2813 
2814 	if (con->in_msg) {
2815 		BUG_ON(con->in_msg->con != con);
2816 		con->in_msg->con = NULL;
2817 		ceph_msg_put(con->in_msg);
2818 		con->in_msg = NULL;
2819 		con->ops->put(con);
2820 	}
2821 
2822 	/* Requeue anything that hasn't been acked */
2823 	list_splice_init(&con->out_sent, &con->out_queue);
2824 
2825 	/* If there are no messages queued or keepalive pending, place
2826 	 * the connection in a STANDBY state */
2827 	if (list_empty(&con->out_queue) &&
2828 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2829 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2830 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2831 		con->state = CON_STATE_STANDBY;
2832 	} else {
2833 		/* retry after a delay. */
2834 		con->state = CON_STATE_PREOPEN;
2835 		if (con->delay == 0)
2836 			con->delay = BASE_DELAY_INTERVAL;
2837 		else if (con->delay < MAX_DELAY_INTERVAL)
2838 			con->delay *= 2;
2839 		con_flag_set(con, CON_FLAG_BACKOFF);
2840 		queue_con(con);
2841 	}
2842 }
2843 
2844 
2845 
2846 /*
2847  * initialize a new messenger instance
2848  */
2849 void ceph_messenger_init(struct ceph_messenger *msgr,
2850 			struct ceph_entity_addr *myaddr,
2851 			u64 supported_features,
2852 			u64 required_features,
2853 			bool nocrc)
2854 {
2855 	msgr->supported_features = supported_features;
2856 	msgr->required_features = required_features;
2857 
2858 	spin_lock_init(&msgr->global_seq_lock);
2859 
2860 	if (myaddr)
2861 		msgr->inst.addr = *myaddr;
2862 
2863 	/* select a random nonce */
2864 	msgr->inst.addr.type = 0;
2865 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2866 	encode_my_addr(msgr);
2867 	msgr->nocrc = nocrc;
2868 
2869 	atomic_set(&msgr->stopping, 0);
2870 
2871 	dout("%s %p\n", __func__, msgr);
2872 }
2873 EXPORT_SYMBOL(ceph_messenger_init);
2874 
2875 static void clear_standby(struct ceph_connection *con)
2876 {
2877 	/* come back from STANDBY? */
2878 	if (con->state == CON_STATE_STANDBY) {
2879 		dout("clear_standby %p and ++connect_seq\n", con);
2880 		con->state = CON_STATE_PREOPEN;
2881 		con->connect_seq++;
2882 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2883 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2884 	}
2885 }
2886 
2887 /*
2888  * Queue up an outgoing message on the given connection.
2889  */
2890 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2891 {
2892 	/* set src+dst */
2893 	msg->hdr.src = con->msgr->inst.name;
2894 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2895 	msg->needs_out_seq = true;
2896 
2897 	mutex_lock(&con->mutex);
2898 
2899 	if (con->state == CON_STATE_CLOSED) {
2900 		dout("con_send %p closed, dropping %p\n", con, msg);
2901 		ceph_msg_put(msg);
2902 		mutex_unlock(&con->mutex);
2903 		return;
2904 	}
2905 
2906 	BUG_ON(msg->con != NULL);
2907 	msg->con = con->ops->get(con);
2908 	BUG_ON(msg->con == NULL);
2909 
2910 	BUG_ON(!list_empty(&msg->list_head));
2911 	list_add_tail(&msg->list_head, &con->out_queue);
2912 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2913 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2914 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2915 	     le32_to_cpu(msg->hdr.front_len),
2916 	     le32_to_cpu(msg->hdr.middle_len),
2917 	     le32_to_cpu(msg->hdr.data_len));
2918 
2919 	clear_standby(con);
2920 	mutex_unlock(&con->mutex);
2921 
2922 	/* if there wasn't anything waiting to send before, queue
2923 	 * new work */
2924 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2925 		queue_con(con);
2926 }
2927 EXPORT_SYMBOL(ceph_con_send);
2928 
2929 /*
2930  * Revoke a message that was previously queued for send
2931  */
2932 void ceph_msg_revoke(struct ceph_msg *msg)
2933 {
2934 	struct ceph_connection *con = msg->con;
2935 
2936 	if (!con)
2937 		return;		/* Message not in our possession */
2938 
2939 	mutex_lock(&con->mutex);
2940 	if (!list_empty(&msg->list_head)) {
2941 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2942 		list_del_init(&msg->list_head);
2943 		BUG_ON(msg->con == NULL);
2944 		msg->con->ops->put(msg->con);
2945 		msg->con = NULL;
2946 		msg->hdr.seq = 0;
2947 
2948 		ceph_msg_put(msg);
2949 	}
2950 	if (con->out_msg == msg) {
2951 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2952 		con->out_msg = NULL;
