1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/nsproxy.h> 10 #include <linux/slab.h> 11 #include <linux/socket.h> 12 #include <linux/string.h> 13 #ifdef CONFIG_BLOCK 14 #include <linux/bio.h> 15 #endif /* CONFIG_BLOCK */ 16 #include <linux/dns_resolver.h> 17 #include <net/tcp.h> 18 19 #include <linux/ceph/ceph_features.h> 20 #include <linux/ceph/libceph.h> 21 #include <linux/ceph/messenger.h> 22 #include <linux/ceph/decode.h> 23 #include <linux/ceph/pagelist.h> 24 #include <linux/export.h> 25 26 #define list_entry_next(pos, member) \ 27 list_entry(pos->member.next, typeof(*pos), member) 28 29 /* 30 * Ceph uses the messenger to exchange ceph_msg messages with other 31 * hosts in the system. The messenger provides ordered and reliable 32 * delivery. We tolerate TCP disconnects by reconnecting (with 33 * exponential backoff) in the case of a fault (disconnection, bad 34 * crc, protocol error). Acks allow sent messages to be discarded by 35 * the sender. 36 */ 37 38 /* 39 * We track the state of the socket on a given connection using 40 * values defined below. The transition to a new socket state is 41 * handled by a function which verifies we aren't coming from an 42 * unexpected state. 43 * 44 * -------- 45 * | NEW* | transient initial state 46 * -------- 47 * | con_sock_state_init() 48 * v 49 * ---------- 50 * | CLOSED | initialized, but no socket (and no 51 * ---------- TCP connection) 52 * ^ \ 53 * | \ con_sock_state_connecting() 54 * | ---------------------- 55 * | \ 56 * + con_sock_state_closed() \ 57 * |+--------------------------- \ 58 * | \ \ \ 59 * | ----------- \ \ 60 * | | CLOSING | socket event; \ \ 61 * | ----------- await close \ \ 62 * | ^ \ | 63 * | | \ | 64 * | + con_sock_state_closing() \ | 65 * | / \ | | 66 * | / --------------- | | 67 * | / \ v v 68 * | / -------------- 69 * | / -----------------| CONNECTING | socket created, TCP 70 * | | / -------------- connect initiated 71 * | | | con_sock_state_connected() 72 * | | v 73 * ------------- 74 * | CONNECTED | TCP connection established 75 * ------------- 76 * 77 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 78 */ 79 80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 85 86 /* 87 * connection states 88 */ 89 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 90 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 91 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 92 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 93 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 94 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 95 96 /* 97 * ceph_connection flag bits 98 */ 99 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 100 * messages on errors */ 101 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 102 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 103 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 104 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 105 106 static bool con_flag_valid(unsigned long con_flag) 107 { 108 switch (con_flag) { 109 case CON_FLAG_LOSSYTX: 110 case CON_FLAG_KEEPALIVE_PENDING: 111 case CON_FLAG_WRITE_PENDING: 112 case CON_FLAG_SOCK_CLOSED: 113 case CON_FLAG_BACKOFF: 114 return true; 115 default: 116 return false; 117 } 118 } 119 120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 121 { 122 BUG_ON(!con_flag_valid(con_flag)); 123 124 clear_bit(con_flag, &con->flags); 125 } 126 127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 128 { 129 BUG_ON(!con_flag_valid(con_flag)); 130 131 set_bit(con_flag, &con->flags); 132 } 133 134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 135 { 136 BUG_ON(!con_flag_valid(con_flag)); 137 138 return test_bit(con_flag, &con->flags); 139 } 140 141 static bool con_flag_test_and_clear(struct ceph_connection *con, 142 unsigned long con_flag) 143 { 144 BUG_ON(!con_flag_valid(con_flag)); 145 146 return test_and_clear_bit(con_flag, &con->flags); 147 } 148 149 static bool con_flag_test_and_set(struct ceph_connection *con, 150 unsigned long con_flag) 151 { 152 BUG_ON(!con_flag_valid(con_flag)); 153 154 return test_and_set_bit(con_flag, &con->flags); 155 } 156 157 /* Slab caches for frequently-allocated structures */ 158 159 static struct kmem_cache *ceph_msg_cache; 160 static struct kmem_cache *ceph_msg_data_cache; 161 162 /* static tag bytes (protocol control messages) */ 163 static char tag_msg = CEPH_MSGR_TAG_MSG; 164 static char tag_ack = CEPH_MSGR_TAG_ACK; 165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 166 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 167 168 #ifdef CONFIG_LOCKDEP 169 static struct lock_class_key socket_class; 170 #endif 171 172 /* 173 * When skipping (ignoring) a block of input we read it into a "skip 174 * buffer," which is this many bytes in size. 175 */ 176 #define SKIP_BUF_SIZE 1024 177 178 static void queue_con(struct ceph_connection *con); 179 static void cancel_con(struct ceph_connection *con); 180 static void ceph_con_workfn(struct work_struct *); 181 static void con_fault(struct ceph_connection *con); 182 183 /* 184 * Nicely render a sockaddr as a string. An array of formatted 185 * strings is used, to approximate reentrancy. 186 */ 187 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 188 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 189 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 190 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 191 192 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 193 static atomic_t addr_str_seq = ATOMIC_INIT(0); 194 195 static struct page *zero_page; /* used in certain error cases */ 196 197 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 198 { 199 int i; 200 char *s; 201 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 202 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 203 204 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 205 s = addr_str[i]; 206 207 switch (ss->ss_family) { 208 case AF_INET: 209 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 210 ntohs(in4->sin_port)); 211 break; 212 213 case AF_INET6: 214 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 215 ntohs(in6->sin6_port)); 216 break; 217 218 default: 219 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 220 ss->ss_family); 221 } 222 223 return s; 224 } 225 EXPORT_SYMBOL(ceph_pr_addr); 226 227 static void encode_my_addr(struct ceph_messenger *msgr) 228 { 229 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 230 ceph_encode_addr(&msgr->my_enc_addr); 231 } 232 233 /* 234 * work queue for all reading and writing to/from the socket. 235 */ 236 static struct workqueue_struct *ceph_msgr_wq; 237 238 static int ceph_msgr_slab_init(void) 239 { 240 BUG_ON(ceph_msg_cache); 241 ceph_msg_cache = kmem_cache_create("ceph_msg", 242 sizeof (struct ceph_msg), 243 __alignof__(struct ceph_msg), 0, NULL); 244 245 if (!ceph_msg_cache) 246 return -ENOMEM; 247 248 BUG_ON(ceph_msg_data_cache); 249 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 250 sizeof (struct ceph_msg_data), 251 __alignof__(struct ceph_msg_data), 252 0, NULL); 253 if (ceph_msg_data_cache) 254 return 0; 255 256 kmem_cache_destroy(ceph_msg_cache); 257 ceph_msg_cache = NULL; 258 259 return -ENOMEM; 260 } 261 262 static void ceph_msgr_slab_exit(void) 263 { 264 BUG_ON(!ceph_msg_data_cache); 265 kmem_cache_destroy(ceph_msg_data_cache); 266 ceph_msg_data_cache = NULL; 267 268 BUG_ON(!ceph_msg_cache); 269 kmem_cache_destroy(ceph_msg_cache); 270 ceph_msg_cache = NULL; 271 } 272 273 static void _ceph_msgr_exit(void) 274 { 275 if (ceph_msgr_wq) { 276 destroy_workqueue(ceph_msgr_wq); 277 ceph_msgr_wq = NULL; 278 } 279 280 BUG_ON(zero_page == NULL); 281 page_cache_release(zero_page); 282 zero_page = NULL; 283 284 ceph_msgr_slab_exit(); 285 } 286 287 int ceph_msgr_init(void) 288 { 289 if (ceph_msgr_slab_init()) 290 return -ENOMEM; 291 292 BUG_ON(zero_page != NULL); 293 zero_page = ZERO_PAGE(0); 294 page_cache_get(zero_page); 295 296 /* 297 * The number of active work items is limited by the number of 298 * connections, so leave @max_active at default. 299 */ 300 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 301 if (ceph_msgr_wq) 302 return 0; 303 304 pr_err("msgr_init failed to create workqueue\n"); 305 _ceph_msgr_exit(); 306 307 return -ENOMEM; 308 } 309 EXPORT_SYMBOL(ceph_msgr_init); 310 311 void ceph_msgr_exit(void) 312 { 313 BUG_ON(ceph_msgr_wq == NULL); 314 315 _ceph_msgr_exit(); 316 } 317 EXPORT_SYMBOL(ceph_msgr_exit); 318 319 void ceph_msgr_flush(void) 320 { 321 flush_workqueue(ceph_msgr_wq); 322 } 323 EXPORT_SYMBOL(ceph_msgr_flush); 324 325 /* Connection socket state transition functions */ 326 327 static void con_sock_state_init(struct ceph_connection *con) 328 { 329 int old_state; 330 331 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 332 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 333 printk("%s: unexpected old state %d\n", __func__, old_state); 334 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 335 CON_SOCK_STATE_CLOSED); 336 } 337 338 static void con_sock_state_connecting(struct ceph_connection *con) 339 { 340 int old_state; 341 342 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 343 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 344 printk("%s: unexpected old state %d\n", __func__, old_state); 345 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 346 CON_SOCK_STATE_CONNECTING); 347 } 348 349 static void con_sock_state_connected(struct ceph_connection *con) 350 { 351 int old_state; 352 353 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 354 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 355 printk("%s: unexpected old state %d\n", __func__, old_state); 356 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 357 CON_SOCK_STATE_CONNECTED); 358 } 359 360 static void con_sock_state_closing(struct ceph_connection *con) 361 { 362 int old_state; 363 364 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 365 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 366 old_state != CON_SOCK_STATE_CONNECTED && 367 old_state != CON_SOCK_STATE_CLOSING)) 368 printk("%s: unexpected old state %d\n", __func__, old_state); 369 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 370 CON_SOCK_STATE_CLOSING); 371 } 372 373 static void con_sock_state_closed(struct ceph_connection *con) 374 { 375 int old_state; 376 377 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 378 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 379 old_state != CON_SOCK_STATE_CLOSING && 380 old_state != CON_SOCK_STATE_CONNECTING && 381 old_state != CON_SOCK_STATE_CLOSED)) 382 printk("%s: unexpected old state %d\n", __func__, old_state); 383 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 384 CON_SOCK_STATE_CLOSED); 385 } 386 387 /* 388 * socket callback functions 389 */ 390 391 /* data available on socket, or listen socket received a connect */ 392 static void ceph_sock_data_ready(struct sock *sk) 393 { 394 struct ceph_connection *con = sk->sk_user_data; 395 if (atomic_read(&con->msgr->stopping)) { 396 return; 397 } 398 399 if (sk->sk_state != TCP_CLOSE_WAIT) { 400 dout("%s on %p state = %lu, queueing work\n", __func__, 401 con, con->state); 402 queue_con(con); 403 } 404 } 405 406 /* socket has buffer space for writing */ 407 static void ceph_sock_write_space(struct sock *sk) 408 { 409 struct ceph_connection *con = sk->sk_user_data; 410 411 /* only queue to workqueue if there is data we want to write, 412 * and there is sufficient space in the socket buffer to accept 413 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 414 * doesn't get called again until try_write() fills the socket 415 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 416 * and net/core/stream.c:sk_stream_write_space(). 