2953 		if (con->out_kvec_is_msg) {
2954 			con->out_skip = con->out_kvec_bytes;
2955 			con->out_kvec_is_msg = false;
2956 		}
2957 		msg->hdr.seq = 0;
2958 
2959 		ceph_msg_put(msg);
2960 	}
2961 	mutex_unlock(&con->mutex);
2962 }
2963 
2964 /*
2965  * Revoke a message that we may be reading data into
2966  */
2967 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2968 {
2969 	struct ceph_connection *con;
2970 
2971 	BUG_ON(msg == NULL);
2972 	if (!msg->con) {
2973 		dout("%s msg %p null con\n", __func__, msg);
2974 
2975 		return;		/* Message not in our possession */
2976 	}
2977 
2978 	con = msg->con;
2979 	mutex_lock(&con->mutex);
2980 	if (con->in_msg == msg) {
2981 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2982 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2983 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2984 
2985 		/* skip rest of message */
2986 		dout("%s %p msg %p revoked\n", __func__, con, msg);
2987 		con->in_base_pos = con->in_base_pos -
2988 				sizeof(struct ceph_msg_header) -
2989 				front_len -
2990 				middle_len -
2991 				data_len -
2992 				sizeof(struct ceph_msg_footer);
2993 		ceph_msg_put(con->in_msg);
2994 		con->in_msg = NULL;
2995 		con->in_tag = CEPH_MSGR_TAG_READY;
2996 		con->in_seq++;
2997 	} else {
2998 		dout("%s %p in_msg %p msg %p no-op\n",
2999 		     __func__, con, con->in_msg, msg);
3000 	}
3001 	mutex_unlock(&con->mutex);
3002 }
3003 
3004 /*
3005  * Queue a keepalive byte to ensure the tcp connection is alive.
3006  */
3007 void ceph_con_keepalive(struct ceph_connection *con)
3008 {
3009 	dout("con_keepalive %p\n", con);
3010 	mutex_lock(&con->mutex);
3011 	clear_standby(con);
3012 	mutex_unlock(&con->mutex);
3013 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3014 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3015 		queue_con(con);
3016 }
3017 EXPORT_SYMBOL(ceph_con_keepalive);
3018 
3019 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3020 {
3021 	struct ceph_msg_data *data;
3022 
3023 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3024 		return NULL;
3025 
3026 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3027 	if (data)
3028 		data->type = type;
3029 	INIT_LIST_HEAD(&data->links);
3030 
3031 	return data;
3032 }
3033 
3034 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3035 {
3036 	if (!data)
3037 		return;
3038 
3039 	WARN_ON(!list_empty(&data->links));
3040 	if (data->type == CEPH_MSG_DATA_PAGELIST) {
3041 		ceph_pagelist_release(data->pagelist);
3042 		kfree(data->pagelist);
3043 	}
3044 	kmem_cache_free(ceph_msg_data_cache, data);
3045 }
3046 
3047 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3048 		size_t length, size_t alignment)
3049 {
3050 	struct ceph_msg_data *data;
3051 
3052 	BUG_ON(!pages);
3053 	BUG_ON(!length);
3054 
3055 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3056 	BUG_ON(!data);
3057 	data->pages = pages;
3058 	data->length = length;
3059 	data->alignment = alignment & ~PAGE_MASK;
3060 
3061 	list_add_tail(&data->links, &msg->data);
3062 	msg->data_length += length;
3063 }
3064 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3065 
3066 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3067 				struct ceph_pagelist *pagelist)
3068 {
3069 	struct ceph_msg_data *data;
3070 
3071 	BUG_ON(!pagelist);
3072 	BUG_ON(!pagelist->length);
3073 
3074 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3075 	BUG_ON(!data);
3076 	data->pagelist = pagelist;
3077 
3078 	list_add_tail(&data->links, &msg->data);
3079 	msg->data_length += pagelist->length;
3080 }
3081 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3082 
3083 #ifdef	CONFIG_BLOCK
3084 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3085 		size_t length)
3086 {
3087 	struct ceph_msg_data *data;
3088 
3089 	BUG_ON(!bio);
3090 
3091 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3092 	BUG_ON(!data);
3093 	data->bio = bio;
3094 	data->bio_length = length;
3095 
3096 	list_add_tail(&data->links, &msg->data);
3097 	msg->data_length += length;
3098 }
3099 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3100 #endif	/* CONFIG_BLOCK */
3101 
3102 /*
3103  * construct a new message with given type, size
3104  * the new msg has a ref count of 1.