417 */ 418 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 419 if (sk_stream_is_writeable(sk)) { 420 dout("%s %p queueing write work\n", __func__, con); 421 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 422 queue_con(con); 423 } 424 } else { 425 dout("%s %p nothing to write\n", __func__, con); 426 } 427 } 428 429 /* socket's state has changed */ 430 static void ceph_sock_state_change(struct sock *sk) 431 { 432 struct ceph_connection *con = sk->sk_user_data; 433 434 dout("%s %p state = %lu sk_state = %u\n", __func__, 435 con, con->state, sk->sk_state); 436 437 switch (sk->sk_state) { 438 case TCP_CLOSE: 439 dout("%s TCP_CLOSE\n", __func__); 440 case TCP_CLOSE_WAIT: 441 dout("%s TCP_CLOSE_WAIT\n", __func__); 442 con_sock_state_closing(con); 443 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 444 queue_con(con); 445 break; 446 case TCP_ESTABLISHED: 447 dout("%s TCP_ESTABLISHED\n", __func__); 448 con_sock_state_connected(con); 449 queue_con(con); 450 break; 451 default: /* Everything else is uninteresting */ 452 break; 453 } 454 } 455 456 /* 457 * set up socket callbacks 458 */ 459 static void set_sock_callbacks(struct socket *sock, 460 struct ceph_connection *con) 461 { 462 struct sock *sk = sock->sk; 463 sk->sk_user_data = con; 464 sk->sk_data_ready = ceph_sock_data_ready; 465 sk->sk_write_space = ceph_sock_write_space; 466 sk->sk_state_change = ceph_sock_state_change; 467 } 468 469 470 /* 471 * socket helpers 472 */ 473 474 /* 475 * initiate connection to a remote socket. 476 */ 477 static int ceph_tcp_connect(struct ceph_connection *con) 478 { 479 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 480 struct socket *sock; 481 int ret; 482 483 BUG_ON(con->sock); 484 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family, 485 SOCK_STREAM, IPPROTO_TCP, &sock); 486 if (ret) 487 return ret; 488 sock->sk->sk_allocation = GFP_NOFS; 489 490 #ifdef CONFIG_LOCKDEP 491 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 492 #endif 493 494 set_sock_callbacks(sock, con); 495 496 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 497 498 con_sock_state_connecting(con); 499 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 500 O_NONBLOCK); 501 if (ret == -EINPROGRESS) { 502 dout("connect %s EINPROGRESS sk_state = %u\n", 503 ceph_pr_addr(&con->peer_addr.in_addr), 504 sock->sk->sk_state); 505 } else if (ret < 0) { 506 pr_err("connect %s error %d\n", 507 ceph_pr_addr(&con->peer_addr.in_addr), ret); 508 sock_release(sock); 509 return ret; 510 } 511 512 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 513 int optval = 1; 514 515 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 516 (char *)&optval, sizeof(optval)); 517 if (ret) 518 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 519 ret); 520 } 521 522 con->sock = sock; 523 return 0; 524 } 525 526 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 527 { 528 struct kvec iov = {buf, len}; 529 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 530 int r; 531 532 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 533 if (r == -EAGAIN) 534 r = 0; 535 return r; 536 } 537 538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 539 int page_offset, size_t length) 540 { 541 void *kaddr; 542 int ret; 543 544 BUG_ON(page_offset + length > PAGE_SIZE); 545 546 kaddr = kmap(page); 547 BUG_ON(!kaddr); 548 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 549 kunmap(page); 550 551 return ret; 552 } 553 554 /* 555 * write something. @more is true if caller will be sending more data 556 * shortly. 557 */ 558 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 559 size_t kvlen, size_t len, int more) 560 { 561 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 562 int r; 563 564 if (more) 565 msg.msg_flags |= MSG_MORE; 566 else 567 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 568 569 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 570 if (r == -EAGAIN) 571 r = 0; 572 return r; 573 } 574 575 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 576 int offset, size_t size, bool more) 577 { 578 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 579 int ret; 580 581 ret = kernel_sendpage(sock, page, offset, size, flags); 582 if (ret == -EAGAIN) 583 ret = 0; 584 585 return ret; 586 } 587 588 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 589 int offset, size_t size, bool more) 590 { 591 int ret; 592 struct kvec iov; 593 594 /* sendpage cannot properly handle pages with page_count == 0, 595 * we need to fallback to sendmsg if that's the case */ 596 if (page_count(page) >= 1) 597 return __ceph_tcp_sendpage(sock, page, offset, size, more); 598 599 iov.iov_base = kmap(page) + offset; 600 iov.iov_len = size; 601 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 602 kunmap(page); 603 604 return ret; 605 } 606 607 /* 608 * Shutdown/close the socket for the given connection. 609 */ 610 static int con_close_socket(struct ceph_connection *con) 611 { 612 int rc = 0; 613 614 dout("con_close_socket on %p sock %p\n", con, con->sock); 615 if (con->sock) { 616 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 617 sock_release(con->sock); 618 con->sock = NULL; 619 } 620 621 /* 622 * Forcibly clear the SOCK_CLOSED flag. It gets set 623 * independent of the connection mutex, and we could have 624 * received a socket close event before we had the chance to 625 * shut the socket down. 626 */ 627 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 628 629 con_sock_state_closed(con); 630 return rc; 631 } 632 633 /* 634 * Reset a connection. Discard all incoming and outgoing messages 635 * and clear *_seq state. 636 */ 637 static void ceph_msg_remove(struct ceph_msg *msg) 638 { 639 list_del_init(&msg->list_head); 640 641 ceph_msg_put(msg); 642 } 643 static void ceph_msg_remove_list(struct list_head *head) 644 { 645 while (!list_empty(head)) { 646 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 647 list_head); 648 ceph_msg_remove(msg); 649 } 650 } 651 652 static void reset_connection(struct ceph_connection *con) 653 { 654 /* reset connection, out_queue, msg_ and connect_seq */ 655 /* discard existing out_queue and msg_seq */ 656 dout("reset_connection %p\n", con); 657 ceph_msg_remove_list(&con->out_queue); 658 ceph_msg_remove_list(&con->out_sent); 659 660 if (con->in_msg) { 661 BUG_ON(con->in_msg->con != con); 662 ceph_msg_put(con->in_msg); 663 con->in_msg = NULL; 664 } 665 666 con->connect_seq = 0; 667 con->out_seq = 0; 668 if (con->out_msg) { 669 BUG_ON(con->out_msg->con != con); 670 ceph_msg_put(con->out_msg); 671 con->out_msg = NULL; 672 } 673 con->in_seq = 0; 674 con->in_seq_acked = 0; 675 } 676 677 /* 678 * mark a peer down. drop any open connections. 679 */ 680 void ceph_con_close(struct ceph_connection *con) 681 { 682 mutex_lock(&con->mutex); 683 dout("con_close %p peer %s\n", con, 684 ceph_pr_addr(&con->peer_addr.in_addr)); 685 con->state = CON_STATE_CLOSED; 686 687 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 688 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 689 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 690 con_flag_clear(con, CON_FLAG_BACKOFF); 691 692 reset_connection(con); 693 con->peer_global_seq = 0; 694 cancel_con(con); 695 con_close_socket(con); 696 mutex_unlock(&con->mutex); 697 } 698 EXPORT_SYMBOL(ceph_con_close); 699 700 /* 701 * Reopen a closed connection, with a new peer address. 702 */ 703 void ceph_con_open(struct ceph_connection *con, 704 __u8 entity_type, __u64 entity_num, 705 struct ceph_entity_addr *addr) 706 { 707 mutex_lock(&con->mutex); 708 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 709 710 WARN_ON(con->state != CON_STATE_CLOSED); 711 con->state = CON_STATE_PREOPEN; 712 713 con->peer_name.type = (__u8) entity_type; 714 con->peer_name.num = cpu_to_le64(entity_num); 715 716 memcpy(&con->peer_addr, addr, sizeof(*addr)); 717 con->delay = 0; /* reset backoff memory */ 718 mutex_unlock(&con->mutex); 719 queue_con(con); 720 } 721 EXPORT_SYMBOL(ceph_con_open); 722 723 /* 724 * return true if this connection ever successfully opened 725 */ 726 bool ceph_con_opened(struct ceph_connection *con) 727 { 728 return con->connect_seq > 0; 729 } 730 731 /* 732 * initialize a new connection. 733 */ 734 void ceph_con_init(struct ceph_connection *con, void *private, 735 const struct ceph_connection_operations *ops, 736 struct ceph_messenger *msgr) 737 { 738 dout("con_init %p\n", con); 739 memset(con, 0, sizeof(*con)); 740 con->private = private; 741 con->ops = ops; 742 con->msgr = msgr; 743 744 con_sock_state_init(con); 745 746 mutex_init(&con->mutex); 747 INIT_LIST_HEAD(&con->out_queue); 748 INIT_LIST_HEAD(&con->out_sent); 749 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 750 751 con->state = CON_STATE_CLOSED; 752 } 753 EXPORT_SYMBOL(ceph_con_init); 754 755 756 /* 757 * We maintain a global counter to order connection attempts. Get 758 * a unique seq greater than @gt. 759 */ 760 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 761 { 762 u32 ret; 763 764 spin_lock(&msgr->global_seq_lock); 765 if (msgr->global_seq < gt) 766 msgr->global_seq = gt; 767 ret = ++msgr->global_seq; 768 spin_unlock(&msgr->global_seq_lock); 769 return ret; 770 } 771 772 static void con_out_kvec_reset(struct ceph_connection *con) 773 { 774 con->out_kvec_left = 0; 775 con->out_kvec_bytes = 0; 776 con->out_kvec_cur = &con->out_kvec[0]; 777 } 778 779 static void con_out_kvec_add(struct ceph_connection *con, 780 size_t size, void *data) 781 { 782 int index; 783 784 index = con->out_kvec_left; 785 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 786 787 con->out_kvec[index].iov_len = size; 788 con->out_kvec[index].iov_base = data; 789 con->out_kvec_left++; 790 con->out_kvec_bytes += size; 791 } 792 793 #ifdef CONFIG_BLOCK 794 795 /* 796 * For a bio data item, a piece is whatever remains of the next 797 * entry in the current bio iovec, or the first entry in the next 798 * bio in the list. 799 */ 800 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 801 size_t length) 802 { 803 struct ceph_msg_data *data = cursor->data; 804 struct bio *bio; 805 806 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 807 808 bio = data->bio; 809 BUG_ON(!bio); 810 811 cursor->resid = min(length, data->bio_length); 812 cursor->bio = bio; 813 cursor->bvec_iter = bio->bi_iter; 814 cursor->last_piece = 815 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 816 } 817 818 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 819 size_t *page_offset, 820 size_t *length) 821 { 822 struct ceph_msg_data *data = cursor->data; 823 struct bio *bio; 824 struct bio_vec bio_vec; 825 826 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 827 828 bio = cursor->bio; 829 BUG_ON(!bio); 830 831 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 832 833 *page_offset = (size_t) bio_vec.bv_offset; 834 BUG_ON(*page_offset >= PAGE_SIZE); 835 if (cursor->last_piece) /* pagelist offset is always 0 */ 836 *length = cursor->resid; 837 else 838 *length = (size_t) bio_vec.bv_len; 839 BUG_ON(*length > cursor->resid); 840 BUG_ON(*page_offset + *length > PAGE_SIZE); 841 842 return bio_vec.bv_page; 843 } 844 845 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 846 size_t bytes) 847 { 848 struct bio *bio; 849 struct bio_vec bio_vec; 850 851 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 852 853 bio = cursor->bio; 854 BUG_ON(!bio); 855 856 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 857 858 /* Advance the cursor offset */ 859 860 BUG_ON(cursor->resid < bytes); 861 cursor->resid -= bytes; 862 863 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 864 865 if (bytes < bio_vec.bv_len) 866 return false; /* more bytes to process in this segment */ 867 868 /* Move on to the next segment, and possibly the next bio */ 869 870 if (!cursor->bvec_iter.bi_size) { 871 bio = bio->bi_next; 872 cursor->bio = bio; 873 if (bio) 874 cursor->bvec_iter = bio->bi_iter; 875 else 876 memset(&cursor->bvec_iter, 0, 877 sizeof(cursor->bvec_iter)); 878 } 879 880 if (!cursor->last_piece) { 881 BUG_ON(!cursor->resid); 882 BUG_ON(!bio); 883 /* A short read is OK, so use <= rather than == */ 884 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 885 cursor->last_piece = true; 886 } 887 888 return true; 889 } 890 #endif /* CONFIG_BLOCK */ 891 892 /* 893 * For a page array, a piece comes from the first page in the array 894 * that has not already been fully consumed. 895 */ 896 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 897 size_t length) 898 { 899 struct ceph_msg_data *data = cursor->data; 900 int page_count; 901 902 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 903 904 BUG_ON(!data->pages); 905 BUG_ON(!data->length); 906 907 cursor->resid = min(length, data->length); 908 page_count = calc_pages_for(data->alignment, (u64)data->length); 909 cursor->page_offset = data->alignment & ~PAGE_MASK; 910 cursor->page_index = 0; 911 BUG_ON(page_count > (int)USHRT_MAX); 912 cursor->page_count = (unsigned short)page_count; 913 BUG_ON(length > SIZE_MAX - cursor->page_offset); 914 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 915 } 916 917 static struct page * 918 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 919 size_t *page_offset, size_t *length) 920 { 921 struct ceph_msg_data *data = cursor->data; 922 923 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 924 925 BUG_ON(cursor->page_index >= cursor->page_count); 926 BUG_ON(cursor->page_offset >= PAGE_SIZE); 927 928 *page_offset = cursor->page_offset; 929 if (cursor->last_piece) 930 *length = cursor->resid; 931 else 932 *length = PAGE_SIZE - *page_offset; 933 934 return data->pages[cursor->page_index]; 935 } 936 937 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 938 size_t bytes) 939 { 940 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 941 942 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 943 944 /* Advance the cursor page offset */ 945 946 cursor->resid -= bytes; 947 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 948 if (!bytes || cursor->page_offset) 949 return false; /* more bytes to process in the current page */ 950 951 if (!cursor->resid) 952 return false; /* no more data */ 953 954 /* Move on to the next page; offset is already at 0 */ 955 956 BUG_ON(cursor->page_index >= cursor->page_count); 957 cursor->page_index++; 958 cursor->last_piece = cursor->resid <= PAGE_SIZE; 959 960 return true; 961 } 962 963 /* 964 * For a pagelist, a piece is whatever remains to be consumed in the 965 * first page in the list, or the front of the next page. 966 */ 967 static void 968 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 969 size_t length) 970 { 971 struct ceph_msg_data *data = cursor->data; 972 struct ceph_pagelist *pagelist; 973 struct page *page; 974 975 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 976 977 pagelist = data->pagelist; 978 BUG_ON(!pagelist); 979 980 if (!length) 981 return; /* pagelist can be assigned but empty */ 982 983 BUG_ON(list_empty(&pagelist->head)); 984 page = list_first_entry(&pagelist->head, struct page, lru); 985 986 cursor->resid = min(length, pagelist->length); 987 cursor->page = page; 988 cursor->offset = 0; 989 cursor->last_piece = cursor->resid <= PAGE_SIZE; 990 } 991 992 static struct page * 993 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 994 size_t *page_offset, size_t *length) 995 { 996 struct ceph_msg_data *data = cursor->data; 997 struct ceph_pagelist *pagelist; 998 999 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1000 1001 pagelist = data->pagelist; 1002 BUG_ON(!pagelist); 1003 1004 BUG_ON(!cursor->page); 1005 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1006 1007 /* offset of first page in pagelist is always 0 */ 1008 *page_offset = cursor->offset & ~PAGE_MASK; 1009 if (cursor->last_piece) 1010 *length = cursor->resid; 1011 else 1012 *length = PAGE_SIZE - *page_offset; 1013 1014 return cursor->page; 1015 } 1016 1017 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1018 size_t bytes) 1019 { 1020 struct ceph_msg_data *data = cursor->data; 1021 struct ceph_pagelist *pagelist; 1022 1023 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1024 1025 pagelist = data->pagelist; 1026 BUG_ON(!pagelist); 1027 1028 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1029 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1030 1031 /* Advance the cursor offset */ 1032 1033 cursor->resid -= bytes; 1034 cursor->offset += bytes; 1035 /* offset of first page in pagelist is always 0 */ 1036 if (!bytes || cursor->offset & ~PAGE_MASK) 1037 return false; /* more bytes to process in the current page */ 1038 1039 if (!cursor->resid) 1040 return false; /* no more data */ 1041 1042 /* Move on to the next page */ 1043 1044 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1045 cursor->page = list_entry_next(cursor->page, lru); 1046 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1047 1048 return true; 1049 } 1050 1051 /* 1052 * Message data is handled (sent or received) in pieces, where each 1053 * piece resides on a single page. The network layer might not 1054 * consume an entire piece at once. A data item's cursor keeps 1055 * track of which piece is next to process and how much remains to 1056 * be processed in that piece. It also tracks whether the current 1057 * piece is the last one in the data item. 1058 */ 1059 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1060 { 1061 size_t length = cursor->total_resid; 1062 1063 switch (cursor->data->type) { 1064 case CEPH_MSG_DATA_PAGELIST: 1065 ceph_msg_data_pagelist_cursor_init(cursor, length); 1066 break; 1067 case CEPH_MSG_DATA_PAGES: 1068 ceph_msg_data_pages_cursor_init(cursor, length); 1069 break; 1070 #ifdef CONFIG_BLOCK 1071 case CEPH_MSG_DATA_BIO: 1072 ceph_msg_data_bio_cursor_init(cursor, length); 1073 break; 1074 #endif /* CONFIG_BLOCK */ 1075 case CEPH_MSG_DATA_NONE: 1076 default: 1077 /* BUG(); */ 1078 break; 1079 } 1080 cursor->need_crc = true; 1081 } 1082 1083 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1084 { 1085 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1086 struct ceph_msg_data *data; 1087 1088 BUG_ON(!length); 1089 BUG_ON(length > msg->data_length); 1090 BUG_ON(list_empty(&msg->data)); 1091 1092 cursor->data_head = &msg->data; 1093 cursor->total_resid = length; 1094 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1095 cursor->data = data; 1096 1097 __ceph_msg_data_cursor_init(cursor); 1098 } 1099 1100 /* 1101 * Return the page containing the next piece to process for a given 1102 * data item, and supply the page offset and length of that piece. 1103 * Indicate whether this is the last piece in this data item. 1104 */ 1105 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1106 size_t *page_offset, size_t *length, 1107 bool *last_piece) 1108 { 1109 struct page *page; 1110 1111 switch (cursor->data->type) { 1112 case CEPH_MSG_DATA_PAGELIST: 1113 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1114 break; 1115 case CEPH_MSG_DATA_PAGES: 1116 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1117 break; 1118 #ifdef CONFIG_BLOCK 1119 case CEPH_MSG_DATA_BIO: 1120 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1121 break; 1122 #endif /* CONFIG_BLOCK */ 1123 case CEPH_MSG_DATA_NONE: 1124 default: 1125 page = NULL; 1126 break; 1127 } 1128 BUG_ON(!page); 1129 BUG_ON(*page_offset + *length > PAGE_SIZE); 1130 BUG_ON(!*length); 1131 if (last_piece) 1132 *last_piece = cursor->last_piece; 1133 1134 return page; 1135 } 1136 1137 /* 1138 * Returns true if the result moves the cursor on to the next piece 1139 * of the data item. 1140 */ 1141 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1142 size_t bytes) 1143 { 1144 bool new_piece; 1145 1146 BUG_ON(bytes > cursor->resid); 1147 switch (cursor->data->type) { 1148 case CEPH_MSG_DATA_PAGELIST: 1149 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1150 break; 1151 case CEPH_MSG_DATA_PAGES: 1152 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1153 break; 1154 #ifdef CONFIG_BLOCK 1155 case CEPH_MSG_DATA_BIO: 1156 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1157 break; 1158 #endif /* CONFIG_BLOCK */ 1159 case CEPH_MSG_DATA_NONE: 1160 default: 1161 BUG(); 1162 break; 1163 } 1164 cursor->total_resid -= bytes; 1165 1166 if (!cursor->resid && cursor->total_resid) { 1167 WARN_ON(!cursor->last_piece); 1168 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1169 cursor->data = list_entry_next(cursor->data, links); 1170 __ceph_msg_data_cursor_init(cursor); 1171 new_piece = true; 1172 } 1173 cursor->need_crc = new_piece; 1174 1175 return new_piece; 1176 } 1177 1178 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1179 { 1180 BUG_ON(!msg); 1181 BUG_ON(!data_len); 1182 1183 /* Initialize data cursor */ 1184 1185 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1186 } 1187 1188 /* 1189 * Prepare footer for currently outgoing message, and finish things 1190 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1191 */ 1192 static void prepare_write_message_footer(struct ceph_connection *con) 1193 { 1194 struct ceph_msg *m = con->out_msg; 1195 int v = con->out_kvec_left; 1196 1197 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1198 1199 dout("prepare_write_message_footer %p\n", con); 1200 con->out_kvec_is_msg = true; 1201 con->out_kvec[v].iov_base = &m->footer; 1202 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1203 if (con->ops->sign_message) 1204 con->ops->sign_message(m); 1205 else 1206 m->footer.sig = 0; 1207 con->out_kvec[v].iov_len = sizeof(m->footer); 1208 con->out_kvec_bytes += sizeof(m->footer); 1209 } else { 1210 m->old_footer.flags = m->footer.flags; 1211 con->out_kvec[v].iov_len = sizeof(m->old_footer); 1212 con->out_kvec_bytes += sizeof(m->old_footer); 1213 } 1214 con->out_kvec_left++; 1215 con->out_more = m->more_to_follow; 1216 con->out_msg_done = true; 1217 } 1218 1219 /* 1220 * Prepare headers for the next outgoing message. 1221 */ 1222 static void prepare_write_message(struct ceph_connection *con) 1223 { 1224 struct ceph_msg *m; 1225 u32 crc; 1226 1227 con_out_kvec_reset(con); 1228 con->out_kvec_is_msg = true; 1229 con->out_msg_done = false; 1230 1231 /* Sneak an ack in there first? If we can get it into the same 1232 * TCP packet that's a good thing. */ 1233 if (con->in_seq > con->in_seq_acked) { 1234 con->in_seq_acked = con->in_seq; 1235 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1236 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1237 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1238 &con->out_temp_ack); 1239 } 1240 1241 BUG_ON(list_empty(&con->out_queue)); 1242 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1243 con->out_msg = m; 1244 BUG_ON(m->con != con); 1245 1246 /* put message on sent list */ 1247 ceph_msg_get(m); 1248 list_move_tail(&m->list_head, &con->out_sent); 1249 1250 /* 1251 * only assign outgoing seq # if we haven't sent this message 1252 * yet. if it is requeued, resend with it's original seq. 1253 */ 1254 if (m->needs_out_seq) { 1255 m->hdr.seq = cpu_to_le64(++con->out_seq); 1256 m->needs_out_seq = false; 1257 } 1258 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1259 1260 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1261 m, con->out_seq, le16_to_cpu(m->hdr.type), 1262 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1263 m->data_length); 1264 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1265 1266 /* tag + hdr + front + middle */ 1267 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1268 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1269 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1270 1271 if (m->middle) 1272 con_out_kvec_add(con, m->middle->vec.iov_len, 1273 m->middle->vec.iov_base); 1274 1275 /* fill in crc (except data pages), footer */ 1276 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1277 con->out_msg->hdr.crc = cpu_to_le32(crc); 1278 con->out_msg->footer.flags = 0; 1279 1280 