3105  */
3106 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3107 			      bool can_fail)
3108 {
3109 	struct ceph_msg *m;
3110 
3111 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3112 	if (m == NULL)
3113 		goto out;
3114 
3115 	m->hdr.type = cpu_to_le16(type);
3116 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3117 	m->hdr.front_len = cpu_to_le32(front_len);
3118 
3119 	INIT_LIST_HEAD(&m->list_head);
3120 	kref_init(&m->kref);
3121 	INIT_LIST_HEAD(&m->data);
3122 
3123 	/* front */
3124 	if (front_len) {
3125 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3126 		if (m->front.iov_base == NULL) {
3127 			dout("ceph_msg_new can't allocate %d bytes\n",
3128 			     front_len);
3129 			goto out2;
3130 		}
3131 	} else {
3132 		m->front.iov_base = NULL;
3133 	}
3134 	m->front_alloc_len = m->front.iov_len = front_len;
3135 
3136 	dout("ceph_msg_new %p front %d\n", m, front_len);
3137 	return m;
3138 
3139 out2:
3140 	ceph_msg_put(m);
3141 out:
3142 	if (!can_fail) {
3143 		pr_err("msg_new can't create type %d front %d\n", type,
3144 		       front_len);
3145 		WARN_ON(1);
3146 	} else {
3147 		dout("msg_new can't create type %d front %d\n", type,
3148 		     front_len);
3149 	}
3150 	return NULL;
3151 }
3152 EXPORT_SYMBOL(ceph_msg_new);
3153 
3154 /*
3155  * Allocate "middle" portion of a message, if it is needed and wasn't
3156  * allocated by alloc_msg.  This allows us to read a small fixed-size
3157  * per-type header in the front and then gracefully fail (i.e.,
3158  * propagate the error to the caller based on info in the front) when
3159  * the middle is too large.
3160  */
3161 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3162 {
3163 	int type = le16_to_cpu(msg->hdr.type);
3164 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3165 
3166 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3167 	     ceph_msg_type_name(type), middle_len);
3168 	BUG_ON(!middle_len);
3169 	BUG_ON(msg->middle);
3170 
3171 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3172 	if (!msg->middle)
3173 		return -ENOMEM;
3174 	return 0;
3175 }
3176 
3177 /*
3178  * Allocate a message for receiving an incoming message on a
3179  * connection, and save the result in con->in_msg.  Uses the
3180  * connection's private alloc_msg op if available.
3181  *
3182  * Returns 0 on success, or a negative error code.
3183  *
3184  * On success, if we set *skip = 1:
3185  *  - the next message should be skipped and ignored.
3186  *  - con->in_msg == NULL
3187  * or if we set *skip = 0:
3188  *  - con->in_msg is non-null.
3189  * On error (ENOMEM, EAGAIN, ...),
3190  *  - con->in_msg == NULL
3191  */
3192 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3193 {
3194 	struct ceph_msg_header *hdr = &con->in_hdr;
3195 	int middle_len = le32_to_cpu(hdr->middle_len);
3196 	struct ceph_msg *msg;
3197 	int ret = 0;
3198 
3199 	BUG_ON(con->in_msg != NULL);
3200 	BUG_ON(!con->ops->alloc_msg);
3201 
3202 	mutex_unlock(&con->mutex);
3203 	msg = con->ops->alloc_msg(con, hdr, skip);
3204 	mutex_lock(&con->mutex);
3205 	if (con->state != CON_STATE_OPEN) {
3206 		if (msg)
3207 			ceph_msg_put(msg);
3208 		return -EAGAIN;
3209 	}
3210 	if (msg) {
3211 		BUG_ON(*skip);
3212 		con->in_msg = msg;
3213 		con->in_msg->con = con->ops->get(con);
3214 		BUG_ON(con->in_msg->con == NULL);
3215 	} else {
3216 		/*
3217 		 * Null message pointer means either we should skip
3218 		 * this message or we couldn't allocate memory.  The
3219 		 * former is not an error.
3220 		 */
3221 		if (*skip)
3222 			return 0;
3223 		con->error_msg = "error allocating memory for incoming message";
3224 
3225 		return -ENOMEM;
3226 	}
3227 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3228 
3229 	if (middle_len && !con->in_msg->middle) {
3230 		ret = ceph_alloc_middle(con, con->in_msg);
3231 		if (ret < 0) {
3232 			ceph_msg_put(con->in_msg);
3233 			con->in_msg = NULL;
3234 		}
3235 	}
3236 
3237 	return ret;
3238 }
3239 
3240 
3241 /*
3242  * Free a generically kmalloc'd message.
3243  */
3244 void ceph_msg_kfree(struct ceph_msg *m)
3245 {
3246 	dout("msg_kfree %p\n", m);
3247 	ceph_kvfree(m->front.iov_base);
3248 	kmem_cache_free(ceph_msg_cache, m);
3249 }
3250 
3251 /*
3252  * Drop a msg ref.  Destroy as needed.
3253  */
3254 void ceph_msg_last_put(struct kref *kref)
3255 {
3256 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3257 	LIST_HEAD(data);
3258 	struct list_head *links;
3259 	struct list_head *next;
3260 
3261 	dout("ceph_msg_put last one on %p\n", m);
3262 	WARN_ON(!list_empty(&m->list_head));
3263 
3264 	/* drop middle, data, if any */
3265 	if (m->middle) {
3266 		ceph_buffer_put(m->middle);
3267 		m->middle = NULL;
3268 	}
3269 
3270 	list_splice_init(&m->data, &data);
3271 	list_for_each_safe(links, next, &data) {
3272 		struct ceph_msg_data *data;
3273 
3274 		data = list_entry(links, struct ceph_msg_data, links);
3275 		list_del_init(links);
3276 		ceph_msg_data_destroy(data);
3277 	}
3278 	m->data_length = 0;
3279 
3280 	if (m->pool)
3281 		ceph_msgpool_put(m->pool, m);
3282 	else
3283 		ceph_msg_kfree(m);
3284 }
3285 EXPORT_SYMBOL(ceph_msg_last_put);
3286 
3287 void ceph_msg_dump(struct ceph_msg *msg)
3288 {
3289 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3290 		 msg->front_alloc_len, msg->data_length);
3291 	print_hex_dump(KERN_DEBUG, "header: ",
3292 		       DUMP_PREFIX_OFFSET, 16, 1,
3293 		       &msg->hdr, sizeof(msg->hdr), true);
3294 	print_hex_dump(KERN_DEBUG, " front: ",
3295 		       DUMP_PREFIX_OFFSET, 16, 1,
3296 		       msg->front.iov_base, msg->front.iov_len, true);
3297 	if (msg->middle)
3298 		print_hex_dump(KERN_DEBUG, "middle: ",
3299 			       DUMP_PREFIX_OFFSET, 16, 1,
3300 			       msg->middle->vec.iov_base,
3301 			       msg->middle->vec.iov_len, true);
3302 	print_hex_dump(KERN_DEBUG, "footer: ",
3303 		       DUMP_PREFIX_OFFSET, 16, 1,
3304 		       &msg->footer, sizeof(msg->footer), true);
3305 }
3306 EXPORT_SYMBOL(ceph_msg_dump);
3307