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1281 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1282 if (m->middle) { 1283 crc = crc32c(0, m->middle->vec.iov_base, 1284 m->middle->vec.iov_len); 1285 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1286 } else 1287 con->out_msg->footer.middle_crc = 0; 1288 dout("%s front_crc %u middle_crc %u\n", __func__, 1289 le32_to_cpu(con->out_msg->footer.front_crc), 1290 le32_to_cpu(con->out_msg->footer.middle_crc)); 1291 1292 /* is there a data payload? */ 1293 con->out_msg->footer.data_crc = 0; 1294 if (m->data_length) { 1295 prepare_message_data(con->out_msg, m->data_length); 1296 con->out_more = 1; /* data + footer will follow */ 1297 } else { 1298 /* no, queue up footer too and be done */ 1299 prepare_write_message_footer(con); 1300 } 1301 1302 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1303 } 1304 1305 /* 1306 * Prepare an ack. 1307 */ 1308 static void prepare_write_ack(struct ceph_connection *con) 1309 { 1310 dout("prepare_write_ack %p %llu -> %llu\n", con, 1311 con->in_seq_acked, con->in_seq); 1312 con->in_seq_acked = con->in_seq; 1313 1314 con_out_kvec_reset(con); 1315 1316 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1317 1318 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1319 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1320 &con->out_temp_ack); 1321 1322 con->out_more = 1; /* more will follow.. eventually.. */ 1323 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1324 } 1325 1326 /* 1327 * Prepare to share the seq during handshake 1328 */ 1329 static void prepare_write_seq(struct ceph_connection *con) 1330 { 1331 dout("prepare_write_seq %p %llu -> %llu\n", con, 1332 con->in_seq_acked, con->in_seq); 1333 con->in_seq_acked = con->in_seq; 1334 1335 con_out_kvec_reset(con); 1336 1337 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1338 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1339 &con->out_temp_ack); 1340 1341 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1342 } 1343 1344 /* 1345 * Prepare to write keepalive byte. 1346 */ 1347 static void prepare_write_keepalive(struct ceph_connection *con) 1348 { 1349 dout("prepare_write_keepalive %p\n", con); 1350 con_out_kvec_reset(con); 1351 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1352 struct timespec now = CURRENT_TIME; 1353 1354 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1355 ceph_encode_timespec(&con->out_temp_keepalive2, &now); 1356 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1357 &con->out_temp_keepalive2); 1358 } else { 1359 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1360 } 1361 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1362 } 1363 1364 /* 1365 * Connection negotiation. 1366 */ 1367 1368 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1369 int *auth_proto) 1370 { 1371 struct ceph_auth_handshake *auth; 1372 1373 if (!con->ops->get_authorizer) { 1374 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1375 con->out_connect.authorizer_len = 0; 1376 return NULL; 1377 } 1378 1379 /* Can't hold the mutex while getting authorizer */ 1380 mutex_unlock(&con->mutex); 1381 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1382 mutex_lock(&con->mutex); 1383 1384 if (IS_ERR(auth)) 1385 return auth; 1386 if (con->state != CON_STATE_NEGOTIATING) 1387 return ERR_PTR(-EAGAIN); 1388 1389 con->auth_reply_buf = auth->authorizer_reply_buf; 1390 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1391 return auth; 1392 } 1393 1394 /* 1395 * We connected to a peer and are saying hello. 1396 */ 1397 static void prepare_write_banner(struct ceph_connection *con) 1398 { 1399 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1400 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1401 &con->msgr->my_enc_addr); 1402 1403 con->out_more = 0; 1404 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1405 } 1406 1407 static int prepare_write_connect(struct ceph_connection *con) 1408 { 1409 unsigned int global_seq = get_global_seq(con->msgr, 0); 1410 int proto; 1411 int auth_proto; 1412 struct ceph_auth_handshake *auth; 1413 1414 switch (con->peer_name.type) { 1415 case CEPH_ENTITY_TYPE_MON: 1416 proto = CEPH_MONC_PROTOCOL; 1417 break; 1418 case CEPH_ENTITY_TYPE_OSD: 1419 proto = CEPH_OSDC_PROTOCOL; 1420 break; 1421 case CEPH_ENTITY_TYPE_MDS: 1422 proto = CEPH_MDSC_PROTOCOL; 1423 break; 1424 default: 1425 BUG(); 1426 } 1427 1428 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1429 con->connect_seq, global_seq, proto); 1430 1431 con->out_connect.features = 1432 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1433 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1434 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1435 con->out_connect.global_seq = cpu_to_le32(global_seq); 1436 con->out_connect.protocol_version = cpu_to_le32(proto); 1437 con->out_connect.flags = 0; 1438 1439 auth_proto = CEPH_AUTH_UNKNOWN; 1440 auth = get_connect_authorizer(con, &auth_proto); 1441 if (IS_ERR(auth)) 1442 return PTR_ERR(auth); 1443 1444 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1445 con->out_connect.authorizer_len = auth ? 1446 cpu_to_le32(auth->authorizer_buf_len) : 0; 1447 1448 con_out_kvec_add(con, sizeof (con->out_connect), 1449 &con->out_connect); 1450 if (auth && auth->authorizer_buf_len) 1451 con_out_kvec_add(con, auth->authorizer_buf_len, 1452 auth->authorizer_buf); 1453 1454 con->out_more = 0; 1455 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1456 1457 return 0; 1458 } 1459 1460 /* 1461 * write as much of pending kvecs to the socket as we can. 1462 * 1 -> done 1463 * 0 -> socket full, but more to do 1464 * <0 -> error 1465 */ 1466 static int write_partial_kvec(struct ceph_connection *con) 1467 { 1468 int ret; 1469 1470 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1471 while (con->out_kvec_bytes > 0) { 1472 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1473 con->out_kvec_left, con->out_kvec_bytes, 1474 con->out_more); 1475 if (ret <= 0) 1476 goto out; 1477 con->out_kvec_bytes -= ret; 1478 if (con->out_kvec_bytes == 0) 1479 break; /* done */ 1480 1481 /* account for full iov entries consumed */ 1482 while (ret >= con->out_kvec_cur->iov_len) { 1483 BUG_ON(!con->out_kvec_left); 1484 ret -= con->out_kvec_cur->iov_len; 1485 con->out_kvec_cur++; 1486 con->out_kvec_left--; 1487 } 1488 /* and for a partially-consumed entry */ 1489 if (ret) { 1490 con->out_kvec_cur->iov_len -= ret; 1491 con->out_kvec_cur->iov_base += ret; 1492 } 1493 } 1494 con->out_kvec_left = 0; 1495 con->out_kvec_is_msg = false; 1496 ret = 1; 1497 out: 1498 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1499 con->out_kvec_bytes, con->out_kvec_left, ret); 1500 return ret; /* done! */ 1501 } 1502 1503 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1504 unsigned int page_offset, 1505 unsigned int length) 1506 { 1507 char *kaddr; 1508 1509 kaddr = kmap(page); 1510 BUG_ON(kaddr == NULL); 1511 crc = crc32c(crc, kaddr + page_offset, length); 1512 kunmap(page); 1513 1514 return crc; 1515 } 1516 /* 1517 * Write as much message data payload as we can. If we finish, queue 1518 * up the footer. 1519 * 1 -> done, footer is now queued in out_kvec[]. 1520 * 0 -> socket full, but more to do 1521 * <0 -> error 1522 */ 1523 static int write_partial_message_data(struct ceph_connection *con) 1524 { 1525 struct ceph_msg *msg = con->out_msg; 1526 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1527 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1528 u32 crc; 1529 1530 dout("%s %p msg %p\n", __func__, con, msg); 1531 1532 if (list_empty(&msg->data)) 1533 return -EINVAL; 1534 1535 /* 1536 * Iterate through each page that contains data to be 1537 * written, and send as much as possible for each. 1538 * 1539 * If we are calculating the data crc (the default), we will 1540 * need to map the page. If we have no pages, they have 1541 * been revoked, so use the zero page. 1542 */ 1543 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1544 while (cursor->resid) { 1545 struct page *page; 1546 size_t page_offset; 1547 size_t length; 1548 bool last_piece; 1549 bool need_crc; 1550 int ret; 1551 1552 page = ceph_msg_data_next(cursor, &page_offset, &length, 1553 &last_piece); 1554 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1555 length, !last_piece); 1556 if (ret <= 0) { 1557 if (do_datacrc) 1558 msg->footer.data_crc = cpu_to_le32(crc); 1559 1560 return ret; 1561 } 1562 if (do_datacrc && cursor->need_crc) 1563 crc = ceph_crc32c_page(crc, page, page_offset, length); 1564 need_crc = ceph_msg_data_advance(cursor, (size_t)ret); 1565 } 1566 1567 dout("%s %p msg %p done\n", __func__, con, msg); 1568 1569 /* prepare and queue up footer, too */ 1570 if (do_datacrc) 1571 msg->footer.data_crc = cpu_to_le32(crc); 1572 else 1573 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1574 con_out_kvec_reset(con); 1575 prepare_write_message_footer(con); 1576 1577 return 1; /* must return > 0 to indicate success */ 1578 } 1579 1580 /* 1581 * write some zeros 1582 */ 1583 static int write_partial_skip(struct ceph_connection *con) 1584 { 1585 int ret; 1586 1587 while (con->out_skip > 0) { 1588 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1589 1590 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1591 if (ret <= 0) 1592 goto out; 1593 con->out_skip -= ret; 1594 } 1595 ret = 1; 1596 out: 1597 return ret; 1598 } 1599 1600 /* 1601 * Prepare to read connection handshake, or an ack. 1602 */ 1603 static void prepare_read_banner(struct ceph_connection *con) 1604 { 1605 dout("prepare_read_banner %p\n", con); 1606 con->in_base_pos = 0; 1607 } 1608 1609 static void prepare_read_connect(struct ceph_connection *con) 1610 { 1611 dout("prepare_read_connect %p\n", con); 1612 con->in_base_pos = 0; 1613 } 1614 1615 static void prepare_read_ack(struct ceph_connection *con) 1616 { 1617 dout("prepare_read_ack %p\n", con); 1618 con->in_base_pos = 0; 1619 } 1620 1621 static void prepare_read_seq(struct ceph_connection *con) 1622 { 1623 dout("prepare_read_seq %p\n", con); 1624 con->in_base_pos = 0; 1625 con->in_tag = CEPH_MSGR_TAG_SEQ; 1626 } 1627 1628 static void prepare_read_tag(struct ceph_connection *con) 1629 { 1630 dout("prepare_read_tag %p\n", con); 1631 con->in_base_pos = 0; 1632 con->in_tag = CEPH_MSGR_TAG_READY; 1633 } 1634 1635 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1636 { 1637 dout("prepare_read_keepalive_ack %p\n", con); 1638 con->in_base_pos = 0; 1639 } 1640 1641 /* 1642 * Prepare to read a message. 1643 */ 1644 static int prepare_read_message(struct ceph_connection *con) 1645 { 1646 dout("prepare_read_message %p\n", con); 1647 BUG_ON(con->in_msg != NULL); 1648 con->in_base_pos = 0; 1649 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1650 return 0; 1651 } 1652 1653 1654 static int read_partial(struct ceph_connection *con, 1655 int end, int size, void *object) 1656 { 1657 while (con->in_base_pos < end) { 1658 int left = end - con->in_base_pos; 1659 int have = size - left; 1660 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1661 if (ret <= 0) 1662 return ret; 1663 con->in_base_pos += ret; 1664 } 1665 return 1; 1666 } 1667 1668 1669 /* 1670 * Read all or part of the connect-side handshake on a new connection 1671 */ 1672 static int read_partial_banner(struct ceph_connection *con) 1673 { 1674 int size; 1675 int end; 1676 int ret; 1677 1678 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1679 1680 /* peer's banner */ 1681 size = strlen(CEPH_BANNER); 1682 end = size; 1683 ret = read_partial(con, end, size, con->in_banner); 1684 if (ret <= 0) 1685 goto out; 1686 1687 size = sizeof (con->actual_peer_addr); 1688 end += size; 1689 ret = read_partial(con, end, size, &con->actual_peer_addr); 1690 if (ret <= 0) 1691 goto out; 1692 1693 size = sizeof (con->peer_addr_for_me); 1694 end += size; 1695 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1696 if (ret <= 0) 1697 goto out; 1698 1699 out: 1700 return ret; 1701 } 1702 1703 static int read_partial_connect(struct ceph_connection *con) 1704 { 1705 int size; 1706 int end; 1707 int ret; 1708 1709 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1710 1711 size = sizeof (con->in_reply); 1712 end = size; 1713 ret = read_partial(con, end, size, &con->in_reply); 1714 if (ret <= 0) 1715 goto out; 1716 1717 size = le32_to_cpu(con->in_reply.authorizer_len); 1718 end += size; 1719 ret = read_partial(con, end, size, con->auth_reply_buf); 1720 if (ret <= 0) 1721 goto out; 1722 1723 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1724 con, (int)con->in_reply.tag, 1725 le32_to_cpu(con->in_reply.connect_seq), 1726 le32_to_cpu(con->in_reply.global_seq)); 1727 out: 1728 return ret; 1729 1730 } 1731 1732 /* 1733 * Verify the hello banner looks okay. 1734 */ 1735 static int verify_hello(struct ceph_connection *con) 1736 { 1737 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1738 pr_err("connect to %s got bad banner\n", 1739 ceph_pr_addr(&con->peer_addr.in_addr)); 1740 con->error_msg = "protocol error, bad banner"; 1741 return -1; 1742 } 1743 return 0; 1744 } 1745 1746 static bool addr_is_blank(struct sockaddr_storage *ss) 1747 { 1748 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr; 1749 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr; 1750 1751 switch (ss->ss_family) { 1752 case AF_INET: 1753 return addr->s_addr == htonl(INADDR_ANY); 1754 case AF_INET6: 1755 return ipv6_addr_any(addr6); 1756 default: 1757 return true; 1758 } 1759 } 1760 1761 static int addr_port(struct sockaddr_storage *ss) 1762 { 1763 switch (ss->ss_family) { 1764 case AF_INET: 1765 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1766 case AF_INET6: 1767 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1768 } 1769 return 0; 1770 } 1771 1772 static void addr_set_port(struct sockaddr_storage *ss, int p) 1773 { 1774 switch (ss->ss_family) { 1775 case AF_INET: 1776 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1777 break; 1778 case AF_INET6: 1779 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1780 break; 1781 } 1782 } 1783 1784 /* 1785 * Unlike other *_pton function semantics, zero indicates success. 1786 */ 1787 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1788 char delim, const char **ipend) 1789 { 1790 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1791 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1792 1793 memset(ss, 0, sizeof(*ss)); 1794 1795 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1796 ss->ss_family = AF_INET; 1797 return 0; 1798 } 1799 1800 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1801 ss->ss_family = AF_INET6; 1802 return 0; 1803 } 1804 1805 return -EINVAL; 1806 } 1807 1808 /* 1809 * Extract hostname string and resolve using kernel DNS facility. 1810 */ 1811 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1812 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1813 struct sockaddr_storage *ss, char delim, const char **ipend) 1814 { 1815 const char *end, *delim_p; 1816 char *colon_p, *ip_addr = NULL; 1817 int ip_len, ret; 1818 1819 /* 1820 * The end of the hostname occurs immediately preceding the delimiter or 1821 * the port marker (':') where the delimiter takes precedence. 1822 */ 1823 delim_p = memchr(name, delim, namelen); 1824 colon_p = memchr(name, ':', namelen); 1825 1826 if (delim_p && colon_p) 1827 end = delim_p < colon_p ? delim_p : colon_p; 1828 else if (!delim_p && colon_p) 1829 end = colon_p; 1830 else { 1831 end = delim_p; 1832 if (!end) /* case: hostname:/ */ 1833 end = name + namelen; 1834 } 1835 1836 if (end <= name) 1837 return -EINVAL; 1838 1839 /* do dns_resolve upcall */ 1840 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1841 if (ip_len > 0) 1842 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1843 else 1844 ret = -ESRCH; 1845 1846 kfree(ip_addr); 1847 1848 *ipend = end; 1849 1850 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1851 ret, ret ? "failed" : ceph_pr_addr(ss)); 1852 1853 return ret; 1854 } 1855 #else 1856 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1857 struct sockaddr_storage *ss, char delim, const char **ipend) 1858 { 1859 return -EINVAL; 1860 } 1861 #endif 1862 1863 /* 1864 * Parse a server name (IP or hostname). If a valid IP address is not found 1865 * then try to extract a hostname to resolve using userspace DNS upcall. 1866 */ 1867 static int ceph_parse_server_name(const char *name, size_t namelen, 1868 struct sockaddr_storage *ss, char delim, const char **ipend) 1869 { 1870 int ret; 1871 1872 ret = ceph_pton(name, namelen, ss, delim, ipend); 1873 if (ret) 1874 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1875 1876 return ret; 1877 } 1878 1879 /* 1880 * Parse an ip[:port] list into an addr array. Use the default 1881 * monitor port if a port isn't specified. 1882 */ 1883 int ceph_parse_ips(const char *c, const char *end, 1884 struct ceph_entity_addr *addr, 1885 int max_count, int *count) 1886 { 1887 int i, ret = -EINVAL; 1888 const char *p = c; 1889 1890 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1891 for (i = 0; i < max_count; i++) { 1892 const char *ipend; 1893 struct sockaddr_storage *ss = &addr[i].in_addr; 1894 int port; 1895 char delim = ','; 1896 1897 if (*p == '[') { 1898 delim = ']'; 1899 p++; 1900 } 1901 1902 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1903 if (ret) 1904 goto bad; 1905 ret = -EINVAL; 1906 1907 p = ipend; 1908 1909 if (delim == ']') { 1910 if (*p != ']') { 1911 dout("missing matching ']'\n"); 1912 goto bad; 1913 } 1914 p++; 1915 } 1916 1917 /* port? */ 1918 if (p < end && *p == ':') { 1919 port = 0; 1920 p++; 1921 while (p < end && *p >= '0' && *p <= '9') { 1922 port = (port * 10) + (*p - '0'); 1923 p++; 1924 } 1925 if (port == 0) 1926 port = CEPH_MON_PORT; 1927 else if (port > 65535) 1928 goto bad; 1929 } else { 1930 port = CEPH_MON_PORT; 1931 } 1932 1933 addr_set_port(ss, port); 1934 1935 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1936 1937 if (p == end) 1938 break; 1939 if (*p != ',') 1940 goto bad; 1941 p++; 1942 } 1943 1944 if (p != end) 1945 goto bad; 1946 1947 if (count) 1948 *count = i + 1; 1949 return 0; 1950 1951 bad: 1952 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1953 return ret; 1954 } 1955 EXPORT_SYMBOL(ceph_parse_ips); 1956 1957 static int process_banner(struct ceph_connection *con) 1958 { 1959 dout("process_banner on %p\n", con); 1960 1961 if (verify_hello(con) < 0) 1962 return -1; 1963 1964 ceph_decode_addr(&con->actual_peer_addr); 1965 ceph_decode_addr(&con->peer_addr_for_me); 1966 1967 /* 1968 * Make sure the other end is who we wanted. note that the other 1969 * end may not yet know their ip address, so if it's 0.0.0.0, give 1970 * them the benefit of the doubt. 1971 */ 1972 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1973 sizeof(con->peer_addr)) != 0 && 1974 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1975 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1976 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 1977 ceph_pr_addr(&con->peer_addr.in_addr), 1978 (int)le32_to_cpu(con->peer_addr.nonce), 1979 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1980 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1981 con->error_msg = "wrong peer at address"; 1982 return -1; 1983 } 1984 1985 /* 1986 * did we learn our address? 1987 */ 1988 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1989 int port = addr_port(&con->msgr->inst.addr.in_addr); 1990 1991 memcpy(&con->msgr->inst.addr.in_addr, 1992 &con->peer_addr_for_me.in_addr, 1993 sizeof(con->peer_addr_for_me.in_addr)); 1994 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1995 encode_my_addr(con->msgr); 1996 dout("process_banner learned my addr is %s\n", 1997 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1998 } 1999 2000 return 0; 2001 } 2002 2003 static int process_connect(struct ceph_connection *con) 2004 { 2005 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2006 u64 req_feat = from_msgr(con->msgr)->required_features; 2007 u64 server_feat = ceph_sanitize_features( 2008 le64_to_cpu(con->in_reply.features)); 2009 int ret; 2010 2011 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2012 2013 switch (con->in_reply.tag) { 2014 case CEPH_MSGR_TAG_FEATURES: 2015 pr_err("%s%lld %s feature set mismatch," 2016 " my %llx < server's %llx, missing %llx\n", 2017 ENTITY_NAME(con->peer_name), 2018 ceph_pr_addr(&con->peer_addr.in_addr), 2019 sup_feat, server_feat, server_feat & ~sup_feat); 2020 con->error_msg = "missing required protocol features"; 2021 reset_connection(con); 2022 return -1; 2023 2024 case CEPH_MSGR_TAG_BADPROTOVER: 2025 pr_err("%s%lld %s protocol version mismatch," 2026 " my %d != server's %d\n", 2027 ENTITY_NAME(con->peer_name), 2028 ceph_pr_addr(&con->peer_addr.in_addr), 2029 le32_to_cpu(con->out_connect.protocol_version), 2030 le32_to_cpu(con->in_reply.protocol_version)); 2031 con->error_msg = "protocol version mismatch"; 2032 reset_connection(con); 2033 return -1; 2034 2035 case CEPH_MSGR_TAG_BADAUTHORIZER: 2036 con->auth_retry++; 2037 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2038 con->auth_retry); 2039 if (con->auth_retry == 2) { 2040 con->error_msg = "connect authorization failure"; 2041 return -1; 2042 } 2043 con_out_kvec_reset(con); 2044 ret = prepare_write_connect(con); 2045 if (ret < 0) 2046 return ret; 2047 prepare_read_connect(con); 2048 break; 2049 2050 case CEPH_MSGR_TAG_RESETSESSION: 2051 /* 2052 * If we connected with a large connect_seq but the peer 2053 * has no record of a session with us (no connection, or 2054 * connect_seq == 0), they will send RESETSESION to indicate 2055 * that they must have reset their session, and may have 2056 * dropped messages. 2057 */ 2058 dout("process_connect got RESET peer seq %u\n", 2059 le32_to_cpu(con->in_reply.connect_seq)); 2060 pr_err("%s%lld %s connection reset\n", 2061 ENTITY_NAME(con->peer_name), 2062 ceph_pr_addr(&con->peer_addr.in_addr)); 2063 reset_connection(con); 2064 con_out_kvec_reset(con); 2065 ret = prepare_write_connect(con); 2066 if (ret < 0) 2067 return ret; 2068 prepare_read_connect(con); 2069 2070 /* Tell ceph about it. */ 2071 mutex_unlock(&con->mutex); 2072 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2073 if (con->ops->peer_reset) 2074 con->ops->peer_reset(con); 2075 mutex_lock(&con->mutex); 2076 if (con->state != CON_STATE_NEGOTIATING) 2077 return -EAGAIN; 2078 break; 2079 2080 case CEPH_MSGR_TAG_RETRY_SESSION: 2081 /* 2082 * If we sent a smaller connect_seq than the peer has, try 2083 * again with a larger value. 2084 */ 2085 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2086 le32_to_cpu(con->out_connect.connect_seq), 2087 le32_to_cpu(con->in_reply.connect_seq)); 2088 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2089 con_out_kvec_reset(con); 2090 ret = prepare_write_connect(con); 2091 if (ret < 0) 2092 return ret; 2093 prepare_read_connect(con); 2094 break; 2095 2096 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2097 /* 2098 * If we sent a smaller global_seq than the peer has, try 2099 * again with a larger value. 2100 */ 2101 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2102 con->peer_global_seq, 2103 le32_to_cpu(con->in_reply.global_seq)); 2104 get_global_seq(con->msgr, 2105 le32_to_cpu(con->in_reply.global_seq)); 2106 con_out_kvec_reset(con); 2107 ret = prepare_write_connect(con); 2108 if (ret < 0) 2109 return ret; 2110 prepare_read_connect(con); 2111 break; 2112 2113 case CEPH_MSGR_TAG_SEQ: 2114 case CEPH_MSGR_TAG_READY: 2115 if (req_feat & ~server_feat) { 2116 pr_err("%s%lld %s protocol feature mismatch," 2117 " my required %llx > server's %llx, need %llx\n", 2118 ENTITY_NAME(con->peer_name), 2119 ceph_pr_addr(&con->peer_addr.in_addr), 2120 req_feat, server_feat, req_feat & ~server_feat); 2121 con->error_msg = "missing required protocol features"; 2122 reset_connection(con); 2123 return -1; 2124 } 2125 2126 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2127 con->state = CON_STATE_OPEN; 2128 con->auth_retry = 0; /* we authenticated; clear flag */ 2129 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2130 con->connect_seq++; 2131 con->peer_features = server_feat; 2132 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2133 con->peer_global_seq, 2134 le32_to_cpu(con->in_reply.connect_seq), 2135 con->connect_seq); 2136 WARN_ON(con->connect_seq != 2137 le32_to_cpu(con->in_reply.connect_seq)); 2138 2139 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2140 con_flag_set(con, CON_FLAG_LOSSYTX); 2141 2142 con->delay = 0; /* reset backoff memory */ 2143 2144 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2145 prepare_write_seq(con); 2146 prepare_read_seq(con); 2147 } else { 2148 prepare_read_tag(con); 2149 } 2150 break; 2151 2152 case CEPH_MSGR_TAG_WAIT: 2153 /* 2154 * If there is a connection race (we are opening 2155 * connections to each other), one of us may just have 2156 * to WAIT. This shouldn't happen if we are the 2157 * client. 2158 */ 2159 con->error_msg = "protocol error, got WAIT as client"; 2160 return -1; 2161 2162 default: 2163 con->error_msg = "protocol error, garbage tag during connect"; 2164 return -1; 2165 } 2166 return 0; 2167 } 2168 2169 2170 /* 2171 * read (part of) an ack 2172 */ 2173 static int read_partial_ack(struct ceph_connection *con) 2174 { 2175 int size = sizeof (con->in_temp_ack); 2176 int end = size; 2177 2178 return read_partial(con, end, size, &con->in_temp_ack); 2179 } 2180 2181 /* 2182 * We can finally discard anything that's been acked. 2183 */ 2184 static void process_ack(struct ceph_connection *con) 2185 { 2186 struct ceph_msg *m; 2187 u64 ack = le64_to_cpu(con->in_temp_ack); 2188 u64 seq; 2189 2190 while (!list_empty(&con->out_sent)) { 2191 m = list_first_entry(&con->out_sent, struct ceph_msg, 2192 list_head); 2193 seq = le64_to_cpu(m->hdr.seq); 2194 if (seq > ack) 2195 break; 2196 dout("got ack for seq %llu type %d at %p\n", seq, 2197 le16_to_cpu(m->hdr.type), m); 2198 m->ack_stamp = jiffies; 2199 ceph_msg_remove(m); 2200 } 2201 prepare_read_tag(con); 2202 } 2203 2204 2205 static int read_partial_message_section(struct ceph_connection *con, 2206 struct kvec *section, 2207 unsigned int sec_len, u32 *crc) 2208 { 2209 int ret, left; 2210 2211 BUG_ON(!section); 2212 2213 while (section->iov_len < sec_len) { 2214 BUG_ON(section->iov_base == NULL); 2215 left = sec_len - section->iov_len; 2216 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2217 section->iov_len, left); 2218 if (ret <= 0) 2219 return ret; 2220 section->iov_len += ret; 2221 } 2222 if (section->iov_len == sec_len) 2223 *crc = crc32c(0, section->iov_base, section->iov_len); 2224 2225 return 1; 2226 } 2227 2228 static int read_partial_msg_data(struct ceph_connection *con) 2229 { 2230 struct ceph_msg *msg = con->in_msg; 2231 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2232 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2233 struct page *page; 2234 size_t page_offset; 2235 size_t length; 2236 u32 crc = 0; 2237 int ret; 2238 2239 BUG_ON(!msg); 2240 if (list_empty(&msg->data)) 2241 return -EIO; 2242 2243 if (do_datacrc) 2244 crc = con->in_data_crc; 2245 while (cursor->resid) { 2246 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2247 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2248 if (ret <= 0) { 2249 if (do_datacrc) 2250 con->in_data_crc = crc; 2251 2252 return ret; 2253 } 2254 2255 if (do_datacrc) 2256 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2257 (void) ceph_msg_data_advance(cursor, (size_t)ret); 2258 } 2259 if (do_datacrc) 2260 con->in_data_crc = crc; 2261 2262 return 1; /* must return > 0 to indicate success */ 2263 } 2264 2265 /* 2266 * read (part of) a message. 2267 */ 2268 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2269 2270 static int read_partial_message(struct ceph_connection *con) 2271 { 2272 struct ceph_msg *m = con->in_msg; 2273 int size; 2274 int end; 2275 int ret; 2276 unsigned int front_len, middle_len, data_len; 2277 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2278 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2279 u64 seq; 2280 u32 crc; 2281 2282 dout("read_partial_message con %p msg %p\n", con, m); 2283 2284 /* header */ 2285 size = sizeof (con->in_hdr); 2286 end = size; 2287 ret = read_partial(con, end, size, &con->in_hdr); 2288 if (ret <= 0) 2289 return ret; 2290 2291 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2292 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2293 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2294 crc, con->in_hdr.crc); 2295 return -EBADMSG; 2296 } 2297 2298 front_len = le32_to_cpu(con->in_hdr.front_len); 2299 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2300 return -EIO; 2301 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2302 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2303 return -EIO; 2304 data_len = le32_to_cpu(con->in_hdr.data_len); 2305 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2306 return -EIO; 2307 2308 /* verify seq# */ 2309 seq = le64_to_cpu(con->in_hdr.seq); 2310 if ((s64)seq - (s64)con->in_seq < 1) { 2311 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2312 ENTITY_NAME(con->peer_name), 2313 ceph_pr_addr(&con->peer_addr.in_addr), 2314 seq, con->in_seq + 1); 2315 con->in_base_pos = -front_len - middle_len - data_len - 2316 sizeof(m->footer); 2317 con->in_tag = CEPH_MSGR_TAG_READY; 2318 return 0; 2319 } else if ((s64)seq - (s64)con->in_seq > 1) { 2320 pr_err("read_partial_message bad seq %lld expected %lld\n", 2321 seq, con->in_seq + 1); 2322 con->error_msg = "bad message sequence # for incoming message"; 2323 return -EBADE; 2324 } 2325 2326 /* allocate message? */ 2327 if (!con->in_msg) { 2328 int skip = 0; 2329 2330 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2331 front_len, data_len); 2332 ret = ceph_con_in_msg_alloc(con, &skip); 2333 if (ret < 0) 2334 return ret; 2335 2336 BUG_ON(!con->in_msg ^ skip); 2337 if (skip) { 2338 /* skip this message */ 2339 dout("alloc_msg said skip message\n"); 2340 con->in_base_pos = -front_len - middle_len - data_len - 2341 sizeof(m->footer); 2342 con->in_tag = CEPH_MSGR_TAG_READY; 2343 con->in_seq++; 2344 return 0; 2345 } 2346 2347 BUG_ON(!con->in_msg); 2348 BUG_ON(con->in_msg->con != con); 2349 m = con->in_msg; 2350 m->front.iov_len = 0; /* haven't read it yet */ 2351 if (m->middle) 2352 m->middle->vec.iov_len = 0; 2353 2354 /* prepare for data payload, if any */ 2355 2356 if (data_len) 2357 prepare_message_data(con->in_msg, data_len); 2358 } 2359 2360 /* front */ 2361 ret = read_partial_message_section(con, &m->front, front_len, 2362 &con->in_front_crc); 2363 if (ret <= 0) 2364 return ret; 2365 2366 /* middle */ 2367 if (m->middle) { 2368 ret = read_partial_message_section(con, &m->middle->vec, 2369 middle_len, 2370 &con->in_middle_crc); 2371 if (ret <= 0) 2372 return ret; 2373 } 2374 2375 /* (page) data */ 2376 if (data_len) { 2377 ret = read_partial_msg_data(con); 2378 if (ret <= 0) 2379 return ret; 2380 } 2381 2382 /* footer */ 2383 if (need_sign) 2384 size = sizeof(m->footer); 2385 else 2386 size = sizeof(m->old_footer); 2387 2388 end += size; 2389 ret = read_partial(con, end, size, &m->footer); 2390 if (ret <= 0) 2391 return ret; 2392 2393 if (!need_sign) { 2394 m->footer.flags = m->old_footer.flags; 2395 m->footer.sig = 0; 2396 } 2397 2398 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2399 m, front_len, m->footer.front_crc, middle_len, 2400 m->footer.middle_crc, data_len, m->footer.data_crc); 2401 2402 /* crc ok? */ 2403 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2404 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2405 m, con->in_front_crc, m->footer.front_crc); 2406 return -EBADMSG; 2407 } 2408 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2409 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2410 m, con->in_middle_crc, m->footer.middle_crc); 2411 return -EBADMSG; 2412 } 2413 if (do_datacrc && 2414 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2415 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2416 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2417 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2418 return -EBADMSG; 2419 } 2420 2421 if (need_sign && con->ops->check_message_signature && 2422 con->ops->check_message_signature(m)) { 2423 pr_err("read_partial_message %p signature check failed\n", m); 2424 return -EBADMSG; 2425 } 2426 2427 return 1; /* done! */ 2428 } 2429 2430 /* 2431 * Process message. This happens in the worker thread. The callback should 2432 * be careful not to do anything that waits on other incoming messages or it 2433 * may deadlock. 2434 */ 2435 static void process_message(struct ceph_connection *con) 2436 { 2437 struct ceph_msg *msg = con->in_msg; 2438 2439 BUG_ON(con->in_msg->con != con); 2440 con->in_msg = NULL; 2441 2442 /* if first message, set peer_name */ 2443 if (con->peer_name.type == 0) 2444 con->peer_name = msg->hdr.src; 2445 2446 con->in_seq++; 2447 mutex_unlock(&con->mutex); 2448 2449 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2450 msg, le64_to_cpu(msg->hdr.seq), 2451 ENTITY_NAME(msg->hdr.src), 2452 le16_to_cpu(msg->hdr.type), 2453 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2454 le32_to_cpu(msg->hdr.front_len), 2455 le32_to_cpu(msg->hdr.data_len), 2456 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2457 con->ops->dispatch(con, msg); 2458 2459 mutex_lock(&con->mutex); 2460 } 2461 2462 static int read_keepalive_ack(struct ceph_connection *con) 2463 { 2464 struct ceph_timespec ceph_ts; 2465 size_t size = sizeof(ceph_ts); 2466 int ret = read_partial(con, size, size, &ceph_ts); 2467 if (ret <= 0) 2468 return ret; 2469 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts); 2470 prepare_read_tag(con); 2471 return 1; 2472 } 2473 2474 /* 2475 * Write something to the socket. Called in a worker thread when the 2476 * socket appears to be writeable and we have something ready to send. 2477 */ 2478 static int try_write(struct ceph_connection *con) 2479 { 2480 int ret = 1; 2481 2482 dout("try_write start %p state %lu\n", con, con->state); 2483 2484 more: 2485 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2486 2487 /* open the socket first? */ 2488 if (con->state == CON_STATE_PREOPEN) { 2489 BUG_ON(con->sock); 2490 con->state = CON_STATE_CONNECTING; 2491 2492 con_out_kvec_reset(con); 2493 prepare_write_banner(con); 2494 prepare_read_banner(con); 2495 2496 BUG_ON(con->in_msg); 2497 con->in_tag = CEPH_MSGR_TAG_READY; 2498 dout("try_write initiating connect on %p new state %lu\n", 2499 con, con->state); 2500 ret = ceph_tcp_connect(con); 2501 if (ret < 0) { 2502 con->error_msg = "connect error"; 2503 goto out; 2504 } 2505 } 2506 2507 more_kvec: 2508 /* kvec data queued? */ 2509 if (con->out_skip) { 2510 ret = write_partial_skip(con); 2511 if (ret <= 0) 2512 goto out; 2513 } 2514 if (con->out_kvec_left) { 2515 ret = write_partial_kvec(con); 2516 if (ret <= 0) 2517 goto out; 2518 } 2519 2520 /* msg pages? */ 2521 if (con->out_msg) { 2522 if (con->out_msg_done) { 2523 ceph_msg_put(con->out_msg); 2524 con->out_msg = NULL; /* we're done with this one */ 2525 goto do_next; 2526 } 2527 2528 ret = write_partial_message_data(con); 2529 if (ret == 1) 2530 goto more_kvec; /* we need to send the footer, too! */ 2531 if (ret == 0) 2532 goto out; 2533 if (ret < 0) { 2534 dout("try_write write_partial_message_data err %d\n", 2535 ret); 2536 goto out; 2537 } 2538 } 2539 2540 do_next: 2541 if (con->state == CON_STATE_OPEN) { 2542 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2543 prepare_write_keepalive(con); 2544 goto more; 2545 } 2546 /* is anything else pending? */ 2547 if (!list_empty(&con->out_queue)) { 2548 prepare_write_message(con); 2549 goto more; 2550 } 2551 if (con->in_seq > con->in_seq_acked) { 2552 prepare_write_ack(con); 2553 goto more; 2554 } 2555 } 2556 2557 /* Nothing to do! */ 2558 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2559 dout("try_write nothing else to write.\n"); 2560 ret = 0; 2561 out: 2562 dout("try_write done on %p ret %d\n", con, ret); 2563 return ret; 2564 } 2565 2566 2567 2568 /* 2569 * Read what we can from the socket. 2570 */ 2571 static int try_read(struct ceph_connection *con) 2572 { 2573 int ret = -1; 2574 2575 more: 2576 dout("try_read start on %p state %lu\n", con, con->state); 2577 if (con->state != CON_STATE_CONNECTING && 2578 con->state != CON_STATE_NEGOTIATING && 2579 con->state != CON_STATE_OPEN) 2580 return 0; 2581 2582 BUG_ON(!con->sock); 2583 2584 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2585 con->in_base_pos); 2586 2587 if (con->state == CON_STATE_CONNECTING) { 2588 dout("try_read connecting\n"); 2589 ret = read_partial_banner(con); 2590 if (ret <= 0) 2591 goto out; 2592 ret = process_banner(con); 2593 if (ret < 0) 2594 goto out; 2595 2596 con->state = CON_STATE_NEGOTIATING; 2597 2598 /* 2599 * Received banner is good, exchange connection info. 2600 * Do not reset out_kvec, as sending our banner raced 2601 * with receiving peer banner after connect completed. 2602 */ 2603 ret = prepare_write_connect(con); 2604 if (ret < 0) 2605 goto out; 2606 prepare_read_connect(con); 2607 2608 /* Send connection info before awaiting response */ 2609 goto out; 2610 } 2611 2612 if (con->state == CON_STATE_NEGOTIATING) { 2613 dout("try_read negotiating\n"); 2614 ret = read_partial_connect(con); 2615 if (ret <= 0) 2616 goto out; 2617 ret = process_connect(con); 2618 if (ret < 0) 2619 goto out; 2620 goto more; 2621 } 2622 2623 WARN_ON(con->state != CON_STATE_OPEN); 2624 2625 if (con->in_base_pos < 0) { 2626 /* 2627 * skipping + discarding content. 2628 * 2629 * FIXME: there must be a better way to do this! 2630 */ 2631 static char buf[SKIP_BUF_SIZE]; 2632 int skip = min((int) sizeof (buf), -con->in_base_pos); 2633 2634 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2635 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2636 if (ret <= 0) 2637 goto out; 2638 con->in_base_pos += ret; 2639 if (con->in_base_pos) 2640 goto more; 2641 } 2642 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2643 /* 2644 * what's next? 2645 */ 2646 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2647 if (ret <= 0) 2648 goto out; 2649 dout("try_read got tag %d\n", (int)con->in_tag); 2650 switch (con->in_tag) { 2651 case CEPH_MSGR_TAG_MSG: 2652 prepare_read_message(con); 2653 break; 2654 case CEPH_MSGR_TAG_ACK: 2655 prepare_read_ack(con); 2656 break; 2657 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2658 prepare_read_keepalive_ack(con); 2659 break; 2660 case CEPH_MSGR_TAG_CLOSE: 2661 con_close_socket(con); 2662 con->state = CON_STATE_CLOSED; 2663 goto out; 2664 default: 2665 goto bad_tag; 2666 } 2667 } 2668 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2669 ret = read_partial_message(con); 2670 if (ret <= 0) { 2671 switch (ret) { 2672 case -EBADMSG: 2673 con->error_msg = "bad crc/signature"; 2674 /* fall through */ 2675 case -EBADE: 2676 ret = -EIO; 2677 break; 2678 case -EIO: 2679 con->error_msg = "io error"; 2680 break; 2681 } 2682 goto out; 2683 } 2684 if (con->in_tag == CEPH_MSGR_TAG_READY) 2685 goto more; 2686 process_message(con); 2687 if (con->state == CON_STATE_OPEN) 2688 prepare_read_tag(con); 2689 goto more; 2690 } 2691 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2692 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2693 /* 2694 * the final handshake seq exchange is semantically 2695 * equivalent to an ACK 2696 */ 2697 ret = read_partial_ack(con); 2698 if (ret <= 0) 2699 goto out; 2700 process_ack(con); 2701 goto more; 2702 } 2703 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2704 ret = read_keepalive_ack(con); 2705 if (ret <= 0) 2706 goto out; 2707 goto more; 2708 } 2709 2710 out: 2711 dout("try_read done on %p ret %d\n", con, ret); 2712 return ret; 2713 2714 bad_tag: 2715 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2716 con->error_msg = "protocol error, garbage tag"; 2717 ret = -1; 2718 goto out; 2719 } 2720 2721 2722 /* 2723 * Atomically queue work on a connection after the specified delay. 2724 * Bump @con reference to avoid races with connection teardown. 2725 * Returns 0 if work was queued, or an error code otherwise. 2726 */ 2727 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2728 { 2729 if (!con->ops->get(con)) { 2730 dout("%s %p ref count 0\n", __func__, con); 2731 return -ENOENT; 2732 } 2733 2734 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2735 dout("%s %p - already queued\n", __func__, con); 2736 con->ops->put(con); 2737 return -EBUSY; 2738 } 2739 2740 dout("%s %p %lu\n", __func__, con, delay); 2741 return 0; 2742 } 2743 2744 static void queue_con(struct ceph_connection *con) 2745 { 2746 (void) queue_con_delay(con, 0); 2747 } 2748 2749 static void cancel_con(struct ceph_connection *con) 2750 { 2751 if (cancel_delayed_work(&con->work)) { 2752 dout("%s %p\n", __func__, con); 2753 con->ops->put(con); 2754 } 2755 } 2756 2757 static bool con_sock_closed(struct ceph_connection *con) 2758 { 2759 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2760 return false; 2761 2762 #define CASE(x) \ 2763 case CON_STATE_ ## x: \ 2764 con->error_msg = "socket closed (con state " #x ")"; \ 2765 break; 2766 2767 switch (con->state) { 2768 CASE(CLOSED); 2769 CASE(PREOPEN); 2770 CASE(CONNECTING); 2771 CASE(NEGOTIATING); 2772 CASE(OPEN); 2773 CASE(STANDBY); 2774 default: 2775 pr_warn("%s con %p unrecognized state %lu\n", 2776 __func__, con, con->state); 2777 con->error_msg = "unrecognized con state"; 2778 BUG(); 2779 break; 2780 } 2781 #undef CASE 2782 2783 return true; 2784 } 2785 2786 static bool con_backoff(struct ceph_connection *con) 2787 { 2788 int ret; 2789 2790 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2791 return false; 2792 2793 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2794 if (ret) { 2795 dout("%s: con %p FAILED to back off %lu\n", __func__, 2796 con, con->delay); 2797 BUG_ON(ret == -ENOENT); 2798 con_flag_set(con, CON_FLAG_BACKOFF); 2799 } 2800 2801 return true; 2802 } 2803 2804 /* Finish fault handling; con->mutex must *not* be held here */ 2805 2806 static void con_fault_finish(struct ceph_connection *con) 2807 { 2808 /* 2809 * in case we faulted due to authentication, invalidate our 2810 * current tickets so that we can get new ones. 2811 */ 2812 if (con->auth_retry && con->ops->invalidate_authorizer) { 2813 dout("calling invalidate_authorizer()\n"); 2814 con->ops->invalidate_authorizer(con); 2815 } 2816 2817 if (con->ops->fault) 2818 con->ops->fault(con); 2819 } 2820 2821 /* 2822 * Do some work on a connection. Drop a connection ref when we're done. 2823 */ 2824 static void ceph_con_workfn(struct work_struct *work) 2825 { 2826 struct ceph_connection *con = container_of(work, struct ceph_connection, 2827 work.work); 2828 bool fault; 2829 2830 mutex_lock(&con->mutex); 2831 while (true) { 2832 int ret; 2833 2834 if ((fault = con_sock_closed(con))) { 2835 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2836 break; 2837 } 2838 if (con_backoff(con)) { 2839 dout("%s: con %p BACKOFF\n", __func__, con); 2840 break; 2841 } 2842 if (con->state == CON_STATE_STANDBY) { 2843 dout("%s: con %p STANDBY\n", __func__, con); 2844 break; 2845 } 2846 if (con->state == CON_STATE_CLOSED) { 2847 dout("%s: con %p CLOSED\n", __func__, con); 2848 BUG_ON(con->sock); 2849 break; 2850 } 2851 if (con->state == CON_STATE_PREOPEN) { 2852 dout("%s: con %p PREOPEN\n", __func__, con); 2853 BUG_ON(con->sock); 2854 } 2855 2856 ret = try_read(con); 2857 if (ret < 0) { 2858 if (ret == -EAGAIN) 2859 continue; 2860 if (!con->error_msg) 2861 con->error_msg = "socket error on read"; 2862 fault = true; 2863 break; 2864 } 2865 2866 ret = try_write(con); 2867 if (ret < 0) { 2868 if (ret == -EAGAIN) 2869 continue; 2870 if (!con->error_msg) 2871 con->error_msg = "socket error on write"; 2872 fault = true; 2873 } 2874 2875 break; /* If we make it to here, we're done */ 2876 } 2877 if (fault) 2878 con_fault(con); 2879 mutex_unlock(&con->mutex); 2880 2881 if (fault) 2882 con_fault_finish(con); 2883 2884 con->ops->put(con); 2885 } 2886 2887 /* 2888 * Generic error/fault handler. A retry mechanism is used with 2889 * exponential backoff 2890 */ 2891 static void con_fault(struct ceph_connection *con) 2892 { 2893 dout("fault %p state %lu to peer %s\n", 2894 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2895 2896 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2897 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2898 con->error_msg = NULL; 2899 2900 WARN_ON(con->state != CON_STATE_CONNECTING && 2901 con->state != CON_STATE_NEGOTIATING && 2902 con->state != CON_STATE_OPEN); 2903 2904 con_close_socket(con); 2905 2906 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2907 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2908 con->state = CON_STATE_CLOSED; 2909 return; 2910 } 2911 2912 if (con->in_msg) { 2913 BUG_ON(con->in_msg->con != con); 2914 ceph_msg_put(con->in_msg); 2915 con->in_msg = NULL; 2916 } 2917 2918 /* Requeue anything that hasn't been acked */ 2919 list_splice_init(&con->out_sent, &con->out_queue); 2920 2921 /* If there are no messages queued or keepalive pending, place 2922 * the connection in a STANDBY state */ 2923 if (list_empty(&con->out_queue) && 2924 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2925 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2926 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2927 con->state = CON_STATE_STANDBY; 2928 } else { 2929 /* retry after a delay. */ 2930 con->state = CON_STATE_PREOPEN; 2931 if (con->delay == 0) 2932 con->delay = BASE_DELAY_INTERVAL; 2933 else if (con->delay < MAX_DELAY_INTERVAL) 2934 con->delay *= 2; 2935 con_flag_set(con, CON_FLAG_BACKOFF); 2936 queue_con(con); 2937 } 2938 } 2939 2940 2941 2942 /* 2943 * initialize a new messenger instance 2944 */ 2945 void ceph_messenger_init(struct ceph_messenger *msgr, 2946 struct ceph_entity_addr *myaddr) 2947 { 2948 spin_lock_init(&msgr->global_seq_lock); 2949 2950 if (myaddr) 2951 msgr->inst.addr = *myaddr; 2952 2953 /* select a random nonce */ 2954 msgr->inst.addr.type = 0; 2955 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2956 encode_my_addr(msgr); 2957 2958 atomic_set(&msgr->stopping, 0); 2959 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 2960 2961 dout("%s %p\n", __func__, msgr); 2962 } 2963 EXPORT_SYMBOL(ceph_messenger_init); 2964 2965 void ceph_messenger_fini(struct ceph_messenger *msgr) 2966 { 2967 put_net(read_pnet(&msgr->net)); 2968 } 2969 EXPORT_SYMBOL(ceph_messenger_fini); 2970 2971 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 2972 { 2973 if (msg->con) 2974 msg->con->ops->put(msg->con); 2975 2976 msg->con = con ? con->ops->get(con) : NULL; 2977 BUG_ON(msg->con != con); 2978 } 2979 2980 static void clear_standby(struct ceph_connection *con) 2981 { 2982 /* come back from STANDBY? */ 2983 if (con->state == CON_STATE_STANDBY) { 2984 dout("clear_standby %p and ++connect_seq\n", con); 2985 con->state = CON_STATE_PREOPEN; 2986 con->connect_seq++; 2987 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2988 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2989 } 2990 } 2991 2992 /* 2993 * Queue up an outgoing message on the given connection. 2994 */ 2995 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2996 { 2997 /* set src+dst */ 2998 msg->hdr.src = con->msgr->inst.name; 2999 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3000 msg->needs_out_seq = true; 3001 3002 mutex_lock(&con->mutex); 3003 3004 if (con->state == CON_STATE_CLOSED) { 3005 dout("con_send %p closed, dropping %p\n", con, msg); 3006 ceph_msg_put(msg); 3007 mutex_unlock(&con->mutex); 3008 return; 3009 } 3010 3011 msg_con_set(msg, con); 3012 3013 BUG_ON(!list_empty(&msg->list_head)); 3014 list_add_tail(&msg->list_head, &con->out_queue); 3015 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3016 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3017 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3018 le32_to_cpu(msg->hdr.front_len), 3019 le32_to_cpu(msg->hdr.middle_len), 3020 le32_to_cpu(msg->hdr.data_len)); 3021 3022 clear_standby(con); 3023 mutex_unlock(&con->mutex); 3024 3025 /* if there wasn't anything waiting to send before, queue 3026 * new work */ 3027 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3028 queue_con(con); 3029 } 3030 EXPORT_SYMBOL(ceph_con_send); 3031 3032 /* 3033 * Revoke a message that was previously queued for send 3034 */ 3035 void ceph_msg_revoke(struct ceph_msg *msg) 3036 { 3037 struct ceph_connection *con = msg->con; 3038 3039 if (!con) { 3040 dout("%s msg %p null con\n", __func__, msg); 3041 return; /* Message not in our possession */ 3042 } 3043 3044 mutex_lock(&con->mutex); 3045 if (!list_empty(&msg->list_head)) { 3046 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3047 list_del_init(&msg->list_head); 3048 msg->hdr.seq = 0; 3049 3050 ceph_msg_put(msg); 3051 } 3052 if (con->out_msg == msg) { 3053 dout("%s %p msg %p - was sending\n", __func__, con, msg); 3054 con->out_msg = NULL; 3055 if (con->out_kvec_is_msg) { 3056 con->out_skip = con->out_kvec_bytes; 3057 con->out_kvec_is_msg = false; 3058 } 3059 msg->hdr.seq = 0; 3060 3061 ceph_msg_put(msg); 3062 } 3063 mutex_unlock(&con->mutex); 3064 } 3065 3066 /* 3067 * Revoke a message that we may be reading data into 3068 */ 3069 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3070 { 3071 struct ceph_connection *con = msg->con; 3072 3073 if (!con) { 3074 dout("%s msg %p null con\n", __func__, msg); 3075 return; /* Message not in our possession */ 3076 } 3077 3078 mutex_lock(&con->mutex); 3079 if (con->in_msg == msg) { 3080 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3081 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3082 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3083 3084 /* skip rest of message */ 3085 dout("%s %p msg %p revoked\n", __func__, con, msg); 3086 con->in_base_pos = con->in_base_pos - 3087 sizeof(struct ceph_msg_header) - 3088 front_len - 3089 middle_len - 3090 data_len - 3091 sizeof(struct ceph_msg_footer); 3092 ceph_msg_put(con->in_msg); 3093 con->in_msg = NULL; 3094 con->in_tag = CEPH_MSGR_TAG_READY; 3095 con->in_seq++; 3096 } else { 3097 dout("%s %p in_msg %p msg %p no-op\n", 3098 __func__, con, con->in_msg, msg); 3099 } 3100 mutex_unlock(&con->mutex); 3101 } 3102 3103 /* 3104 * Queue a keepalive byte to ensure the tcp connection is alive. 3105 */ 3106 void ceph_con_keepalive(struct ceph_connection *con) 3107 { 3108 dout("con_keepalive %p\n", con); 3109 mutex_lock(&con->mutex); 3110 clear_standby(con); 3111 mutex_unlock(&con->mutex); 3112 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3113 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3114 queue_con(con); 3115 } 3116 EXPORT_SYMBOL(ceph_con_keepalive); 3117 3118 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3119 unsigned long interval) 3120 { 3121 if (interval > 0 && 3122 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3123 struct timespec now = CURRENT_TIME; 3124 struct timespec ts; 3125 jiffies_to_timespec(interval, &ts); 3126 ts = timespec_add(con->last_keepalive_ack, ts); 3127 return timespec_compare(&now, &ts) >= 0; 3128 } 3129 return false; 3130 } 3131 3132 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3133 { 3134 struct ceph_msg_data *data; 3135 3136 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3137 return NULL; 3138 3139 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3140 if (data) 3141 data->type = type; 3142 INIT_LIST_HEAD(&data->links); 3143 3144 return data; 3145 } 3146 3147 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3148 { 3149 if (!data) 3150 return; 3151 3152 WARN_ON(!list_empty(&data->links)); 3153 if (data->type == CEPH_MSG_DATA_PAGELIST) 3154 ceph_pagelist_release(data->pagelist); 3155 kmem_cache_free(ceph_msg_data_cache, data); 3156 } 3157 3158 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3159 size_t length, size_t alignment) 3160 { 3161 struct ceph_msg_data *data; 3162 3163 BUG_ON(!pages); 3164 BUG_ON(!length); 3165 3166 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3167 BUG_ON(!data); 3168 data->pages = pages; 3169 data->length = length; 3170 data->alignment = alignment & ~PAGE_MASK; 3171 3172 list_add_tail(&data->links, &msg->data); 3173 msg->data_length += length; 3174 } 3175 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3176 3177 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3178 struct ceph_pagelist *pagelist) 3179 { 3180 struct ceph_msg_data *data; 3181 3182 BUG_ON(!pagelist); 3183 BUG_ON(!pagelist->length); 3184 3185 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3186 BUG_ON(!data); 3187 data->pagelist = pagelist; 3188 3189 list_add_tail(&data->links, &msg->data); 3190 msg->data_length += pagelist->length; 3191 } 3192 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3193 3194 #ifdef CONFIG_BLOCK 3195 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3196 size_t length) 3197 { 3198 struct ceph_msg_data *data; 3199 3200 BUG_ON(!bio); 3201 3202 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3203 BUG_ON(!data); 3204 data->bio = bio; 3205 data->bio_length = length; 3206 3207 list_add_tail(&data->links, &msg->data); 3208 msg->data_length += length; 3209 } 3210 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3211 #endif /* CONFIG_BLOCK */ 3212 3213 /* 3214 * construct a new message with given type, size 3215 * the new msg has a ref count of 1. 3216 */ 3217 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3218 bool can_fail) 3219 { 3220 struct ceph_msg *m; 3221 3222 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3223 if (m == NULL) 3224 goto out; 3225 3226 m->hdr.type = cpu_to_le16(type); 3227 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3228 m->hdr.front_len = cpu_to_le32(front_len); 3229 3230 INIT_LIST_HEAD(&m->list_head); 3231 kref_init(&m->kref); 3232 INIT_LIST_HEAD(&m->data); 3233 3234 /* front */ 3235 if (front_len) { 3236 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3237 if (m->front.iov_base == NULL) { 3238 dout("ceph_msg_new can't allocate %d bytes\n", 3239 front_len); 3240 goto out2; 3241 } 3242 } else { 3243 m->front.iov_base = NULL; 3244 } 3245 m->front_alloc_len = m->front.iov_len = front_len; 3246 3247 dout("ceph_msg_new %p front %d\n", m, front_len); 3248 return m; 3249 3250 out2: 3251 ceph_msg_put(m); 3252 out: 3253 if (!can_fail) { 3254 pr_err("msg_new can't create type %d front %d\n", type, 3255 front_len); 3256 WARN_ON(1); 3257 } else { 3258 dout("msg_new can't create type %d front %d\n", type, 3259 front_len); 3260 } 3261 return NULL; 3262 } 3263 EXPORT_SYMBOL(ceph_msg_new); 3264 3265 /* 3266 * Allocate "middle" portion of a message, if it is needed and wasn't 3267 * allocated by alloc_msg. This allows us to read a small fixed-size 3268 * per-type header in the front and then gracefully fail (i.e., 3269 * propagate the error to the caller based on info in the front) when 3270 * the middle is too large. 3271 */ 3272 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3273 { 3274 int type = le16_to_cpu(msg->hdr.type); 3275 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3276 3277 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3278 ceph_msg_type_name(type), middle_len); 3279 BUG_ON(!middle_len); 3280 BUG_ON(msg->middle); 3281 3282 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3283 if (!msg->middle) 3284 return -ENOMEM; 3285 return 0; 3286 } 3287 3288 /* 3289 * Allocate a message for receiving an incoming message on a 3290 * connection, and save the result in con->in_msg. Uses the 3291 * connection's private alloc_msg op if available. 3292 * 3293 * Returns 0 on success, or a negative error code. 3294 * 3295 * On success, if we set *skip = 1: 3296 * - the next message should be skipped and ignored. 3297 * - con->in_msg == NULL 3298 * or if we set *skip = 0: 3299 * - con->in_msg is non-null. 3300 * On error (ENOMEM, EAGAIN, ...), 3301 * - con->in_msg == NULL 3302 */ 3303 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3304 { 3305 struct ceph_msg_header *hdr = &con->in_hdr; 3306 int middle_len = le32_to_cpu(hdr->middle_len); 3307 struct ceph_msg *msg; 3308 int ret = 0; 3309 3310 BUG_ON(con->in_msg != NULL); 3311 BUG_ON(!con->ops->alloc_msg); 3312 3313 mutex_unlock(&con->mutex); 3314 msg = con->ops->alloc_msg(con, hdr, skip); 3315 mutex_lock(&con->mutex); 3316 if (con->state != CON_STATE_OPEN) { 3317 if (msg) 3318 ceph_msg_put(msg); 3319 return -EAGAIN; 3320 } 3321 if (msg) { 3322 BUG_ON(*skip); 3323 msg_con_set(msg, con); 3324 con->in_msg = msg; 3325 } else { 3326 /* 3327 * Null message pointer means either we should skip 3328 * this message or we couldn't allocate memory. The 3329 * former is not an error. 3330 */ 3331 if (*skip) 3332 return 0; 3333 3334 con->error_msg = "error allocating memory for incoming message"; 3335 return -ENOMEM; 3336 } 3337 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3338 3339 if (middle_len && !con->in_msg->middle) { 3340 ret = ceph_alloc_middle(con, con->in_msg); 3341 if (ret < 0) { 3342 ceph_msg_put(con->in_msg); 3343 con->in_msg = NULL; 3344 } 3345 } 3346 3347 return ret; 3348 } 3349 3350 3351 /* 3352 * Free a generically kmalloc'd message. 3353 */ 3354 static void ceph_msg_free(struct ceph_msg *m) 3355 { 3356 dout("%s %p\n", __func__, m); 3357 kvfree(m->front.iov_base); 3358 kmem_cache_free(ceph_msg_cache, m); 3359 } 3360 3361 static void ceph_msg_release(struct kref *kref) 3362 { 3363 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3364 LIST_HEAD(data); 3365 struct list_head *links; 3366 struct list_head *next; 3367 3368 dout("%s %p\n", __func__, m); 3369 WARN_ON(!list_empty(&m->list_head)); 3370 3371 msg_con_set(m, NULL); 3372 3373 /* drop middle, data, if any */ 3374 if (m->middle) { 3375 ceph_buffer_put(m->middle); 3376 m->middle = NULL; 3377 } 3378 3379 list_splice_init(&m->data, &data); 3380 list_for_each_safe(links, next, &data) { 3381 struct ceph_msg_data *data; 3382 3383 data = list_entry(links, struct ceph_msg_data, links); 3384 list_del_init(links); 3385 ceph_msg_data_destroy(data); 3386 } 3387 m->data_length = 0; 3388 3389 if (m->pool) 3390 ceph_msgpool_put(m->pool, m); 3391 else 3392 ceph_msg_free(m); 3393 } 3394 3395 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3396 { 3397 dout("%s %p (was %d)\n", __func__, msg, 3398 atomic_read(&msg->kref.refcount)); 3399 kref_get(&msg->kref); 3400 return msg; 3401 } 3402 EXPORT_SYMBOL(ceph_msg_get); 3403 3404 void ceph_msg_put(struct ceph_msg *msg) 3405 { 3406 dout("%s %p (was %d)\n", __func__, msg, 3407 atomic_read(&msg->kref.refcount)); 3408 kref_put(&msg->kref, ceph_msg_release); 3409 } 3410 EXPORT_SYMBOL(ceph_msg_put); 3411 3412 void ceph_msg_dump(struct ceph_msg *msg) 3413 { 3414 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3415 msg->front_alloc_len, msg->data_length); 3416 print_hex_dump(KERN_DEBUG, "header: ", 3417 DUMP_PREFIX_OFFSET, 16, 1, 3418 &msg->hdr, sizeof(msg->hdr), true); 3419 print_hex_dump(KERN_DEBUG, " front: ", 3420 DUMP_PREFIX_OFFSET, 16, 1, 3421 msg->front.iov_base, msg->front.iov_len, true); 3422 if (msg->middle) 3423 print_hex_dump(KERN_DEBUG, "middle: ", 3424 DUMP_PREFIX_OFFSET, 16, 1, 3425 msg->middle->vec.iov_base, 3426 msg->middle->vec.iov_len, true); 3427 print_hex_dump(KERN_DEBUG, "footer: ", 3428 DUMP_PREFIX_OFFSET, 16, 1, 3429 &msg->footer, sizeof(msg->footer), true); 3430 } 3431 EXPORT_SYMBOL(ceph_msg_dump); 3432